]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/vmalloc.c
bpf: Wrap aux data inside bpf_sanitize_info container
[mirror_ubuntu-hirsute-kernel.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 7 * Numa awareness, Christoph Lameter, SGI, June 2005
d758ffe6 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
c3edc401 15#include <linux/sched/signal.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
868b104d 21#include <linux/set_memory.h>
3ac7fe5a 22#include <linux/debugobjects.h>
23016969 23#include <linux/kallsyms.h>
db64fe02 24#include <linux/list.h>
4da56b99 25#include <linux/notifier.h>
db64fe02 26#include <linux/rbtree.h>
0f14599c 27#include <linux/xarray.h>
db64fe02 28#include <linux/rcupdate.h>
f0aa6617 29#include <linux/pfn.h>
89219d37 30#include <linux/kmemleak.h>
60063497 31#include <linux/atomic.h>
3b32123d 32#include <linux/compiler.h>
32fcfd40 33#include <linux/llist.h>
0f616be1 34#include <linux/bitops.h>
68ad4a33 35#include <linux/rbtree_augmented.h>
bdebd6a2 36#include <linux/overflow.h>
3b32123d 37
7c0f6ba6 38#include <linux/uaccess.h>
1da177e4 39#include <asm/tlbflush.h>
2dca6999 40#include <asm/shmparam.h>
1da177e4 41
dd56b046 42#include "internal.h"
2a681cfa 43#include "pgalloc-track.h"
dd56b046 44
186525bd
IM
45bool is_vmalloc_addr(const void *x)
46{
47 unsigned long addr = (unsigned long)x;
48
49 return addr >= VMALLOC_START && addr < VMALLOC_END;
50}
51EXPORT_SYMBOL(is_vmalloc_addr);
52
32fcfd40
AV
53struct vfree_deferred {
54 struct llist_head list;
55 struct work_struct wq;
56};
57static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
58
59static void __vunmap(const void *, int);
60
61static void free_work(struct work_struct *w)
62{
63 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
64 struct llist_node *t, *llnode;
65
66 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
67 __vunmap((void *)llnode, 1);
32fcfd40
AV
68}
69
db64fe02 70/*** Page table manipulation functions ***/
b221385b 71
2ba3e694
JR
72static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
73 pgtbl_mod_mask *mask)
1da177e4
LT
74{
75 pte_t *pte;
76
77 pte = pte_offset_kernel(pmd, addr);
78 do {
79 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
80 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
81 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 82 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
83}
84
2ba3e694
JR
85static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
86 pgtbl_mod_mask *mask)
1da177e4
LT
87{
88 pmd_t *pmd;
89 unsigned long next;
2ba3e694 90 int cleared;
1da177e4
LT
91
92 pmd = pmd_offset(pud, addr);
93 do {
94 next = pmd_addr_end(addr, end);
2ba3e694
JR
95
96 cleared = pmd_clear_huge(pmd);
97 if (cleared || pmd_bad(*pmd))
98 *mask |= PGTBL_PMD_MODIFIED;
99
100 if (cleared)
b9820d8f 101 continue;
1da177e4
LT
102 if (pmd_none_or_clear_bad(pmd))
103 continue;
2ba3e694 104 vunmap_pte_range(pmd, addr, next, mask);
e47110e9
AK
105
106 cond_resched();
1da177e4
LT
107 } while (pmd++, addr = next, addr != end);
108}
109
2ba3e694
JR
110static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
111 pgtbl_mod_mask *mask)
1da177e4
LT
112{
113 pud_t *pud;
114 unsigned long next;
2ba3e694 115 int cleared;
1da177e4 116
c2febafc 117 pud = pud_offset(p4d, addr);
1da177e4
LT
118 do {
119 next = pud_addr_end(addr, end);
2ba3e694
JR
120
121 cleared = pud_clear_huge(pud);
122 if (cleared || pud_bad(*pud))
123 *mask |= PGTBL_PUD_MODIFIED;
124
125 if (cleared)
b9820d8f 126 continue;
1da177e4
LT
127 if (pud_none_or_clear_bad(pud))
128 continue;
2ba3e694 129 vunmap_pmd_range(pud, addr, next, mask);
1da177e4
LT
130 } while (pud++, addr = next, addr != end);
131}
132
2ba3e694
JR
133static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
134 pgtbl_mod_mask *mask)
c2febafc
KS
135{
136 p4d_t *p4d;
137 unsigned long next;
2ba3e694 138 int cleared;
c2febafc
KS
139
140 p4d = p4d_offset(pgd, addr);
141 do {
142 next = p4d_addr_end(addr, end);
2ba3e694
JR
143
144 cleared = p4d_clear_huge(p4d);
145 if (cleared || p4d_bad(*p4d))
146 *mask |= PGTBL_P4D_MODIFIED;
147
148 if (cleared)
c2febafc
KS
149 continue;
150 if (p4d_none_or_clear_bad(p4d))
151 continue;
2ba3e694 152 vunmap_pud_range(p4d, addr, next, mask);
c2febafc
KS
153 } while (p4d++, addr = next, addr != end);
154}
155
b521c43f
CH
156/**
157 * unmap_kernel_range_noflush - unmap kernel VM area
2ba3e694 158 * @start: start of the VM area to unmap
b521c43f
CH
159 * @size: size of the VM area to unmap
160 *
161 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size specify
162 * should have been allocated using get_vm_area() and its friends.
163 *
164 * NOTE:
165 * This function does NOT do any cache flushing. The caller is responsible
166 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
167 * function and flush_tlb_kernel_range() after.
168 */
2ba3e694 169void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
1da177e4 170{
2ba3e694 171 unsigned long end = start + size;
1da177e4 172 unsigned long next;
b521c43f 173 pgd_t *pgd;
2ba3e694
JR
174 unsigned long addr = start;
175 pgtbl_mod_mask mask = 0;
1da177e4
LT
176
177 BUG_ON(addr >= end);
178 pgd = pgd_offset_k(addr);
1da177e4
LT
179 do {
180 next = pgd_addr_end(addr, end);
2ba3e694
JR
181 if (pgd_bad(*pgd))
182 mask |= PGTBL_PGD_MODIFIED;
1da177e4
LT
183 if (pgd_none_or_clear_bad(pgd))
184 continue;
2ba3e694 185 vunmap_p4d_range(pgd, addr, next, &mask);
1da177e4 186 } while (pgd++, addr = next, addr != end);
2ba3e694
JR
187
188 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
189 arch_sync_kernel_mappings(start, end);
1da177e4
LT
190}
191
192static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
2ba3e694
JR
193 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
194 pgtbl_mod_mask *mask)
1da177e4
LT
195{
196 pte_t *pte;
197
db64fe02
NP
198 /*
199 * nr is a running index into the array which helps higher level
200 * callers keep track of where we're up to.
201 */
202
2ba3e694 203 pte = pte_alloc_kernel_track(pmd, addr, mask);
1da177e4
LT
204 if (!pte)
205 return -ENOMEM;
206 do {
db64fe02
NP
207 struct page *page = pages[*nr];
208
209 if (WARN_ON(!pte_none(*pte)))
210 return -EBUSY;
211 if (WARN_ON(!page))
1da177e4
LT
212 return -ENOMEM;
213 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 214 (*nr)++;
1da177e4 215 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 216 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
217 return 0;
218}
219
db64fe02 220static int vmap_pmd_range(pud_t *pud, unsigned long addr,
2ba3e694
JR
221 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
222 pgtbl_mod_mask *mask)
1da177e4
LT
223{
224 pmd_t *pmd;
225 unsigned long next;
226
2ba3e694 227 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
1da177e4
LT
228 if (!pmd)
229 return -ENOMEM;
230 do {
231 next = pmd_addr_end(addr, end);
2ba3e694 232 if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
1da177e4
LT
233 return -ENOMEM;
234 } while (pmd++, addr = next, addr != end);
235 return 0;
236}
237
c2febafc 238static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
2ba3e694
JR
239 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
240 pgtbl_mod_mask *mask)
1da177e4
LT
241{
242 pud_t *pud;
243 unsigned long next;
244
2ba3e694 245 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
1da177e4
LT
246 if (!pud)
247 return -ENOMEM;
248 do {
249 next = pud_addr_end(addr, end);
2ba3e694 250 if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
1da177e4
LT
251 return -ENOMEM;
252 } while (pud++, addr = next, addr != end);
253 return 0;
254}
255
c2febafc 256static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
2ba3e694
JR
257 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
258 pgtbl_mod_mask *mask)
c2febafc
KS
259{
260 p4d_t *p4d;
261 unsigned long next;
262
2ba3e694 263 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
c2febafc
KS
264 if (!p4d)
265 return -ENOMEM;
266 do {
267 next = p4d_addr_end(addr, end);
2ba3e694 268 if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
c2febafc
KS
269 return -ENOMEM;
270 } while (p4d++, addr = next, addr != end);
271 return 0;
272}
273
b521c43f
CH
274/**
275 * map_kernel_range_noflush - map kernel VM area with the specified pages
276 * @addr: start of the VM area to map
277 * @size: size of the VM area to map
278 * @prot: page protection flags to use
279 * @pages: pages to map
db64fe02 280 *
b521c43f
CH
281 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size specify should
282 * have been allocated using get_vm_area() and its friends.
283 *
284 * NOTE:
285 * This function does NOT do any cache flushing. The caller is responsible for
286 * calling flush_cache_vmap() on to-be-mapped areas before calling this
287 * function.
288 *
289 * RETURNS:
60bb4465 290 * 0 on success, -errno on failure.
db64fe02 291 */
b521c43f
CH
292int map_kernel_range_noflush(unsigned long addr, unsigned long size,
293 pgprot_t prot, struct page **pages)
1da177e4 294{
2ba3e694 295 unsigned long start = addr;
b521c43f 296 unsigned long end = addr + size;
1da177e4 297 unsigned long next;
b521c43f 298 pgd_t *pgd;
db64fe02
NP
299 int err = 0;
300 int nr = 0;
2ba3e694 301 pgtbl_mod_mask mask = 0;
1da177e4
LT
302
303 BUG_ON(addr >= end);
304 pgd = pgd_offset_k(addr);
1da177e4
LT
305 do {
306 next = pgd_addr_end(addr, end);
2ba3e694
JR
307 if (pgd_bad(*pgd))
308 mask |= PGTBL_PGD_MODIFIED;
309 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
1da177e4 310 if (err)
bf88c8c8 311 return err;
1da177e4 312 } while (pgd++, addr = next, addr != end);
db64fe02 313
2ba3e694
JR
314 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
315 arch_sync_kernel_mappings(start, end);
316
60bb4465 317 return 0;
1da177e4 318}
2e0647d3 319EXPORT_SYMBOL(map_kernel_range_noflush);
1da177e4 320
ed1f324c
CH
321int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
322 struct page **pages)
8fc48985
TH
323{
324 int ret;
325
a29adb62
CH
326 ret = map_kernel_range_noflush(start, size, prot, pages);
327 flush_cache_vmap(start, start + size);
8fc48985
TH
328 return ret;
329}
330
81ac3ad9 331int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
332{
333 /*
ab4f2ee1 334 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
335 * and fall back on vmalloc() if that fails. Others
336 * just put it in the vmalloc space.
337 */
338#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
339 unsigned long addr = (unsigned long)x;
340 if (addr >= MODULES_VADDR && addr < MODULES_END)
341 return 1;
342#endif
343 return is_vmalloc_addr(x);
344}
345
48667e7a 346/*
add688fb 347 * Walk a vmap address to the struct page it maps.
48667e7a 348 */
add688fb 349struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
350{
351 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 352 struct page *page = NULL;
48667e7a 353 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
354 p4d_t *p4d;
355 pud_t *pud;
356 pmd_t *pmd;
357 pte_t *ptep, pte;
48667e7a 358
7aa413de
IM
359 /*
360 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
361 * architectures that do not vmalloc module space
362 */
73bdf0a6 363 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 364
c2febafc
KS
365 if (pgd_none(*pgd))
366 return NULL;
367 p4d = p4d_offset(pgd, addr);
368 if (p4d_none(*p4d))
369 return NULL;
370 pud = pud_offset(p4d, addr);
029c54b0
AB
371
372 /*
373 * Don't dereference bad PUD or PMD (below) entries. This will also
374 * identify huge mappings, which we may encounter on architectures
375 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
376 * identified as vmalloc addresses by is_vmalloc_addr(), but are
377 * not [unambiguously] associated with a struct page, so there is
378 * no correct value to return for them.
379 */
380 WARN_ON_ONCE(pud_bad(*pud));
381 if (pud_none(*pud) || pud_bad(*pud))
c2febafc
KS
382 return NULL;
383 pmd = pmd_offset(pud, addr);
029c54b0
AB
384 WARN_ON_ONCE(pmd_bad(*pmd));
385 if (pmd_none(*pmd) || pmd_bad(*pmd))
c2febafc
KS
386 return NULL;
387
388 ptep = pte_offset_map(pmd, addr);
389 pte = *ptep;
390 if (pte_present(pte))
391 page = pte_page(pte);
392 pte_unmap(ptep);
add688fb 393 return page;
48667e7a 394}
add688fb 395EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
396
397/*
add688fb 398 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 399 */
add688fb 400unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 401{
add688fb 402 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 403}
add688fb 404EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 405
db64fe02
NP
406
407/*** Global kva allocator ***/
408
bb850f4d 409#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 410#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 411
db64fe02 412
db64fe02 413static DEFINE_SPINLOCK(vmap_area_lock);
e36176be 414static DEFINE_SPINLOCK(free_vmap_area_lock);
f1c4069e
JK
415/* Export for kexec only */
416LIST_HEAD(vmap_area_list);
89699605 417static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 418static bool vmap_initialized __read_mostly;
89699605 419
96e2db45
URS
420static struct rb_root purge_vmap_area_root = RB_ROOT;
421static LIST_HEAD(purge_vmap_area_list);
422static DEFINE_SPINLOCK(purge_vmap_area_lock);
423
68ad4a33
URS
424/*
425 * This kmem_cache is used for vmap_area objects. Instead of
426 * allocating from slab we reuse an object from this cache to
427 * make things faster. Especially in "no edge" splitting of
428 * free block.
429 */
430static struct kmem_cache *vmap_area_cachep;
431
432/*
433 * This linked list is used in pair with free_vmap_area_root.
434 * It gives O(1) access to prev/next to perform fast coalescing.
435 */
436static LIST_HEAD(free_vmap_area_list);
437
438/*
439 * This augment red-black tree represents the free vmap space.
440 * All vmap_area objects in this tree are sorted by va->va_start
441 * address. It is used for allocation and merging when a vmap
442 * object is released.
443 *
444 * Each vmap_area node contains a maximum available free block
445 * of its sub-tree, right or left. Therefore it is possible to
446 * find a lowest match of free area.
447 */
448static struct rb_root free_vmap_area_root = RB_ROOT;
449
82dd23e8
URS
450/*
451 * Preload a CPU with one object for "no edge" split case. The
452 * aim is to get rid of allocations from the atomic context, thus
453 * to use more permissive allocation masks.
454 */
455static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
456
68ad4a33
URS
457static __always_inline unsigned long
458va_size(struct vmap_area *va)
459{
460 return (va->va_end - va->va_start);
461}
462
463static __always_inline unsigned long
464get_subtree_max_size(struct rb_node *node)
465{
466 struct vmap_area *va;
467
468 va = rb_entry_safe(node, struct vmap_area, rb_node);
469 return va ? va->subtree_max_size : 0;
470}
89699605 471
68ad4a33
URS
472/*
473 * Gets called when remove the node and rotate.
474 */
475static __always_inline unsigned long
476compute_subtree_max_size(struct vmap_area *va)
477{
478 return max3(va_size(va),
479 get_subtree_max_size(va->rb_node.rb_left),
480 get_subtree_max_size(va->rb_node.rb_right));
481}
482
315cc066
ML
483RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
484 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
68ad4a33
URS
485
486static void purge_vmap_area_lazy(void);
487static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
488static unsigned long lazy_max_pages(void);
db64fe02 489
97105f0a
RG
490static atomic_long_t nr_vmalloc_pages;
491
492unsigned long vmalloc_nr_pages(void)
493{
494 return atomic_long_read(&nr_vmalloc_pages);
495}
496
db64fe02 497static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 498{
db64fe02
NP
499 struct rb_node *n = vmap_area_root.rb_node;
500
501 while (n) {
502 struct vmap_area *va;
503
504 va = rb_entry(n, struct vmap_area, rb_node);
505 if (addr < va->va_start)
506 n = n->rb_left;
cef2ac3f 507 else if (addr >= va->va_end)
db64fe02
NP
508 n = n->rb_right;
509 else
510 return va;
511 }
512
513 return NULL;
514}
515
68ad4a33
URS
516/*
517 * This function returns back addresses of parent node
518 * and its left or right link for further processing.
9c801f61
URS
519 *
520 * Otherwise NULL is returned. In that case all further
521 * steps regarding inserting of conflicting overlap range
522 * have to be declined and actually considered as a bug.
68ad4a33
URS
523 */
524static __always_inline struct rb_node **
525find_va_links(struct vmap_area *va,
526 struct rb_root *root, struct rb_node *from,
527 struct rb_node **parent)
528{
529 struct vmap_area *tmp_va;
530 struct rb_node **link;
531
532 if (root) {
533 link = &root->rb_node;
534 if (unlikely(!*link)) {
535 *parent = NULL;
536 return link;
537 }
538 } else {
539 link = &from;
540 }
db64fe02 541
68ad4a33
URS
542 /*
543 * Go to the bottom of the tree. When we hit the last point
544 * we end up with parent rb_node and correct direction, i name
545 * it link, where the new va->rb_node will be attached to.
546 */
547 do {
548 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 549
68ad4a33
URS
550 /*
551 * During the traversal we also do some sanity check.
552 * Trigger the BUG() if there are sides(left/right)
553 * or full overlaps.
554 */
555 if (va->va_start < tmp_va->va_end &&
556 va->va_end <= tmp_va->va_start)
557 link = &(*link)->rb_left;
558 else if (va->va_end > tmp_va->va_start &&
559 va->va_start >= tmp_va->va_end)
560 link = &(*link)->rb_right;
9c801f61
URS
561 else {
562 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
563 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
564
565 return NULL;
566 }
68ad4a33
URS
567 } while (*link);
568
569 *parent = &tmp_va->rb_node;
570 return link;
571}
572
573static __always_inline struct list_head *
574get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
575{
576 struct list_head *list;
577
578 if (unlikely(!parent))
579 /*
580 * The red-black tree where we try to find VA neighbors
581 * before merging or inserting is empty, i.e. it means
582 * there is no free vmap space. Normally it does not
583 * happen but we handle this case anyway.
584 */
585 return NULL;
586
587 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
588 return (&parent->rb_right == link ? list->next : list);
589}
590
591static __always_inline void
592link_va(struct vmap_area *va, struct rb_root *root,
593 struct rb_node *parent, struct rb_node **link, struct list_head *head)
594{
595 /*
596 * VA is still not in the list, but we can
597 * identify its future previous list_head node.
598 */
599 if (likely(parent)) {
600 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
601 if (&parent->rb_right != link)
602 head = head->prev;
db64fe02
NP
603 }
604
68ad4a33
URS
605 /* Insert to the rb-tree */
606 rb_link_node(&va->rb_node, parent, link);
607 if (root == &free_vmap_area_root) {
608 /*
609 * Some explanation here. Just perform simple insertion
610 * to the tree. We do not set va->subtree_max_size to
611 * its current size before calling rb_insert_augmented().
612 * It is because of we populate the tree from the bottom
613 * to parent levels when the node _is_ in the tree.
614 *
615 * Therefore we set subtree_max_size to zero after insertion,
616 * to let __augment_tree_propagate_from() puts everything to
617 * the correct order later on.
618 */
619 rb_insert_augmented(&va->rb_node,
620 root, &free_vmap_area_rb_augment_cb);
621 va->subtree_max_size = 0;
622 } else {
623 rb_insert_color(&va->rb_node, root);
624 }
db64fe02 625
68ad4a33
URS
626 /* Address-sort this list */
627 list_add(&va->list, head);
db64fe02
NP
628}
629
68ad4a33
URS
630static __always_inline void
631unlink_va(struct vmap_area *va, struct rb_root *root)
632{
460e42d1
URS
633 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
634 return;
db64fe02 635
460e42d1
URS
636 if (root == &free_vmap_area_root)
637 rb_erase_augmented(&va->rb_node,
638 root, &free_vmap_area_rb_augment_cb);
639 else
640 rb_erase(&va->rb_node, root);
641
642 list_del(&va->list);
643 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
644}
645
bb850f4d
URS
646#if DEBUG_AUGMENT_PROPAGATE_CHECK
647static void
da27c9ed 648augment_tree_propagate_check(void)
bb850f4d
URS
649{
650 struct vmap_area *va;
da27c9ed 651 unsigned long computed_size;
bb850f4d 652
da27c9ed
URS
653 list_for_each_entry(va, &free_vmap_area_list, list) {
654 computed_size = compute_subtree_max_size(va);
655 if (computed_size != va->subtree_max_size)
656 pr_emerg("tree is corrupted: %lu, %lu\n",
657 va_size(va), va->subtree_max_size);
bb850f4d 658 }
bb850f4d
URS
659}
660#endif
661
68ad4a33
URS
662/*
663 * This function populates subtree_max_size from bottom to upper
664 * levels starting from VA point. The propagation must be done
665 * when VA size is modified by changing its va_start/va_end. Or
666 * in case of newly inserting of VA to the tree.
667 *
668 * It means that __augment_tree_propagate_from() must be called:
669 * - After VA has been inserted to the tree(free path);
670 * - After VA has been shrunk(allocation path);
671 * - After VA has been increased(merging path).
672 *
673 * Please note that, it does not mean that upper parent nodes
674 * and their subtree_max_size are recalculated all the time up
675 * to the root node.
676 *
677 * 4--8
678 * /\
679 * / \
680 * / \
681 * 2--2 8--8
682 *
683 * For example if we modify the node 4, shrinking it to 2, then
684 * no any modification is required. If we shrink the node 2 to 1
685 * its subtree_max_size is updated only, and set to 1. If we shrink
686 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
687 * node becomes 4--6.
688 */
689static __always_inline void
690augment_tree_propagate_from(struct vmap_area *va)
691{
15ae144f
URS
692 /*
693 * Populate the tree from bottom towards the root until
694 * the calculated maximum available size of checked node
695 * is equal to its current one.
696 */
697 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
bb850f4d
URS
698
699#if DEBUG_AUGMENT_PROPAGATE_CHECK
da27c9ed 700 augment_tree_propagate_check();
bb850f4d 701#endif
68ad4a33
URS
702}
703
704static void
705insert_vmap_area(struct vmap_area *va,
706 struct rb_root *root, struct list_head *head)
707{
708 struct rb_node **link;
709 struct rb_node *parent;
710
711 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
712 if (link)
713 link_va(va, root, parent, link, head);
68ad4a33
URS
714}
715
716static void
717insert_vmap_area_augment(struct vmap_area *va,
718 struct rb_node *from, struct rb_root *root,
719 struct list_head *head)
720{
721 struct rb_node **link;
722 struct rb_node *parent;
723
724 if (from)
725 link = find_va_links(va, NULL, from, &parent);
726 else
727 link = find_va_links(va, root, NULL, &parent);
728
9c801f61
URS
729 if (link) {
730 link_va(va, root, parent, link, head);
731 augment_tree_propagate_from(va);
732 }
68ad4a33
URS
733}
734
735/*
736 * Merge de-allocated chunk of VA memory with previous
737 * and next free blocks. If coalesce is not done a new
738 * free area is inserted. If VA has been merged, it is
739 * freed.
9c801f61
URS
740 *
741 * Please note, it can return NULL in case of overlap
742 * ranges, followed by WARN() report. Despite it is a
743 * buggy behaviour, a system can be alive and keep
744 * ongoing.
68ad4a33 745 */
3c5c3cfb 746static __always_inline struct vmap_area *
68ad4a33
URS
747merge_or_add_vmap_area(struct vmap_area *va,
748 struct rb_root *root, struct list_head *head)
749{
750 struct vmap_area *sibling;
751 struct list_head *next;
752 struct rb_node **link;
753 struct rb_node *parent;
754 bool merged = false;
755
756 /*
757 * Find a place in the tree where VA potentially will be
758 * inserted, unless it is merged with its sibling/siblings.
759 */
760 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
761 if (!link)
762 return NULL;
68ad4a33
URS
763
764 /*
765 * Get next node of VA to check if merging can be done.
766 */
767 next = get_va_next_sibling(parent, link);
768 if (unlikely(next == NULL))
769 goto insert;
770
771 /*
772 * start end
773 * | |
774 * |<------VA------>|<-----Next----->|
775 * | |
776 * start end
777 */
778 if (next != head) {
779 sibling = list_entry(next, struct vmap_area, list);
780 if (sibling->va_start == va->va_end) {
781 sibling->va_start = va->va_start;
782
68ad4a33
URS
783 /* Free vmap_area object. */
784 kmem_cache_free(vmap_area_cachep, va);
785
786 /* Point to the new merged area. */
787 va = sibling;
788 merged = true;
789 }
790 }
791
792 /*
793 * start end
794 * | |
795 * |<-----Prev----->|<------VA------>|
796 * | |
797 * start end
798 */
799 if (next->prev != head) {
800 sibling = list_entry(next->prev, struct vmap_area, list);
801 if (sibling->va_end == va->va_start) {
5dd78640
URS
802 /*
803 * If both neighbors are coalesced, it is important
804 * to unlink the "next" node first, followed by merging
805 * with "previous" one. Otherwise the tree might not be
806 * fully populated if a sibling's augmented value is
807 * "normalized" because of rotation operations.
808 */
54f63d9d
URS
809 if (merged)
810 unlink_va(va, root);
68ad4a33 811
5dd78640
URS
812 sibling->va_end = va->va_end;
813
68ad4a33
URS
814 /* Free vmap_area object. */
815 kmem_cache_free(vmap_area_cachep, va);
3c5c3cfb
DA
816
817 /* Point to the new merged area. */
818 va = sibling;
819 merged = true;
68ad4a33
URS
820 }
821 }
822
823insert:
5dd78640 824 if (!merged)
68ad4a33 825 link_va(va, root, parent, link, head);
3c5c3cfb 826
96e2db45
URS
827 return va;
828}
829
830static __always_inline struct vmap_area *
831merge_or_add_vmap_area_augment(struct vmap_area *va,
832 struct rb_root *root, struct list_head *head)
833{
834 va = merge_or_add_vmap_area(va, root, head);
835 if (va)
836 augment_tree_propagate_from(va);
837
3c5c3cfb 838 return va;
68ad4a33
URS
839}
840
841static __always_inline bool
842is_within_this_va(struct vmap_area *va, unsigned long size,
843 unsigned long align, unsigned long vstart)
844{
845 unsigned long nva_start_addr;
846
847 if (va->va_start > vstart)
848 nva_start_addr = ALIGN(va->va_start, align);
849 else
850 nva_start_addr = ALIGN(vstart, align);
851
852 /* Can be overflowed due to big size or alignment. */
853 if (nva_start_addr + size < nva_start_addr ||
854 nva_start_addr < vstart)
855 return false;
856
857 return (nva_start_addr + size <= va->va_end);
858}
859
860/*
861 * Find the first free block(lowest start address) in the tree,
862 * that will accomplish the request corresponding to passing
863 * parameters.
864 */
865static __always_inline struct vmap_area *
866find_vmap_lowest_match(unsigned long size,
867 unsigned long align, unsigned long vstart)
868{
869 struct vmap_area *va;
870 struct rb_node *node;
871 unsigned long length;
872
873 /* Start from the root. */
874 node = free_vmap_area_root.rb_node;
875
876 /* Adjust the search size for alignment overhead. */
877 length = size + align - 1;
878
879 while (node) {
880 va = rb_entry(node, struct vmap_area, rb_node);
881
882 if (get_subtree_max_size(node->rb_left) >= length &&
883 vstart < va->va_start) {
884 node = node->rb_left;
885 } else {
886 if (is_within_this_va(va, size, align, vstart))
887 return va;
888
889 /*
890 * Does not make sense to go deeper towards the right
891 * sub-tree if it does not have a free block that is
892 * equal or bigger to the requested search length.
893 */
894 if (get_subtree_max_size(node->rb_right) >= length) {
895 node = node->rb_right;
896 continue;
897 }
898
899 /*
3806b041 900 * OK. We roll back and find the first right sub-tree,
68ad4a33
URS
901 * that will satisfy the search criteria. It can happen
902 * only once due to "vstart" restriction.
903 */
904 while ((node = rb_parent(node))) {
905 va = rb_entry(node, struct vmap_area, rb_node);
906 if (is_within_this_va(va, size, align, vstart))
907 return va;
908
909 if (get_subtree_max_size(node->rb_right) >= length &&
910 vstart <= va->va_start) {
911 node = node->rb_right;
912 break;
913 }
914 }
915 }
916 }
917
918 return NULL;
919}
920
a6cf4e0f
URS
921#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
922#include <linux/random.h>
923
924static struct vmap_area *
925find_vmap_lowest_linear_match(unsigned long size,
926 unsigned long align, unsigned long vstart)
927{
928 struct vmap_area *va;
929
930 list_for_each_entry(va, &free_vmap_area_list, list) {
931 if (!is_within_this_va(va, size, align, vstart))
932 continue;
933
934 return va;
935 }
936
937 return NULL;
938}
939
940static void
941find_vmap_lowest_match_check(unsigned long size)
942{
943 struct vmap_area *va_1, *va_2;
944 unsigned long vstart;
945 unsigned int rnd;
946
947 get_random_bytes(&rnd, sizeof(rnd));
948 vstart = VMALLOC_START + rnd;
949
950 va_1 = find_vmap_lowest_match(size, 1, vstart);
951 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
952
953 if (va_1 != va_2)
954 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
955 va_1, va_2, vstart);
956}
957#endif
958
68ad4a33
URS
959enum fit_type {
960 NOTHING_FIT = 0,
961 FL_FIT_TYPE = 1, /* full fit */
962 LE_FIT_TYPE = 2, /* left edge fit */
963 RE_FIT_TYPE = 3, /* right edge fit */
964 NE_FIT_TYPE = 4 /* no edge fit */
965};
966
967static __always_inline enum fit_type
968classify_va_fit_type(struct vmap_area *va,
969 unsigned long nva_start_addr, unsigned long size)
970{
971 enum fit_type type;
972
973 /* Check if it is within VA. */
974 if (nva_start_addr < va->va_start ||
975 nva_start_addr + size > va->va_end)
976 return NOTHING_FIT;
977
978 /* Now classify. */
979 if (va->va_start == nva_start_addr) {
980 if (va->va_end == nva_start_addr + size)
981 type = FL_FIT_TYPE;
982 else
983 type = LE_FIT_TYPE;
984 } else if (va->va_end == nva_start_addr + size) {
985 type = RE_FIT_TYPE;
986 } else {
987 type = NE_FIT_TYPE;
988 }
989
990 return type;
991}
992
993static __always_inline int
994adjust_va_to_fit_type(struct vmap_area *va,
995 unsigned long nva_start_addr, unsigned long size,
996 enum fit_type type)
997{
2c929233 998 struct vmap_area *lva = NULL;
68ad4a33
URS
999
1000 if (type == FL_FIT_TYPE) {
1001 /*
1002 * No need to split VA, it fully fits.
1003 *
1004 * | |
1005 * V NVA V
1006 * |---------------|
1007 */
1008 unlink_va(va, &free_vmap_area_root);
1009 kmem_cache_free(vmap_area_cachep, va);
1010 } else if (type == LE_FIT_TYPE) {
1011 /*
1012 * Split left edge of fit VA.
1013 *
1014 * | |
1015 * V NVA V R
1016 * |-------|-------|
1017 */
1018 va->va_start += size;
1019 } else if (type == RE_FIT_TYPE) {
1020 /*
1021 * Split right edge of fit VA.
1022 *
1023 * | |
1024 * L V NVA V
1025 * |-------|-------|
1026 */
1027 va->va_end = nva_start_addr;
1028 } else if (type == NE_FIT_TYPE) {
1029 /*
1030 * Split no edge of fit VA.
1031 *
1032 * | |
1033 * L V NVA V R
1034 * |---|-------|---|
1035 */
82dd23e8
URS
1036 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1037 if (unlikely(!lva)) {
1038 /*
1039 * For percpu allocator we do not do any pre-allocation
1040 * and leave it as it is. The reason is it most likely
1041 * never ends up with NE_FIT_TYPE splitting. In case of
1042 * percpu allocations offsets and sizes are aligned to
1043 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1044 * are its main fitting cases.
1045 *
1046 * There are a few exceptions though, as an example it is
1047 * a first allocation (early boot up) when we have "one"
1048 * big free space that has to be split.
060650a2
URS
1049 *
1050 * Also we can hit this path in case of regular "vmap"
1051 * allocations, if "this" current CPU was not preloaded.
1052 * See the comment in alloc_vmap_area() why. If so, then
1053 * GFP_NOWAIT is used instead to get an extra object for
1054 * split purpose. That is rare and most time does not
1055 * occur.
1056 *
1057 * What happens if an allocation gets failed. Basically,
1058 * an "overflow" path is triggered to purge lazily freed
1059 * areas to free some memory, then, the "retry" path is
1060 * triggered to repeat one more time. See more details
1061 * in alloc_vmap_area() function.
82dd23e8
URS
1062 */
1063 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1064 if (!lva)
1065 return -1;
1066 }
68ad4a33
URS
1067
1068 /*
1069 * Build the remainder.
1070 */
1071 lva->va_start = va->va_start;
1072 lva->va_end = nva_start_addr;
1073
1074 /*
1075 * Shrink this VA to remaining size.
1076 */
1077 va->va_start = nva_start_addr + size;
1078 } else {
1079 return -1;
1080 }
1081
1082 if (type != FL_FIT_TYPE) {
1083 augment_tree_propagate_from(va);
1084
2c929233 1085 if (lva) /* type == NE_FIT_TYPE */
68ad4a33
URS
1086 insert_vmap_area_augment(lva, &va->rb_node,
1087 &free_vmap_area_root, &free_vmap_area_list);
1088 }
1089
1090 return 0;
1091}
1092
1093/*
1094 * Returns a start address of the newly allocated area, if success.
1095 * Otherwise a vend is returned that indicates failure.
1096 */
1097static __always_inline unsigned long
1098__alloc_vmap_area(unsigned long size, unsigned long align,
cacca6ba 1099 unsigned long vstart, unsigned long vend)
68ad4a33
URS
1100{
1101 unsigned long nva_start_addr;
1102 struct vmap_area *va;
1103 enum fit_type type;
1104 int ret;
1105
1106 va = find_vmap_lowest_match(size, align, vstart);
1107 if (unlikely(!va))
1108 return vend;
1109
1110 if (va->va_start > vstart)
1111 nva_start_addr = ALIGN(va->va_start, align);
1112 else
1113 nva_start_addr = ALIGN(vstart, align);
1114
1115 /* Check the "vend" restriction. */
1116 if (nva_start_addr + size > vend)
1117 return vend;
1118
1119 /* Classify what we have found. */
1120 type = classify_va_fit_type(va, nva_start_addr, size);
1121 if (WARN_ON_ONCE(type == NOTHING_FIT))
1122 return vend;
1123
1124 /* Update the free vmap_area. */
1125 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1126 if (ret)
1127 return vend;
1128
a6cf4e0f
URS
1129#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1130 find_vmap_lowest_match_check(size);
1131#endif
1132
68ad4a33
URS
1133 return nva_start_addr;
1134}
4da56b99 1135
d98c9e83
AR
1136/*
1137 * Free a region of KVA allocated by alloc_vmap_area
1138 */
1139static void free_vmap_area(struct vmap_area *va)
1140{
1141 /*
1142 * Remove from the busy tree/list.
1143 */
1144 spin_lock(&vmap_area_lock);
1145 unlink_va(va, &vmap_area_root);
1146 spin_unlock(&vmap_area_lock);
1147
1148 /*
1149 * Insert/Merge it back to the free tree/list.
1150 */
1151 spin_lock(&free_vmap_area_lock);
96e2db45 1152 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
d98c9e83
AR
1153 spin_unlock(&free_vmap_area_lock);
1154}
1155
db64fe02
NP
1156/*
1157 * Allocate a region of KVA of the specified size and alignment, within the
1158 * vstart and vend.
1159 */
1160static struct vmap_area *alloc_vmap_area(unsigned long size,
1161 unsigned long align,
1162 unsigned long vstart, unsigned long vend,
1163 int node, gfp_t gfp_mask)
1164{
82dd23e8 1165 struct vmap_area *va, *pva;
1da177e4 1166 unsigned long addr;
db64fe02 1167 int purged = 0;
d98c9e83 1168 int ret;
db64fe02 1169
7766970c 1170 BUG_ON(!size);
891c49ab 1171 BUG_ON(offset_in_page(size));
89699605 1172 BUG_ON(!is_power_of_2(align));
db64fe02 1173
68ad4a33
URS
1174 if (unlikely(!vmap_initialized))
1175 return ERR_PTR(-EBUSY);
1176
5803ed29 1177 might_sleep();
f07116d7 1178 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
4da56b99 1179
f07116d7 1180 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
db64fe02
NP
1181 if (unlikely(!va))
1182 return ERR_PTR(-ENOMEM);
1183
7f88f88f
CM
1184 /*
1185 * Only scan the relevant parts containing pointers to other objects
1186 * to avoid false negatives.
1187 */
f07116d7 1188 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
7f88f88f 1189
db64fe02 1190retry:
82dd23e8 1191 /*
81f1ba58
URS
1192 * Preload this CPU with one extra vmap_area object. It is used
1193 * when fit type of free area is NE_FIT_TYPE. Please note, it
1194 * does not guarantee that an allocation occurs on a CPU that
1195 * is preloaded, instead we minimize the case when it is not.
1196 * It can happen because of cpu migration, because there is a
1197 * race until the below spinlock is taken.
82dd23e8
URS
1198 *
1199 * The preload is done in non-atomic context, thus it allows us
1200 * to use more permissive allocation masks to be more stable under
81f1ba58
URS
1201 * low memory condition and high memory pressure. In rare case,
1202 * if not preloaded, GFP_NOWAIT is used.
82dd23e8 1203 *
81f1ba58 1204 * Set "pva" to NULL here, because of "retry" path.
82dd23e8 1205 */
81f1ba58 1206 pva = NULL;
82dd23e8 1207
81f1ba58
URS
1208 if (!this_cpu_read(ne_fit_preload_node))
1209 /*
1210 * Even if it fails we do not really care about that.
1211 * Just proceed as it is. If needed "overflow" path
1212 * will refill the cache we allocate from.
1213 */
f07116d7 1214 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
82dd23e8 1215
e36176be 1216 spin_lock(&free_vmap_area_lock);
81f1ba58
URS
1217
1218 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1219 kmem_cache_free(vmap_area_cachep, pva);
89699605 1220
afd07389 1221 /*
68ad4a33
URS
1222 * If an allocation fails, the "vend" address is
1223 * returned. Therefore trigger the overflow path.
afd07389 1224 */
cacca6ba 1225 addr = __alloc_vmap_area(size, align, vstart, vend);
e36176be
URS
1226 spin_unlock(&free_vmap_area_lock);
1227
68ad4a33 1228 if (unlikely(addr == vend))
89699605 1229 goto overflow;
db64fe02
NP
1230
1231 va->va_start = addr;
1232 va->va_end = addr + size;
688fcbfc 1233 va->vm = NULL;
68ad4a33 1234
d98c9e83 1235
e36176be
URS
1236 spin_lock(&vmap_area_lock);
1237 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
db64fe02
NP
1238 spin_unlock(&vmap_area_lock);
1239
61e16557 1240 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1241 BUG_ON(va->va_start < vstart);
1242 BUG_ON(va->va_end > vend);
1243
d98c9e83
AR
1244 ret = kasan_populate_vmalloc(addr, size);
1245 if (ret) {
1246 free_vmap_area(va);
1247 return ERR_PTR(ret);
1248 }
1249
db64fe02 1250 return va;
89699605
NP
1251
1252overflow:
89699605
NP
1253 if (!purged) {
1254 purge_vmap_area_lazy();
1255 purged = 1;
1256 goto retry;
1257 }
4da56b99
CW
1258
1259 if (gfpflags_allow_blocking(gfp_mask)) {
1260 unsigned long freed = 0;
1261 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1262 if (freed > 0) {
1263 purged = 0;
1264 goto retry;
1265 }
1266 }
1267
03497d76 1268 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1269 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1270 size);
68ad4a33
URS
1271
1272 kmem_cache_free(vmap_area_cachep, va);
89699605 1273 return ERR_PTR(-EBUSY);
db64fe02
NP
1274}
1275
4da56b99
CW
1276int register_vmap_purge_notifier(struct notifier_block *nb)
1277{
1278 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1279}
1280EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1281
1282int unregister_vmap_purge_notifier(struct notifier_block *nb)
1283{
1284 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1285}
1286EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1287
db64fe02
NP
1288/*
1289 * lazy_max_pages is the maximum amount of virtual address space we gather up
1290 * before attempting to purge with a TLB flush.
1291 *
1292 * There is a tradeoff here: a larger number will cover more kernel page tables
1293 * and take slightly longer to purge, but it will linearly reduce the number of
1294 * global TLB flushes that must be performed. It would seem natural to scale
1295 * this number up linearly with the number of CPUs (because vmapping activity
1296 * could also scale linearly with the number of CPUs), however it is likely
1297 * that in practice, workloads might be constrained in other ways that mean
1298 * vmap activity will not scale linearly with CPUs. Also, I want to be
1299 * conservative and not introduce a big latency on huge systems, so go with
1300 * a less aggressive log scale. It will still be an improvement over the old
1301 * code, and it will be simple to change the scale factor if we find that it
1302 * becomes a problem on bigger systems.
1303 */
1304static unsigned long lazy_max_pages(void)
1305{
1306 unsigned int log;
1307
1308 log = fls(num_online_cpus());
1309
1310 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1311}
1312
4d36e6f8 1313static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1314
0574ecd1
CH
1315/*
1316 * Serialize vmap purging. There is no actual criticial section protected
1317 * by this look, but we want to avoid concurrent calls for performance
1318 * reasons and to make the pcpu_get_vm_areas more deterministic.
1319 */
f9e09977 1320static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1321
02b709df
NP
1322/* for per-CPU blocks */
1323static void purge_fragmented_blocks_allcpus(void);
1324
3ee48b6a
CW
1325/*
1326 * called before a call to iounmap() if the caller wants vm_area_struct's
1327 * immediately freed.
1328 */
1329void set_iounmap_nonlazy(void)
1330{
4d36e6f8 1331 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
3ee48b6a
CW
1332}
1333
db64fe02
NP
1334/*
1335 * Purges all lazily-freed vmap areas.
db64fe02 1336 */
0574ecd1 1337static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1338{
4d36e6f8 1339 unsigned long resched_threshold;
96e2db45
URS
1340 struct list_head local_pure_list;
1341 struct vmap_area *va, *n_va;
db64fe02 1342
0574ecd1 1343 lockdep_assert_held(&vmap_purge_lock);
02b709df 1344
96e2db45
URS
1345 spin_lock(&purge_vmap_area_lock);
1346 purge_vmap_area_root = RB_ROOT;
1347 list_replace_init(&purge_vmap_area_list, &local_pure_list);
1348 spin_unlock(&purge_vmap_area_lock);
1349
1350 if (unlikely(list_empty(&local_pure_list)))
68571be9
URS
1351 return false;
1352
96e2db45
URS
1353 start = min(start,
1354 list_first_entry(&local_pure_list,
1355 struct vmap_area, list)->va_start);
1356
1357 end = max(end,
1358 list_last_entry(&local_pure_list,
1359 struct vmap_area, list)->va_end);
db64fe02 1360
0574ecd1 1361 flush_tlb_kernel_range(start, end);
4d36e6f8 1362 resched_threshold = lazy_max_pages() << 1;
db64fe02 1363
e36176be 1364 spin_lock(&free_vmap_area_lock);
96e2db45 1365 list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
4d36e6f8 1366 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
3c5c3cfb
DA
1367 unsigned long orig_start = va->va_start;
1368 unsigned long orig_end = va->va_end;
763b218d 1369
dd3b8353
URS
1370 /*
1371 * Finally insert or merge lazily-freed area. It is
1372 * detached and there is no need to "unlink" it from
1373 * anything.
1374 */
96e2db45
URS
1375 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1376 &free_vmap_area_list);
3c5c3cfb 1377
9c801f61
URS
1378 if (!va)
1379 continue;
1380
3c5c3cfb
DA
1381 if (is_vmalloc_or_module_addr((void *)orig_start))
1382 kasan_release_vmalloc(orig_start, orig_end,
1383 va->va_start, va->va_end);
dd3b8353 1384
4d36e6f8 1385 atomic_long_sub(nr, &vmap_lazy_nr);
68571be9 1386
4d36e6f8 1387 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
e36176be 1388 cond_resched_lock(&free_vmap_area_lock);
763b218d 1389 }
e36176be 1390 spin_unlock(&free_vmap_area_lock);
0574ecd1 1391 return true;
db64fe02
NP
1392}
1393
496850e5
NP
1394/*
1395 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1396 * is already purging.
1397 */
1398static void try_purge_vmap_area_lazy(void)
1399{
f9e09977 1400 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 1401 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1402 mutex_unlock(&vmap_purge_lock);
0574ecd1 1403 }
496850e5
NP
1404}
1405
db64fe02
NP
1406/*
1407 * Kick off a purge of the outstanding lazy areas.
1408 */
1409static void purge_vmap_area_lazy(void)
1410{
f9e09977 1411 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1412 purge_fragmented_blocks_allcpus();
1413 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1414 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1415}
1416
1417/*
64141da5
JF
1418 * Free a vmap area, caller ensuring that the area has been unmapped
1419 * and flush_cache_vunmap had been called for the correct range
1420 * previously.
db64fe02 1421 */
64141da5 1422static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1423{
4d36e6f8 1424 unsigned long nr_lazy;
80c4bd7a 1425
dd3b8353
URS
1426 spin_lock(&vmap_area_lock);
1427 unlink_va(va, &vmap_area_root);
1428 spin_unlock(&vmap_area_lock);
1429
4d36e6f8
URS
1430 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1431 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a 1432
96e2db45
URS
1433 /*
1434 * Merge or place it to the purge tree/list.
1435 */
1436 spin_lock(&purge_vmap_area_lock);
1437 merge_or_add_vmap_area(va,
1438 &purge_vmap_area_root, &purge_vmap_area_list);
1439 spin_unlock(&purge_vmap_area_lock);
80c4bd7a 1440
96e2db45 1441 /* After this point, we may free va at any time */
80c4bd7a 1442 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 1443 try_purge_vmap_area_lazy();
db64fe02
NP
1444}
1445
b29acbdc
NP
1446/*
1447 * Free and unmap a vmap area
1448 */
1449static void free_unmap_vmap_area(struct vmap_area *va)
1450{
1451 flush_cache_vunmap(va->va_start, va->va_end);
855e57a1 1452 unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
8e57f8ac 1453 if (debug_pagealloc_enabled_static())
82a2e924
CP
1454 flush_tlb_kernel_range(va->va_start, va->va_end);
1455
c8eef01e 1456 free_vmap_area_noflush(va);
b29acbdc
NP
1457}
1458
db64fe02
NP
1459static struct vmap_area *find_vmap_area(unsigned long addr)
1460{
1461 struct vmap_area *va;
1462
1463 spin_lock(&vmap_area_lock);
1464 va = __find_vmap_area(addr);
1465 spin_unlock(&vmap_area_lock);
1466
1467 return va;
1468}
1469
db64fe02
NP
1470/*** Per cpu kva allocator ***/
1471
1472/*
1473 * vmap space is limited especially on 32 bit architectures. Ensure there is
1474 * room for at least 16 percpu vmap blocks per CPU.
1475 */
1476/*
1477 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1478 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1479 * instead (we just need a rough idea)
1480 */
1481#if BITS_PER_LONG == 32
1482#define VMALLOC_SPACE (128UL*1024*1024)
1483#else
1484#define VMALLOC_SPACE (128UL*1024*1024*1024)
1485#endif
1486
1487#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1488#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1489#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1490#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1491#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1492#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1493#define VMAP_BBMAP_BITS \
1494 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1495 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1496 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1497
1498#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1499
1500struct vmap_block_queue {
1501 spinlock_t lock;
1502 struct list_head free;
db64fe02
NP
1503};
1504
1505struct vmap_block {
1506 spinlock_t lock;
1507 struct vmap_area *va;
db64fe02 1508 unsigned long free, dirty;
7d61bfe8 1509 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1510 struct list_head free_list;
1511 struct rcu_head rcu_head;
02b709df 1512 struct list_head purge;
db64fe02
NP
1513};
1514
1515/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1516static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1517
1518/*
0f14599c 1519 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
db64fe02
NP
1520 * in the free path. Could get rid of this if we change the API to return a
1521 * "cookie" from alloc, to be passed to free. But no big deal yet.
1522 */
0f14599c 1523static DEFINE_XARRAY(vmap_blocks);
db64fe02
NP
1524
1525/*
1526 * We should probably have a fallback mechanism to allocate virtual memory
1527 * out of partially filled vmap blocks. However vmap block sizing should be
1528 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1529 * big problem.
1530 */
1531
1532static unsigned long addr_to_vb_idx(unsigned long addr)
1533{
1534 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1535 addr /= VMAP_BLOCK_SIZE;
1536 return addr;
1537}
1538
cf725ce2
RP
1539static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1540{
1541 unsigned long addr;
1542
1543 addr = va_start + (pages_off << PAGE_SHIFT);
1544 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1545 return (void *)addr;
1546}
1547
1548/**
1549 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1550 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1551 * @order: how many 2^order pages should be occupied in newly allocated block
1552 * @gfp_mask: flags for the page level allocator
1553 *
a862f68a 1554 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1555 */
1556static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1557{
1558 struct vmap_block_queue *vbq;
1559 struct vmap_block *vb;
1560 struct vmap_area *va;
1561 unsigned long vb_idx;
1562 int node, err;
cf725ce2 1563 void *vaddr;
db64fe02
NP
1564
1565 node = numa_node_id();
1566
1567 vb = kmalloc_node(sizeof(struct vmap_block),
1568 gfp_mask & GFP_RECLAIM_MASK, node);
1569 if (unlikely(!vb))
1570 return ERR_PTR(-ENOMEM);
1571
1572 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1573 VMALLOC_START, VMALLOC_END,
1574 node, gfp_mask);
ddf9c6d4 1575 if (IS_ERR(va)) {
db64fe02 1576 kfree(vb);
e7d86340 1577 return ERR_CAST(va);
db64fe02
NP
1578 }
1579
cf725ce2 1580 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1581 spin_lock_init(&vb->lock);
1582 vb->va = va;
cf725ce2
RP
1583 /* At least something should be left free */
1584 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1585 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 1586 vb->dirty = 0;
7d61bfe8
RP
1587 vb->dirty_min = VMAP_BBMAP_BITS;
1588 vb->dirty_max = 0;
db64fe02 1589 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
1590
1591 vb_idx = addr_to_vb_idx(va->va_start);
0f14599c
MWO
1592 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1593 if (err) {
1594 kfree(vb);
1595 free_vmap_area(va);
1596 return ERR_PTR(err);
1597 }
db64fe02
NP
1598
1599 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 1600 spin_lock(&vbq->lock);
68ac546f 1601 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 1602 spin_unlock(&vbq->lock);
3f04ba85 1603 put_cpu_var(vmap_block_queue);
db64fe02 1604
cf725ce2 1605 return vaddr;
db64fe02
NP
1606}
1607
db64fe02
NP
1608static void free_vmap_block(struct vmap_block *vb)
1609{
1610 struct vmap_block *tmp;
db64fe02 1611
0f14599c 1612 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
db64fe02
NP
1613 BUG_ON(tmp != vb);
1614
64141da5 1615 free_vmap_area_noflush(vb->va);
22a3c7d1 1616 kfree_rcu(vb, rcu_head);
db64fe02
NP
1617}
1618
02b709df
NP
1619static void purge_fragmented_blocks(int cpu)
1620{
1621 LIST_HEAD(purge);
1622 struct vmap_block *vb;
1623 struct vmap_block *n_vb;
1624 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1625
1626 rcu_read_lock();
1627 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1628
1629 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1630 continue;
1631
1632 spin_lock(&vb->lock);
1633 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1634 vb->free = 0; /* prevent further allocs after releasing lock */
1635 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
1636 vb->dirty_min = 0;
1637 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
1638 spin_lock(&vbq->lock);
1639 list_del_rcu(&vb->free_list);
1640 spin_unlock(&vbq->lock);
1641 spin_unlock(&vb->lock);
1642 list_add_tail(&vb->purge, &purge);
1643 } else
1644 spin_unlock(&vb->lock);
1645 }
1646 rcu_read_unlock();
1647
1648 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1649 list_del(&vb->purge);
1650 free_vmap_block(vb);
1651 }
1652}
1653
02b709df
NP
1654static void purge_fragmented_blocks_allcpus(void)
1655{
1656 int cpu;
1657
1658 for_each_possible_cpu(cpu)
1659 purge_fragmented_blocks(cpu);
1660}
1661
db64fe02
NP
1662static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1663{
1664 struct vmap_block_queue *vbq;
1665 struct vmap_block *vb;
cf725ce2 1666 void *vaddr = NULL;
db64fe02
NP
1667 unsigned int order;
1668
891c49ab 1669 BUG_ON(offset_in_page(size));
db64fe02 1670 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
1671 if (WARN_ON(size == 0)) {
1672 /*
1673 * Allocating 0 bytes isn't what caller wants since
1674 * get_order(0) returns funny result. Just warn and terminate
1675 * early.
1676 */
1677 return NULL;
1678 }
db64fe02
NP
1679 order = get_order(size);
1680
db64fe02
NP
1681 rcu_read_lock();
1682 vbq = &get_cpu_var(vmap_block_queue);
1683 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 1684 unsigned long pages_off;
db64fe02
NP
1685
1686 spin_lock(&vb->lock);
cf725ce2
RP
1687 if (vb->free < (1UL << order)) {
1688 spin_unlock(&vb->lock);
1689 continue;
1690 }
02b709df 1691
cf725ce2
RP
1692 pages_off = VMAP_BBMAP_BITS - vb->free;
1693 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
1694 vb->free -= 1UL << order;
1695 if (vb->free == 0) {
1696 spin_lock(&vbq->lock);
1697 list_del_rcu(&vb->free_list);
1698 spin_unlock(&vbq->lock);
1699 }
cf725ce2 1700
02b709df
NP
1701 spin_unlock(&vb->lock);
1702 break;
db64fe02 1703 }
02b709df 1704
3f04ba85 1705 put_cpu_var(vmap_block_queue);
db64fe02
NP
1706 rcu_read_unlock();
1707
cf725ce2
RP
1708 /* Allocate new block if nothing was found */
1709 if (!vaddr)
1710 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 1711
cf725ce2 1712 return vaddr;
db64fe02
NP
1713}
1714
78a0e8c4 1715static void vb_free(unsigned long addr, unsigned long size)
db64fe02
NP
1716{
1717 unsigned long offset;
db64fe02
NP
1718 unsigned int order;
1719 struct vmap_block *vb;
1720
891c49ab 1721 BUG_ON(offset_in_page(size));
db64fe02 1722 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc 1723
78a0e8c4 1724 flush_cache_vunmap(addr, addr + size);
b29acbdc 1725
db64fe02 1726 order = get_order(size);
78a0e8c4 1727 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
0f14599c 1728 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
db64fe02 1729
b521c43f 1730 unmap_kernel_range_noflush(addr, size);
64141da5 1731
8e57f8ac 1732 if (debug_pagealloc_enabled_static())
78a0e8c4 1733 flush_tlb_kernel_range(addr, addr + size);
82a2e924 1734
db64fe02 1735 spin_lock(&vb->lock);
7d61bfe8
RP
1736
1737 /* Expand dirty range */
1738 vb->dirty_min = min(vb->dirty_min, offset);
1739 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1740
db64fe02
NP
1741 vb->dirty += 1UL << order;
1742 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1743 BUG_ON(vb->free);
db64fe02
NP
1744 spin_unlock(&vb->lock);
1745 free_vmap_block(vb);
1746 } else
1747 spin_unlock(&vb->lock);
1748}
1749
868b104d 1750static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 1751{
db64fe02 1752 int cpu;
db64fe02 1753
9b463334
JF
1754 if (unlikely(!vmap_initialized))
1755 return;
1756
5803ed29
CH
1757 might_sleep();
1758
db64fe02
NP
1759 for_each_possible_cpu(cpu) {
1760 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1761 struct vmap_block *vb;
1762
1763 rcu_read_lock();
1764 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1765 spin_lock(&vb->lock);
7d61bfe8
RP
1766 if (vb->dirty) {
1767 unsigned long va_start = vb->va->va_start;
db64fe02 1768 unsigned long s, e;
b136be5e 1769
7d61bfe8
RP
1770 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1771 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1772
7d61bfe8
RP
1773 start = min(s, start);
1774 end = max(e, end);
db64fe02 1775
7d61bfe8 1776 flush = 1;
db64fe02
NP
1777 }
1778 spin_unlock(&vb->lock);
1779 }
1780 rcu_read_unlock();
1781 }
1782
f9e09977 1783 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1784 purge_fragmented_blocks_allcpus();
1785 if (!__purge_vmap_area_lazy(start, end) && flush)
1786 flush_tlb_kernel_range(start, end);
f9e09977 1787 mutex_unlock(&vmap_purge_lock);
db64fe02 1788}
868b104d
RE
1789
1790/**
1791 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1792 *
1793 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1794 * to amortize TLB flushing overheads. What this means is that any page you
1795 * have now, may, in a former life, have been mapped into kernel virtual
1796 * address by the vmap layer and so there might be some CPUs with TLB entries
1797 * still referencing that page (additional to the regular 1:1 kernel mapping).
1798 *
1799 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1800 * be sure that none of the pages we have control over will have any aliases
1801 * from the vmap layer.
1802 */
1803void vm_unmap_aliases(void)
1804{
1805 unsigned long start = ULONG_MAX, end = 0;
1806 int flush = 0;
1807
1808 _vm_unmap_aliases(start, end, flush);
1809}
db64fe02
NP
1810EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1811
1812/**
1813 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1814 * @mem: the pointer returned by vm_map_ram
1815 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1816 */
1817void vm_unmap_ram(const void *mem, unsigned int count)
1818{
65ee03c4 1819 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 1820 unsigned long addr = (unsigned long)mem;
9c3acf60 1821 struct vmap_area *va;
db64fe02 1822
5803ed29 1823 might_sleep();
db64fe02
NP
1824 BUG_ON(!addr);
1825 BUG_ON(addr < VMALLOC_START);
1826 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 1827 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 1828
d98c9e83
AR
1829 kasan_poison_vmalloc(mem, size);
1830
9c3acf60 1831 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 1832 debug_check_no_locks_freed(mem, size);
78a0e8c4 1833 vb_free(addr, size);
9c3acf60
CH
1834 return;
1835 }
1836
1837 va = find_vmap_area(addr);
1838 BUG_ON(!va);
05e3ff95
CP
1839 debug_check_no_locks_freed((void *)va->va_start,
1840 (va->va_end - va->va_start));
9c3acf60 1841 free_unmap_vmap_area(va);
db64fe02
NP
1842}
1843EXPORT_SYMBOL(vm_unmap_ram);
1844
1845/**
1846 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1847 * @pages: an array of pointers to the pages to be mapped
1848 * @count: number of pages
1849 * @node: prefer to allocate data structures on this node
e99c97ad 1850 *
36437638
GK
1851 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1852 * faster than vmap so it's good. But if you mix long-life and short-life
1853 * objects with vm_map_ram(), it could consume lots of address space through
1854 * fragmentation (especially on a 32bit machine). You could see failures in
1855 * the end. Please use this function for short-lived objects.
1856 *
e99c97ad 1857 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02 1858 */
d4efd79a 1859void *vm_map_ram(struct page **pages, unsigned int count, int node)
db64fe02 1860{
65ee03c4 1861 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1862 unsigned long addr;
1863 void *mem;
1864
1865 if (likely(count <= VMAP_MAX_ALLOC)) {
1866 mem = vb_alloc(size, GFP_KERNEL);
1867 if (IS_ERR(mem))
1868 return NULL;
1869 addr = (unsigned long)mem;
1870 } else {
1871 struct vmap_area *va;
1872 va = alloc_vmap_area(size, PAGE_SIZE,
1873 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1874 if (IS_ERR(va))
1875 return NULL;
1876
1877 addr = va->va_start;
1878 mem = (void *)addr;
1879 }
d98c9e83
AR
1880
1881 kasan_unpoison_vmalloc(mem, size);
1882
d4efd79a 1883 if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
db64fe02
NP
1884 vm_unmap_ram(mem, count);
1885 return NULL;
1886 }
1887 return mem;
1888}
1889EXPORT_SYMBOL(vm_map_ram);
1890
4341fa45 1891static struct vm_struct *vmlist __initdata;
92eac168 1892
be9b7335
NP
1893/**
1894 * vm_area_add_early - add vmap area early during boot
1895 * @vm: vm_struct to add
1896 *
1897 * This function is used to add fixed kernel vm area to vmlist before
1898 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1899 * should contain proper values and the other fields should be zero.
1900 *
1901 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1902 */
1903void __init vm_area_add_early(struct vm_struct *vm)
1904{
1905 struct vm_struct *tmp, **p;
1906
1907 BUG_ON(vmap_initialized);
1908 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1909 if (tmp->addr >= vm->addr) {
1910 BUG_ON(tmp->addr < vm->addr + vm->size);
1911 break;
1912 } else
1913 BUG_ON(tmp->addr + tmp->size > vm->addr);
1914 }
1915 vm->next = *p;
1916 *p = vm;
1917}
1918
f0aa6617
TH
1919/**
1920 * vm_area_register_early - register vmap area early during boot
1921 * @vm: vm_struct to register
c0c0a293 1922 * @align: requested alignment
f0aa6617
TH
1923 *
1924 * This function is used to register kernel vm area before
1925 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1926 * proper values on entry and other fields should be zero. On return,
1927 * vm->addr contains the allocated address.
1928 *
1929 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1930 */
c0c0a293 1931void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1932{
1933 static size_t vm_init_off __initdata;
c0c0a293
TH
1934 unsigned long addr;
1935
1936 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1937 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1938
c0c0a293 1939 vm->addr = (void *)addr;
f0aa6617 1940
be9b7335 1941 vm_area_add_early(vm);
f0aa6617
TH
1942}
1943
68ad4a33
URS
1944static void vmap_init_free_space(void)
1945{
1946 unsigned long vmap_start = 1;
1947 const unsigned long vmap_end = ULONG_MAX;
1948 struct vmap_area *busy, *free;
1949
1950 /*
1951 * B F B B B F
1952 * -|-----|.....|-----|-----|-----|.....|-
1953 * | The KVA space |
1954 * |<--------------------------------->|
1955 */
1956 list_for_each_entry(busy, &vmap_area_list, list) {
1957 if (busy->va_start - vmap_start > 0) {
1958 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1959 if (!WARN_ON_ONCE(!free)) {
1960 free->va_start = vmap_start;
1961 free->va_end = busy->va_start;
1962
1963 insert_vmap_area_augment(free, NULL,
1964 &free_vmap_area_root,
1965 &free_vmap_area_list);
1966 }
1967 }
1968
1969 vmap_start = busy->va_end;
1970 }
1971
1972 if (vmap_end - vmap_start > 0) {
1973 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1974 if (!WARN_ON_ONCE(!free)) {
1975 free->va_start = vmap_start;
1976 free->va_end = vmap_end;
1977
1978 insert_vmap_area_augment(free, NULL,
1979 &free_vmap_area_root,
1980 &free_vmap_area_list);
1981 }
1982 }
1983}
1984
db64fe02
NP
1985void __init vmalloc_init(void)
1986{
822c18f2
IK
1987 struct vmap_area *va;
1988 struct vm_struct *tmp;
db64fe02
NP
1989 int i;
1990
68ad4a33
URS
1991 /*
1992 * Create the cache for vmap_area objects.
1993 */
1994 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1995
db64fe02
NP
1996 for_each_possible_cpu(i) {
1997 struct vmap_block_queue *vbq;
32fcfd40 1998 struct vfree_deferred *p;
db64fe02
NP
1999
2000 vbq = &per_cpu(vmap_block_queue, i);
2001 spin_lock_init(&vbq->lock);
2002 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
2003 p = &per_cpu(vfree_deferred, i);
2004 init_llist_head(&p->list);
2005 INIT_WORK(&p->wq, free_work);
db64fe02 2006 }
9b463334 2007
822c18f2
IK
2008 /* Import existing vmlist entries. */
2009 for (tmp = vmlist; tmp; tmp = tmp->next) {
68ad4a33
URS
2010 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2011 if (WARN_ON_ONCE(!va))
2012 continue;
2013
822c18f2
IK
2014 va->va_start = (unsigned long)tmp->addr;
2015 va->va_end = va->va_start + tmp->size;
dbda591d 2016 va->vm = tmp;
68ad4a33 2017 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
822c18f2 2018 }
ca23e405 2019
68ad4a33
URS
2020 /*
2021 * Now we can initialize a free vmap space.
2022 */
2023 vmap_init_free_space();
9b463334 2024 vmap_initialized = true;
db64fe02
NP
2025}
2026
8fc48985
TH
2027/**
2028 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2029 * @addr: start of the VM area to unmap
2030 * @size: size of the VM area to unmap
2031 *
2032 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2033 * the unmapping and tlb after.
2034 */
db64fe02
NP
2035void unmap_kernel_range(unsigned long addr, unsigned long size)
2036{
2037 unsigned long end = addr + size;
f6fcba70
TH
2038
2039 flush_cache_vunmap(addr, end);
b521c43f 2040 unmap_kernel_range_noflush(addr, size);
db64fe02
NP
2041 flush_tlb_kernel_range(addr, end);
2042}
2043
e36176be
URS
2044static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2045 struct vmap_area *va, unsigned long flags, const void *caller)
cf88c790 2046{
cf88c790
TH
2047 vm->flags = flags;
2048 vm->addr = (void *)va->va_start;
2049 vm->size = va->va_end - va->va_start;
2050 vm->caller = caller;
db1aecaf 2051 va->vm = vm;
e36176be
URS
2052}
2053
2054static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2055 unsigned long flags, const void *caller)
2056{
2057 spin_lock(&vmap_area_lock);
2058 setup_vmalloc_vm_locked(vm, va, flags, caller);
c69480ad 2059 spin_unlock(&vmap_area_lock);
f5252e00 2060}
cf88c790 2061
20fc02b4 2062static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2063{
d4033afd 2064 /*
20fc02b4 2065 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2066 * we should make sure that vm has proper values.
2067 * Pair with smp_rmb() in show_numa_info().
2068 */
2069 smp_wmb();
20fc02b4 2070 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2071}
2072
db64fe02 2073static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 2074 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 2075 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 2076{
0006526d 2077 struct vmap_area *va;
db64fe02 2078 struct vm_struct *area;
d98c9e83 2079 unsigned long requested_size = size;
1da177e4 2080
52fd24ca 2081 BUG_ON(in_interrupt());
1da177e4 2082 size = PAGE_ALIGN(size);
31be8309
OH
2083 if (unlikely(!size))
2084 return NULL;
1da177e4 2085
252e5c6e 2086 if (flags & VM_IOREMAP)
2087 align = 1ul << clamp_t(int, get_count_order_long(size),
2088 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2089
cf88c790 2090 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2091 if (unlikely(!area))
2092 return NULL;
2093
71394fe5
AR
2094 if (!(flags & VM_NO_GUARD))
2095 size += PAGE_SIZE;
1da177e4 2096
db64fe02
NP
2097 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2098 if (IS_ERR(va)) {
2099 kfree(area);
2100 return NULL;
1da177e4 2101 }
1da177e4 2102
d98c9e83 2103 kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
f5252e00 2104
d98c9e83 2105 setup_vmalloc_vm(area, va, flags, caller);
3c5c3cfb 2106
1da177e4 2107 return area;
1da177e4
LT
2108}
2109
c2968612
BH
2110struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2111 unsigned long start, unsigned long end,
5e6cafc8 2112 const void *caller)
c2968612 2113{
00ef2d2f
DR
2114 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2115 GFP_KERNEL, caller);
c2968612
BH
2116}
2117
1da177e4 2118/**
92eac168
MR
2119 * get_vm_area - reserve a contiguous kernel virtual area
2120 * @size: size of the area
2121 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2122 *
92eac168
MR
2123 * Search an area of @size in the kernel virtual mapping area,
2124 * and reserved it for out purposes. Returns the area descriptor
2125 * on success or %NULL on failure.
a862f68a
MR
2126 *
2127 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2128 */
2129struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2130{
2dca6999 2131 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2132 NUMA_NO_NODE, GFP_KERNEL,
2133 __builtin_return_address(0));
23016969 2134}
2e0647d3 2135EXPORT_SYMBOL(get_vm_area);
23016969
CL
2136
2137struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2138 const void *caller)
23016969 2139{
2dca6999 2140 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 2141 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2142}
2143
e9da6e99 2144/**
92eac168
MR
2145 * find_vm_area - find a continuous kernel virtual area
2146 * @addr: base address
e9da6e99 2147 *
92eac168
MR
2148 * Search for the kernel VM area starting at @addr, and return it.
2149 * It is up to the caller to do all required locking to keep the returned
2150 * pointer valid.
a862f68a 2151 *
74640617 2152 * Return: the area descriptor on success or %NULL on failure.
e9da6e99
MS
2153 */
2154struct vm_struct *find_vm_area(const void *addr)
83342314 2155{
db64fe02 2156 struct vmap_area *va;
83342314 2157
db64fe02 2158 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
2159 if (!va)
2160 return NULL;
1da177e4 2161
688fcbfc 2162 return va->vm;
1da177e4
LT
2163}
2164
7856dfeb 2165/**
92eac168
MR
2166 * remove_vm_area - find and remove a continuous kernel virtual area
2167 * @addr: base address
7856dfeb 2168 *
92eac168
MR
2169 * Search for the kernel VM area starting at @addr, and remove it.
2170 * This function returns the found VM area, but using it is NOT safe
2171 * on SMP machines, except for its size or flags.
a862f68a 2172 *
74640617 2173 * Return: the area descriptor on success or %NULL on failure.
7856dfeb 2174 */
b3bdda02 2175struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2176{
db64fe02
NP
2177 struct vmap_area *va;
2178
5803ed29
CH
2179 might_sleep();
2180
dd3b8353
URS
2181 spin_lock(&vmap_area_lock);
2182 va = __find_vmap_area((unsigned long)addr);
688fcbfc 2183 if (va && va->vm) {
db1aecaf 2184 struct vm_struct *vm = va->vm;
f5252e00 2185
c69480ad 2186 va->vm = NULL;
c69480ad
JK
2187 spin_unlock(&vmap_area_lock);
2188
a5af5aa8 2189 kasan_free_shadow(vm);
dd32c279 2190 free_unmap_vmap_area(va);
dd32c279 2191
db64fe02
NP
2192 return vm;
2193 }
dd3b8353
URS
2194
2195 spin_unlock(&vmap_area_lock);
db64fe02 2196 return NULL;
7856dfeb
AK
2197}
2198
868b104d
RE
2199static inline void set_area_direct_map(const struct vm_struct *area,
2200 int (*set_direct_map)(struct page *page))
2201{
2202 int i;
2203
2204 for (i = 0; i < area->nr_pages; i++)
2205 if (page_address(area->pages[i]))
2206 set_direct_map(area->pages[i]);
2207}
2208
2209/* Handle removing and resetting vm mappings related to the vm_struct. */
2210static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2211{
868b104d
RE
2212 unsigned long start = ULONG_MAX, end = 0;
2213 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
31e67340 2214 int flush_dmap = 0;
868b104d
RE
2215 int i;
2216
868b104d
RE
2217 remove_vm_area(area->addr);
2218
2219 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2220 if (!flush_reset)
2221 return;
2222
2223 /*
2224 * If not deallocating pages, just do the flush of the VM area and
2225 * return.
2226 */
2227 if (!deallocate_pages) {
2228 vm_unmap_aliases();
2229 return;
2230 }
2231
2232 /*
2233 * If execution gets here, flush the vm mapping and reset the direct
2234 * map. Find the start and end range of the direct mappings to make sure
2235 * the vm_unmap_aliases() flush includes the direct map.
2236 */
2237 for (i = 0; i < area->nr_pages; i++) {
8e41f872
RE
2238 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2239 if (addr) {
868b104d 2240 start = min(addr, start);
8e41f872 2241 end = max(addr + PAGE_SIZE, end);
31e67340 2242 flush_dmap = 1;
868b104d
RE
2243 }
2244 }
2245
2246 /*
2247 * Set direct map to something invalid so that it won't be cached if
2248 * there are any accesses after the TLB flush, then flush the TLB and
2249 * reset the direct map permissions to the default.
2250 */
2251 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2252 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2253 set_area_direct_map(area, set_direct_map_default_noflush);
2254}
2255
b3bdda02 2256static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
2257{
2258 struct vm_struct *area;
2259
2260 if (!addr)
2261 return;
2262
e69e9d4a 2263 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 2264 addr))
1da177e4 2265 return;
1da177e4 2266
6ade2032 2267 area = find_vm_area(addr);
1da177e4 2268 if (unlikely(!area)) {
4c8573e2 2269 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 2270 addr);
1da177e4
LT
2271 return;
2272 }
2273
05e3ff95
CP
2274 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2275 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 2276
c041098c 2277 kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
3c5c3cfb 2278
868b104d
RE
2279 vm_remove_mappings(area, deallocate_pages);
2280
1da177e4
LT
2281 if (deallocate_pages) {
2282 int i;
2283
2284 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2285 struct page *page = area->pages[i];
2286
2287 BUG_ON(!page);
4949148a 2288 __free_pages(page, 0);
1da177e4 2289 }
97105f0a 2290 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2291
244d63ee 2292 kvfree(area->pages);
1da177e4
LT
2293 }
2294
2295 kfree(area);
1da177e4 2296}
bf22e37a
AR
2297
2298static inline void __vfree_deferred(const void *addr)
2299{
2300 /*
2301 * Use raw_cpu_ptr() because this can be called from preemptible
2302 * context. Preemption is absolutely fine here, because the llist_add()
2303 * implementation is lockless, so it works even if we are adding to
73221d88 2304 * another cpu's list. schedule_work() should be fine with this too.
bf22e37a
AR
2305 */
2306 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2307
2308 if (llist_add((struct llist_node *)addr, &p->list))
2309 schedule_work(&p->wq);
2310}
2311
2312/**
92eac168
MR
2313 * vfree_atomic - release memory allocated by vmalloc()
2314 * @addr: memory base address
bf22e37a 2315 *
92eac168
MR
2316 * This one is just like vfree() but can be called in any atomic context
2317 * except NMIs.
bf22e37a
AR
2318 */
2319void vfree_atomic(const void *addr)
2320{
2321 BUG_ON(in_nmi());
2322
2323 kmemleak_free(addr);
2324
2325 if (!addr)
2326 return;
2327 __vfree_deferred(addr);
2328}
2329
c67dc624
RP
2330static void __vfree(const void *addr)
2331{
2332 if (unlikely(in_interrupt()))
2333 __vfree_deferred(addr);
2334 else
2335 __vunmap(addr, 1);
2336}
2337
1da177e4 2338/**
fa307474
MWO
2339 * vfree - Release memory allocated by vmalloc()
2340 * @addr: Memory base address
1da177e4 2341 *
fa307474
MWO
2342 * Free the virtually continuous memory area starting at @addr, as obtained
2343 * from one of the vmalloc() family of APIs. This will usually also free the
2344 * physical memory underlying the virtual allocation, but that memory is
2345 * reference counted, so it will not be freed until the last user goes away.
1da177e4 2346 *
fa307474 2347 * If @addr is NULL, no operation is performed.
c9fcee51 2348 *
fa307474 2349 * Context:
92eac168 2350 * May sleep if called *not* from interrupt context.
fa307474
MWO
2351 * Must not be called in NMI context (strictly speaking, it could be
2352 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2353 * conventions for vfree() arch-depenedent would be a really bad idea).
1da177e4 2354 */
b3bdda02 2355void vfree(const void *addr)
1da177e4 2356{
32fcfd40 2357 BUG_ON(in_nmi());
89219d37
CM
2358
2359 kmemleak_free(addr);
2360
a8dda165
AR
2361 might_sleep_if(!in_interrupt());
2362
32fcfd40
AV
2363 if (!addr)
2364 return;
c67dc624
RP
2365
2366 __vfree(addr);
1da177e4 2367}
1da177e4
LT
2368EXPORT_SYMBOL(vfree);
2369
2370/**
92eac168
MR
2371 * vunmap - release virtual mapping obtained by vmap()
2372 * @addr: memory base address
1da177e4 2373 *
92eac168
MR
2374 * Free the virtually contiguous memory area starting at @addr,
2375 * which was created from the page array passed to vmap().
1da177e4 2376 *
92eac168 2377 * Must not be called in interrupt context.
1da177e4 2378 */
b3bdda02 2379void vunmap(const void *addr)
1da177e4
LT
2380{
2381 BUG_ON(in_interrupt());
34754b69 2382 might_sleep();
32fcfd40
AV
2383 if (addr)
2384 __vunmap(addr, 0);
1da177e4 2385}
1da177e4
LT
2386EXPORT_SYMBOL(vunmap);
2387
2388/**
92eac168
MR
2389 * vmap - map an array of pages into virtually contiguous space
2390 * @pages: array of page pointers
2391 * @count: number of pages to map
2392 * @flags: vm_area->flags
2393 * @prot: page protection for the mapping
2394 *
b944afc9
CH
2395 * Maps @count pages from @pages into contiguous kernel virtual space.
2396 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2397 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2398 * are transferred from the caller to vmap(), and will be freed / dropped when
2399 * vfree() is called on the return value.
a862f68a
MR
2400 *
2401 * Return: the address of the area or %NULL on failure
1da177e4
LT
2402 */
2403void *vmap(struct page **pages, unsigned int count,
92eac168 2404 unsigned long flags, pgprot_t prot)
1da177e4
LT
2405{
2406 struct vm_struct *area;
65ee03c4 2407 unsigned long size; /* In bytes */
1da177e4 2408
34754b69
PZ
2409 might_sleep();
2410
ca79b0c2 2411 if (count > totalram_pages())
1da177e4
LT
2412 return NULL;
2413
65ee03c4
GJM
2414 size = (unsigned long)count << PAGE_SHIFT;
2415 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2416 if (!area)
2417 return NULL;
23016969 2418
cca98e9f 2419 if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
ed1f324c 2420 pages) < 0) {
1da177e4
LT
2421 vunmap(area->addr);
2422 return NULL;
2423 }
2424
c22ee528 2425 if (flags & VM_MAP_PUT_PAGES) {
b944afc9 2426 area->pages = pages;
c22ee528
ML
2427 area->nr_pages = count;
2428 }
1da177e4
LT
2429 return area->addr;
2430}
1da177e4
LT
2431EXPORT_SYMBOL(vmap);
2432
3e9a9e25
CH
2433#ifdef CONFIG_VMAP_PFN
2434struct vmap_pfn_data {
2435 unsigned long *pfns;
2436 pgprot_t prot;
2437 unsigned int idx;
2438};
2439
2440static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2441{
2442 struct vmap_pfn_data *data = private;
2443
2444 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2445 return -EINVAL;
2446 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2447 return 0;
2448}
2449
2450/**
2451 * vmap_pfn - map an array of PFNs into virtually contiguous space
2452 * @pfns: array of PFNs
2453 * @count: number of pages to map
2454 * @prot: page protection for the mapping
2455 *
2456 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2457 * the start address of the mapping.
2458 */
2459void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2460{
2461 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2462 struct vm_struct *area;
2463
2464 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2465 __builtin_return_address(0));
2466 if (!area)
2467 return NULL;
2468 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2469 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2470 free_vm_area(area);
2471 return NULL;
2472 }
2473 return area->addr;
2474}
2475EXPORT_SYMBOL_GPL(vmap_pfn);
2476#endif /* CONFIG_VMAP_PFN */
2477
e31d9eb5 2478static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 2479 pgprot_t prot, int node)
1da177e4 2480{
930f036b 2481 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
f255935b 2482 unsigned int nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
34fe6537
AM
2483 unsigned long array_size;
2484 unsigned int i;
f255935b 2485 struct page **pages;
1da177e4 2486
34fe6537 2487 array_size = (unsigned long)nr_pages * sizeof(struct page *);
f255935b
CH
2488 gfp_mask |= __GFP_NOWARN;
2489 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2490 gfp_mask |= __GFP_HIGHMEM;
1da177e4 2491
1da177e4 2492 /* Please note that the recursion is strictly bounded. */
8757d5fa 2493 if (array_size > PAGE_SIZE) {
f255935b
CH
2494 pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2495 area->caller);
286e1ea3 2496 } else {
976d6dfb 2497 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 2498 }
7ea36242
AK
2499
2500 if (!pages) {
8945a723 2501 free_vm_area(area);
1da177e4
LT
2502 return NULL;
2503 }
1da177e4 2504
7ea36242
AK
2505 area->pages = pages;
2506 area->nr_pages = nr_pages;
2507
1da177e4 2508 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2509 struct page *page;
2510
4b90951c 2511 if (node == NUMA_NO_NODE)
f255935b 2512 page = alloc_page(gfp_mask);
930fc45a 2513 else
f255935b 2514 page = alloc_pages_node(node, gfp_mask, 0);
bf53d6f8
CL
2515
2516 if (unlikely(!page)) {
82afbc32 2517 /* Successfully allocated i pages, free them in __vfree() */
1da177e4 2518 area->nr_pages = i;
97105f0a 2519 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4
LT
2520 goto fail;
2521 }
bf53d6f8 2522 area->pages[i] = page;
dcf61ff0 2523 if (gfpflags_allow_blocking(gfp_mask))
660654f9 2524 cond_resched();
1da177e4 2525 }
97105f0a 2526 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2527
ed1f324c
CH
2528 if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
2529 prot, pages) < 0)
1da177e4 2530 goto fail;
ed1f324c 2531
1da177e4
LT
2532 return area->addr;
2533
2534fail:
a8e99259 2535 warn_alloc(gfp_mask, NULL,
7877cdcc 2536 "vmalloc: allocation failure, allocated %ld of %ld bytes",
22943ab1 2537 (area->nr_pages*PAGE_SIZE), area->size);
c67dc624 2538 __vfree(area->addr);
1da177e4
LT
2539 return NULL;
2540}
2541
2542/**
92eac168
MR
2543 * __vmalloc_node_range - allocate virtually contiguous memory
2544 * @size: allocation size
2545 * @align: desired alignment
2546 * @start: vm area range start
2547 * @end: vm area range end
2548 * @gfp_mask: flags for the page level allocator
2549 * @prot: protection mask for the allocated pages
2550 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2551 * @node: node to use for allocation or NUMA_NO_NODE
2552 * @caller: caller's return address
2553 *
2554 * Allocate enough pages to cover @size from the page level
2555 * allocator with @gfp_mask flags. Map them into contiguous
2556 * kernel virtual space, using a pagetable protection of @prot.
a862f68a
MR
2557 *
2558 * Return: the address of the area or %NULL on failure
1da177e4 2559 */
d0a21265
DR
2560void *__vmalloc_node_range(unsigned long size, unsigned long align,
2561 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
2562 pgprot_t prot, unsigned long vm_flags, int node,
2563 const void *caller)
1da177e4
LT
2564{
2565 struct vm_struct *area;
89219d37
CM
2566 void *addr;
2567 unsigned long real_size = size;
1da177e4
LT
2568
2569 size = PAGE_ALIGN(size);
ca79b0c2 2570 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
de7d2b56 2571 goto fail;
1da177e4 2572
d98c9e83 2573 area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
cb9e3c29 2574 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 2575 if (!area)
de7d2b56 2576 goto fail;
1da177e4 2577
3722e13c 2578 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 2579 if (!addr)
b82225f3 2580 return NULL;
89219d37 2581
f5252e00 2582 /*
20fc02b4
ZY
2583 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2584 * flag. It means that vm_struct is not fully initialized.
4341fa45 2585 * Now, it is fully initialized, so remove this flag here.
f5252e00 2586 */
20fc02b4 2587 clear_vm_uninitialized_flag(area);
f5252e00 2588
94f4a161 2589 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
2590
2591 return addr;
de7d2b56
JP
2592
2593fail:
a8e99259 2594 warn_alloc(gfp_mask, NULL,
7877cdcc 2595 "vmalloc: allocation failure: %lu bytes", real_size);
de7d2b56 2596 return NULL;
1da177e4
LT
2597}
2598
d0a21265 2599/**
92eac168
MR
2600 * __vmalloc_node - allocate virtually contiguous memory
2601 * @size: allocation size
2602 * @align: desired alignment
2603 * @gfp_mask: flags for the page level allocator
92eac168
MR
2604 * @node: node to use for allocation or NUMA_NO_NODE
2605 * @caller: caller's return address
a7c3e901 2606 *
f38fcb9c
CH
2607 * Allocate enough pages to cover @size from the page level allocator with
2608 * @gfp_mask flags. Map them into contiguous kernel virtual space.
a7c3e901 2609 *
92eac168
MR
2610 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2611 * and __GFP_NOFAIL are not supported
a7c3e901 2612 *
92eac168
MR
2613 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2614 * with mm people.
a862f68a
MR
2615 *
2616 * Return: pointer to the allocated memory or %NULL on error
d0a21265 2617 */
2b905948 2618void *__vmalloc_node(unsigned long size, unsigned long align,
f38fcb9c 2619 gfp_t gfp_mask, int node, const void *caller)
d0a21265
DR
2620{
2621 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
f38fcb9c 2622 gfp_mask, PAGE_KERNEL, 0, node, caller);
d0a21265 2623}
c3f896dc
CH
2624/*
2625 * This is only for performance analysis of vmalloc and stress purpose.
2626 * It is required by vmalloc test module, therefore do not use it other
2627 * than that.
2628 */
2629#ifdef CONFIG_TEST_VMALLOC_MODULE
2630EXPORT_SYMBOL_GPL(__vmalloc_node);
2631#endif
d0a21265 2632
88dca4ca 2633void *__vmalloc(unsigned long size, gfp_t gfp_mask)
930fc45a 2634{
f38fcb9c 2635 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
23016969 2636 __builtin_return_address(0));
930fc45a 2637}
1da177e4
LT
2638EXPORT_SYMBOL(__vmalloc);
2639
2640/**
92eac168
MR
2641 * vmalloc - allocate virtually contiguous memory
2642 * @size: allocation size
2643 *
2644 * Allocate enough pages to cover @size from the page level
2645 * allocator and map them into contiguous kernel virtual space.
1da177e4 2646 *
92eac168
MR
2647 * For tight control over page level allocator and protection flags
2648 * use __vmalloc() instead.
a862f68a
MR
2649 *
2650 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2651 */
2652void *vmalloc(unsigned long size)
2653{
4d39d728
CH
2654 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
2655 __builtin_return_address(0));
1da177e4 2656}
1da177e4
LT
2657EXPORT_SYMBOL(vmalloc);
2658
e1ca7788 2659/**
92eac168
MR
2660 * vzalloc - allocate virtually contiguous memory with zero fill
2661 * @size: allocation size
2662 *
2663 * Allocate enough pages to cover @size from the page level
2664 * allocator and map them into contiguous kernel virtual space.
2665 * The memory allocated is set to zero.
2666 *
2667 * For tight control over page level allocator and protection flags
2668 * use __vmalloc() instead.
a862f68a
MR
2669 *
2670 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2671 */
2672void *vzalloc(unsigned long size)
2673{
4d39d728
CH
2674 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
2675 __builtin_return_address(0));
e1ca7788
DY
2676}
2677EXPORT_SYMBOL(vzalloc);
2678
83342314 2679/**
ead04089
REB
2680 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2681 * @size: allocation size
83342314 2682 *
ead04089
REB
2683 * The resulting memory area is zeroed so it can be mapped to userspace
2684 * without leaking data.
a862f68a
MR
2685 *
2686 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2687 */
2688void *vmalloc_user(unsigned long size)
2689{
bc84c535
RP
2690 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2691 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2692 VM_USERMAP, NUMA_NO_NODE,
2693 __builtin_return_address(0));
83342314
NP
2694}
2695EXPORT_SYMBOL(vmalloc_user);
2696
930fc45a 2697/**
92eac168
MR
2698 * vmalloc_node - allocate memory on a specific node
2699 * @size: allocation size
2700 * @node: numa node
930fc45a 2701 *
92eac168
MR
2702 * Allocate enough pages to cover @size from the page level
2703 * allocator and map them into contiguous kernel virtual space.
930fc45a 2704 *
92eac168
MR
2705 * For tight control over page level allocator and protection flags
2706 * use __vmalloc() instead.
a862f68a
MR
2707 *
2708 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
2709 */
2710void *vmalloc_node(unsigned long size, int node)
2711{
f38fcb9c
CH
2712 return __vmalloc_node(size, 1, GFP_KERNEL, node,
2713 __builtin_return_address(0));
930fc45a
CL
2714}
2715EXPORT_SYMBOL(vmalloc_node);
2716
e1ca7788
DY
2717/**
2718 * vzalloc_node - allocate memory on a specific node with zero fill
2719 * @size: allocation size
2720 * @node: numa node
2721 *
2722 * Allocate enough pages to cover @size from the page level
2723 * allocator and map them into contiguous kernel virtual space.
2724 * The memory allocated is set to zero.
2725 *
a862f68a 2726 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2727 */
2728void *vzalloc_node(unsigned long size, int node)
2729{
4d39d728
CH
2730 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
2731 __builtin_return_address(0));
e1ca7788
DY
2732}
2733EXPORT_SYMBOL(vzalloc_node);
2734
0d08e0d3 2735#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 2736#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 2737#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 2738#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 2739#else
698d0831
MH
2740/*
2741 * 64b systems should always have either DMA or DMA32 zones. For others
2742 * GFP_DMA32 should do the right thing and use the normal zone.
2743 */
2744#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3
AK
2745#endif
2746
1da177e4 2747/**
92eac168
MR
2748 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2749 * @size: allocation size
1da177e4 2750 *
92eac168
MR
2751 * Allocate enough 32bit PA addressable pages to cover @size from the
2752 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
2753 *
2754 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2755 */
2756void *vmalloc_32(unsigned long size)
2757{
f38fcb9c
CH
2758 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
2759 __builtin_return_address(0));
1da177e4 2760}
1da177e4
LT
2761EXPORT_SYMBOL(vmalloc_32);
2762
83342314 2763/**
ead04089 2764 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 2765 * @size: allocation size
ead04089
REB
2766 *
2767 * The resulting memory area is 32bit addressable and zeroed so it can be
2768 * mapped to userspace without leaking data.
a862f68a
MR
2769 *
2770 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2771 */
2772void *vmalloc_32_user(unsigned long size)
2773{
bc84c535
RP
2774 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2775 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2776 VM_USERMAP, NUMA_NO_NODE,
2777 __builtin_return_address(0));
83342314
NP
2778}
2779EXPORT_SYMBOL(vmalloc_32_user);
2780
d0107eb0
KH
2781/*
2782 * small helper routine , copy contents to buf from addr.
2783 * If the page is not present, fill zero.
2784 */
2785
2786static int aligned_vread(char *buf, char *addr, unsigned long count)
2787{
2788 struct page *p;
2789 int copied = 0;
2790
2791 while (count) {
2792 unsigned long offset, length;
2793
891c49ab 2794 offset = offset_in_page(addr);
d0107eb0
KH
2795 length = PAGE_SIZE - offset;
2796 if (length > count)
2797 length = count;
2798 p = vmalloc_to_page(addr);
2799 /*
2800 * To do safe access to this _mapped_ area, we need
2801 * lock. But adding lock here means that we need to add
2802 * overhead of vmalloc()/vfree() calles for this _debug_
2803 * interface, rarely used. Instead of that, we'll use
2804 * kmap() and get small overhead in this access function.
2805 */
2806 if (p) {
2807 /*
2808 * we can expect USER0 is not used (see vread/vwrite's
2809 * function description)
2810 */
9b04c5fe 2811 void *map = kmap_atomic(p);
d0107eb0 2812 memcpy(buf, map + offset, length);
9b04c5fe 2813 kunmap_atomic(map);
d0107eb0
KH
2814 } else
2815 memset(buf, 0, length);
2816
2817 addr += length;
2818 buf += length;
2819 copied += length;
2820 count -= length;
2821 }
2822 return copied;
2823}
2824
2825static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2826{
2827 struct page *p;
2828 int copied = 0;
2829
2830 while (count) {
2831 unsigned long offset, length;
2832
891c49ab 2833 offset = offset_in_page(addr);
d0107eb0
KH
2834 length = PAGE_SIZE - offset;
2835 if (length > count)
2836 length = count;
2837 p = vmalloc_to_page(addr);
2838 /*
2839 * To do safe access to this _mapped_ area, we need
2840 * lock. But adding lock here means that we need to add
2841 * overhead of vmalloc()/vfree() calles for this _debug_
2842 * interface, rarely used. Instead of that, we'll use
2843 * kmap() and get small overhead in this access function.
2844 */
2845 if (p) {
2846 /*
2847 * we can expect USER0 is not used (see vread/vwrite's
2848 * function description)
2849 */
9b04c5fe 2850 void *map = kmap_atomic(p);
d0107eb0 2851 memcpy(map + offset, buf, length);
9b04c5fe 2852 kunmap_atomic(map);
d0107eb0
KH
2853 }
2854 addr += length;
2855 buf += length;
2856 copied += length;
2857 count -= length;
2858 }
2859 return copied;
2860}
2861
2862/**
92eac168
MR
2863 * vread() - read vmalloc area in a safe way.
2864 * @buf: buffer for reading data
2865 * @addr: vm address.
2866 * @count: number of bytes to be read.
2867 *
92eac168
MR
2868 * This function checks that addr is a valid vmalloc'ed area, and
2869 * copy data from that area to a given buffer. If the given memory range
2870 * of [addr...addr+count) includes some valid address, data is copied to
2871 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2872 * IOREMAP area is treated as memory hole and no copy is done.
2873 *
2874 * If [addr...addr+count) doesn't includes any intersects with alive
2875 * vm_struct area, returns 0. @buf should be kernel's buffer.
2876 *
2877 * Note: In usual ops, vread() is never necessary because the caller
2878 * should know vmalloc() area is valid and can use memcpy().
2879 * This is for routines which have to access vmalloc area without
d9009d67 2880 * any information, as /dev/kmem.
a862f68a
MR
2881 *
2882 * Return: number of bytes for which addr and buf should be increased
2883 * (same number as @count) or %0 if [addr...addr+count) doesn't
2884 * include any intersection with valid vmalloc area
d0107eb0 2885 */
1da177e4
LT
2886long vread(char *buf, char *addr, unsigned long count)
2887{
e81ce85f
JK
2888 struct vmap_area *va;
2889 struct vm_struct *vm;
1da177e4 2890 char *vaddr, *buf_start = buf;
d0107eb0 2891 unsigned long buflen = count;
1da177e4
LT
2892 unsigned long n;
2893
2894 /* Don't allow overflow */
2895 if ((unsigned long) addr + count < count)
2896 count = -(unsigned long) addr;
2897
e81ce85f
JK
2898 spin_lock(&vmap_area_lock);
2899 list_for_each_entry(va, &vmap_area_list, list) {
2900 if (!count)
2901 break;
2902
688fcbfc 2903 if (!va->vm)
e81ce85f
JK
2904 continue;
2905
2906 vm = va->vm;
2907 vaddr = (char *) vm->addr;
762216ab 2908 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2909 continue;
2910 while (addr < vaddr) {
2911 if (count == 0)
2912 goto finished;
2913 *buf = '\0';
2914 buf++;
2915 addr++;
2916 count--;
2917 }
762216ab 2918 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2919 if (n > count)
2920 n = count;
e81ce85f 2921 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2922 aligned_vread(buf, addr, n);
2923 else /* IOREMAP area is treated as memory hole */
2924 memset(buf, 0, n);
2925 buf += n;
2926 addr += n;
2927 count -= n;
1da177e4
LT
2928 }
2929finished:
e81ce85f 2930 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2931
2932 if (buf == buf_start)
2933 return 0;
2934 /* zero-fill memory holes */
2935 if (buf != buf_start + buflen)
2936 memset(buf, 0, buflen - (buf - buf_start));
2937
2938 return buflen;
1da177e4
LT
2939}
2940
d0107eb0 2941/**
92eac168
MR
2942 * vwrite() - write vmalloc area in a safe way.
2943 * @buf: buffer for source data
2944 * @addr: vm address.
2945 * @count: number of bytes to be read.
2946 *
92eac168
MR
2947 * This function checks that addr is a valid vmalloc'ed area, and
2948 * copy data from a buffer to the given addr. If specified range of
2949 * [addr...addr+count) includes some valid address, data is copied from
2950 * proper area of @buf. If there are memory holes, no copy to hole.
2951 * IOREMAP area is treated as memory hole and no copy is done.
2952 *
2953 * If [addr...addr+count) doesn't includes any intersects with alive
2954 * vm_struct area, returns 0. @buf should be kernel's buffer.
2955 *
2956 * Note: In usual ops, vwrite() is never necessary because the caller
2957 * should know vmalloc() area is valid and can use memcpy().
2958 * This is for routines which have to access vmalloc area without
d9009d67 2959 * any information, as /dev/kmem.
a862f68a
MR
2960 *
2961 * Return: number of bytes for which addr and buf should be
2962 * increased (same number as @count) or %0 if [addr...addr+count)
2963 * doesn't include any intersection with valid vmalloc area
d0107eb0 2964 */
1da177e4
LT
2965long vwrite(char *buf, char *addr, unsigned long count)
2966{
e81ce85f
JK
2967 struct vmap_area *va;
2968 struct vm_struct *vm;
d0107eb0
KH
2969 char *vaddr;
2970 unsigned long n, buflen;
2971 int copied = 0;
1da177e4
LT
2972
2973 /* Don't allow overflow */
2974 if ((unsigned long) addr + count < count)
2975 count = -(unsigned long) addr;
d0107eb0 2976 buflen = count;
1da177e4 2977
e81ce85f
JK
2978 spin_lock(&vmap_area_lock);
2979 list_for_each_entry(va, &vmap_area_list, list) {
2980 if (!count)
2981 break;
2982
688fcbfc 2983 if (!va->vm)
e81ce85f
JK
2984 continue;
2985
2986 vm = va->vm;
2987 vaddr = (char *) vm->addr;
762216ab 2988 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2989 continue;
2990 while (addr < vaddr) {
2991 if (count == 0)
2992 goto finished;
2993 buf++;
2994 addr++;
2995 count--;
2996 }
762216ab 2997 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2998 if (n > count)
2999 n = count;
e81ce85f 3000 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
3001 aligned_vwrite(buf, addr, n);
3002 copied++;
3003 }
3004 buf += n;
3005 addr += n;
3006 count -= n;
1da177e4
LT
3007 }
3008finished:
e81ce85f 3009 spin_unlock(&vmap_area_lock);
d0107eb0
KH
3010 if (!copied)
3011 return 0;
3012 return buflen;
1da177e4 3013}
83342314
NP
3014
3015/**
92eac168
MR
3016 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3017 * @vma: vma to cover
3018 * @uaddr: target user address to start at
3019 * @kaddr: virtual address of vmalloc kernel memory
bdebd6a2 3020 * @pgoff: offset from @kaddr to start at
92eac168 3021 * @size: size of map area
7682486b 3022 *
92eac168 3023 * Returns: 0 for success, -Exxx on failure
83342314 3024 *
92eac168
MR
3025 * This function checks that @kaddr is a valid vmalloc'ed area,
3026 * and that it is big enough to cover the range starting at
3027 * @uaddr in @vma. Will return failure if that criteria isn't
3028 * met.
83342314 3029 *
92eac168 3030 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 3031 */
e69e9d4a 3032int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
bdebd6a2
JH
3033 void *kaddr, unsigned long pgoff,
3034 unsigned long size)
83342314
NP
3035{
3036 struct vm_struct *area;
bdebd6a2
JH
3037 unsigned long off;
3038 unsigned long end_index;
3039
3040 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3041 return -EINVAL;
83342314 3042
e69e9d4a
HD
3043 size = PAGE_ALIGN(size);
3044
3045 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
3046 return -EINVAL;
3047
e69e9d4a 3048 area = find_vm_area(kaddr);
83342314 3049 if (!area)
db64fe02 3050 return -EINVAL;
83342314 3051
fe9041c2 3052 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 3053 return -EINVAL;
83342314 3054
bdebd6a2
JH
3055 if (check_add_overflow(size, off, &end_index) ||
3056 end_index > get_vm_area_size(area))
db64fe02 3057 return -EINVAL;
bdebd6a2 3058 kaddr += off;
83342314 3059
83342314 3060 do {
e69e9d4a 3061 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
3062 int ret;
3063
83342314
NP
3064 ret = vm_insert_page(vma, uaddr, page);
3065 if (ret)
3066 return ret;
3067
3068 uaddr += PAGE_SIZE;
e69e9d4a
HD
3069 kaddr += PAGE_SIZE;
3070 size -= PAGE_SIZE;
3071 } while (size > 0);
83342314 3072
314e51b9 3073 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 3074
db64fe02 3075 return 0;
83342314 3076}
e69e9d4a
HD
3077EXPORT_SYMBOL(remap_vmalloc_range_partial);
3078
3079/**
92eac168
MR
3080 * remap_vmalloc_range - map vmalloc pages to userspace
3081 * @vma: vma to cover (map full range of vma)
3082 * @addr: vmalloc memory
3083 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3084 *
92eac168 3085 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3086 *
92eac168
MR
3087 * This function checks that addr is a valid vmalloc'ed area, and
3088 * that it is big enough to cover the vma. Will return failure if
3089 * that criteria isn't met.
e69e9d4a 3090 *
92eac168 3091 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3092 */
3093int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3094 unsigned long pgoff)
3095{
3096 return remap_vmalloc_range_partial(vma, vma->vm_start,
bdebd6a2 3097 addr, pgoff,
e69e9d4a
HD
3098 vma->vm_end - vma->vm_start);
3099}
83342314
NP
3100EXPORT_SYMBOL(remap_vmalloc_range);
3101
5f4352fb
JF
3102void free_vm_area(struct vm_struct *area)
3103{
3104 struct vm_struct *ret;
3105 ret = remove_vm_area(area->addr);
3106 BUG_ON(ret != area);
3107 kfree(area);
3108}
3109EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3110
4f8b02b4 3111#ifdef CONFIG_SMP
ca23e405
TH
3112static struct vmap_area *node_to_va(struct rb_node *n)
3113{
4583e773 3114 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3115}
3116
3117/**
68ad4a33
URS
3118 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3119 * @addr: target address
ca23e405 3120 *
68ad4a33
URS
3121 * Returns: vmap_area if it is found. If there is no such area
3122 * the first highest(reverse order) vmap_area is returned
3123 * i.e. va->va_start < addr && va->va_end < addr or NULL
3124 * if there are no any areas before @addr.
ca23e405 3125 */
68ad4a33
URS
3126static struct vmap_area *
3127pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3128{
68ad4a33
URS
3129 struct vmap_area *va, *tmp;
3130 struct rb_node *n;
3131
3132 n = free_vmap_area_root.rb_node;
3133 va = NULL;
ca23e405
TH
3134
3135 while (n) {
68ad4a33
URS
3136 tmp = rb_entry(n, struct vmap_area, rb_node);
3137 if (tmp->va_start <= addr) {
3138 va = tmp;
3139 if (tmp->va_end >= addr)
3140 break;
3141
ca23e405 3142 n = n->rb_right;
68ad4a33
URS
3143 } else {
3144 n = n->rb_left;
3145 }
ca23e405
TH
3146 }
3147
68ad4a33 3148 return va;
ca23e405
TH
3149}
3150
3151/**
68ad4a33
URS
3152 * pvm_determine_end_from_reverse - find the highest aligned address
3153 * of free block below VMALLOC_END
3154 * @va:
3155 * in - the VA we start the search(reverse order);
3156 * out - the VA with the highest aligned end address.
799fa85d 3157 * @align: alignment for required highest address
ca23e405 3158 *
68ad4a33 3159 * Returns: determined end address within vmap_area
ca23e405 3160 */
68ad4a33
URS
3161static unsigned long
3162pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3163{
68ad4a33 3164 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3165 unsigned long addr;
3166
68ad4a33
URS
3167 if (likely(*va)) {
3168 list_for_each_entry_from_reverse((*va),
3169 &free_vmap_area_list, list) {
3170 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3171 if ((*va)->va_start < addr)
3172 return addr;
3173 }
ca23e405
TH
3174 }
3175
68ad4a33 3176 return 0;
ca23e405
TH
3177}
3178
3179/**
3180 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3181 * @offsets: array containing offset of each area
3182 * @sizes: array containing size of each area
3183 * @nr_vms: the number of areas to allocate
3184 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3185 *
3186 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3187 * vm_structs on success, %NULL on failure
3188 *
3189 * Percpu allocator wants to use congruent vm areas so that it can
3190 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3191 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3192 * be scattered pretty far, distance between two areas easily going up
3193 * to gigabytes. To avoid interacting with regular vmallocs, these
3194 * areas are allocated from top.
ca23e405 3195 *
68ad4a33
URS
3196 * Despite its complicated look, this allocator is rather simple. It
3197 * does everything top-down and scans free blocks from the end looking
3198 * for matching base. While scanning, if any of the areas do not fit the
3199 * base address is pulled down to fit the area. Scanning is repeated till
3200 * all the areas fit and then all necessary data structures are inserted
3201 * and the result is returned.
ca23e405
TH
3202 */
3203struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3204 const size_t *sizes, int nr_vms,
ec3f64fc 3205 size_t align)
ca23e405
TH
3206{
3207 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3208 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3209 struct vmap_area **vas, *va;
ca23e405
TH
3210 struct vm_struct **vms;
3211 int area, area2, last_area, term_area;
253a496d 3212 unsigned long base, start, size, end, last_end, orig_start, orig_end;
ca23e405 3213 bool purged = false;
68ad4a33 3214 enum fit_type type;
ca23e405 3215
ca23e405 3216 /* verify parameters and allocate data structures */
891c49ab 3217 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3218 for (last_area = 0, area = 0; area < nr_vms; area++) {
3219 start = offsets[area];
3220 end = start + sizes[area];
3221
3222 /* is everything aligned properly? */
3223 BUG_ON(!IS_ALIGNED(offsets[area], align));
3224 BUG_ON(!IS_ALIGNED(sizes[area], align));
3225
3226 /* detect the area with the highest address */
3227 if (start > offsets[last_area])
3228 last_area = area;
3229
c568da28 3230 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3231 unsigned long start2 = offsets[area2];
3232 unsigned long end2 = start2 + sizes[area2];
3233
c568da28 3234 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3235 }
3236 }
3237 last_end = offsets[last_area] + sizes[last_area];
3238
3239 if (vmalloc_end - vmalloc_start < last_end) {
3240 WARN_ON(true);
3241 return NULL;
3242 }
3243
4d67d860
TM
3244 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3245 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3246 if (!vas || !vms)
f1db7afd 3247 goto err_free2;
ca23e405
TH
3248
3249 for (area = 0; area < nr_vms; area++) {
68ad4a33 3250 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3251 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3252 if (!vas[area] || !vms[area])
3253 goto err_free;
3254 }
3255retry:
e36176be 3256 spin_lock(&free_vmap_area_lock);
ca23e405
TH
3257
3258 /* start scanning - we scan from the top, begin with the last area */
3259 area = term_area = last_area;
3260 start = offsets[area];
3261 end = start + sizes[area];
3262
68ad4a33
URS
3263 va = pvm_find_va_enclose_addr(vmalloc_end);
3264 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3265
3266 while (true) {
ca23e405
TH
3267 /*
3268 * base might have underflowed, add last_end before
3269 * comparing.
3270 */
68ad4a33
URS
3271 if (base + last_end < vmalloc_start + last_end)
3272 goto overflow;
ca23e405
TH
3273
3274 /*
68ad4a33 3275 * Fitting base has not been found.
ca23e405 3276 */
68ad4a33
URS
3277 if (va == NULL)
3278 goto overflow;
ca23e405 3279
5336e52c 3280 /*
d8cc323d 3281 * If required width exceeds current VA block, move
5336e52c
KS
3282 * base downwards and then recheck.
3283 */
3284 if (base + end > va->va_end) {
3285 base = pvm_determine_end_from_reverse(&va, align) - end;
3286 term_area = area;
3287 continue;
3288 }
3289
ca23e405 3290 /*
68ad4a33 3291 * If this VA does not fit, move base downwards and recheck.
ca23e405 3292 */
5336e52c 3293 if (base + start < va->va_start) {
68ad4a33
URS
3294 va = node_to_va(rb_prev(&va->rb_node));
3295 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3296 term_area = area;
3297 continue;
3298 }
3299
3300 /*
3301 * This area fits, move on to the previous one. If
3302 * the previous one is the terminal one, we're done.
3303 */
3304 area = (area + nr_vms - 1) % nr_vms;
3305 if (area == term_area)
3306 break;
68ad4a33 3307
ca23e405
TH
3308 start = offsets[area];
3309 end = start + sizes[area];
68ad4a33 3310 va = pvm_find_va_enclose_addr(base + end);
ca23e405 3311 }
68ad4a33 3312
ca23e405
TH
3313 /* we've found a fitting base, insert all va's */
3314 for (area = 0; area < nr_vms; area++) {
68ad4a33 3315 int ret;
ca23e405 3316
68ad4a33
URS
3317 start = base + offsets[area];
3318 size = sizes[area];
ca23e405 3319
68ad4a33
URS
3320 va = pvm_find_va_enclose_addr(start);
3321 if (WARN_ON_ONCE(va == NULL))
3322 /* It is a BUG(), but trigger recovery instead. */
3323 goto recovery;
3324
3325 type = classify_va_fit_type(va, start, size);
3326 if (WARN_ON_ONCE(type == NOTHING_FIT))
3327 /* It is a BUG(), but trigger recovery instead. */
3328 goto recovery;
3329
3330 ret = adjust_va_to_fit_type(va, start, size, type);
3331 if (unlikely(ret))
3332 goto recovery;
3333
3334 /* Allocated area. */
3335 va = vas[area];
3336 va->va_start = start;
3337 va->va_end = start + size;
68ad4a33 3338 }
ca23e405 3339
e36176be 3340 spin_unlock(&free_vmap_area_lock);
ca23e405 3341
253a496d
DA
3342 /* populate the kasan shadow space */
3343 for (area = 0; area < nr_vms; area++) {
3344 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3345 goto err_free_shadow;
3346
3347 kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3348 sizes[area]);
3349 }
3350
ca23e405 3351 /* insert all vm's */
e36176be
URS
3352 spin_lock(&vmap_area_lock);
3353 for (area = 0; area < nr_vms; area++) {
3354 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3355
3356 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3645cb4a 3357 pcpu_get_vm_areas);
e36176be
URS
3358 }
3359 spin_unlock(&vmap_area_lock);
ca23e405
TH
3360
3361 kfree(vas);
3362 return vms;
3363
68ad4a33 3364recovery:
e36176be
URS
3365 /*
3366 * Remove previously allocated areas. There is no
3367 * need in removing these areas from the busy tree,
3368 * because they are inserted only on the final step
3369 * and when pcpu_get_vm_areas() is success.
3370 */
68ad4a33 3371 while (area--) {
253a496d
DA
3372 orig_start = vas[area]->va_start;
3373 orig_end = vas[area]->va_end;
96e2db45
URS
3374 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3375 &free_vmap_area_list);
9c801f61
URS
3376 if (va)
3377 kasan_release_vmalloc(orig_start, orig_end,
3378 va->va_start, va->va_end);
68ad4a33
URS
3379 vas[area] = NULL;
3380 }
3381
3382overflow:
e36176be 3383 spin_unlock(&free_vmap_area_lock);
68ad4a33
URS
3384 if (!purged) {
3385 purge_vmap_area_lazy();
3386 purged = true;
3387
3388 /* Before "retry", check if we recover. */
3389 for (area = 0; area < nr_vms; area++) {
3390 if (vas[area])
3391 continue;
3392
3393 vas[area] = kmem_cache_zalloc(
3394 vmap_area_cachep, GFP_KERNEL);
3395 if (!vas[area])
3396 goto err_free;
3397 }
3398
3399 goto retry;
3400 }
3401
ca23e405
TH
3402err_free:
3403 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
3404 if (vas[area])
3405 kmem_cache_free(vmap_area_cachep, vas[area]);
3406
f1db7afd 3407 kfree(vms[area]);
ca23e405 3408 }
f1db7afd 3409err_free2:
ca23e405
TH
3410 kfree(vas);
3411 kfree(vms);
3412 return NULL;
253a496d
DA
3413
3414err_free_shadow:
3415 spin_lock(&free_vmap_area_lock);
3416 /*
3417 * We release all the vmalloc shadows, even the ones for regions that
3418 * hadn't been successfully added. This relies on kasan_release_vmalloc
3419 * being able to tolerate this case.
3420 */
3421 for (area = 0; area < nr_vms; area++) {
3422 orig_start = vas[area]->va_start;
3423 orig_end = vas[area]->va_end;
96e2db45
URS
3424 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3425 &free_vmap_area_list);
9c801f61
URS
3426 if (va)
3427 kasan_release_vmalloc(orig_start, orig_end,
3428 va->va_start, va->va_end);
253a496d
DA
3429 vas[area] = NULL;
3430 kfree(vms[area]);
3431 }
3432 spin_unlock(&free_vmap_area_lock);
3433 kfree(vas);
3434 kfree(vms);
3435 return NULL;
ca23e405
TH
3436}
3437
3438/**
3439 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3440 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3441 * @nr_vms: the number of allocated areas
3442 *
3443 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3444 */
3445void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3446{
3447 int i;
3448
3449 for (i = 0; i < nr_vms; i++)
3450 free_vm_area(vms[i]);
3451 kfree(vms);
3452}
4f8b02b4 3453#endif /* CONFIG_SMP */
a10aa579
CL
3454
3455#ifdef CONFIG_PROC_FS
3456static void *s_start(struct seq_file *m, loff_t *pos)
e36176be 3457 __acquires(&vmap_purge_lock)
d4033afd 3458 __acquires(&vmap_area_lock)
a10aa579 3459{
e36176be 3460 mutex_lock(&vmap_purge_lock);
d4033afd 3461 spin_lock(&vmap_area_lock);
e36176be 3462
3f500069 3463 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
3464}
3465
3466static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3467{
3f500069 3468 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
3469}
3470
3471static void s_stop(struct seq_file *m, void *p)
d4033afd 3472 __releases(&vmap_area_lock)
0a7dd4e9 3473 __releases(&vmap_purge_lock)
a10aa579 3474{
d4033afd 3475 spin_unlock(&vmap_area_lock);
0a7dd4e9 3476 mutex_unlock(&vmap_purge_lock);
a10aa579
CL
3477}
3478
a47a126a
ED
3479static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3480{
e5adfffc 3481 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
3482 unsigned int nr, *counters = m->private;
3483
3484 if (!counters)
3485 return;
3486
af12346c
WL
3487 if (v->flags & VM_UNINITIALIZED)
3488 return;
7e5b528b
DV
3489 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3490 smp_rmb();
af12346c 3491
a47a126a
ED
3492 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3493
3494 for (nr = 0; nr < v->nr_pages; nr++)
3495 counters[page_to_nid(v->pages[nr])]++;
3496
3497 for_each_node_state(nr, N_HIGH_MEMORY)
3498 if (counters[nr])
3499 seq_printf(m, " N%u=%u", nr, counters[nr]);
3500 }
3501}
3502
dd3b8353
URS
3503static void show_purge_info(struct seq_file *m)
3504{
dd3b8353
URS
3505 struct vmap_area *va;
3506
96e2db45
URS
3507 spin_lock(&purge_vmap_area_lock);
3508 list_for_each_entry(va, &purge_vmap_area_list, list) {
dd3b8353
URS
3509 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3510 (void *)va->va_start, (void *)va->va_end,
3511 va->va_end - va->va_start);
3512 }
96e2db45 3513 spin_unlock(&purge_vmap_area_lock);
dd3b8353
URS
3514}
3515
a10aa579
CL
3516static int s_show(struct seq_file *m, void *p)
3517{
3f500069 3518 struct vmap_area *va;
d4033afd
JK
3519 struct vm_struct *v;
3520
3f500069 3521 va = list_entry(p, struct vmap_area, list);
3522
c2ce8c14 3523 /*
688fcbfc
PL
3524 * s_show can encounter race with remove_vm_area, !vm on behalf
3525 * of vmap area is being tear down or vm_map_ram allocation.
c2ce8c14 3526 */
688fcbfc 3527 if (!va->vm) {
dd3b8353 3528 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
78c72746 3529 (void *)va->va_start, (void *)va->va_end,
dd3b8353 3530 va->va_end - va->va_start);
78c72746 3531
d4033afd 3532 return 0;
78c72746 3533 }
d4033afd
JK
3534
3535 v = va->vm;
a10aa579 3536
45ec1690 3537 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
3538 v->addr, v->addr + v->size, v->size);
3539
62c70bce
JP
3540 if (v->caller)
3541 seq_printf(m, " %pS", v->caller);
23016969 3542
a10aa579
CL
3543 if (v->nr_pages)
3544 seq_printf(m, " pages=%d", v->nr_pages);
3545
3546 if (v->phys_addr)
199eaa05 3547 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
3548
3549 if (v->flags & VM_IOREMAP)
f4527c90 3550 seq_puts(m, " ioremap");
a10aa579
CL
3551
3552 if (v->flags & VM_ALLOC)
f4527c90 3553 seq_puts(m, " vmalloc");
a10aa579
CL
3554
3555 if (v->flags & VM_MAP)
f4527c90 3556 seq_puts(m, " vmap");
a10aa579
CL
3557
3558 if (v->flags & VM_USERMAP)
f4527c90 3559 seq_puts(m, " user");
a10aa579 3560
fe9041c2
CH
3561 if (v->flags & VM_DMA_COHERENT)
3562 seq_puts(m, " dma-coherent");
3563
244d63ee 3564 if (is_vmalloc_addr(v->pages))
f4527c90 3565 seq_puts(m, " vpages");
a10aa579 3566
a47a126a 3567 show_numa_info(m, v);
a10aa579 3568 seq_putc(m, '\n');
dd3b8353
URS
3569
3570 /*
96e2db45 3571 * As a final step, dump "unpurged" areas.
dd3b8353
URS
3572 */
3573 if (list_is_last(&va->list, &vmap_area_list))
3574 show_purge_info(m);
3575
a10aa579
CL
3576 return 0;
3577}
3578
5f6a6a9c 3579static const struct seq_operations vmalloc_op = {
a10aa579
CL
3580 .start = s_start,
3581 .next = s_next,
3582 .stop = s_stop,
3583 .show = s_show,
3584};
5f6a6a9c 3585
5f6a6a9c
AD
3586static int __init proc_vmalloc_init(void)
3587{
fddda2b7 3588 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 3589 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
3590 &vmalloc_op,
3591 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 3592 else
0825a6f9 3593 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
3594 return 0;
3595}
3596module_init(proc_vmalloc_init);
db3808c1 3597
a10aa579 3598#endif