]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/vmalloc.c
Revert "rmap: do not call mmu_notifier_invalidate_page() under ptl"
[mirror_ubuntu-artful-kernel.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
c3edc401 15#include <linux/sched/signal.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
3ac7fe5a 21#include <linux/debugobjects.h>
23016969 22#include <linux/kallsyms.h>
db64fe02 23#include <linux/list.h>
4da56b99 24#include <linux/notifier.h>
db64fe02
NP
25#include <linux/rbtree.h>
26#include <linux/radix-tree.h>
27#include <linux/rcupdate.h>
f0aa6617 28#include <linux/pfn.h>
89219d37 29#include <linux/kmemleak.h>
60063497 30#include <linux/atomic.h>
3b32123d 31#include <linux/compiler.h>
32fcfd40 32#include <linux/llist.h>
0f616be1 33#include <linux/bitops.h>
3b32123d 34
7c0f6ba6 35#include <linux/uaccess.h>
1da177e4 36#include <asm/tlbflush.h>
2dca6999 37#include <asm/shmparam.h>
1da177e4 38
dd56b046
MG
39#include "internal.h"
40
32fcfd40
AV
41struct vfree_deferred {
42 struct llist_head list;
43 struct work_struct wq;
44};
45static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46
47static void __vunmap(const void *, int);
48
49static void free_work(struct work_struct *w)
50{
51 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 struct llist_node *llnode = llist_del_all(&p->list);
53 while (llnode) {
54 void *p = llnode;
55 llnode = llist_next(llnode);
56 __vunmap(p, 1);
57 }
58}
59
db64fe02 60/*** Page table manipulation functions ***/
b221385b 61
1da177e4
LT
62static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
63{
64 pte_t *pte;
65
66 pte = pte_offset_kernel(pmd, addr);
67 do {
68 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
69 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
70 } while (pte++, addr += PAGE_SIZE, addr != end);
71}
72
db64fe02 73static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
74{
75 pmd_t *pmd;
76 unsigned long next;
77
78 pmd = pmd_offset(pud, addr);
79 do {
80 next = pmd_addr_end(addr, end);
b9820d8f
TK
81 if (pmd_clear_huge(pmd))
82 continue;
1da177e4
LT
83 if (pmd_none_or_clear_bad(pmd))
84 continue;
85 vunmap_pte_range(pmd, addr, next);
86 } while (pmd++, addr = next, addr != end);
87}
88
c2febafc 89static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
1da177e4
LT
90{
91 pud_t *pud;
92 unsigned long next;
93
c2febafc 94 pud = pud_offset(p4d, addr);
1da177e4
LT
95 do {
96 next = pud_addr_end(addr, end);
b9820d8f
TK
97 if (pud_clear_huge(pud))
98 continue;
1da177e4
LT
99 if (pud_none_or_clear_bad(pud))
100 continue;
101 vunmap_pmd_range(pud, addr, next);
102 } while (pud++, addr = next, addr != end);
103}
104
c2febafc
KS
105static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
106{
107 p4d_t *p4d;
108 unsigned long next;
109
110 p4d = p4d_offset(pgd, addr);
111 do {
112 next = p4d_addr_end(addr, end);
113 if (p4d_clear_huge(p4d))
114 continue;
115 if (p4d_none_or_clear_bad(p4d))
116 continue;
117 vunmap_pud_range(p4d, addr, next);
118 } while (p4d++, addr = next, addr != end);
119}
120
db64fe02 121static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
122{
123 pgd_t *pgd;
124 unsigned long next;
1da177e4
LT
125
126 BUG_ON(addr >= end);
127 pgd = pgd_offset_k(addr);
1da177e4
LT
128 do {
129 next = pgd_addr_end(addr, end);
130 if (pgd_none_or_clear_bad(pgd))
131 continue;
c2febafc 132 vunmap_p4d_range(pgd, addr, next);
1da177e4 133 } while (pgd++, addr = next, addr != end);
1da177e4
LT
134}
135
136static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 137 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
138{
139 pte_t *pte;
140
db64fe02
NP
141 /*
142 * nr is a running index into the array which helps higher level
143 * callers keep track of where we're up to.
144 */
145
872fec16 146 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
147 if (!pte)
148 return -ENOMEM;
149 do {
db64fe02
NP
150 struct page *page = pages[*nr];
151
152 if (WARN_ON(!pte_none(*pte)))
153 return -EBUSY;
154 if (WARN_ON(!page))
1da177e4
LT
155 return -ENOMEM;
156 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 157 (*nr)++;
1da177e4
LT
158 } while (pte++, addr += PAGE_SIZE, addr != end);
159 return 0;
160}
161
db64fe02
NP
162static int vmap_pmd_range(pud_t *pud, unsigned long addr,
163 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
164{
165 pmd_t *pmd;
166 unsigned long next;
167
168 pmd = pmd_alloc(&init_mm, pud, addr);
169 if (!pmd)
170 return -ENOMEM;
171 do {
172 next = pmd_addr_end(addr, end);
db64fe02 173 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
174 return -ENOMEM;
175 } while (pmd++, addr = next, addr != end);
176 return 0;
177}
178
c2febafc 179static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
db64fe02 180 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
181{
182 pud_t *pud;
183 unsigned long next;
184
c2febafc 185 pud = pud_alloc(&init_mm, p4d, addr);
1da177e4
LT
186 if (!pud)
187 return -ENOMEM;
188 do {
189 next = pud_addr_end(addr, end);
db64fe02 190 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
191 return -ENOMEM;
192 } while (pud++, addr = next, addr != end);
193 return 0;
194}
195
c2febafc
KS
196static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
197 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
198{
199 p4d_t *p4d;
200 unsigned long next;
201
202 p4d = p4d_alloc(&init_mm, pgd, addr);
203 if (!p4d)
204 return -ENOMEM;
205 do {
206 next = p4d_addr_end(addr, end);
207 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
208 return -ENOMEM;
209 } while (p4d++, addr = next, addr != end);
210 return 0;
211}
212
db64fe02
NP
213/*
214 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
215 * will have pfns corresponding to the "pages" array.
216 *
217 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
218 */
8fc48985
TH
219static int vmap_page_range_noflush(unsigned long start, unsigned long end,
220 pgprot_t prot, struct page **pages)
1da177e4
LT
221{
222 pgd_t *pgd;
223 unsigned long next;
2e4e27c7 224 unsigned long addr = start;
db64fe02
NP
225 int err = 0;
226 int nr = 0;
1da177e4
LT
227
228 BUG_ON(addr >= end);
229 pgd = pgd_offset_k(addr);
1da177e4
LT
230 do {
231 next = pgd_addr_end(addr, end);
c2febafc 232 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
1da177e4 233 if (err)
bf88c8c8 234 return err;
1da177e4 235 } while (pgd++, addr = next, addr != end);
db64fe02 236
db64fe02 237 return nr;
1da177e4
LT
238}
239
8fc48985
TH
240static int vmap_page_range(unsigned long start, unsigned long end,
241 pgprot_t prot, struct page **pages)
242{
243 int ret;
244
245 ret = vmap_page_range_noflush(start, end, prot, pages);
246 flush_cache_vmap(start, end);
247 return ret;
248}
249
81ac3ad9 250int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
251{
252 /*
ab4f2ee1 253 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
254 * and fall back on vmalloc() if that fails. Others
255 * just put it in the vmalloc space.
256 */
257#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
258 unsigned long addr = (unsigned long)x;
259 if (addr >= MODULES_VADDR && addr < MODULES_END)
260 return 1;
261#endif
262 return is_vmalloc_addr(x);
263}
264
48667e7a 265/*
add688fb 266 * Walk a vmap address to the struct page it maps.
48667e7a 267 */
add688fb 268struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
269{
270 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 271 struct page *page = NULL;
48667e7a 272 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
273 p4d_t *p4d;
274 pud_t *pud;
275 pmd_t *pmd;
276 pte_t *ptep, pte;
48667e7a 277
7aa413de
IM
278 /*
279 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
280 * architectures that do not vmalloc module space
281 */
73bdf0a6 282 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 283
c2febafc
KS
284 if (pgd_none(*pgd))
285 return NULL;
286 p4d = p4d_offset(pgd, addr);
287 if (p4d_none(*p4d))
288 return NULL;
289 pud = pud_offset(p4d, addr);
029c54b0
AB
290
291 /*
292 * Don't dereference bad PUD or PMD (below) entries. This will also
293 * identify huge mappings, which we may encounter on architectures
294 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
295 * identified as vmalloc addresses by is_vmalloc_addr(), but are
296 * not [unambiguously] associated with a struct page, so there is
297 * no correct value to return for them.
298 */
299 WARN_ON_ONCE(pud_bad(*pud));
300 if (pud_none(*pud) || pud_bad(*pud))
c2febafc
KS
301 return NULL;
302 pmd = pmd_offset(pud, addr);
029c54b0
AB
303 WARN_ON_ONCE(pmd_bad(*pmd));
304 if (pmd_none(*pmd) || pmd_bad(*pmd))
c2febafc
KS
305 return NULL;
306
307 ptep = pte_offset_map(pmd, addr);
308 pte = *ptep;
309 if (pte_present(pte))
310 page = pte_page(pte);
311 pte_unmap(ptep);
add688fb 312 return page;
48667e7a 313}
add688fb 314EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
315
316/*
add688fb 317 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 318 */
add688fb 319unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 320{
add688fb 321 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 322}
add688fb 323EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 324
db64fe02
NP
325
326/*** Global kva allocator ***/
327
78c72746 328#define VM_LAZY_FREE 0x02
db64fe02
NP
329#define VM_VM_AREA 0x04
330
db64fe02 331static DEFINE_SPINLOCK(vmap_area_lock);
f1c4069e
JK
332/* Export for kexec only */
333LIST_HEAD(vmap_area_list);
80c4bd7a 334static LLIST_HEAD(vmap_purge_list);
89699605
NP
335static struct rb_root vmap_area_root = RB_ROOT;
336
337/* The vmap cache globals are protected by vmap_area_lock */
338static struct rb_node *free_vmap_cache;
339static unsigned long cached_hole_size;
340static unsigned long cached_vstart;
341static unsigned long cached_align;
342
ca23e405 343static unsigned long vmap_area_pcpu_hole;
db64fe02
NP
344
345static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 346{
db64fe02
NP
347 struct rb_node *n = vmap_area_root.rb_node;
348
349 while (n) {
350 struct vmap_area *va;
351
352 va = rb_entry(n, struct vmap_area, rb_node);
353 if (addr < va->va_start)
354 n = n->rb_left;
cef2ac3f 355 else if (addr >= va->va_end)
db64fe02
NP
356 n = n->rb_right;
357 else
358 return va;
359 }
360
361 return NULL;
362}
363
364static void __insert_vmap_area(struct vmap_area *va)
365{
366 struct rb_node **p = &vmap_area_root.rb_node;
367 struct rb_node *parent = NULL;
368 struct rb_node *tmp;
369
370 while (*p) {
170168d0 371 struct vmap_area *tmp_va;
db64fe02
NP
372
373 parent = *p;
170168d0
NK
374 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
375 if (va->va_start < tmp_va->va_end)
db64fe02 376 p = &(*p)->rb_left;
170168d0 377 else if (va->va_end > tmp_va->va_start)
db64fe02
NP
378 p = &(*p)->rb_right;
379 else
380 BUG();
381 }
382
383 rb_link_node(&va->rb_node, parent, p);
384 rb_insert_color(&va->rb_node, &vmap_area_root);
385
4341fa45 386 /* address-sort this list */
db64fe02
NP
387 tmp = rb_prev(&va->rb_node);
388 if (tmp) {
389 struct vmap_area *prev;
390 prev = rb_entry(tmp, struct vmap_area, rb_node);
391 list_add_rcu(&va->list, &prev->list);
392 } else
393 list_add_rcu(&va->list, &vmap_area_list);
394}
395
396static void purge_vmap_area_lazy(void);
397
4da56b99
CW
398static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
399
db64fe02
NP
400/*
401 * Allocate a region of KVA of the specified size and alignment, within the
402 * vstart and vend.
403 */
404static struct vmap_area *alloc_vmap_area(unsigned long size,
405 unsigned long align,
406 unsigned long vstart, unsigned long vend,
407 int node, gfp_t gfp_mask)
408{
409 struct vmap_area *va;
410 struct rb_node *n;
1da177e4 411 unsigned long addr;
db64fe02 412 int purged = 0;
89699605 413 struct vmap_area *first;
db64fe02 414
7766970c 415 BUG_ON(!size);
891c49ab 416 BUG_ON(offset_in_page(size));
89699605 417 BUG_ON(!is_power_of_2(align));
db64fe02 418
5803ed29 419 might_sleep();
4da56b99 420
db64fe02
NP
421 va = kmalloc_node(sizeof(struct vmap_area),
422 gfp_mask & GFP_RECLAIM_MASK, node);
423 if (unlikely(!va))
424 return ERR_PTR(-ENOMEM);
425
7f88f88f
CM
426 /*
427 * Only scan the relevant parts containing pointers to other objects
428 * to avoid false negatives.
429 */
430 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
431
db64fe02
NP
432retry:
433 spin_lock(&vmap_area_lock);
89699605
NP
434 /*
435 * Invalidate cache if we have more permissive parameters.
436 * cached_hole_size notes the largest hole noticed _below_
437 * the vmap_area cached in free_vmap_cache: if size fits
438 * into that hole, we want to scan from vstart to reuse
439 * the hole instead of allocating above free_vmap_cache.
440 * Note that __free_vmap_area may update free_vmap_cache
441 * without updating cached_hole_size or cached_align.
442 */
443 if (!free_vmap_cache ||
444 size < cached_hole_size ||
445 vstart < cached_vstart ||
446 align < cached_align) {
447nocache:
448 cached_hole_size = 0;
449 free_vmap_cache = NULL;
450 }
451 /* record if we encounter less permissive parameters */
452 cached_vstart = vstart;
453 cached_align = align;
454
455 /* find starting point for our search */
456 if (free_vmap_cache) {
457 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
248ac0e1 458 addr = ALIGN(first->va_end, align);
89699605
NP
459 if (addr < vstart)
460 goto nocache;
bcb615a8 461 if (addr + size < addr)
89699605
NP
462 goto overflow;
463
464 } else {
465 addr = ALIGN(vstart, align);
bcb615a8 466 if (addr + size < addr)
89699605
NP
467 goto overflow;
468
469 n = vmap_area_root.rb_node;
470 first = NULL;
471
472 while (n) {
db64fe02
NP
473 struct vmap_area *tmp;
474 tmp = rb_entry(n, struct vmap_area, rb_node);
475 if (tmp->va_end >= addr) {
db64fe02 476 first = tmp;
89699605
NP
477 if (tmp->va_start <= addr)
478 break;
479 n = n->rb_left;
480 } else
db64fe02 481 n = n->rb_right;
89699605 482 }
db64fe02
NP
483
484 if (!first)
485 goto found;
db64fe02 486 }
89699605
NP
487
488 /* from the starting point, walk areas until a suitable hole is found */
248ac0e1 489 while (addr + size > first->va_start && addr + size <= vend) {
89699605
NP
490 if (addr + cached_hole_size < first->va_start)
491 cached_hole_size = first->va_start - addr;
248ac0e1 492 addr = ALIGN(first->va_end, align);
bcb615a8 493 if (addr + size < addr)
89699605
NP
494 goto overflow;
495
92ca922f 496 if (list_is_last(&first->list, &vmap_area_list))
89699605 497 goto found;
92ca922f 498
6219c2a2 499 first = list_next_entry(first, list);
db64fe02
NP
500 }
501
89699605
NP
502found:
503 if (addr + size > vend)
504 goto overflow;
db64fe02
NP
505
506 va->va_start = addr;
507 va->va_end = addr + size;
508 va->flags = 0;
509 __insert_vmap_area(va);
89699605 510 free_vmap_cache = &va->rb_node;
db64fe02
NP
511 spin_unlock(&vmap_area_lock);
512
61e16557 513 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
514 BUG_ON(va->va_start < vstart);
515 BUG_ON(va->va_end > vend);
516
db64fe02 517 return va;
89699605
NP
518
519overflow:
520 spin_unlock(&vmap_area_lock);
521 if (!purged) {
522 purge_vmap_area_lazy();
523 purged = 1;
524 goto retry;
525 }
4da56b99
CW
526
527 if (gfpflags_allow_blocking(gfp_mask)) {
528 unsigned long freed = 0;
529 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
530 if (freed > 0) {
531 purged = 0;
532 goto retry;
533 }
534 }
535
03497d76 536 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
537 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
538 size);
89699605
NP
539 kfree(va);
540 return ERR_PTR(-EBUSY);
db64fe02
NP
541}
542
4da56b99
CW
543int register_vmap_purge_notifier(struct notifier_block *nb)
544{
545 return blocking_notifier_chain_register(&vmap_notify_list, nb);
546}
547EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
548
549int unregister_vmap_purge_notifier(struct notifier_block *nb)
550{
551 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
552}
553EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
554
db64fe02
NP
555static void __free_vmap_area(struct vmap_area *va)
556{
557 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
89699605
NP
558
559 if (free_vmap_cache) {
560 if (va->va_end < cached_vstart) {
561 free_vmap_cache = NULL;
562 } else {
563 struct vmap_area *cache;
564 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
565 if (va->va_start <= cache->va_start) {
566 free_vmap_cache = rb_prev(&va->rb_node);
567 /*
568 * We don't try to update cached_hole_size or
569 * cached_align, but it won't go very wrong.
570 */
571 }
572 }
573 }
db64fe02
NP
574 rb_erase(&va->rb_node, &vmap_area_root);
575 RB_CLEAR_NODE(&va->rb_node);
576 list_del_rcu(&va->list);
577
ca23e405
TH
578 /*
579 * Track the highest possible candidate for pcpu area
580 * allocation. Areas outside of vmalloc area can be returned
581 * here too, consider only end addresses which fall inside
582 * vmalloc area proper.
583 */
584 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
585 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
586
14769de9 587 kfree_rcu(va, rcu_head);
db64fe02
NP
588}
589
590/*
591 * Free a region of KVA allocated by alloc_vmap_area
592 */
593static void free_vmap_area(struct vmap_area *va)
594{
595 spin_lock(&vmap_area_lock);
596 __free_vmap_area(va);
597 spin_unlock(&vmap_area_lock);
598}
599
600/*
601 * Clear the pagetable entries of a given vmap_area
602 */
603static void unmap_vmap_area(struct vmap_area *va)
604{
605 vunmap_page_range(va->va_start, va->va_end);
606}
607
cd52858c
NP
608static void vmap_debug_free_range(unsigned long start, unsigned long end)
609{
610 /*
f48d97f3
JK
611 * Unmap page tables and force a TLB flush immediately if pagealloc
612 * debugging is enabled. This catches use after free bugs similarly to
613 * those in linear kernel virtual address space after a page has been
614 * freed.
cd52858c 615 *
f48d97f3
JK
616 * All the lazy freeing logic is still retained, in order to minimise
617 * intrusiveness of this debugging feature.
cd52858c 618 *
f48d97f3
JK
619 * This is going to be *slow* (linear kernel virtual address debugging
620 * doesn't do a broadcast TLB flush so it is a lot faster).
cd52858c 621 */
f48d97f3
JK
622 if (debug_pagealloc_enabled()) {
623 vunmap_page_range(start, end);
624 flush_tlb_kernel_range(start, end);
625 }
cd52858c
NP
626}
627
db64fe02
NP
628/*
629 * lazy_max_pages is the maximum amount of virtual address space we gather up
630 * before attempting to purge with a TLB flush.
631 *
632 * There is a tradeoff here: a larger number will cover more kernel page tables
633 * and take slightly longer to purge, but it will linearly reduce the number of
634 * global TLB flushes that must be performed. It would seem natural to scale
635 * this number up linearly with the number of CPUs (because vmapping activity
636 * could also scale linearly with the number of CPUs), however it is likely
637 * that in practice, workloads might be constrained in other ways that mean
638 * vmap activity will not scale linearly with CPUs. Also, I want to be
639 * conservative and not introduce a big latency on huge systems, so go with
640 * a less aggressive log scale. It will still be an improvement over the old
641 * code, and it will be simple to change the scale factor if we find that it
642 * becomes a problem on bigger systems.
643 */
644static unsigned long lazy_max_pages(void)
645{
646 unsigned int log;
647
648 log = fls(num_online_cpus());
649
650 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
651}
652
653static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
654
0574ecd1
CH
655/*
656 * Serialize vmap purging. There is no actual criticial section protected
657 * by this look, but we want to avoid concurrent calls for performance
658 * reasons and to make the pcpu_get_vm_areas more deterministic.
659 */
f9e09977 660static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 661
02b709df
NP
662/* for per-CPU blocks */
663static void purge_fragmented_blocks_allcpus(void);
664
3ee48b6a
CW
665/*
666 * called before a call to iounmap() if the caller wants vm_area_struct's
667 * immediately freed.
668 */
669void set_iounmap_nonlazy(void)
670{
671 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
672}
673
db64fe02
NP
674/*
675 * Purges all lazily-freed vmap areas.
db64fe02 676 */
0574ecd1 677static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 678{
80c4bd7a 679 struct llist_node *valist;
db64fe02 680 struct vmap_area *va;
cbb76676 681 struct vmap_area *n_va;
763b218d 682 bool do_free = false;
db64fe02 683
0574ecd1 684 lockdep_assert_held(&vmap_purge_lock);
02b709df 685
80c4bd7a
CW
686 valist = llist_del_all(&vmap_purge_list);
687 llist_for_each_entry(va, valist, purge_list) {
0574ecd1
CH
688 if (va->va_start < start)
689 start = va->va_start;
690 if (va->va_end > end)
691 end = va->va_end;
763b218d 692 do_free = true;
db64fe02 693 }
db64fe02 694
763b218d 695 if (!do_free)
0574ecd1 696 return false;
db64fe02 697
0574ecd1 698 flush_tlb_kernel_range(start, end);
db64fe02 699
0574ecd1 700 spin_lock(&vmap_area_lock);
763b218d
JF
701 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
702 int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
703
0574ecd1 704 __free_vmap_area(va);
763b218d
JF
705 atomic_sub(nr, &vmap_lazy_nr);
706 cond_resched_lock(&vmap_area_lock);
707 }
0574ecd1
CH
708 spin_unlock(&vmap_area_lock);
709 return true;
db64fe02
NP
710}
711
496850e5
NP
712/*
713 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
714 * is already purging.
715 */
716static void try_purge_vmap_area_lazy(void)
717{
f9e09977 718 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 719 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 720 mutex_unlock(&vmap_purge_lock);
0574ecd1 721 }
496850e5
NP
722}
723
db64fe02
NP
724/*
725 * Kick off a purge of the outstanding lazy areas.
726 */
727static void purge_vmap_area_lazy(void)
728{
f9e09977 729 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
730 purge_fragmented_blocks_allcpus();
731 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 732 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
733}
734
735/*
64141da5
JF
736 * Free a vmap area, caller ensuring that the area has been unmapped
737 * and flush_cache_vunmap had been called for the correct range
738 * previously.
db64fe02 739 */
64141da5 740static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 741{
80c4bd7a
CW
742 int nr_lazy;
743
744 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
745 &vmap_lazy_nr);
746
747 /* After this point, we may free va at any time */
748 llist_add(&va->purge_list, &vmap_purge_list);
749
750 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 751 try_purge_vmap_area_lazy();
db64fe02
NP
752}
753
b29acbdc
NP
754/*
755 * Free and unmap a vmap area
756 */
757static void free_unmap_vmap_area(struct vmap_area *va)
758{
759 flush_cache_vunmap(va->va_start, va->va_end);
c8eef01e
CH
760 unmap_vmap_area(va);
761 free_vmap_area_noflush(va);
b29acbdc
NP
762}
763
db64fe02
NP
764static struct vmap_area *find_vmap_area(unsigned long addr)
765{
766 struct vmap_area *va;
767
768 spin_lock(&vmap_area_lock);
769 va = __find_vmap_area(addr);
770 spin_unlock(&vmap_area_lock);
771
772 return va;
773}
774
db64fe02
NP
775/*** Per cpu kva allocator ***/
776
777/*
778 * vmap space is limited especially on 32 bit architectures. Ensure there is
779 * room for at least 16 percpu vmap blocks per CPU.
780 */
781/*
782 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
783 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
784 * instead (we just need a rough idea)
785 */
786#if BITS_PER_LONG == 32
787#define VMALLOC_SPACE (128UL*1024*1024)
788#else
789#define VMALLOC_SPACE (128UL*1024*1024*1024)
790#endif
791
792#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
793#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
794#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
795#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
796#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
797#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
798#define VMAP_BBMAP_BITS \
799 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
800 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
801 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
802
803#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
804
9b463334
JF
805static bool vmap_initialized __read_mostly = false;
806
db64fe02
NP
807struct vmap_block_queue {
808 spinlock_t lock;
809 struct list_head free;
db64fe02
NP
810};
811
812struct vmap_block {
813 spinlock_t lock;
814 struct vmap_area *va;
db64fe02 815 unsigned long free, dirty;
7d61bfe8 816 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
817 struct list_head free_list;
818 struct rcu_head rcu_head;
02b709df 819 struct list_head purge;
db64fe02
NP
820};
821
822/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
823static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
824
825/*
826 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
827 * in the free path. Could get rid of this if we change the API to return a
828 * "cookie" from alloc, to be passed to free. But no big deal yet.
829 */
830static DEFINE_SPINLOCK(vmap_block_tree_lock);
831static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
832
833/*
834 * We should probably have a fallback mechanism to allocate virtual memory
835 * out of partially filled vmap blocks. However vmap block sizing should be
836 * fairly reasonable according to the vmalloc size, so it shouldn't be a
837 * big problem.
838 */
839
840static unsigned long addr_to_vb_idx(unsigned long addr)
841{
842 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
843 addr /= VMAP_BLOCK_SIZE;
844 return addr;
845}
846
cf725ce2
RP
847static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
848{
849 unsigned long addr;
850
851 addr = va_start + (pages_off << PAGE_SHIFT);
852 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
853 return (void *)addr;
854}
855
856/**
857 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
858 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
859 * @order: how many 2^order pages should be occupied in newly allocated block
860 * @gfp_mask: flags for the page level allocator
861 *
862 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
863 */
864static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
865{
866 struct vmap_block_queue *vbq;
867 struct vmap_block *vb;
868 struct vmap_area *va;
869 unsigned long vb_idx;
870 int node, err;
cf725ce2 871 void *vaddr;
db64fe02
NP
872
873 node = numa_node_id();
874
875 vb = kmalloc_node(sizeof(struct vmap_block),
876 gfp_mask & GFP_RECLAIM_MASK, node);
877 if (unlikely(!vb))
878 return ERR_PTR(-ENOMEM);
879
880 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
881 VMALLOC_START, VMALLOC_END,
882 node, gfp_mask);
ddf9c6d4 883 if (IS_ERR(va)) {
db64fe02 884 kfree(vb);
e7d86340 885 return ERR_CAST(va);
db64fe02
NP
886 }
887
888 err = radix_tree_preload(gfp_mask);
889 if (unlikely(err)) {
890 kfree(vb);
891 free_vmap_area(va);
892 return ERR_PTR(err);
893 }
894
cf725ce2 895 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
896 spin_lock_init(&vb->lock);
897 vb->va = va;
cf725ce2
RP
898 /* At least something should be left free */
899 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
900 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 901 vb->dirty = 0;
7d61bfe8
RP
902 vb->dirty_min = VMAP_BBMAP_BITS;
903 vb->dirty_max = 0;
db64fe02 904 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
905
906 vb_idx = addr_to_vb_idx(va->va_start);
907 spin_lock(&vmap_block_tree_lock);
908 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
909 spin_unlock(&vmap_block_tree_lock);
910 BUG_ON(err);
911 radix_tree_preload_end();
912
913 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 914 spin_lock(&vbq->lock);
68ac546f 915 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 916 spin_unlock(&vbq->lock);
3f04ba85 917 put_cpu_var(vmap_block_queue);
db64fe02 918
cf725ce2 919 return vaddr;
db64fe02
NP
920}
921
db64fe02
NP
922static void free_vmap_block(struct vmap_block *vb)
923{
924 struct vmap_block *tmp;
925 unsigned long vb_idx;
926
db64fe02
NP
927 vb_idx = addr_to_vb_idx(vb->va->va_start);
928 spin_lock(&vmap_block_tree_lock);
929 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
930 spin_unlock(&vmap_block_tree_lock);
931 BUG_ON(tmp != vb);
932
64141da5 933 free_vmap_area_noflush(vb->va);
22a3c7d1 934 kfree_rcu(vb, rcu_head);
db64fe02
NP
935}
936
02b709df
NP
937static void purge_fragmented_blocks(int cpu)
938{
939 LIST_HEAD(purge);
940 struct vmap_block *vb;
941 struct vmap_block *n_vb;
942 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
943
944 rcu_read_lock();
945 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
946
947 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
948 continue;
949
950 spin_lock(&vb->lock);
951 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
952 vb->free = 0; /* prevent further allocs after releasing lock */
953 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
954 vb->dirty_min = 0;
955 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
956 spin_lock(&vbq->lock);
957 list_del_rcu(&vb->free_list);
958 spin_unlock(&vbq->lock);
959 spin_unlock(&vb->lock);
960 list_add_tail(&vb->purge, &purge);
961 } else
962 spin_unlock(&vb->lock);
963 }
964 rcu_read_unlock();
965
966 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
967 list_del(&vb->purge);
968 free_vmap_block(vb);
969 }
970}
971
02b709df
NP
972static void purge_fragmented_blocks_allcpus(void)
973{
974 int cpu;
975
976 for_each_possible_cpu(cpu)
977 purge_fragmented_blocks(cpu);
978}
979
db64fe02
NP
980static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
981{
982 struct vmap_block_queue *vbq;
983 struct vmap_block *vb;
cf725ce2 984 void *vaddr = NULL;
db64fe02
NP
985 unsigned int order;
986
891c49ab 987 BUG_ON(offset_in_page(size));
db64fe02 988 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
989 if (WARN_ON(size == 0)) {
990 /*
991 * Allocating 0 bytes isn't what caller wants since
992 * get_order(0) returns funny result. Just warn and terminate
993 * early.
994 */
995 return NULL;
996 }
db64fe02
NP
997 order = get_order(size);
998
db64fe02
NP
999 rcu_read_lock();
1000 vbq = &get_cpu_var(vmap_block_queue);
1001 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 1002 unsigned long pages_off;
db64fe02
NP
1003
1004 spin_lock(&vb->lock);
cf725ce2
RP
1005 if (vb->free < (1UL << order)) {
1006 spin_unlock(&vb->lock);
1007 continue;
1008 }
02b709df 1009
cf725ce2
RP
1010 pages_off = VMAP_BBMAP_BITS - vb->free;
1011 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
1012 vb->free -= 1UL << order;
1013 if (vb->free == 0) {
1014 spin_lock(&vbq->lock);
1015 list_del_rcu(&vb->free_list);
1016 spin_unlock(&vbq->lock);
1017 }
cf725ce2 1018
02b709df
NP
1019 spin_unlock(&vb->lock);
1020 break;
db64fe02 1021 }
02b709df 1022
3f04ba85 1023 put_cpu_var(vmap_block_queue);
db64fe02
NP
1024 rcu_read_unlock();
1025
cf725ce2
RP
1026 /* Allocate new block if nothing was found */
1027 if (!vaddr)
1028 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 1029
cf725ce2 1030 return vaddr;
db64fe02
NP
1031}
1032
1033static void vb_free(const void *addr, unsigned long size)
1034{
1035 unsigned long offset;
1036 unsigned long vb_idx;
1037 unsigned int order;
1038 struct vmap_block *vb;
1039
891c49ab 1040 BUG_ON(offset_in_page(size));
db64fe02 1041 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
1042
1043 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1044
db64fe02
NP
1045 order = get_order(size);
1046
1047 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
7d61bfe8 1048 offset >>= PAGE_SHIFT;
db64fe02
NP
1049
1050 vb_idx = addr_to_vb_idx((unsigned long)addr);
1051 rcu_read_lock();
1052 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1053 rcu_read_unlock();
1054 BUG_ON(!vb);
1055
64141da5
JF
1056 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1057
db64fe02 1058 spin_lock(&vb->lock);
7d61bfe8
RP
1059
1060 /* Expand dirty range */
1061 vb->dirty_min = min(vb->dirty_min, offset);
1062 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1063
db64fe02
NP
1064 vb->dirty += 1UL << order;
1065 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1066 BUG_ON(vb->free);
db64fe02
NP
1067 spin_unlock(&vb->lock);
1068 free_vmap_block(vb);
1069 } else
1070 spin_unlock(&vb->lock);
1071}
1072
1073/**
1074 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1075 *
1076 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1077 * to amortize TLB flushing overheads. What this means is that any page you
1078 * have now, may, in a former life, have been mapped into kernel virtual
1079 * address by the vmap layer and so there might be some CPUs with TLB entries
1080 * still referencing that page (additional to the regular 1:1 kernel mapping).
1081 *
1082 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1083 * be sure that none of the pages we have control over will have any aliases
1084 * from the vmap layer.
1085 */
1086void vm_unmap_aliases(void)
1087{
1088 unsigned long start = ULONG_MAX, end = 0;
1089 int cpu;
1090 int flush = 0;
1091
9b463334
JF
1092 if (unlikely(!vmap_initialized))
1093 return;
1094
5803ed29
CH
1095 might_sleep();
1096
db64fe02
NP
1097 for_each_possible_cpu(cpu) {
1098 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1099 struct vmap_block *vb;
1100
1101 rcu_read_lock();
1102 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1103 spin_lock(&vb->lock);
7d61bfe8
RP
1104 if (vb->dirty) {
1105 unsigned long va_start = vb->va->va_start;
db64fe02 1106 unsigned long s, e;
b136be5e 1107
7d61bfe8
RP
1108 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1109 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1110
7d61bfe8
RP
1111 start = min(s, start);
1112 end = max(e, end);
db64fe02 1113
7d61bfe8 1114 flush = 1;
db64fe02
NP
1115 }
1116 spin_unlock(&vb->lock);
1117 }
1118 rcu_read_unlock();
1119 }
1120
f9e09977 1121 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1122 purge_fragmented_blocks_allcpus();
1123 if (!__purge_vmap_area_lazy(start, end) && flush)
1124 flush_tlb_kernel_range(start, end);
f9e09977 1125 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1126}
1127EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1128
1129/**
1130 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1131 * @mem: the pointer returned by vm_map_ram
1132 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1133 */
1134void vm_unmap_ram(const void *mem, unsigned int count)
1135{
65ee03c4 1136 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 1137 unsigned long addr = (unsigned long)mem;
9c3acf60 1138 struct vmap_area *va;
db64fe02 1139
5803ed29 1140 might_sleep();
db64fe02
NP
1141 BUG_ON(!addr);
1142 BUG_ON(addr < VMALLOC_START);
1143 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 1144 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02
NP
1145
1146 debug_check_no_locks_freed(mem, size);
cd52858c 1147 vmap_debug_free_range(addr, addr+size);
db64fe02 1148
9c3acf60 1149 if (likely(count <= VMAP_MAX_ALLOC)) {
db64fe02 1150 vb_free(mem, size);
9c3acf60
CH
1151 return;
1152 }
1153
1154 va = find_vmap_area(addr);
1155 BUG_ON(!va);
1156 free_unmap_vmap_area(va);
db64fe02
NP
1157}
1158EXPORT_SYMBOL(vm_unmap_ram);
1159
1160/**
1161 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1162 * @pages: an array of pointers to the pages to be mapped
1163 * @count: number of pages
1164 * @node: prefer to allocate data structures on this node
1165 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad 1166 *
36437638
GK
1167 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1168 * faster than vmap so it's good. But if you mix long-life and short-life
1169 * objects with vm_map_ram(), it could consume lots of address space through
1170 * fragmentation (especially on a 32bit machine). You could see failures in
1171 * the end. Please use this function for short-lived objects.
1172 *
e99c97ad 1173 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1174 */
1175void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1176{
65ee03c4 1177 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1178 unsigned long addr;
1179 void *mem;
1180
1181 if (likely(count <= VMAP_MAX_ALLOC)) {
1182 mem = vb_alloc(size, GFP_KERNEL);
1183 if (IS_ERR(mem))
1184 return NULL;
1185 addr = (unsigned long)mem;
1186 } else {
1187 struct vmap_area *va;
1188 va = alloc_vmap_area(size, PAGE_SIZE,
1189 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1190 if (IS_ERR(va))
1191 return NULL;
1192
1193 addr = va->va_start;
1194 mem = (void *)addr;
1195 }
1196 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1197 vm_unmap_ram(mem, count);
1198 return NULL;
1199 }
1200 return mem;
1201}
1202EXPORT_SYMBOL(vm_map_ram);
1203
4341fa45 1204static struct vm_struct *vmlist __initdata;
be9b7335
NP
1205/**
1206 * vm_area_add_early - add vmap area early during boot
1207 * @vm: vm_struct to add
1208 *
1209 * This function is used to add fixed kernel vm area to vmlist before
1210 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1211 * should contain proper values and the other fields should be zero.
1212 *
1213 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1214 */
1215void __init vm_area_add_early(struct vm_struct *vm)
1216{
1217 struct vm_struct *tmp, **p;
1218
1219 BUG_ON(vmap_initialized);
1220 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1221 if (tmp->addr >= vm->addr) {
1222 BUG_ON(tmp->addr < vm->addr + vm->size);
1223 break;
1224 } else
1225 BUG_ON(tmp->addr + tmp->size > vm->addr);
1226 }
1227 vm->next = *p;
1228 *p = vm;
1229}
1230
f0aa6617
TH
1231/**
1232 * vm_area_register_early - register vmap area early during boot
1233 * @vm: vm_struct to register
c0c0a293 1234 * @align: requested alignment
f0aa6617
TH
1235 *
1236 * This function is used to register kernel vm area before
1237 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1238 * proper values on entry and other fields should be zero. On return,
1239 * vm->addr contains the allocated address.
1240 *
1241 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1242 */
c0c0a293 1243void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1244{
1245 static size_t vm_init_off __initdata;
c0c0a293
TH
1246 unsigned long addr;
1247
1248 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1249 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1250
c0c0a293 1251 vm->addr = (void *)addr;
f0aa6617 1252
be9b7335 1253 vm_area_add_early(vm);
f0aa6617
TH
1254}
1255
db64fe02
NP
1256void __init vmalloc_init(void)
1257{
822c18f2
IK
1258 struct vmap_area *va;
1259 struct vm_struct *tmp;
db64fe02
NP
1260 int i;
1261
1262 for_each_possible_cpu(i) {
1263 struct vmap_block_queue *vbq;
32fcfd40 1264 struct vfree_deferred *p;
db64fe02
NP
1265
1266 vbq = &per_cpu(vmap_block_queue, i);
1267 spin_lock_init(&vbq->lock);
1268 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1269 p = &per_cpu(vfree_deferred, i);
1270 init_llist_head(&p->list);
1271 INIT_WORK(&p->wq, free_work);
db64fe02 1272 }
9b463334 1273
822c18f2
IK
1274 /* Import existing vmlist entries. */
1275 for (tmp = vmlist; tmp; tmp = tmp->next) {
43ebdac4 1276 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
dbda591d 1277 va->flags = VM_VM_AREA;
822c18f2
IK
1278 va->va_start = (unsigned long)tmp->addr;
1279 va->va_end = va->va_start + tmp->size;
dbda591d 1280 va->vm = tmp;
822c18f2
IK
1281 __insert_vmap_area(va);
1282 }
ca23e405
TH
1283
1284 vmap_area_pcpu_hole = VMALLOC_END;
1285
9b463334 1286 vmap_initialized = true;
db64fe02
NP
1287}
1288
8fc48985
TH
1289/**
1290 * map_kernel_range_noflush - map kernel VM area with the specified pages
1291 * @addr: start of the VM area to map
1292 * @size: size of the VM area to map
1293 * @prot: page protection flags to use
1294 * @pages: pages to map
1295 *
1296 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1297 * specify should have been allocated using get_vm_area() and its
1298 * friends.
1299 *
1300 * NOTE:
1301 * This function does NOT do any cache flushing. The caller is
1302 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1303 * before calling this function.
1304 *
1305 * RETURNS:
1306 * The number of pages mapped on success, -errno on failure.
1307 */
1308int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1309 pgprot_t prot, struct page **pages)
1310{
1311 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1312}
1313
1314/**
1315 * unmap_kernel_range_noflush - unmap kernel VM area
1316 * @addr: start of the VM area to unmap
1317 * @size: size of the VM area to unmap
1318 *
1319 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1320 * specify should have been allocated using get_vm_area() and its
1321 * friends.
1322 *
1323 * NOTE:
1324 * This function does NOT do any cache flushing. The caller is
1325 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1326 * before calling this function and flush_tlb_kernel_range() after.
1327 */
1328void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1329{
1330 vunmap_page_range(addr, addr + size);
1331}
81e88fdc 1332EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
1333
1334/**
1335 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1336 * @addr: start of the VM area to unmap
1337 * @size: size of the VM area to unmap
1338 *
1339 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1340 * the unmapping and tlb after.
1341 */
db64fe02
NP
1342void unmap_kernel_range(unsigned long addr, unsigned long size)
1343{
1344 unsigned long end = addr + size;
f6fcba70
TH
1345
1346 flush_cache_vunmap(addr, end);
db64fe02
NP
1347 vunmap_page_range(addr, end);
1348 flush_tlb_kernel_range(addr, end);
1349}
93ef6d6c 1350EXPORT_SYMBOL_GPL(unmap_kernel_range);
db64fe02 1351
f6f8ed47 1352int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
db64fe02
NP
1353{
1354 unsigned long addr = (unsigned long)area->addr;
762216ab 1355 unsigned long end = addr + get_vm_area_size(area);
db64fe02
NP
1356 int err;
1357
f6f8ed47 1358 err = vmap_page_range(addr, end, prot, pages);
db64fe02 1359
f6f8ed47 1360 return err > 0 ? 0 : err;
db64fe02
NP
1361}
1362EXPORT_SYMBOL_GPL(map_vm_area);
1363
f5252e00 1364static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 1365 unsigned long flags, const void *caller)
cf88c790 1366{
c69480ad 1367 spin_lock(&vmap_area_lock);
cf88c790
TH
1368 vm->flags = flags;
1369 vm->addr = (void *)va->va_start;
1370 vm->size = va->va_end - va->va_start;
1371 vm->caller = caller;
db1aecaf 1372 va->vm = vm;
cf88c790 1373 va->flags |= VM_VM_AREA;
c69480ad 1374 spin_unlock(&vmap_area_lock);
f5252e00 1375}
cf88c790 1376
20fc02b4 1377static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 1378{
d4033afd 1379 /*
20fc02b4 1380 * Before removing VM_UNINITIALIZED,
d4033afd
JK
1381 * we should make sure that vm has proper values.
1382 * Pair with smp_rmb() in show_numa_info().
1383 */
1384 smp_wmb();
20fc02b4 1385 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
1386}
1387
db64fe02 1388static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 1389 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 1390 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 1391{
0006526d 1392 struct vmap_area *va;
db64fe02 1393 struct vm_struct *area;
1da177e4 1394
52fd24ca 1395 BUG_ON(in_interrupt());
1da177e4 1396 size = PAGE_ALIGN(size);
31be8309
OH
1397 if (unlikely(!size))
1398 return NULL;
1da177e4 1399
252e5c6e 1400 if (flags & VM_IOREMAP)
1401 align = 1ul << clamp_t(int, get_count_order_long(size),
1402 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1403
cf88c790 1404 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1405 if (unlikely(!area))
1406 return NULL;
1407
71394fe5
AR
1408 if (!(flags & VM_NO_GUARD))
1409 size += PAGE_SIZE;
1da177e4 1410
db64fe02
NP
1411 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1412 if (IS_ERR(va)) {
1413 kfree(area);
1414 return NULL;
1da177e4 1415 }
1da177e4 1416
d82b1d85 1417 setup_vmalloc_vm(area, va, flags, caller);
f5252e00 1418
1da177e4 1419 return area;
1da177e4
LT
1420}
1421
930fc45a
CL
1422struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1423 unsigned long start, unsigned long end)
1424{
00ef2d2f
DR
1425 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1426 GFP_KERNEL, __builtin_return_address(0));
930fc45a 1427}
5992b6da 1428EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1429
c2968612
BH
1430struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1431 unsigned long start, unsigned long end,
5e6cafc8 1432 const void *caller)
c2968612 1433{
00ef2d2f
DR
1434 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1435 GFP_KERNEL, caller);
c2968612
BH
1436}
1437
1da177e4 1438/**
183ff22b 1439 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
1440 * @size: size of the area
1441 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1442 *
1443 * Search an area of @size in the kernel virtual mapping area,
1444 * and reserved it for out purposes. Returns the area descriptor
1445 * on success or %NULL on failure.
1446 */
1447struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1448{
2dca6999 1449 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
1450 NUMA_NO_NODE, GFP_KERNEL,
1451 __builtin_return_address(0));
23016969
CL
1452}
1453
1454struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 1455 const void *caller)
23016969 1456{
2dca6999 1457 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 1458 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
1459}
1460
e9da6e99
MS
1461/**
1462 * find_vm_area - find a continuous kernel virtual area
1463 * @addr: base address
1464 *
1465 * Search for the kernel VM area starting at @addr, and return it.
1466 * It is up to the caller to do all required locking to keep the returned
1467 * pointer valid.
1468 */
1469struct vm_struct *find_vm_area(const void *addr)
83342314 1470{
db64fe02 1471 struct vmap_area *va;
83342314 1472
db64fe02
NP
1473 va = find_vmap_area((unsigned long)addr);
1474 if (va && va->flags & VM_VM_AREA)
db1aecaf 1475 return va->vm;
1da177e4 1476
1da177e4 1477 return NULL;
1da177e4
LT
1478}
1479
7856dfeb 1480/**
183ff22b 1481 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
1482 * @addr: base address
1483 *
1484 * Search for the kernel VM area starting at @addr, and remove it.
1485 * This function returns the found VM area, but using it is NOT safe
1486 * on SMP machines, except for its size or flags.
1487 */
b3bdda02 1488struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1489{
db64fe02
NP
1490 struct vmap_area *va;
1491
5803ed29
CH
1492 might_sleep();
1493
db64fe02
NP
1494 va = find_vmap_area((unsigned long)addr);
1495 if (va && va->flags & VM_VM_AREA) {
db1aecaf 1496 struct vm_struct *vm = va->vm;
f5252e00 1497
c69480ad
JK
1498 spin_lock(&vmap_area_lock);
1499 va->vm = NULL;
1500 va->flags &= ~VM_VM_AREA;
78c72746 1501 va->flags |= VM_LAZY_FREE;
c69480ad
JK
1502 spin_unlock(&vmap_area_lock);
1503
dd32c279 1504 vmap_debug_free_range(va->va_start, va->va_end);
a5af5aa8 1505 kasan_free_shadow(vm);
dd32c279 1506 free_unmap_vmap_area(va);
dd32c279 1507
db64fe02
NP
1508 return vm;
1509 }
1510 return NULL;
7856dfeb
AK
1511}
1512
b3bdda02 1513static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1514{
1515 struct vm_struct *area;
1516
1517 if (!addr)
1518 return;
1519
e69e9d4a 1520 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 1521 addr))
1da177e4 1522 return;
1da177e4
LT
1523
1524 area = remove_vm_area(addr);
1525 if (unlikely(!area)) {
4c8573e2 1526 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1527 addr);
1da177e4
LT
1528 return;
1529 }
1530
7511c3ed
JM
1531 debug_check_no_locks_freed(addr, get_vm_area_size(area));
1532 debug_check_no_obj_freed(addr, get_vm_area_size(area));
9a11b49a 1533
1da177e4
LT
1534 if (deallocate_pages) {
1535 int i;
1536
1537 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1538 struct page *page = area->pages[i];
1539
1540 BUG_ON(!page);
4949148a 1541 __free_pages(page, 0);
1da177e4
LT
1542 }
1543
244d63ee 1544 kvfree(area->pages);
1da177e4
LT
1545 }
1546
1547 kfree(area);
1548 return;
1549}
bf22e37a
AR
1550
1551static inline void __vfree_deferred(const void *addr)
1552{
1553 /*
1554 * Use raw_cpu_ptr() because this can be called from preemptible
1555 * context. Preemption is absolutely fine here, because the llist_add()
1556 * implementation is lockless, so it works even if we are adding to
1557 * nother cpu's list. schedule_work() should be fine with this too.
1558 */
1559 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1560
1561 if (llist_add((struct llist_node *)addr, &p->list))
1562 schedule_work(&p->wq);
1563}
1564
1565/**
1566 * vfree_atomic - release memory allocated by vmalloc()
1567 * @addr: memory base address
1568 *
1569 * This one is just like vfree() but can be called in any atomic context
1570 * except NMIs.
1571 */
1572void vfree_atomic(const void *addr)
1573{
1574 BUG_ON(in_nmi());
1575
1576 kmemleak_free(addr);
1577
1578 if (!addr)
1579 return;
1580 __vfree_deferred(addr);
1581}
1582
1da177e4
LT
1583/**
1584 * vfree - release memory allocated by vmalloc()
1da177e4
LT
1585 * @addr: memory base address
1586 *
183ff22b 1587 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
1588 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1589 * NULL, no operation is performed.
1da177e4 1590 *
32fcfd40
AV
1591 * Must not be called in NMI context (strictly speaking, only if we don't
1592 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1593 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51 1594 *
0e056eb5 1595 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1da177e4 1596 */
b3bdda02 1597void vfree(const void *addr)
1da177e4 1598{
32fcfd40 1599 BUG_ON(in_nmi());
89219d37
CM
1600
1601 kmemleak_free(addr);
1602
32fcfd40
AV
1603 if (!addr)
1604 return;
bf22e37a
AR
1605 if (unlikely(in_interrupt()))
1606 __vfree_deferred(addr);
1607 else
32fcfd40 1608 __vunmap(addr, 1);
1da177e4 1609}
1da177e4
LT
1610EXPORT_SYMBOL(vfree);
1611
1612/**
1613 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
1614 * @addr: memory base address
1615 *
1616 * Free the virtually contiguous memory area starting at @addr,
1617 * which was created from the page array passed to vmap().
1618 *
80e93eff 1619 * Must not be called in interrupt context.
1da177e4 1620 */
b3bdda02 1621void vunmap(const void *addr)
1da177e4
LT
1622{
1623 BUG_ON(in_interrupt());
34754b69 1624 might_sleep();
32fcfd40
AV
1625 if (addr)
1626 __vunmap(addr, 0);
1da177e4 1627}
1da177e4
LT
1628EXPORT_SYMBOL(vunmap);
1629
1630/**
1631 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
1632 * @pages: array of page pointers
1633 * @count: number of pages to map
1634 * @flags: vm_area->flags
1635 * @prot: page protection for the mapping
1636 *
1637 * Maps @count pages from @pages into contiguous kernel virtual
1638 * space.
1639 */
1640void *vmap(struct page **pages, unsigned int count,
1641 unsigned long flags, pgprot_t prot)
1642{
1643 struct vm_struct *area;
65ee03c4 1644 unsigned long size; /* In bytes */
1da177e4 1645
34754b69
PZ
1646 might_sleep();
1647
4481374c 1648 if (count > totalram_pages)
1da177e4
LT
1649 return NULL;
1650
65ee03c4
GJM
1651 size = (unsigned long)count << PAGE_SHIFT;
1652 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
1653 if (!area)
1654 return NULL;
23016969 1655
f6f8ed47 1656 if (map_vm_area(area, prot, pages)) {
1da177e4
LT
1657 vunmap(area->addr);
1658 return NULL;
1659 }
1660
1661 return area->addr;
1662}
1da177e4
LT
1663EXPORT_SYMBOL(vmap);
1664
8594a21c
MH
1665static void *__vmalloc_node(unsigned long size, unsigned long align,
1666 gfp_t gfp_mask, pgprot_t prot,
1667 int node, const void *caller);
e31d9eb5 1668static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 1669 pgprot_t prot, int node)
1da177e4
LT
1670{
1671 struct page **pages;
1672 unsigned int nr_pages, array_size, i;
930f036b 1673 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
704b862f
LA
1674 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1675 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
1676 0 :
1677 __GFP_HIGHMEM;
1da177e4 1678
762216ab 1679 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
1680 array_size = (nr_pages * sizeof(struct page *));
1681
1682 area->nr_pages = nr_pages;
1683 /* Please note that the recursion is strictly bounded. */
8757d5fa 1684 if (array_size > PAGE_SIZE) {
704b862f 1685 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
3722e13c 1686 PAGE_KERNEL, node, area->caller);
286e1ea3 1687 } else {
976d6dfb 1688 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 1689 }
1da177e4
LT
1690 area->pages = pages;
1691 if (!area->pages) {
1692 remove_vm_area(area->addr);
1693 kfree(area);
1694 return NULL;
1695 }
1da177e4
LT
1696
1697 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1698 struct page *page;
1699
5d17a73a
MH
1700 if (fatal_signal_pending(current)) {
1701 area->nr_pages = i;
171012f5 1702 goto fail_no_warn;
5d17a73a
MH
1703 }
1704
4b90951c 1705 if (node == NUMA_NO_NODE)
704b862f 1706 page = alloc_page(alloc_mask|highmem_mask);
930fc45a 1707 else
704b862f 1708 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
bf53d6f8
CL
1709
1710 if (unlikely(!page)) {
1da177e4
LT
1711 /* Successfully allocated i pages, free them in __vunmap() */
1712 area->nr_pages = i;
1713 goto fail;
1714 }
bf53d6f8 1715 area->pages[i] = page;
704b862f 1716 if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
660654f9 1717 cond_resched();
1da177e4
LT
1718 }
1719
f6f8ed47 1720 if (map_vm_area(area, prot, pages))
1da177e4
LT
1721 goto fail;
1722 return area->addr;
1723
1724fail:
a8e99259 1725 warn_alloc(gfp_mask, NULL,
7877cdcc 1726 "vmalloc: allocation failure, allocated %ld of %ld bytes",
22943ab1 1727 (area->nr_pages*PAGE_SIZE), area->size);
171012f5 1728fail_no_warn:
1da177e4
LT
1729 vfree(area->addr);
1730 return NULL;
1731}
1732
1733/**
d0a21265 1734 * __vmalloc_node_range - allocate virtually contiguous memory
1da177e4 1735 * @size: allocation size
2dca6999 1736 * @align: desired alignment
d0a21265
DR
1737 * @start: vm area range start
1738 * @end: vm area range end
1da177e4
LT
1739 * @gfp_mask: flags for the page level allocator
1740 * @prot: protection mask for the allocated pages
cb9e3c29 1741 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
00ef2d2f 1742 * @node: node to use for allocation or NUMA_NO_NODE
c85d194b 1743 * @caller: caller's return address
1da177e4
LT
1744 *
1745 * Allocate enough pages to cover @size from the page level
1746 * allocator with @gfp_mask flags. Map them into contiguous
1747 * kernel virtual space, using a pagetable protection of @prot.
1748 */
d0a21265
DR
1749void *__vmalloc_node_range(unsigned long size, unsigned long align,
1750 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
1751 pgprot_t prot, unsigned long vm_flags, int node,
1752 const void *caller)
1da177e4
LT
1753{
1754 struct vm_struct *area;
89219d37
CM
1755 void *addr;
1756 unsigned long real_size = size;
1da177e4
LT
1757
1758 size = PAGE_ALIGN(size);
4481374c 1759 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
de7d2b56 1760 goto fail;
1da177e4 1761
cb9e3c29
AR
1762 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1763 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 1764 if (!area)
de7d2b56 1765 goto fail;
1da177e4 1766
3722e13c 1767 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 1768 if (!addr)
b82225f3 1769 return NULL;
89219d37 1770
f5252e00 1771 /*
20fc02b4
ZY
1772 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1773 * flag. It means that vm_struct is not fully initialized.
4341fa45 1774 * Now, it is fully initialized, so remove this flag here.
f5252e00 1775 */
20fc02b4 1776 clear_vm_uninitialized_flag(area);
f5252e00 1777
94f4a161 1778 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
1779
1780 return addr;
de7d2b56
JP
1781
1782fail:
a8e99259 1783 warn_alloc(gfp_mask, NULL,
7877cdcc 1784 "vmalloc: allocation failure: %lu bytes", real_size);
de7d2b56 1785 return NULL;
1da177e4
LT
1786}
1787
d0a21265
DR
1788/**
1789 * __vmalloc_node - allocate virtually contiguous memory
1790 * @size: allocation size
1791 * @align: desired alignment
1792 * @gfp_mask: flags for the page level allocator
1793 * @prot: protection mask for the allocated pages
00ef2d2f 1794 * @node: node to use for allocation or NUMA_NO_NODE
d0a21265
DR
1795 * @caller: caller's return address
1796 *
1797 * Allocate enough pages to cover @size from the page level
1798 * allocator with @gfp_mask flags. Map them into contiguous
1799 * kernel virtual space, using a pagetable protection of @prot.
a7c3e901 1800 *
dcda9b04 1801 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
a7c3e901
MH
1802 * and __GFP_NOFAIL are not supported
1803 *
1804 * Any use of gfp flags outside of GFP_KERNEL should be consulted
1805 * with mm people.
1806 *
d0a21265 1807 */
8594a21c 1808static void *__vmalloc_node(unsigned long size, unsigned long align,
d0a21265 1809 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1810 int node, const void *caller)
d0a21265
DR
1811{
1812 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
cb9e3c29 1813 gfp_mask, prot, 0, node, caller);
d0a21265
DR
1814}
1815
930fc45a
CL
1816void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1817{
00ef2d2f 1818 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 1819 __builtin_return_address(0));
930fc45a 1820}
1da177e4
LT
1821EXPORT_SYMBOL(__vmalloc);
1822
8594a21c
MH
1823static inline void *__vmalloc_node_flags(unsigned long size,
1824 int node, gfp_t flags)
1825{
1826 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1827 node, __builtin_return_address(0));
1828}
1829
1830
1831void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
1832 void *caller)
1833{
1834 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
1835}
1836
1da177e4
LT
1837/**
1838 * vmalloc - allocate virtually contiguous memory
1da177e4 1839 * @size: allocation size
1da177e4
LT
1840 * Allocate enough pages to cover @size from the page level
1841 * allocator and map them into contiguous kernel virtual space.
1842 *
c1c8897f 1843 * For tight control over page level allocator and protection flags
1da177e4
LT
1844 * use __vmalloc() instead.
1845 */
1846void *vmalloc(unsigned long size)
1847{
00ef2d2f 1848 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 1849 GFP_KERNEL);
1da177e4 1850}
1da177e4
LT
1851EXPORT_SYMBOL(vmalloc);
1852
e1ca7788
DY
1853/**
1854 * vzalloc - allocate virtually contiguous memory with zero fill
1855 * @size: allocation size
1856 * Allocate enough pages to cover @size from the page level
1857 * allocator and map them into contiguous kernel virtual space.
1858 * The memory allocated is set to zero.
1859 *
1860 * For tight control over page level allocator and protection flags
1861 * use __vmalloc() instead.
1862 */
1863void *vzalloc(unsigned long size)
1864{
00ef2d2f 1865 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 1866 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
1867}
1868EXPORT_SYMBOL(vzalloc);
1869
83342314 1870/**
ead04089
REB
1871 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1872 * @size: allocation size
83342314 1873 *
ead04089
REB
1874 * The resulting memory area is zeroed so it can be mapped to userspace
1875 * without leaking data.
83342314
NP
1876 */
1877void *vmalloc_user(unsigned long size)
1878{
1879 struct vm_struct *area;
1880 void *ret;
1881
2dca6999 1882 ret = __vmalloc_node(size, SHMLBA,
19809c2d 1883 GFP_KERNEL | __GFP_ZERO,
00ef2d2f
DR
1884 PAGE_KERNEL, NUMA_NO_NODE,
1885 __builtin_return_address(0));
2b4ac44e 1886 if (ret) {
db64fe02 1887 area = find_vm_area(ret);
2b4ac44e 1888 area->flags |= VM_USERMAP;
2b4ac44e 1889 }
83342314
NP
1890 return ret;
1891}
1892EXPORT_SYMBOL(vmalloc_user);
1893
930fc45a
CL
1894/**
1895 * vmalloc_node - allocate memory on a specific node
930fc45a 1896 * @size: allocation size
d44e0780 1897 * @node: numa node
930fc45a
CL
1898 *
1899 * Allocate enough pages to cover @size from the page level
1900 * allocator and map them into contiguous kernel virtual space.
1901 *
c1c8897f 1902 * For tight control over page level allocator and protection flags
930fc45a
CL
1903 * use __vmalloc() instead.
1904 */
1905void *vmalloc_node(unsigned long size, int node)
1906{
19809c2d 1907 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
23016969 1908 node, __builtin_return_address(0));
930fc45a
CL
1909}
1910EXPORT_SYMBOL(vmalloc_node);
1911
e1ca7788
DY
1912/**
1913 * vzalloc_node - allocate memory on a specific node with zero fill
1914 * @size: allocation size
1915 * @node: numa node
1916 *
1917 * Allocate enough pages to cover @size from the page level
1918 * allocator and map them into contiguous kernel virtual space.
1919 * The memory allocated is set to zero.
1920 *
1921 * For tight control over page level allocator and protection flags
1922 * use __vmalloc_node() instead.
1923 */
1924void *vzalloc_node(unsigned long size, int node)
1925{
1926 return __vmalloc_node_flags(size, node,
19809c2d 1927 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
1928}
1929EXPORT_SYMBOL(vzalloc_node);
1930
4dc3b16b
PP
1931#ifndef PAGE_KERNEL_EXEC
1932# define PAGE_KERNEL_EXEC PAGE_KERNEL
1933#endif
1934
1da177e4
LT
1935/**
1936 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
1937 * @size: allocation size
1938 *
1939 * Kernel-internal function to allocate enough pages to cover @size
1940 * the page level allocator and map them into contiguous and
1941 * executable kernel virtual space.
1942 *
c1c8897f 1943 * For tight control over page level allocator and protection flags
1da177e4
LT
1944 * use __vmalloc() instead.
1945 */
1946
1da177e4
LT
1947void *vmalloc_exec(unsigned long size)
1948{
19809c2d 1949 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
00ef2d2f 1950 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
1951}
1952
0d08e0d3 1953#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
7ac674f5 1954#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3 1955#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
7ac674f5 1956#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
0d08e0d3
AK
1957#else
1958#define GFP_VMALLOC32 GFP_KERNEL
1959#endif
1960
1da177e4
LT
1961/**
1962 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
1963 * @size: allocation size
1964 *
1965 * Allocate enough 32bit PA addressable pages to cover @size from the
1966 * page level allocator and map them into contiguous kernel virtual space.
1967 */
1968void *vmalloc_32(unsigned long size)
1969{
2dca6999 1970 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 1971 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 1972}
1da177e4
LT
1973EXPORT_SYMBOL(vmalloc_32);
1974
83342314 1975/**
ead04089 1976 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 1977 * @size: allocation size
ead04089
REB
1978 *
1979 * The resulting memory area is 32bit addressable and zeroed so it can be
1980 * mapped to userspace without leaking data.
83342314
NP
1981 */
1982void *vmalloc_32_user(unsigned long size)
1983{
1984 struct vm_struct *area;
1985 void *ret;
1986
2dca6999 1987 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
00ef2d2f 1988 NUMA_NO_NODE, __builtin_return_address(0));
2b4ac44e 1989 if (ret) {
db64fe02 1990 area = find_vm_area(ret);
2b4ac44e 1991 area->flags |= VM_USERMAP;
2b4ac44e 1992 }
83342314
NP
1993 return ret;
1994}
1995EXPORT_SYMBOL(vmalloc_32_user);
1996
d0107eb0
KH
1997/*
1998 * small helper routine , copy contents to buf from addr.
1999 * If the page is not present, fill zero.
2000 */
2001
2002static int aligned_vread(char *buf, char *addr, unsigned long count)
2003{
2004 struct page *p;
2005 int copied = 0;
2006
2007 while (count) {
2008 unsigned long offset, length;
2009
891c49ab 2010 offset = offset_in_page(addr);
d0107eb0
KH
2011 length = PAGE_SIZE - offset;
2012 if (length > count)
2013 length = count;
2014 p = vmalloc_to_page(addr);
2015 /*
2016 * To do safe access to this _mapped_ area, we need
2017 * lock. But adding lock here means that we need to add
2018 * overhead of vmalloc()/vfree() calles for this _debug_
2019 * interface, rarely used. Instead of that, we'll use
2020 * kmap() and get small overhead in this access function.
2021 */
2022 if (p) {
2023 /*
2024 * we can expect USER0 is not used (see vread/vwrite's
2025 * function description)
2026 */
9b04c5fe 2027 void *map = kmap_atomic(p);
d0107eb0 2028 memcpy(buf, map + offset, length);
9b04c5fe 2029 kunmap_atomic(map);
d0107eb0
KH
2030 } else
2031 memset(buf, 0, length);
2032
2033 addr += length;
2034 buf += length;
2035 copied += length;
2036 count -= length;
2037 }
2038 return copied;
2039}
2040
2041static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2042{
2043 struct page *p;
2044 int copied = 0;
2045
2046 while (count) {
2047 unsigned long offset, length;
2048
891c49ab 2049 offset = offset_in_page(addr);
d0107eb0
KH
2050 length = PAGE_SIZE - offset;
2051 if (length > count)
2052 length = count;
2053 p = vmalloc_to_page(addr);
2054 /*
2055 * To do safe access to this _mapped_ area, we need
2056 * lock. But adding lock here means that we need to add
2057 * overhead of vmalloc()/vfree() calles for this _debug_
2058 * interface, rarely used. Instead of that, we'll use
2059 * kmap() and get small overhead in this access function.
2060 */
2061 if (p) {
2062 /*
2063 * we can expect USER0 is not used (see vread/vwrite's
2064 * function description)
2065 */
9b04c5fe 2066 void *map = kmap_atomic(p);
d0107eb0 2067 memcpy(map + offset, buf, length);
9b04c5fe 2068 kunmap_atomic(map);
d0107eb0
KH
2069 }
2070 addr += length;
2071 buf += length;
2072 copied += length;
2073 count -= length;
2074 }
2075 return copied;
2076}
2077
2078/**
2079 * vread() - read vmalloc area in a safe way.
2080 * @buf: buffer for reading data
2081 * @addr: vm address.
2082 * @count: number of bytes to be read.
2083 *
2084 * Returns # of bytes which addr and buf should be increased.
2085 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
2086 * includes any intersect with alive vmalloc area.
2087 *
2088 * This function checks that addr is a valid vmalloc'ed area, and
2089 * copy data from that area to a given buffer. If the given memory range
2090 * of [addr...addr+count) includes some valid address, data is copied to
2091 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2092 * IOREMAP area is treated as memory hole and no copy is done.
2093 *
2094 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 2095 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
2096 *
2097 * Note: In usual ops, vread() is never necessary because the caller
2098 * should know vmalloc() area is valid and can use memcpy().
2099 * This is for routines which have to access vmalloc area without
2100 * any informaion, as /dev/kmem.
2101 *
2102 */
2103
1da177e4
LT
2104long vread(char *buf, char *addr, unsigned long count)
2105{
e81ce85f
JK
2106 struct vmap_area *va;
2107 struct vm_struct *vm;
1da177e4 2108 char *vaddr, *buf_start = buf;
d0107eb0 2109 unsigned long buflen = count;
1da177e4
LT
2110 unsigned long n;
2111
2112 /* Don't allow overflow */
2113 if ((unsigned long) addr + count < count)
2114 count = -(unsigned long) addr;
2115
e81ce85f
JK
2116 spin_lock(&vmap_area_lock);
2117 list_for_each_entry(va, &vmap_area_list, list) {
2118 if (!count)
2119 break;
2120
2121 if (!(va->flags & VM_VM_AREA))
2122 continue;
2123
2124 vm = va->vm;
2125 vaddr = (char *) vm->addr;
762216ab 2126 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2127 continue;
2128 while (addr < vaddr) {
2129 if (count == 0)
2130 goto finished;
2131 *buf = '\0';
2132 buf++;
2133 addr++;
2134 count--;
2135 }
762216ab 2136 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2137 if (n > count)
2138 n = count;
e81ce85f 2139 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2140 aligned_vread(buf, addr, n);
2141 else /* IOREMAP area is treated as memory hole */
2142 memset(buf, 0, n);
2143 buf += n;
2144 addr += n;
2145 count -= n;
1da177e4
LT
2146 }
2147finished:
e81ce85f 2148 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2149
2150 if (buf == buf_start)
2151 return 0;
2152 /* zero-fill memory holes */
2153 if (buf != buf_start + buflen)
2154 memset(buf, 0, buflen - (buf - buf_start));
2155
2156 return buflen;
1da177e4
LT
2157}
2158
d0107eb0
KH
2159/**
2160 * vwrite() - write vmalloc area in a safe way.
2161 * @buf: buffer for source data
2162 * @addr: vm address.
2163 * @count: number of bytes to be read.
2164 *
2165 * Returns # of bytes which addr and buf should be incresed.
2166 * (same number to @count).
2167 * If [addr...addr+count) doesn't includes any intersect with valid
2168 * vmalloc area, returns 0.
2169 *
2170 * This function checks that addr is a valid vmalloc'ed area, and
2171 * copy data from a buffer to the given addr. If specified range of
2172 * [addr...addr+count) includes some valid address, data is copied from
2173 * proper area of @buf. If there are memory holes, no copy to hole.
2174 * IOREMAP area is treated as memory hole and no copy is done.
2175 *
2176 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 2177 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
2178 *
2179 * Note: In usual ops, vwrite() is never necessary because the caller
2180 * should know vmalloc() area is valid and can use memcpy().
2181 * This is for routines which have to access vmalloc area without
2182 * any informaion, as /dev/kmem.
d0107eb0
KH
2183 */
2184
1da177e4
LT
2185long vwrite(char *buf, char *addr, unsigned long count)
2186{
e81ce85f
JK
2187 struct vmap_area *va;
2188 struct vm_struct *vm;
d0107eb0
KH
2189 char *vaddr;
2190 unsigned long n, buflen;
2191 int copied = 0;
1da177e4
LT
2192
2193 /* Don't allow overflow */
2194 if ((unsigned long) addr + count < count)
2195 count = -(unsigned long) addr;
d0107eb0 2196 buflen = count;
1da177e4 2197
e81ce85f
JK
2198 spin_lock(&vmap_area_lock);
2199 list_for_each_entry(va, &vmap_area_list, list) {
2200 if (!count)
2201 break;
2202
2203 if (!(va->flags & VM_VM_AREA))
2204 continue;
2205
2206 vm = va->vm;
2207 vaddr = (char *) vm->addr;
762216ab 2208 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2209 continue;
2210 while (addr < vaddr) {
2211 if (count == 0)
2212 goto finished;
2213 buf++;
2214 addr++;
2215 count--;
2216 }
762216ab 2217 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2218 if (n > count)
2219 n = count;
e81ce85f 2220 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2221 aligned_vwrite(buf, addr, n);
2222 copied++;
2223 }
2224 buf += n;
2225 addr += n;
2226 count -= n;
1da177e4
LT
2227 }
2228finished:
e81ce85f 2229 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2230 if (!copied)
2231 return 0;
2232 return buflen;
1da177e4 2233}
83342314
NP
2234
2235/**
e69e9d4a
HD
2236 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2237 * @vma: vma to cover
2238 * @uaddr: target user address to start at
2239 * @kaddr: virtual address of vmalloc kernel memory
2240 * @size: size of map area
7682486b
RD
2241 *
2242 * Returns: 0 for success, -Exxx on failure
83342314 2243 *
e69e9d4a
HD
2244 * This function checks that @kaddr is a valid vmalloc'ed area,
2245 * and that it is big enough to cover the range starting at
2246 * @uaddr in @vma. Will return failure if that criteria isn't
2247 * met.
83342314 2248 *
72fd4a35 2249 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 2250 */
e69e9d4a
HD
2251int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2252 void *kaddr, unsigned long size)
83342314
NP
2253{
2254 struct vm_struct *area;
83342314 2255
e69e9d4a
HD
2256 size = PAGE_ALIGN(size);
2257
2258 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
2259 return -EINVAL;
2260
e69e9d4a 2261 area = find_vm_area(kaddr);
83342314 2262 if (!area)
db64fe02 2263 return -EINVAL;
83342314
NP
2264
2265 if (!(area->flags & VM_USERMAP))
db64fe02 2266 return -EINVAL;
83342314 2267
e69e9d4a 2268 if (kaddr + size > area->addr + area->size)
db64fe02 2269 return -EINVAL;
83342314 2270
83342314 2271 do {
e69e9d4a 2272 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
2273 int ret;
2274
83342314
NP
2275 ret = vm_insert_page(vma, uaddr, page);
2276 if (ret)
2277 return ret;
2278
2279 uaddr += PAGE_SIZE;
e69e9d4a
HD
2280 kaddr += PAGE_SIZE;
2281 size -= PAGE_SIZE;
2282 } while (size > 0);
83342314 2283
314e51b9 2284 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 2285
db64fe02 2286 return 0;
83342314 2287}
e69e9d4a
HD
2288EXPORT_SYMBOL(remap_vmalloc_range_partial);
2289
2290/**
2291 * remap_vmalloc_range - map vmalloc pages to userspace
2292 * @vma: vma to cover (map full range of vma)
2293 * @addr: vmalloc memory
2294 * @pgoff: number of pages into addr before first page to map
2295 *
2296 * Returns: 0 for success, -Exxx on failure
2297 *
2298 * This function checks that addr is a valid vmalloc'ed area, and
2299 * that it is big enough to cover the vma. Will return failure if
2300 * that criteria isn't met.
2301 *
2302 * Similar to remap_pfn_range() (see mm/memory.c)
2303 */
2304int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2305 unsigned long pgoff)
2306{
2307 return remap_vmalloc_range_partial(vma, vma->vm_start,
2308 addr + (pgoff << PAGE_SHIFT),
2309 vma->vm_end - vma->vm_start);
2310}
83342314
NP
2311EXPORT_SYMBOL(remap_vmalloc_range);
2312
1eeb66a1
CH
2313/*
2314 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2315 * have one.
2316 */
3b32123d 2317void __weak vmalloc_sync_all(void)
1eeb66a1
CH
2318{
2319}
5f4352fb
JF
2320
2321
2f569afd 2322static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb 2323{
cd12909c
DV
2324 pte_t ***p = data;
2325
2326 if (p) {
2327 *(*p) = pte;
2328 (*p)++;
2329 }
5f4352fb
JF
2330 return 0;
2331}
2332
2333/**
2334 * alloc_vm_area - allocate a range of kernel address space
2335 * @size: size of the area
cd12909c 2336 * @ptes: returns the PTEs for the address space
7682486b
RD
2337 *
2338 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
2339 *
2340 * This function reserves a range of kernel address space, and
2341 * allocates pagetables to map that range. No actual mappings
cd12909c
DV
2342 * are created.
2343 *
2344 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2345 * allocated for the VM area are returned.
5f4352fb 2346 */
cd12909c 2347struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
2348{
2349 struct vm_struct *area;
2350
23016969
CL
2351 area = get_vm_area_caller(size, VM_IOREMAP,
2352 __builtin_return_address(0));
5f4352fb
JF
2353 if (area == NULL)
2354 return NULL;
2355
2356 /*
2357 * This ensures that page tables are constructed for this region
2358 * of kernel virtual address space and mapped into init_mm.
2359 */
2360 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 2361 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
2362 free_vm_area(area);
2363 return NULL;
2364 }
2365
5f4352fb
JF
2366 return area;
2367}
2368EXPORT_SYMBOL_GPL(alloc_vm_area);
2369
2370void free_vm_area(struct vm_struct *area)
2371{
2372 struct vm_struct *ret;
2373 ret = remove_vm_area(area->addr);
2374 BUG_ON(ret != area);
2375 kfree(area);
2376}
2377EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 2378
4f8b02b4 2379#ifdef CONFIG_SMP
ca23e405
TH
2380static struct vmap_area *node_to_va(struct rb_node *n)
2381{
4583e773 2382 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
2383}
2384
2385/**
2386 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2387 * @end: target address
2388 * @pnext: out arg for the next vmap_area
2389 * @pprev: out arg for the previous vmap_area
2390 *
2391 * Returns: %true if either or both of next and prev are found,
2392 * %false if no vmap_area exists
2393 *
2394 * Find vmap_areas end addresses of which enclose @end. ie. if not
2395 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2396 */
2397static bool pvm_find_next_prev(unsigned long end,
2398 struct vmap_area **pnext,
2399 struct vmap_area **pprev)
2400{
2401 struct rb_node *n = vmap_area_root.rb_node;
2402 struct vmap_area *va = NULL;
2403
2404 while (n) {
2405 va = rb_entry(n, struct vmap_area, rb_node);
2406 if (end < va->va_end)
2407 n = n->rb_left;
2408 else if (end > va->va_end)
2409 n = n->rb_right;
2410 else
2411 break;
2412 }
2413
2414 if (!va)
2415 return false;
2416
2417 if (va->va_end > end) {
2418 *pnext = va;
2419 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2420 } else {
2421 *pprev = va;
2422 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2423 }
2424 return true;
2425}
2426
2427/**
2428 * pvm_determine_end - find the highest aligned address between two vmap_areas
2429 * @pnext: in/out arg for the next vmap_area
2430 * @pprev: in/out arg for the previous vmap_area
2431 * @align: alignment
2432 *
2433 * Returns: determined end address
2434 *
2435 * Find the highest aligned address between *@pnext and *@pprev below
2436 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2437 * down address is between the end addresses of the two vmap_areas.
2438 *
2439 * Please note that the address returned by this function may fall
2440 * inside *@pnext vmap_area. The caller is responsible for checking
2441 * that.
2442 */
2443static unsigned long pvm_determine_end(struct vmap_area **pnext,
2444 struct vmap_area **pprev,
2445 unsigned long align)
2446{
2447 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2448 unsigned long addr;
2449
2450 if (*pnext)
2451 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2452 else
2453 addr = vmalloc_end;
2454
2455 while (*pprev && (*pprev)->va_end > addr) {
2456 *pnext = *pprev;
2457 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2458 }
2459
2460 return addr;
2461}
2462
2463/**
2464 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2465 * @offsets: array containing offset of each area
2466 * @sizes: array containing size of each area
2467 * @nr_vms: the number of areas to allocate
2468 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
2469 *
2470 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2471 * vm_structs on success, %NULL on failure
2472 *
2473 * Percpu allocator wants to use congruent vm areas so that it can
2474 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
2475 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2476 * be scattered pretty far, distance between two areas easily going up
2477 * to gigabytes. To avoid interacting with regular vmallocs, these
2478 * areas are allocated from top.
ca23e405
TH
2479 *
2480 * Despite its complicated look, this allocator is rather simple. It
2481 * does everything top-down and scans areas from the end looking for
2482 * matching slot. While scanning, if any of the areas overlaps with
2483 * existing vmap_area, the base address is pulled down to fit the
2484 * area. Scanning is repeated till all the areas fit and then all
2485 * necessary data structres are inserted and the result is returned.
2486 */
2487struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2488 const size_t *sizes, int nr_vms,
ec3f64fc 2489 size_t align)
ca23e405
TH
2490{
2491 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2492 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2493 struct vmap_area **vas, *prev, *next;
2494 struct vm_struct **vms;
2495 int area, area2, last_area, term_area;
2496 unsigned long base, start, end, last_end;
2497 bool purged = false;
2498
ca23e405 2499 /* verify parameters and allocate data structures */
891c49ab 2500 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
2501 for (last_area = 0, area = 0; area < nr_vms; area++) {
2502 start = offsets[area];
2503 end = start + sizes[area];
2504
2505 /* is everything aligned properly? */
2506 BUG_ON(!IS_ALIGNED(offsets[area], align));
2507 BUG_ON(!IS_ALIGNED(sizes[area], align));
2508
2509 /* detect the area with the highest address */
2510 if (start > offsets[last_area])
2511 last_area = area;
2512
2513 for (area2 = 0; area2 < nr_vms; area2++) {
2514 unsigned long start2 = offsets[area2];
2515 unsigned long end2 = start2 + sizes[area2];
2516
2517 if (area2 == area)
2518 continue;
2519
2520 BUG_ON(start2 >= start && start2 < end);
2521 BUG_ON(end2 <= end && end2 > start);
2522 }
2523 }
2524 last_end = offsets[last_area] + sizes[last_area];
2525
2526 if (vmalloc_end - vmalloc_start < last_end) {
2527 WARN_ON(true);
2528 return NULL;
2529 }
2530
4d67d860
TM
2531 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2532 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 2533 if (!vas || !vms)
f1db7afd 2534 goto err_free2;
ca23e405
TH
2535
2536 for (area = 0; area < nr_vms; area++) {
ec3f64fc
DR
2537 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2538 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
2539 if (!vas[area] || !vms[area])
2540 goto err_free;
2541 }
2542retry:
2543 spin_lock(&vmap_area_lock);
2544
2545 /* start scanning - we scan from the top, begin with the last area */
2546 area = term_area = last_area;
2547 start = offsets[area];
2548 end = start + sizes[area];
2549
2550 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2551 base = vmalloc_end - last_end;
2552 goto found;
2553 }
2554 base = pvm_determine_end(&next, &prev, align) - end;
2555
2556 while (true) {
2557 BUG_ON(next && next->va_end <= base + end);
2558 BUG_ON(prev && prev->va_end > base + end);
2559
2560 /*
2561 * base might have underflowed, add last_end before
2562 * comparing.
2563 */
2564 if (base + last_end < vmalloc_start + last_end) {
2565 spin_unlock(&vmap_area_lock);
2566 if (!purged) {
2567 purge_vmap_area_lazy();
2568 purged = true;
2569 goto retry;
2570 }
2571 goto err_free;
2572 }
2573
2574 /*
2575 * If next overlaps, move base downwards so that it's
2576 * right below next and then recheck.
2577 */
2578 if (next && next->va_start < base + end) {
2579 base = pvm_determine_end(&next, &prev, align) - end;
2580 term_area = area;
2581 continue;
2582 }
2583
2584 /*
2585 * If prev overlaps, shift down next and prev and move
2586 * base so that it's right below new next and then
2587 * recheck.
2588 */
2589 if (prev && prev->va_end > base + start) {
2590 next = prev;
2591 prev = node_to_va(rb_prev(&next->rb_node));
2592 base = pvm_determine_end(&next, &prev, align) - end;
2593 term_area = area;
2594 continue;
2595 }
2596
2597 /*
2598 * This area fits, move on to the previous one. If
2599 * the previous one is the terminal one, we're done.
2600 */
2601 area = (area + nr_vms - 1) % nr_vms;
2602 if (area == term_area)
2603 break;
2604 start = offsets[area];
2605 end = start + sizes[area];
2606 pvm_find_next_prev(base + end, &next, &prev);
2607 }
2608found:
2609 /* we've found a fitting base, insert all va's */
2610 for (area = 0; area < nr_vms; area++) {
2611 struct vmap_area *va = vas[area];
2612
2613 va->va_start = base + offsets[area];
2614 va->va_end = va->va_start + sizes[area];
2615 __insert_vmap_area(va);
2616 }
2617
2618 vmap_area_pcpu_hole = base + offsets[last_area];
2619
2620 spin_unlock(&vmap_area_lock);
2621
2622 /* insert all vm's */
2623 for (area = 0; area < nr_vms; area++)
3645cb4a
ZY
2624 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2625 pcpu_get_vm_areas);
ca23e405
TH
2626
2627 kfree(vas);
2628 return vms;
2629
2630err_free:
2631 for (area = 0; area < nr_vms; area++) {
f1db7afd
KC
2632 kfree(vas[area]);
2633 kfree(vms[area]);
ca23e405 2634 }
f1db7afd 2635err_free2:
ca23e405
TH
2636 kfree(vas);
2637 kfree(vms);
2638 return NULL;
2639}
2640
2641/**
2642 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2643 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2644 * @nr_vms: the number of allocated areas
2645 *
2646 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2647 */
2648void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2649{
2650 int i;
2651
2652 for (i = 0; i < nr_vms; i++)
2653 free_vm_area(vms[i]);
2654 kfree(vms);
2655}
4f8b02b4 2656#endif /* CONFIG_SMP */
a10aa579
CL
2657
2658#ifdef CONFIG_PROC_FS
2659static void *s_start(struct seq_file *m, loff_t *pos)
d4033afd 2660 __acquires(&vmap_area_lock)
a10aa579 2661{
d4033afd 2662 spin_lock(&vmap_area_lock);
3f500069 2663 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
2664}
2665
2666static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2667{
3f500069 2668 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
2669}
2670
2671static void s_stop(struct seq_file *m, void *p)
d4033afd 2672 __releases(&vmap_area_lock)
a10aa579 2673{
d4033afd 2674 spin_unlock(&vmap_area_lock);
a10aa579
CL
2675}
2676
a47a126a
ED
2677static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2678{
e5adfffc 2679 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
2680 unsigned int nr, *counters = m->private;
2681
2682 if (!counters)
2683 return;
2684
af12346c
WL
2685 if (v->flags & VM_UNINITIALIZED)
2686 return;
7e5b528b
DV
2687 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2688 smp_rmb();
af12346c 2689
a47a126a
ED
2690 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2691
2692 for (nr = 0; nr < v->nr_pages; nr++)
2693 counters[page_to_nid(v->pages[nr])]++;
2694
2695 for_each_node_state(nr, N_HIGH_MEMORY)
2696 if (counters[nr])
2697 seq_printf(m, " N%u=%u", nr, counters[nr]);
2698 }
2699}
2700
a10aa579
CL
2701static int s_show(struct seq_file *m, void *p)
2702{
3f500069 2703 struct vmap_area *va;
d4033afd
JK
2704 struct vm_struct *v;
2705
3f500069 2706 va = list_entry(p, struct vmap_area, list);
2707
c2ce8c14
WL
2708 /*
2709 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2710 * behalf of vmap area is being tear down or vm_map_ram allocation.
2711 */
78c72746
YX
2712 if (!(va->flags & VM_VM_AREA)) {
2713 seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
2714 (void *)va->va_start, (void *)va->va_end,
2715 va->va_end - va->va_start,
2716 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
2717
d4033afd 2718 return 0;
78c72746 2719 }
d4033afd
JK
2720
2721 v = va->vm;
a10aa579 2722
45ec1690 2723 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
2724 v->addr, v->addr + v->size, v->size);
2725
62c70bce
JP
2726 if (v->caller)
2727 seq_printf(m, " %pS", v->caller);
23016969 2728
a10aa579
CL
2729 if (v->nr_pages)
2730 seq_printf(m, " pages=%d", v->nr_pages);
2731
2732 if (v->phys_addr)
199eaa05 2733 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
2734
2735 if (v->flags & VM_IOREMAP)
f4527c90 2736 seq_puts(m, " ioremap");
a10aa579
CL
2737
2738 if (v->flags & VM_ALLOC)
f4527c90 2739 seq_puts(m, " vmalloc");
a10aa579
CL
2740
2741 if (v->flags & VM_MAP)
f4527c90 2742 seq_puts(m, " vmap");
a10aa579
CL
2743
2744 if (v->flags & VM_USERMAP)
f4527c90 2745 seq_puts(m, " user");
a10aa579 2746
244d63ee 2747 if (is_vmalloc_addr(v->pages))
f4527c90 2748 seq_puts(m, " vpages");
a10aa579 2749
a47a126a 2750 show_numa_info(m, v);
a10aa579
CL
2751 seq_putc(m, '\n');
2752 return 0;
2753}
2754
5f6a6a9c 2755static const struct seq_operations vmalloc_op = {
a10aa579
CL
2756 .start = s_start,
2757 .next = s_next,
2758 .stop = s_stop,
2759 .show = s_show,
2760};
5f6a6a9c
AD
2761
2762static int vmalloc_open(struct inode *inode, struct file *file)
2763{
703394c1
RJ
2764 if (IS_ENABLED(CONFIG_NUMA))
2765 return seq_open_private(file, &vmalloc_op,
2766 nr_node_ids * sizeof(unsigned int));
2767 else
2768 return seq_open(file, &vmalloc_op);
5f6a6a9c
AD
2769}
2770
2771static const struct file_operations proc_vmalloc_operations = {
2772 .open = vmalloc_open,
2773 .read = seq_read,
2774 .llseek = seq_lseek,
2775 .release = seq_release_private,
2776};
2777
2778static int __init proc_vmalloc_init(void)
2779{
2780 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2781 return 0;
2782}
2783module_init(proc_vmalloc_init);
db3808c1 2784
a10aa579
CL
2785#endif
2786