]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/vmalloc.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
c3edc401 15#include <linux/sched/signal.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
3ac7fe5a 21#include <linux/debugobjects.h>
23016969 22#include <linux/kallsyms.h>
db64fe02 23#include <linux/list.h>
4da56b99 24#include <linux/notifier.h>
db64fe02
NP
25#include <linux/rbtree.h>
26#include <linux/radix-tree.h>
27#include <linux/rcupdate.h>
f0aa6617 28#include <linux/pfn.h>
89219d37 29#include <linux/kmemleak.h>
60063497 30#include <linux/atomic.h>
3b32123d 31#include <linux/compiler.h>
32fcfd40 32#include <linux/llist.h>
0f616be1 33#include <linux/bitops.h>
3b32123d 34
7c0f6ba6 35#include <linux/uaccess.h>
1da177e4 36#include <asm/tlbflush.h>
2dca6999 37#include <asm/shmparam.h>
1da177e4 38
dd56b046
MG
39#include "internal.h"
40
32fcfd40
AV
41struct vfree_deferred {
42 struct llist_head list;
43 struct work_struct wq;
44};
45static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46
47static void __vunmap(const void *, int);
48
49static void free_work(struct work_struct *w)
50{
51 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
52 struct llist_node *t, *llnode;
53
54 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
55 __vunmap((void *)llnode, 1);
32fcfd40
AV
56}
57
db64fe02 58/*** Page table manipulation functions ***/
b221385b 59
1da177e4
LT
60static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
61{
62 pte_t *pte;
63
64 pte = pte_offset_kernel(pmd, addr);
65 do {
66 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
67 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
68 } while (pte++, addr += PAGE_SIZE, addr != end);
69}
70
db64fe02 71static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
72{
73 pmd_t *pmd;
74 unsigned long next;
75
76 pmd = pmd_offset(pud, addr);
77 do {
78 next = pmd_addr_end(addr, end);
b9820d8f
TK
79 if (pmd_clear_huge(pmd))
80 continue;
1da177e4
LT
81 if (pmd_none_or_clear_bad(pmd))
82 continue;
83 vunmap_pte_range(pmd, addr, next);
84 } while (pmd++, addr = next, addr != end);
85}
86
c2febafc 87static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
1da177e4
LT
88{
89 pud_t *pud;
90 unsigned long next;
91
c2febafc 92 pud = pud_offset(p4d, addr);
1da177e4
LT
93 do {
94 next = pud_addr_end(addr, end);
b9820d8f
TK
95 if (pud_clear_huge(pud))
96 continue;
1da177e4
LT
97 if (pud_none_or_clear_bad(pud))
98 continue;
99 vunmap_pmd_range(pud, addr, next);
100 } while (pud++, addr = next, addr != end);
101}
102
c2febafc
KS
103static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
104{
105 p4d_t *p4d;
106 unsigned long next;
107
108 p4d = p4d_offset(pgd, addr);
109 do {
110 next = p4d_addr_end(addr, end);
111 if (p4d_clear_huge(p4d))
112 continue;
113 if (p4d_none_or_clear_bad(p4d))
114 continue;
115 vunmap_pud_range(p4d, addr, next);
116 } while (p4d++, addr = next, addr != end);
117}
118
db64fe02 119static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
120{
121 pgd_t *pgd;
122 unsigned long next;
1da177e4
LT
123
124 BUG_ON(addr >= end);
125 pgd = pgd_offset_k(addr);
1da177e4
LT
126 do {
127 next = pgd_addr_end(addr, end);
128 if (pgd_none_or_clear_bad(pgd))
129 continue;
c2febafc 130 vunmap_p4d_range(pgd, addr, next);
1da177e4 131 } while (pgd++, addr = next, addr != end);
1da177e4
LT
132}
133
134static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 135 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
136{
137 pte_t *pte;
138
db64fe02
NP
139 /*
140 * nr is a running index into the array which helps higher level
141 * callers keep track of where we're up to.
142 */
143
872fec16 144 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
145 if (!pte)
146 return -ENOMEM;
147 do {
db64fe02
NP
148 struct page *page = pages[*nr];
149
150 if (WARN_ON(!pte_none(*pte)))
151 return -EBUSY;
152 if (WARN_ON(!page))
1da177e4
LT
153 return -ENOMEM;
154 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 155 (*nr)++;
1da177e4
LT
156 } while (pte++, addr += PAGE_SIZE, addr != end);
157 return 0;
158}
159
db64fe02
NP
160static int vmap_pmd_range(pud_t *pud, unsigned long addr,
161 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
162{
163 pmd_t *pmd;
164 unsigned long next;
165
166 pmd = pmd_alloc(&init_mm, pud, addr);
167 if (!pmd)
168 return -ENOMEM;
169 do {
170 next = pmd_addr_end(addr, end);
db64fe02 171 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
172 return -ENOMEM;
173 } while (pmd++, addr = next, addr != end);
174 return 0;
175}
176
c2febafc 177static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
db64fe02 178 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
179{
180 pud_t *pud;
181 unsigned long next;
182
c2febafc 183 pud = pud_alloc(&init_mm, p4d, addr);
1da177e4
LT
184 if (!pud)
185 return -ENOMEM;
186 do {
187 next = pud_addr_end(addr, end);
db64fe02 188 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
189 return -ENOMEM;
190 } while (pud++, addr = next, addr != end);
191 return 0;
192}
193
c2febafc
KS
194static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
195 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
196{
197 p4d_t *p4d;
198 unsigned long next;
199
200 p4d = p4d_alloc(&init_mm, pgd, addr);
201 if (!p4d)
202 return -ENOMEM;
203 do {
204 next = p4d_addr_end(addr, end);
205 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
206 return -ENOMEM;
207 } while (p4d++, addr = next, addr != end);
208 return 0;
209}
210
db64fe02
NP
211/*
212 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
213 * will have pfns corresponding to the "pages" array.
214 *
215 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
216 */
8fc48985
TH
217static int vmap_page_range_noflush(unsigned long start, unsigned long end,
218 pgprot_t prot, struct page **pages)
1da177e4
LT
219{
220 pgd_t *pgd;
221 unsigned long next;
2e4e27c7 222 unsigned long addr = start;
db64fe02
NP
223 int err = 0;
224 int nr = 0;
1da177e4
LT
225
226 BUG_ON(addr >= end);
227 pgd = pgd_offset_k(addr);
1da177e4
LT
228 do {
229 next = pgd_addr_end(addr, end);
c2febafc 230 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
1da177e4 231 if (err)
bf88c8c8 232 return err;
1da177e4 233 } while (pgd++, addr = next, addr != end);
db64fe02 234
db64fe02 235 return nr;
1da177e4
LT
236}
237
8fc48985
TH
238static int vmap_page_range(unsigned long start, unsigned long end,
239 pgprot_t prot, struct page **pages)
240{
241 int ret;
242
243 ret = vmap_page_range_noflush(start, end, prot, pages);
244 flush_cache_vmap(start, end);
245 return ret;
246}
247
81ac3ad9 248int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
249{
250 /*
ab4f2ee1 251 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
252 * and fall back on vmalloc() if that fails. Others
253 * just put it in the vmalloc space.
254 */
255#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
256 unsigned long addr = (unsigned long)x;
257 if (addr >= MODULES_VADDR && addr < MODULES_END)
258 return 1;
259#endif
260 return is_vmalloc_addr(x);
261}
262
48667e7a 263/*
add688fb 264 * Walk a vmap address to the struct page it maps.
48667e7a 265 */
add688fb 266struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
267{
268 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 269 struct page *page = NULL;
48667e7a 270 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
271 p4d_t *p4d;
272 pud_t *pud;
273 pmd_t *pmd;
274 pte_t *ptep, pte;
48667e7a 275
7aa413de
IM
276 /*
277 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
278 * architectures that do not vmalloc module space
279 */
73bdf0a6 280 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 281
c2febafc
KS
282 if (pgd_none(*pgd))
283 return NULL;
284 p4d = p4d_offset(pgd, addr);
285 if (p4d_none(*p4d))
286 return NULL;
287 pud = pud_offset(p4d, addr);
029c54b0
AB
288
289 /*
290 * Don't dereference bad PUD or PMD (below) entries. This will also
291 * identify huge mappings, which we may encounter on architectures
292 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
293 * identified as vmalloc addresses by is_vmalloc_addr(), but are
294 * not [unambiguously] associated with a struct page, so there is
295 * no correct value to return for them.
296 */
297 WARN_ON_ONCE(pud_bad(*pud));
298 if (pud_none(*pud) || pud_bad(*pud))
c2febafc
KS
299 return NULL;
300 pmd = pmd_offset(pud, addr);
029c54b0
AB
301 WARN_ON_ONCE(pmd_bad(*pmd));
302 if (pmd_none(*pmd) || pmd_bad(*pmd))
c2febafc
KS
303 return NULL;
304
305 ptep = pte_offset_map(pmd, addr);
306 pte = *ptep;
307 if (pte_present(pte))
308 page = pte_page(pte);
309 pte_unmap(ptep);
add688fb 310 return page;
48667e7a 311}
add688fb 312EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
313
314/*
add688fb 315 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 316 */
add688fb 317unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 318{
add688fb 319 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 320}
add688fb 321EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 322
db64fe02
NP
323
324/*** Global kva allocator ***/
325
78c72746 326#define VM_LAZY_FREE 0x02
db64fe02
NP
327#define VM_VM_AREA 0x04
328
db64fe02 329static DEFINE_SPINLOCK(vmap_area_lock);
f1c4069e
JK
330/* Export for kexec only */
331LIST_HEAD(vmap_area_list);
80c4bd7a 332static LLIST_HEAD(vmap_purge_list);
89699605
NP
333static struct rb_root vmap_area_root = RB_ROOT;
334
335/* The vmap cache globals are protected by vmap_area_lock */
336static struct rb_node *free_vmap_cache;
337static unsigned long cached_hole_size;
338static unsigned long cached_vstart;
339static unsigned long cached_align;
340
ca23e405 341static unsigned long vmap_area_pcpu_hole;
db64fe02
NP
342
343static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 344{
db64fe02
NP
345 struct rb_node *n = vmap_area_root.rb_node;
346
347 while (n) {
348 struct vmap_area *va;
349
350 va = rb_entry(n, struct vmap_area, rb_node);
351 if (addr < va->va_start)
352 n = n->rb_left;
cef2ac3f 353 else if (addr >= va->va_end)
db64fe02
NP
354 n = n->rb_right;
355 else
356 return va;
357 }
358
359 return NULL;
360}
361
362static void __insert_vmap_area(struct vmap_area *va)
363{
364 struct rb_node **p = &vmap_area_root.rb_node;
365 struct rb_node *parent = NULL;
366 struct rb_node *tmp;
367
368 while (*p) {
170168d0 369 struct vmap_area *tmp_va;
db64fe02
NP
370
371 parent = *p;
170168d0
NK
372 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
373 if (va->va_start < tmp_va->va_end)
db64fe02 374 p = &(*p)->rb_left;
170168d0 375 else if (va->va_end > tmp_va->va_start)
db64fe02
NP
376 p = &(*p)->rb_right;
377 else
378 BUG();
379 }
380
381 rb_link_node(&va->rb_node, parent, p);
382 rb_insert_color(&va->rb_node, &vmap_area_root);
383
4341fa45 384 /* address-sort this list */
db64fe02
NP
385 tmp = rb_prev(&va->rb_node);
386 if (tmp) {
387 struct vmap_area *prev;
388 prev = rb_entry(tmp, struct vmap_area, rb_node);
389 list_add_rcu(&va->list, &prev->list);
390 } else
391 list_add_rcu(&va->list, &vmap_area_list);
392}
393
394static void purge_vmap_area_lazy(void);
395
4da56b99
CW
396static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
397
db64fe02
NP
398/*
399 * Allocate a region of KVA of the specified size and alignment, within the
400 * vstart and vend.
401 */
402static struct vmap_area *alloc_vmap_area(unsigned long size,
403 unsigned long align,
404 unsigned long vstart, unsigned long vend,
405 int node, gfp_t gfp_mask)
406{
407 struct vmap_area *va;
408 struct rb_node *n;
1da177e4 409 unsigned long addr;
db64fe02 410 int purged = 0;
89699605 411 struct vmap_area *first;
db64fe02 412
7766970c 413 BUG_ON(!size);
891c49ab 414 BUG_ON(offset_in_page(size));
89699605 415 BUG_ON(!is_power_of_2(align));
db64fe02 416
5803ed29 417 might_sleep();
4da56b99 418
db64fe02
NP
419 va = kmalloc_node(sizeof(struct vmap_area),
420 gfp_mask & GFP_RECLAIM_MASK, node);
421 if (unlikely(!va))
422 return ERR_PTR(-ENOMEM);
423
7f88f88f
CM
424 /*
425 * Only scan the relevant parts containing pointers to other objects
426 * to avoid false negatives.
427 */
428 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
429
db64fe02
NP
430retry:
431 spin_lock(&vmap_area_lock);
89699605
NP
432 /*
433 * Invalidate cache if we have more permissive parameters.
434 * cached_hole_size notes the largest hole noticed _below_
435 * the vmap_area cached in free_vmap_cache: if size fits
436 * into that hole, we want to scan from vstart to reuse
437 * the hole instead of allocating above free_vmap_cache.
438 * Note that __free_vmap_area may update free_vmap_cache
439 * without updating cached_hole_size or cached_align.
440 */
441 if (!free_vmap_cache ||
442 size < cached_hole_size ||
443 vstart < cached_vstart ||
444 align < cached_align) {
445nocache:
446 cached_hole_size = 0;
447 free_vmap_cache = NULL;
448 }
449 /* record if we encounter less permissive parameters */
450 cached_vstart = vstart;
451 cached_align = align;
452
453 /* find starting point for our search */
454 if (free_vmap_cache) {
455 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
248ac0e1 456 addr = ALIGN(first->va_end, align);
89699605
NP
457 if (addr < vstart)
458 goto nocache;
bcb615a8 459 if (addr + size < addr)
89699605
NP
460 goto overflow;
461
462 } else {
463 addr = ALIGN(vstart, align);
bcb615a8 464 if (addr + size < addr)
89699605
NP
465 goto overflow;
466
467 n = vmap_area_root.rb_node;
468 first = NULL;
469
470 while (n) {
db64fe02
NP
471 struct vmap_area *tmp;
472 tmp = rb_entry(n, struct vmap_area, rb_node);
473 if (tmp->va_end >= addr) {
db64fe02 474 first = tmp;
89699605
NP
475 if (tmp->va_start <= addr)
476 break;
477 n = n->rb_left;
478 } else
db64fe02 479 n = n->rb_right;
89699605 480 }
db64fe02
NP
481
482 if (!first)
483 goto found;
db64fe02 484 }
89699605
NP
485
486 /* from the starting point, walk areas until a suitable hole is found */
248ac0e1 487 while (addr + size > first->va_start && addr + size <= vend) {
89699605
NP
488 if (addr + cached_hole_size < first->va_start)
489 cached_hole_size = first->va_start - addr;
248ac0e1 490 addr = ALIGN(first->va_end, align);
bcb615a8 491 if (addr + size < addr)
89699605
NP
492 goto overflow;
493
92ca922f 494 if (list_is_last(&first->list, &vmap_area_list))
89699605 495 goto found;
92ca922f 496
6219c2a2 497 first = list_next_entry(first, list);
db64fe02
NP
498 }
499
89699605 500found:
1253c1f8
URS
501 /*
502 * Check also calculated address against the vstart,
503 * because it can be 0 because of big align request.
504 */
505 if (addr + size > vend || addr < vstart)
89699605 506 goto overflow;
db64fe02
NP
507
508 va->va_start = addr;
509 va->va_end = addr + size;
510 va->flags = 0;
511 __insert_vmap_area(va);
89699605 512 free_vmap_cache = &va->rb_node;
db64fe02
NP
513 spin_unlock(&vmap_area_lock);
514
61e16557 515 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
516 BUG_ON(va->va_start < vstart);
517 BUG_ON(va->va_end > vend);
518
db64fe02 519 return va;
89699605
NP
520
521overflow:
522 spin_unlock(&vmap_area_lock);
523 if (!purged) {
524 purge_vmap_area_lazy();
525 purged = 1;
526 goto retry;
527 }
4da56b99
CW
528
529 if (gfpflags_allow_blocking(gfp_mask)) {
530 unsigned long freed = 0;
531 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
532 if (freed > 0) {
533 purged = 0;
534 goto retry;
535 }
536 }
537
03497d76 538 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
539 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
540 size);
89699605
NP
541 kfree(va);
542 return ERR_PTR(-EBUSY);
db64fe02
NP
543}
544
4da56b99
CW
545int register_vmap_purge_notifier(struct notifier_block *nb)
546{
547 return blocking_notifier_chain_register(&vmap_notify_list, nb);
548}
549EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
550
551int unregister_vmap_purge_notifier(struct notifier_block *nb)
552{
553 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
554}
555EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
556
db64fe02
NP
557static void __free_vmap_area(struct vmap_area *va)
558{
559 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
89699605
NP
560
561 if (free_vmap_cache) {
562 if (va->va_end < cached_vstart) {
563 free_vmap_cache = NULL;
564 } else {
565 struct vmap_area *cache;
566 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
567 if (va->va_start <= cache->va_start) {
568 free_vmap_cache = rb_prev(&va->rb_node);
569 /*
570 * We don't try to update cached_hole_size or
571 * cached_align, but it won't go very wrong.
572 */
573 }
574 }
575 }
db64fe02
NP
576 rb_erase(&va->rb_node, &vmap_area_root);
577 RB_CLEAR_NODE(&va->rb_node);
578 list_del_rcu(&va->list);
579
ca23e405
TH
580 /*
581 * Track the highest possible candidate for pcpu area
582 * allocation. Areas outside of vmalloc area can be returned
583 * here too, consider only end addresses which fall inside
584 * vmalloc area proper.
585 */
586 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
587 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
588
14769de9 589 kfree_rcu(va, rcu_head);
db64fe02
NP
590}
591
592/*
593 * Free a region of KVA allocated by alloc_vmap_area
594 */
595static void free_vmap_area(struct vmap_area *va)
596{
597 spin_lock(&vmap_area_lock);
598 __free_vmap_area(va);
599 spin_unlock(&vmap_area_lock);
600}
601
602/*
603 * Clear the pagetable entries of a given vmap_area
604 */
605static void unmap_vmap_area(struct vmap_area *va)
606{
607 vunmap_page_range(va->va_start, va->va_end);
608}
609
cd52858c
NP
610static void vmap_debug_free_range(unsigned long start, unsigned long end)
611{
612 /*
f48d97f3
JK
613 * Unmap page tables and force a TLB flush immediately if pagealloc
614 * debugging is enabled. This catches use after free bugs similarly to
615 * those in linear kernel virtual address space after a page has been
616 * freed.
cd52858c 617 *
f48d97f3
JK
618 * All the lazy freeing logic is still retained, in order to minimise
619 * intrusiveness of this debugging feature.
cd52858c 620 *
f48d97f3
JK
621 * This is going to be *slow* (linear kernel virtual address debugging
622 * doesn't do a broadcast TLB flush so it is a lot faster).
cd52858c 623 */
f48d97f3
JK
624 if (debug_pagealloc_enabled()) {
625 vunmap_page_range(start, end);
626 flush_tlb_kernel_range(start, end);
627 }
cd52858c
NP
628}
629
db64fe02
NP
630/*
631 * lazy_max_pages is the maximum amount of virtual address space we gather up
632 * before attempting to purge with a TLB flush.
633 *
634 * There is a tradeoff here: a larger number will cover more kernel page tables
635 * and take slightly longer to purge, but it will linearly reduce the number of
636 * global TLB flushes that must be performed. It would seem natural to scale
637 * this number up linearly with the number of CPUs (because vmapping activity
638 * could also scale linearly with the number of CPUs), however it is likely
639 * that in practice, workloads might be constrained in other ways that mean
640 * vmap activity will not scale linearly with CPUs. Also, I want to be
641 * conservative and not introduce a big latency on huge systems, so go with
642 * a less aggressive log scale. It will still be an improvement over the old
643 * code, and it will be simple to change the scale factor if we find that it
644 * becomes a problem on bigger systems.
645 */
646static unsigned long lazy_max_pages(void)
647{
648 unsigned int log;
649
650 log = fls(num_online_cpus());
651
652 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
653}
654
655static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
656
0574ecd1
CH
657/*
658 * Serialize vmap purging. There is no actual criticial section protected
659 * by this look, but we want to avoid concurrent calls for performance
660 * reasons and to make the pcpu_get_vm_areas more deterministic.
661 */
f9e09977 662static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 663
02b709df
NP
664/* for per-CPU blocks */
665static void purge_fragmented_blocks_allcpus(void);
666
3ee48b6a
CW
667/*
668 * called before a call to iounmap() if the caller wants vm_area_struct's
669 * immediately freed.
670 */
671void set_iounmap_nonlazy(void)
672{
673 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
674}
675
db64fe02
NP
676/*
677 * Purges all lazily-freed vmap areas.
db64fe02 678 */
0574ecd1 679static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 680{
80c4bd7a 681 struct llist_node *valist;
db64fe02 682 struct vmap_area *va;
cbb76676 683 struct vmap_area *n_va;
b20db79d 684 int resched_threshold;
db64fe02 685
0574ecd1 686 lockdep_assert_held(&vmap_purge_lock);
02b709df 687
80c4bd7a 688 valist = llist_del_all(&vmap_purge_list);
b20db79d
URS
689 if (unlikely(valist == NULL))
690 return false;
691
09814a5e
JR
692 /*
693 * First make sure the mappings are removed from all page-tables
694 * before they are freed.
695 */
696 vmalloc_sync_all();
697
b20db79d
URS
698 /*
699 * TODO: to calculate a flush range without looping.
700 * The list can be up to lazy_max_pages() elements.
701 */
80c4bd7a 702 llist_for_each_entry(va, valist, purge_list) {
0574ecd1
CH
703 if (va->va_start < start)
704 start = va->va_start;
705 if (va->va_end > end)
706 end = va->va_end;
db64fe02 707 }
db64fe02 708
0574ecd1 709 flush_tlb_kernel_range(start, end);
b20db79d 710 resched_threshold = (int) lazy_max_pages() << 1;
db64fe02 711
0574ecd1 712 spin_lock(&vmap_area_lock);
763b218d
JF
713 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
714 int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
715
0574ecd1 716 __free_vmap_area(va);
763b218d 717 atomic_sub(nr, &vmap_lazy_nr);
b20db79d
URS
718
719 if (atomic_read(&vmap_lazy_nr) < resched_threshold)
720 cond_resched_lock(&vmap_area_lock);
763b218d 721 }
0574ecd1
CH
722 spin_unlock(&vmap_area_lock);
723 return true;
db64fe02
NP
724}
725
496850e5
NP
726/*
727 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
728 * is already purging.
729 */
730static void try_purge_vmap_area_lazy(void)
731{
f9e09977 732 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 733 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 734 mutex_unlock(&vmap_purge_lock);
0574ecd1 735 }
496850e5
NP
736}
737
db64fe02
NP
738/*
739 * Kick off a purge of the outstanding lazy areas.
740 */
741static void purge_vmap_area_lazy(void)
742{
f9e09977 743 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
744 purge_fragmented_blocks_allcpus();
745 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 746 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
747}
748
749/*
64141da5
JF
750 * Free a vmap area, caller ensuring that the area has been unmapped
751 * and flush_cache_vunmap had been called for the correct range
752 * previously.
db64fe02 753 */
64141da5 754static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 755{
80c4bd7a
CW
756 int nr_lazy;
757
758 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
759 &vmap_lazy_nr);
760
761 /* After this point, we may free va at any time */
762 llist_add(&va->purge_list, &vmap_purge_list);
763
764 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 765 try_purge_vmap_area_lazy();
db64fe02
NP
766}
767
b29acbdc
NP
768/*
769 * Free and unmap a vmap area
770 */
771static void free_unmap_vmap_area(struct vmap_area *va)
772{
773 flush_cache_vunmap(va->va_start, va->va_end);
c8eef01e
CH
774 unmap_vmap_area(va);
775 free_vmap_area_noflush(va);
b29acbdc
NP
776}
777
db64fe02
NP
778static struct vmap_area *find_vmap_area(unsigned long addr)
779{
780 struct vmap_area *va;
781
782 spin_lock(&vmap_area_lock);
783 va = __find_vmap_area(addr);
784 spin_unlock(&vmap_area_lock);
785
786 return va;
787}
788
db64fe02
NP
789/*** Per cpu kva allocator ***/
790
791/*
792 * vmap space is limited especially on 32 bit architectures. Ensure there is
793 * room for at least 16 percpu vmap blocks per CPU.
794 */
795/*
796 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
797 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
798 * instead (we just need a rough idea)
799 */
800#if BITS_PER_LONG == 32
801#define VMALLOC_SPACE (128UL*1024*1024)
802#else
803#define VMALLOC_SPACE (128UL*1024*1024*1024)
804#endif
805
806#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
807#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
808#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
809#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
810#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
811#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
812#define VMAP_BBMAP_BITS \
813 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
814 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
815 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
816
817#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
818
9b463334
JF
819static bool vmap_initialized __read_mostly = false;
820
db64fe02
NP
821struct vmap_block_queue {
822 spinlock_t lock;
823 struct list_head free;
db64fe02
NP
824};
825
826struct vmap_block {
827 spinlock_t lock;
828 struct vmap_area *va;
db64fe02 829 unsigned long free, dirty;
7d61bfe8 830 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
831 struct list_head free_list;
832 struct rcu_head rcu_head;
02b709df 833 struct list_head purge;
db64fe02
NP
834};
835
836/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
837static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
838
839/*
840 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
841 * in the free path. Could get rid of this if we change the API to return a
842 * "cookie" from alloc, to be passed to free. But no big deal yet.
843 */
844static DEFINE_SPINLOCK(vmap_block_tree_lock);
845static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
846
847/*
848 * We should probably have a fallback mechanism to allocate virtual memory
849 * out of partially filled vmap blocks. However vmap block sizing should be
850 * fairly reasonable according to the vmalloc size, so it shouldn't be a
851 * big problem.
852 */
853
854static unsigned long addr_to_vb_idx(unsigned long addr)
855{
856 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
857 addr /= VMAP_BLOCK_SIZE;
858 return addr;
859}
860
cf725ce2
RP
861static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
862{
863 unsigned long addr;
864
865 addr = va_start + (pages_off << PAGE_SHIFT);
866 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
867 return (void *)addr;
868}
869
870/**
871 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
872 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
873 * @order: how many 2^order pages should be occupied in newly allocated block
874 * @gfp_mask: flags for the page level allocator
875 *
876 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
877 */
878static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
879{
880 struct vmap_block_queue *vbq;
881 struct vmap_block *vb;
882 struct vmap_area *va;
883 unsigned long vb_idx;
884 int node, err;
cf725ce2 885 void *vaddr;
db64fe02
NP
886
887 node = numa_node_id();
888
889 vb = kmalloc_node(sizeof(struct vmap_block),
890 gfp_mask & GFP_RECLAIM_MASK, node);
891 if (unlikely(!vb))
892 return ERR_PTR(-ENOMEM);
893
894 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
895 VMALLOC_START, VMALLOC_END,
896 node, gfp_mask);
ddf9c6d4 897 if (IS_ERR(va)) {
db64fe02 898 kfree(vb);
e7d86340 899 return ERR_CAST(va);
db64fe02
NP
900 }
901
902 err = radix_tree_preload(gfp_mask);
903 if (unlikely(err)) {
904 kfree(vb);
905 free_vmap_area(va);
906 return ERR_PTR(err);
907 }
908
cf725ce2 909 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
910 spin_lock_init(&vb->lock);
911 vb->va = va;
cf725ce2
RP
912 /* At least something should be left free */
913 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
914 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 915 vb->dirty = 0;
7d61bfe8
RP
916 vb->dirty_min = VMAP_BBMAP_BITS;
917 vb->dirty_max = 0;
db64fe02 918 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
919
920 vb_idx = addr_to_vb_idx(va->va_start);
921 spin_lock(&vmap_block_tree_lock);
922 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
923 spin_unlock(&vmap_block_tree_lock);
924 BUG_ON(err);
925 radix_tree_preload_end();
926
927 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 928 spin_lock(&vbq->lock);
68ac546f 929 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 930 spin_unlock(&vbq->lock);
3f04ba85 931 put_cpu_var(vmap_block_queue);
db64fe02 932
cf725ce2 933 return vaddr;
db64fe02
NP
934}
935
db64fe02
NP
936static void free_vmap_block(struct vmap_block *vb)
937{
938 struct vmap_block *tmp;
939 unsigned long vb_idx;
940
db64fe02
NP
941 vb_idx = addr_to_vb_idx(vb->va->va_start);
942 spin_lock(&vmap_block_tree_lock);
943 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
944 spin_unlock(&vmap_block_tree_lock);
945 BUG_ON(tmp != vb);
946
64141da5 947 free_vmap_area_noflush(vb->va);
22a3c7d1 948 kfree_rcu(vb, rcu_head);
db64fe02
NP
949}
950
02b709df
NP
951static void purge_fragmented_blocks(int cpu)
952{
953 LIST_HEAD(purge);
954 struct vmap_block *vb;
955 struct vmap_block *n_vb;
956 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
957
958 rcu_read_lock();
959 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
960
961 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
962 continue;
963
964 spin_lock(&vb->lock);
965 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
966 vb->free = 0; /* prevent further allocs after releasing lock */
967 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
968 vb->dirty_min = 0;
969 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
970 spin_lock(&vbq->lock);
971 list_del_rcu(&vb->free_list);
972 spin_unlock(&vbq->lock);
973 spin_unlock(&vb->lock);
974 list_add_tail(&vb->purge, &purge);
975 } else
976 spin_unlock(&vb->lock);
977 }
978 rcu_read_unlock();
979
980 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
981 list_del(&vb->purge);
982 free_vmap_block(vb);
983 }
984}
985
02b709df
NP
986static void purge_fragmented_blocks_allcpus(void)
987{
988 int cpu;
989
990 for_each_possible_cpu(cpu)
991 purge_fragmented_blocks(cpu);
992}
993
db64fe02
NP
994static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
995{
996 struct vmap_block_queue *vbq;
997 struct vmap_block *vb;
cf725ce2 998 void *vaddr = NULL;
db64fe02
NP
999 unsigned int order;
1000
891c49ab 1001 BUG_ON(offset_in_page(size));
db64fe02 1002 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
1003 if (WARN_ON(size == 0)) {
1004 /*
1005 * Allocating 0 bytes isn't what caller wants since
1006 * get_order(0) returns funny result. Just warn and terminate
1007 * early.
1008 */
1009 return NULL;
1010 }
db64fe02
NP
1011 order = get_order(size);
1012
db64fe02
NP
1013 rcu_read_lock();
1014 vbq = &get_cpu_var(vmap_block_queue);
1015 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 1016 unsigned long pages_off;
db64fe02
NP
1017
1018 spin_lock(&vb->lock);
cf725ce2
RP
1019 if (vb->free < (1UL << order)) {
1020 spin_unlock(&vb->lock);
1021 continue;
1022 }
02b709df 1023
cf725ce2
RP
1024 pages_off = VMAP_BBMAP_BITS - vb->free;
1025 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
1026 vb->free -= 1UL << order;
1027 if (vb->free == 0) {
1028 spin_lock(&vbq->lock);
1029 list_del_rcu(&vb->free_list);
1030 spin_unlock(&vbq->lock);
1031 }
cf725ce2 1032
02b709df
NP
1033 spin_unlock(&vb->lock);
1034 break;
db64fe02 1035 }
02b709df 1036
3f04ba85 1037 put_cpu_var(vmap_block_queue);
db64fe02
NP
1038 rcu_read_unlock();
1039
cf725ce2
RP
1040 /* Allocate new block if nothing was found */
1041 if (!vaddr)
1042 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 1043
cf725ce2 1044 return vaddr;
db64fe02
NP
1045}
1046
1047static void vb_free(const void *addr, unsigned long size)
1048{
1049 unsigned long offset;
1050 unsigned long vb_idx;
1051 unsigned int order;
1052 struct vmap_block *vb;
1053
891c49ab 1054 BUG_ON(offset_in_page(size));
db64fe02 1055 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
1056
1057 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1058
db64fe02
NP
1059 order = get_order(size);
1060
1061 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
7d61bfe8 1062 offset >>= PAGE_SHIFT;
db64fe02
NP
1063
1064 vb_idx = addr_to_vb_idx((unsigned long)addr);
1065 rcu_read_lock();
1066 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1067 rcu_read_unlock();
1068 BUG_ON(!vb);
1069
64141da5
JF
1070 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1071
db64fe02 1072 spin_lock(&vb->lock);
7d61bfe8
RP
1073
1074 /* Expand dirty range */
1075 vb->dirty_min = min(vb->dirty_min, offset);
1076 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1077
db64fe02
NP
1078 vb->dirty += 1UL << order;
1079 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1080 BUG_ON(vb->free);
db64fe02
NP
1081 spin_unlock(&vb->lock);
1082 free_vmap_block(vb);
1083 } else
1084 spin_unlock(&vb->lock);
1085}
1086
1087/**
1088 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1089 *
1090 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1091 * to amortize TLB flushing overheads. What this means is that any page you
1092 * have now, may, in a former life, have been mapped into kernel virtual
1093 * address by the vmap layer and so there might be some CPUs with TLB entries
1094 * still referencing that page (additional to the regular 1:1 kernel mapping).
1095 *
1096 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1097 * be sure that none of the pages we have control over will have any aliases
1098 * from the vmap layer.
1099 */
1100void vm_unmap_aliases(void)
1101{
1102 unsigned long start = ULONG_MAX, end = 0;
1103 int cpu;
1104 int flush = 0;
1105
9b463334
JF
1106 if (unlikely(!vmap_initialized))
1107 return;
1108
5803ed29
CH
1109 might_sleep();
1110
db64fe02
NP
1111 for_each_possible_cpu(cpu) {
1112 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1113 struct vmap_block *vb;
1114
1115 rcu_read_lock();
1116 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1117 spin_lock(&vb->lock);
7d61bfe8
RP
1118 if (vb->dirty) {
1119 unsigned long va_start = vb->va->va_start;
db64fe02 1120 unsigned long s, e;
b136be5e 1121
7d61bfe8
RP
1122 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1123 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1124
7d61bfe8
RP
1125 start = min(s, start);
1126 end = max(e, end);
db64fe02 1127
7d61bfe8 1128 flush = 1;
db64fe02
NP
1129 }
1130 spin_unlock(&vb->lock);
1131 }
1132 rcu_read_unlock();
1133 }
1134
f9e09977 1135 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1136 purge_fragmented_blocks_allcpus();
1137 if (!__purge_vmap_area_lazy(start, end) && flush)
1138 flush_tlb_kernel_range(start, end);
f9e09977 1139 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1140}
1141EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1142
1143/**
1144 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1145 * @mem: the pointer returned by vm_map_ram
1146 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1147 */
1148void vm_unmap_ram(const void *mem, unsigned int count)
1149{
65ee03c4 1150 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 1151 unsigned long addr = (unsigned long)mem;
9c3acf60 1152 struct vmap_area *va;
db64fe02 1153
5803ed29 1154 might_sleep();
db64fe02
NP
1155 BUG_ON(!addr);
1156 BUG_ON(addr < VMALLOC_START);
1157 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 1158 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02
NP
1159
1160 debug_check_no_locks_freed(mem, size);
cd52858c 1161 vmap_debug_free_range(addr, addr+size);
db64fe02 1162
9c3acf60 1163 if (likely(count <= VMAP_MAX_ALLOC)) {
db64fe02 1164 vb_free(mem, size);
9c3acf60
CH
1165 return;
1166 }
1167
1168 va = find_vmap_area(addr);
1169 BUG_ON(!va);
1170 free_unmap_vmap_area(va);
db64fe02
NP
1171}
1172EXPORT_SYMBOL(vm_unmap_ram);
1173
1174/**
1175 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1176 * @pages: an array of pointers to the pages to be mapped
1177 * @count: number of pages
1178 * @node: prefer to allocate data structures on this node
1179 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad 1180 *
36437638
GK
1181 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1182 * faster than vmap so it's good. But if you mix long-life and short-life
1183 * objects with vm_map_ram(), it could consume lots of address space through
1184 * fragmentation (especially on a 32bit machine). You could see failures in
1185 * the end. Please use this function for short-lived objects.
1186 *
e99c97ad 1187 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1188 */
1189void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1190{
65ee03c4 1191 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1192 unsigned long addr;
1193 void *mem;
1194
1195 if (likely(count <= VMAP_MAX_ALLOC)) {
1196 mem = vb_alloc(size, GFP_KERNEL);
1197 if (IS_ERR(mem))
1198 return NULL;
1199 addr = (unsigned long)mem;
1200 } else {
1201 struct vmap_area *va;
1202 va = alloc_vmap_area(size, PAGE_SIZE,
1203 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1204 if (IS_ERR(va))
1205 return NULL;
1206
1207 addr = va->va_start;
1208 mem = (void *)addr;
1209 }
1210 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1211 vm_unmap_ram(mem, count);
1212 return NULL;
1213 }
1214 return mem;
1215}
1216EXPORT_SYMBOL(vm_map_ram);
1217
4341fa45 1218static struct vm_struct *vmlist __initdata;
be9b7335
NP
1219/**
1220 * vm_area_add_early - add vmap area early during boot
1221 * @vm: vm_struct to add
1222 *
1223 * This function is used to add fixed kernel vm area to vmlist before
1224 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1225 * should contain proper values and the other fields should be zero.
1226 *
1227 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1228 */
1229void __init vm_area_add_early(struct vm_struct *vm)
1230{
1231 struct vm_struct *tmp, **p;
1232
1233 BUG_ON(vmap_initialized);
1234 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1235 if (tmp->addr >= vm->addr) {
1236 BUG_ON(tmp->addr < vm->addr + vm->size);
1237 break;
1238 } else
1239 BUG_ON(tmp->addr + tmp->size > vm->addr);
1240 }
1241 vm->next = *p;
1242 *p = vm;
1243}
1244
f0aa6617
TH
1245/**
1246 * vm_area_register_early - register vmap area early during boot
1247 * @vm: vm_struct to register
c0c0a293 1248 * @align: requested alignment
f0aa6617
TH
1249 *
1250 * This function is used to register kernel vm area before
1251 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1252 * proper values on entry and other fields should be zero. On return,
1253 * vm->addr contains the allocated address.
1254 *
1255 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1256 */
c0c0a293 1257void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1258{
1259 static size_t vm_init_off __initdata;
c0c0a293
TH
1260 unsigned long addr;
1261
1262 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1263 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1264
c0c0a293 1265 vm->addr = (void *)addr;
f0aa6617 1266
be9b7335 1267 vm_area_add_early(vm);
f0aa6617
TH
1268}
1269
db64fe02
NP
1270void __init vmalloc_init(void)
1271{
822c18f2
IK
1272 struct vmap_area *va;
1273 struct vm_struct *tmp;
db64fe02
NP
1274 int i;
1275
1276 for_each_possible_cpu(i) {
1277 struct vmap_block_queue *vbq;
32fcfd40 1278 struct vfree_deferred *p;
db64fe02
NP
1279
1280 vbq = &per_cpu(vmap_block_queue, i);
1281 spin_lock_init(&vbq->lock);
1282 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1283 p = &per_cpu(vfree_deferred, i);
1284 init_llist_head(&p->list);
1285 INIT_WORK(&p->wq, free_work);
db64fe02 1286 }
9b463334 1287
822c18f2
IK
1288 /* Import existing vmlist entries. */
1289 for (tmp = vmlist; tmp; tmp = tmp->next) {
43ebdac4 1290 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
dbda591d 1291 va->flags = VM_VM_AREA;
822c18f2
IK
1292 va->va_start = (unsigned long)tmp->addr;
1293 va->va_end = va->va_start + tmp->size;
dbda591d 1294 va->vm = tmp;
822c18f2
IK
1295 __insert_vmap_area(va);
1296 }
ca23e405
TH
1297
1298 vmap_area_pcpu_hole = VMALLOC_END;
1299
9b463334 1300 vmap_initialized = true;
db64fe02
NP
1301}
1302
8fc48985
TH
1303/**
1304 * map_kernel_range_noflush - map kernel VM area with the specified pages
1305 * @addr: start of the VM area to map
1306 * @size: size of the VM area to map
1307 * @prot: page protection flags to use
1308 * @pages: pages to map
1309 *
1310 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1311 * specify should have been allocated using get_vm_area() and its
1312 * friends.
1313 *
1314 * NOTE:
1315 * This function does NOT do any cache flushing. The caller is
1316 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1317 * before calling this function.
1318 *
1319 * RETURNS:
1320 * The number of pages mapped on success, -errno on failure.
1321 */
1322int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1323 pgprot_t prot, struct page **pages)
1324{
1325 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1326}
1327
1328/**
1329 * unmap_kernel_range_noflush - unmap kernel VM area
1330 * @addr: start of the VM area to unmap
1331 * @size: size of the VM area to unmap
1332 *
1333 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1334 * specify should have been allocated using get_vm_area() and its
1335 * friends.
1336 *
1337 * NOTE:
1338 * This function does NOT do any cache flushing. The caller is
1339 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1340 * before calling this function and flush_tlb_kernel_range() after.
1341 */
1342void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1343{
1344 vunmap_page_range(addr, addr + size);
1345}
81e88fdc 1346EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
1347
1348/**
1349 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1350 * @addr: start of the VM area to unmap
1351 * @size: size of the VM area to unmap
1352 *
1353 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1354 * the unmapping and tlb after.
1355 */
db64fe02
NP
1356void unmap_kernel_range(unsigned long addr, unsigned long size)
1357{
1358 unsigned long end = addr + size;
f6fcba70
TH
1359
1360 flush_cache_vunmap(addr, end);
db64fe02
NP
1361 vunmap_page_range(addr, end);
1362 flush_tlb_kernel_range(addr, end);
1363}
93ef6d6c 1364EXPORT_SYMBOL_GPL(unmap_kernel_range);
db64fe02 1365
f6f8ed47 1366int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
db64fe02
NP
1367{
1368 unsigned long addr = (unsigned long)area->addr;
762216ab 1369 unsigned long end = addr + get_vm_area_size(area);
db64fe02
NP
1370 int err;
1371
f6f8ed47 1372 err = vmap_page_range(addr, end, prot, pages);
db64fe02 1373
f6f8ed47 1374 return err > 0 ? 0 : err;
db64fe02
NP
1375}
1376EXPORT_SYMBOL_GPL(map_vm_area);
1377
f5252e00 1378static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 1379 unsigned long flags, const void *caller)
cf88c790 1380{
c69480ad 1381 spin_lock(&vmap_area_lock);
cf88c790
TH
1382 vm->flags = flags;
1383 vm->addr = (void *)va->va_start;
1384 vm->size = va->va_end - va->va_start;
1385 vm->caller = caller;
db1aecaf 1386 va->vm = vm;
cf88c790 1387 va->flags |= VM_VM_AREA;
c69480ad 1388 spin_unlock(&vmap_area_lock);
f5252e00 1389}
cf88c790 1390
20fc02b4 1391static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 1392{
d4033afd 1393 /*
20fc02b4 1394 * Before removing VM_UNINITIALIZED,
d4033afd
JK
1395 * we should make sure that vm has proper values.
1396 * Pair with smp_rmb() in show_numa_info().
1397 */
1398 smp_wmb();
20fc02b4 1399 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
1400}
1401
db64fe02 1402static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 1403 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 1404 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 1405{
0006526d 1406 struct vmap_area *va;
db64fe02 1407 struct vm_struct *area;
1da177e4 1408
52fd24ca 1409 BUG_ON(in_interrupt());
1da177e4 1410 size = PAGE_ALIGN(size);
31be8309
OH
1411 if (unlikely(!size))
1412 return NULL;
1da177e4 1413
252e5c6e 1414 if (flags & VM_IOREMAP)
1415 align = 1ul << clamp_t(int, get_count_order_long(size),
1416 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1417
cf88c790 1418 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1419 if (unlikely(!area))
1420 return NULL;
1421
71394fe5
AR
1422 if (!(flags & VM_NO_GUARD))
1423 size += PAGE_SIZE;
1da177e4 1424
db64fe02
NP
1425 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1426 if (IS_ERR(va)) {
1427 kfree(area);
1428 return NULL;
1da177e4 1429 }
1da177e4 1430
d82b1d85 1431 setup_vmalloc_vm(area, va, flags, caller);
f5252e00 1432
1da177e4 1433 return area;
1da177e4
LT
1434}
1435
930fc45a
CL
1436struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1437 unsigned long start, unsigned long end)
1438{
00ef2d2f
DR
1439 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1440 GFP_KERNEL, __builtin_return_address(0));
930fc45a 1441}
5992b6da 1442EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1443
c2968612
BH
1444struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1445 unsigned long start, unsigned long end,
5e6cafc8 1446 const void *caller)
c2968612 1447{
00ef2d2f
DR
1448 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1449 GFP_KERNEL, caller);
c2968612
BH
1450}
1451
1da177e4 1452/**
183ff22b 1453 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
1454 * @size: size of the area
1455 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1456 *
1457 * Search an area of @size in the kernel virtual mapping area,
1458 * and reserved it for out purposes. Returns the area descriptor
1459 * on success or %NULL on failure.
1460 */
1461struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1462{
2dca6999 1463 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
1464 NUMA_NO_NODE, GFP_KERNEL,
1465 __builtin_return_address(0));
23016969
CL
1466}
1467
1468struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 1469 const void *caller)
23016969 1470{
2dca6999 1471 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 1472 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
1473}
1474
e9da6e99
MS
1475/**
1476 * find_vm_area - find a continuous kernel virtual area
1477 * @addr: base address
1478 *
1479 * Search for the kernel VM area starting at @addr, and return it.
1480 * It is up to the caller to do all required locking to keep the returned
1481 * pointer valid.
1482 */
1483struct vm_struct *find_vm_area(const void *addr)
83342314 1484{
db64fe02 1485 struct vmap_area *va;
83342314 1486
db64fe02
NP
1487 va = find_vmap_area((unsigned long)addr);
1488 if (va && va->flags & VM_VM_AREA)
db1aecaf 1489 return va->vm;
1da177e4 1490
1da177e4 1491 return NULL;
1da177e4
LT
1492}
1493
7856dfeb 1494/**
183ff22b 1495 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
1496 * @addr: base address
1497 *
1498 * Search for the kernel VM area starting at @addr, and remove it.
1499 * This function returns the found VM area, but using it is NOT safe
1500 * on SMP machines, except for its size or flags.
1501 */
b3bdda02 1502struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1503{
db64fe02
NP
1504 struct vmap_area *va;
1505
5803ed29
CH
1506 might_sleep();
1507
db64fe02
NP
1508 va = find_vmap_area((unsigned long)addr);
1509 if (va && va->flags & VM_VM_AREA) {
db1aecaf 1510 struct vm_struct *vm = va->vm;
f5252e00 1511
c69480ad
JK
1512 spin_lock(&vmap_area_lock);
1513 va->vm = NULL;
1514 va->flags &= ~VM_VM_AREA;
78c72746 1515 va->flags |= VM_LAZY_FREE;
c69480ad
JK
1516 spin_unlock(&vmap_area_lock);
1517
dd32c279 1518 vmap_debug_free_range(va->va_start, va->va_end);
a5af5aa8 1519 kasan_free_shadow(vm);
dd32c279 1520 free_unmap_vmap_area(va);
dd32c279 1521
db64fe02
NP
1522 return vm;
1523 }
1524 return NULL;
7856dfeb
AK
1525}
1526
b3bdda02 1527static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1528{
1529 struct vm_struct *area;
1530
1531 if (!addr)
1532 return;
1533
e69e9d4a 1534 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 1535 addr))
1da177e4 1536 return;
1da177e4 1537
9c5a1f6d 1538 area = find_vmap_area((unsigned long)addr)->vm;
1da177e4 1539 if (unlikely(!area)) {
4c8573e2 1540 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1541 addr);
1da177e4
LT
1542 return;
1543 }
1544
7511c3ed
JM
1545 debug_check_no_locks_freed(addr, get_vm_area_size(area));
1546 debug_check_no_obj_freed(addr, get_vm_area_size(area));
9a11b49a 1547
9c5a1f6d 1548 remove_vm_area(addr);
1da177e4
LT
1549 if (deallocate_pages) {
1550 int i;
1551
1552 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1553 struct page *page = area->pages[i];
1554
1555 BUG_ON(!page);
4949148a 1556 __free_pages(page, 0);
1da177e4
LT
1557 }
1558
244d63ee 1559 kvfree(area->pages);
1da177e4
LT
1560 }
1561
1562 kfree(area);
1563 return;
1564}
bf22e37a
AR
1565
1566static inline void __vfree_deferred(const void *addr)
1567{
1568 /*
1569 * Use raw_cpu_ptr() because this can be called from preemptible
1570 * context. Preemption is absolutely fine here, because the llist_add()
1571 * implementation is lockless, so it works even if we are adding to
1572 * nother cpu's list. schedule_work() should be fine with this too.
1573 */
1574 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1575
1576 if (llist_add((struct llist_node *)addr, &p->list))
1577 schedule_work(&p->wq);
1578}
1579
1580/**
1581 * vfree_atomic - release memory allocated by vmalloc()
1582 * @addr: memory base address
1583 *
1584 * This one is just like vfree() but can be called in any atomic context
1585 * except NMIs.
1586 */
1587void vfree_atomic(const void *addr)
1588{
1589 BUG_ON(in_nmi());
1590
1591 kmemleak_free(addr);
1592
1593 if (!addr)
1594 return;
1595 __vfree_deferred(addr);
1596}
1597
1da177e4
LT
1598/**
1599 * vfree - release memory allocated by vmalloc()
1da177e4
LT
1600 * @addr: memory base address
1601 *
183ff22b 1602 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
1603 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1604 * NULL, no operation is performed.
1da177e4 1605 *
32fcfd40
AV
1606 * Must not be called in NMI context (strictly speaking, only if we don't
1607 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1608 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51 1609 *
0e056eb5 1610 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1da177e4 1611 */
b3bdda02 1612void vfree(const void *addr)
1da177e4 1613{
32fcfd40 1614 BUG_ON(in_nmi());
89219d37
CM
1615
1616 kmemleak_free(addr);
1617
32fcfd40
AV
1618 if (!addr)
1619 return;
bf22e37a
AR
1620 if (unlikely(in_interrupt()))
1621 __vfree_deferred(addr);
1622 else
32fcfd40 1623 __vunmap(addr, 1);
1da177e4 1624}
1da177e4
LT
1625EXPORT_SYMBOL(vfree);
1626
1627/**
1628 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
1629 * @addr: memory base address
1630 *
1631 * Free the virtually contiguous memory area starting at @addr,
1632 * which was created from the page array passed to vmap().
1633 *
80e93eff 1634 * Must not be called in interrupt context.
1da177e4 1635 */
b3bdda02 1636void vunmap(const void *addr)
1da177e4
LT
1637{
1638 BUG_ON(in_interrupt());
34754b69 1639 might_sleep();
32fcfd40
AV
1640 if (addr)
1641 __vunmap(addr, 0);
1da177e4 1642}
1da177e4
LT
1643EXPORT_SYMBOL(vunmap);
1644
1645/**
1646 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
1647 * @pages: array of page pointers
1648 * @count: number of pages to map
1649 * @flags: vm_area->flags
1650 * @prot: page protection for the mapping
1651 *
1652 * Maps @count pages from @pages into contiguous kernel virtual
1653 * space.
1654 */
1655void *vmap(struct page **pages, unsigned int count,
1656 unsigned long flags, pgprot_t prot)
1657{
1658 struct vm_struct *area;
65ee03c4 1659 unsigned long size; /* In bytes */
1da177e4 1660
34754b69
PZ
1661 might_sleep();
1662
4481374c 1663 if (count > totalram_pages)
1da177e4
LT
1664 return NULL;
1665
65ee03c4
GJM
1666 size = (unsigned long)count << PAGE_SHIFT;
1667 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
1668 if (!area)
1669 return NULL;
23016969 1670
f6f8ed47 1671 if (map_vm_area(area, prot, pages)) {
1da177e4
LT
1672 vunmap(area->addr);
1673 return NULL;
1674 }
1675
1676 return area->addr;
1677}
1da177e4
LT
1678EXPORT_SYMBOL(vmap);
1679
8594a21c
MH
1680static void *__vmalloc_node(unsigned long size, unsigned long align,
1681 gfp_t gfp_mask, pgprot_t prot,
1682 int node, const void *caller);
e31d9eb5 1683static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 1684 pgprot_t prot, int node)
1da177e4
LT
1685{
1686 struct page **pages;
1687 unsigned int nr_pages, array_size, i;
930f036b 1688 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
704b862f
LA
1689 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1690 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
1691 0 :
1692 __GFP_HIGHMEM;
1da177e4 1693
762216ab 1694 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
1695 array_size = (nr_pages * sizeof(struct page *));
1696
1697 area->nr_pages = nr_pages;
1698 /* Please note that the recursion is strictly bounded. */
8757d5fa 1699 if (array_size > PAGE_SIZE) {
704b862f 1700 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
3722e13c 1701 PAGE_KERNEL, node, area->caller);
286e1ea3 1702 } else {
976d6dfb 1703 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 1704 }
1da177e4
LT
1705 area->pages = pages;
1706 if (!area->pages) {
1707 remove_vm_area(area->addr);
1708 kfree(area);
1709 return NULL;
1710 }
1da177e4
LT
1711
1712 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1713 struct page *page;
1714
4b90951c 1715 if (node == NUMA_NO_NODE)
704b862f 1716 page = alloc_page(alloc_mask|highmem_mask);
930fc45a 1717 else
704b862f 1718 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
bf53d6f8
CL
1719
1720 if (unlikely(!page)) {
1da177e4
LT
1721 /* Successfully allocated i pages, free them in __vunmap() */
1722 area->nr_pages = i;
1723 goto fail;
1724 }
bf53d6f8 1725 area->pages[i] = page;
704b862f 1726 if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
660654f9 1727 cond_resched();
1da177e4
LT
1728 }
1729
f6f8ed47 1730 if (map_vm_area(area, prot, pages))
1da177e4
LT
1731 goto fail;
1732 return area->addr;
1733
1734fail:
a8e99259 1735 warn_alloc(gfp_mask, NULL,
7877cdcc 1736 "vmalloc: allocation failure, allocated %ld of %ld bytes",
22943ab1 1737 (area->nr_pages*PAGE_SIZE), area->size);
1da177e4
LT
1738 vfree(area->addr);
1739 return NULL;
1740}
1741
1742/**
d0a21265 1743 * __vmalloc_node_range - allocate virtually contiguous memory
1da177e4 1744 * @size: allocation size
2dca6999 1745 * @align: desired alignment
d0a21265
DR
1746 * @start: vm area range start
1747 * @end: vm area range end
1da177e4
LT
1748 * @gfp_mask: flags for the page level allocator
1749 * @prot: protection mask for the allocated pages
cb9e3c29 1750 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
00ef2d2f 1751 * @node: node to use for allocation or NUMA_NO_NODE
c85d194b 1752 * @caller: caller's return address
1da177e4
LT
1753 *
1754 * Allocate enough pages to cover @size from the page level
1755 * allocator with @gfp_mask flags. Map them into contiguous
1756 * kernel virtual space, using a pagetable protection of @prot.
1757 */
d0a21265
DR
1758void *__vmalloc_node_range(unsigned long size, unsigned long align,
1759 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
1760 pgprot_t prot, unsigned long vm_flags, int node,
1761 const void *caller)
1da177e4
LT
1762{
1763 struct vm_struct *area;
89219d37
CM
1764 void *addr;
1765 unsigned long real_size = size;
1da177e4
LT
1766
1767 size = PAGE_ALIGN(size);
4481374c 1768 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
de7d2b56 1769 goto fail;
1da177e4 1770
cb9e3c29
AR
1771 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1772 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 1773 if (!area)
de7d2b56 1774 goto fail;
1da177e4 1775
3722e13c 1776 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 1777 if (!addr)
b82225f3 1778 return NULL;
89219d37 1779
f5252e00 1780 /*
20fc02b4
ZY
1781 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1782 * flag. It means that vm_struct is not fully initialized.
4341fa45 1783 * Now, it is fully initialized, so remove this flag here.
f5252e00 1784 */
20fc02b4 1785 clear_vm_uninitialized_flag(area);
f5252e00 1786
94f4a161 1787 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
1788
1789 return addr;
de7d2b56
JP
1790
1791fail:
a8e99259 1792 warn_alloc(gfp_mask, NULL,
7877cdcc 1793 "vmalloc: allocation failure: %lu bytes", real_size);
de7d2b56 1794 return NULL;
1da177e4
LT
1795}
1796
d0a21265
DR
1797/**
1798 * __vmalloc_node - allocate virtually contiguous memory
1799 * @size: allocation size
1800 * @align: desired alignment
1801 * @gfp_mask: flags for the page level allocator
1802 * @prot: protection mask for the allocated pages
00ef2d2f 1803 * @node: node to use for allocation or NUMA_NO_NODE
d0a21265
DR
1804 * @caller: caller's return address
1805 *
1806 * Allocate enough pages to cover @size from the page level
1807 * allocator with @gfp_mask flags. Map them into contiguous
1808 * kernel virtual space, using a pagetable protection of @prot.
a7c3e901 1809 *
dcda9b04 1810 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
a7c3e901
MH
1811 * and __GFP_NOFAIL are not supported
1812 *
1813 * Any use of gfp flags outside of GFP_KERNEL should be consulted
1814 * with mm people.
1815 *
d0a21265 1816 */
8594a21c 1817static void *__vmalloc_node(unsigned long size, unsigned long align,
d0a21265 1818 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1819 int node, const void *caller)
d0a21265
DR
1820{
1821 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
cb9e3c29 1822 gfp_mask, prot, 0, node, caller);
d0a21265
DR
1823}
1824
930fc45a
CL
1825void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1826{
00ef2d2f 1827 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 1828 __builtin_return_address(0));
930fc45a 1829}
1da177e4
LT
1830EXPORT_SYMBOL(__vmalloc);
1831
8594a21c
MH
1832static inline void *__vmalloc_node_flags(unsigned long size,
1833 int node, gfp_t flags)
1834{
1835 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1836 node, __builtin_return_address(0));
1837}
1838
1839
1840void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
1841 void *caller)
1842{
1843 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
1844}
1845
1da177e4
LT
1846/**
1847 * vmalloc - allocate virtually contiguous memory
1da177e4 1848 * @size: allocation size
1da177e4
LT
1849 * Allocate enough pages to cover @size from the page level
1850 * allocator and map them into contiguous kernel virtual space.
1851 *
c1c8897f 1852 * For tight control over page level allocator and protection flags
1da177e4
LT
1853 * use __vmalloc() instead.
1854 */
1855void *vmalloc(unsigned long size)
1856{
00ef2d2f 1857 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 1858 GFP_KERNEL);
1da177e4 1859}
1da177e4
LT
1860EXPORT_SYMBOL(vmalloc);
1861
e1ca7788
DY
1862/**
1863 * vzalloc - allocate virtually contiguous memory with zero fill
1864 * @size: allocation size
1865 * Allocate enough pages to cover @size from the page level
1866 * allocator and map them into contiguous kernel virtual space.
1867 * The memory allocated is set to zero.
1868 *
1869 * For tight control over page level allocator and protection flags
1870 * use __vmalloc() instead.
1871 */
1872void *vzalloc(unsigned long size)
1873{
00ef2d2f 1874 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 1875 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
1876}
1877EXPORT_SYMBOL(vzalloc);
1878
83342314 1879/**
ead04089
REB
1880 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1881 * @size: allocation size
83342314 1882 *
ead04089
REB
1883 * The resulting memory area is zeroed so it can be mapped to userspace
1884 * without leaking data.
83342314
NP
1885 */
1886void *vmalloc_user(unsigned long size)
1887{
1888 struct vm_struct *area;
1889 void *ret;
1890
2dca6999 1891 ret = __vmalloc_node(size, SHMLBA,
19809c2d 1892 GFP_KERNEL | __GFP_ZERO,
00ef2d2f
DR
1893 PAGE_KERNEL, NUMA_NO_NODE,
1894 __builtin_return_address(0));
2b4ac44e 1895 if (ret) {
db64fe02 1896 area = find_vm_area(ret);
2b4ac44e 1897 area->flags |= VM_USERMAP;
2b4ac44e 1898 }
83342314
NP
1899 return ret;
1900}
1901EXPORT_SYMBOL(vmalloc_user);
1902
930fc45a
CL
1903/**
1904 * vmalloc_node - allocate memory on a specific node
930fc45a 1905 * @size: allocation size
d44e0780 1906 * @node: numa node
930fc45a
CL
1907 *
1908 * Allocate enough pages to cover @size from the page level
1909 * allocator and map them into contiguous kernel virtual space.
1910 *
c1c8897f 1911 * For tight control over page level allocator and protection flags
930fc45a
CL
1912 * use __vmalloc() instead.
1913 */
1914void *vmalloc_node(unsigned long size, int node)
1915{
19809c2d 1916 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
23016969 1917 node, __builtin_return_address(0));
930fc45a
CL
1918}
1919EXPORT_SYMBOL(vmalloc_node);
1920
e1ca7788
DY
1921/**
1922 * vzalloc_node - allocate memory on a specific node with zero fill
1923 * @size: allocation size
1924 * @node: numa node
1925 *
1926 * Allocate enough pages to cover @size from the page level
1927 * allocator and map them into contiguous kernel virtual space.
1928 * The memory allocated is set to zero.
1929 *
1930 * For tight control over page level allocator and protection flags
1931 * use __vmalloc_node() instead.
1932 */
1933void *vzalloc_node(unsigned long size, int node)
1934{
1935 return __vmalloc_node_flags(size, node,
19809c2d 1936 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
1937}
1938EXPORT_SYMBOL(vzalloc_node);
1939
4dc3b16b
PP
1940#ifndef PAGE_KERNEL_EXEC
1941# define PAGE_KERNEL_EXEC PAGE_KERNEL
1942#endif
1943
1da177e4
LT
1944/**
1945 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
1946 * @size: allocation size
1947 *
1948 * Kernel-internal function to allocate enough pages to cover @size
1949 * the page level allocator and map them into contiguous and
1950 * executable kernel virtual space.
1951 *
c1c8897f 1952 * For tight control over page level allocator and protection flags
1da177e4
LT
1953 * use __vmalloc() instead.
1954 */
1955
1da177e4
LT
1956void *vmalloc_exec(unsigned long size)
1957{
19809c2d 1958 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
00ef2d2f 1959 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
1960}
1961
0d08e0d3 1962#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
c48c1b92 1963#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 1964#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
c48c1b92 1965#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 1966#else
c48c1b92
MH
1967/*
1968 * 64b systems should always have either DMA or DMA32 zones. For others
1969 * GFP_DMA32 should do the right thing and use the normal zone.
1970 */
1971#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3
AK
1972#endif
1973
1da177e4
LT
1974/**
1975 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
1976 * @size: allocation size
1977 *
1978 * Allocate enough 32bit PA addressable pages to cover @size from the
1979 * page level allocator and map them into contiguous kernel virtual space.
1980 */
1981void *vmalloc_32(unsigned long size)
1982{
2dca6999 1983 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 1984 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 1985}
1da177e4
LT
1986EXPORT_SYMBOL(vmalloc_32);
1987
83342314 1988/**
ead04089 1989 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 1990 * @size: allocation size
ead04089
REB
1991 *
1992 * The resulting memory area is 32bit addressable and zeroed so it can be
1993 * mapped to userspace without leaking data.
83342314
NP
1994 */
1995void *vmalloc_32_user(unsigned long size)
1996{
1997 struct vm_struct *area;
1998 void *ret;
1999
2dca6999 2000 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
00ef2d2f 2001 NUMA_NO_NODE, __builtin_return_address(0));
2b4ac44e 2002 if (ret) {
db64fe02 2003 area = find_vm_area(ret);
2b4ac44e 2004 area->flags |= VM_USERMAP;
2b4ac44e 2005 }
83342314
NP
2006 return ret;
2007}
2008EXPORT_SYMBOL(vmalloc_32_user);
2009
d0107eb0
KH
2010/*
2011 * small helper routine , copy contents to buf from addr.
2012 * If the page is not present, fill zero.
2013 */
2014
2015static int aligned_vread(char *buf, char *addr, unsigned long count)
2016{
2017 struct page *p;
2018 int copied = 0;
2019
2020 while (count) {
2021 unsigned long offset, length;
2022
891c49ab 2023 offset = offset_in_page(addr);
d0107eb0
KH
2024 length = PAGE_SIZE - offset;
2025 if (length > count)
2026 length = count;
2027 p = vmalloc_to_page(addr);
2028 /*
2029 * To do safe access to this _mapped_ area, we need
2030 * lock. But adding lock here means that we need to add
2031 * overhead of vmalloc()/vfree() calles for this _debug_
2032 * interface, rarely used. Instead of that, we'll use
2033 * kmap() and get small overhead in this access function.
2034 */
2035 if (p) {
2036 /*
2037 * we can expect USER0 is not used (see vread/vwrite's
2038 * function description)
2039 */
9b04c5fe 2040 void *map = kmap_atomic(p);
d0107eb0 2041 memcpy(buf, map + offset, length);
9b04c5fe 2042 kunmap_atomic(map);
d0107eb0
KH
2043 } else
2044 memset(buf, 0, length);
2045
2046 addr += length;
2047 buf += length;
2048 copied += length;
2049 count -= length;
2050 }
2051 return copied;
2052}
2053
2054static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2055{
2056 struct page *p;
2057 int copied = 0;
2058
2059 while (count) {
2060 unsigned long offset, length;
2061
891c49ab 2062 offset = offset_in_page(addr);
d0107eb0
KH
2063 length = PAGE_SIZE - offset;
2064 if (length > count)
2065 length = count;
2066 p = vmalloc_to_page(addr);
2067 /*
2068 * To do safe access to this _mapped_ area, we need
2069 * lock. But adding lock here means that we need to add
2070 * overhead of vmalloc()/vfree() calles for this _debug_
2071 * interface, rarely used. Instead of that, we'll use
2072 * kmap() and get small overhead in this access function.
2073 */
2074 if (p) {
2075 /*
2076 * we can expect USER0 is not used (see vread/vwrite's
2077 * function description)
2078 */
9b04c5fe 2079 void *map = kmap_atomic(p);
d0107eb0 2080 memcpy(map + offset, buf, length);
9b04c5fe 2081 kunmap_atomic(map);
d0107eb0
KH
2082 }
2083 addr += length;
2084 buf += length;
2085 copied += length;
2086 count -= length;
2087 }
2088 return copied;
2089}
2090
2091/**
2092 * vread() - read vmalloc area in a safe way.
2093 * @buf: buffer for reading data
2094 * @addr: vm address.
2095 * @count: number of bytes to be read.
2096 *
2097 * Returns # of bytes which addr and buf should be increased.
2098 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
2099 * includes any intersect with alive vmalloc area.
2100 *
2101 * This function checks that addr is a valid vmalloc'ed area, and
2102 * copy data from that area to a given buffer. If the given memory range
2103 * of [addr...addr+count) includes some valid address, data is copied to
2104 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2105 * IOREMAP area is treated as memory hole and no copy is done.
2106 *
2107 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 2108 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
2109 *
2110 * Note: In usual ops, vread() is never necessary because the caller
2111 * should know vmalloc() area is valid and can use memcpy().
2112 * This is for routines which have to access vmalloc area without
2113 * any informaion, as /dev/kmem.
2114 *
2115 */
2116
1da177e4
LT
2117long vread(char *buf, char *addr, unsigned long count)
2118{
e81ce85f
JK
2119 struct vmap_area *va;
2120 struct vm_struct *vm;
1da177e4 2121 char *vaddr, *buf_start = buf;
d0107eb0 2122 unsigned long buflen = count;
1da177e4
LT
2123 unsigned long n;
2124
2125 /* Don't allow overflow */
2126 if ((unsigned long) addr + count < count)
2127 count = -(unsigned long) addr;
2128
e81ce85f
JK
2129 spin_lock(&vmap_area_lock);
2130 list_for_each_entry(va, &vmap_area_list, list) {
2131 if (!count)
2132 break;
2133
2134 if (!(va->flags & VM_VM_AREA))
2135 continue;
2136
2137 vm = va->vm;
2138 vaddr = (char *) vm->addr;
762216ab 2139 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2140 continue;
2141 while (addr < vaddr) {
2142 if (count == 0)
2143 goto finished;
2144 *buf = '\0';
2145 buf++;
2146 addr++;
2147 count--;
2148 }
762216ab 2149 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2150 if (n > count)
2151 n = count;
e81ce85f 2152 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2153 aligned_vread(buf, addr, n);
2154 else /* IOREMAP area is treated as memory hole */
2155 memset(buf, 0, n);
2156 buf += n;
2157 addr += n;
2158 count -= n;
1da177e4
LT
2159 }
2160finished:
e81ce85f 2161 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2162
2163 if (buf == buf_start)
2164 return 0;
2165 /* zero-fill memory holes */
2166 if (buf != buf_start + buflen)
2167 memset(buf, 0, buflen - (buf - buf_start));
2168
2169 return buflen;
1da177e4
LT
2170}
2171
d0107eb0
KH
2172/**
2173 * vwrite() - write vmalloc area in a safe way.
2174 * @buf: buffer for source data
2175 * @addr: vm address.
2176 * @count: number of bytes to be read.
2177 *
2178 * Returns # of bytes which addr and buf should be incresed.
2179 * (same number to @count).
2180 * If [addr...addr+count) doesn't includes any intersect with valid
2181 * vmalloc area, returns 0.
2182 *
2183 * This function checks that addr is a valid vmalloc'ed area, and
2184 * copy data from a buffer to the given addr. If specified range of
2185 * [addr...addr+count) includes some valid address, data is copied from
2186 * proper area of @buf. If there are memory holes, no copy to hole.
2187 * IOREMAP area is treated as memory hole and no copy is done.
2188 *
2189 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 2190 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
2191 *
2192 * Note: In usual ops, vwrite() is never necessary because the caller
2193 * should know vmalloc() area is valid and can use memcpy().
2194 * This is for routines which have to access vmalloc area without
2195 * any informaion, as /dev/kmem.
d0107eb0
KH
2196 */
2197
1da177e4
LT
2198long vwrite(char *buf, char *addr, unsigned long count)
2199{
e81ce85f
JK
2200 struct vmap_area *va;
2201 struct vm_struct *vm;
d0107eb0
KH
2202 char *vaddr;
2203 unsigned long n, buflen;
2204 int copied = 0;
1da177e4
LT
2205
2206 /* Don't allow overflow */
2207 if ((unsigned long) addr + count < count)
2208 count = -(unsigned long) addr;
d0107eb0 2209 buflen = count;
1da177e4 2210
e81ce85f
JK
2211 spin_lock(&vmap_area_lock);
2212 list_for_each_entry(va, &vmap_area_list, list) {
2213 if (!count)
2214 break;
2215
2216 if (!(va->flags & VM_VM_AREA))
2217 continue;
2218
2219 vm = va->vm;
2220 vaddr = (char *) vm->addr;
762216ab 2221 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2222 continue;
2223 while (addr < vaddr) {
2224 if (count == 0)
2225 goto finished;
2226 buf++;
2227 addr++;
2228 count--;
2229 }
762216ab 2230 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2231 if (n > count)
2232 n = count;
e81ce85f 2233 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2234 aligned_vwrite(buf, addr, n);
2235 copied++;
2236 }
2237 buf += n;
2238 addr += n;
2239 count -= n;
1da177e4
LT
2240 }
2241finished:
e81ce85f 2242 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2243 if (!copied)
2244 return 0;
2245 return buflen;
1da177e4 2246}
83342314
NP
2247
2248/**
e69e9d4a
HD
2249 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2250 * @vma: vma to cover
2251 * @uaddr: target user address to start at
2252 * @kaddr: virtual address of vmalloc kernel memory
2253 * @size: size of map area
7682486b
RD
2254 *
2255 * Returns: 0 for success, -Exxx on failure
83342314 2256 *
e69e9d4a
HD
2257 * This function checks that @kaddr is a valid vmalloc'ed area,
2258 * and that it is big enough to cover the range starting at
2259 * @uaddr in @vma. Will return failure if that criteria isn't
2260 * met.
83342314 2261 *
72fd4a35 2262 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 2263 */
e69e9d4a
HD
2264int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2265 void *kaddr, unsigned long size)
83342314
NP
2266{
2267 struct vm_struct *area;
83342314 2268
e69e9d4a
HD
2269 size = PAGE_ALIGN(size);
2270
2271 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
2272 return -EINVAL;
2273
e69e9d4a 2274 area = find_vm_area(kaddr);
83342314 2275 if (!area)
db64fe02 2276 return -EINVAL;
83342314
NP
2277
2278 if (!(area->flags & VM_USERMAP))
db64fe02 2279 return -EINVAL;
83342314 2280
119cccdd 2281 if (kaddr + size > area->addr + get_vm_area_size(area))
db64fe02 2282 return -EINVAL;
83342314 2283
83342314 2284 do {
e69e9d4a 2285 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
2286 int ret;
2287
83342314
NP
2288 ret = vm_insert_page(vma, uaddr, page);
2289 if (ret)
2290 return ret;
2291
2292 uaddr += PAGE_SIZE;
e69e9d4a
HD
2293 kaddr += PAGE_SIZE;
2294 size -= PAGE_SIZE;
2295 } while (size > 0);
83342314 2296
314e51b9 2297 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 2298
db64fe02 2299 return 0;
83342314 2300}
e69e9d4a
HD
2301EXPORT_SYMBOL(remap_vmalloc_range_partial);
2302
2303/**
2304 * remap_vmalloc_range - map vmalloc pages to userspace
2305 * @vma: vma to cover (map full range of vma)
2306 * @addr: vmalloc memory
2307 * @pgoff: number of pages into addr before first page to map
2308 *
2309 * Returns: 0 for success, -Exxx on failure
2310 *
2311 * This function checks that addr is a valid vmalloc'ed area, and
2312 * that it is big enough to cover the vma. Will return failure if
2313 * that criteria isn't met.
2314 *
2315 * Similar to remap_pfn_range() (see mm/memory.c)
2316 */
2317int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2318 unsigned long pgoff)
2319{
2320 return remap_vmalloc_range_partial(vma, vma->vm_start,
2321 addr + (pgoff << PAGE_SHIFT),
2322 vma->vm_end - vma->vm_start);
2323}
83342314
NP
2324EXPORT_SYMBOL(remap_vmalloc_range);
2325
1eeb66a1
CH
2326/*
2327 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2328 * have one.
09814a5e
JR
2329 *
2330 * The purpose of this function is to make sure the vmalloc area
2331 * mappings are identical in all page-tables in the system.
1eeb66a1 2332 */
3b32123d 2333void __weak vmalloc_sync_all(void)
1eeb66a1
CH
2334{
2335}
5f4352fb
JF
2336
2337
2f569afd 2338static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb 2339{
cd12909c
DV
2340 pte_t ***p = data;
2341
2342 if (p) {
2343 *(*p) = pte;
2344 (*p)++;
2345 }
5f4352fb
JF
2346 return 0;
2347}
2348
2349/**
2350 * alloc_vm_area - allocate a range of kernel address space
2351 * @size: size of the area
cd12909c 2352 * @ptes: returns the PTEs for the address space
7682486b
RD
2353 *
2354 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
2355 *
2356 * This function reserves a range of kernel address space, and
2357 * allocates pagetables to map that range. No actual mappings
cd12909c
DV
2358 * are created.
2359 *
2360 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2361 * allocated for the VM area are returned.
5f4352fb 2362 */
cd12909c 2363struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
2364{
2365 struct vm_struct *area;
2366
23016969
CL
2367 area = get_vm_area_caller(size, VM_IOREMAP,
2368 __builtin_return_address(0));
5f4352fb
JF
2369 if (area == NULL)
2370 return NULL;
2371
2372 /*
2373 * This ensures that page tables are constructed for this region
2374 * of kernel virtual address space and mapped into init_mm.
2375 */
2376 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 2377 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
2378 free_vm_area(area);
2379 return NULL;
2380 }
2381
5f4352fb
JF
2382 return area;
2383}
2384EXPORT_SYMBOL_GPL(alloc_vm_area);
2385
2386void free_vm_area(struct vm_struct *area)
2387{
2388 struct vm_struct *ret;
2389 ret = remove_vm_area(area->addr);
2390 BUG_ON(ret != area);
2391 kfree(area);
2392}
2393EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 2394
4f8b02b4 2395#ifdef CONFIG_SMP
ca23e405
TH
2396static struct vmap_area *node_to_va(struct rb_node *n)
2397{
4583e773 2398 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
2399}
2400
2401/**
2402 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2403 * @end: target address
2404 * @pnext: out arg for the next vmap_area
2405 * @pprev: out arg for the previous vmap_area
2406 *
2407 * Returns: %true if either or both of next and prev are found,
2408 * %false if no vmap_area exists
2409 *
2410 * Find vmap_areas end addresses of which enclose @end. ie. if not
2411 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2412 */
2413static bool pvm_find_next_prev(unsigned long end,
2414 struct vmap_area **pnext,
2415 struct vmap_area **pprev)
2416{
2417 struct rb_node *n = vmap_area_root.rb_node;
2418 struct vmap_area *va = NULL;
2419
2420 while (n) {
2421 va = rb_entry(n, struct vmap_area, rb_node);
2422 if (end < va->va_end)
2423 n = n->rb_left;
2424 else if (end > va->va_end)
2425 n = n->rb_right;
2426 else
2427 break;
2428 }
2429
2430 if (!va)
2431 return false;
2432
2433 if (va->va_end > end) {
2434 *pnext = va;
2435 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2436 } else {
2437 *pprev = va;
2438 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2439 }
2440 return true;
2441}
2442
2443/**
2444 * pvm_determine_end - find the highest aligned address between two vmap_areas
2445 * @pnext: in/out arg for the next vmap_area
2446 * @pprev: in/out arg for the previous vmap_area
2447 * @align: alignment
2448 *
2449 * Returns: determined end address
2450 *
2451 * Find the highest aligned address between *@pnext and *@pprev below
2452 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2453 * down address is between the end addresses of the two vmap_areas.
2454 *
2455 * Please note that the address returned by this function may fall
2456 * inside *@pnext vmap_area. The caller is responsible for checking
2457 * that.
2458 */
2459static unsigned long pvm_determine_end(struct vmap_area **pnext,
2460 struct vmap_area **pprev,
2461 unsigned long align)
2462{
2463 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2464 unsigned long addr;
2465
2466 if (*pnext)
2467 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2468 else
2469 addr = vmalloc_end;
2470
2471 while (*pprev && (*pprev)->va_end > addr) {
2472 *pnext = *pprev;
2473 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2474 }
2475
2476 return addr;
2477}
2478
2479/**
2480 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2481 * @offsets: array containing offset of each area
2482 * @sizes: array containing size of each area
2483 * @nr_vms: the number of areas to allocate
2484 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
2485 *
2486 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2487 * vm_structs on success, %NULL on failure
2488 *
2489 * Percpu allocator wants to use congruent vm areas so that it can
2490 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
2491 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2492 * be scattered pretty far, distance between two areas easily going up
2493 * to gigabytes. To avoid interacting with regular vmallocs, these
2494 * areas are allocated from top.
ca23e405
TH
2495 *
2496 * Despite its complicated look, this allocator is rather simple. It
2497 * does everything top-down and scans areas from the end looking for
2498 * matching slot. While scanning, if any of the areas overlaps with
2499 * existing vmap_area, the base address is pulled down to fit the
2500 * area. Scanning is repeated till all the areas fit and then all
c568da28 2501 * necessary data structures are inserted and the result is returned.
ca23e405
TH
2502 */
2503struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2504 const size_t *sizes, int nr_vms,
ec3f64fc 2505 size_t align)
ca23e405
TH
2506{
2507 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2508 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2509 struct vmap_area **vas, *prev, *next;
2510 struct vm_struct **vms;
2511 int area, area2, last_area, term_area;
2512 unsigned long base, start, end, last_end;
2513 bool purged = false;
2514
ca23e405 2515 /* verify parameters and allocate data structures */
891c49ab 2516 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
2517 for (last_area = 0, area = 0; area < nr_vms; area++) {
2518 start = offsets[area];
2519 end = start + sizes[area];
2520
2521 /* is everything aligned properly? */
2522 BUG_ON(!IS_ALIGNED(offsets[area], align));
2523 BUG_ON(!IS_ALIGNED(sizes[area], align));
2524
2525 /* detect the area with the highest address */
2526 if (start > offsets[last_area])
2527 last_area = area;
2528
c568da28 2529 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
2530 unsigned long start2 = offsets[area2];
2531 unsigned long end2 = start2 + sizes[area2];
2532
c568da28 2533 BUG_ON(start2 < end && start < end2);
ca23e405
TH
2534 }
2535 }
2536 last_end = offsets[last_area] + sizes[last_area];
2537
2538 if (vmalloc_end - vmalloc_start < last_end) {
2539 WARN_ON(true);
2540 return NULL;
2541 }
2542
4d67d860
TM
2543 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2544 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 2545 if (!vas || !vms)
f1db7afd 2546 goto err_free2;
ca23e405
TH
2547
2548 for (area = 0; area < nr_vms; area++) {
ec3f64fc
DR
2549 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2550 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
2551 if (!vas[area] || !vms[area])
2552 goto err_free;
2553 }
2554retry:
2555 spin_lock(&vmap_area_lock);
2556
2557 /* start scanning - we scan from the top, begin with the last area */
2558 area = term_area = last_area;
2559 start = offsets[area];
2560 end = start + sizes[area];
2561
2562 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2563 base = vmalloc_end - last_end;
2564 goto found;
2565 }
2566 base = pvm_determine_end(&next, &prev, align) - end;
2567
2568 while (true) {
2569 BUG_ON(next && next->va_end <= base + end);
2570 BUG_ON(prev && prev->va_end > base + end);
2571
2572 /*
2573 * base might have underflowed, add last_end before
2574 * comparing.
2575 */
2576 if (base + last_end < vmalloc_start + last_end) {
2577 spin_unlock(&vmap_area_lock);
2578 if (!purged) {
2579 purge_vmap_area_lazy();
2580 purged = true;
2581 goto retry;
2582 }
2583 goto err_free;
2584 }
2585
2586 /*
2587 * If next overlaps, move base downwards so that it's
2588 * right below next and then recheck.
2589 */
2590 if (next && next->va_start < base + end) {
2591 base = pvm_determine_end(&next, &prev, align) - end;
2592 term_area = area;
2593 continue;
2594 }
2595
2596 /*
2597 * If prev overlaps, shift down next and prev and move
2598 * base so that it's right below new next and then
2599 * recheck.
2600 */
2601 if (prev && prev->va_end > base + start) {
2602 next = prev;
2603 prev = node_to_va(rb_prev(&next->rb_node));
2604 base = pvm_determine_end(&next, &prev, align) - end;
2605 term_area = area;
2606 continue;
2607 }
2608
2609 /*
2610 * This area fits, move on to the previous one. If
2611 * the previous one is the terminal one, we're done.
2612 */
2613 area = (area + nr_vms - 1) % nr_vms;
2614 if (area == term_area)
2615 break;
2616 start = offsets[area];
2617 end = start + sizes[area];
2618 pvm_find_next_prev(base + end, &next, &prev);
2619 }
2620found:
2621 /* we've found a fitting base, insert all va's */
2622 for (area = 0; area < nr_vms; area++) {
2623 struct vmap_area *va = vas[area];
2624
2625 va->va_start = base + offsets[area];
2626 va->va_end = va->va_start + sizes[area];
2627 __insert_vmap_area(va);
2628 }
2629
2630 vmap_area_pcpu_hole = base + offsets[last_area];
2631
2632 spin_unlock(&vmap_area_lock);
2633
2634 /* insert all vm's */
2635 for (area = 0; area < nr_vms; area++)
3645cb4a
ZY
2636 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2637 pcpu_get_vm_areas);
ca23e405
TH
2638
2639 kfree(vas);
2640 return vms;
2641
2642err_free:
2643 for (area = 0; area < nr_vms; area++) {
f1db7afd
KC
2644 kfree(vas[area]);
2645 kfree(vms[area]);
ca23e405 2646 }
f1db7afd 2647err_free2:
ca23e405
TH
2648 kfree(vas);
2649 kfree(vms);
2650 return NULL;
2651}
2652
2653/**
2654 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2655 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2656 * @nr_vms: the number of allocated areas
2657 *
2658 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2659 */
2660void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2661{
2662 int i;
2663
2664 for (i = 0; i < nr_vms; i++)
2665 free_vm_area(vms[i]);
2666 kfree(vms);
2667}
4f8b02b4 2668#endif /* CONFIG_SMP */
a10aa579
CL
2669
2670#ifdef CONFIG_PROC_FS
2671static void *s_start(struct seq_file *m, loff_t *pos)
d4033afd 2672 __acquires(&vmap_area_lock)
a10aa579 2673{
d4033afd 2674 spin_lock(&vmap_area_lock);
3f500069 2675 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
2676}
2677
2678static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2679{
3f500069 2680 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
2681}
2682
2683static void s_stop(struct seq_file *m, void *p)
d4033afd 2684 __releases(&vmap_area_lock)
a10aa579 2685{
d4033afd 2686 spin_unlock(&vmap_area_lock);
a10aa579
CL
2687}
2688
a47a126a
ED
2689static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2690{
e5adfffc 2691 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
2692 unsigned int nr, *counters = m->private;
2693
2694 if (!counters)
2695 return;
2696
af12346c
WL
2697 if (v->flags & VM_UNINITIALIZED)
2698 return;
7e5b528b
DV
2699 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2700 smp_rmb();
af12346c 2701
a47a126a
ED
2702 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2703
2704 for (nr = 0; nr < v->nr_pages; nr++)
2705 counters[page_to_nid(v->pages[nr])]++;
2706
2707 for_each_node_state(nr, N_HIGH_MEMORY)
2708 if (counters[nr])
2709 seq_printf(m, " N%u=%u", nr, counters[nr]);
2710 }
2711}
2712
a10aa579
CL
2713static int s_show(struct seq_file *m, void *p)
2714{
3f500069 2715 struct vmap_area *va;
d4033afd
JK
2716 struct vm_struct *v;
2717
3f500069 2718 va = list_entry(p, struct vmap_area, list);
2719
c2ce8c14
WL
2720 /*
2721 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2722 * behalf of vmap area is being tear down or vm_map_ram allocation.
2723 */
78c72746
YX
2724 if (!(va->flags & VM_VM_AREA)) {
2725 seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
2726 (void *)va->va_start, (void *)va->va_end,
2727 va->va_end - va->va_start,
2728 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
2729
d4033afd 2730 return 0;
78c72746 2731 }
d4033afd
JK
2732
2733 v = va->vm;
a10aa579 2734
45ec1690 2735 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
2736 v->addr, v->addr + v->size, v->size);
2737
62c70bce
JP
2738 if (v->caller)
2739 seq_printf(m, " %pS", v->caller);
23016969 2740
a10aa579
CL
2741 if (v->nr_pages)
2742 seq_printf(m, " pages=%d", v->nr_pages);
2743
2744 if (v->phys_addr)
199eaa05 2745 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
2746
2747 if (v->flags & VM_IOREMAP)
f4527c90 2748 seq_puts(m, " ioremap");
a10aa579
CL
2749
2750 if (v->flags & VM_ALLOC)
f4527c90 2751 seq_puts(m, " vmalloc");
a10aa579
CL
2752
2753 if (v->flags & VM_MAP)
f4527c90 2754 seq_puts(m, " vmap");
a10aa579
CL
2755
2756 if (v->flags & VM_USERMAP)
f4527c90 2757 seq_puts(m, " user");
a10aa579 2758
244d63ee 2759 if (is_vmalloc_addr(v->pages))
f4527c90 2760 seq_puts(m, " vpages");
a10aa579 2761
a47a126a 2762 show_numa_info(m, v);
a10aa579
CL
2763 seq_putc(m, '\n');
2764 return 0;
2765}
2766
5f6a6a9c 2767static const struct seq_operations vmalloc_op = {
a10aa579
CL
2768 .start = s_start,
2769 .next = s_next,
2770 .stop = s_stop,
2771 .show = s_show,
2772};
5f6a6a9c
AD
2773
2774static int vmalloc_open(struct inode *inode, struct file *file)
2775{
703394c1
RJ
2776 if (IS_ENABLED(CONFIG_NUMA))
2777 return seq_open_private(file, &vmalloc_op,
2778 nr_node_ids * sizeof(unsigned int));
2779 else
2780 return seq_open(file, &vmalloc_op);
5f6a6a9c
AD
2781}
2782
2783static const struct file_operations proc_vmalloc_operations = {
2784 .open = vmalloc_open,
2785 .read = seq_read,
2786 .llseek = seq_lseek,
2787 .release = seq_release_private,
2788};
2789
2790static int __init proc_vmalloc_init(void)
2791{
2792 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2793 return 0;
2794}
2795module_init(proc_vmalloc_init);
db3808c1 2796
a10aa579
CL
2797#endif
2798