]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/vmalloc.c
tools/vm/page-types.c: support swap entry
[mirror_ubuntu-bionic-kernel.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
d43c36dc 15#include <linux/sched.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
3ac7fe5a 21#include <linux/debugobjects.h>
23016969 22#include <linux/kallsyms.h>
db64fe02
NP
23#include <linux/list.h>
24#include <linux/rbtree.h>
25#include <linux/radix-tree.h>
26#include <linux/rcupdate.h>
f0aa6617 27#include <linux/pfn.h>
89219d37 28#include <linux/kmemleak.h>
60063497 29#include <linux/atomic.h>
3b32123d 30#include <linux/compiler.h>
32fcfd40 31#include <linux/llist.h>
0f616be1 32#include <linux/bitops.h>
3b32123d 33
1da177e4
LT
34#include <asm/uaccess.h>
35#include <asm/tlbflush.h>
2dca6999 36#include <asm/shmparam.h>
1da177e4 37
dd56b046
MG
38#include "internal.h"
39
32fcfd40
AV
40struct vfree_deferred {
41 struct llist_head list;
42 struct work_struct wq;
43};
44static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
45
46static void __vunmap(const void *, int);
47
48static void free_work(struct work_struct *w)
49{
50 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
51 struct llist_node *llnode = llist_del_all(&p->list);
52 while (llnode) {
53 void *p = llnode;
54 llnode = llist_next(llnode);
55 __vunmap(p, 1);
56 }
57}
58
db64fe02 59/*** Page table manipulation functions ***/
b221385b 60
1da177e4
LT
61static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
62{
63 pte_t *pte;
64
65 pte = pte_offset_kernel(pmd, addr);
66 do {
67 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
68 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
69 } while (pte++, addr += PAGE_SIZE, addr != end);
70}
71
db64fe02 72static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
73{
74 pmd_t *pmd;
75 unsigned long next;
76
77 pmd = pmd_offset(pud, addr);
78 do {
79 next = pmd_addr_end(addr, end);
b9820d8f
TK
80 if (pmd_clear_huge(pmd))
81 continue;
1da177e4
LT
82 if (pmd_none_or_clear_bad(pmd))
83 continue;
84 vunmap_pte_range(pmd, addr, next);
85 } while (pmd++, addr = next, addr != end);
86}
87
db64fe02 88static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
1da177e4
LT
89{
90 pud_t *pud;
91 unsigned long next;
92
93 pud = pud_offset(pgd, addr);
94 do {
95 next = pud_addr_end(addr, end);
b9820d8f
TK
96 if (pud_clear_huge(pud))
97 continue;
1da177e4
LT
98 if (pud_none_or_clear_bad(pud))
99 continue;
100 vunmap_pmd_range(pud, addr, next);
101 } while (pud++, addr = next, addr != end);
102}
103
db64fe02 104static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
105{
106 pgd_t *pgd;
107 unsigned long next;
1da177e4
LT
108
109 BUG_ON(addr >= end);
110 pgd = pgd_offset_k(addr);
1da177e4
LT
111 do {
112 next = pgd_addr_end(addr, end);
113 if (pgd_none_or_clear_bad(pgd))
114 continue;
115 vunmap_pud_range(pgd, addr, next);
116 } while (pgd++, addr = next, addr != end);
1da177e4
LT
117}
118
119static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 120 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
121{
122 pte_t *pte;
123
db64fe02
NP
124 /*
125 * nr is a running index into the array which helps higher level
126 * callers keep track of where we're up to.
127 */
128
872fec16 129 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
130 if (!pte)
131 return -ENOMEM;
132 do {
db64fe02
NP
133 struct page *page = pages[*nr];
134
135 if (WARN_ON(!pte_none(*pte)))
136 return -EBUSY;
137 if (WARN_ON(!page))
1da177e4
LT
138 return -ENOMEM;
139 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 140 (*nr)++;
1da177e4
LT
141 } while (pte++, addr += PAGE_SIZE, addr != end);
142 return 0;
143}
144
db64fe02
NP
145static int vmap_pmd_range(pud_t *pud, unsigned long addr,
146 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
147{
148 pmd_t *pmd;
149 unsigned long next;
150
151 pmd = pmd_alloc(&init_mm, pud, addr);
152 if (!pmd)
153 return -ENOMEM;
154 do {
155 next = pmd_addr_end(addr, end);
db64fe02 156 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
157 return -ENOMEM;
158 } while (pmd++, addr = next, addr != end);
159 return 0;
160}
161
db64fe02
NP
162static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
163 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
164{
165 pud_t *pud;
166 unsigned long next;
167
168 pud = pud_alloc(&init_mm, pgd, addr);
169 if (!pud)
170 return -ENOMEM;
171 do {
172 next = pud_addr_end(addr, end);
db64fe02 173 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
174 return -ENOMEM;
175 } while (pud++, addr = next, addr != end);
176 return 0;
177}
178
db64fe02
NP
179/*
180 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
181 * will have pfns corresponding to the "pages" array.
182 *
183 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
184 */
8fc48985
TH
185static int vmap_page_range_noflush(unsigned long start, unsigned long end,
186 pgprot_t prot, struct page **pages)
1da177e4
LT
187{
188 pgd_t *pgd;
189 unsigned long next;
2e4e27c7 190 unsigned long addr = start;
db64fe02
NP
191 int err = 0;
192 int nr = 0;
1da177e4
LT
193
194 BUG_ON(addr >= end);
195 pgd = pgd_offset_k(addr);
1da177e4
LT
196 do {
197 next = pgd_addr_end(addr, end);
db64fe02 198 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
1da177e4 199 if (err)
bf88c8c8 200 return err;
1da177e4 201 } while (pgd++, addr = next, addr != end);
db64fe02 202
db64fe02 203 return nr;
1da177e4
LT
204}
205
8fc48985
TH
206static int vmap_page_range(unsigned long start, unsigned long end,
207 pgprot_t prot, struct page **pages)
208{
209 int ret;
210
211 ret = vmap_page_range_noflush(start, end, prot, pages);
212 flush_cache_vmap(start, end);
213 return ret;
214}
215
81ac3ad9 216int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
217{
218 /*
ab4f2ee1 219 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
220 * and fall back on vmalloc() if that fails. Others
221 * just put it in the vmalloc space.
222 */
223#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
224 unsigned long addr = (unsigned long)x;
225 if (addr >= MODULES_VADDR && addr < MODULES_END)
226 return 1;
227#endif
228 return is_vmalloc_addr(x);
229}
230
48667e7a 231/*
add688fb 232 * Walk a vmap address to the struct page it maps.
48667e7a 233 */
add688fb 234struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
235{
236 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 237 struct page *page = NULL;
48667e7a 238 pgd_t *pgd = pgd_offset_k(addr);
48667e7a 239
7aa413de
IM
240 /*
241 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
242 * architectures that do not vmalloc module space
243 */
73bdf0a6 244 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 245
48667e7a 246 if (!pgd_none(*pgd)) {
db64fe02 247 pud_t *pud = pud_offset(pgd, addr);
48667e7a 248 if (!pud_none(*pud)) {
db64fe02 249 pmd_t *pmd = pmd_offset(pud, addr);
48667e7a 250 if (!pmd_none(*pmd)) {
db64fe02
NP
251 pte_t *ptep, pte;
252
48667e7a
CL
253 ptep = pte_offset_map(pmd, addr);
254 pte = *ptep;
255 if (pte_present(pte))
add688fb 256 page = pte_page(pte);
48667e7a
CL
257 pte_unmap(ptep);
258 }
259 }
260 }
add688fb 261 return page;
48667e7a 262}
add688fb 263EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
264
265/*
add688fb 266 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 267 */
add688fb 268unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 269{
add688fb 270 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 271}
add688fb 272EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 273
db64fe02
NP
274
275/*** Global kva allocator ***/
276
277#define VM_LAZY_FREE 0x01
278#define VM_LAZY_FREEING 0x02
279#define VM_VM_AREA 0x04
280
db64fe02 281static DEFINE_SPINLOCK(vmap_area_lock);
f1c4069e
JK
282/* Export for kexec only */
283LIST_HEAD(vmap_area_list);
89699605
NP
284static struct rb_root vmap_area_root = RB_ROOT;
285
286/* The vmap cache globals are protected by vmap_area_lock */
287static struct rb_node *free_vmap_cache;
288static unsigned long cached_hole_size;
289static unsigned long cached_vstart;
290static unsigned long cached_align;
291
ca23e405 292static unsigned long vmap_area_pcpu_hole;
db64fe02
NP
293
294static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 295{
db64fe02
NP
296 struct rb_node *n = vmap_area_root.rb_node;
297
298 while (n) {
299 struct vmap_area *va;
300
301 va = rb_entry(n, struct vmap_area, rb_node);
302 if (addr < va->va_start)
303 n = n->rb_left;
cef2ac3f 304 else if (addr >= va->va_end)
db64fe02
NP
305 n = n->rb_right;
306 else
307 return va;
308 }
309
310 return NULL;
311}
312
313static void __insert_vmap_area(struct vmap_area *va)
314{
315 struct rb_node **p = &vmap_area_root.rb_node;
316 struct rb_node *parent = NULL;
317 struct rb_node *tmp;
318
319 while (*p) {
170168d0 320 struct vmap_area *tmp_va;
db64fe02
NP
321
322 parent = *p;
170168d0
NK
323 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
324 if (va->va_start < tmp_va->va_end)
db64fe02 325 p = &(*p)->rb_left;
170168d0 326 else if (va->va_end > tmp_va->va_start)
db64fe02
NP
327 p = &(*p)->rb_right;
328 else
329 BUG();
330 }
331
332 rb_link_node(&va->rb_node, parent, p);
333 rb_insert_color(&va->rb_node, &vmap_area_root);
334
4341fa45 335 /* address-sort this list */
db64fe02
NP
336 tmp = rb_prev(&va->rb_node);
337 if (tmp) {
338 struct vmap_area *prev;
339 prev = rb_entry(tmp, struct vmap_area, rb_node);
340 list_add_rcu(&va->list, &prev->list);
341 } else
342 list_add_rcu(&va->list, &vmap_area_list);
343}
344
345static void purge_vmap_area_lazy(void);
346
347/*
348 * Allocate a region of KVA of the specified size and alignment, within the
349 * vstart and vend.
350 */
351static struct vmap_area *alloc_vmap_area(unsigned long size,
352 unsigned long align,
353 unsigned long vstart, unsigned long vend,
354 int node, gfp_t gfp_mask)
355{
356 struct vmap_area *va;
357 struct rb_node *n;
1da177e4 358 unsigned long addr;
db64fe02 359 int purged = 0;
89699605 360 struct vmap_area *first;
db64fe02 361
7766970c 362 BUG_ON(!size);
891c49ab 363 BUG_ON(offset_in_page(size));
89699605 364 BUG_ON(!is_power_of_2(align));
db64fe02 365
db64fe02
NP
366 va = kmalloc_node(sizeof(struct vmap_area),
367 gfp_mask & GFP_RECLAIM_MASK, node);
368 if (unlikely(!va))
369 return ERR_PTR(-ENOMEM);
370
7f88f88f
CM
371 /*
372 * Only scan the relevant parts containing pointers to other objects
373 * to avoid false negatives.
374 */
375 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
376
db64fe02
NP
377retry:
378 spin_lock(&vmap_area_lock);
89699605
NP
379 /*
380 * Invalidate cache if we have more permissive parameters.
381 * cached_hole_size notes the largest hole noticed _below_
382 * the vmap_area cached in free_vmap_cache: if size fits
383 * into that hole, we want to scan from vstart to reuse
384 * the hole instead of allocating above free_vmap_cache.
385 * Note that __free_vmap_area may update free_vmap_cache
386 * without updating cached_hole_size or cached_align.
387 */
388 if (!free_vmap_cache ||
389 size < cached_hole_size ||
390 vstart < cached_vstart ||
391 align < cached_align) {
392nocache:
393 cached_hole_size = 0;
394 free_vmap_cache = NULL;
395 }
396 /* record if we encounter less permissive parameters */
397 cached_vstart = vstart;
398 cached_align = align;
399
400 /* find starting point for our search */
401 if (free_vmap_cache) {
402 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
248ac0e1 403 addr = ALIGN(first->va_end, align);
89699605
NP
404 if (addr < vstart)
405 goto nocache;
bcb615a8 406 if (addr + size < addr)
89699605
NP
407 goto overflow;
408
409 } else {
410 addr = ALIGN(vstart, align);
bcb615a8 411 if (addr + size < addr)
89699605
NP
412 goto overflow;
413
414 n = vmap_area_root.rb_node;
415 first = NULL;
416
417 while (n) {
db64fe02
NP
418 struct vmap_area *tmp;
419 tmp = rb_entry(n, struct vmap_area, rb_node);
420 if (tmp->va_end >= addr) {
db64fe02 421 first = tmp;
89699605
NP
422 if (tmp->va_start <= addr)
423 break;
424 n = n->rb_left;
425 } else
db64fe02 426 n = n->rb_right;
89699605 427 }
db64fe02
NP
428
429 if (!first)
430 goto found;
db64fe02 431 }
89699605
NP
432
433 /* from the starting point, walk areas until a suitable hole is found */
248ac0e1 434 while (addr + size > first->va_start && addr + size <= vend) {
89699605
NP
435 if (addr + cached_hole_size < first->va_start)
436 cached_hole_size = first->va_start - addr;
248ac0e1 437 addr = ALIGN(first->va_end, align);
bcb615a8 438 if (addr + size < addr)
89699605
NP
439 goto overflow;
440
92ca922f 441 if (list_is_last(&first->list, &vmap_area_list))
89699605 442 goto found;
92ca922f 443
6219c2a2 444 first = list_next_entry(first, list);
db64fe02
NP
445 }
446
89699605
NP
447found:
448 if (addr + size > vend)
449 goto overflow;
db64fe02
NP
450
451 va->va_start = addr;
452 va->va_end = addr + size;
453 va->flags = 0;
454 __insert_vmap_area(va);
89699605 455 free_vmap_cache = &va->rb_node;
db64fe02
NP
456 spin_unlock(&vmap_area_lock);
457
61e16557 458 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
459 BUG_ON(va->va_start < vstart);
460 BUG_ON(va->va_end > vend);
461
db64fe02 462 return va;
89699605
NP
463
464overflow:
465 spin_unlock(&vmap_area_lock);
466 if (!purged) {
467 purge_vmap_area_lazy();
468 purged = 1;
469 goto retry;
470 }
471 if (printk_ratelimit())
0cbc8533 472 pr_warn("vmap allocation for size %lu failed: "
89699605
NP
473 "use vmalloc=<size> to increase size.\n", size);
474 kfree(va);
475 return ERR_PTR(-EBUSY);
db64fe02
NP
476}
477
db64fe02
NP
478static void __free_vmap_area(struct vmap_area *va)
479{
480 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
89699605
NP
481
482 if (free_vmap_cache) {
483 if (va->va_end < cached_vstart) {
484 free_vmap_cache = NULL;
485 } else {
486 struct vmap_area *cache;
487 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
488 if (va->va_start <= cache->va_start) {
489 free_vmap_cache = rb_prev(&va->rb_node);
490 /*
491 * We don't try to update cached_hole_size or
492 * cached_align, but it won't go very wrong.
493 */
494 }
495 }
496 }
db64fe02
NP
497 rb_erase(&va->rb_node, &vmap_area_root);
498 RB_CLEAR_NODE(&va->rb_node);
499 list_del_rcu(&va->list);
500
ca23e405
TH
501 /*
502 * Track the highest possible candidate for pcpu area
503 * allocation. Areas outside of vmalloc area can be returned
504 * here too, consider only end addresses which fall inside
505 * vmalloc area proper.
506 */
507 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
508 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
509
14769de9 510 kfree_rcu(va, rcu_head);
db64fe02
NP
511}
512
513/*
514 * Free a region of KVA allocated by alloc_vmap_area
515 */
516static void free_vmap_area(struct vmap_area *va)
517{
518 spin_lock(&vmap_area_lock);
519 __free_vmap_area(va);
520 spin_unlock(&vmap_area_lock);
521}
522
523/*
524 * Clear the pagetable entries of a given vmap_area
525 */
526static void unmap_vmap_area(struct vmap_area *va)
527{
528 vunmap_page_range(va->va_start, va->va_end);
529}
530
cd52858c
NP
531static void vmap_debug_free_range(unsigned long start, unsigned long end)
532{
533 /*
534 * Unmap page tables and force a TLB flush immediately if
535 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
536 * bugs similarly to those in linear kernel virtual address
537 * space after a page has been freed.
538 *
539 * All the lazy freeing logic is still retained, in order to
540 * minimise intrusiveness of this debugging feature.
541 *
542 * This is going to be *slow* (linear kernel virtual address
543 * debugging doesn't do a broadcast TLB flush so it is a lot
544 * faster).
545 */
546#ifdef CONFIG_DEBUG_PAGEALLOC
547 vunmap_page_range(start, end);
548 flush_tlb_kernel_range(start, end);
549#endif
550}
551
db64fe02
NP
552/*
553 * lazy_max_pages is the maximum amount of virtual address space we gather up
554 * before attempting to purge with a TLB flush.
555 *
556 * There is a tradeoff here: a larger number will cover more kernel page tables
557 * and take slightly longer to purge, but it will linearly reduce the number of
558 * global TLB flushes that must be performed. It would seem natural to scale
559 * this number up linearly with the number of CPUs (because vmapping activity
560 * could also scale linearly with the number of CPUs), however it is likely
561 * that in practice, workloads might be constrained in other ways that mean
562 * vmap activity will not scale linearly with CPUs. Also, I want to be
563 * conservative and not introduce a big latency on huge systems, so go with
564 * a less aggressive log scale. It will still be an improvement over the old
565 * code, and it will be simple to change the scale factor if we find that it
566 * becomes a problem on bigger systems.
567 */
568static unsigned long lazy_max_pages(void)
569{
570 unsigned int log;
571
572 log = fls(num_online_cpus());
573
574 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
575}
576
577static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
578
02b709df
NP
579/* for per-CPU blocks */
580static void purge_fragmented_blocks_allcpus(void);
581
3ee48b6a
CW
582/*
583 * called before a call to iounmap() if the caller wants vm_area_struct's
584 * immediately freed.
585 */
586void set_iounmap_nonlazy(void)
587{
588 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
589}
590
db64fe02
NP
591/*
592 * Purges all lazily-freed vmap areas.
593 *
594 * If sync is 0 then don't purge if there is already a purge in progress.
595 * If force_flush is 1, then flush kernel TLBs between *start and *end even
596 * if we found no lazy vmap areas to unmap (callers can use this to optimise
597 * their own TLB flushing).
598 * Returns with *start = min(*start, lowest purged address)
599 * *end = max(*end, highest purged address)
600 */
601static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
602 int sync, int force_flush)
603{
46666d8a 604 static DEFINE_SPINLOCK(purge_lock);
db64fe02
NP
605 LIST_HEAD(valist);
606 struct vmap_area *va;
cbb76676 607 struct vmap_area *n_va;
db64fe02
NP
608 int nr = 0;
609
610 /*
611 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
612 * should not expect such behaviour. This just simplifies locking for
613 * the case that isn't actually used at the moment anyway.
614 */
615 if (!sync && !force_flush) {
46666d8a 616 if (!spin_trylock(&purge_lock))
db64fe02
NP
617 return;
618 } else
46666d8a 619 spin_lock(&purge_lock);
db64fe02 620
02b709df
NP
621 if (sync)
622 purge_fragmented_blocks_allcpus();
623
db64fe02
NP
624 rcu_read_lock();
625 list_for_each_entry_rcu(va, &vmap_area_list, list) {
626 if (va->flags & VM_LAZY_FREE) {
627 if (va->va_start < *start)
628 *start = va->va_start;
629 if (va->va_end > *end)
630 *end = va->va_end;
631 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
db64fe02
NP
632 list_add_tail(&va->purge_list, &valist);
633 va->flags |= VM_LAZY_FREEING;
634 va->flags &= ~VM_LAZY_FREE;
635 }
636 }
637 rcu_read_unlock();
638
88f50044 639 if (nr)
db64fe02 640 atomic_sub(nr, &vmap_lazy_nr);
db64fe02
NP
641
642 if (nr || force_flush)
643 flush_tlb_kernel_range(*start, *end);
644
645 if (nr) {
646 spin_lock(&vmap_area_lock);
cbb76676 647 list_for_each_entry_safe(va, n_va, &valist, purge_list)
db64fe02
NP
648 __free_vmap_area(va);
649 spin_unlock(&vmap_area_lock);
650 }
46666d8a 651 spin_unlock(&purge_lock);
db64fe02
NP
652}
653
496850e5
NP
654/*
655 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
656 * is already purging.
657 */
658static void try_purge_vmap_area_lazy(void)
659{
660 unsigned long start = ULONG_MAX, end = 0;
661
662 __purge_vmap_area_lazy(&start, &end, 0, 0);
663}
664
db64fe02
NP
665/*
666 * Kick off a purge of the outstanding lazy areas.
667 */
668static void purge_vmap_area_lazy(void)
669{
670 unsigned long start = ULONG_MAX, end = 0;
671
496850e5 672 __purge_vmap_area_lazy(&start, &end, 1, 0);
db64fe02
NP
673}
674
675/*
64141da5
JF
676 * Free a vmap area, caller ensuring that the area has been unmapped
677 * and flush_cache_vunmap had been called for the correct range
678 * previously.
db64fe02 679 */
64141da5 680static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02
NP
681{
682 va->flags |= VM_LAZY_FREE;
683 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
684 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
496850e5 685 try_purge_vmap_area_lazy();
db64fe02
NP
686}
687
64141da5
JF
688/*
689 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
690 * called for the correct range previously.
691 */
692static void free_unmap_vmap_area_noflush(struct vmap_area *va)
693{
694 unmap_vmap_area(va);
695 free_vmap_area_noflush(va);
696}
697
b29acbdc
NP
698/*
699 * Free and unmap a vmap area
700 */
701static void free_unmap_vmap_area(struct vmap_area *va)
702{
703 flush_cache_vunmap(va->va_start, va->va_end);
704 free_unmap_vmap_area_noflush(va);
705}
706
db64fe02
NP
707static struct vmap_area *find_vmap_area(unsigned long addr)
708{
709 struct vmap_area *va;
710
711 spin_lock(&vmap_area_lock);
712 va = __find_vmap_area(addr);
713 spin_unlock(&vmap_area_lock);
714
715 return va;
716}
717
718static void free_unmap_vmap_area_addr(unsigned long addr)
719{
720 struct vmap_area *va;
721
722 va = find_vmap_area(addr);
723 BUG_ON(!va);
724 free_unmap_vmap_area(va);
725}
726
727
728/*** Per cpu kva allocator ***/
729
730/*
731 * vmap space is limited especially on 32 bit architectures. Ensure there is
732 * room for at least 16 percpu vmap blocks per CPU.
733 */
734/*
735 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
736 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
737 * instead (we just need a rough idea)
738 */
739#if BITS_PER_LONG == 32
740#define VMALLOC_SPACE (128UL*1024*1024)
741#else
742#define VMALLOC_SPACE (128UL*1024*1024*1024)
743#endif
744
745#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
746#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
747#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
748#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
749#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
750#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
751#define VMAP_BBMAP_BITS \
752 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
753 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
754 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
755
756#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
757
9b463334
JF
758static bool vmap_initialized __read_mostly = false;
759
db64fe02
NP
760struct vmap_block_queue {
761 spinlock_t lock;
762 struct list_head free;
db64fe02
NP
763};
764
765struct vmap_block {
766 spinlock_t lock;
767 struct vmap_area *va;
db64fe02 768 unsigned long free, dirty;
7d61bfe8 769 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
770 struct list_head free_list;
771 struct rcu_head rcu_head;
02b709df 772 struct list_head purge;
db64fe02
NP
773};
774
775/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
776static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
777
778/*
779 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
780 * in the free path. Could get rid of this if we change the API to return a
781 * "cookie" from alloc, to be passed to free. But no big deal yet.
782 */
783static DEFINE_SPINLOCK(vmap_block_tree_lock);
784static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
785
786/*
787 * We should probably have a fallback mechanism to allocate virtual memory
788 * out of partially filled vmap blocks. However vmap block sizing should be
789 * fairly reasonable according to the vmalloc size, so it shouldn't be a
790 * big problem.
791 */
792
793static unsigned long addr_to_vb_idx(unsigned long addr)
794{
795 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
796 addr /= VMAP_BLOCK_SIZE;
797 return addr;
798}
799
cf725ce2
RP
800static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
801{
802 unsigned long addr;
803
804 addr = va_start + (pages_off << PAGE_SHIFT);
805 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
806 return (void *)addr;
807}
808
809/**
810 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
811 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
812 * @order: how many 2^order pages should be occupied in newly allocated block
813 * @gfp_mask: flags for the page level allocator
814 *
815 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
816 */
817static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
818{
819 struct vmap_block_queue *vbq;
820 struct vmap_block *vb;
821 struct vmap_area *va;
822 unsigned long vb_idx;
823 int node, err;
cf725ce2 824 void *vaddr;
db64fe02
NP
825
826 node = numa_node_id();
827
828 vb = kmalloc_node(sizeof(struct vmap_block),
829 gfp_mask & GFP_RECLAIM_MASK, node);
830 if (unlikely(!vb))
831 return ERR_PTR(-ENOMEM);
832
833 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
834 VMALLOC_START, VMALLOC_END,
835 node, gfp_mask);
ddf9c6d4 836 if (IS_ERR(va)) {
db64fe02 837 kfree(vb);
e7d86340 838 return ERR_CAST(va);
db64fe02
NP
839 }
840
841 err = radix_tree_preload(gfp_mask);
842 if (unlikely(err)) {
843 kfree(vb);
844 free_vmap_area(va);
845 return ERR_PTR(err);
846 }
847
cf725ce2 848 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
849 spin_lock_init(&vb->lock);
850 vb->va = va;
cf725ce2
RP
851 /* At least something should be left free */
852 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
853 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 854 vb->dirty = 0;
7d61bfe8
RP
855 vb->dirty_min = VMAP_BBMAP_BITS;
856 vb->dirty_max = 0;
db64fe02 857 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
858
859 vb_idx = addr_to_vb_idx(va->va_start);
860 spin_lock(&vmap_block_tree_lock);
861 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
862 spin_unlock(&vmap_block_tree_lock);
863 BUG_ON(err);
864 radix_tree_preload_end();
865
866 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 867 spin_lock(&vbq->lock);
68ac546f 868 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 869 spin_unlock(&vbq->lock);
3f04ba85 870 put_cpu_var(vmap_block_queue);
db64fe02 871
cf725ce2 872 return vaddr;
db64fe02
NP
873}
874
db64fe02
NP
875static void free_vmap_block(struct vmap_block *vb)
876{
877 struct vmap_block *tmp;
878 unsigned long vb_idx;
879
db64fe02
NP
880 vb_idx = addr_to_vb_idx(vb->va->va_start);
881 spin_lock(&vmap_block_tree_lock);
882 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
883 spin_unlock(&vmap_block_tree_lock);
884 BUG_ON(tmp != vb);
885
64141da5 886 free_vmap_area_noflush(vb->va);
22a3c7d1 887 kfree_rcu(vb, rcu_head);
db64fe02
NP
888}
889
02b709df
NP
890static void purge_fragmented_blocks(int cpu)
891{
892 LIST_HEAD(purge);
893 struct vmap_block *vb;
894 struct vmap_block *n_vb;
895 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
896
897 rcu_read_lock();
898 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
899
900 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
901 continue;
902
903 spin_lock(&vb->lock);
904 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
905 vb->free = 0; /* prevent further allocs after releasing lock */
906 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
907 vb->dirty_min = 0;
908 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
909 spin_lock(&vbq->lock);
910 list_del_rcu(&vb->free_list);
911 spin_unlock(&vbq->lock);
912 spin_unlock(&vb->lock);
913 list_add_tail(&vb->purge, &purge);
914 } else
915 spin_unlock(&vb->lock);
916 }
917 rcu_read_unlock();
918
919 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
920 list_del(&vb->purge);
921 free_vmap_block(vb);
922 }
923}
924
02b709df
NP
925static void purge_fragmented_blocks_allcpus(void)
926{
927 int cpu;
928
929 for_each_possible_cpu(cpu)
930 purge_fragmented_blocks(cpu);
931}
932
db64fe02
NP
933static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
934{
935 struct vmap_block_queue *vbq;
936 struct vmap_block *vb;
cf725ce2 937 void *vaddr = NULL;
db64fe02
NP
938 unsigned int order;
939
891c49ab 940 BUG_ON(offset_in_page(size));
db64fe02 941 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
942 if (WARN_ON(size == 0)) {
943 /*
944 * Allocating 0 bytes isn't what caller wants since
945 * get_order(0) returns funny result. Just warn and terminate
946 * early.
947 */
948 return NULL;
949 }
db64fe02
NP
950 order = get_order(size);
951
db64fe02
NP
952 rcu_read_lock();
953 vbq = &get_cpu_var(vmap_block_queue);
954 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 955 unsigned long pages_off;
db64fe02
NP
956
957 spin_lock(&vb->lock);
cf725ce2
RP
958 if (vb->free < (1UL << order)) {
959 spin_unlock(&vb->lock);
960 continue;
961 }
02b709df 962
cf725ce2
RP
963 pages_off = VMAP_BBMAP_BITS - vb->free;
964 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
965 vb->free -= 1UL << order;
966 if (vb->free == 0) {
967 spin_lock(&vbq->lock);
968 list_del_rcu(&vb->free_list);
969 spin_unlock(&vbq->lock);
970 }
cf725ce2 971
02b709df
NP
972 spin_unlock(&vb->lock);
973 break;
db64fe02 974 }
02b709df 975
3f04ba85 976 put_cpu_var(vmap_block_queue);
db64fe02
NP
977 rcu_read_unlock();
978
cf725ce2
RP
979 /* Allocate new block if nothing was found */
980 if (!vaddr)
981 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 982
cf725ce2 983 return vaddr;
db64fe02
NP
984}
985
986static void vb_free(const void *addr, unsigned long size)
987{
988 unsigned long offset;
989 unsigned long vb_idx;
990 unsigned int order;
991 struct vmap_block *vb;
992
891c49ab 993 BUG_ON(offset_in_page(size));
db64fe02 994 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
995
996 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
997
db64fe02
NP
998 order = get_order(size);
999
1000 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
7d61bfe8 1001 offset >>= PAGE_SHIFT;
db64fe02
NP
1002
1003 vb_idx = addr_to_vb_idx((unsigned long)addr);
1004 rcu_read_lock();
1005 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1006 rcu_read_unlock();
1007 BUG_ON(!vb);
1008
64141da5
JF
1009 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1010
db64fe02 1011 spin_lock(&vb->lock);
7d61bfe8
RP
1012
1013 /* Expand dirty range */
1014 vb->dirty_min = min(vb->dirty_min, offset);
1015 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1016
db64fe02
NP
1017 vb->dirty += 1UL << order;
1018 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1019 BUG_ON(vb->free);
db64fe02
NP
1020 spin_unlock(&vb->lock);
1021 free_vmap_block(vb);
1022 } else
1023 spin_unlock(&vb->lock);
1024}
1025
1026/**
1027 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1028 *
1029 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1030 * to amortize TLB flushing overheads. What this means is that any page you
1031 * have now, may, in a former life, have been mapped into kernel virtual
1032 * address by the vmap layer and so there might be some CPUs with TLB entries
1033 * still referencing that page (additional to the regular 1:1 kernel mapping).
1034 *
1035 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1036 * be sure that none of the pages we have control over will have any aliases
1037 * from the vmap layer.
1038 */
1039void vm_unmap_aliases(void)
1040{
1041 unsigned long start = ULONG_MAX, end = 0;
1042 int cpu;
1043 int flush = 0;
1044
9b463334
JF
1045 if (unlikely(!vmap_initialized))
1046 return;
1047
db64fe02
NP
1048 for_each_possible_cpu(cpu) {
1049 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1050 struct vmap_block *vb;
1051
1052 rcu_read_lock();
1053 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1054 spin_lock(&vb->lock);
7d61bfe8
RP
1055 if (vb->dirty) {
1056 unsigned long va_start = vb->va->va_start;
db64fe02 1057 unsigned long s, e;
b136be5e 1058
7d61bfe8
RP
1059 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1060 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1061
7d61bfe8
RP
1062 start = min(s, start);
1063 end = max(e, end);
db64fe02 1064
7d61bfe8 1065 flush = 1;
db64fe02
NP
1066 }
1067 spin_unlock(&vb->lock);
1068 }
1069 rcu_read_unlock();
1070 }
1071
1072 __purge_vmap_area_lazy(&start, &end, 1, flush);
1073}
1074EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1075
1076/**
1077 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1078 * @mem: the pointer returned by vm_map_ram
1079 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1080 */
1081void vm_unmap_ram(const void *mem, unsigned int count)
1082{
1083 unsigned long size = count << PAGE_SHIFT;
1084 unsigned long addr = (unsigned long)mem;
1085
1086 BUG_ON(!addr);
1087 BUG_ON(addr < VMALLOC_START);
1088 BUG_ON(addr > VMALLOC_END);
61e16557 1089 BUG_ON(!IS_ALIGNED(addr, PAGE_SIZE));
db64fe02
NP
1090
1091 debug_check_no_locks_freed(mem, size);
cd52858c 1092 vmap_debug_free_range(addr, addr+size);
db64fe02
NP
1093
1094 if (likely(count <= VMAP_MAX_ALLOC))
1095 vb_free(mem, size);
1096 else
1097 free_unmap_vmap_area_addr(addr);
1098}
1099EXPORT_SYMBOL(vm_unmap_ram);
1100
1101/**
1102 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1103 * @pages: an array of pointers to the pages to be mapped
1104 * @count: number of pages
1105 * @node: prefer to allocate data structures on this node
1106 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad 1107 *
36437638
GK
1108 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1109 * faster than vmap so it's good. But if you mix long-life and short-life
1110 * objects with vm_map_ram(), it could consume lots of address space through
1111 * fragmentation (especially on a 32bit machine). You could see failures in
1112 * the end. Please use this function for short-lived objects.
1113 *
e99c97ad 1114 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1115 */
1116void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1117{
1118 unsigned long size = count << PAGE_SHIFT;
1119 unsigned long addr;
1120 void *mem;
1121
1122 if (likely(count <= VMAP_MAX_ALLOC)) {
1123 mem = vb_alloc(size, GFP_KERNEL);
1124 if (IS_ERR(mem))
1125 return NULL;
1126 addr = (unsigned long)mem;
1127 } else {
1128 struct vmap_area *va;
1129 va = alloc_vmap_area(size, PAGE_SIZE,
1130 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1131 if (IS_ERR(va))
1132 return NULL;
1133
1134 addr = va->va_start;
1135 mem = (void *)addr;
1136 }
1137 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1138 vm_unmap_ram(mem, count);
1139 return NULL;
1140 }
1141 return mem;
1142}
1143EXPORT_SYMBOL(vm_map_ram);
1144
4341fa45 1145static struct vm_struct *vmlist __initdata;
be9b7335
NP
1146/**
1147 * vm_area_add_early - add vmap area early during boot
1148 * @vm: vm_struct to add
1149 *
1150 * This function is used to add fixed kernel vm area to vmlist before
1151 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1152 * should contain proper values and the other fields should be zero.
1153 *
1154 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1155 */
1156void __init vm_area_add_early(struct vm_struct *vm)
1157{
1158 struct vm_struct *tmp, **p;
1159
1160 BUG_ON(vmap_initialized);
1161 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1162 if (tmp->addr >= vm->addr) {
1163 BUG_ON(tmp->addr < vm->addr + vm->size);
1164 break;
1165 } else
1166 BUG_ON(tmp->addr + tmp->size > vm->addr);
1167 }
1168 vm->next = *p;
1169 *p = vm;
1170}
1171
f0aa6617
TH
1172/**
1173 * vm_area_register_early - register vmap area early during boot
1174 * @vm: vm_struct to register
c0c0a293 1175 * @align: requested alignment
f0aa6617
TH
1176 *
1177 * This function is used to register kernel vm area before
1178 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1179 * proper values on entry and other fields should be zero. On return,
1180 * vm->addr contains the allocated address.
1181 *
1182 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1183 */
c0c0a293 1184void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1185{
1186 static size_t vm_init_off __initdata;
c0c0a293
TH
1187 unsigned long addr;
1188
1189 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1190 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1191
c0c0a293 1192 vm->addr = (void *)addr;
f0aa6617 1193
be9b7335 1194 vm_area_add_early(vm);
f0aa6617
TH
1195}
1196
db64fe02
NP
1197void __init vmalloc_init(void)
1198{
822c18f2
IK
1199 struct vmap_area *va;
1200 struct vm_struct *tmp;
db64fe02
NP
1201 int i;
1202
1203 for_each_possible_cpu(i) {
1204 struct vmap_block_queue *vbq;
32fcfd40 1205 struct vfree_deferred *p;
db64fe02
NP
1206
1207 vbq = &per_cpu(vmap_block_queue, i);
1208 spin_lock_init(&vbq->lock);
1209 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1210 p = &per_cpu(vfree_deferred, i);
1211 init_llist_head(&p->list);
1212 INIT_WORK(&p->wq, free_work);
db64fe02 1213 }
9b463334 1214
822c18f2
IK
1215 /* Import existing vmlist entries. */
1216 for (tmp = vmlist; tmp; tmp = tmp->next) {
43ebdac4 1217 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
dbda591d 1218 va->flags = VM_VM_AREA;
822c18f2
IK
1219 va->va_start = (unsigned long)tmp->addr;
1220 va->va_end = va->va_start + tmp->size;
dbda591d 1221 va->vm = tmp;
822c18f2
IK
1222 __insert_vmap_area(va);
1223 }
ca23e405
TH
1224
1225 vmap_area_pcpu_hole = VMALLOC_END;
1226
9b463334 1227 vmap_initialized = true;
db64fe02
NP
1228}
1229
8fc48985
TH
1230/**
1231 * map_kernel_range_noflush - map kernel VM area with the specified pages
1232 * @addr: start of the VM area to map
1233 * @size: size of the VM area to map
1234 * @prot: page protection flags to use
1235 * @pages: pages to map
1236 *
1237 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1238 * specify should have been allocated using get_vm_area() and its
1239 * friends.
1240 *
1241 * NOTE:
1242 * This function does NOT do any cache flushing. The caller is
1243 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1244 * before calling this function.
1245 *
1246 * RETURNS:
1247 * The number of pages mapped on success, -errno on failure.
1248 */
1249int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1250 pgprot_t prot, struct page **pages)
1251{
1252 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1253}
1254
1255/**
1256 * unmap_kernel_range_noflush - unmap kernel VM area
1257 * @addr: start of the VM area to unmap
1258 * @size: size of the VM area to unmap
1259 *
1260 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1261 * specify should have been allocated using get_vm_area() and its
1262 * friends.
1263 *
1264 * NOTE:
1265 * This function does NOT do any cache flushing. The caller is
1266 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1267 * before calling this function and flush_tlb_kernel_range() after.
1268 */
1269void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1270{
1271 vunmap_page_range(addr, addr + size);
1272}
81e88fdc 1273EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
1274
1275/**
1276 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1277 * @addr: start of the VM area to unmap
1278 * @size: size of the VM area to unmap
1279 *
1280 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1281 * the unmapping and tlb after.
1282 */
db64fe02
NP
1283void unmap_kernel_range(unsigned long addr, unsigned long size)
1284{
1285 unsigned long end = addr + size;
f6fcba70
TH
1286
1287 flush_cache_vunmap(addr, end);
db64fe02
NP
1288 vunmap_page_range(addr, end);
1289 flush_tlb_kernel_range(addr, end);
1290}
93ef6d6c 1291EXPORT_SYMBOL_GPL(unmap_kernel_range);
db64fe02 1292
f6f8ed47 1293int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
db64fe02
NP
1294{
1295 unsigned long addr = (unsigned long)area->addr;
762216ab 1296 unsigned long end = addr + get_vm_area_size(area);
db64fe02
NP
1297 int err;
1298
f6f8ed47 1299 err = vmap_page_range(addr, end, prot, pages);
db64fe02 1300
f6f8ed47 1301 return err > 0 ? 0 : err;
db64fe02
NP
1302}
1303EXPORT_SYMBOL_GPL(map_vm_area);
1304
f5252e00 1305static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 1306 unsigned long flags, const void *caller)
cf88c790 1307{
c69480ad 1308 spin_lock(&vmap_area_lock);
cf88c790
TH
1309 vm->flags = flags;
1310 vm->addr = (void *)va->va_start;
1311 vm->size = va->va_end - va->va_start;
1312 vm->caller = caller;
db1aecaf 1313 va->vm = vm;
cf88c790 1314 va->flags |= VM_VM_AREA;
c69480ad 1315 spin_unlock(&vmap_area_lock);
f5252e00 1316}
cf88c790 1317
20fc02b4 1318static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 1319{
d4033afd 1320 /*
20fc02b4 1321 * Before removing VM_UNINITIALIZED,
d4033afd
JK
1322 * we should make sure that vm has proper values.
1323 * Pair with smp_rmb() in show_numa_info().
1324 */
1325 smp_wmb();
20fc02b4 1326 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
1327}
1328
db64fe02 1329static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 1330 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 1331 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 1332{
0006526d 1333 struct vmap_area *va;
db64fe02 1334 struct vm_struct *area;
1da177e4 1335
52fd24ca 1336 BUG_ON(in_interrupt());
0f2d4a8e 1337 if (flags & VM_IOREMAP)
0f616be1
TK
1338 align = 1ul << clamp_t(int, fls_long(size),
1339 PAGE_SHIFT, IOREMAP_MAX_ORDER);
db64fe02 1340
1da177e4 1341 size = PAGE_ALIGN(size);
31be8309
OH
1342 if (unlikely(!size))
1343 return NULL;
1da177e4 1344
cf88c790 1345 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1346 if (unlikely(!area))
1347 return NULL;
1348
71394fe5
AR
1349 if (!(flags & VM_NO_GUARD))
1350 size += PAGE_SIZE;
1da177e4 1351
db64fe02
NP
1352 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1353 if (IS_ERR(va)) {
1354 kfree(area);
1355 return NULL;
1da177e4 1356 }
1da177e4 1357
d82b1d85 1358 setup_vmalloc_vm(area, va, flags, caller);
f5252e00 1359
1da177e4 1360 return area;
1da177e4
LT
1361}
1362
930fc45a
CL
1363struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1364 unsigned long start, unsigned long end)
1365{
00ef2d2f
DR
1366 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1367 GFP_KERNEL, __builtin_return_address(0));
930fc45a 1368}
5992b6da 1369EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1370
c2968612
BH
1371struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1372 unsigned long start, unsigned long end,
5e6cafc8 1373 const void *caller)
c2968612 1374{
00ef2d2f
DR
1375 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1376 GFP_KERNEL, caller);
c2968612
BH
1377}
1378
1da177e4 1379/**
183ff22b 1380 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
1381 * @size: size of the area
1382 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1383 *
1384 * Search an area of @size in the kernel virtual mapping area,
1385 * and reserved it for out purposes. Returns the area descriptor
1386 * on success or %NULL on failure.
1387 */
1388struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1389{
2dca6999 1390 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
1391 NUMA_NO_NODE, GFP_KERNEL,
1392 __builtin_return_address(0));
23016969
CL
1393}
1394
1395struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 1396 const void *caller)
23016969 1397{
2dca6999 1398 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 1399 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
1400}
1401
e9da6e99
MS
1402/**
1403 * find_vm_area - find a continuous kernel virtual area
1404 * @addr: base address
1405 *
1406 * Search for the kernel VM area starting at @addr, and return it.
1407 * It is up to the caller to do all required locking to keep the returned
1408 * pointer valid.
1409 */
1410struct vm_struct *find_vm_area(const void *addr)
83342314 1411{
db64fe02 1412 struct vmap_area *va;
83342314 1413
db64fe02
NP
1414 va = find_vmap_area((unsigned long)addr);
1415 if (va && va->flags & VM_VM_AREA)
db1aecaf 1416 return va->vm;
1da177e4 1417
1da177e4 1418 return NULL;
1da177e4
LT
1419}
1420
7856dfeb 1421/**
183ff22b 1422 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
1423 * @addr: base address
1424 *
1425 * Search for the kernel VM area starting at @addr, and remove it.
1426 * This function returns the found VM area, but using it is NOT safe
1427 * on SMP machines, except for its size or flags.
1428 */
b3bdda02 1429struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1430{
db64fe02
NP
1431 struct vmap_area *va;
1432
1433 va = find_vmap_area((unsigned long)addr);
1434 if (va && va->flags & VM_VM_AREA) {
db1aecaf 1435 struct vm_struct *vm = va->vm;
f5252e00 1436
c69480ad
JK
1437 spin_lock(&vmap_area_lock);
1438 va->vm = NULL;
1439 va->flags &= ~VM_VM_AREA;
1440 spin_unlock(&vmap_area_lock);
1441
dd32c279 1442 vmap_debug_free_range(va->va_start, va->va_end);
a5af5aa8 1443 kasan_free_shadow(vm);
dd32c279 1444 free_unmap_vmap_area(va);
dd32c279 1445
db64fe02
NP
1446 return vm;
1447 }
1448 return NULL;
7856dfeb
AK
1449}
1450
b3bdda02 1451static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1452{
1453 struct vm_struct *area;
1454
1455 if (!addr)
1456 return;
1457
e69e9d4a 1458 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 1459 addr))
1da177e4 1460 return;
1da177e4
LT
1461
1462 area = remove_vm_area(addr);
1463 if (unlikely(!area)) {
4c8573e2 1464 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1465 addr);
1da177e4
LT
1466 return;
1467 }
1468
7511c3ed
JM
1469 debug_check_no_locks_freed(addr, get_vm_area_size(area));
1470 debug_check_no_obj_freed(addr, get_vm_area_size(area));
9a11b49a 1471
1da177e4
LT
1472 if (deallocate_pages) {
1473 int i;
1474
1475 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1476 struct page *page = area->pages[i];
1477
1478 BUG_ON(!page);
37f08dda 1479 __free_kmem_pages(page, 0);
1da177e4
LT
1480 }
1481
244d63ee 1482 kvfree(area->pages);
1da177e4
LT
1483 }
1484
1485 kfree(area);
1486 return;
1487}
32fcfd40 1488
1da177e4
LT
1489/**
1490 * vfree - release memory allocated by vmalloc()
1da177e4
LT
1491 * @addr: memory base address
1492 *
183ff22b 1493 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
1494 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1495 * NULL, no operation is performed.
1da177e4 1496 *
32fcfd40
AV
1497 * Must not be called in NMI context (strictly speaking, only if we don't
1498 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1499 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51
AM
1500 *
1501 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1da177e4 1502 */
b3bdda02 1503void vfree(const void *addr)
1da177e4 1504{
32fcfd40 1505 BUG_ON(in_nmi());
89219d37
CM
1506
1507 kmemleak_free(addr);
1508
32fcfd40
AV
1509 if (!addr)
1510 return;
1511 if (unlikely(in_interrupt())) {
7c8e0181 1512 struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
59d3132f
ON
1513 if (llist_add((struct llist_node *)addr, &p->list))
1514 schedule_work(&p->wq);
32fcfd40
AV
1515 } else
1516 __vunmap(addr, 1);
1da177e4 1517}
1da177e4
LT
1518EXPORT_SYMBOL(vfree);
1519
1520/**
1521 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
1522 * @addr: memory base address
1523 *
1524 * Free the virtually contiguous memory area starting at @addr,
1525 * which was created from the page array passed to vmap().
1526 *
80e93eff 1527 * Must not be called in interrupt context.
1da177e4 1528 */
b3bdda02 1529void vunmap(const void *addr)
1da177e4
LT
1530{
1531 BUG_ON(in_interrupt());
34754b69 1532 might_sleep();
32fcfd40
AV
1533 if (addr)
1534 __vunmap(addr, 0);
1da177e4 1535}
1da177e4
LT
1536EXPORT_SYMBOL(vunmap);
1537
1538/**
1539 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
1540 * @pages: array of page pointers
1541 * @count: number of pages to map
1542 * @flags: vm_area->flags
1543 * @prot: page protection for the mapping
1544 *
1545 * Maps @count pages from @pages into contiguous kernel virtual
1546 * space.
1547 */
1548void *vmap(struct page **pages, unsigned int count,
1549 unsigned long flags, pgprot_t prot)
1550{
1551 struct vm_struct *area;
1552
34754b69
PZ
1553 might_sleep();
1554
4481374c 1555 if (count > totalram_pages)
1da177e4
LT
1556 return NULL;
1557
23016969
CL
1558 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1559 __builtin_return_address(0));
1da177e4
LT
1560 if (!area)
1561 return NULL;
23016969 1562
f6f8ed47 1563 if (map_vm_area(area, prot, pages)) {
1da177e4
LT
1564 vunmap(area->addr);
1565 return NULL;
1566 }
1567
1568 return area->addr;
1569}
1da177e4
LT
1570EXPORT_SYMBOL(vmap);
1571
2dca6999
DM
1572static void *__vmalloc_node(unsigned long size, unsigned long align,
1573 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1574 int node, const void *caller);
e31d9eb5 1575static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 1576 pgprot_t prot, int node)
1da177e4 1577{
22943ab1 1578 const int order = 0;
1da177e4
LT
1579 struct page **pages;
1580 unsigned int nr_pages, array_size, i;
930f036b
DR
1581 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1582 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1da177e4 1583
762216ab 1584 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
1585 array_size = (nr_pages * sizeof(struct page *));
1586
1587 area->nr_pages = nr_pages;
1588 /* Please note that the recursion is strictly bounded. */
8757d5fa 1589 if (array_size > PAGE_SIZE) {
976d6dfb 1590 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
3722e13c 1591 PAGE_KERNEL, node, area->caller);
286e1ea3 1592 } else {
976d6dfb 1593 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 1594 }
1da177e4
LT
1595 area->pages = pages;
1596 if (!area->pages) {
1597 remove_vm_area(area->addr);
1598 kfree(area);
1599 return NULL;
1600 }
1da177e4
LT
1601
1602 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1603 struct page *page;
1604
4b90951c 1605 if (node == NUMA_NO_NODE)
37f08dda 1606 page = alloc_kmem_pages(alloc_mask, order);
930fc45a 1607 else
37f08dda 1608 page = alloc_kmem_pages_node(node, alloc_mask, order);
bf53d6f8
CL
1609
1610 if (unlikely(!page)) {
1da177e4
LT
1611 /* Successfully allocated i pages, free them in __vunmap() */
1612 area->nr_pages = i;
1613 goto fail;
1614 }
bf53d6f8 1615 area->pages[i] = page;
d0164adc 1616 if (gfpflags_allow_blocking(gfp_mask))
660654f9 1617 cond_resched();
1da177e4
LT
1618 }
1619
f6f8ed47 1620 if (map_vm_area(area, prot, pages))
1da177e4
LT
1621 goto fail;
1622 return area->addr;
1623
1624fail:
3ee9a4f0
JP
1625 warn_alloc_failed(gfp_mask, order,
1626 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
22943ab1 1627 (area->nr_pages*PAGE_SIZE), area->size);
1da177e4
LT
1628 vfree(area->addr);
1629 return NULL;
1630}
1631
1632/**
d0a21265 1633 * __vmalloc_node_range - allocate virtually contiguous memory
1da177e4 1634 * @size: allocation size
2dca6999 1635 * @align: desired alignment
d0a21265
DR
1636 * @start: vm area range start
1637 * @end: vm area range end
1da177e4
LT
1638 * @gfp_mask: flags for the page level allocator
1639 * @prot: protection mask for the allocated pages
cb9e3c29 1640 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
00ef2d2f 1641 * @node: node to use for allocation or NUMA_NO_NODE
c85d194b 1642 * @caller: caller's return address
1da177e4
LT
1643 *
1644 * Allocate enough pages to cover @size from the page level
1645 * allocator with @gfp_mask flags. Map them into contiguous
1646 * kernel virtual space, using a pagetable protection of @prot.
1647 */
d0a21265
DR
1648void *__vmalloc_node_range(unsigned long size, unsigned long align,
1649 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
1650 pgprot_t prot, unsigned long vm_flags, int node,
1651 const void *caller)
1da177e4
LT
1652{
1653 struct vm_struct *area;
89219d37
CM
1654 void *addr;
1655 unsigned long real_size = size;
1da177e4
LT
1656
1657 size = PAGE_ALIGN(size);
4481374c 1658 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
de7d2b56 1659 goto fail;
1da177e4 1660
cb9e3c29
AR
1661 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1662 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 1663 if (!area)
de7d2b56 1664 goto fail;
1da177e4 1665
3722e13c 1666 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 1667 if (!addr)
b82225f3 1668 return NULL;
89219d37 1669
f5252e00 1670 /*
20fc02b4
ZY
1671 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1672 * flag. It means that vm_struct is not fully initialized.
4341fa45 1673 * Now, it is fully initialized, so remove this flag here.
f5252e00 1674 */
20fc02b4 1675 clear_vm_uninitialized_flag(area);
f5252e00 1676
89219d37 1677 /*
7f88f88f
CM
1678 * A ref_count = 2 is needed because vm_struct allocated in
1679 * __get_vm_area_node() contains a reference to the virtual address of
1680 * the vmalloc'ed block.
89219d37 1681 */
7f88f88f 1682 kmemleak_alloc(addr, real_size, 2, gfp_mask);
89219d37
CM
1683
1684 return addr;
de7d2b56
JP
1685
1686fail:
1687 warn_alloc_failed(gfp_mask, 0,
1688 "vmalloc: allocation failure: %lu bytes\n",
1689 real_size);
1690 return NULL;
1da177e4
LT
1691}
1692
d0a21265
DR
1693/**
1694 * __vmalloc_node - allocate virtually contiguous memory
1695 * @size: allocation size
1696 * @align: desired alignment
1697 * @gfp_mask: flags for the page level allocator
1698 * @prot: protection mask for the allocated pages
00ef2d2f 1699 * @node: node to use for allocation or NUMA_NO_NODE
d0a21265
DR
1700 * @caller: caller's return address
1701 *
1702 * Allocate enough pages to cover @size from the page level
1703 * allocator with @gfp_mask flags. Map them into contiguous
1704 * kernel virtual space, using a pagetable protection of @prot.
1705 */
1706static void *__vmalloc_node(unsigned long size, unsigned long align,
1707 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1708 int node, const void *caller)
d0a21265
DR
1709{
1710 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
cb9e3c29 1711 gfp_mask, prot, 0, node, caller);
d0a21265
DR
1712}
1713
930fc45a
CL
1714void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1715{
00ef2d2f 1716 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 1717 __builtin_return_address(0));
930fc45a 1718}
1da177e4
LT
1719EXPORT_SYMBOL(__vmalloc);
1720
e1ca7788
DY
1721static inline void *__vmalloc_node_flags(unsigned long size,
1722 int node, gfp_t flags)
1723{
1724 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1725 node, __builtin_return_address(0));
1726}
1727
1da177e4
LT
1728/**
1729 * vmalloc - allocate virtually contiguous memory
1da177e4 1730 * @size: allocation size
1da177e4
LT
1731 * Allocate enough pages to cover @size from the page level
1732 * allocator and map them into contiguous kernel virtual space.
1733 *
c1c8897f 1734 * For tight control over page level allocator and protection flags
1da177e4
LT
1735 * use __vmalloc() instead.
1736 */
1737void *vmalloc(unsigned long size)
1738{
00ef2d2f
DR
1739 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1740 GFP_KERNEL | __GFP_HIGHMEM);
1da177e4 1741}
1da177e4
LT
1742EXPORT_SYMBOL(vmalloc);
1743
e1ca7788
DY
1744/**
1745 * vzalloc - allocate virtually contiguous memory with zero fill
1746 * @size: allocation size
1747 * Allocate enough pages to cover @size from the page level
1748 * allocator and map them into contiguous kernel virtual space.
1749 * The memory allocated is set to zero.
1750 *
1751 * For tight control over page level allocator and protection flags
1752 * use __vmalloc() instead.
1753 */
1754void *vzalloc(unsigned long size)
1755{
00ef2d2f 1756 return __vmalloc_node_flags(size, NUMA_NO_NODE,
e1ca7788
DY
1757 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1758}
1759EXPORT_SYMBOL(vzalloc);
1760
83342314 1761/**
ead04089
REB
1762 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1763 * @size: allocation size
83342314 1764 *
ead04089
REB
1765 * The resulting memory area is zeroed so it can be mapped to userspace
1766 * without leaking data.
83342314
NP
1767 */
1768void *vmalloc_user(unsigned long size)
1769{
1770 struct vm_struct *area;
1771 void *ret;
1772
2dca6999
DM
1773 ret = __vmalloc_node(size, SHMLBA,
1774 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
00ef2d2f
DR
1775 PAGE_KERNEL, NUMA_NO_NODE,
1776 __builtin_return_address(0));
2b4ac44e 1777 if (ret) {
db64fe02 1778 area = find_vm_area(ret);
2b4ac44e 1779 area->flags |= VM_USERMAP;
2b4ac44e 1780 }
83342314
NP
1781 return ret;
1782}
1783EXPORT_SYMBOL(vmalloc_user);
1784
930fc45a
CL
1785/**
1786 * vmalloc_node - allocate memory on a specific node
930fc45a 1787 * @size: allocation size
d44e0780 1788 * @node: numa node
930fc45a
CL
1789 *
1790 * Allocate enough pages to cover @size from the page level
1791 * allocator and map them into contiguous kernel virtual space.
1792 *
c1c8897f 1793 * For tight control over page level allocator and protection flags
930fc45a
CL
1794 * use __vmalloc() instead.
1795 */
1796void *vmalloc_node(unsigned long size, int node)
1797{
2dca6999 1798 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
23016969 1799 node, __builtin_return_address(0));
930fc45a
CL
1800}
1801EXPORT_SYMBOL(vmalloc_node);
1802
e1ca7788
DY
1803/**
1804 * vzalloc_node - allocate memory on a specific node with zero fill
1805 * @size: allocation size
1806 * @node: numa node
1807 *
1808 * Allocate enough pages to cover @size from the page level
1809 * allocator and map them into contiguous kernel virtual space.
1810 * The memory allocated is set to zero.
1811 *
1812 * For tight control over page level allocator and protection flags
1813 * use __vmalloc_node() instead.
1814 */
1815void *vzalloc_node(unsigned long size, int node)
1816{
1817 return __vmalloc_node_flags(size, node,
1818 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1819}
1820EXPORT_SYMBOL(vzalloc_node);
1821
4dc3b16b
PP
1822#ifndef PAGE_KERNEL_EXEC
1823# define PAGE_KERNEL_EXEC PAGE_KERNEL
1824#endif
1825
1da177e4
LT
1826/**
1827 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
1828 * @size: allocation size
1829 *
1830 * Kernel-internal function to allocate enough pages to cover @size
1831 * the page level allocator and map them into contiguous and
1832 * executable kernel virtual space.
1833 *
c1c8897f 1834 * For tight control over page level allocator and protection flags
1da177e4
LT
1835 * use __vmalloc() instead.
1836 */
1837
1da177e4
LT
1838void *vmalloc_exec(unsigned long size)
1839{
2dca6999 1840 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
00ef2d2f 1841 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
1842}
1843
0d08e0d3 1844#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
7ac674f5 1845#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3 1846#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
7ac674f5 1847#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
0d08e0d3
AK
1848#else
1849#define GFP_VMALLOC32 GFP_KERNEL
1850#endif
1851
1da177e4
LT
1852/**
1853 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
1854 * @size: allocation size
1855 *
1856 * Allocate enough 32bit PA addressable pages to cover @size from the
1857 * page level allocator and map them into contiguous kernel virtual space.
1858 */
1859void *vmalloc_32(unsigned long size)
1860{
2dca6999 1861 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 1862 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 1863}
1da177e4
LT
1864EXPORT_SYMBOL(vmalloc_32);
1865
83342314 1866/**
ead04089 1867 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 1868 * @size: allocation size
ead04089
REB
1869 *
1870 * The resulting memory area is 32bit addressable and zeroed so it can be
1871 * mapped to userspace without leaking data.
83342314
NP
1872 */
1873void *vmalloc_32_user(unsigned long size)
1874{
1875 struct vm_struct *area;
1876 void *ret;
1877
2dca6999 1878 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
00ef2d2f 1879 NUMA_NO_NODE, __builtin_return_address(0));
2b4ac44e 1880 if (ret) {
db64fe02 1881 area = find_vm_area(ret);
2b4ac44e 1882 area->flags |= VM_USERMAP;
2b4ac44e 1883 }
83342314
NP
1884 return ret;
1885}
1886EXPORT_SYMBOL(vmalloc_32_user);
1887
d0107eb0
KH
1888/*
1889 * small helper routine , copy contents to buf from addr.
1890 * If the page is not present, fill zero.
1891 */
1892
1893static int aligned_vread(char *buf, char *addr, unsigned long count)
1894{
1895 struct page *p;
1896 int copied = 0;
1897
1898 while (count) {
1899 unsigned long offset, length;
1900
891c49ab 1901 offset = offset_in_page(addr);
d0107eb0
KH
1902 length = PAGE_SIZE - offset;
1903 if (length > count)
1904 length = count;
1905 p = vmalloc_to_page(addr);
1906 /*
1907 * To do safe access to this _mapped_ area, we need
1908 * lock. But adding lock here means that we need to add
1909 * overhead of vmalloc()/vfree() calles for this _debug_
1910 * interface, rarely used. Instead of that, we'll use
1911 * kmap() and get small overhead in this access function.
1912 */
1913 if (p) {
1914 /*
1915 * we can expect USER0 is not used (see vread/vwrite's
1916 * function description)
1917 */
9b04c5fe 1918 void *map = kmap_atomic(p);
d0107eb0 1919 memcpy(buf, map + offset, length);
9b04c5fe 1920 kunmap_atomic(map);
d0107eb0
KH
1921 } else
1922 memset(buf, 0, length);
1923
1924 addr += length;
1925 buf += length;
1926 copied += length;
1927 count -= length;
1928 }
1929 return copied;
1930}
1931
1932static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1933{
1934 struct page *p;
1935 int copied = 0;
1936
1937 while (count) {
1938 unsigned long offset, length;
1939
891c49ab 1940 offset = offset_in_page(addr);
d0107eb0
KH
1941 length = PAGE_SIZE - offset;
1942 if (length > count)
1943 length = count;
1944 p = vmalloc_to_page(addr);
1945 /*
1946 * To do safe access to this _mapped_ area, we need
1947 * lock. But adding lock here means that we need to add
1948 * overhead of vmalloc()/vfree() calles for this _debug_
1949 * interface, rarely used. Instead of that, we'll use
1950 * kmap() and get small overhead in this access function.
1951 */
1952 if (p) {
1953 /*
1954 * we can expect USER0 is not used (see vread/vwrite's
1955 * function description)
1956 */
9b04c5fe 1957 void *map = kmap_atomic(p);
d0107eb0 1958 memcpy(map + offset, buf, length);
9b04c5fe 1959 kunmap_atomic(map);
d0107eb0
KH
1960 }
1961 addr += length;
1962 buf += length;
1963 copied += length;
1964 count -= length;
1965 }
1966 return copied;
1967}
1968
1969/**
1970 * vread() - read vmalloc area in a safe way.
1971 * @buf: buffer for reading data
1972 * @addr: vm address.
1973 * @count: number of bytes to be read.
1974 *
1975 * Returns # of bytes which addr and buf should be increased.
1976 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1977 * includes any intersect with alive vmalloc area.
1978 *
1979 * This function checks that addr is a valid vmalloc'ed area, and
1980 * copy data from that area to a given buffer. If the given memory range
1981 * of [addr...addr+count) includes some valid address, data is copied to
1982 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1983 * IOREMAP area is treated as memory hole and no copy is done.
1984 *
1985 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 1986 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
1987 *
1988 * Note: In usual ops, vread() is never necessary because the caller
1989 * should know vmalloc() area is valid and can use memcpy().
1990 * This is for routines which have to access vmalloc area without
1991 * any informaion, as /dev/kmem.
1992 *
1993 */
1994
1da177e4
LT
1995long vread(char *buf, char *addr, unsigned long count)
1996{
e81ce85f
JK
1997 struct vmap_area *va;
1998 struct vm_struct *vm;
1da177e4 1999 char *vaddr, *buf_start = buf;
d0107eb0 2000 unsigned long buflen = count;
1da177e4
LT
2001 unsigned long n;
2002
2003 /* Don't allow overflow */
2004 if ((unsigned long) addr + count < count)
2005 count = -(unsigned long) addr;
2006
e81ce85f
JK
2007 spin_lock(&vmap_area_lock);
2008 list_for_each_entry(va, &vmap_area_list, list) {
2009 if (!count)
2010 break;
2011
2012 if (!(va->flags & VM_VM_AREA))
2013 continue;
2014
2015 vm = va->vm;
2016 vaddr = (char *) vm->addr;
762216ab 2017 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2018 continue;
2019 while (addr < vaddr) {
2020 if (count == 0)
2021 goto finished;
2022 *buf = '\0';
2023 buf++;
2024 addr++;
2025 count--;
2026 }
762216ab 2027 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2028 if (n > count)
2029 n = count;
e81ce85f 2030 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2031 aligned_vread(buf, addr, n);
2032 else /* IOREMAP area is treated as memory hole */
2033 memset(buf, 0, n);
2034 buf += n;
2035 addr += n;
2036 count -= n;
1da177e4
LT
2037 }
2038finished:
e81ce85f 2039 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2040
2041 if (buf == buf_start)
2042 return 0;
2043 /* zero-fill memory holes */
2044 if (buf != buf_start + buflen)
2045 memset(buf, 0, buflen - (buf - buf_start));
2046
2047 return buflen;
1da177e4
LT
2048}
2049
d0107eb0
KH
2050/**
2051 * vwrite() - write vmalloc area in a safe way.
2052 * @buf: buffer for source data
2053 * @addr: vm address.
2054 * @count: number of bytes to be read.
2055 *
2056 * Returns # of bytes which addr and buf should be incresed.
2057 * (same number to @count).
2058 * If [addr...addr+count) doesn't includes any intersect with valid
2059 * vmalloc area, returns 0.
2060 *
2061 * This function checks that addr is a valid vmalloc'ed area, and
2062 * copy data from a buffer to the given addr. If specified range of
2063 * [addr...addr+count) includes some valid address, data is copied from
2064 * proper area of @buf. If there are memory holes, no copy to hole.
2065 * IOREMAP area is treated as memory hole and no copy is done.
2066 *
2067 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 2068 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
2069 *
2070 * Note: In usual ops, vwrite() is never necessary because the caller
2071 * should know vmalloc() area is valid and can use memcpy().
2072 * This is for routines which have to access vmalloc area without
2073 * any informaion, as /dev/kmem.
d0107eb0
KH
2074 */
2075
1da177e4
LT
2076long vwrite(char *buf, char *addr, unsigned long count)
2077{
e81ce85f
JK
2078 struct vmap_area *va;
2079 struct vm_struct *vm;
d0107eb0
KH
2080 char *vaddr;
2081 unsigned long n, buflen;
2082 int copied = 0;
1da177e4
LT
2083
2084 /* Don't allow overflow */
2085 if ((unsigned long) addr + count < count)
2086 count = -(unsigned long) addr;
d0107eb0 2087 buflen = count;
1da177e4 2088
e81ce85f
JK
2089 spin_lock(&vmap_area_lock);
2090 list_for_each_entry(va, &vmap_area_list, list) {
2091 if (!count)
2092 break;
2093
2094 if (!(va->flags & VM_VM_AREA))
2095 continue;
2096
2097 vm = va->vm;
2098 vaddr = (char *) vm->addr;
762216ab 2099 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2100 continue;
2101 while (addr < vaddr) {
2102 if (count == 0)
2103 goto finished;
2104 buf++;
2105 addr++;
2106 count--;
2107 }
762216ab 2108 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2109 if (n > count)
2110 n = count;
e81ce85f 2111 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2112 aligned_vwrite(buf, addr, n);
2113 copied++;
2114 }
2115 buf += n;
2116 addr += n;
2117 count -= n;
1da177e4
LT
2118 }
2119finished:
e81ce85f 2120 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2121 if (!copied)
2122 return 0;
2123 return buflen;
1da177e4 2124}
83342314
NP
2125
2126/**
e69e9d4a
HD
2127 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2128 * @vma: vma to cover
2129 * @uaddr: target user address to start at
2130 * @kaddr: virtual address of vmalloc kernel memory
2131 * @size: size of map area
7682486b
RD
2132 *
2133 * Returns: 0 for success, -Exxx on failure
83342314 2134 *
e69e9d4a
HD
2135 * This function checks that @kaddr is a valid vmalloc'ed area,
2136 * and that it is big enough to cover the range starting at
2137 * @uaddr in @vma. Will return failure if that criteria isn't
2138 * met.
83342314 2139 *
72fd4a35 2140 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 2141 */
e69e9d4a
HD
2142int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2143 void *kaddr, unsigned long size)
83342314
NP
2144{
2145 struct vm_struct *area;
83342314 2146
e69e9d4a
HD
2147 size = PAGE_ALIGN(size);
2148
2149 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
2150 return -EINVAL;
2151
e69e9d4a 2152 area = find_vm_area(kaddr);
83342314 2153 if (!area)
db64fe02 2154 return -EINVAL;
83342314
NP
2155
2156 if (!(area->flags & VM_USERMAP))
db64fe02 2157 return -EINVAL;
83342314 2158
e69e9d4a 2159 if (kaddr + size > area->addr + area->size)
db64fe02 2160 return -EINVAL;
83342314 2161
83342314 2162 do {
e69e9d4a 2163 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
2164 int ret;
2165
83342314
NP
2166 ret = vm_insert_page(vma, uaddr, page);
2167 if (ret)
2168 return ret;
2169
2170 uaddr += PAGE_SIZE;
e69e9d4a
HD
2171 kaddr += PAGE_SIZE;
2172 size -= PAGE_SIZE;
2173 } while (size > 0);
83342314 2174
314e51b9 2175 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 2176
db64fe02 2177 return 0;
83342314 2178}
e69e9d4a
HD
2179EXPORT_SYMBOL(remap_vmalloc_range_partial);
2180
2181/**
2182 * remap_vmalloc_range - map vmalloc pages to userspace
2183 * @vma: vma to cover (map full range of vma)
2184 * @addr: vmalloc memory
2185 * @pgoff: number of pages into addr before first page to map
2186 *
2187 * Returns: 0 for success, -Exxx on failure
2188 *
2189 * This function checks that addr is a valid vmalloc'ed area, and
2190 * that it is big enough to cover the vma. Will return failure if
2191 * that criteria isn't met.
2192 *
2193 * Similar to remap_pfn_range() (see mm/memory.c)
2194 */
2195int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2196 unsigned long pgoff)
2197{
2198 return remap_vmalloc_range_partial(vma, vma->vm_start,
2199 addr + (pgoff << PAGE_SHIFT),
2200 vma->vm_end - vma->vm_start);
2201}
83342314
NP
2202EXPORT_SYMBOL(remap_vmalloc_range);
2203
1eeb66a1
CH
2204/*
2205 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2206 * have one.
2207 */
3b32123d 2208void __weak vmalloc_sync_all(void)
1eeb66a1
CH
2209{
2210}
5f4352fb
JF
2211
2212
2f569afd 2213static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb 2214{
cd12909c
DV
2215 pte_t ***p = data;
2216
2217 if (p) {
2218 *(*p) = pte;
2219 (*p)++;
2220 }
5f4352fb
JF
2221 return 0;
2222}
2223
2224/**
2225 * alloc_vm_area - allocate a range of kernel address space
2226 * @size: size of the area
cd12909c 2227 * @ptes: returns the PTEs for the address space
7682486b
RD
2228 *
2229 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
2230 *
2231 * This function reserves a range of kernel address space, and
2232 * allocates pagetables to map that range. No actual mappings
cd12909c
DV
2233 * are created.
2234 *
2235 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2236 * allocated for the VM area are returned.
5f4352fb 2237 */
cd12909c 2238struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
2239{
2240 struct vm_struct *area;
2241
23016969
CL
2242 area = get_vm_area_caller(size, VM_IOREMAP,
2243 __builtin_return_address(0));
5f4352fb
JF
2244 if (area == NULL)
2245 return NULL;
2246
2247 /*
2248 * This ensures that page tables are constructed for this region
2249 * of kernel virtual address space and mapped into init_mm.
2250 */
2251 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 2252 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
2253 free_vm_area(area);
2254 return NULL;
2255 }
2256
5f4352fb
JF
2257 return area;
2258}
2259EXPORT_SYMBOL_GPL(alloc_vm_area);
2260
2261void free_vm_area(struct vm_struct *area)
2262{
2263 struct vm_struct *ret;
2264 ret = remove_vm_area(area->addr);
2265 BUG_ON(ret != area);
2266 kfree(area);
2267}
2268EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 2269
4f8b02b4 2270#ifdef CONFIG_SMP
ca23e405
TH
2271static struct vmap_area *node_to_va(struct rb_node *n)
2272{
2273 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2274}
2275
2276/**
2277 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2278 * @end: target address
2279 * @pnext: out arg for the next vmap_area
2280 * @pprev: out arg for the previous vmap_area
2281 *
2282 * Returns: %true if either or both of next and prev are found,
2283 * %false if no vmap_area exists
2284 *
2285 * Find vmap_areas end addresses of which enclose @end. ie. if not
2286 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2287 */
2288static bool pvm_find_next_prev(unsigned long end,
2289 struct vmap_area **pnext,
2290 struct vmap_area **pprev)
2291{
2292 struct rb_node *n = vmap_area_root.rb_node;
2293 struct vmap_area *va = NULL;
2294
2295 while (n) {
2296 va = rb_entry(n, struct vmap_area, rb_node);
2297 if (end < va->va_end)
2298 n = n->rb_left;
2299 else if (end > va->va_end)
2300 n = n->rb_right;
2301 else
2302 break;
2303 }
2304
2305 if (!va)
2306 return false;
2307
2308 if (va->va_end > end) {
2309 *pnext = va;
2310 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2311 } else {
2312 *pprev = va;
2313 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2314 }
2315 return true;
2316}
2317
2318/**
2319 * pvm_determine_end - find the highest aligned address between two vmap_areas
2320 * @pnext: in/out arg for the next vmap_area
2321 * @pprev: in/out arg for the previous vmap_area
2322 * @align: alignment
2323 *
2324 * Returns: determined end address
2325 *
2326 * Find the highest aligned address between *@pnext and *@pprev below
2327 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2328 * down address is between the end addresses of the two vmap_areas.
2329 *
2330 * Please note that the address returned by this function may fall
2331 * inside *@pnext vmap_area. The caller is responsible for checking
2332 * that.
2333 */
2334static unsigned long pvm_determine_end(struct vmap_area **pnext,
2335 struct vmap_area **pprev,
2336 unsigned long align)
2337{
2338 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2339 unsigned long addr;
2340
2341 if (*pnext)
2342 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2343 else
2344 addr = vmalloc_end;
2345
2346 while (*pprev && (*pprev)->va_end > addr) {
2347 *pnext = *pprev;
2348 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2349 }
2350
2351 return addr;
2352}
2353
2354/**
2355 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2356 * @offsets: array containing offset of each area
2357 * @sizes: array containing size of each area
2358 * @nr_vms: the number of areas to allocate
2359 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
2360 *
2361 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2362 * vm_structs on success, %NULL on failure
2363 *
2364 * Percpu allocator wants to use congruent vm areas so that it can
2365 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
2366 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2367 * be scattered pretty far, distance between two areas easily going up
2368 * to gigabytes. To avoid interacting with regular vmallocs, these
2369 * areas are allocated from top.
ca23e405
TH
2370 *
2371 * Despite its complicated look, this allocator is rather simple. It
2372 * does everything top-down and scans areas from the end looking for
2373 * matching slot. While scanning, if any of the areas overlaps with
2374 * existing vmap_area, the base address is pulled down to fit the
2375 * area. Scanning is repeated till all the areas fit and then all
2376 * necessary data structres are inserted and the result is returned.
2377 */
2378struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2379 const size_t *sizes, int nr_vms,
ec3f64fc 2380 size_t align)
ca23e405
TH
2381{
2382 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2383 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2384 struct vmap_area **vas, *prev, *next;
2385 struct vm_struct **vms;
2386 int area, area2, last_area, term_area;
2387 unsigned long base, start, end, last_end;
2388 bool purged = false;
2389
ca23e405 2390 /* verify parameters and allocate data structures */
891c49ab 2391 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
2392 for (last_area = 0, area = 0; area < nr_vms; area++) {
2393 start = offsets[area];
2394 end = start + sizes[area];
2395
2396 /* is everything aligned properly? */
2397 BUG_ON(!IS_ALIGNED(offsets[area], align));
2398 BUG_ON(!IS_ALIGNED(sizes[area], align));
2399
2400 /* detect the area with the highest address */
2401 if (start > offsets[last_area])
2402 last_area = area;
2403
2404 for (area2 = 0; area2 < nr_vms; area2++) {
2405 unsigned long start2 = offsets[area2];
2406 unsigned long end2 = start2 + sizes[area2];
2407
2408 if (area2 == area)
2409 continue;
2410
2411 BUG_ON(start2 >= start && start2 < end);
2412 BUG_ON(end2 <= end && end2 > start);
2413 }
2414 }
2415 last_end = offsets[last_area] + sizes[last_area];
2416
2417 if (vmalloc_end - vmalloc_start < last_end) {
2418 WARN_ON(true);
2419 return NULL;
2420 }
2421
4d67d860
TM
2422 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2423 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 2424 if (!vas || !vms)
f1db7afd 2425 goto err_free2;
ca23e405
TH
2426
2427 for (area = 0; area < nr_vms; area++) {
ec3f64fc
DR
2428 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2429 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
2430 if (!vas[area] || !vms[area])
2431 goto err_free;
2432 }
2433retry:
2434 spin_lock(&vmap_area_lock);
2435
2436 /* start scanning - we scan from the top, begin with the last area */
2437 area = term_area = last_area;
2438 start = offsets[area];
2439 end = start + sizes[area];
2440
2441 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2442 base = vmalloc_end - last_end;
2443 goto found;
2444 }
2445 base = pvm_determine_end(&next, &prev, align) - end;
2446
2447 while (true) {
2448 BUG_ON(next && next->va_end <= base + end);
2449 BUG_ON(prev && prev->va_end > base + end);
2450
2451 /*
2452 * base might have underflowed, add last_end before
2453 * comparing.
2454 */
2455 if (base + last_end < vmalloc_start + last_end) {
2456 spin_unlock(&vmap_area_lock);
2457 if (!purged) {
2458 purge_vmap_area_lazy();
2459 purged = true;
2460 goto retry;
2461 }
2462 goto err_free;
2463 }
2464
2465 /*
2466 * If next overlaps, move base downwards so that it's
2467 * right below next and then recheck.
2468 */
2469 if (next && next->va_start < base + end) {
2470 base = pvm_determine_end(&next, &prev, align) - end;
2471 term_area = area;
2472 continue;
2473 }
2474
2475 /*
2476 * If prev overlaps, shift down next and prev and move
2477 * base so that it's right below new next and then
2478 * recheck.
2479 */
2480 if (prev && prev->va_end > base + start) {
2481 next = prev;
2482 prev = node_to_va(rb_prev(&next->rb_node));
2483 base = pvm_determine_end(&next, &prev, align) - end;
2484 term_area = area;
2485 continue;
2486 }
2487
2488 /*
2489 * This area fits, move on to the previous one. If
2490 * the previous one is the terminal one, we're done.
2491 */
2492 area = (area + nr_vms - 1) % nr_vms;
2493 if (area == term_area)
2494 break;
2495 start = offsets[area];
2496 end = start + sizes[area];
2497 pvm_find_next_prev(base + end, &next, &prev);
2498 }
2499found:
2500 /* we've found a fitting base, insert all va's */
2501 for (area = 0; area < nr_vms; area++) {
2502 struct vmap_area *va = vas[area];
2503
2504 va->va_start = base + offsets[area];
2505 va->va_end = va->va_start + sizes[area];
2506 __insert_vmap_area(va);
2507 }
2508
2509 vmap_area_pcpu_hole = base + offsets[last_area];
2510
2511 spin_unlock(&vmap_area_lock);
2512
2513 /* insert all vm's */
2514 for (area = 0; area < nr_vms; area++)
3645cb4a
ZY
2515 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2516 pcpu_get_vm_areas);
ca23e405
TH
2517
2518 kfree(vas);
2519 return vms;
2520
2521err_free:
2522 for (area = 0; area < nr_vms; area++) {
f1db7afd
KC
2523 kfree(vas[area]);
2524 kfree(vms[area]);
ca23e405 2525 }
f1db7afd 2526err_free2:
ca23e405
TH
2527 kfree(vas);
2528 kfree(vms);
2529 return NULL;
2530}
2531
2532/**
2533 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2534 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2535 * @nr_vms: the number of allocated areas
2536 *
2537 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2538 */
2539void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2540{
2541 int i;
2542
2543 for (i = 0; i < nr_vms; i++)
2544 free_vm_area(vms[i]);
2545 kfree(vms);
2546}
4f8b02b4 2547#endif /* CONFIG_SMP */
a10aa579
CL
2548
2549#ifdef CONFIG_PROC_FS
2550static void *s_start(struct seq_file *m, loff_t *pos)
d4033afd 2551 __acquires(&vmap_area_lock)
a10aa579
CL
2552{
2553 loff_t n = *pos;
d4033afd 2554 struct vmap_area *va;
a10aa579 2555
d4033afd 2556 spin_lock(&vmap_area_lock);
6219c2a2 2557 va = list_first_entry(&vmap_area_list, typeof(*va), list);
d4033afd 2558 while (n > 0 && &va->list != &vmap_area_list) {
a10aa579 2559 n--;
6219c2a2 2560 va = list_next_entry(va, list);
a10aa579 2561 }
d4033afd
JK
2562 if (!n && &va->list != &vmap_area_list)
2563 return va;
a10aa579
CL
2564
2565 return NULL;
2566
2567}
2568
2569static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2570{
d4033afd 2571 struct vmap_area *va = p, *next;
a10aa579
CL
2572
2573 ++*pos;
6219c2a2 2574 next = list_next_entry(va, list);
d4033afd
JK
2575 if (&next->list != &vmap_area_list)
2576 return next;
2577
2578 return NULL;
a10aa579
CL
2579}
2580
2581static void s_stop(struct seq_file *m, void *p)
d4033afd 2582 __releases(&vmap_area_lock)
a10aa579 2583{
d4033afd 2584 spin_unlock(&vmap_area_lock);
a10aa579
CL
2585}
2586
a47a126a
ED
2587static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2588{
e5adfffc 2589 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
2590 unsigned int nr, *counters = m->private;
2591
2592 if (!counters)
2593 return;
2594
af12346c
WL
2595 if (v->flags & VM_UNINITIALIZED)
2596 return;
7e5b528b
DV
2597 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2598 smp_rmb();
af12346c 2599
a47a126a
ED
2600 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2601
2602 for (nr = 0; nr < v->nr_pages; nr++)
2603 counters[page_to_nid(v->pages[nr])]++;
2604
2605 for_each_node_state(nr, N_HIGH_MEMORY)
2606 if (counters[nr])
2607 seq_printf(m, " N%u=%u", nr, counters[nr]);
2608 }
2609}
2610
a10aa579
CL
2611static int s_show(struct seq_file *m, void *p)
2612{
d4033afd
JK
2613 struct vmap_area *va = p;
2614 struct vm_struct *v;
2615
c2ce8c14
WL
2616 /*
2617 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2618 * behalf of vmap area is being tear down or vm_map_ram allocation.
2619 */
2620 if (!(va->flags & VM_VM_AREA))
d4033afd 2621 return 0;
d4033afd
JK
2622
2623 v = va->vm;
a10aa579 2624
45ec1690 2625 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
2626 v->addr, v->addr + v->size, v->size);
2627
62c70bce
JP
2628 if (v->caller)
2629 seq_printf(m, " %pS", v->caller);
23016969 2630
a10aa579
CL
2631 if (v->nr_pages)
2632 seq_printf(m, " pages=%d", v->nr_pages);
2633
2634 if (v->phys_addr)
ffa71f33 2635 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
a10aa579
CL
2636
2637 if (v->flags & VM_IOREMAP)
f4527c90 2638 seq_puts(m, " ioremap");
a10aa579
CL
2639
2640 if (v->flags & VM_ALLOC)
f4527c90 2641 seq_puts(m, " vmalloc");
a10aa579
CL
2642
2643 if (v->flags & VM_MAP)
f4527c90 2644 seq_puts(m, " vmap");
a10aa579
CL
2645
2646 if (v->flags & VM_USERMAP)
f4527c90 2647 seq_puts(m, " user");
a10aa579 2648
244d63ee 2649 if (is_vmalloc_addr(v->pages))
f4527c90 2650 seq_puts(m, " vpages");
a10aa579 2651
a47a126a 2652 show_numa_info(m, v);
a10aa579
CL
2653 seq_putc(m, '\n');
2654 return 0;
2655}
2656
5f6a6a9c 2657static const struct seq_operations vmalloc_op = {
a10aa579
CL
2658 .start = s_start,
2659 .next = s_next,
2660 .stop = s_stop,
2661 .show = s_show,
2662};
5f6a6a9c
AD
2663
2664static int vmalloc_open(struct inode *inode, struct file *file)
2665{
703394c1
RJ
2666 if (IS_ENABLED(CONFIG_NUMA))
2667 return seq_open_private(file, &vmalloc_op,
2668 nr_node_ids * sizeof(unsigned int));
2669 else
2670 return seq_open(file, &vmalloc_op);
5f6a6a9c
AD
2671}
2672
2673static const struct file_operations proc_vmalloc_operations = {
2674 .open = vmalloc_open,
2675 .read = seq_read,
2676 .llseek = seq_lseek,
2677 .release = seq_release_private,
2678};
2679
2680static int __init proc_vmalloc_init(void)
2681{
2682 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2683 return 0;
2684}
2685module_init(proc_vmalloc_init);
db3808c1 2686
a10aa579
CL
2687#endif
2688