]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/vmalloc.c
mm/vmalloc: track which page-table levels were modified
[mirror_ubuntu-hirsute-kernel.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/vmalloc.c
4 *
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 9 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
10 */
11
db64fe02 12#include <linux/vmalloc.h>
1da177e4
LT
13#include <linux/mm.h>
14#include <linux/module.h>
15#include <linux/highmem.h>
c3edc401 16#include <linux/sched/signal.h>
1da177e4
LT
17#include <linux/slab.h>
18#include <linux/spinlock.h>
19#include <linux/interrupt.h>
5f6a6a9c 20#include <linux/proc_fs.h>
a10aa579 21#include <linux/seq_file.h>
868b104d 22#include <linux/set_memory.h>
3ac7fe5a 23#include <linux/debugobjects.h>
23016969 24#include <linux/kallsyms.h>
db64fe02 25#include <linux/list.h>
4da56b99 26#include <linux/notifier.h>
db64fe02
NP
27#include <linux/rbtree.h>
28#include <linux/radix-tree.h>
29#include <linux/rcupdate.h>
f0aa6617 30#include <linux/pfn.h>
89219d37 31#include <linux/kmemleak.h>
60063497 32#include <linux/atomic.h>
3b32123d 33#include <linux/compiler.h>
32fcfd40 34#include <linux/llist.h>
0f616be1 35#include <linux/bitops.h>
68ad4a33 36#include <linux/rbtree_augmented.h>
bdebd6a2 37#include <linux/overflow.h>
3b32123d 38
7c0f6ba6 39#include <linux/uaccess.h>
1da177e4 40#include <asm/tlbflush.h>
2dca6999 41#include <asm/shmparam.h>
1da177e4 42
dd56b046
MG
43#include "internal.h"
44
186525bd
IM
45bool is_vmalloc_addr(const void *x)
46{
47 unsigned long addr = (unsigned long)x;
48
49 return addr >= VMALLOC_START && addr < VMALLOC_END;
50}
51EXPORT_SYMBOL(is_vmalloc_addr);
52
32fcfd40
AV
53struct vfree_deferred {
54 struct llist_head list;
55 struct work_struct wq;
56};
57static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
58
59static void __vunmap(const void *, int);
60
61static void free_work(struct work_struct *w)
62{
63 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
64 struct llist_node *t, *llnode;
65
66 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
67 __vunmap((void *)llnode, 1);
32fcfd40
AV
68}
69
db64fe02 70/*** Page table manipulation functions ***/
b221385b 71
2ba3e694
JR
72static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
73 pgtbl_mod_mask *mask)
1da177e4
LT
74{
75 pte_t *pte;
76
77 pte = pte_offset_kernel(pmd, addr);
78 do {
79 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
80 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
81 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 82 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
83}
84
2ba3e694
JR
85static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
86 pgtbl_mod_mask *mask)
1da177e4
LT
87{
88 pmd_t *pmd;
89 unsigned long next;
2ba3e694 90 int cleared;
1da177e4
LT
91
92 pmd = pmd_offset(pud, addr);
93 do {
94 next = pmd_addr_end(addr, end);
2ba3e694
JR
95
96 cleared = pmd_clear_huge(pmd);
97 if (cleared || pmd_bad(*pmd))
98 *mask |= PGTBL_PMD_MODIFIED;
99
100 if (cleared)
b9820d8f 101 continue;
1da177e4
LT
102 if (pmd_none_or_clear_bad(pmd))
103 continue;
2ba3e694 104 vunmap_pte_range(pmd, addr, next, mask);
1da177e4
LT
105 } while (pmd++, addr = next, addr != end);
106}
107
2ba3e694
JR
108static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
109 pgtbl_mod_mask *mask)
1da177e4
LT
110{
111 pud_t *pud;
112 unsigned long next;
2ba3e694 113 int cleared;
1da177e4 114
c2febafc 115 pud = pud_offset(p4d, addr);
1da177e4
LT
116 do {
117 next = pud_addr_end(addr, end);
2ba3e694
JR
118
119 cleared = pud_clear_huge(pud);
120 if (cleared || pud_bad(*pud))
121 *mask |= PGTBL_PUD_MODIFIED;
122
123 if (cleared)
b9820d8f 124 continue;
1da177e4
LT
125 if (pud_none_or_clear_bad(pud))
126 continue;
2ba3e694 127 vunmap_pmd_range(pud, addr, next, mask);
1da177e4
LT
128 } while (pud++, addr = next, addr != end);
129}
130
2ba3e694
JR
131static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
132 pgtbl_mod_mask *mask)
c2febafc
KS
133{
134 p4d_t *p4d;
135 unsigned long next;
2ba3e694 136 int cleared;
c2febafc
KS
137
138 p4d = p4d_offset(pgd, addr);
139 do {
140 next = p4d_addr_end(addr, end);
2ba3e694
JR
141
142 cleared = p4d_clear_huge(p4d);
143 if (cleared || p4d_bad(*p4d))
144 *mask |= PGTBL_P4D_MODIFIED;
145
146 if (cleared)
c2febafc
KS
147 continue;
148 if (p4d_none_or_clear_bad(p4d))
149 continue;
2ba3e694 150 vunmap_pud_range(p4d, addr, next, mask);
c2febafc
KS
151 } while (p4d++, addr = next, addr != end);
152}
153
b521c43f
CH
154/**
155 * unmap_kernel_range_noflush - unmap kernel VM area
2ba3e694 156 * @start: start of the VM area to unmap
b521c43f
CH
157 * @size: size of the VM area to unmap
158 *
159 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size specify
160 * should have been allocated using get_vm_area() and its friends.
161 *
162 * NOTE:
163 * This function does NOT do any cache flushing. The caller is responsible
164 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
165 * function and flush_tlb_kernel_range() after.
166 */
2ba3e694 167void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
1da177e4 168{
2ba3e694 169 unsigned long end = start + size;
1da177e4 170 unsigned long next;
b521c43f 171 pgd_t *pgd;
2ba3e694
JR
172 unsigned long addr = start;
173 pgtbl_mod_mask mask = 0;
1da177e4
LT
174
175 BUG_ON(addr >= end);
2ba3e694 176 start = addr;
1da177e4 177 pgd = pgd_offset_k(addr);
1da177e4
LT
178 do {
179 next = pgd_addr_end(addr, end);
2ba3e694
JR
180 if (pgd_bad(*pgd))
181 mask |= PGTBL_PGD_MODIFIED;
1da177e4
LT
182 if (pgd_none_or_clear_bad(pgd))
183 continue;
2ba3e694 184 vunmap_p4d_range(pgd, addr, next, &mask);
1da177e4 185 } while (pgd++, addr = next, addr != end);
2ba3e694
JR
186
187 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
188 arch_sync_kernel_mappings(start, end);
1da177e4
LT
189}
190
191static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
2ba3e694
JR
192 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
193 pgtbl_mod_mask *mask)
1da177e4
LT
194{
195 pte_t *pte;
196
db64fe02
NP
197 /*
198 * nr is a running index into the array which helps higher level
199 * callers keep track of where we're up to.
200 */
201
2ba3e694 202 pte = pte_alloc_kernel_track(pmd, addr, mask);
1da177e4
LT
203 if (!pte)
204 return -ENOMEM;
205 do {
db64fe02
NP
206 struct page *page = pages[*nr];
207
208 if (WARN_ON(!pte_none(*pte)))
209 return -EBUSY;
210 if (WARN_ON(!page))
1da177e4
LT
211 return -ENOMEM;
212 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 213 (*nr)++;
1da177e4 214 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 215 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
216 return 0;
217}
218
db64fe02 219static int vmap_pmd_range(pud_t *pud, unsigned long addr,
2ba3e694
JR
220 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
221 pgtbl_mod_mask *mask)
1da177e4
LT
222{
223 pmd_t *pmd;
224 unsigned long next;
225
2ba3e694 226 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
1da177e4
LT
227 if (!pmd)
228 return -ENOMEM;
229 do {
230 next = pmd_addr_end(addr, end);
2ba3e694 231 if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
1da177e4
LT
232 return -ENOMEM;
233 } while (pmd++, addr = next, addr != end);
234 return 0;
235}
236
c2febafc 237static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
2ba3e694
JR
238 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
239 pgtbl_mod_mask *mask)
1da177e4
LT
240{
241 pud_t *pud;
242 unsigned long next;
243
2ba3e694 244 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
1da177e4
LT
245 if (!pud)
246 return -ENOMEM;
247 do {
248 next = pud_addr_end(addr, end);
2ba3e694 249 if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
1da177e4
LT
250 return -ENOMEM;
251 } while (pud++, addr = next, addr != end);
252 return 0;
253}
254
c2febafc 255static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
2ba3e694
JR
256 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
257 pgtbl_mod_mask *mask)
c2febafc
KS
258{
259 p4d_t *p4d;
260 unsigned long next;
261
2ba3e694 262 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
c2febafc
KS
263 if (!p4d)
264 return -ENOMEM;
265 do {
266 next = p4d_addr_end(addr, end);
2ba3e694 267 if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
c2febafc
KS
268 return -ENOMEM;
269 } while (p4d++, addr = next, addr != end);
270 return 0;
271}
272
b521c43f
CH
273/**
274 * map_kernel_range_noflush - map kernel VM area with the specified pages
275 * @addr: start of the VM area to map
276 * @size: size of the VM area to map
277 * @prot: page protection flags to use
278 * @pages: pages to map
db64fe02 279 *
b521c43f
CH
280 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size specify should
281 * have been allocated using get_vm_area() and its friends.
282 *
283 * NOTE:
284 * This function does NOT do any cache flushing. The caller is responsible for
285 * calling flush_cache_vmap() on to-be-mapped areas before calling this
286 * function.
287 *
288 * RETURNS:
60bb4465 289 * 0 on success, -errno on failure.
db64fe02 290 */
b521c43f
CH
291int map_kernel_range_noflush(unsigned long addr, unsigned long size,
292 pgprot_t prot, struct page **pages)
1da177e4 293{
2ba3e694 294 unsigned long start = addr;
b521c43f 295 unsigned long end = addr + size;
1da177e4 296 unsigned long next;
b521c43f 297 pgd_t *pgd;
db64fe02
NP
298 int err = 0;
299 int nr = 0;
2ba3e694 300 pgtbl_mod_mask mask = 0;
1da177e4
LT
301
302 BUG_ON(addr >= end);
303 pgd = pgd_offset_k(addr);
1da177e4
LT
304 do {
305 next = pgd_addr_end(addr, end);
2ba3e694
JR
306 if (pgd_bad(*pgd))
307 mask |= PGTBL_PGD_MODIFIED;
308 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
1da177e4 309 if (err)
bf88c8c8 310 return err;
1da177e4 311 } while (pgd++, addr = next, addr != end);
db64fe02 312
2ba3e694
JR
313 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
314 arch_sync_kernel_mappings(start, end);
315
60bb4465 316 return 0;
1da177e4
LT
317}
318
ed1f324c
CH
319int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
320 struct page **pages)
8fc48985
TH
321{
322 int ret;
323
a29adb62
CH
324 ret = map_kernel_range_noflush(start, size, prot, pages);
325 flush_cache_vmap(start, start + size);
8fc48985
TH
326 return ret;
327}
328
81ac3ad9 329int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
330{
331 /*
ab4f2ee1 332 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
333 * and fall back on vmalloc() if that fails. Others
334 * just put it in the vmalloc space.
335 */
336#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
337 unsigned long addr = (unsigned long)x;
338 if (addr >= MODULES_VADDR && addr < MODULES_END)
339 return 1;
340#endif
341 return is_vmalloc_addr(x);
342}
343
48667e7a 344/*
add688fb 345 * Walk a vmap address to the struct page it maps.
48667e7a 346 */
add688fb 347struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
348{
349 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 350 struct page *page = NULL;
48667e7a 351 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
352 p4d_t *p4d;
353 pud_t *pud;
354 pmd_t *pmd;
355 pte_t *ptep, pte;
48667e7a 356
7aa413de
IM
357 /*
358 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
359 * architectures that do not vmalloc module space
360 */
73bdf0a6 361 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 362
c2febafc
KS
363 if (pgd_none(*pgd))
364 return NULL;
365 p4d = p4d_offset(pgd, addr);
366 if (p4d_none(*p4d))
367 return NULL;
368 pud = pud_offset(p4d, addr);
029c54b0
AB
369
370 /*
371 * Don't dereference bad PUD or PMD (below) entries. This will also
372 * identify huge mappings, which we may encounter on architectures
373 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
374 * identified as vmalloc addresses by is_vmalloc_addr(), but are
375 * not [unambiguously] associated with a struct page, so there is
376 * no correct value to return for them.
377 */
378 WARN_ON_ONCE(pud_bad(*pud));
379 if (pud_none(*pud) || pud_bad(*pud))
c2febafc
KS
380 return NULL;
381 pmd = pmd_offset(pud, addr);
029c54b0
AB
382 WARN_ON_ONCE(pmd_bad(*pmd));
383 if (pmd_none(*pmd) || pmd_bad(*pmd))
c2febafc
KS
384 return NULL;
385
386 ptep = pte_offset_map(pmd, addr);
387 pte = *ptep;
388 if (pte_present(pte))
389 page = pte_page(pte);
390 pte_unmap(ptep);
add688fb 391 return page;
48667e7a 392}
add688fb 393EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
394
395/*
add688fb 396 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 397 */
add688fb 398unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 399{
add688fb 400 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 401}
add688fb 402EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 403
db64fe02
NP
404
405/*** Global kva allocator ***/
406
bb850f4d 407#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 408#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 409
db64fe02 410
db64fe02 411static DEFINE_SPINLOCK(vmap_area_lock);
e36176be 412static DEFINE_SPINLOCK(free_vmap_area_lock);
f1c4069e
JK
413/* Export for kexec only */
414LIST_HEAD(vmap_area_list);
80c4bd7a 415static LLIST_HEAD(vmap_purge_list);
89699605 416static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 417static bool vmap_initialized __read_mostly;
89699605 418
68ad4a33
URS
419/*
420 * This kmem_cache is used for vmap_area objects. Instead of
421 * allocating from slab we reuse an object from this cache to
422 * make things faster. Especially in "no edge" splitting of
423 * free block.
424 */
425static struct kmem_cache *vmap_area_cachep;
426
427/*
428 * This linked list is used in pair with free_vmap_area_root.
429 * It gives O(1) access to prev/next to perform fast coalescing.
430 */
431static LIST_HEAD(free_vmap_area_list);
432
433/*
434 * This augment red-black tree represents the free vmap space.
435 * All vmap_area objects in this tree are sorted by va->va_start
436 * address. It is used for allocation and merging when a vmap
437 * object is released.
438 *
439 * Each vmap_area node contains a maximum available free block
440 * of its sub-tree, right or left. Therefore it is possible to
441 * find a lowest match of free area.
442 */
443static struct rb_root free_vmap_area_root = RB_ROOT;
444
82dd23e8
URS
445/*
446 * Preload a CPU with one object for "no edge" split case. The
447 * aim is to get rid of allocations from the atomic context, thus
448 * to use more permissive allocation masks.
449 */
450static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
451
68ad4a33
URS
452static __always_inline unsigned long
453va_size(struct vmap_area *va)
454{
455 return (va->va_end - va->va_start);
456}
457
458static __always_inline unsigned long
459get_subtree_max_size(struct rb_node *node)
460{
461 struct vmap_area *va;
462
463 va = rb_entry_safe(node, struct vmap_area, rb_node);
464 return va ? va->subtree_max_size : 0;
465}
89699605 466
68ad4a33
URS
467/*
468 * Gets called when remove the node and rotate.
469 */
470static __always_inline unsigned long
471compute_subtree_max_size(struct vmap_area *va)
472{
473 return max3(va_size(va),
474 get_subtree_max_size(va->rb_node.rb_left),
475 get_subtree_max_size(va->rb_node.rb_right));
476}
477
315cc066
ML
478RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
479 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
68ad4a33
URS
480
481static void purge_vmap_area_lazy(void);
482static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
483static unsigned long lazy_max_pages(void);
db64fe02 484
97105f0a
RG
485static atomic_long_t nr_vmalloc_pages;
486
487unsigned long vmalloc_nr_pages(void)
488{
489 return atomic_long_read(&nr_vmalloc_pages);
490}
491
db64fe02 492static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 493{
db64fe02
NP
494 struct rb_node *n = vmap_area_root.rb_node;
495
496 while (n) {
497 struct vmap_area *va;
498
499 va = rb_entry(n, struct vmap_area, rb_node);
500 if (addr < va->va_start)
501 n = n->rb_left;
cef2ac3f 502 else if (addr >= va->va_end)
db64fe02
NP
503 n = n->rb_right;
504 else
505 return va;
506 }
507
508 return NULL;
509}
510
68ad4a33
URS
511/*
512 * This function returns back addresses of parent node
513 * and its left or right link for further processing.
514 */
515static __always_inline struct rb_node **
516find_va_links(struct vmap_area *va,
517 struct rb_root *root, struct rb_node *from,
518 struct rb_node **parent)
519{
520 struct vmap_area *tmp_va;
521 struct rb_node **link;
522
523 if (root) {
524 link = &root->rb_node;
525 if (unlikely(!*link)) {
526 *parent = NULL;
527 return link;
528 }
529 } else {
530 link = &from;
531 }
db64fe02 532
68ad4a33
URS
533 /*
534 * Go to the bottom of the tree. When we hit the last point
535 * we end up with parent rb_node and correct direction, i name
536 * it link, where the new va->rb_node will be attached to.
537 */
538 do {
539 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 540
68ad4a33
URS
541 /*
542 * During the traversal we also do some sanity check.
543 * Trigger the BUG() if there are sides(left/right)
544 * or full overlaps.
545 */
546 if (va->va_start < tmp_va->va_end &&
547 va->va_end <= tmp_va->va_start)
548 link = &(*link)->rb_left;
549 else if (va->va_end > tmp_va->va_start &&
550 va->va_start >= tmp_va->va_end)
551 link = &(*link)->rb_right;
db64fe02
NP
552 else
553 BUG();
68ad4a33
URS
554 } while (*link);
555
556 *parent = &tmp_va->rb_node;
557 return link;
558}
559
560static __always_inline struct list_head *
561get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
562{
563 struct list_head *list;
564
565 if (unlikely(!parent))
566 /*
567 * The red-black tree where we try to find VA neighbors
568 * before merging or inserting is empty, i.e. it means
569 * there is no free vmap space. Normally it does not
570 * happen but we handle this case anyway.
571 */
572 return NULL;
573
574 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
575 return (&parent->rb_right == link ? list->next : list);
576}
577
578static __always_inline void
579link_va(struct vmap_area *va, struct rb_root *root,
580 struct rb_node *parent, struct rb_node **link, struct list_head *head)
581{
582 /*
583 * VA is still not in the list, but we can
584 * identify its future previous list_head node.
585 */
586 if (likely(parent)) {
587 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
588 if (&parent->rb_right != link)
589 head = head->prev;
db64fe02
NP
590 }
591
68ad4a33
URS
592 /* Insert to the rb-tree */
593 rb_link_node(&va->rb_node, parent, link);
594 if (root == &free_vmap_area_root) {
595 /*
596 * Some explanation here. Just perform simple insertion
597 * to the tree. We do not set va->subtree_max_size to
598 * its current size before calling rb_insert_augmented().
599 * It is because of we populate the tree from the bottom
600 * to parent levels when the node _is_ in the tree.
601 *
602 * Therefore we set subtree_max_size to zero after insertion,
603 * to let __augment_tree_propagate_from() puts everything to
604 * the correct order later on.
605 */
606 rb_insert_augmented(&va->rb_node,
607 root, &free_vmap_area_rb_augment_cb);
608 va->subtree_max_size = 0;
609 } else {
610 rb_insert_color(&va->rb_node, root);
611 }
db64fe02 612
68ad4a33
URS
613 /* Address-sort this list */
614 list_add(&va->list, head);
db64fe02
NP
615}
616
68ad4a33
URS
617static __always_inline void
618unlink_va(struct vmap_area *va, struct rb_root *root)
619{
460e42d1
URS
620 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
621 return;
db64fe02 622
460e42d1
URS
623 if (root == &free_vmap_area_root)
624 rb_erase_augmented(&va->rb_node,
625 root, &free_vmap_area_rb_augment_cb);
626 else
627 rb_erase(&va->rb_node, root);
628
629 list_del(&va->list);
630 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
631}
632
bb850f4d
URS
633#if DEBUG_AUGMENT_PROPAGATE_CHECK
634static void
635augment_tree_propagate_check(struct rb_node *n)
636{
637 struct vmap_area *va;
638 struct rb_node *node;
639 unsigned long size;
640 bool found = false;
641
642 if (n == NULL)
643 return;
644
645 va = rb_entry(n, struct vmap_area, rb_node);
646 size = va->subtree_max_size;
647 node = n;
648
649 while (node) {
650 va = rb_entry(node, struct vmap_area, rb_node);
651
652 if (get_subtree_max_size(node->rb_left) == size) {
653 node = node->rb_left;
654 } else {
655 if (va_size(va) == size) {
656 found = true;
657 break;
658 }
659
660 node = node->rb_right;
661 }
662 }
663
664 if (!found) {
665 va = rb_entry(n, struct vmap_area, rb_node);
666 pr_emerg("tree is corrupted: %lu, %lu\n",
667 va_size(va), va->subtree_max_size);
668 }
669
670 augment_tree_propagate_check(n->rb_left);
671 augment_tree_propagate_check(n->rb_right);
672}
673#endif
674
68ad4a33
URS
675/*
676 * This function populates subtree_max_size from bottom to upper
677 * levels starting from VA point. The propagation must be done
678 * when VA size is modified by changing its va_start/va_end. Or
679 * in case of newly inserting of VA to the tree.
680 *
681 * It means that __augment_tree_propagate_from() must be called:
682 * - After VA has been inserted to the tree(free path);
683 * - After VA has been shrunk(allocation path);
684 * - After VA has been increased(merging path).
685 *
686 * Please note that, it does not mean that upper parent nodes
687 * and their subtree_max_size are recalculated all the time up
688 * to the root node.
689 *
690 * 4--8
691 * /\
692 * / \
693 * / \
694 * 2--2 8--8
695 *
696 * For example if we modify the node 4, shrinking it to 2, then
697 * no any modification is required. If we shrink the node 2 to 1
698 * its subtree_max_size is updated only, and set to 1. If we shrink
699 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
700 * node becomes 4--6.
701 */
702static __always_inline void
703augment_tree_propagate_from(struct vmap_area *va)
704{
705 struct rb_node *node = &va->rb_node;
706 unsigned long new_va_sub_max_size;
707
708 while (node) {
709 va = rb_entry(node, struct vmap_area, rb_node);
710 new_va_sub_max_size = compute_subtree_max_size(va);
711
712 /*
713 * If the newly calculated maximum available size of the
714 * subtree is equal to the current one, then it means that
715 * the tree is propagated correctly. So we have to stop at
716 * this point to save cycles.
717 */
718 if (va->subtree_max_size == new_va_sub_max_size)
719 break;
720
721 va->subtree_max_size = new_va_sub_max_size;
722 node = rb_parent(&va->rb_node);
723 }
bb850f4d
URS
724
725#if DEBUG_AUGMENT_PROPAGATE_CHECK
726 augment_tree_propagate_check(free_vmap_area_root.rb_node);
727#endif
68ad4a33
URS
728}
729
730static void
731insert_vmap_area(struct vmap_area *va,
732 struct rb_root *root, struct list_head *head)
733{
734 struct rb_node **link;
735 struct rb_node *parent;
736
737 link = find_va_links(va, root, NULL, &parent);
738 link_va(va, root, parent, link, head);
739}
740
741static void
742insert_vmap_area_augment(struct vmap_area *va,
743 struct rb_node *from, struct rb_root *root,
744 struct list_head *head)
745{
746 struct rb_node **link;
747 struct rb_node *parent;
748
749 if (from)
750 link = find_va_links(va, NULL, from, &parent);
751 else
752 link = find_va_links(va, root, NULL, &parent);
753
754 link_va(va, root, parent, link, head);
755 augment_tree_propagate_from(va);
756}
757
758/*
759 * Merge de-allocated chunk of VA memory with previous
760 * and next free blocks. If coalesce is not done a new
761 * free area is inserted. If VA has been merged, it is
762 * freed.
763 */
3c5c3cfb 764static __always_inline struct vmap_area *
68ad4a33
URS
765merge_or_add_vmap_area(struct vmap_area *va,
766 struct rb_root *root, struct list_head *head)
767{
768 struct vmap_area *sibling;
769 struct list_head *next;
770 struct rb_node **link;
771 struct rb_node *parent;
772 bool merged = false;
773
774 /*
775 * Find a place in the tree where VA potentially will be
776 * inserted, unless it is merged with its sibling/siblings.
777 */
778 link = find_va_links(va, root, NULL, &parent);
779
780 /*
781 * Get next node of VA to check if merging can be done.
782 */
783 next = get_va_next_sibling(parent, link);
784 if (unlikely(next == NULL))
785 goto insert;
786
787 /*
788 * start end
789 * | |
790 * |<------VA------>|<-----Next----->|
791 * | |
792 * start end
793 */
794 if (next != head) {
795 sibling = list_entry(next, struct vmap_area, list);
796 if (sibling->va_start == va->va_end) {
797 sibling->va_start = va->va_start;
798
799 /* Check and update the tree if needed. */
800 augment_tree_propagate_from(sibling);
801
68ad4a33
URS
802 /* Free vmap_area object. */
803 kmem_cache_free(vmap_area_cachep, va);
804
805 /* Point to the new merged area. */
806 va = sibling;
807 merged = true;
808 }
809 }
810
811 /*
812 * start end
813 * | |
814 * |<-----Prev----->|<------VA------>|
815 * | |
816 * start end
817 */
818 if (next->prev != head) {
819 sibling = list_entry(next->prev, struct vmap_area, list);
820 if (sibling->va_end == va->va_start) {
821 sibling->va_end = va->va_end;
822
823 /* Check and update the tree if needed. */
824 augment_tree_propagate_from(sibling);
825
54f63d9d
URS
826 if (merged)
827 unlink_va(va, root);
68ad4a33
URS
828
829 /* Free vmap_area object. */
830 kmem_cache_free(vmap_area_cachep, va);
3c5c3cfb
DA
831
832 /* Point to the new merged area. */
833 va = sibling;
834 merged = true;
68ad4a33
URS
835 }
836 }
837
838insert:
839 if (!merged) {
840 link_va(va, root, parent, link, head);
841 augment_tree_propagate_from(va);
842 }
3c5c3cfb
DA
843
844 return va;
68ad4a33
URS
845}
846
847static __always_inline bool
848is_within_this_va(struct vmap_area *va, unsigned long size,
849 unsigned long align, unsigned long vstart)
850{
851 unsigned long nva_start_addr;
852
853 if (va->va_start > vstart)
854 nva_start_addr = ALIGN(va->va_start, align);
855 else
856 nva_start_addr = ALIGN(vstart, align);
857
858 /* Can be overflowed due to big size or alignment. */
859 if (nva_start_addr + size < nva_start_addr ||
860 nva_start_addr < vstart)
861 return false;
862
863 return (nva_start_addr + size <= va->va_end);
864}
865
866/*
867 * Find the first free block(lowest start address) in the tree,
868 * that will accomplish the request corresponding to passing
869 * parameters.
870 */
871static __always_inline struct vmap_area *
872find_vmap_lowest_match(unsigned long size,
873 unsigned long align, unsigned long vstart)
874{
875 struct vmap_area *va;
876 struct rb_node *node;
877 unsigned long length;
878
879 /* Start from the root. */
880 node = free_vmap_area_root.rb_node;
881
882 /* Adjust the search size for alignment overhead. */
883 length = size + align - 1;
884
885 while (node) {
886 va = rb_entry(node, struct vmap_area, rb_node);
887
888 if (get_subtree_max_size(node->rb_left) >= length &&
889 vstart < va->va_start) {
890 node = node->rb_left;
891 } else {
892 if (is_within_this_va(va, size, align, vstart))
893 return va;
894
895 /*
896 * Does not make sense to go deeper towards the right
897 * sub-tree if it does not have a free block that is
898 * equal or bigger to the requested search length.
899 */
900 if (get_subtree_max_size(node->rb_right) >= length) {
901 node = node->rb_right;
902 continue;
903 }
904
905 /*
3806b041 906 * OK. We roll back and find the first right sub-tree,
68ad4a33
URS
907 * that will satisfy the search criteria. It can happen
908 * only once due to "vstart" restriction.
909 */
910 while ((node = rb_parent(node))) {
911 va = rb_entry(node, struct vmap_area, rb_node);
912 if (is_within_this_va(va, size, align, vstart))
913 return va;
914
915 if (get_subtree_max_size(node->rb_right) >= length &&
916 vstart <= va->va_start) {
917 node = node->rb_right;
918 break;
919 }
920 }
921 }
922 }
923
924 return NULL;
925}
926
a6cf4e0f
URS
927#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
928#include <linux/random.h>
929
930static struct vmap_area *
931find_vmap_lowest_linear_match(unsigned long size,
932 unsigned long align, unsigned long vstart)
933{
934 struct vmap_area *va;
935
936 list_for_each_entry(va, &free_vmap_area_list, list) {
937 if (!is_within_this_va(va, size, align, vstart))
938 continue;
939
940 return va;
941 }
942
943 return NULL;
944}
945
946static void
947find_vmap_lowest_match_check(unsigned long size)
948{
949 struct vmap_area *va_1, *va_2;
950 unsigned long vstart;
951 unsigned int rnd;
952
953 get_random_bytes(&rnd, sizeof(rnd));
954 vstart = VMALLOC_START + rnd;
955
956 va_1 = find_vmap_lowest_match(size, 1, vstart);
957 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
958
959 if (va_1 != va_2)
960 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
961 va_1, va_2, vstart);
962}
963#endif
964
68ad4a33
URS
965enum fit_type {
966 NOTHING_FIT = 0,
967 FL_FIT_TYPE = 1, /* full fit */
968 LE_FIT_TYPE = 2, /* left edge fit */
969 RE_FIT_TYPE = 3, /* right edge fit */
970 NE_FIT_TYPE = 4 /* no edge fit */
971};
972
973static __always_inline enum fit_type
974classify_va_fit_type(struct vmap_area *va,
975 unsigned long nva_start_addr, unsigned long size)
976{
977 enum fit_type type;
978
979 /* Check if it is within VA. */
980 if (nva_start_addr < va->va_start ||
981 nva_start_addr + size > va->va_end)
982 return NOTHING_FIT;
983
984 /* Now classify. */
985 if (va->va_start == nva_start_addr) {
986 if (va->va_end == nva_start_addr + size)
987 type = FL_FIT_TYPE;
988 else
989 type = LE_FIT_TYPE;
990 } else if (va->va_end == nva_start_addr + size) {
991 type = RE_FIT_TYPE;
992 } else {
993 type = NE_FIT_TYPE;
994 }
995
996 return type;
997}
998
999static __always_inline int
1000adjust_va_to_fit_type(struct vmap_area *va,
1001 unsigned long nva_start_addr, unsigned long size,
1002 enum fit_type type)
1003{
2c929233 1004 struct vmap_area *lva = NULL;
68ad4a33
URS
1005
1006 if (type == FL_FIT_TYPE) {
1007 /*
1008 * No need to split VA, it fully fits.
1009 *
1010 * | |
1011 * V NVA V
1012 * |---------------|
1013 */
1014 unlink_va(va, &free_vmap_area_root);
1015 kmem_cache_free(vmap_area_cachep, va);
1016 } else if (type == LE_FIT_TYPE) {
1017 /*
1018 * Split left edge of fit VA.
1019 *
1020 * | |
1021 * V NVA V R
1022 * |-------|-------|
1023 */
1024 va->va_start += size;
1025 } else if (type == RE_FIT_TYPE) {
1026 /*
1027 * Split right edge of fit VA.
1028 *
1029 * | |
1030 * L V NVA V
1031 * |-------|-------|
1032 */
1033 va->va_end = nva_start_addr;
1034 } else if (type == NE_FIT_TYPE) {
1035 /*
1036 * Split no edge of fit VA.
1037 *
1038 * | |
1039 * L V NVA V R
1040 * |---|-------|---|
1041 */
82dd23e8
URS
1042 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1043 if (unlikely(!lva)) {
1044 /*
1045 * For percpu allocator we do not do any pre-allocation
1046 * and leave it as it is. The reason is it most likely
1047 * never ends up with NE_FIT_TYPE splitting. In case of
1048 * percpu allocations offsets and sizes are aligned to
1049 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1050 * are its main fitting cases.
1051 *
1052 * There are a few exceptions though, as an example it is
1053 * a first allocation (early boot up) when we have "one"
1054 * big free space that has to be split.
060650a2
URS
1055 *
1056 * Also we can hit this path in case of regular "vmap"
1057 * allocations, if "this" current CPU was not preloaded.
1058 * See the comment in alloc_vmap_area() why. If so, then
1059 * GFP_NOWAIT is used instead to get an extra object for
1060 * split purpose. That is rare and most time does not
1061 * occur.
1062 *
1063 * What happens if an allocation gets failed. Basically,
1064 * an "overflow" path is triggered to purge lazily freed
1065 * areas to free some memory, then, the "retry" path is
1066 * triggered to repeat one more time. See more details
1067 * in alloc_vmap_area() function.
82dd23e8
URS
1068 */
1069 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1070 if (!lva)
1071 return -1;
1072 }
68ad4a33
URS
1073
1074 /*
1075 * Build the remainder.
1076 */
1077 lva->va_start = va->va_start;
1078 lva->va_end = nva_start_addr;
1079
1080 /*
1081 * Shrink this VA to remaining size.
1082 */
1083 va->va_start = nva_start_addr + size;
1084 } else {
1085 return -1;
1086 }
1087
1088 if (type != FL_FIT_TYPE) {
1089 augment_tree_propagate_from(va);
1090
2c929233 1091 if (lva) /* type == NE_FIT_TYPE */
68ad4a33
URS
1092 insert_vmap_area_augment(lva, &va->rb_node,
1093 &free_vmap_area_root, &free_vmap_area_list);
1094 }
1095
1096 return 0;
1097}
1098
1099/*
1100 * Returns a start address of the newly allocated area, if success.
1101 * Otherwise a vend is returned that indicates failure.
1102 */
1103static __always_inline unsigned long
1104__alloc_vmap_area(unsigned long size, unsigned long align,
cacca6ba 1105 unsigned long vstart, unsigned long vend)
68ad4a33
URS
1106{
1107 unsigned long nva_start_addr;
1108 struct vmap_area *va;
1109 enum fit_type type;
1110 int ret;
1111
1112 va = find_vmap_lowest_match(size, align, vstart);
1113 if (unlikely(!va))
1114 return vend;
1115
1116 if (va->va_start > vstart)
1117 nva_start_addr = ALIGN(va->va_start, align);
1118 else
1119 nva_start_addr = ALIGN(vstart, align);
1120
1121 /* Check the "vend" restriction. */
1122 if (nva_start_addr + size > vend)
1123 return vend;
1124
1125 /* Classify what we have found. */
1126 type = classify_va_fit_type(va, nva_start_addr, size);
1127 if (WARN_ON_ONCE(type == NOTHING_FIT))
1128 return vend;
1129
1130 /* Update the free vmap_area. */
1131 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1132 if (ret)
1133 return vend;
1134
a6cf4e0f
URS
1135#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1136 find_vmap_lowest_match_check(size);
1137#endif
1138
68ad4a33
URS
1139 return nva_start_addr;
1140}
4da56b99 1141
d98c9e83
AR
1142/*
1143 * Free a region of KVA allocated by alloc_vmap_area
1144 */
1145static void free_vmap_area(struct vmap_area *va)
1146{
1147 /*
1148 * Remove from the busy tree/list.
1149 */
1150 spin_lock(&vmap_area_lock);
1151 unlink_va(va, &vmap_area_root);
1152 spin_unlock(&vmap_area_lock);
1153
1154 /*
1155 * Insert/Merge it back to the free tree/list.
1156 */
1157 spin_lock(&free_vmap_area_lock);
1158 merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
1159 spin_unlock(&free_vmap_area_lock);
1160}
1161
db64fe02
NP
1162/*
1163 * Allocate a region of KVA of the specified size and alignment, within the
1164 * vstart and vend.
1165 */
1166static struct vmap_area *alloc_vmap_area(unsigned long size,
1167 unsigned long align,
1168 unsigned long vstart, unsigned long vend,
1169 int node, gfp_t gfp_mask)
1170{
82dd23e8 1171 struct vmap_area *va, *pva;
1da177e4 1172 unsigned long addr;
db64fe02 1173 int purged = 0;
d98c9e83 1174 int ret;
db64fe02 1175
7766970c 1176 BUG_ON(!size);
891c49ab 1177 BUG_ON(offset_in_page(size));
89699605 1178 BUG_ON(!is_power_of_2(align));
db64fe02 1179
68ad4a33
URS
1180 if (unlikely(!vmap_initialized))
1181 return ERR_PTR(-EBUSY);
1182
5803ed29 1183 might_sleep();
f07116d7 1184 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
4da56b99 1185
f07116d7 1186 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
db64fe02
NP
1187 if (unlikely(!va))
1188 return ERR_PTR(-ENOMEM);
1189
7f88f88f
CM
1190 /*
1191 * Only scan the relevant parts containing pointers to other objects
1192 * to avoid false negatives.
1193 */
f07116d7 1194 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
7f88f88f 1195
db64fe02 1196retry:
82dd23e8 1197 /*
81f1ba58
URS
1198 * Preload this CPU with one extra vmap_area object. It is used
1199 * when fit type of free area is NE_FIT_TYPE. Please note, it
1200 * does not guarantee that an allocation occurs on a CPU that
1201 * is preloaded, instead we minimize the case when it is not.
1202 * It can happen because of cpu migration, because there is a
1203 * race until the below spinlock is taken.
82dd23e8
URS
1204 *
1205 * The preload is done in non-atomic context, thus it allows us
1206 * to use more permissive allocation masks to be more stable under
81f1ba58
URS
1207 * low memory condition and high memory pressure. In rare case,
1208 * if not preloaded, GFP_NOWAIT is used.
82dd23e8 1209 *
81f1ba58 1210 * Set "pva" to NULL here, because of "retry" path.
82dd23e8 1211 */
81f1ba58 1212 pva = NULL;
82dd23e8 1213
81f1ba58
URS
1214 if (!this_cpu_read(ne_fit_preload_node))
1215 /*
1216 * Even if it fails we do not really care about that.
1217 * Just proceed as it is. If needed "overflow" path
1218 * will refill the cache we allocate from.
1219 */
f07116d7 1220 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
82dd23e8 1221
e36176be 1222 spin_lock(&free_vmap_area_lock);
81f1ba58
URS
1223
1224 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1225 kmem_cache_free(vmap_area_cachep, pva);
89699605 1226
afd07389 1227 /*
68ad4a33
URS
1228 * If an allocation fails, the "vend" address is
1229 * returned. Therefore trigger the overflow path.
afd07389 1230 */
cacca6ba 1231 addr = __alloc_vmap_area(size, align, vstart, vend);
e36176be
URS
1232 spin_unlock(&free_vmap_area_lock);
1233
68ad4a33 1234 if (unlikely(addr == vend))
89699605 1235 goto overflow;
db64fe02
NP
1236
1237 va->va_start = addr;
1238 va->va_end = addr + size;
688fcbfc 1239 va->vm = NULL;
68ad4a33 1240
d98c9e83 1241
e36176be
URS
1242 spin_lock(&vmap_area_lock);
1243 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
db64fe02
NP
1244 spin_unlock(&vmap_area_lock);
1245
61e16557 1246 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1247 BUG_ON(va->va_start < vstart);
1248 BUG_ON(va->va_end > vend);
1249
d98c9e83
AR
1250 ret = kasan_populate_vmalloc(addr, size);
1251 if (ret) {
1252 free_vmap_area(va);
1253 return ERR_PTR(ret);
1254 }
1255
db64fe02 1256 return va;
89699605
NP
1257
1258overflow:
89699605
NP
1259 if (!purged) {
1260 purge_vmap_area_lazy();
1261 purged = 1;
1262 goto retry;
1263 }
4da56b99
CW
1264
1265 if (gfpflags_allow_blocking(gfp_mask)) {
1266 unsigned long freed = 0;
1267 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1268 if (freed > 0) {
1269 purged = 0;
1270 goto retry;
1271 }
1272 }
1273
03497d76 1274 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1275 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1276 size);
68ad4a33
URS
1277
1278 kmem_cache_free(vmap_area_cachep, va);
89699605 1279 return ERR_PTR(-EBUSY);
db64fe02
NP
1280}
1281
4da56b99
CW
1282int register_vmap_purge_notifier(struct notifier_block *nb)
1283{
1284 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1285}
1286EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1287
1288int unregister_vmap_purge_notifier(struct notifier_block *nb)
1289{
1290 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1291}
1292EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1293
db64fe02
NP
1294/*
1295 * lazy_max_pages is the maximum amount of virtual address space we gather up
1296 * before attempting to purge with a TLB flush.
1297 *
1298 * There is a tradeoff here: a larger number will cover more kernel page tables
1299 * and take slightly longer to purge, but it will linearly reduce the number of
1300 * global TLB flushes that must be performed. It would seem natural to scale
1301 * this number up linearly with the number of CPUs (because vmapping activity
1302 * could also scale linearly with the number of CPUs), however it is likely
1303 * that in practice, workloads might be constrained in other ways that mean
1304 * vmap activity will not scale linearly with CPUs. Also, I want to be
1305 * conservative and not introduce a big latency on huge systems, so go with
1306 * a less aggressive log scale. It will still be an improvement over the old
1307 * code, and it will be simple to change the scale factor if we find that it
1308 * becomes a problem on bigger systems.
1309 */
1310static unsigned long lazy_max_pages(void)
1311{
1312 unsigned int log;
1313
1314 log = fls(num_online_cpus());
1315
1316 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1317}
1318
4d36e6f8 1319static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1320
0574ecd1
CH
1321/*
1322 * Serialize vmap purging. There is no actual criticial section protected
1323 * by this look, but we want to avoid concurrent calls for performance
1324 * reasons and to make the pcpu_get_vm_areas more deterministic.
1325 */
f9e09977 1326static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1327
02b709df
NP
1328/* for per-CPU blocks */
1329static void purge_fragmented_blocks_allcpus(void);
1330
3ee48b6a
CW
1331/*
1332 * called before a call to iounmap() if the caller wants vm_area_struct's
1333 * immediately freed.
1334 */
1335void set_iounmap_nonlazy(void)
1336{
4d36e6f8 1337 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
3ee48b6a
CW
1338}
1339
db64fe02
NP
1340/*
1341 * Purges all lazily-freed vmap areas.
db64fe02 1342 */
0574ecd1 1343static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1344{
4d36e6f8 1345 unsigned long resched_threshold;
80c4bd7a 1346 struct llist_node *valist;
db64fe02 1347 struct vmap_area *va;
cbb76676 1348 struct vmap_area *n_va;
db64fe02 1349
0574ecd1 1350 lockdep_assert_held(&vmap_purge_lock);
02b709df 1351
80c4bd7a 1352 valist = llist_del_all(&vmap_purge_list);
68571be9
URS
1353 if (unlikely(valist == NULL))
1354 return false;
1355
3f8fd02b
JR
1356 /*
1357 * First make sure the mappings are removed from all page-tables
1358 * before they are freed.
1359 */
763802b5 1360 vmalloc_sync_unmappings();
3f8fd02b 1361
68571be9
URS
1362 /*
1363 * TODO: to calculate a flush range without looping.
1364 * The list can be up to lazy_max_pages() elements.
1365 */
80c4bd7a 1366 llist_for_each_entry(va, valist, purge_list) {
0574ecd1
CH
1367 if (va->va_start < start)
1368 start = va->va_start;
1369 if (va->va_end > end)
1370 end = va->va_end;
db64fe02 1371 }
db64fe02 1372
0574ecd1 1373 flush_tlb_kernel_range(start, end);
4d36e6f8 1374 resched_threshold = lazy_max_pages() << 1;
db64fe02 1375
e36176be 1376 spin_lock(&free_vmap_area_lock);
763b218d 1377 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
4d36e6f8 1378 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
3c5c3cfb
DA
1379 unsigned long orig_start = va->va_start;
1380 unsigned long orig_end = va->va_end;
763b218d 1381
dd3b8353
URS
1382 /*
1383 * Finally insert or merge lazily-freed area. It is
1384 * detached and there is no need to "unlink" it from
1385 * anything.
1386 */
3c5c3cfb
DA
1387 va = merge_or_add_vmap_area(va, &free_vmap_area_root,
1388 &free_vmap_area_list);
1389
1390 if (is_vmalloc_or_module_addr((void *)orig_start))
1391 kasan_release_vmalloc(orig_start, orig_end,
1392 va->va_start, va->va_end);
dd3b8353 1393
4d36e6f8 1394 atomic_long_sub(nr, &vmap_lazy_nr);
68571be9 1395
4d36e6f8 1396 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
e36176be 1397 cond_resched_lock(&free_vmap_area_lock);
763b218d 1398 }
e36176be 1399 spin_unlock(&free_vmap_area_lock);
0574ecd1 1400 return true;
db64fe02
NP
1401}
1402
496850e5
NP
1403/*
1404 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1405 * is already purging.
1406 */
1407static void try_purge_vmap_area_lazy(void)
1408{
f9e09977 1409 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 1410 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1411 mutex_unlock(&vmap_purge_lock);
0574ecd1 1412 }
496850e5
NP
1413}
1414
db64fe02
NP
1415/*
1416 * Kick off a purge of the outstanding lazy areas.
1417 */
1418static void purge_vmap_area_lazy(void)
1419{
f9e09977 1420 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1421 purge_fragmented_blocks_allcpus();
1422 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1423 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1424}
1425
1426/*
64141da5
JF
1427 * Free a vmap area, caller ensuring that the area has been unmapped
1428 * and flush_cache_vunmap had been called for the correct range
1429 * previously.
db64fe02 1430 */
64141da5 1431static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1432{
4d36e6f8 1433 unsigned long nr_lazy;
80c4bd7a 1434
dd3b8353
URS
1435 spin_lock(&vmap_area_lock);
1436 unlink_va(va, &vmap_area_root);
1437 spin_unlock(&vmap_area_lock);
1438
4d36e6f8
URS
1439 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1440 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a
CW
1441
1442 /* After this point, we may free va at any time */
1443 llist_add(&va->purge_list, &vmap_purge_list);
1444
1445 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 1446 try_purge_vmap_area_lazy();
db64fe02
NP
1447}
1448
b29acbdc
NP
1449/*
1450 * Free and unmap a vmap area
1451 */
1452static void free_unmap_vmap_area(struct vmap_area *va)
1453{
1454 flush_cache_vunmap(va->va_start, va->va_end);
855e57a1 1455 unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
8e57f8ac 1456 if (debug_pagealloc_enabled_static())
82a2e924
CP
1457 flush_tlb_kernel_range(va->va_start, va->va_end);
1458
c8eef01e 1459 free_vmap_area_noflush(va);
b29acbdc
NP
1460}
1461
db64fe02
NP
1462static struct vmap_area *find_vmap_area(unsigned long addr)
1463{
1464 struct vmap_area *va;
1465
1466 spin_lock(&vmap_area_lock);
1467 va = __find_vmap_area(addr);
1468 spin_unlock(&vmap_area_lock);
1469
1470 return va;
1471}
1472
db64fe02
NP
1473/*** Per cpu kva allocator ***/
1474
1475/*
1476 * vmap space is limited especially on 32 bit architectures. Ensure there is
1477 * room for at least 16 percpu vmap blocks per CPU.
1478 */
1479/*
1480 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1481 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1482 * instead (we just need a rough idea)
1483 */
1484#if BITS_PER_LONG == 32
1485#define VMALLOC_SPACE (128UL*1024*1024)
1486#else
1487#define VMALLOC_SPACE (128UL*1024*1024*1024)
1488#endif
1489
1490#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1491#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1492#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1493#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1494#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1495#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1496#define VMAP_BBMAP_BITS \
1497 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1498 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1499 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1500
1501#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1502
1503struct vmap_block_queue {
1504 spinlock_t lock;
1505 struct list_head free;
db64fe02
NP
1506};
1507
1508struct vmap_block {
1509 spinlock_t lock;
1510 struct vmap_area *va;
db64fe02 1511 unsigned long free, dirty;
7d61bfe8 1512 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1513 struct list_head free_list;
1514 struct rcu_head rcu_head;
02b709df 1515 struct list_head purge;
db64fe02
NP
1516};
1517
1518/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1519static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1520
1521/*
1522 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1523 * in the free path. Could get rid of this if we change the API to return a
1524 * "cookie" from alloc, to be passed to free. But no big deal yet.
1525 */
1526static DEFINE_SPINLOCK(vmap_block_tree_lock);
1527static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1528
1529/*
1530 * We should probably have a fallback mechanism to allocate virtual memory
1531 * out of partially filled vmap blocks. However vmap block sizing should be
1532 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1533 * big problem.
1534 */
1535
1536static unsigned long addr_to_vb_idx(unsigned long addr)
1537{
1538 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1539 addr /= VMAP_BLOCK_SIZE;
1540 return addr;
1541}
1542
cf725ce2
RP
1543static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1544{
1545 unsigned long addr;
1546
1547 addr = va_start + (pages_off << PAGE_SHIFT);
1548 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1549 return (void *)addr;
1550}
1551
1552/**
1553 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1554 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1555 * @order: how many 2^order pages should be occupied in newly allocated block
1556 * @gfp_mask: flags for the page level allocator
1557 *
a862f68a 1558 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1559 */
1560static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1561{
1562 struct vmap_block_queue *vbq;
1563 struct vmap_block *vb;
1564 struct vmap_area *va;
1565 unsigned long vb_idx;
1566 int node, err;
cf725ce2 1567 void *vaddr;
db64fe02
NP
1568
1569 node = numa_node_id();
1570
1571 vb = kmalloc_node(sizeof(struct vmap_block),
1572 gfp_mask & GFP_RECLAIM_MASK, node);
1573 if (unlikely(!vb))
1574 return ERR_PTR(-ENOMEM);
1575
1576 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1577 VMALLOC_START, VMALLOC_END,
1578 node, gfp_mask);
ddf9c6d4 1579 if (IS_ERR(va)) {
db64fe02 1580 kfree(vb);
e7d86340 1581 return ERR_CAST(va);
db64fe02
NP
1582 }
1583
1584 err = radix_tree_preload(gfp_mask);
1585 if (unlikely(err)) {
1586 kfree(vb);
1587 free_vmap_area(va);
1588 return ERR_PTR(err);
1589 }
1590
cf725ce2 1591 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1592 spin_lock_init(&vb->lock);
1593 vb->va = va;
cf725ce2
RP
1594 /* At least something should be left free */
1595 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1596 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 1597 vb->dirty = 0;
7d61bfe8
RP
1598 vb->dirty_min = VMAP_BBMAP_BITS;
1599 vb->dirty_max = 0;
db64fe02 1600 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
1601
1602 vb_idx = addr_to_vb_idx(va->va_start);
1603 spin_lock(&vmap_block_tree_lock);
1604 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1605 spin_unlock(&vmap_block_tree_lock);
1606 BUG_ON(err);
1607 radix_tree_preload_end();
1608
1609 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 1610 spin_lock(&vbq->lock);
68ac546f 1611 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 1612 spin_unlock(&vbq->lock);
3f04ba85 1613 put_cpu_var(vmap_block_queue);
db64fe02 1614
cf725ce2 1615 return vaddr;
db64fe02
NP
1616}
1617
db64fe02
NP
1618static void free_vmap_block(struct vmap_block *vb)
1619{
1620 struct vmap_block *tmp;
1621 unsigned long vb_idx;
1622
db64fe02
NP
1623 vb_idx = addr_to_vb_idx(vb->va->va_start);
1624 spin_lock(&vmap_block_tree_lock);
1625 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1626 spin_unlock(&vmap_block_tree_lock);
1627 BUG_ON(tmp != vb);
1628
64141da5 1629 free_vmap_area_noflush(vb->va);
22a3c7d1 1630 kfree_rcu(vb, rcu_head);
db64fe02
NP
1631}
1632
02b709df
NP
1633static void purge_fragmented_blocks(int cpu)
1634{
1635 LIST_HEAD(purge);
1636 struct vmap_block *vb;
1637 struct vmap_block *n_vb;
1638 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1639
1640 rcu_read_lock();
1641 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1642
1643 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1644 continue;
1645
1646 spin_lock(&vb->lock);
1647 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1648 vb->free = 0; /* prevent further allocs after releasing lock */
1649 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
1650 vb->dirty_min = 0;
1651 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
1652 spin_lock(&vbq->lock);
1653 list_del_rcu(&vb->free_list);
1654 spin_unlock(&vbq->lock);
1655 spin_unlock(&vb->lock);
1656 list_add_tail(&vb->purge, &purge);
1657 } else
1658 spin_unlock(&vb->lock);
1659 }
1660 rcu_read_unlock();
1661
1662 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1663 list_del(&vb->purge);
1664 free_vmap_block(vb);
1665 }
1666}
1667
02b709df
NP
1668static void purge_fragmented_blocks_allcpus(void)
1669{
1670 int cpu;
1671
1672 for_each_possible_cpu(cpu)
1673 purge_fragmented_blocks(cpu);
1674}
1675
db64fe02
NP
1676static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1677{
1678 struct vmap_block_queue *vbq;
1679 struct vmap_block *vb;
cf725ce2 1680 void *vaddr = NULL;
db64fe02
NP
1681 unsigned int order;
1682
891c49ab 1683 BUG_ON(offset_in_page(size));
db64fe02 1684 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
1685 if (WARN_ON(size == 0)) {
1686 /*
1687 * Allocating 0 bytes isn't what caller wants since
1688 * get_order(0) returns funny result. Just warn and terminate
1689 * early.
1690 */
1691 return NULL;
1692 }
db64fe02
NP
1693 order = get_order(size);
1694
db64fe02
NP
1695 rcu_read_lock();
1696 vbq = &get_cpu_var(vmap_block_queue);
1697 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 1698 unsigned long pages_off;
db64fe02
NP
1699
1700 spin_lock(&vb->lock);
cf725ce2
RP
1701 if (vb->free < (1UL << order)) {
1702 spin_unlock(&vb->lock);
1703 continue;
1704 }
02b709df 1705
cf725ce2
RP
1706 pages_off = VMAP_BBMAP_BITS - vb->free;
1707 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
1708 vb->free -= 1UL << order;
1709 if (vb->free == 0) {
1710 spin_lock(&vbq->lock);
1711 list_del_rcu(&vb->free_list);
1712 spin_unlock(&vbq->lock);
1713 }
cf725ce2 1714
02b709df
NP
1715 spin_unlock(&vb->lock);
1716 break;
db64fe02 1717 }
02b709df 1718
3f04ba85 1719 put_cpu_var(vmap_block_queue);
db64fe02
NP
1720 rcu_read_unlock();
1721
cf725ce2
RP
1722 /* Allocate new block if nothing was found */
1723 if (!vaddr)
1724 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 1725
cf725ce2 1726 return vaddr;
db64fe02
NP
1727}
1728
78a0e8c4 1729static void vb_free(unsigned long addr, unsigned long size)
db64fe02
NP
1730{
1731 unsigned long offset;
1732 unsigned long vb_idx;
1733 unsigned int order;
1734 struct vmap_block *vb;
1735
891c49ab 1736 BUG_ON(offset_in_page(size));
db64fe02 1737 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc 1738
78a0e8c4 1739 flush_cache_vunmap(addr, addr + size);
b29acbdc 1740
db64fe02
NP
1741 order = get_order(size);
1742
78a0e8c4 1743 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
db64fe02 1744
78a0e8c4 1745 vb_idx = addr_to_vb_idx(addr);
db64fe02
NP
1746 rcu_read_lock();
1747 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1748 rcu_read_unlock();
1749 BUG_ON(!vb);
1750
b521c43f 1751 unmap_kernel_range_noflush(addr, size);
64141da5 1752
8e57f8ac 1753 if (debug_pagealloc_enabled_static())
78a0e8c4 1754 flush_tlb_kernel_range(addr, addr + size);
82a2e924 1755
db64fe02 1756 spin_lock(&vb->lock);
7d61bfe8
RP
1757
1758 /* Expand dirty range */
1759 vb->dirty_min = min(vb->dirty_min, offset);
1760 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1761
db64fe02
NP
1762 vb->dirty += 1UL << order;
1763 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1764 BUG_ON(vb->free);
db64fe02
NP
1765 spin_unlock(&vb->lock);
1766 free_vmap_block(vb);
1767 } else
1768 spin_unlock(&vb->lock);
1769}
1770
868b104d 1771static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 1772{
db64fe02 1773 int cpu;
db64fe02 1774
9b463334
JF
1775 if (unlikely(!vmap_initialized))
1776 return;
1777
5803ed29
CH
1778 might_sleep();
1779
db64fe02
NP
1780 for_each_possible_cpu(cpu) {
1781 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1782 struct vmap_block *vb;
1783
1784 rcu_read_lock();
1785 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1786 spin_lock(&vb->lock);
7d61bfe8
RP
1787 if (vb->dirty) {
1788 unsigned long va_start = vb->va->va_start;
db64fe02 1789 unsigned long s, e;
b136be5e 1790
7d61bfe8
RP
1791 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1792 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1793
7d61bfe8
RP
1794 start = min(s, start);
1795 end = max(e, end);
db64fe02 1796
7d61bfe8 1797 flush = 1;
db64fe02
NP
1798 }
1799 spin_unlock(&vb->lock);
1800 }
1801 rcu_read_unlock();
1802 }
1803
f9e09977 1804 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1805 purge_fragmented_blocks_allcpus();
1806 if (!__purge_vmap_area_lazy(start, end) && flush)
1807 flush_tlb_kernel_range(start, end);
f9e09977 1808 mutex_unlock(&vmap_purge_lock);
db64fe02 1809}
868b104d
RE
1810
1811/**
1812 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1813 *
1814 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1815 * to amortize TLB flushing overheads. What this means is that any page you
1816 * have now, may, in a former life, have been mapped into kernel virtual
1817 * address by the vmap layer and so there might be some CPUs with TLB entries
1818 * still referencing that page (additional to the regular 1:1 kernel mapping).
1819 *
1820 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1821 * be sure that none of the pages we have control over will have any aliases
1822 * from the vmap layer.
1823 */
1824void vm_unmap_aliases(void)
1825{
1826 unsigned long start = ULONG_MAX, end = 0;
1827 int flush = 0;
1828
1829 _vm_unmap_aliases(start, end, flush);
1830}
db64fe02
NP
1831EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1832
1833/**
1834 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1835 * @mem: the pointer returned by vm_map_ram
1836 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1837 */
1838void vm_unmap_ram(const void *mem, unsigned int count)
1839{
65ee03c4 1840 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 1841 unsigned long addr = (unsigned long)mem;
9c3acf60 1842 struct vmap_area *va;
db64fe02 1843
5803ed29 1844 might_sleep();
db64fe02
NP
1845 BUG_ON(!addr);
1846 BUG_ON(addr < VMALLOC_START);
1847 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 1848 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 1849
d98c9e83
AR
1850 kasan_poison_vmalloc(mem, size);
1851
9c3acf60 1852 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 1853 debug_check_no_locks_freed(mem, size);
78a0e8c4 1854 vb_free(addr, size);
9c3acf60
CH
1855 return;
1856 }
1857
1858 va = find_vmap_area(addr);
1859 BUG_ON(!va);
05e3ff95
CP
1860 debug_check_no_locks_freed((void *)va->va_start,
1861 (va->va_end - va->va_start));
9c3acf60 1862 free_unmap_vmap_area(va);
db64fe02
NP
1863}
1864EXPORT_SYMBOL(vm_unmap_ram);
1865
1866/**
1867 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1868 * @pages: an array of pointers to the pages to be mapped
1869 * @count: number of pages
1870 * @node: prefer to allocate data structures on this node
1871 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad 1872 *
36437638
GK
1873 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1874 * faster than vmap so it's good. But if you mix long-life and short-life
1875 * objects with vm_map_ram(), it could consume lots of address space through
1876 * fragmentation (especially on a 32bit machine). You could see failures in
1877 * the end. Please use this function for short-lived objects.
1878 *
e99c97ad 1879 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02 1880 */
d4efd79a 1881void *vm_map_ram(struct page **pages, unsigned int count, int node)
db64fe02 1882{
65ee03c4 1883 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1884 unsigned long addr;
1885 void *mem;
1886
1887 if (likely(count <= VMAP_MAX_ALLOC)) {
1888 mem = vb_alloc(size, GFP_KERNEL);
1889 if (IS_ERR(mem))
1890 return NULL;
1891 addr = (unsigned long)mem;
1892 } else {
1893 struct vmap_area *va;
1894 va = alloc_vmap_area(size, PAGE_SIZE,
1895 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1896 if (IS_ERR(va))
1897 return NULL;
1898
1899 addr = va->va_start;
1900 mem = (void *)addr;
1901 }
d98c9e83
AR
1902
1903 kasan_unpoison_vmalloc(mem, size);
1904
d4efd79a 1905 if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
db64fe02
NP
1906 vm_unmap_ram(mem, count);
1907 return NULL;
1908 }
1909 return mem;
1910}
1911EXPORT_SYMBOL(vm_map_ram);
1912
4341fa45 1913static struct vm_struct *vmlist __initdata;
92eac168 1914
be9b7335
NP
1915/**
1916 * vm_area_add_early - add vmap area early during boot
1917 * @vm: vm_struct to add
1918 *
1919 * This function is used to add fixed kernel vm area to vmlist before
1920 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1921 * should contain proper values and the other fields should be zero.
1922 *
1923 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1924 */
1925void __init vm_area_add_early(struct vm_struct *vm)
1926{
1927 struct vm_struct *tmp, **p;
1928
1929 BUG_ON(vmap_initialized);
1930 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1931 if (tmp->addr >= vm->addr) {
1932 BUG_ON(tmp->addr < vm->addr + vm->size);
1933 break;
1934 } else
1935 BUG_ON(tmp->addr + tmp->size > vm->addr);
1936 }
1937 vm->next = *p;
1938 *p = vm;
1939}
1940
f0aa6617
TH
1941/**
1942 * vm_area_register_early - register vmap area early during boot
1943 * @vm: vm_struct to register
c0c0a293 1944 * @align: requested alignment
f0aa6617
TH
1945 *
1946 * This function is used to register kernel vm area before
1947 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1948 * proper values on entry and other fields should be zero. On return,
1949 * vm->addr contains the allocated address.
1950 *
1951 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1952 */
c0c0a293 1953void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1954{
1955 static size_t vm_init_off __initdata;
c0c0a293
TH
1956 unsigned long addr;
1957
1958 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1959 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1960
c0c0a293 1961 vm->addr = (void *)addr;
f0aa6617 1962
be9b7335 1963 vm_area_add_early(vm);
f0aa6617
TH
1964}
1965
68ad4a33
URS
1966static void vmap_init_free_space(void)
1967{
1968 unsigned long vmap_start = 1;
1969 const unsigned long vmap_end = ULONG_MAX;
1970 struct vmap_area *busy, *free;
1971
1972 /*
1973 * B F B B B F
1974 * -|-----|.....|-----|-----|-----|.....|-
1975 * | The KVA space |
1976 * |<--------------------------------->|
1977 */
1978 list_for_each_entry(busy, &vmap_area_list, list) {
1979 if (busy->va_start - vmap_start > 0) {
1980 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1981 if (!WARN_ON_ONCE(!free)) {
1982 free->va_start = vmap_start;
1983 free->va_end = busy->va_start;
1984
1985 insert_vmap_area_augment(free, NULL,
1986 &free_vmap_area_root,
1987 &free_vmap_area_list);
1988 }
1989 }
1990
1991 vmap_start = busy->va_end;
1992 }
1993
1994 if (vmap_end - vmap_start > 0) {
1995 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1996 if (!WARN_ON_ONCE(!free)) {
1997 free->va_start = vmap_start;
1998 free->va_end = vmap_end;
1999
2000 insert_vmap_area_augment(free, NULL,
2001 &free_vmap_area_root,
2002 &free_vmap_area_list);
2003 }
2004 }
2005}
2006
db64fe02
NP
2007void __init vmalloc_init(void)
2008{
822c18f2
IK
2009 struct vmap_area *va;
2010 struct vm_struct *tmp;
db64fe02
NP
2011 int i;
2012
68ad4a33
URS
2013 /*
2014 * Create the cache for vmap_area objects.
2015 */
2016 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2017
db64fe02
NP
2018 for_each_possible_cpu(i) {
2019 struct vmap_block_queue *vbq;
32fcfd40 2020 struct vfree_deferred *p;
db64fe02
NP
2021
2022 vbq = &per_cpu(vmap_block_queue, i);
2023 spin_lock_init(&vbq->lock);
2024 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
2025 p = &per_cpu(vfree_deferred, i);
2026 init_llist_head(&p->list);
2027 INIT_WORK(&p->wq, free_work);
db64fe02 2028 }
9b463334 2029
822c18f2
IK
2030 /* Import existing vmlist entries. */
2031 for (tmp = vmlist; tmp; tmp = tmp->next) {
68ad4a33
URS
2032 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2033 if (WARN_ON_ONCE(!va))
2034 continue;
2035
822c18f2
IK
2036 va->va_start = (unsigned long)tmp->addr;
2037 va->va_end = va->va_start + tmp->size;
dbda591d 2038 va->vm = tmp;
68ad4a33 2039 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
822c18f2 2040 }
ca23e405 2041
68ad4a33
URS
2042 /*
2043 * Now we can initialize a free vmap space.
2044 */
2045 vmap_init_free_space();
9b463334 2046 vmap_initialized = true;
db64fe02
NP
2047}
2048
8fc48985
TH
2049/**
2050 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2051 * @addr: start of the VM area to unmap
2052 * @size: size of the VM area to unmap
2053 *
2054 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2055 * the unmapping and tlb after.
2056 */
db64fe02
NP
2057void unmap_kernel_range(unsigned long addr, unsigned long size)
2058{
2059 unsigned long end = addr + size;
f6fcba70
TH
2060
2061 flush_cache_vunmap(addr, end);
b521c43f 2062 unmap_kernel_range_noflush(addr, size);
db64fe02
NP
2063 flush_tlb_kernel_range(addr, end);
2064}
2065
e36176be
URS
2066static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2067 struct vmap_area *va, unsigned long flags, const void *caller)
cf88c790 2068{
cf88c790
TH
2069 vm->flags = flags;
2070 vm->addr = (void *)va->va_start;
2071 vm->size = va->va_end - va->va_start;
2072 vm->caller = caller;
db1aecaf 2073 va->vm = vm;
e36176be
URS
2074}
2075
2076static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2077 unsigned long flags, const void *caller)
2078{
2079 spin_lock(&vmap_area_lock);
2080 setup_vmalloc_vm_locked(vm, va, flags, caller);
c69480ad 2081 spin_unlock(&vmap_area_lock);
f5252e00 2082}
cf88c790 2083
20fc02b4 2084static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2085{
d4033afd 2086 /*
20fc02b4 2087 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2088 * we should make sure that vm has proper values.
2089 * Pair with smp_rmb() in show_numa_info().
2090 */
2091 smp_wmb();
20fc02b4 2092 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2093}
2094
db64fe02 2095static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 2096 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 2097 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 2098{
0006526d 2099 struct vmap_area *va;
db64fe02 2100 struct vm_struct *area;
d98c9e83 2101 unsigned long requested_size = size;
1da177e4 2102
52fd24ca 2103 BUG_ON(in_interrupt());
1da177e4 2104 size = PAGE_ALIGN(size);
31be8309
OH
2105 if (unlikely(!size))
2106 return NULL;
1da177e4 2107
252e5c6e 2108 if (flags & VM_IOREMAP)
2109 align = 1ul << clamp_t(int, get_count_order_long(size),
2110 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2111
cf88c790 2112 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2113 if (unlikely(!area))
2114 return NULL;
2115
71394fe5
AR
2116 if (!(flags & VM_NO_GUARD))
2117 size += PAGE_SIZE;
1da177e4 2118
db64fe02
NP
2119 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2120 if (IS_ERR(va)) {
2121 kfree(area);
2122 return NULL;
1da177e4 2123 }
1da177e4 2124
d98c9e83 2125 kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
f5252e00 2126
d98c9e83 2127 setup_vmalloc_vm(area, va, flags, caller);
3c5c3cfb 2128
1da177e4 2129 return area;
1da177e4
LT
2130}
2131
c2968612
BH
2132struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2133 unsigned long start, unsigned long end,
5e6cafc8 2134 const void *caller)
c2968612 2135{
00ef2d2f
DR
2136 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2137 GFP_KERNEL, caller);
c2968612
BH
2138}
2139
1da177e4 2140/**
92eac168
MR
2141 * get_vm_area - reserve a contiguous kernel virtual area
2142 * @size: size of the area
2143 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2144 *
92eac168
MR
2145 * Search an area of @size in the kernel virtual mapping area,
2146 * and reserved it for out purposes. Returns the area descriptor
2147 * on success or %NULL on failure.
a862f68a
MR
2148 *
2149 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2150 */
2151struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2152{
2dca6999 2153 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2154 NUMA_NO_NODE, GFP_KERNEL,
2155 __builtin_return_address(0));
23016969
CL
2156}
2157
2158struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2159 const void *caller)
23016969 2160{
2dca6999 2161 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 2162 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2163}
2164
e9da6e99 2165/**
92eac168
MR
2166 * find_vm_area - find a continuous kernel virtual area
2167 * @addr: base address
e9da6e99 2168 *
92eac168
MR
2169 * Search for the kernel VM area starting at @addr, and return it.
2170 * It is up to the caller to do all required locking to keep the returned
2171 * pointer valid.
a862f68a
MR
2172 *
2173 * Return: pointer to the found area or %NULL on faulure
e9da6e99
MS
2174 */
2175struct vm_struct *find_vm_area(const void *addr)
83342314 2176{
db64fe02 2177 struct vmap_area *va;
83342314 2178
db64fe02 2179 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
2180 if (!va)
2181 return NULL;
1da177e4 2182
688fcbfc 2183 return va->vm;
1da177e4
LT
2184}
2185
7856dfeb 2186/**
92eac168
MR
2187 * remove_vm_area - find and remove a continuous kernel virtual area
2188 * @addr: base address
7856dfeb 2189 *
92eac168
MR
2190 * Search for the kernel VM area starting at @addr, and remove it.
2191 * This function returns the found VM area, but using it is NOT safe
2192 * on SMP machines, except for its size or flags.
a862f68a
MR
2193 *
2194 * Return: pointer to the found area or %NULL on faulure
7856dfeb 2195 */
b3bdda02 2196struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2197{
db64fe02
NP
2198 struct vmap_area *va;
2199
5803ed29
CH
2200 might_sleep();
2201
dd3b8353
URS
2202 spin_lock(&vmap_area_lock);
2203 va = __find_vmap_area((unsigned long)addr);
688fcbfc 2204 if (va && va->vm) {
db1aecaf 2205 struct vm_struct *vm = va->vm;
f5252e00 2206
c69480ad 2207 va->vm = NULL;
c69480ad
JK
2208 spin_unlock(&vmap_area_lock);
2209
a5af5aa8 2210 kasan_free_shadow(vm);
dd32c279 2211 free_unmap_vmap_area(va);
dd32c279 2212
db64fe02
NP
2213 return vm;
2214 }
dd3b8353
URS
2215
2216 spin_unlock(&vmap_area_lock);
db64fe02 2217 return NULL;
7856dfeb
AK
2218}
2219
868b104d
RE
2220static inline void set_area_direct_map(const struct vm_struct *area,
2221 int (*set_direct_map)(struct page *page))
2222{
2223 int i;
2224
2225 for (i = 0; i < area->nr_pages; i++)
2226 if (page_address(area->pages[i]))
2227 set_direct_map(area->pages[i]);
2228}
2229
2230/* Handle removing and resetting vm mappings related to the vm_struct. */
2231static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2232{
868b104d
RE
2233 unsigned long start = ULONG_MAX, end = 0;
2234 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
31e67340 2235 int flush_dmap = 0;
868b104d
RE
2236 int i;
2237
868b104d
RE
2238 remove_vm_area(area->addr);
2239
2240 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2241 if (!flush_reset)
2242 return;
2243
2244 /*
2245 * If not deallocating pages, just do the flush of the VM area and
2246 * return.
2247 */
2248 if (!deallocate_pages) {
2249 vm_unmap_aliases();
2250 return;
2251 }
2252
2253 /*
2254 * If execution gets here, flush the vm mapping and reset the direct
2255 * map. Find the start and end range of the direct mappings to make sure
2256 * the vm_unmap_aliases() flush includes the direct map.
2257 */
2258 for (i = 0; i < area->nr_pages; i++) {
8e41f872
RE
2259 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2260 if (addr) {
868b104d 2261 start = min(addr, start);
8e41f872 2262 end = max(addr + PAGE_SIZE, end);
31e67340 2263 flush_dmap = 1;
868b104d
RE
2264 }
2265 }
2266
2267 /*
2268 * Set direct map to something invalid so that it won't be cached if
2269 * there are any accesses after the TLB flush, then flush the TLB and
2270 * reset the direct map permissions to the default.
2271 */
2272 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2273 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2274 set_area_direct_map(area, set_direct_map_default_noflush);
2275}
2276
b3bdda02 2277static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
2278{
2279 struct vm_struct *area;
2280
2281 if (!addr)
2282 return;
2283
e69e9d4a 2284 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 2285 addr))
1da177e4 2286 return;
1da177e4 2287
6ade2032 2288 area = find_vm_area(addr);
1da177e4 2289 if (unlikely(!area)) {
4c8573e2 2290 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 2291 addr);
1da177e4
LT
2292 return;
2293 }
2294
05e3ff95
CP
2295 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2296 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 2297
d98c9e83 2298 kasan_poison_vmalloc(area->addr, area->size);
3c5c3cfb 2299
868b104d
RE
2300 vm_remove_mappings(area, deallocate_pages);
2301
1da177e4
LT
2302 if (deallocate_pages) {
2303 int i;
2304
2305 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2306 struct page *page = area->pages[i];
2307
2308 BUG_ON(!page);
4949148a 2309 __free_pages(page, 0);
1da177e4 2310 }
97105f0a 2311 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2312
244d63ee 2313 kvfree(area->pages);
1da177e4
LT
2314 }
2315
2316 kfree(area);
2317 return;
2318}
bf22e37a
AR
2319
2320static inline void __vfree_deferred(const void *addr)
2321{
2322 /*
2323 * Use raw_cpu_ptr() because this can be called from preemptible
2324 * context. Preemption is absolutely fine here, because the llist_add()
2325 * implementation is lockless, so it works even if we are adding to
2326 * nother cpu's list. schedule_work() should be fine with this too.
2327 */
2328 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2329
2330 if (llist_add((struct llist_node *)addr, &p->list))
2331 schedule_work(&p->wq);
2332}
2333
2334/**
92eac168
MR
2335 * vfree_atomic - release memory allocated by vmalloc()
2336 * @addr: memory base address
bf22e37a 2337 *
92eac168
MR
2338 * This one is just like vfree() but can be called in any atomic context
2339 * except NMIs.
bf22e37a
AR
2340 */
2341void vfree_atomic(const void *addr)
2342{
2343 BUG_ON(in_nmi());
2344
2345 kmemleak_free(addr);
2346
2347 if (!addr)
2348 return;
2349 __vfree_deferred(addr);
2350}
2351
c67dc624
RP
2352static void __vfree(const void *addr)
2353{
2354 if (unlikely(in_interrupt()))
2355 __vfree_deferred(addr);
2356 else
2357 __vunmap(addr, 1);
2358}
2359
1da177e4 2360/**
92eac168
MR
2361 * vfree - release memory allocated by vmalloc()
2362 * @addr: memory base address
1da177e4 2363 *
92eac168
MR
2364 * Free the virtually continuous memory area starting at @addr, as
2365 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2366 * NULL, no operation is performed.
1da177e4 2367 *
92eac168
MR
2368 * Must not be called in NMI context (strictly speaking, only if we don't
2369 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2370 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51 2371 *
92eac168 2372 * May sleep if called *not* from interrupt context.
3ca4ea3a 2373 *
92eac168 2374 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1da177e4 2375 */
b3bdda02 2376void vfree(const void *addr)
1da177e4 2377{
32fcfd40 2378 BUG_ON(in_nmi());
89219d37
CM
2379
2380 kmemleak_free(addr);
2381
a8dda165
AR
2382 might_sleep_if(!in_interrupt());
2383
32fcfd40
AV
2384 if (!addr)
2385 return;
c67dc624
RP
2386
2387 __vfree(addr);
1da177e4 2388}
1da177e4
LT
2389EXPORT_SYMBOL(vfree);
2390
2391/**
92eac168
MR
2392 * vunmap - release virtual mapping obtained by vmap()
2393 * @addr: memory base address
1da177e4 2394 *
92eac168
MR
2395 * Free the virtually contiguous memory area starting at @addr,
2396 * which was created from the page array passed to vmap().
1da177e4 2397 *
92eac168 2398 * Must not be called in interrupt context.
1da177e4 2399 */
b3bdda02 2400void vunmap(const void *addr)
1da177e4
LT
2401{
2402 BUG_ON(in_interrupt());
34754b69 2403 might_sleep();
32fcfd40
AV
2404 if (addr)
2405 __vunmap(addr, 0);
1da177e4 2406}
1da177e4
LT
2407EXPORT_SYMBOL(vunmap);
2408
2409/**
92eac168
MR
2410 * vmap - map an array of pages into virtually contiguous space
2411 * @pages: array of page pointers
2412 * @count: number of pages to map
2413 * @flags: vm_area->flags
2414 * @prot: page protection for the mapping
2415 *
2416 * Maps @count pages from @pages into contiguous kernel virtual
2417 * space.
a862f68a
MR
2418 *
2419 * Return: the address of the area or %NULL on failure
1da177e4
LT
2420 */
2421void *vmap(struct page **pages, unsigned int count,
92eac168 2422 unsigned long flags, pgprot_t prot)
1da177e4
LT
2423{
2424 struct vm_struct *area;
65ee03c4 2425 unsigned long size; /* In bytes */
1da177e4 2426
34754b69
PZ
2427 might_sleep();
2428
ca79b0c2 2429 if (count > totalram_pages())
1da177e4
LT
2430 return NULL;
2431
65ee03c4
GJM
2432 size = (unsigned long)count << PAGE_SHIFT;
2433 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2434 if (!area)
2435 return NULL;
23016969 2436
cca98e9f 2437 if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
ed1f324c 2438 pages) < 0) {
1da177e4
LT
2439 vunmap(area->addr);
2440 return NULL;
2441 }
2442
2443 return area->addr;
2444}
1da177e4
LT
2445EXPORT_SYMBOL(vmap);
2446
e31d9eb5 2447static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 2448 pgprot_t prot, int node)
1da177e4
LT
2449{
2450 struct page **pages;
2451 unsigned int nr_pages, array_size, i;
930f036b 2452 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
704b862f
LA
2453 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2454 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2455 0 :
2456 __GFP_HIGHMEM;
1da177e4 2457
762216ab 2458 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
2459 array_size = (nr_pages * sizeof(struct page *));
2460
1da177e4 2461 /* Please note that the recursion is strictly bounded. */
8757d5fa 2462 if (array_size > PAGE_SIZE) {
704b862f 2463 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
f38fcb9c 2464 node, area->caller);
286e1ea3 2465 } else {
976d6dfb 2466 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 2467 }
7ea36242
AK
2468
2469 if (!pages) {
1da177e4
LT
2470 remove_vm_area(area->addr);
2471 kfree(area);
2472 return NULL;
2473 }
1da177e4 2474
7ea36242
AK
2475 area->pages = pages;
2476 area->nr_pages = nr_pages;
2477
1da177e4 2478 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2479 struct page *page;
2480
4b90951c 2481 if (node == NUMA_NO_NODE)
704b862f 2482 page = alloc_page(alloc_mask|highmem_mask);
930fc45a 2483 else
704b862f 2484 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
bf53d6f8
CL
2485
2486 if (unlikely(!page)) {
1da177e4
LT
2487 /* Successfully allocated i pages, free them in __vunmap() */
2488 area->nr_pages = i;
97105f0a 2489 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4
LT
2490 goto fail;
2491 }
bf53d6f8 2492 area->pages[i] = page;
dcf61ff0 2493 if (gfpflags_allow_blocking(gfp_mask))
660654f9 2494 cond_resched();
1da177e4 2495 }
97105f0a 2496 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2497
ed1f324c
CH
2498 if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
2499 prot, pages) < 0)
1da177e4 2500 goto fail;
ed1f324c 2501
1da177e4
LT
2502 return area->addr;
2503
2504fail:
a8e99259 2505 warn_alloc(gfp_mask, NULL,
7877cdcc 2506 "vmalloc: allocation failure, allocated %ld of %ld bytes",
22943ab1 2507 (area->nr_pages*PAGE_SIZE), area->size);
c67dc624 2508 __vfree(area->addr);
1da177e4
LT
2509 return NULL;
2510}
2511
2512/**
92eac168
MR
2513 * __vmalloc_node_range - allocate virtually contiguous memory
2514 * @size: allocation size
2515 * @align: desired alignment
2516 * @start: vm area range start
2517 * @end: vm area range end
2518 * @gfp_mask: flags for the page level allocator
2519 * @prot: protection mask for the allocated pages
2520 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2521 * @node: node to use for allocation or NUMA_NO_NODE
2522 * @caller: caller's return address
2523 *
2524 * Allocate enough pages to cover @size from the page level
2525 * allocator with @gfp_mask flags. Map them into contiguous
2526 * kernel virtual space, using a pagetable protection of @prot.
a862f68a
MR
2527 *
2528 * Return: the address of the area or %NULL on failure
1da177e4 2529 */
d0a21265
DR
2530void *__vmalloc_node_range(unsigned long size, unsigned long align,
2531 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
2532 pgprot_t prot, unsigned long vm_flags, int node,
2533 const void *caller)
1da177e4
LT
2534{
2535 struct vm_struct *area;
89219d37
CM
2536 void *addr;
2537 unsigned long real_size = size;
1da177e4
LT
2538
2539 size = PAGE_ALIGN(size);
ca79b0c2 2540 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
de7d2b56 2541 goto fail;
1da177e4 2542
d98c9e83 2543 area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
cb9e3c29 2544 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 2545 if (!area)
de7d2b56 2546 goto fail;
1da177e4 2547
3722e13c 2548 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 2549 if (!addr)
b82225f3 2550 return NULL;
89219d37 2551
f5252e00 2552 /*
20fc02b4
ZY
2553 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2554 * flag. It means that vm_struct is not fully initialized.
4341fa45 2555 * Now, it is fully initialized, so remove this flag here.
f5252e00 2556 */
20fc02b4 2557 clear_vm_uninitialized_flag(area);
f5252e00 2558
94f4a161 2559 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
2560
2561 return addr;
de7d2b56
JP
2562
2563fail:
a8e99259 2564 warn_alloc(gfp_mask, NULL,
7877cdcc 2565 "vmalloc: allocation failure: %lu bytes", real_size);
de7d2b56 2566 return NULL;
1da177e4
LT
2567}
2568
d0a21265 2569/**
92eac168
MR
2570 * __vmalloc_node - allocate virtually contiguous memory
2571 * @size: allocation size
2572 * @align: desired alignment
2573 * @gfp_mask: flags for the page level allocator
92eac168
MR
2574 * @node: node to use for allocation or NUMA_NO_NODE
2575 * @caller: caller's return address
a7c3e901 2576 *
f38fcb9c
CH
2577 * Allocate enough pages to cover @size from the page level allocator with
2578 * @gfp_mask flags. Map them into contiguous kernel virtual space.
a7c3e901 2579 *
92eac168
MR
2580 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2581 * and __GFP_NOFAIL are not supported
a7c3e901 2582 *
92eac168
MR
2583 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2584 * with mm people.
a862f68a
MR
2585 *
2586 * Return: pointer to the allocated memory or %NULL on error
d0a21265 2587 */
2b905948 2588void *__vmalloc_node(unsigned long size, unsigned long align,
f38fcb9c 2589 gfp_t gfp_mask, int node, const void *caller)
d0a21265
DR
2590{
2591 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
f38fcb9c 2592 gfp_mask, PAGE_KERNEL, 0, node, caller);
d0a21265 2593}
c3f896dc
CH
2594/*
2595 * This is only for performance analysis of vmalloc and stress purpose.
2596 * It is required by vmalloc test module, therefore do not use it other
2597 * than that.
2598 */
2599#ifdef CONFIG_TEST_VMALLOC_MODULE
2600EXPORT_SYMBOL_GPL(__vmalloc_node);
2601#endif
d0a21265 2602
88dca4ca 2603void *__vmalloc(unsigned long size, gfp_t gfp_mask)
930fc45a 2604{
f38fcb9c 2605 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
23016969 2606 __builtin_return_address(0));
930fc45a 2607}
1da177e4
LT
2608EXPORT_SYMBOL(__vmalloc);
2609
2610/**
92eac168
MR
2611 * vmalloc - allocate virtually contiguous memory
2612 * @size: allocation size
2613 *
2614 * Allocate enough pages to cover @size from the page level
2615 * allocator and map them into contiguous kernel virtual space.
1da177e4 2616 *
92eac168
MR
2617 * For tight control over page level allocator and protection flags
2618 * use __vmalloc() instead.
a862f68a
MR
2619 *
2620 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2621 */
2622void *vmalloc(unsigned long size)
2623{
4d39d728
CH
2624 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
2625 __builtin_return_address(0));
1da177e4 2626}
1da177e4
LT
2627EXPORT_SYMBOL(vmalloc);
2628
e1ca7788 2629/**
92eac168
MR
2630 * vzalloc - allocate virtually contiguous memory with zero fill
2631 * @size: allocation size
2632 *
2633 * Allocate enough pages to cover @size from the page level
2634 * allocator and map them into contiguous kernel virtual space.
2635 * The memory allocated is set to zero.
2636 *
2637 * For tight control over page level allocator and protection flags
2638 * use __vmalloc() instead.
a862f68a
MR
2639 *
2640 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2641 */
2642void *vzalloc(unsigned long size)
2643{
4d39d728
CH
2644 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
2645 __builtin_return_address(0));
e1ca7788
DY
2646}
2647EXPORT_SYMBOL(vzalloc);
2648
83342314 2649/**
ead04089
REB
2650 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2651 * @size: allocation size
83342314 2652 *
ead04089
REB
2653 * The resulting memory area is zeroed so it can be mapped to userspace
2654 * without leaking data.
a862f68a
MR
2655 *
2656 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2657 */
2658void *vmalloc_user(unsigned long size)
2659{
bc84c535
RP
2660 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2661 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2662 VM_USERMAP, NUMA_NO_NODE,
2663 __builtin_return_address(0));
83342314
NP
2664}
2665EXPORT_SYMBOL(vmalloc_user);
2666
930fc45a 2667/**
92eac168
MR
2668 * vmalloc_node - allocate memory on a specific node
2669 * @size: allocation size
2670 * @node: numa node
930fc45a 2671 *
92eac168
MR
2672 * Allocate enough pages to cover @size from the page level
2673 * allocator and map them into contiguous kernel virtual space.
930fc45a 2674 *
92eac168
MR
2675 * For tight control over page level allocator and protection flags
2676 * use __vmalloc() instead.
a862f68a
MR
2677 *
2678 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
2679 */
2680void *vmalloc_node(unsigned long size, int node)
2681{
f38fcb9c
CH
2682 return __vmalloc_node(size, 1, GFP_KERNEL, node,
2683 __builtin_return_address(0));
930fc45a
CL
2684}
2685EXPORT_SYMBOL(vmalloc_node);
2686
e1ca7788
DY
2687/**
2688 * vzalloc_node - allocate memory on a specific node with zero fill
2689 * @size: allocation size
2690 * @node: numa node
2691 *
2692 * Allocate enough pages to cover @size from the page level
2693 * allocator and map them into contiguous kernel virtual space.
2694 * The memory allocated is set to zero.
2695 *
a862f68a 2696 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2697 */
2698void *vzalloc_node(unsigned long size, int node)
2699{
4d39d728
CH
2700 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
2701 __builtin_return_address(0));
e1ca7788
DY
2702}
2703EXPORT_SYMBOL(vzalloc_node);
2704
1da177e4 2705/**
92eac168
MR
2706 * vmalloc_exec - allocate virtually contiguous, executable memory
2707 * @size: allocation size
1da177e4 2708 *
92eac168
MR
2709 * Kernel-internal function to allocate enough pages to cover @size
2710 * the page level allocator and map them into contiguous and
2711 * executable kernel virtual space.
1da177e4 2712 *
92eac168
MR
2713 * For tight control over page level allocator and protection flags
2714 * use __vmalloc() instead.
a862f68a
MR
2715 *
2716 * Return: pointer to the allocated memory or %NULL on error
1da177e4 2717 */
1da177e4
LT
2718void *vmalloc_exec(unsigned long size)
2719{
868b104d
RE
2720 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2721 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2722 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
2723}
2724
0d08e0d3 2725#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 2726#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 2727#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 2728#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 2729#else
698d0831
MH
2730/*
2731 * 64b systems should always have either DMA or DMA32 zones. For others
2732 * GFP_DMA32 should do the right thing and use the normal zone.
2733 */
2734#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3
AK
2735#endif
2736
1da177e4 2737/**
92eac168
MR
2738 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2739 * @size: allocation size
1da177e4 2740 *
92eac168
MR
2741 * Allocate enough 32bit PA addressable pages to cover @size from the
2742 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
2743 *
2744 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2745 */
2746void *vmalloc_32(unsigned long size)
2747{
f38fcb9c
CH
2748 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
2749 __builtin_return_address(0));
1da177e4 2750}
1da177e4
LT
2751EXPORT_SYMBOL(vmalloc_32);
2752
83342314 2753/**
ead04089 2754 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 2755 * @size: allocation size
ead04089
REB
2756 *
2757 * The resulting memory area is 32bit addressable and zeroed so it can be
2758 * mapped to userspace without leaking data.
a862f68a
MR
2759 *
2760 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2761 */
2762void *vmalloc_32_user(unsigned long size)
2763{
bc84c535
RP
2764 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2765 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2766 VM_USERMAP, NUMA_NO_NODE,
2767 __builtin_return_address(0));
83342314
NP
2768}
2769EXPORT_SYMBOL(vmalloc_32_user);
2770
d0107eb0
KH
2771/*
2772 * small helper routine , copy contents to buf from addr.
2773 * If the page is not present, fill zero.
2774 */
2775
2776static int aligned_vread(char *buf, char *addr, unsigned long count)
2777{
2778 struct page *p;
2779 int copied = 0;
2780
2781 while (count) {
2782 unsigned long offset, length;
2783
891c49ab 2784 offset = offset_in_page(addr);
d0107eb0
KH
2785 length = PAGE_SIZE - offset;
2786 if (length > count)
2787 length = count;
2788 p = vmalloc_to_page(addr);
2789 /*
2790 * To do safe access to this _mapped_ area, we need
2791 * lock. But adding lock here means that we need to add
2792 * overhead of vmalloc()/vfree() calles for this _debug_
2793 * interface, rarely used. Instead of that, we'll use
2794 * kmap() and get small overhead in this access function.
2795 */
2796 if (p) {
2797 /*
2798 * we can expect USER0 is not used (see vread/vwrite's
2799 * function description)
2800 */
9b04c5fe 2801 void *map = kmap_atomic(p);
d0107eb0 2802 memcpy(buf, map + offset, length);
9b04c5fe 2803 kunmap_atomic(map);
d0107eb0
KH
2804 } else
2805 memset(buf, 0, length);
2806
2807 addr += length;
2808 buf += length;
2809 copied += length;
2810 count -= length;
2811 }
2812 return copied;
2813}
2814
2815static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2816{
2817 struct page *p;
2818 int copied = 0;
2819
2820 while (count) {
2821 unsigned long offset, length;
2822
891c49ab 2823 offset = offset_in_page(addr);
d0107eb0
KH
2824 length = PAGE_SIZE - offset;
2825 if (length > count)
2826 length = count;
2827 p = vmalloc_to_page(addr);
2828 /*
2829 * To do safe access to this _mapped_ area, we need
2830 * lock. But adding lock here means that we need to add
2831 * overhead of vmalloc()/vfree() calles for this _debug_
2832 * interface, rarely used. Instead of that, we'll use
2833 * kmap() and get small overhead in this access function.
2834 */
2835 if (p) {
2836 /*
2837 * we can expect USER0 is not used (see vread/vwrite's
2838 * function description)
2839 */
9b04c5fe 2840 void *map = kmap_atomic(p);
d0107eb0 2841 memcpy(map + offset, buf, length);
9b04c5fe 2842 kunmap_atomic(map);
d0107eb0
KH
2843 }
2844 addr += length;
2845 buf += length;
2846 copied += length;
2847 count -= length;
2848 }
2849 return copied;
2850}
2851
2852/**
92eac168
MR
2853 * vread() - read vmalloc area in a safe way.
2854 * @buf: buffer for reading data
2855 * @addr: vm address.
2856 * @count: number of bytes to be read.
2857 *
92eac168
MR
2858 * This function checks that addr is a valid vmalloc'ed area, and
2859 * copy data from that area to a given buffer. If the given memory range
2860 * of [addr...addr+count) includes some valid address, data is copied to
2861 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2862 * IOREMAP area is treated as memory hole and no copy is done.
2863 *
2864 * If [addr...addr+count) doesn't includes any intersects with alive
2865 * vm_struct area, returns 0. @buf should be kernel's buffer.
2866 *
2867 * Note: In usual ops, vread() is never necessary because the caller
2868 * should know vmalloc() area is valid and can use memcpy().
2869 * This is for routines which have to access vmalloc area without
d9009d67 2870 * any information, as /dev/kmem.
a862f68a
MR
2871 *
2872 * Return: number of bytes for which addr and buf should be increased
2873 * (same number as @count) or %0 if [addr...addr+count) doesn't
2874 * include any intersection with valid vmalloc area
d0107eb0 2875 */
1da177e4
LT
2876long vread(char *buf, char *addr, unsigned long count)
2877{
e81ce85f
JK
2878 struct vmap_area *va;
2879 struct vm_struct *vm;
1da177e4 2880 char *vaddr, *buf_start = buf;
d0107eb0 2881 unsigned long buflen = count;
1da177e4
LT
2882 unsigned long n;
2883
2884 /* Don't allow overflow */
2885 if ((unsigned long) addr + count < count)
2886 count = -(unsigned long) addr;
2887
e81ce85f
JK
2888 spin_lock(&vmap_area_lock);
2889 list_for_each_entry(va, &vmap_area_list, list) {
2890 if (!count)
2891 break;
2892
688fcbfc 2893 if (!va->vm)
e81ce85f
JK
2894 continue;
2895
2896 vm = va->vm;
2897 vaddr = (char *) vm->addr;
762216ab 2898 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2899 continue;
2900 while (addr < vaddr) {
2901 if (count == 0)
2902 goto finished;
2903 *buf = '\0';
2904 buf++;
2905 addr++;
2906 count--;
2907 }
762216ab 2908 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2909 if (n > count)
2910 n = count;
e81ce85f 2911 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2912 aligned_vread(buf, addr, n);
2913 else /* IOREMAP area is treated as memory hole */
2914 memset(buf, 0, n);
2915 buf += n;
2916 addr += n;
2917 count -= n;
1da177e4
LT
2918 }
2919finished:
e81ce85f 2920 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2921
2922 if (buf == buf_start)
2923 return 0;
2924 /* zero-fill memory holes */
2925 if (buf != buf_start + buflen)
2926 memset(buf, 0, buflen - (buf - buf_start));
2927
2928 return buflen;
1da177e4
LT
2929}
2930
d0107eb0 2931/**
92eac168
MR
2932 * vwrite() - write vmalloc area in a safe way.
2933 * @buf: buffer for source data
2934 * @addr: vm address.
2935 * @count: number of bytes to be read.
2936 *
92eac168
MR
2937 * This function checks that addr is a valid vmalloc'ed area, and
2938 * copy data from a buffer to the given addr. If specified range of
2939 * [addr...addr+count) includes some valid address, data is copied from
2940 * proper area of @buf. If there are memory holes, no copy to hole.
2941 * IOREMAP area is treated as memory hole and no copy is done.
2942 *
2943 * If [addr...addr+count) doesn't includes any intersects with alive
2944 * vm_struct area, returns 0. @buf should be kernel's buffer.
2945 *
2946 * Note: In usual ops, vwrite() is never necessary because the caller
2947 * should know vmalloc() area is valid and can use memcpy().
2948 * This is for routines which have to access vmalloc area without
d9009d67 2949 * any information, as /dev/kmem.
a862f68a
MR
2950 *
2951 * Return: number of bytes for which addr and buf should be
2952 * increased (same number as @count) or %0 if [addr...addr+count)
2953 * doesn't include any intersection with valid vmalloc area
d0107eb0 2954 */
1da177e4
LT
2955long vwrite(char *buf, char *addr, unsigned long count)
2956{
e81ce85f
JK
2957 struct vmap_area *va;
2958 struct vm_struct *vm;
d0107eb0
KH
2959 char *vaddr;
2960 unsigned long n, buflen;
2961 int copied = 0;
1da177e4
LT
2962
2963 /* Don't allow overflow */
2964 if ((unsigned long) addr + count < count)
2965 count = -(unsigned long) addr;
d0107eb0 2966 buflen = count;
1da177e4 2967
e81ce85f
JK
2968 spin_lock(&vmap_area_lock);
2969 list_for_each_entry(va, &vmap_area_list, list) {
2970 if (!count)
2971 break;
2972
688fcbfc 2973 if (!va->vm)
e81ce85f
JK
2974 continue;
2975
2976 vm = va->vm;
2977 vaddr = (char *) vm->addr;
762216ab 2978 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2979 continue;
2980 while (addr < vaddr) {
2981 if (count == 0)
2982 goto finished;
2983 buf++;
2984 addr++;
2985 count--;
2986 }
762216ab 2987 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2988 if (n > count)
2989 n = count;
e81ce85f 2990 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2991 aligned_vwrite(buf, addr, n);
2992 copied++;
2993 }
2994 buf += n;
2995 addr += n;
2996 count -= n;
1da177e4
LT
2997 }
2998finished:
e81ce85f 2999 spin_unlock(&vmap_area_lock);
d0107eb0
KH
3000 if (!copied)
3001 return 0;
3002 return buflen;
1da177e4 3003}
83342314
NP
3004
3005/**
92eac168
MR
3006 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3007 * @vma: vma to cover
3008 * @uaddr: target user address to start at
3009 * @kaddr: virtual address of vmalloc kernel memory
bdebd6a2 3010 * @pgoff: offset from @kaddr to start at
92eac168 3011 * @size: size of map area
7682486b 3012 *
92eac168 3013 * Returns: 0 for success, -Exxx on failure
83342314 3014 *
92eac168
MR
3015 * This function checks that @kaddr is a valid vmalloc'ed area,
3016 * and that it is big enough to cover the range starting at
3017 * @uaddr in @vma. Will return failure if that criteria isn't
3018 * met.
83342314 3019 *
92eac168 3020 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 3021 */
e69e9d4a 3022int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
bdebd6a2
JH
3023 void *kaddr, unsigned long pgoff,
3024 unsigned long size)
83342314
NP
3025{
3026 struct vm_struct *area;
bdebd6a2
JH
3027 unsigned long off;
3028 unsigned long end_index;
3029
3030 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3031 return -EINVAL;
83342314 3032
e69e9d4a
HD
3033 size = PAGE_ALIGN(size);
3034
3035 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
3036 return -EINVAL;
3037
e69e9d4a 3038 area = find_vm_area(kaddr);
83342314 3039 if (!area)
db64fe02 3040 return -EINVAL;
83342314 3041
fe9041c2 3042 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 3043 return -EINVAL;
83342314 3044
bdebd6a2
JH
3045 if (check_add_overflow(size, off, &end_index) ||
3046 end_index > get_vm_area_size(area))
db64fe02 3047 return -EINVAL;
bdebd6a2 3048 kaddr += off;
83342314 3049
83342314 3050 do {
e69e9d4a 3051 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
3052 int ret;
3053
83342314
NP
3054 ret = vm_insert_page(vma, uaddr, page);
3055 if (ret)
3056 return ret;
3057
3058 uaddr += PAGE_SIZE;
e69e9d4a
HD
3059 kaddr += PAGE_SIZE;
3060 size -= PAGE_SIZE;
3061 } while (size > 0);
83342314 3062
314e51b9 3063 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 3064
db64fe02 3065 return 0;
83342314 3066}
e69e9d4a
HD
3067EXPORT_SYMBOL(remap_vmalloc_range_partial);
3068
3069/**
92eac168
MR
3070 * remap_vmalloc_range - map vmalloc pages to userspace
3071 * @vma: vma to cover (map full range of vma)
3072 * @addr: vmalloc memory
3073 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3074 *
92eac168 3075 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3076 *
92eac168
MR
3077 * This function checks that addr is a valid vmalloc'ed area, and
3078 * that it is big enough to cover the vma. Will return failure if
3079 * that criteria isn't met.
e69e9d4a 3080 *
92eac168 3081 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3082 */
3083int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3084 unsigned long pgoff)
3085{
3086 return remap_vmalloc_range_partial(vma, vma->vm_start,
bdebd6a2 3087 addr, pgoff,
e69e9d4a
HD
3088 vma->vm_end - vma->vm_start);
3089}
83342314
NP
3090EXPORT_SYMBOL(remap_vmalloc_range);
3091
1eeb66a1 3092/*
763802b5
JR
3093 * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose
3094 * not to have one.
3f8fd02b
JR
3095 *
3096 * The purpose of this function is to make sure the vmalloc area
3097 * mappings are identical in all page-tables in the system.
1eeb66a1 3098 */
763802b5 3099void __weak vmalloc_sync_mappings(void)
1eeb66a1
CH
3100{
3101}
5f4352fb 3102
763802b5
JR
3103void __weak vmalloc_sync_unmappings(void)
3104{
3105}
5f4352fb 3106
8b1e0f81 3107static int f(pte_t *pte, unsigned long addr, void *data)
5f4352fb 3108{
cd12909c
DV
3109 pte_t ***p = data;
3110
3111 if (p) {
3112 *(*p) = pte;
3113 (*p)++;
3114 }
5f4352fb
JF
3115 return 0;
3116}
3117
3118/**
92eac168
MR
3119 * alloc_vm_area - allocate a range of kernel address space
3120 * @size: size of the area
3121 * @ptes: returns the PTEs for the address space
7682486b 3122 *
92eac168 3123 * Returns: NULL on failure, vm_struct on success
5f4352fb 3124 *
92eac168
MR
3125 * This function reserves a range of kernel address space, and
3126 * allocates pagetables to map that range. No actual mappings
3127 * are created.
cd12909c 3128 *
92eac168
MR
3129 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3130 * allocated for the VM area are returned.
5f4352fb 3131 */
cd12909c 3132struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
3133{
3134 struct vm_struct *area;
3135
23016969
CL
3136 area = get_vm_area_caller(size, VM_IOREMAP,
3137 __builtin_return_address(0));
5f4352fb
JF
3138 if (area == NULL)
3139 return NULL;
3140
3141 /*
3142 * This ensures that page tables are constructed for this region
3143 * of kernel virtual address space and mapped into init_mm.
3144 */
3145 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 3146 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
3147 free_vm_area(area);
3148 return NULL;
3149 }
3150
5f4352fb
JF
3151 return area;
3152}
3153EXPORT_SYMBOL_GPL(alloc_vm_area);
3154
3155void free_vm_area(struct vm_struct *area)
3156{
3157 struct vm_struct *ret;
3158 ret = remove_vm_area(area->addr);
3159 BUG_ON(ret != area);
3160 kfree(area);
3161}
3162EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3163
4f8b02b4 3164#ifdef CONFIG_SMP
ca23e405
TH
3165static struct vmap_area *node_to_va(struct rb_node *n)
3166{
4583e773 3167 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3168}
3169
3170/**
68ad4a33
URS
3171 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3172 * @addr: target address
ca23e405 3173 *
68ad4a33
URS
3174 * Returns: vmap_area if it is found. If there is no such area
3175 * the first highest(reverse order) vmap_area is returned
3176 * i.e. va->va_start < addr && va->va_end < addr or NULL
3177 * if there are no any areas before @addr.
ca23e405 3178 */
68ad4a33
URS
3179static struct vmap_area *
3180pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3181{
68ad4a33
URS
3182 struct vmap_area *va, *tmp;
3183 struct rb_node *n;
3184
3185 n = free_vmap_area_root.rb_node;
3186 va = NULL;
ca23e405
TH
3187
3188 while (n) {
68ad4a33
URS
3189 tmp = rb_entry(n, struct vmap_area, rb_node);
3190 if (tmp->va_start <= addr) {
3191 va = tmp;
3192 if (tmp->va_end >= addr)
3193 break;
3194
ca23e405 3195 n = n->rb_right;
68ad4a33
URS
3196 } else {
3197 n = n->rb_left;
3198 }
ca23e405
TH
3199 }
3200
68ad4a33 3201 return va;
ca23e405
TH
3202}
3203
3204/**
68ad4a33
URS
3205 * pvm_determine_end_from_reverse - find the highest aligned address
3206 * of free block below VMALLOC_END
3207 * @va:
3208 * in - the VA we start the search(reverse order);
3209 * out - the VA with the highest aligned end address.
ca23e405 3210 *
68ad4a33 3211 * Returns: determined end address within vmap_area
ca23e405 3212 */
68ad4a33
URS
3213static unsigned long
3214pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3215{
68ad4a33 3216 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3217 unsigned long addr;
3218
68ad4a33
URS
3219 if (likely(*va)) {
3220 list_for_each_entry_from_reverse((*va),
3221 &free_vmap_area_list, list) {
3222 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3223 if ((*va)->va_start < addr)
3224 return addr;
3225 }
ca23e405
TH
3226 }
3227
68ad4a33 3228 return 0;
ca23e405
TH
3229}
3230
3231/**
3232 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3233 * @offsets: array containing offset of each area
3234 * @sizes: array containing size of each area
3235 * @nr_vms: the number of areas to allocate
3236 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3237 *
3238 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3239 * vm_structs on success, %NULL on failure
3240 *
3241 * Percpu allocator wants to use congruent vm areas so that it can
3242 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3243 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3244 * be scattered pretty far, distance between two areas easily going up
3245 * to gigabytes. To avoid interacting with regular vmallocs, these
3246 * areas are allocated from top.
ca23e405 3247 *
68ad4a33
URS
3248 * Despite its complicated look, this allocator is rather simple. It
3249 * does everything top-down and scans free blocks from the end looking
3250 * for matching base. While scanning, if any of the areas do not fit the
3251 * base address is pulled down to fit the area. Scanning is repeated till
3252 * all the areas fit and then all necessary data structures are inserted
3253 * and the result is returned.
ca23e405
TH
3254 */
3255struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3256 const size_t *sizes, int nr_vms,
ec3f64fc 3257 size_t align)
ca23e405
TH
3258{
3259 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3260 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3261 struct vmap_area **vas, *va;
ca23e405
TH
3262 struct vm_struct **vms;
3263 int area, area2, last_area, term_area;
253a496d 3264 unsigned long base, start, size, end, last_end, orig_start, orig_end;
ca23e405 3265 bool purged = false;
68ad4a33 3266 enum fit_type type;
ca23e405 3267
ca23e405 3268 /* verify parameters and allocate data structures */
891c49ab 3269 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3270 for (last_area = 0, area = 0; area < nr_vms; area++) {
3271 start = offsets[area];
3272 end = start + sizes[area];
3273
3274 /* is everything aligned properly? */
3275 BUG_ON(!IS_ALIGNED(offsets[area], align));
3276 BUG_ON(!IS_ALIGNED(sizes[area], align));
3277
3278 /* detect the area with the highest address */
3279 if (start > offsets[last_area])
3280 last_area = area;
3281
c568da28 3282 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3283 unsigned long start2 = offsets[area2];
3284 unsigned long end2 = start2 + sizes[area2];
3285
c568da28 3286 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3287 }
3288 }
3289 last_end = offsets[last_area] + sizes[last_area];
3290
3291 if (vmalloc_end - vmalloc_start < last_end) {
3292 WARN_ON(true);
3293 return NULL;
3294 }
3295
4d67d860
TM
3296 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3297 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3298 if (!vas || !vms)
f1db7afd 3299 goto err_free2;
ca23e405
TH
3300
3301 for (area = 0; area < nr_vms; area++) {
68ad4a33 3302 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3303 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3304 if (!vas[area] || !vms[area])
3305 goto err_free;
3306 }
3307retry:
e36176be 3308 spin_lock(&free_vmap_area_lock);
ca23e405
TH
3309
3310 /* start scanning - we scan from the top, begin with the last area */
3311 area = term_area = last_area;
3312 start = offsets[area];
3313 end = start + sizes[area];
3314
68ad4a33
URS
3315 va = pvm_find_va_enclose_addr(vmalloc_end);
3316 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3317
3318 while (true) {
ca23e405
TH
3319 /*
3320 * base might have underflowed, add last_end before
3321 * comparing.
3322 */
68ad4a33
URS
3323 if (base + last_end < vmalloc_start + last_end)
3324 goto overflow;
ca23e405
TH
3325
3326 /*
68ad4a33 3327 * Fitting base has not been found.
ca23e405 3328 */
68ad4a33
URS
3329 if (va == NULL)
3330 goto overflow;
ca23e405 3331
5336e52c 3332 /*
d8cc323d 3333 * If required width exceeds current VA block, move
5336e52c
KS
3334 * base downwards and then recheck.
3335 */
3336 if (base + end > va->va_end) {
3337 base = pvm_determine_end_from_reverse(&va, align) - end;
3338 term_area = area;
3339 continue;
3340 }
3341
ca23e405 3342 /*
68ad4a33 3343 * If this VA does not fit, move base downwards and recheck.
ca23e405 3344 */
5336e52c 3345 if (base + start < va->va_start) {
68ad4a33
URS
3346 va = node_to_va(rb_prev(&va->rb_node));
3347 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3348 term_area = area;
3349 continue;
3350 }
3351
3352 /*
3353 * This area fits, move on to the previous one. If
3354 * the previous one is the terminal one, we're done.
3355 */
3356 area = (area + nr_vms - 1) % nr_vms;
3357 if (area == term_area)
3358 break;
68ad4a33 3359
ca23e405
TH
3360 start = offsets[area];
3361 end = start + sizes[area];
68ad4a33 3362 va = pvm_find_va_enclose_addr(base + end);
ca23e405 3363 }
68ad4a33 3364
ca23e405
TH
3365 /* we've found a fitting base, insert all va's */
3366 for (area = 0; area < nr_vms; area++) {
68ad4a33 3367 int ret;
ca23e405 3368
68ad4a33
URS
3369 start = base + offsets[area];
3370 size = sizes[area];
ca23e405 3371
68ad4a33
URS
3372 va = pvm_find_va_enclose_addr(start);
3373 if (WARN_ON_ONCE(va == NULL))
3374 /* It is a BUG(), but trigger recovery instead. */
3375 goto recovery;
3376
3377 type = classify_va_fit_type(va, start, size);
3378 if (WARN_ON_ONCE(type == NOTHING_FIT))
3379 /* It is a BUG(), but trigger recovery instead. */
3380 goto recovery;
3381
3382 ret = adjust_va_to_fit_type(va, start, size, type);
3383 if (unlikely(ret))
3384 goto recovery;
3385
3386 /* Allocated area. */
3387 va = vas[area];
3388 va->va_start = start;
3389 va->va_end = start + size;
68ad4a33 3390 }
ca23e405 3391
e36176be 3392 spin_unlock(&free_vmap_area_lock);
ca23e405 3393
253a496d
DA
3394 /* populate the kasan shadow space */
3395 for (area = 0; area < nr_vms; area++) {
3396 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3397 goto err_free_shadow;
3398
3399 kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3400 sizes[area]);
3401 }
3402
ca23e405 3403 /* insert all vm's */
e36176be
URS
3404 spin_lock(&vmap_area_lock);
3405 for (area = 0; area < nr_vms; area++) {
3406 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3407
3408 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3645cb4a 3409 pcpu_get_vm_areas);
e36176be
URS
3410 }
3411 spin_unlock(&vmap_area_lock);
ca23e405
TH
3412
3413 kfree(vas);
3414 return vms;
3415
68ad4a33 3416recovery:
e36176be
URS
3417 /*
3418 * Remove previously allocated areas. There is no
3419 * need in removing these areas from the busy tree,
3420 * because they are inserted only on the final step
3421 * and when pcpu_get_vm_areas() is success.
3422 */
68ad4a33 3423 while (area--) {
253a496d
DA
3424 orig_start = vas[area]->va_start;
3425 orig_end = vas[area]->va_end;
3426 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3427 &free_vmap_area_list);
3428 kasan_release_vmalloc(orig_start, orig_end,
3429 va->va_start, va->va_end);
68ad4a33
URS
3430 vas[area] = NULL;
3431 }
3432
3433overflow:
e36176be 3434 spin_unlock(&free_vmap_area_lock);
68ad4a33
URS
3435 if (!purged) {
3436 purge_vmap_area_lazy();
3437 purged = true;
3438
3439 /* Before "retry", check if we recover. */
3440 for (area = 0; area < nr_vms; area++) {
3441 if (vas[area])
3442 continue;
3443
3444 vas[area] = kmem_cache_zalloc(
3445 vmap_area_cachep, GFP_KERNEL);
3446 if (!vas[area])
3447 goto err_free;
3448 }
3449
3450 goto retry;
3451 }
3452
ca23e405
TH
3453err_free:
3454 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
3455 if (vas[area])
3456 kmem_cache_free(vmap_area_cachep, vas[area]);
3457
f1db7afd 3458 kfree(vms[area]);
ca23e405 3459 }
f1db7afd 3460err_free2:
ca23e405
TH
3461 kfree(vas);
3462 kfree(vms);
3463 return NULL;
253a496d
DA
3464
3465err_free_shadow:
3466 spin_lock(&free_vmap_area_lock);
3467 /*
3468 * We release all the vmalloc shadows, even the ones for regions that
3469 * hadn't been successfully added. This relies on kasan_release_vmalloc
3470 * being able to tolerate this case.
3471 */
3472 for (area = 0; area < nr_vms; area++) {
3473 orig_start = vas[area]->va_start;
3474 orig_end = vas[area]->va_end;
3475 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3476 &free_vmap_area_list);
3477 kasan_release_vmalloc(orig_start, orig_end,
3478 va->va_start, va->va_end);
3479 vas[area] = NULL;
3480 kfree(vms[area]);
3481 }
3482 spin_unlock(&free_vmap_area_lock);
3483 kfree(vas);
3484 kfree(vms);
3485 return NULL;
ca23e405
TH
3486}
3487
3488/**
3489 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3490 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3491 * @nr_vms: the number of allocated areas
3492 *
3493 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3494 */
3495void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3496{
3497 int i;
3498
3499 for (i = 0; i < nr_vms; i++)
3500 free_vm_area(vms[i]);
3501 kfree(vms);
3502}
4f8b02b4 3503#endif /* CONFIG_SMP */
a10aa579
CL
3504
3505#ifdef CONFIG_PROC_FS
3506static void *s_start(struct seq_file *m, loff_t *pos)
e36176be 3507 __acquires(&vmap_purge_lock)
d4033afd 3508 __acquires(&vmap_area_lock)
a10aa579 3509{
e36176be 3510 mutex_lock(&vmap_purge_lock);
d4033afd 3511 spin_lock(&vmap_area_lock);
e36176be 3512
3f500069 3513 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
3514}
3515
3516static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3517{
3f500069 3518 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
3519}
3520
3521static void s_stop(struct seq_file *m, void *p)
e36176be 3522 __releases(&vmap_purge_lock)
d4033afd 3523 __releases(&vmap_area_lock)
a10aa579 3524{
e36176be 3525 mutex_unlock(&vmap_purge_lock);
d4033afd 3526 spin_unlock(&vmap_area_lock);
a10aa579
CL
3527}
3528
a47a126a
ED
3529static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3530{
e5adfffc 3531 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
3532 unsigned int nr, *counters = m->private;
3533
3534 if (!counters)
3535 return;
3536
af12346c
WL
3537 if (v->flags & VM_UNINITIALIZED)
3538 return;
7e5b528b
DV
3539 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3540 smp_rmb();
af12346c 3541
a47a126a
ED
3542 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3543
3544 for (nr = 0; nr < v->nr_pages; nr++)
3545 counters[page_to_nid(v->pages[nr])]++;
3546
3547 for_each_node_state(nr, N_HIGH_MEMORY)
3548 if (counters[nr])
3549 seq_printf(m, " N%u=%u", nr, counters[nr]);
3550 }
3551}
3552
dd3b8353
URS
3553static void show_purge_info(struct seq_file *m)
3554{
3555 struct llist_node *head;
3556 struct vmap_area *va;
3557
3558 head = READ_ONCE(vmap_purge_list.first);
3559 if (head == NULL)
3560 return;
3561
3562 llist_for_each_entry(va, head, purge_list) {
3563 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3564 (void *)va->va_start, (void *)va->va_end,
3565 va->va_end - va->va_start);
3566 }
3567}
3568
a10aa579
CL
3569static int s_show(struct seq_file *m, void *p)
3570{
3f500069 3571 struct vmap_area *va;
d4033afd
JK
3572 struct vm_struct *v;
3573
3f500069 3574 va = list_entry(p, struct vmap_area, list);
3575
c2ce8c14 3576 /*
688fcbfc
PL
3577 * s_show can encounter race with remove_vm_area, !vm on behalf
3578 * of vmap area is being tear down or vm_map_ram allocation.
c2ce8c14 3579 */
688fcbfc 3580 if (!va->vm) {
dd3b8353 3581 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
78c72746 3582 (void *)va->va_start, (void *)va->va_end,
dd3b8353 3583 va->va_end - va->va_start);
78c72746 3584
d4033afd 3585 return 0;
78c72746 3586 }
d4033afd
JK
3587
3588 v = va->vm;
a10aa579 3589
45ec1690 3590 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
3591 v->addr, v->addr + v->size, v->size);
3592
62c70bce
JP
3593 if (v->caller)
3594 seq_printf(m, " %pS", v->caller);
23016969 3595
a10aa579
CL
3596 if (v->nr_pages)
3597 seq_printf(m, " pages=%d", v->nr_pages);
3598
3599 if (v->phys_addr)
199eaa05 3600 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
3601
3602 if (v->flags & VM_IOREMAP)
f4527c90 3603 seq_puts(m, " ioremap");
a10aa579
CL
3604
3605 if (v->flags & VM_ALLOC)
f4527c90 3606 seq_puts(m, " vmalloc");
a10aa579
CL
3607
3608 if (v->flags & VM_MAP)
f4527c90 3609 seq_puts(m, " vmap");
a10aa579
CL
3610
3611 if (v->flags & VM_USERMAP)
f4527c90 3612 seq_puts(m, " user");
a10aa579 3613
fe9041c2
CH
3614 if (v->flags & VM_DMA_COHERENT)
3615 seq_puts(m, " dma-coherent");
3616
244d63ee 3617 if (is_vmalloc_addr(v->pages))
f4527c90 3618 seq_puts(m, " vpages");
a10aa579 3619
a47a126a 3620 show_numa_info(m, v);
a10aa579 3621 seq_putc(m, '\n');
dd3b8353
URS
3622
3623 /*
3624 * As a final step, dump "unpurged" areas. Note,
3625 * that entire "/proc/vmallocinfo" output will not
3626 * be address sorted, because the purge list is not
3627 * sorted.
3628 */
3629 if (list_is_last(&va->list, &vmap_area_list))
3630 show_purge_info(m);
3631
a10aa579
CL
3632 return 0;
3633}
3634
5f6a6a9c 3635static const struct seq_operations vmalloc_op = {
a10aa579
CL
3636 .start = s_start,
3637 .next = s_next,
3638 .stop = s_stop,
3639 .show = s_show,
3640};
5f6a6a9c 3641
5f6a6a9c
AD
3642static int __init proc_vmalloc_init(void)
3643{
fddda2b7 3644 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 3645 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
3646 &vmalloc_op,
3647 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 3648 else
0825a6f9 3649 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
3650 return 0;
3651}
3652module_init(proc_vmalloc_init);
db3808c1 3653
a10aa579 3654#endif