]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/vmalloc.c
mm/vmalloc.c: get rid of one single unlink_va() when merge
[mirror_ubuntu-focal-kernel.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/vmalloc.c
4 *
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 9 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
10 */
11
db64fe02 12#include <linux/vmalloc.h>
1da177e4
LT
13#include <linux/mm.h>
14#include <linux/module.h>
15#include <linux/highmem.h>
c3edc401 16#include <linux/sched/signal.h>
1da177e4
LT
17#include <linux/slab.h>
18#include <linux/spinlock.h>
19#include <linux/interrupt.h>
5f6a6a9c 20#include <linux/proc_fs.h>
a10aa579 21#include <linux/seq_file.h>
868b104d 22#include <linux/set_memory.h>
3ac7fe5a 23#include <linux/debugobjects.h>
23016969 24#include <linux/kallsyms.h>
db64fe02 25#include <linux/list.h>
4da56b99 26#include <linux/notifier.h>
db64fe02
NP
27#include <linux/rbtree.h>
28#include <linux/radix-tree.h>
29#include <linux/rcupdate.h>
f0aa6617 30#include <linux/pfn.h>
89219d37 31#include <linux/kmemleak.h>
60063497 32#include <linux/atomic.h>
3b32123d 33#include <linux/compiler.h>
32fcfd40 34#include <linux/llist.h>
0f616be1 35#include <linux/bitops.h>
68ad4a33 36#include <linux/rbtree_augmented.h>
3b32123d 37
7c0f6ba6 38#include <linux/uaccess.h>
1da177e4 39#include <asm/tlbflush.h>
2dca6999 40#include <asm/shmparam.h>
1da177e4 41
dd56b046
MG
42#include "internal.h"
43
32fcfd40
AV
44struct vfree_deferred {
45 struct llist_head list;
46 struct work_struct wq;
47};
48static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
49
50static void __vunmap(const void *, int);
51
52static void free_work(struct work_struct *w)
53{
54 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
55 struct llist_node *t, *llnode;
56
57 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
58 __vunmap((void *)llnode, 1);
32fcfd40
AV
59}
60
db64fe02 61/*** Page table manipulation functions ***/
b221385b 62
1da177e4
LT
63static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
64{
65 pte_t *pte;
66
67 pte = pte_offset_kernel(pmd, addr);
68 do {
69 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
70 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
71 } while (pte++, addr += PAGE_SIZE, addr != end);
72}
73
db64fe02 74static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
75{
76 pmd_t *pmd;
77 unsigned long next;
78
79 pmd = pmd_offset(pud, addr);
80 do {
81 next = pmd_addr_end(addr, end);
b9820d8f
TK
82 if (pmd_clear_huge(pmd))
83 continue;
1da177e4
LT
84 if (pmd_none_or_clear_bad(pmd))
85 continue;
86 vunmap_pte_range(pmd, addr, next);
87 } while (pmd++, addr = next, addr != end);
88}
89
c2febafc 90static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
1da177e4
LT
91{
92 pud_t *pud;
93 unsigned long next;
94
c2febafc 95 pud = pud_offset(p4d, addr);
1da177e4
LT
96 do {
97 next = pud_addr_end(addr, end);
b9820d8f
TK
98 if (pud_clear_huge(pud))
99 continue;
1da177e4
LT
100 if (pud_none_or_clear_bad(pud))
101 continue;
102 vunmap_pmd_range(pud, addr, next);
103 } while (pud++, addr = next, addr != end);
104}
105
c2febafc
KS
106static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
107{
108 p4d_t *p4d;
109 unsigned long next;
110
111 p4d = p4d_offset(pgd, addr);
112 do {
113 next = p4d_addr_end(addr, end);
114 if (p4d_clear_huge(p4d))
115 continue;
116 if (p4d_none_or_clear_bad(p4d))
117 continue;
118 vunmap_pud_range(p4d, addr, next);
119 } while (p4d++, addr = next, addr != end);
120}
121
db64fe02 122static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
123{
124 pgd_t *pgd;
125 unsigned long next;
1da177e4
LT
126
127 BUG_ON(addr >= end);
128 pgd = pgd_offset_k(addr);
1da177e4
LT
129 do {
130 next = pgd_addr_end(addr, end);
131 if (pgd_none_or_clear_bad(pgd))
132 continue;
c2febafc 133 vunmap_p4d_range(pgd, addr, next);
1da177e4 134 } while (pgd++, addr = next, addr != end);
1da177e4
LT
135}
136
137static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 138 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
139{
140 pte_t *pte;
141
db64fe02
NP
142 /*
143 * nr is a running index into the array which helps higher level
144 * callers keep track of where we're up to.
145 */
146
872fec16 147 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
148 if (!pte)
149 return -ENOMEM;
150 do {
db64fe02
NP
151 struct page *page = pages[*nr];
152
153 if (WARN_ON(!pte_none(*pte)))
154 return -EBUSY;
155 if (WARN_ON(!page))
1da177e4
LT
156 return -ENOMEM;
157 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 158 (*nr)++;
1da177e4
LT
159 } while (pte++, addr += PAGE_SIZE, addr != end);
160 return 0;
161}
162
db64fe02
NP
163static int vmap_pmd_range(pud_t *pud, unsigned long addr,
164 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
165{
166 pmd_t *pmd;
167 unsigned long next;
168
169 pmd = pmd_alloc(&init_mm, pud, addr);
170 if (!pmd)
171 return -ENOMEM;
172 do {
173 next = pmd_addr_end(addr, end);
db64fe02 174 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
175 return -ENOMEM;
176 } while (pmd++, addr = next, addr != end);
177 return 0;
178}
179
c2febafc 180static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
db64fe02 181 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
182{
183 pud_t *pud;
184 unsigned long next;
185
c2febafc 186 pud = pud_alloc(&init_mm, p4d, addr);
1da177e4
LT
187 if (!pud)
188 return -ENOMEM;
189 do {
190 next = pud_addr_end(addr, end);
db64fe02 191 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
192 return -ENOMEM;
193 } while (pud++, addr = next, addr != end);
194 return 0;
195}
196
c2febafc
KS
197static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
198 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
199{
200 p4d_t *p4d;
201 unsigned long next;
202
203 p4d = p4d_alloc(&init_mm, pgd, addr);
204 if (!p4d)
205 return -ENOMEM;
206 do {
207 next = p4d_addr_end(addr, end);
208 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
209 return -ENOMEM;
210 } while (p4d++, addr = next, addr != end);
211 return 0;
212}
213
db64fe02
NP
214/*
215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
216 * will have pfns corresponding to the "pages" array.
217 *
218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
219 */
8fc48985
TH
220static int vmap_page_range_noflush(unsigned long start, unsigned long end,
221 pgprot_t prot, struct page **pages)
1da177e4
LT
222{
223 pgd_t *pgd;
224 unsigned long next;
2e4e27c7 225 unsigned long addr = start;
db64fe02
NP
226 int err = 0;
227 int nr = 0;
1da177e4
LT
228
229 BUG_ON(addr >= end);
230 pgd = pgd_offset_k(addr);
1da177e4
LT
231 do {
232 next = pgd_addr_end(addr, end);
c2febafc 233 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
1da177e4 234 if (err)
bf88c8c8 235 return err;
1da177e4 236 } while (pgd++, addr = next, addr != end);
db64fe02 237
db64fe02 238 return nr;
1da177e4
LT
239}
240
8fc48985
TH
241static int vmap_page_range(unsigned long start, unsigned long end,
242 pgprot_t prot, struct page **pages)
243{
244 int ret;
245
246 ret = vmap_page_range_noflush(start, end, prot, pages);
247 flush_cache_vmap(start, end);
248 return ret;
249}
250
81ac3ad9 251int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
252{
253 /*
ab4f2ee1 254 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
255 * and fall back on vmalloc() if that fails. Others
256 * just put it in the vmalloc space.
257 */
258#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
259 unsigned long addr = (unsigned long)x;
260 if (addr >= MODULES_VADDR && addr < MODULES_END)
261 return 1;
262#endif
263 return is_vmalloc_addr(x);
264}
265
48667e7a 266/*
add688fb 267 * Walk a vmap address to the struct page it maps.
48667e7a 268 */
add688fb 269struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
270{
271 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 272 struct page *page = NULL;
48667e7a 273 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
274 p4d_t *p4d;
275 pud_t *pud;
276 pmd_t *pmd;
277 pte_t *ptep, pte;
48667e7a 278
7aa413de
IM
279 /*
280 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
281 * architectures that do not vmalloc module space
282 */
73bdf0a6 283 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 284
c2febafc
KS
285 if (pgd_none(*pgd))
286 return NULL;
287 p4d = p4d_offset(pgd, addr);
288 if (p4d_none(*p4d))
289 return NULL;
290 pud = pud_offset(p4d, addr);
029c54b0
AB
291
292 /*
293 * Don't dereference bad PUD or PMD (below) entries. This will also
294 * identify huge mappings, which we may encounter on architectures
295 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
296 * identified as vmalloc addresses by is_vmalloc_addr(), but are
297 * not [unambiguously] associated with a struct page, so there is
298 * no correct value to return for them.
299 */
300 WARN_ON_ONCE(pud_bad(*pud));
301 if (pud_none(*pud) || pud_bad(*pud))
c2febafc
KS
302 return NULL;
303 pmd = pmd_offset(pud, addr);
029c54b0
AB
304 WARN_ON_ONCE(pmd_bad(*pmd));
305 if (pmd_none(*pmd) || pmd_bad(*pmd))
c2febafc
KS
306 return NULL;
307
308 ptep = pte_offset_map(pmd, addr);
309 pte = *ptep;
310 if (pte_present(pte))
311 page = pte_page(pte);
312 pte_unmap(ptep);
add688fb 313 return page;
48667e7a 314}
add688fb 315EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
316
317/*
add688fb 318 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 319 */
add688fb 320unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 321{
add688fb 322 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 323}
add688fb 324EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 325
db64fe02
NP
326
327/*** Global kva allocator ***/
328
bb850f4d 329#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 330#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 331
78c72746 332#define VM_LAZY_FREE 0x02
db64fe02
NP
333#define VM_VM_AREA 0x04
334
db64fe02 335static DEFINE_SPINLOCK(vmap_area_lock);
f1c4069e
JK
336/* Export for kexec only */
337LIST_HEAD(vmap_area_list);
80c4bd7a 338static LLIST_HEAD(vmap_purge_list);
89699605 339static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 340static bool vmap_initialized __read_mostly;
89699605 341
68ad4a33
URS
342/*
343 * This kmem_cache is used for vmap_area objects. Instead of
344 * allocating from slab we reuse an object from this cache to
345 * make things faster. Especially in "no edge" splitting of
346 * free block.
347 */
348static struct kmem_cache *vmap_area_cachep;
349
350/*
351 * This linked list is used in pair with free_vmap_area_root.
352 * It gives O(1) access to prev/next to perform fast coalescing.
353 */
354static LIST_HEAD(free_vmap_area_list);
355
356/*
357 * This augment red-black tree represents the free vmap space.
358 * All vmap_area objects in this tree are sorted by va->va_start
359 * address. It is used for allocation and merging when a vmap
360 * object is released.
361 *
362 * Each vmap_area node contains a maximum available free block
363 * of its sub-tree, right or left. Therefore it is possible to
364 * find a lowest match of free area.
365 */
366static struct rb_root free_vmap_area_root = RB_ROOT;
367
82dd23e8
URS
368/*
369 * Preload a CPU with one object for "no edge" split case. The
370 * aim is to get rid of allocations from the atomic context, thus
371 * to use more permissive allocation masks.
372 */
373static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
374
68ad4a33
URS
375static __always_inline unsigned long
376va_size(struct vmap_area *va)
377{
378 return (va->va_end - va->va_start);
379}
380
381static __always_inline unsigned long
382get_subtree_max_size(struct rb_node *node)
383{
384 struct vmap_area *va;
385
386 va = rb_entry_safe(node, struct vmap_area, rb_node);
387 return va ? va->subtree_max_size : 0;
388}
89699605 389
68ad4a33
URS
390/*
391 * Gets called when remove the node and rotate.
392 */
393static __always_inline unsigned long
394compute_subtree_max_size(struct vmap_area *va)
395{
396 return max3(va_size(va),
397 get_subtree_max_size(va->rb_node.rb_left),
398 get_subtree_max_size(va->rb_node.rb_right));
399}
400
401RB_DECLARE_CALLBACKS(static, free_vmap_area_rb_augment_cb,
402 struct vmap_area, rb_node, unsigned long, subtree_max_size,
403 compute_subtree_max_size)
404
405static void purge_vmap_area_lazy(void);
406static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
407static unsigned long lazy_max_pages(void);
db64fe02
NP
408
409static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 410{
db64fe02
NP
411 struct rb_node *n = vmap_area_root.rb_node;
412
413 while (n) {
414 struct vmap_area *va;
415
416 va = rb_entry(n, struct vmap_area, rb_node);
417 if (addr < va->va_start)
418 n = n->rb_left;
cef2ac3f 419 else if (addr >= va->va_end)
db64fe02
NP
420 n = n->rb_right;
421 else
422 return va;
423 }
424
425 return NULL;
426}
427
68ad4a33
URS
428/*
429 * This function returns back addresses of parent node
430 * and its left or right link for further processing.
431 */
432static __always_inline struct rb_node **
433find_va_links(struct vmap_area *va,
434 struct rb_root *root, struct rb_node *from,
435 struct rb_node **parent)
436{
437 struct vmap_area *tmp_va;
438 struct rb_node **link;
439
440 if (root) {
441 link = &root->rb_node;
442 if (unlikely(!*link)) {
443 *parent = NULL;
444 return link;
445 }
446 } else {
447 link = &from;
448 }
db64fe02 449
68ad4a33
URS
450 /*
451 * Go to the bottom of the tree. When we hit the last point
452 * we end up with parent rb_node and correct direction, i name
453 * it link, where the new va->rb_node will be attached to.
454 */
455 do {
456 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 457
68ad4a33
URS
458 /*
459 * During the traversal we also do some sanity check.
460 * Trigger the BUG() if there are sides(left/right)
461 * or full overlaps.
462 */
463 if (va->va_start < tmp_va->va_end &&
464 va->va_end <= tmp_va->va_start)
465 link = &(*link)->rb_left;
466 else if (va->va_end > tmp_va->va_start &&
467 va->va_start >= tmp_va->va_end)
468 link = &(*link)->rb_right;
db64fe02
NP
469 else
470 BUG();
68ad4a33
URS
471 } while (*link);
472
473 *parent = &tmp_va->rb_node;
474 return link;
475}
476
477static __always_inline struct list_head *
478get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
479{
480 struct list_head *list;
481
482 if (unlikely(!parent))
483 /*
484 * The red-black tree where we try to find VA neighbors
485 * before merging or inserting is empty, i.e. it means
486 * there is no free vmap space. Normally it does not
487 * happen but we handle this case anyway.
488 */
489 return NULL;
490
491 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
492 return (&parent->rb_right == link ? list->next : list);
493}
494
495static __always_inline void
496link_va(struct vmap_area *va, struct rb_root *root,
497 struct rb_node *parent, struct rb_node **link, struct list_head *head)
498{
499 /*
500 * VA is still not in the list, but we can
501 * identify its future previous list_head node.
502 */
503 if (likely(parent)) {
504 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
505 if (&parent->rb_right != link)
506 head = head->prev;
db64fe02
NP
507 }
508
68ad4a33
URS
509 /* Insert to the rb-tree */
510 rb_link_node(&va->rb_node, parent, link);
511 if (root == &free_vmap_area_root) {
512 /*
513 * Some explanation here. Just perform simple insertion
514 * to the tree. We do not set va->subtree_max_size to
515 * its current size before calling rb_insert_augmented().
516 * It is because of we populate the tree from the bottom
517 * to parent levels when the node _is_ in the tree.
518 *
519 * Therefore we set subtree_max_size to zero after insertion,
520 * to let __augment_tree_propagate_from() puts everything to
521 * the correct order later on.
522 */
523 rb_insert_augmented(&va->rb_node,
524 root, &free_vmap_area_rb_augment_cb);
525 va->subtree_max_size = 0;
526 } else {
527 rb_insert_color(&va->rb_node, root);
528 }
db64fe02 529
68ad4a33
URS
530 /* Address-sort this list */
531 list_add(&va->list, head);
db64fe02
NP
532}
533
68ad4a33
URS
534static __always_inline void
535unlink_va(struct vmap_area *va, struct rb_root *root)
536{
537 /*
538 * During merging a VA node can be empty, therefore
539 * not linked with the tree nor list. Just check it.
540 */
541 if (!RB_EMPTY_NODE(&va->rb_node)) {
542 if (root == &free_vmap_area_root)
543 rb_erase_augmented(&va->rb_node,
544 root, &free_vmap_area_rb_augment_cb);
545 else
546 rb_erase(&va->rb_node, root);
db64fe02 547
68ad4a33
URS
548 list_del(&va->list);
549 RB_CLEAR_NODE(&va->rb_node);
550 }
551}
552
bb850f4d
URS
553#if DEBUG_AUGMENT_PROPAGATE_CHECK
554static void
555augment_tree_propagate_check(struct rb_node *n)
556{
557 struct vmap_area *va;
558 struct rb_node *node;
559 unsigned long size;
560 bool found = false;
561
562 if (n == NULL)
563 return;
564
565 va = rb_entry(n, struct vmap_area, rb_node);
566 size = va->subtree_max_size;
567 node = n;
568
569 while (node) {
570 va = rb_entry(node, struct vmap_area, rb_node);
571
572 if (get_subtree_max_size(node->rb_left) == size) {
573 node = node->rb_left;
574 } else {
575 if (va_size(va) == size) {
576 found = true;
577 break;
578 }
579
580 node = node->rb_right;
581 }
582 }
583
584 if (!found) {
585 va = rb_entry(n, struct vmap_area, rb_node);
586 pr_emerg("tree is corrupted: %lu, %lu\n",
587 va_size(va), va->subtree_max_size);
588 }
589
590 augment_tree_propagate_check(n->rb_left);
591 augment_tree_propagate_check(n->rb_right);
592}
593#endif
594
68ad4a33
URS
595/*
596 * This function populates subtree_max_size from bottom to upper
597 * levels starting from VA point. The propagation must be done
598 * when VA size is modified by changing its va_start/va_end. Or
599 * in case of newly inserting of VA to the tree.
600 *
601 * It means that __augment_tree_propagate_from() must be called:
602 * - After VA has been inserted to the tree(free path);
603 * - After VA has been shrunk(allocation path);
604 * - After VA has been increased(merging path).
605 *
606 * Please note that, it does not mean that upper parent nodes
607 * and their subtree_max_size are recalculated all the time up
608 * to the root node.
609 *
610 * 4--8
611 * /\
612 * / \
613 * / \
614 * 2--2 8--8
615 *
616 * For example if we modify the node 4, shrinking it to 2, then
617 * no any modification is required. If we shrink the node 2 to 1
618 * its subtree_max_size is updated only, and set to 1. If we shrink
619 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
620 * node becomes 4--6.
621 */
622static __always_inline void
623augment_tree_propagate_from(struct vmap_area *va)
624{
625 struct rb_node *node = &va->rb_node;
626 unsigned long new_va_sub_max_size;
627
628 while (node) {
629 va = rb_entry(node, struct vmap_area, rb_node);
630 new_va_sub_max_size = compute_subtree_max_size(va);
631
632 /*
633 * If the newly calculated maximum available size of the
634 * subtree is equal to the current one, then it means that
635 * the tree is propagated correctly. So we have to stop at
636 * this point to save cycles.
637 */
638 if (va->subtree_max_size == new_va_sub_max_size)
639 break;
640
641 va->subtree_max_size = new_va_sub_max_size;
642 node = rb_parent(&va->rb_node);
643 }
bb850f4d
URS
644
645#if DEBUG_AUGMENT_PROPAGATE_CHECK
646 augment_tree_propagate_check(free_vmap_area_root.rb_node);
647#endif
68ad4a33
URS
648}
649
650static void
651insert_vmap_area(struct vmap_area *va,
652 struct rb_root *root, struct list_head *head)
653{
654 struct rb_node **link;
655 struct rb_node *parent;
656
657 link = find_va_links(va, root, NULL, &parent);
658 link_va(va, root, parent, link, head);
659}
660
661static void
662insert_vmap_area_augment(struct vmap_area *va,
663 struct rb_node *from, struct rb_root *root,
664 struct list_head *head)
665{
666 struct rb_node **link;
667 struct rb_node *parent;
668
669 if (from)
670 link = find_va_links(va, NULL, from, &parent);
671 else
672 link = find_va_links(va, root, NULL, &parent);
673
674 link_va(va, root, parent, link, head);
675 augment_tree_propagate_from(va);
676}
677
678/*
679 * Merge de-allocated chunk of VA memory with previous
680 * and next free blocks. If coalesce is not done a new
681 * free area is inserted. If VA has been merged, it is
682 * freed.
683 */
684static __always_inline void
685merge_or_add_vmap_area(struct vmap_area *va,
686 struct rb_root *root, struct list_head *head)
687{
688 struct vmap_area *sibling;
689 struct list_head *next;
690 struct rb_node **link;
691 struct rb_node *parent;
692 bool merged = false;
693
694 /*
695 * Find a place in the tree where VA potentially will be
696 * inserted, unless it is merged with its sibling/siblings.
697 */
698 link = find_va_links(va, root, NULL, &parent);
699
700 /*
701 * Get next node of VA to check if merging can be done.
702 */
703 next = get_va_next_sibling(parent, link);
704 if (unlikely(next == NULL))
705 goto insert;
706
707 /*
708 * start end
709 * | |
710 * |<------VA------>|<-----Next----->|
711 * | |
712 * start end
713 */
714 if (next != head) {
715 sibling = list_entry(next, struct vmap_area, list);
716 if (sibling->va_start == va->va_end) {
717 sibling->va_start = va->va_start;
718
719 /* Check and update the tree if needed. */
720 augment_tree_propagate_from(sibling);
721
68ad4a33
URS
722 /* Free vmap_area object. */
723 kmem_cache_free(vmap_area_cachep, va);
724
725 /* Point to the new merged area. */
726 va = sibling;
727 merged = true;
728 }
729 }
730
731 /*
732 * start end
733 * | |
734 * |<-----Prev----->|<------VA------>|
735 * | |
736 * start end
737 */
738 if (next->prev != head) {
739 sibling = list_entry(next->prev, struct vmap_area, list);
740 if (sibling->va_end == va->va_start) {
741 sibling->va_end = va->va_end;
742
743 /* Check and update the tree if needed. */
744 augment_tree_propagate_from(sibling);
745
54f63d9d
URS
746 if (merged)
747 unlink_va(va, root);
68ad4a33
URS
748
749 /* Free vmap_area object. */
750 kmem_cache_free(vmap_area_cachep, va);
68ad4a33
URS
751 return;
752 }
753 }
754
755insert:
756 if (!merged) {
757 link_va(va, root, parent, link, head);
758 augment_tree_propagate_from(va);
759 }
760}
761
762static __always_inline bool
763is_within_this_va(struct vmap_area *va, unsigned long size,
764 unsigned long align, unsigned long vstart)
765{
766 unsigned long nva_start_addr;
767
768 if (va->va_start > vstart)
769 nva_start_addr = ALIGN(va->va_start, align);
770 else
771 nva_start_addr = ALIGN(vstart, align);
772
773 /* Can be overflowed due to big size or alignment. */
774 if (nva_start_addr + size < nva_start_addr ||
775 nva_start_addr < vstart)
776 return false;
777
778 return (nva_start_addr + size <= va->va_end);
779}
780
781/*
782 * Find the first free block(lowest start address) in the tree,
783 * that will accomplish the request corresponding to passing
784 * parameters.
785 */
786static __always_inline struct vmap_area *
787find_vmap_lowest_match(unsigned long size,
788 unsigned long align, unsigned long vstart)
789{
790 struct vmap_area *va;
791 struct rb_node *node;
792 unsigned long length;
793
794 /* Start from the root. */
795 node = free_vmap_area_root.rb_node;
796
797 /* Adjust the search size for alignment overhead. */
798 length = size + align - 1;
799
800 while (node) {
801 va = rb_entry(node, struct vmap_area, rb_node);
802
803 if (get_subtree_max_size(node->rb_left) >= length &&
804 vstart < va->va_start) {
805 node = node->rb_left;
806 } else {
807 if (is_within_this_va(va, size, align, vstart))
808 return va;
809
810 /*
811 * Does not make sense to go deeper towards the right
812 * sub-tree if it does not have a free block that is
813 * equal or bigger to the requested search length.
814 */
815 if (get_subtree_max_size(node->rb_right) >= length) {
816 node = node->rb_right;
817 continue;
818 }
819
820 /*
3806b041 821 * OK. We roll back and find the first right sub-tree,
68ad4a33
URS
822 * that will satisfy the search criteria. It can happen
823 * only once due to "vstart" restriction.
824 */
825 while ((node = rb_parent(node))) {
826 va = rb_entry(node, struct vmap_area, rb_node);
827 if (is_within_this_va(va, size, align, vstart))
828 return va;
829
830 if (get_subtree_max_size(node->rb_right) >= length &&
831 vstart <= va->va_start) {
832 node = node->rb_right;
833 break;
834 }
835 }
836 }
837 }
838
839 return NULL;
840}
841
a6cf4e0f
URS
842#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
843#include <linux/random.h>
844
845static struct vmap_area *
846find_vmap_lowest_linear_match(unsigned long size,
847 unsigned long align, unsigned long vstart)
848{
849 struct vmap_area *va;
850
851 list_for_each_entry(va, &free_vmap_area_list, list) {
852 if (!is_within_this_va(va, size, align, vstart))
853 continue;
854
855 return va;
856 }
857
858 return NULL;
859}
860
861static void
862find_vmap_lowest_match_check(unsigned long size)
863{
864 struct vmap_area *va_1, *va_2;
865 unsigned long vstart;
866 unsigned int rnd;
867
868 get_random_bytes(&rnd, sizeof(rnd));
869 vstart = VMALLOC_START + rnd;
870
871 va_1 = find_vmap_lowest_match(size, 1, vstart);
872 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
873
874 if (va_1 != va_2)
875 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
876 va_1, va_2, vstart);
877}
878#endif
879
68ad4a33
URS
880enum fit_type {
881 NOTHING_FIT = 0,
882 FL_FIT_TYPE = 1, /* full fit */
883 LE_FIT_TYPE = 2, /* left edge fit */
884 RE_FIT_TYPE = 3, /* right edge fit */
885 NE_FIT_TYPE = 4 /* no edge fit */
886};
887
888static __always_inline enum fit_type
889classify_va_fit_type(struct vmap_area *va,
890 unsigned long nva_start_addr, unsigned long size)
891{
892 enum fit_type type;
893
894 /* Check if it is within VA. */
895 if (nva_start_addr < va->va_start ||
896 nva_start_addr + size > va->va_end)
897 return NOTHING_FIT;
898
899 /* Now classify. */
900 if (va->va_start == nva_start_addr) {
901 if (va->va_end == nva_start_addr + size)
902 type = FL_FIT_TYPE;
903 else
904 type = LE_FIT_TYPE;
905 } else if (va->va_end == nva_start_addr + size) {
906 type = RE_FIT_TYPE;
907 } else {
908 type = NE_FIT_TYPE;
909 }
910
911 return type;
912}
913
914static __always_inline int
915adjust_va_to_fit_type(struct vmap_area *va,
916 unsigned long nva_start_addr, unsigned long size,
917 enum fit_type type)
918{
2c929233 919 struct vmap_area *lva = NULL;
68ad4a33
URS
920
921 if (type == FL_FIT_TYPE) {
922 /*
923 * No need to split VA, it fully fits.
924 *
925 * | |
926 * V NVA V
927 * |---------------|
928 */
929 unlink_va(va, &free_vmap_area_root);
930 kmem_cache_free(vmap_area_cachep, va);
931 } else if (type == LE_FIT_TYPE) {
932 /*
933 * Split left edge of fit VA.
934 *
935 * | |
936 * V NVA V R
937 * |-------|-------|
938 */
939 va->va_start += size;
940 } else if (type == RE_FIT_TYPE) {
941 /*
942 * Split right edge of fit VA.
943 *
944 * | |
945 * L V NVA V
946 * |-------|-------|
947 */
948 va->va_end = nva_start_addr;
949 } else if (type == NE_FIT_TYPE) {
950 /*
951 * Split no edge of fit VA.
952 *
953 * | |
954 * L V NVA V R
955 * |---|-------|---|
956 */
82dd23e8
URS
957 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
958 if (unlikely(!lva)) {
959 /*
960 * For percpu allocator we do not do any pre-allocation
961 * and leave it as it is. The reason is it most likely
962 * never ends up with NE_FIT_TYPE splitting. In case of
963 * percpu allocations offsets and sizes are aligned to
964 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
965 * are its main fitting cases.
966 *
967 * There are a few exceptions though, as an example it is
968 * a first allocation (early boot up) when we have "one"
969 * big free space that has to be split.
970 */
971 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
972 if (!lva)
973 return -1;
974 }
68ad4a33
URS
975
976 /*
977 * Build the remainder.
978 */
979 lva->va_start = va->va_start;
980 lva->va_end = nva_start_addr;
981
982 /*
983 * Shrink this VA to remaining size.
984 */
985 va->va_start = nva_start_addr + size;
986 } else {
987 return -1;
988 }
989
990 if (type != FL_FIT_TYPE) {
991 augment_tree_propagate_from(va);
992
2c929233 993 if (lva) /* type == NE_FIT_TYPE */
68ad4a33
URS
994 insert_vmap_area_augment(lva, &va->rb_node,
995 &free_vmap_area_root, &free_vmap_area_list);
996 }
997
998 return 0;
999}
1000
1001/*
1002 * Returns a start address of the newly allocated area, if success.
1003 * Otherwise a vend is returned that indicates failure.
1004 */
1005static __always_inline unsigned long
1006__alloc_vmap_area(unsigned long size, unsigned long align,
cacca6ba 1007 unsigned long vstart, unsigned long vend)
68ad4a33
URS
1008{
1009 unsigned long nva_start_addr;
1010 struct vmap_area *va;
1011 enum fit_type type;
1012 int ret;
1013
1014 va = find_vmap_lowest_match(size, align, vstart);
1015 if (unlikely(!va))
1016 return vend;
1017
1018 if (va->va_start > vstart)
1019 nva_start_addr = ALIGN(va->va_start, align);
1020 else
1021 nva_start_addr = ALIGN(vstart, align);
1022
1023 /* Check the "vend" restriction. */
1024 if (nva_start_addr + size > vend)
1025 return vend;
1026
1027 /* Classify what we have found. */
1028 type = classify_va_fit_type(va, nva_start_addr, size);
1029 if (WARN_ON_ONCE(type == NOTHING_FIT))
1030 return vend;
1031
1032 /* Update the free vmap_area. */
1033 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1034 if (ret)
1035 return vend;
1036
a6cf4e0f
URS
1037#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1038 find_vmap_lowest_match_check(size);
1039#endif
1040
68ad4a33
URS
1041 return nva_start_addr;
1042}
4da56b99 1043
db64fe02
NP
1044/*
1045 * Allocate a region of KVA of the specified size and alignment, within the
1046 * vstart and vend.
1047 */
1048static struct vmap_area *alloc_vmap_area(unsigned long size,
1049 unsigned long align,
1050 unsigned long vstart, unsigned long vend,
1051 int node, gfp_t gfp_mask)
1052{
82dd23e8 1053 struct vmap_area *va, *pva;
1da177e4 1054 unsigned long addr;
db64fe02
NP
1055 int purged = 0;
1056
7766970c 1057 BUG_ON(!size);
891c49ab 1058 BUG_ON(offset_in_page(size));
89699605 1059 BUG_ON(!is_power_of_2(align));
db64fe02 1060
68ad4a33
URS
1061 if (unlikely(!vmap_initialized))
1062 return ERR_PTR(-EBUSY);
1063
5803ed29 1064 might_sleep();
4da56b99 1065
68ad4a33 1066 va = kmem_cache_alloc_node(vmap_area_cachep,
db64fe02
NP
1067 gfp_mask & GFP_RECLAIM_MASK, node);
1068 if (unlikely(!va))
1069 return ERR_PTR(-ENOMEM);
1070
7f88f88f
CM
1071 /*
1072 * Only scan the relevant parts containing pointers to other objects
1073 * to avoid false negatives.
1074 */
1075 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
1076
db64fe02 1077retry:
82dd23e8
URS
1078 /*
1079 * Preload this CPU with one extra vmap_area object to ensure
1080 * that we have it available when fit type of free area is
1081 * NE_FIT_TYPE.
1082 *
1083 * The preload is done in non-atomic context, thus it allows us
1084 * to use more permissive allocation masks to be more stable under
1085 * low memory condition and high memory pressure.
1086 *
1087 * Even if it fails we do not really care about that. Just proceed
1088 * as it is. "overflow" path will refill the cache we allocate from.
1089 */
1090 preempt_disable();
1091 if (!__this_cpu_read(ne_fit_preload_node)) {
1092 preempt_enable();
1093 pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node);
1094 preempt_disable();
1095
1096 if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) {
1097 if (pva)
1098 kmem_cache_free(vmap_area_cachep, pva);
1099 }
1100 }
1101
db64fe02 1102 spin_lock(&vmap_area_lock);
82dd23e8 1103 preempt_enable();
89699605 1104
afd07389 1105 /*
68ad4a33
URS
1106 * If an allocation fails, the "vend" address is
1107 * returned. Therefore trigger the overflow path.
afd07389 1108 */
cacca6ba 1109 addr = __alloc_vmap_area(size, align, vstart, vend);
68ad4a33 1110 if (unlikely(addr == vend))
89699605 1111 goto overflow;
db64fe02
NP
1112
1113 va->va_start = addr;
1114 va->va_end = addr + size;
1115 va->flags = 0;
68ad4a33
URS
1116 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1117
db64fe02
NP
1118 spin_unlock(&vmap_area_lock);
1119
61e16557 1120 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1121 BUG_ON(va->va_start < vstart);
1122 BUG_ON(va->va_end > vend);
1123
db64fe02 1124 return va;
89699605
NP
1125
1126overflow:
1127 spin_unlock(&vmap_area_lock);
1128 if (!purged) {
1129 purge_vmap_area_lazy();
1130 purged = 1;
1131 goto retry;
1132 }
4da56b99
CW
1133
1134 if (gfpflags_allow_blocking(gfp_mask)) {
1135 unsigned long freed = 0;
1136 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1137 if (freed > 0) {
1138 purged = 0;
1139 goto retry;
1140 }
1141 }
1142
03497d76 1143 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1144 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1145 size);
68ad4a33
URS
1146
1147 kmem_cache_free(vmap_area_cachep, va);
89699605 1148 return ERR_PTR(-EBUSY);
db64fe02
NP
1149}
1150
4da56b99
CW
1151int register_vmap_purge_notifier(struct notifier_block *nb)
1152{
1153 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1154}
1155EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1156
1157int unregister_vmap_purge_notifier(struct notifier_block *nb)
1158{
1159 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1160}
1161EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1162
db64fe02
NP
1163static void __free_vmap_area(struct vmap_area *va)
1164{
1165 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
89699605 1166
ca23e405 1167 /*
68ad4a33 1168 * Remove from the busy tree/list.
ca23e405 1169 */
68ad4a33 1170 unlink_va(va, &vmap_area_root);
ca23e405 1171
68ad4a33
URS
1172 /*
1173 * Merge VA with its neighbors, otherwise just add it.
1174 */
1175 merge_or_add_vmap_area(va,
1176 &free_vmap_area_root, &free_vmap_area_list);
db64fe02
NP
1177}
1178
1179/*
1180 * Free a region of KVA allocated by alloc_vmap_area
1181 */
1182static void free_vmap_area(struct vmap_area *va)
1183{
1184 spin_lock(&vmap_area_lock);
1185 __free_vmap_area(va);
1186 spin_unlock(&vmap_area_lock);
1187}
1188
1189/*
1190 * Clear the pagetable entries of a given vmap_area
1191 */
1192static void unmap_vmap_area(struct vmap_area *va)
1193{
1194 vunmap_page_range(va->va_start, va->va_end);
1195}
1196
1197/*
1198 * lazy_max_pages is the maximum amount of virtual address space we gather up
1199 * before attempting to purge with a TLB flush.
1200 *
1201 * There is a tradeoff here: a larger number will cover more kernel page tables
1202 * and take slightly longer to purge, but it will linearly reduce the number of
1203 * global TLB flushes that must be performed. It would seem natural to scale
1204 * this number up linearly with the number of CPUs (because vmapping activity
1205 * could also scale linearly with the number of CPUs), however it is likely
1206 * that in practice, workloads might be constrained in other ways that mean
1207 * vmap activity will not scale linearly with CPUs. Also, I want to be
1208 * conservative and not introduce a big latency on huge systems, so go with
1209 * a less aggressive log scale. It will still be an improvement over the old
1210 * code, and it will be simple to change the scale factor if we find that it
1211 * becomes a problem on bigger systems.
1212 */
1213static unsigned long lazy_max_pages(void)
1214{
1215 unsigned int log;
1216
1217 log = fls(num_online_cpus());
1218
1219 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1220}
1221
4d36e6f8 1222static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1223
0574ecd1
CH
1224/*
1225 * Serialize vmap purging. There is no actual criticial section protected
1226 * by this look, but we want to avoid concurrent calls for performance
1227 * reasons and to make the pcpu_get_vm_areas more deterministic.
1228 */
f9e09977 1229static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1230
02b709df
NP
1231/* for per-CPU blocks */
1232static void purge_fragmented_blocks_allcpus(void);
1233
3ee48b6a
CW
1234/*
1235 * called before a call to iounmap() if the caller wants vm_area_struct's
1236 * immediately freed.
1237 */
1238void set_iounmap_nonlazy(void)
1239{
4d36e6f8 1240 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
3ee48b6a
CW
1241}
1242
db64fe02
NP
1243/*
1244 * Purges all lazily-freed vmap areas.
db64fe02 1245 */
0574ecd1 1246static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1247{
4d36e6f8 1248 unsigned long resched_threshold;
80c4bd7a 1249 struct llist_node *valist;
db64fe02 1250 struct vmap_area *va;
cbb76676 1251 struct vmap_area *n_va;
db64fe02 1252
0574ecd1 1253 lockdep_assert_held(&vmap_purge_lock);
02b709df 1254
80c4bd7a 1255 valist = llist_del_all(&vmap_purge_list);
68571be9
URS
1256 if (unlikely(valist == NULL))
1257 return false;
1258
1259 /*
1260 * TODO: to calculate a flush range without looping.
1261 * The list can be up to lazy_max_pages() elements.
1262 */
80c4bd7a 1263 llist_for_each_entry(va, valist, purge_list) {
0574ecd1
CH
1264 if (va->va_start < start)
1265 start = va->va_start;
1266 if (va->va_end > end)
1267 end = va->va_end;
db64fe02 1268 }
db64fe02 1269
0574ecd1 1270 flush_tlb_kernel_range(start, end);
4d36e6f8 1271 resched_threshold = lazy_max_pages() << 1;
db64fe02 1272
0574ecd1 1273 spin_lock(&vmap_area_lock);
763b218d 1274 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
4d36e6f8 1275 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
763b218d 1276
0574ecd1 1277 __free_vmap_area(va);
4d36e6f8 1278 atomic_long_sub(nr, &vmap_lazy_nr);
68571be9 1279
4d36e6f8 1280 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
68571be9 1281 cond_resched_lock(&vmap_area_lock);
763b218d 1282 }
0574ecd1
CH
1283 spin_unlock(&vmap_area_lock);
1284 return true;
db64fe02
NP
1285}
1286
496850e5
NP
1287/*
1288 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1289 * is already purging.
1290 */
1291static void try_purge_vmap_area_lazy(void)
1292{
f9e09977 1293 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 1294 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1295 mutex_unlock(&vmap_purge_lock);
0574ecd1 1296 }
496850e5
NP
1297}
1298
db64fe02
NP
1299/*
1300 * Kick off a purge of the outstanding lazy areas.
1301 */
1302static void purge_vmap_area_lazy(void)
1303{
f9e09977 1304 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1305 purge_fragmented_blocks_allcpus();
1306 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1307 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1308}
1309
1310/*
64141da5
JF
1311 * Free a vmap area, caller ensuring that the area has been unmapped
1312 * and flush_cache_vunmap had been called for the correct range
1313 * previously.
db64fe02 1314 */
64141da5 1315static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1316{
4d36e6f8 1317 unsigned long nr_lazy;
80c4bd7a 1318
4d36e6f8
URS
1319 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1320 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a
CW
1321
1322 /* After this point, we may free va at any time */
1323 llist_add(&va->purge_list, &vmap_purge_list);
1324
1325 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 1326 try_purge_vmap_area_lazy();
db64fe02
NP
1327}
1328
b29acbdc
NP
1329/*
1330 * Free and unmap a vmap area
1331 */
1332static void free_unmap_vmap_area(struct vmap_area *va)
1333{
1334 flush_cache_vunmap(va->va_start, va->va_end);
c8eef01e 1335 unmap_vmap_area(va);
82a2e924
CP
1336 if (debug_pagealloc_enabled())
1337 flush_tlb_kernel_range(va->va_start, va->va_end);
1338
c8eef01e 1339 free_vmap_area_noflush(va);
b29acbdc
NP
1340}
1341
db64fe02
NP
1342static struct vmap_area *find_vmap_area(unsigned long addr)
1343{
1344 struct vmap_area *va;
1345
1346 spin_lock(&vmap_area_lock);
1347 va = __find_vmap_area(addr);
1348 spin_unlock(&vmap_area_lock);
1349
1350 return va;
1351}
1352
db64fe02
NP
1353/*** Per cpu kva allocator ***/
1354
1355/*
1356 * vmap space is limited especially on 32 bit architectures. Ensure there is
1357 * room for at least 16 percpu vmap blocks per CPU.
1358 */
1359/*
1360 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1361 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1362 * instead (we just need a rough idea)
1363 */
1364#if BITS_PER_LONG == 32
1365#define VMALLOC_SPACE (128UL*1024*1024)
1366#else
1367#define VMALLOC_SPACE (128UL*1024*1024*1024)
1368#endif
1369
1370#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1371#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1372#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1373#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1374#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1375#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1376#define VMAP_BBMAP_BITS \
1377 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1378 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1379 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1380
1381#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1382
1383struct vmap_block_queue {
1384 spinlock_t lock;
1385 struct list_head free;
db64fe02
NP
1386};
1387
1388struct vmap_block {
1389 spinlock_t lock;
1390 struct vmap_area *va;
db64fe02 1391 unsigned long free, dirty;
7d61bfe8 1392 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1393 struct list_head free_list;
1394 struct rcu_head rcu_head;
02b709df 1395 struct list_head purge;
db64fe02
NP
1396};
1397
1398/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1399static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1400
1401/*
1402 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1403 * in the free path. Could get rid of this if we change the API to return a
1404 * "cookie" from alloc, to be passed to free. But no big deal yet.
1405 */
1406static DEFINE_SPINLOCK(vmap_block_tree_lock);
1407static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1408
1409/*
1410 * We should probably have a fallback mechanism to allocate virtual memory
1411 * out of partially filled vmap blocks. However vmap block sizing should be
1412 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1413 * big problem.
1414 */
1415
1416static unsigned long addr_to_vb_idx(unsigned long addr)
1417{
1418 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1419 addr /= VMAP_BLOCK_SIZE;
1420 return addr;
1421}
1422
cf725ce2
RP
1423static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1424{
1425 unsigned long addr;
1426
1427 addr = va_start + (pages_off << PAGE_SHIFT);
1428 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1429 return (void *)addr;
1430}
1431
1432/**
1433 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1434 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1435 * @order: how many 2^order pages should be occupied in newly allocated block
1436 * @gfp_mask: flags for the page level allocator
1437 *
a862f68a 1438 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1439 */
1440static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1441{
1442 struct vmap_block_queue *vbq;
1443 struct vmap_block *vb;
1444 struct vmap_area *va;
1445 unsigned long vb_idx;
1446 int node, err;
cf725ce2 1447 void *vaddr;
db64fe02
NP
1448
1449 node = numa_node_id();
1450
1451 vb = kmalloc_node(sizeof(struct vmap_block),
1452 gfp_mask & GFP_RECLAIM_MASK, node);
1453 if (unlikely(!vb))
1454 return ERR_PTR(-ENOMEM);
1455
1456 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1457 VMALLOC_START, VMALLOC_END,
1458 node, gfp_mask);
ddf9c6d4 1459 if (IS_ERR(va)) {
db64fe02 1460 kfree(vb);
e7d86340 1461 return ERR_CAST(va);
db64fe02
NP
1462 }
1463
1464 err = radix_tree_preload(gfp_mask);
1465 if (unlikely(err)) {
1466 kfree(vb);
1467 free_vmap_area(va);
1468 return ERR_PTR(err);
1469 }
1470
cf725ce2 1471 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1472 spin_lock_init(&vb->lock);
1473 vb->va = va;
cf725ce2
RP
1474 /* At least something should be left free */
1475 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1476 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 1477 vb->dirty = 0;
7d61bfe8
RP
1478 vb->dirty_min = VMAP_BBMAP_BITS;
1479 vb->dirty_max = 0;
db64fe02 1480 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
1481
1482 vb_idx = addr_to_vb_idx(va->va_start);
1483 spin_lock(&vmap_block_tree_lock);
1484 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1485 spin_unlock(&vmap_block_tree_lock);
1486 BUG_ON(err);
1487 radix_tree_preload_end();
1488
1489 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 1490 spin_lock(&vbq->lock);
68ac546f 1491 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 1492 spin_unlock(&vbq->lock);
3f04ba85 1493 put_cpu_var(vmap_block_queue);
db64fe02 1494
cf725ce2 1495 return vaddr;
db64fe02
NP
1496}
1497
db64fe02
NP
1498static void free_vmap_block(struct vmap_block *vb)
1499{
1500 struct vmap_block *tmp;
1501 unsigned long vb_idx;
1502
db64fe02
NP
1503 vb_idx = addr_to_vb_idx(vb->va->va_start);
1504 spin_lock(&vmap_block_tree_lock);
1505 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1506 spin_unlock(&vmap_block_tree_lock);
1507 BUG_ON(tmp != vb);
1508
64141da5 1509 free_vmap_area_noflush(vb->va);
22a3c7d1 1510 kfree_rcu(vb, rcu_head);
db64fe02
NP
1511}
1512
02b709df
NP
1513static void purge_fragmented_blocks(int cpu)
1514{
1515 LIST_HEAD(purge);
1516 struct vmap_block *vb;
1517 struct vmap_block *n_vb;
1518 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1519
1520 rcu_read_lock();
1521 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1522
1523 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1524 continue;
1525
1526 spin_lock(&vb->lock);
1527 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1528 vb->free = 0; /* prevent further allocs after releasing lock */
1529 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
1530 vb->dirty_min = 0;
1531 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
1532 spin_lock(&vbq->lock);
1533 list_del_rcu(&vb->free_list);
1534 spin_unlock(&vbq->lock);
1535 spin_unlock(&vb->lock);
1536 list_add_tail(&vb->purge, &purge);
1537 } else
1538 spin_unlock(&vb->lock);
1539 }
1540 rcu_read_unlock();
1541
1542 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1543 list_del(&vb->purge);
1544 free_vmap_block(vb);
1545 }
1546}
1547
02b709df
NP
1548static void purge_fragmented_blocks_allcpus(void)
1549{
1550 int cpu;
1551
1552 for_each_possible_cpu(cpu)
1553 purge_fragmented_blocks(cpu);
1554}
1555
db64fe02
NP
1556static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1557{
1558 struct vmap_block_queue *vbq;
1559 struct vmap_block *vb;
cf725ce2 1560 void *vaddr = NULL;
db64fe02
NP
1561 unsigned int order;
1562
891c49ab 1563 BUG_ON(offset_in_page(size));
db64fe02 1564 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
1565 if (WARN_ON(size == 0)) {
1566 /*
1567 * Allocating 0 bytes isn't what caller wants since
1568 * get_order(0) returns funny result. Just warn and terminate
1569 * early.
1570 */
1571 return NULL;
1572 }
db64fe02
NP
1573 order = get_order(size);
1574
db64fe02
NP
1575 rcu_read_lock();
1576 vbq = &get_cpu_var(vmap_block_queue);
1577 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 1578 unsigned long pages_off;
db64fe02
NP
1579
1580 spin_lock(&vb->lock);
cf725ce2
RP
1581 if (vb->free < (1UL << order)) {
1582 spin_unlock(&vb->lock);
1583 continue;
1584 }
02b709df 1585
cf725ce2
RP
1586 pages_off = VMAP_BBMAP_BITS - vb->free;
1587 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
1588 vb->free -= 1UL << order;
1589 if (vb->free == 0) {
1590 spin_lock(&vbq->lock);
1591 list_del_rcu(&vb->free_list);
1592 spin_unlock(&vbq->lock);
1593 }
cf725ce2 1594
02b709df
NP
1595 spin_unlock(&vb->lock);
1596 break;
db64fe02 1597 }
02b709df 1598
3f04ba85 1599 put_cpu_var(vmap_block_queue);
db64fe02
NP
1600 rcu_read_unlock();
1601
cf725ce2
RP
1602 /* Allocate new block if nothing was found */
1603 if (!vaddr)
1604 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 1605
cf725ce2 1606 return vaddr;
db64fe02
NP
1607}
1608
1609static void vb_free(const void *addr, unsigned long size)
1610{
1611 unsigned long offset;
1612 unsigned long vb_idx;
1613 unsigned int order;
1614 struct vmap_block *vb;
1615
891c49ab 1616 BUG_ON(offset_in_page(size));
db64fe02 1617 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
1618
1619 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1620
db64fe02
NP
1621 order = get_order(size);
1622
1623 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
7d61bfe8 1624 offset >>= PAGE_SHIFT;
db64fe02
NP
1625
1626 vb_idx = addr_to_vb_idx((unsigned long)addr);
1627 rcu_read_lock();
1628 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1629 rcu_read_unlock();
1630 BUG_ON(!vb);
1631
64141da5
JF
1632 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1633
82a2e924
CP
1634 if (debug_pagealloc_enabled())
1635 flush_tlb_kernel_range((unsigned long)addr,
1636 (unsigned long)addr + size);
1637
db64fe02 1638 spin_lock(&vb->lock);
7d61bfe8
RP
1639
1640 /* Expand dirty range */
1641 vb->dirty_min = min(vb->dirty_min, offset);
1642 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1643
db64fe02
NP
1644 vb->dirty += 1UL << order;
1645 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1646 BUG_ON(vb->free);
db64fe02
NP
1647 spin_unlock(&vb->lock);
1648 free_vmap_block(vb);
1649 } else
1650 spin_unlock(&vb->lock);
1651}
1652
868b104d 1653static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 1654{
db64fe02 1655 int cpu;
db64fe02 1656
9b463334
JF
1657 if (unlikely(!vmap_initialized))
1658 return;
1659
5803ed29
CH
1660 might_sleep();
1661
db64fe02
NP
1662 for_each_possible_cpu(cpu) {
1663 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1664 struct vmap_block *vb;
1665
1666 rcu_read_lock();
1667 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1668 spin_lock(&vb->lock);
7d61bfe8
RP
1669 if (vb->dirty) {
1670 unsigned long va_start = vb->va->va_start;
db64fe02 1671 unsigned long s, e;
b136be5e 1672
7d61bfe8
RP
1673 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1674 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1675
7d61bfe8
RP
1676 start = min(s, start);
1677 end = max(e, end);
db64fe02 1678
7d61bfe8 1679 flush = 1;
db64fe02
NP
1680 }
1681 spin_unlock(&vb->lock);
1682 }
1683 rcu_read_unlock();
1684 }
1685
f9e09977 1686 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1687 purge_fragmented_blocks_allcpus();
1688 if (!__purge_vmap_area_lazy(start, end) && flush)
1689 flush_tlb_kernel_range(start, end);
f9e09977 1690 mutex_unlock(&vmap_purge_lock);
db64fe02 1691}
868b104d
RE
1692
1693/**
1694 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1695 *
1696 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1697 * to amortize TLB flushing overheads. What this means is that any page you
1698 * have now, may, in a former life, have been mapped into kernel virtual
1699 * address by the vmap layer and so there might be some CPUs with TLB entries
1700 * still referencing that page (additional to the regular 1:1 kernel mapping).
1701 *
1702 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1703 * be sure that none of the pages we have control over will have any aliases
1704 * from the vmap layer.
1705 */
1706void vm_unmap_aliases(void)
1707{
1708 unsigned long start = ULONG_MAX, end = 0;
1709 int flush = 0;
1710
1711 _vm_unmap_aliases(start, end, flush);
1712}
db64fe02
NP
1713EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1714
1715/**
1716 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1717 * @mem: the pointer returned by vm_map_ram
1718 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1719 */
1720void vm_unmap_ram(const void *mem, unsigned int count)
1721{
65ee03c4 1722 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 1723 unsigned long addr = (unsigned long)mem;
9c3acf60 1724 struct vmap_area *va;
db64fe02 1725
5803ed29 1726 might_sleep();
db64fe02
NP
1727 BUG_ON(!addr);
1728 BUG_ON(addr < VMALLOC_START);
1729 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 1730 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 1731
9c3acf60 1732 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 1733 debug_check_no_locks_freed(mem, size);
db64fe02 1734 vb_free(mem, size);
9c3acf60
CH
1735 return;
1736 }
1737
1738 va = find_vmap_area(addr);
1739 BUG_ON(!va);
05e3ff95
CP
1740 debug_check_no_locks_freed((void *)va->va_start,
1741 (va->va_end - va->va_start));
9c3acf60 1742 free_unmap_vmap_area(va);
db64fe02
NP
1743}
1744EXPORT_SYMBOL(vm_unmap_ram);
1745
1746/**
1747 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1748 * @pages: an array of pointers to the pages to be mapped
1749 * @count: number of pages
1750 * @node: prefer to allocate data structures on this node
1751 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad 1752 *
36437638
GK
1753 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1754 * faster than vmap so it's good. But if you mix long-life and short-life
1755 * objects with vm_map_ram(), it could consume lots of address space through
1756 * fragmentation (especially on a 32bit machine). You could see failures in
1757 * the end. Please use this function for short-lived objects.
1758 *
e99c97ad 1759 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1760 */
1761void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1762{
65ee03c4 1763 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1764 unsigned long addr;
1765 void *mem;
1766
1767 if (likely(count <= VMAP_MAX_ALLOC)) {
1768 mem = vb_alloc(size, GFP_KERNEL);
1769 if (IS_ERR(mem))
1770 return NULL;
1771 addr = (unsigned long)mem;
1772 } else {
1773 struct vmap_area *va;
1774 va = alloc_vmap_area(size, PAGE_SIZE,
1775 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1776 if (IS_ERR(va))
1777 return NULL;
1778
1779 addr = va->va_start;
1780 mem = (void *)addr;
1781 }
1782 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1783 vm_unmap_ram(mem, count);
1784 return NULL;
1785 }
1786 return mem;
1787}
1788EXPORT_SYMBOL(vm_map_ram);
1789
4341fa45 1790static struct vm_struct *vmlist __initdata;
92eac168 1791
be9b7335
NP
1792/**
1793 * vm_area_add_early - add vmap area early during boot
1794 * @vm: vm_struct to add
1795 *
1796 * This function is used to add fixed kernel vm area to vmlist before
1797 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1798 * should contain proper values and the other fields should be zero.
1799 *
1800 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1801 */
1802void __init vm_area_add_early(struct vm_struct *vm)
1803{
1804 struct vm_struct *tmp, **p;
1805
1806 BUG_ON(vmap_initialized);
1807 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1808 if (tmp->addr >= vm->addr) {
1809 BUG_ON(tmp->addr < vm->addr + vm->size);
1810 break;
1811 } else
1812 BUG_ON(tmp->addr + tmp->size > vm->addr);
1813 }
1814 vm->next = *p;
1815 *p = vm;
1816}
1817
f0aa6617
TH
1818/**
1819 * vm_area_register_early - register vmap area early during boot
1820 * @vm: vm_struct to register
c0c0a293 1821 * @align: requested alignment
f0aa6617
TH
1822 *
1823 * This function is used to register kernel vm area before
1824 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1825 * proper values on entry and other fields should be zero. On return,
1826 * vm->addr contains the allocated address.
1827 *
1828 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1829 */
c0c0a293 1830void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1831{
1832 static size_t vm_init_off __initdata;
c0c0a293
TH
1833 unsigned long addr;
1834
1835 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1836 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1837
c0c0a293 1838 vm->addr = (void *)addr;
f0aa6617 1839
be9b7335 1840 vm_area_add_early(vm);
f0aa6617
TH
1841}
1842
68ad4a33
URS
1843static void vmap_init_free_space(void)
1844{
1845 unsigned long vmap_start = 1;
1846 const unsigned long vmap_end = ULONG_MAX;
1847 struct vmap_area *busy, *free;
1848
1849 /*
1850 * B F B B B F
1851 * -|-----|.....|-----|-----|-----|.....|-
1852 * | The KVA space |
1853 * |<--------------------------------->|
1854 */
1855 list_for_each_entry(busy, &vmap_area_list, list) {
1856 if (busy->va_start - vmap_start > 0) {
1857 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1858 if (!WARN_ON_ONCE(!free)) {
1859 free->va_start = vmap_start;
1860 free->va_end = busy->va_start;
1861
1862 insert_vmap_area_augment(free, NULL,
1863 &free_vmap_area_root,
1864 &free_vmap_area_list);
1865 }
1866 }
1867
1868 vmap_start = busy->va_end;
1869 }
1870
1871 if (vmap_end - vmap_start > 0) {
1872 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1873 if (!WARN_ON_ONCE(!free)) {
1874 free->va_start = vmap_start;
1875 free->va_end = vmap_end;
1876
1877 insert_vmap_area_augment(free, NULL,
1878 &free_vmap_area_root,
1879 &free_vmap_area_list);
1880 }
1881 }
1882}
1883
db64fe02
NP
1884void __init vmalloc_init(void)
1885{
822c18f2
IK
1886 struct vmap_area *va;
1887 struct vm_struct *tmp;
db64fe02
NP
1888 int i;
1889
68ad4a33
URS
1890 /*
1891 * Create the cache for vmap_area objects.
1892 */
1893 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1894
db64fe02
NP
1895 for_each_possible_cpu(i) {
1896 struct vmap_block_queue *vbq;
32fcfd40 1897 struct vfree_deferred *p;
db64fe02
NP
1898
1899 vbq = &per_cpu(vmap_block_queue, i);
1900 spin_lock_init(&vbq->lock);
1901 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1902 p = &per_cpu(vfree_deferred, i);
1903 init_llist_head(&p->list);
1904 INIT_WORK(&p->wq, free_work);
db64fe02 1905 }
9b463334 1906
822c18f2
IK
1907 /* Import existing vmlist entries. */
1908 for (tmp = vmlist; tmp; tmp = tmp->next) {
68ad4a33
URS
1909 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1910 if (WARN_ON_ONCE(!va))
1911 continue;
1912
dbda591d 1913 va->flags = VM_VM_AREA;
822c18f2
IK
1914 va->va_start = (unsigned long)tmp->addr;
1915 va->va_end = va->va_start + tmp->size;
dbda591d 1916 va->vm = tmp;
68ad4a33 1917 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
822c18f2 1918 }
ca23e405 1919
68ad4a33
URS
1920 /*
1921 * Now we can initialize a free vmap space.
1922 */
1923 vmap_init_free_space();
9b463334 1924 vmap_initialized = true;
db64fe02
NP
1925}
1926
8fc48985
TH
1927/**
1928 * map_kernel_range_noflush - map kernel VM area with the specified pages
1929 * @addr: start of the VM area to map
1930 * @size: size of the VM area to map
1931 * @prot: page protection flags to use
1932 * @pages: pages to map
1933 *
1934 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1935 * specify should have been allocated using get_vm_area() and its
1936 * friends.
1937 *
1938 * NOTE:
1939 * This function does NOT do any cache flushing. The caller is
1940 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1941 * before calling this function.
1942 *
1943 * RETURNS:
1944 * The number of pages mapped on success, -errno on failure.
1945 */
1946int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1947 pgprot_t prot, struct page **pages)
1948{
1949 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1950}
1951
1952/**
1953 * unmap_kernel_range_noflush - unmap kernel VM area
1954 * @addr: start of the VM area to unmap
1955 * @size: size of the VM area to unmap
1956 *
1957 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1958 * specify should have been allocated using get_vm_area() and its
1959 * friends.
1960 *
1961 * NOTE:
1962 * This function does NOT do any cache flushing. The caller is
1963 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1964 * before calling this function and flush_tlb_kernel_range() after.
1965 */
1966void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1967{
1968 vunmap_page_range(addr, addr + size);
1969}
81e88fdc 1970EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
1971
1972/**
1973 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1974 * @addr: start of the VM area to unmap
1975 * @size: size of the VM area to unmap
1976 *
1977 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1978 * the unmapping and tlb after.
1979 */
db64fe02
NP
1980void unmap_kernel_range(unsigned long addr, unsigned long size)
1981{
1982 unsigned long end = addr + size;
f6fcba70
TH
1983
1984 flush_cache_vunmap(addr, end);
db64fe02
NP
1985 vunmap_page_range(addr, end);
1986 flush_tlb_kernel_range(addr, end);
1987}
93ef6d6c 1988EXPORT_SYMBOL_GPL(unmap_kernel_range);
db64fe02 1989
f6f8ed47 1990int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
db64fe02
NP
1991{
1992 unsigned long addr = (unsigned long)area->addr;
762216ab 1993 unsigned long end = addr + get_vm_area_size(area);
db64fe02
NP
1994 int err;
1995
f6f8ed47 1996 err = vmap_page_range(addr, end, prot, pages);
db64fe02 1997
f6f8ed47 1998 return err > 0 ? 0 : err;
db64fe02
NP
1999}
2000EXPORT_SYMBOL_GPL(map_vm_area);
2001
f5252e00 2002static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 2003 unsigned long flags, const void *caller)
cf88c790 2004{
c69480ad 2005 spin_lock(&vmap_area_lock);
cf88c790
TH
2006 vm->flags = flags;
2007 vm->addr = (void *)va->va_start;
2008 vm->size = va->va_end - va->va_start;
2009 vm->caller = caller;
db1aecaf 2010 va->vm = vm;
cf88c790 2011 va->flags |= VM_VM_AREA;
c69480ad 2012 spin_unlock(&vmap_area_lock);
f5252e00 2013}
cf88c790 2014
20fc02b4 2015static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2016{
d4033afd 2017 /*
20fc02b4 2018 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2019 * we should make sure that vm has proper values.
2020 * Pair with smp_rmb() in show_numa_info().
2021 */
2022 smp_wmb();
20fc02b4 2023 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2024}
2025
db64fe02 2026static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 2027 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 2028 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 2029{
0006526d 2030 struct vmap_area *va;
db64fe02 2031 struct vm_struct *area;
1da177e4 2032
52fd24ca 2033 BUG_ON(in_interrupt());
1da177e4 2034 size = PAGE_ALIGN(size);
31be8309
OH
2035 if (unlikely(!size))
2036 return NULL;
1da177e4 2037
252e5c6e 2038 if (flags & VM_IOREMAP)
2039 align = 1ul << clamp_t(int, get_count_order_long(size),
2040 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2041
cf88c790 2042 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2043 if (unlikely(!area))
2044 return NULL;
2045
71394fe5
AR
2046 if (!(flags & VM_NO_GUARD))
2047 size += PAGE_SIZE;
1da177e4 2048
db64fe02
NP
2049 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2050 if (IS_ERR(va)) {
2051 kfree(area);
2052 return NULL;
1da177e4 2053 }
1da177e4 2054
d82b1d85 2055 setup_vmalloc_vm(area, va, flags, caller);
f5252e00 2056
1da177e4 2057 return area;
1da177e4
LT
2058}
2059
930fc45a
CL
2060struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2061 unsigned long start, unsigned long end)
2062{
00ef2d2f
DR
2063 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2064 GFP_KERNEL, __builtin_return_address(0));
930fc45a 2065}
5992b6da 2066EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 2067
c2968612
BH
2068struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2069 unsigned long start, unsigned long end,
5e6cafc8 2070 const void *caller)
c2968612 2071{
00ef2d2f
DR
2072 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2073 GFP_KERNEL, caller);
c2968612
BH
2074}
2075
1da177e4 2076/**
92eac168
MR
2077 * get_vm_area - reserve a contiguous kernel virtual area
2078 * @size: size of the area
2079 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2080 *
92eac168
MR
2081 * Search an area of @size in the kernel virtual mapping area,
2082 * and reserved it for out purposes. Returns the area descriptor
2083 * on success or %NULL on failure.
a862f68a
MR
2084 *
2085 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2086 */
2087struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2088{
2dca6999 2089 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2090 NUMA_NO_NODE, GFP_KERNEL,
2091 __builtin_return_address(0));
23016969
CL
2092}
2093
2094struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2095 const void *caller)
23016969 2096{
2dca6999 2097 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 2098 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2099}
2100
e9da6e99 2101/**
92eac168
MR
2102 * find_vm_area - find a continuous kernel virtual area
2103 * @addr: base address
e9da6e99 2104 *
92eac168
MR
2105 * Search for the kernel VM area starting at @addr, and return it.
2106 * It is up to the caller to do all required locking to keep the returned
2107 * pointer valid.
a862f68a
MR
2108 *
2109 * Return: pointer to the found area or %NULL on faulure
e9da6e99
MS
2110 */
2111struct vm_struct *find_vm_area(const void *addr)
83342314 2112{
db64fe02 2113 struct vmap_area *va;
83342314 2114
db64fe02
NP
2115 va = find_vmap_area((unsigned long)addr);
2116 if (va && va->flags & VM_VM_AREA)
db1aecaf 2117 return va->vm;
1da177e4 2118
1da177e4 2119 return NULL;
1da177e4
LT
2120}
2121
7856dfeb 2122/**
92eac168
MR
2123 * remove_vm_area - find and remove a continuous kernel virtual area
2124 * @addr: base address
7856dfeb 2125 *
92eac168
MR
2126 * Search for the kernel VM area starting at @addr, and remove it.
2127 * This function returns the found VM area, but using it is NOT safe
2128 * on SMP machines, except for its size or flags.
a862f68a
MR
2129 *
2130 * Return: pointer to the found area or %NULL on faulure
7856dfeb 2131 */
b3bdda02 2132struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2133{
db64fe02
NP
2134 struct vmap_area *va;
2135
5803ed29
CH
2136 might_sleep();
2137
db64fe02
NP
2138 va = find_vmap_area((unsigned long)addr);
2139 if (va && va->flags & VM_VM_AREA) {
db1aecaf 2140 struct vm_struct *vm = va->vm;
f5252e00 2141
c69480ad
JK
2142 spin_lock(&vmap_area_lock);
2143 va->vm = NULL;
2144 va->flags &= ~VM_VM_AREA;
78c72746 2145 va->flags |= VM_LAZY_FREE;
c69480ad
JK
2146 spin_unlock(&vmap_area_lock);
2147
a5af5aa8 2148 kasan_free_shadow(vm);
dd32c279 2149 free_unmap_vmap_area(va);
dd32c279 2150
db64fe02
NP
2151 return vm;
2152 }
2153 return NULL;
7856dfeb
AK
2154}
2155
868b104d
RE
2156static inline void set_area_direct_map(const struct vm_struct *area,
2157 int (*set_direct_map)(struct page *page))
2158{
2159 int i;
2160
2161 for (i = 0; i < area->nr_pages; i++)
2162 if (page_address(area->pages[i]))
2163 set_direct_map(area->pages[i]);
2164}
2165
2166/* Handle removing and resetting vm mappings related to the vm_struct. */
2167static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2168{
868b104d
RE
2169 unsigned long start = ULONG_MAX, end = 0;
2170 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
31e67340 2171 int flush_dmap = 0;
868b104d
RE
2172 int i;
2173
868b104d
RE
2174 remove_vm_area(area->addr);
2175
2176 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2177 if (!flush_reset)
2178 return;
2179
2180 /*
2181 * If not deallocating pages, just do the flush of the VM area and
2182 * return.
2183 */
2184 if (!deallocate_pages) {
2185 vm_unmap_aliases();
2186 return;
2187 }
2188
2189 /*
2190 * If execution gets here, flush the vm mapping and reset the direct
2191 * map. Find the start and end range of the direct mappings to make sure
2192 * the vm_unmap_aliases() flush includes the direct map.
2193 */
2194 for (i = 0; i < area->nr_pages; i++) {
8e41f872
RE
2195 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2196 if (addr) {
868b104d 2197 start = min(addr, start);
8e41f872 2198 end = max(addr + PAGE_SIZE, end);
31e67340 2199 flush_dmap = 1;
868b104d
RE
2200 }
2201 }
2202
2203 /*
2204 * Set direct map to something invalid so that it won't be cached if
2205 * there are any accesses after the TLB flush, then flush the TLB and
2206 * reset the direct map permissions to the default.
2207 */
2208 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2209 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2210 set_area_direct_map(area, set_direct_map_default_noflush);
2211}
2212
b3bdda02 2213static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
2214{
2215 struct vm_struct *area;
2216
2217 if (!addr)
2218 return;
2219
e69e9d4a 2220 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 2221 addr))
1da177e4 2222 return;
1da177e4 2223
6ade2032 2224 area = find_vm_area(addr);
1da177e4 2225 if (unlikely(!area)) {
4c8573e2 2226 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 2227 addr);
1da177e4
LT
2228 return;
2229 }
2230
05e3ff95
CP
2231 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2232 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 2233
868b104d
RE
2234 vm_remove_mappings(area, deallocate_pages);
2235
1da177e4
LT
2236 if (deallocate_pages) {
2237 int i;
2238
2239 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2240 struct page *page = area->pages[i];
2241
2242 BUG_ON(!page);
4949148a 2243 __free_pages(page, 0);
1da177e4
LT
2244 }
2245
244d63ee 2246 kvfree(area->pages);
1da177e4
LT
2247 }
2248
2249 kfree(area);
2250 return;
2251}
bf22e37a
AR
2252
2253static inline void __vfree_deferred(const void *addr)
2254{
2255 /*
2256 * Use raw_cpu_ptr() because this can be called from preemptible
2257 * context. Preemption is absolutely fine here, because the llist_add()
2258 * implementation is lockless, so it works even if we are adding to
2259 * nother cpu's list. schedule_work() should be fine with this too.
2260 */
2261 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2262
2263 if (llist_add((struct llist_node *)addr, &p->list))
2264 schedule_work(&p->wq);
2265}
2266
2267/**
92eac168
MR
2268 * vfree_atomic - release memory allocated by vmalloc()
2269 * @addr: memory base address
bf22e37a 2270 *
92eac168
MR
2271 * This one is just like vfree() but can be called in any atomic context
2272 * except NMIs.
bf22e37a
AR
2273 */
2274void vfree_atomic(const void *addr)
2275{
2276 BUG_ON(in_nmi());
2277
2278 kmemleak_free(addr);
2279
2280 if (!addr)
2281 return;
2282 __vfree_deferred(addr);
2283}
2284
c67dc624
RP
2285static void __vfree(const void *addr)
2286{
2287 if (unlikely(in_interrupt()))
2288 __vfree_deferred(addr);
2289 else
2290 __vunmap(addr, 1);
2291}
2292
1da177e4 2293/**
92eac168
MR
2294 * vfree - release memory allocated by vmalloc()
2295 * @addr: memory base address
1da177e4 2296 *
92eac168
MR
2297 * Free the virtually continuous memory area starting at @addr, as
2298 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2299 * NULL, no operation is performed.
1da177e4 2300 *
92eac168
MR
2301 * Must not be called in NMI context (strictly speaking, only if we don't
2302 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2303 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51 2304 *
92eac168 2305 * May sleep if called *not* from interrupt context.
3ca4ea3a 2306 *
92eac168 2307 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1da177e4 2308 */
b3bdda02 2309void vfree(const void *addr)
1da177e4 2310{
32fcfd40 2311 BUG_ON(in_nmi());
89219d37
CM
2312
2313 kmemleak_free(addr);
2314
a8dda165
AR
2315 might_sleep_if(!in_interrupt());
2316
32fcfd40
AV
2317 if (!addr)
2318 return;
c67dc624
RP
2319
2320 __vfree(addr);
1da177e4 2321}
1da177e4
LT
2322EXPORT_SYMBOL(vfree);
2323
2324/**
92eac168
MR
2325 * vunmap - release virtual mapping obtained by vmap()
2326 * @addr: memory base address
1da177e4 2327 *
92eac168
MR
2328 * Free the virtually contiguous memory area starting at @addr,
2329 * which was created from the page array passed to vmap().
1da177e4 2330 *
92eac168 2331 * Must not be called in interrupt context.
1da177e4 2332 */
b3bdda02 2333void vunmap(const void *addr)
1da177e4
LT
2334{
2335 BUG_ON(in_interrupt());
34754b69 2336 might_sleep();
32fcfd40
AV
2337 if (addr)
2338 __vunmap(addr, 0);
1da177e4 2339}
1da177e4
LT
2340EXPORT_SYMBOL(vunmap);
2341
2342/**
92eac168
MR
2343 * vmap - map an array of pages into virtually contiguous space
2344 * @pages: array of page pointers
2345 * @count: number of pages to map
2346 * @flags: vm_area->flags
2347 * @prot: page protection for the mapping
2348 *
2349 * Maps @count pages from @pages into contiguous kernel virtual
2350 * space.
a862f68a
MR
2351 *
2352 * Return: the address of the area or %NULL on failure
1da177e4
LT
2353 */
2354void *vmap(struct page **pages, unsigned int count,
92eac168 2355 unsigned long flags, pgprot_t prot)
1da177e4
LT
2356{
2357 struct vm_struct *area;
65ee03c4 2358 unsigned long size; /* In bytes */
1da177e4 2359
34754b69
PZ
2360 might_sleep();
2361
ca79b0c2 2362 if (count > totalram_pages())
1da177e4
LT
2363 return NULL;
2364
65ee03c4
GJM
2365 size = (unsigned long)count << PAGE_SHIFT;
2366 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2367 if (!area)
2368 return NULL;
23016969 2369
f6f8ed47 2370 if (map_vm_area(area, prot, pages)) {
1da177e4
LT
2371 vunmap(area->addr);
2372 return NULL;
2373 }
2374
2375 return area->addr;
2376}
1da177e4
LT
2377EXPORT_SYMBOL(vmap);
2378
8594a21c
MH
2379static void *__vmalloc_node(unsigned long size, unsigned long align,
2380 gfp_t gfp_mask, pgprot_t prot,
2381 int node, const void *caller);
e31d9eb5 2382static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 2383 pgprot_t prot, int node)
1da177e4
LT
2384{
2385 struct page **pages;
2386 unsigned int nr_pages, array_size, i;
930f036b 2387 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
704b862f
LA
2388 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2389 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2390 0 :
2391 __GFP_HIGHMEM;
1da177e4 2392
762216ab 2393 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
2394 array_size = (nr_pages * sizeof(struct page *));
2395
2396 area->nr_pages = nr_pages;
2397 /* Please note that the recursion is strictly bounded. */
8757d5fa 2398 if (array_size > PAGE_SIZE) {
704b862f 2399 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
3722e13c 2400 PAGE_KERNEL, node, area->caller);
286e1ea3 2401 } else {
976d6dfb 2402 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 2403 }
1da177e4
LT
2404 area->pages = pages;
2405 if (!area->pages) {
2406 remove_vm_area(area->addr);
2407 kfree(area);
2408 return NULL;
2409 }
1da177e4
LT
2410
2411 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2412 struct page *page;
2413
4b90951c 2414 if (node == NUMA_NO_NODE)
704b862f 2415 page = alloc_page(alloc_mask|highmem_mask);
930fc45a 2416 else
704b862f 2417 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
bf53d6f8
CL
2418
2419 if (unlikely(!page)) {
1da177e4
LT
2420 /* Successfully allocated i pages, free them in __vunmap() */
2421 area->nr_pages = i;
2422 goto fail;
2423 }
bf53d6f8 2424 area->pages[i] = page;
704b862f 2425 if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
660654f9 2426 cond_resched();
1da177e4
LT
2427 }
2428
f6f8ed47 2429 if (map_vm_area(area, prot, pages))
1da177e4
LT
2430 goto fail;
2431 return area->addr;
2432
2433fail:
a8e99259 2434 warn_alloc(gfp_mask, NULL,
7877cdcc 2435 "vmalloc: allocation failure, allocated %ld of %ld bytes",
22943ab1 2436 (area->nr_pages*PAGE_SIZE), area->size);
c67dc624 2437 __vfree(area->addr);
1da177e4
LT
2438 return NULL;
2439}
2440
2441/**
92eac168
MR
2442 * __vmalloc_node_range - allocate virtually contiguous memory
2443 * @size: allocation size
2444 * @align: desired alignment
2445 * @start: vm area range start
2446 * @end: vm area range end
2447 * @gfp_mask: flags for the page level allocator
2448 * @prot: protection mask for the allocated pages
2449 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2450 * @node: node to use for allocation or NUMA_NO_NODE
2451 * @caller: caller's return address
2452 *
2453 * Allocate enough pages to cover @size from the page level
2454 * allocator with @gfp_mask flags. Map them into contiguous
2455 * kernel virtual space, using a pagetable protection of @prot.
a862f68a
MR
2456 *
2457 * Return: the address of the area or %NULL on failure
1da177e4 2458 */
d0a21265
DR
2459void *__vmalloc_node_range(unsigned long size, unsigned long align,
2460 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
2461 pgprot_t prot, unsigned long vm_flags, int node,
2462 const void *caller)
1da177e4
LT
2463{
2464 struct vm_struct *area;
89219d37
CM
2465 void *addr;
2466 unsigned long real_size = size;
1da177e4
LT
2467
2468 size = PAGE_ALIGN(size);
ca79b0c2 2469 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
de7d2b56 2470 goto fail;
1da177e4 2471
cb9e3c29
AR
2472 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2473 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 2474 if (!area)
de7d2b56 2475 goto fail;
1da177e4 2476
3722e13c 2477 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 2478 if (!addr)
b82225f3 2479 return NULL;
89219d37 2480
f5252e00 2481 /*
20fc02b4
ZY
2482 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2483 * flag. It means that vm_struct is not fully initialized.
4341fa45 2484 * Now, it is fully initialized, so remove this flag here.
f5252e00 2485 */
20fc02b4 2486 clear_vm_uninitialized_flag(area);
f5252e00 2487
94f4a161 2488 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
2489
2490 return addr;
de7d2b56
JP
2491
2492fail:
a8e99259 2493 warn_alloc(gfp_mask, NULL,
7877cdcc 2494 "vmalloc: allocation failure: %lu bytes", real_size);
de7d2b56 2495 return NULL;
1da177e4
LT
2496}
2497
153178ed
URS
2498/*
2499 * This is only for performance analysis of vmalloc and stress purpose.
2500 * It is required by vmalloc test module, therefore do not use it other
2501 * than that.
2502 */
2503#ifdef CONFIG_TEST_VMALLOC_MODULE
2504EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2505#endif
2506
d0a21265 2507/**
92eac168
MR
2508 * __vmalloc_node - allocate virtually contiguous memory
2509 * @size: allocation size
2510 * @align: desired alignment
2511 * @gfp_mask: flags for the page level allocator
2512 * @prot: protection mask for the allocated pages
2513 * @node: node to use for allocation or NUMA_NO_NODE
2514 * @caller: caller's return address
a7c3e901 2515 *
92eac168
MR
2516 * Allocate enough pages to cover @size from the page level
2517 * allocator with @gfp_mask flags. Map them into contiguous
2518 * kernel virtual space, using a pagetable protection of @prot.
a7c3e901 2519 *
92eac168
MR
2520 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2521 * and __GFP_NOFAIL are not supported
a7c3e901 2522 *
92eac168
MR
2523 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2524 * with mm people.
a862f68a
MR
2525 *
2526 * Return: pointer to the allocated memory or %NULL on error
d0a21265 2527 */
8594a21c 2528static void *__vmalloc_node(unsigned long size, unsigned long align,
d0a21265 2529 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 2530 int node, const void *caller)
d0a21265
DR
2531{
2532 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
cb9e3c29 2533 gfp_mask, prot, 0, node, caller);
d0a21265
DR
2534}
2535
930fc45a
CL
2536void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2537{
00ef2d2f 2538 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 2539 __builtin_return_address(0));
930fc45a 2540}
1da177e4
LT
2541EXPORT_SYMBOL(__vmalloc);
2542
8594a21c
MH
2543static inline void *__vmalloc_node_flags(unsigned long size,
2544 int node, gfp_t flags)
2545{
2546 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2547 node, __builtin_return_address(0));
2548}
2549
2550
2551void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2552 void *caller)
2553{
2554 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2555}
2556
1da177e4 2557/**
92eac168
MR
2558 * vmalloc - allocate virtually contiguous memory
2559 * @size: allocation size
2560 *
2561 * Allocate enough pages to cover @size from the page level
2562 * allocator and map them into contiguous kernel virtual space.
1da177e4 2563 *
92eac168
MR
2564 * For tight control over page level allocator and protection flags
2565 * use __vmalloc() instead.
a862f68a
MR
2566 *
2567 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2568 */
2569void *vmalloc(unsigned long size)
2570{
00ef2d2f 2571 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 2572 GFP_KERNEL);
1da177e4 2573}
1da177e4
LT
2574EXPORT_SYMBOL(vmalloc);
2575
e1ca7788 2576/**
92eac168
MR
2577 * vzalloc - allocate virtually contiguous memory with zero fill
2578 * @size: allocation size
2579 *
2580 * Allocate enough pages to cover @size from the page level
2581 * allocator and map them into contiguous kernel virtual space.
2582 * The memory allocated is set to zero.
2583 *
2584 * For tight control over page level allocator and protection flags
2585 * use __vmalloc() instead.
a862f68a
MR
2586 *
2587 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2588 */
2589void *vzalloc(unsigned long size)
2590{
00ef2d2f 2591 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 2592 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
2593}
2594EXPORT_SYMBOL(vzalloc);
2595
83342314 2596/**
ead04089
REB
2597 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2598 * @size: allocation size
83342314 2599 *
ead04089
REB
2600 * The resulting memory area is zeroed so it can be mapped to userspace
2601 * without leaking data.
a862f68a
MR
2602 *
2603 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2604 */
2605void *vmalloc_user(unsigned long size)
2606{
bc84c535
RP
2607 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2608 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2609 VM_USERMAP, NUMA_NO_NODE,
2610 __builtin_return_address(0));
83342314
NP
2611}
2612EXPORT_SYMBOL(vmalloc_user);
2613
930fc45a 2614/**
92eac168
MR
2615 * vmalloc_node - allocate memory on a specific node
2616 * @size: allocation size
2617 * @node: numa node
930fc45a 2618 *
92eac168
MR
2619 * Allocate enough pages to cover @size from the page level
2620 * allocator and map them into contiguous kernel virtual space.
930fc45a 2621 *
92eac168
MR
2622 * For tight control over page level allocator and protection flags
2623 * use __vmalloc() instead.
a862f68a
MR
2624 *
2625 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
2626 */
2627void *vmalloc_node(unsigned long size, int node)
2628{
19809c2d 2629 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
23016969 2630 node, __builtin_return_address(0));
930fc45a
CL
2631}
2632EXPORT_SYMBOL(vmalloc_node);
2633
e1ca7788
DY
2634/**
2635 * vzalloc_node - allocate memory on a specific node with zero fill
2636 * @size: allocation size
2637 * @node: numa node
2638 *
2639 * Allocate enough pages to cover @size from the page level
2640 * allocator and map them into contiguous kernel virtual space.
2641 * The memory allocated is set to zero.
2642 *
2643 * For tight control over page level allocator and protection flags
2644 * use __vmalloc_node() instead.
a862f68a
MR
2645 *
2646 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2647 */
2648void *vzalloc_node(unsigned long size, int node)
2649{
2650 return __vmalloc_node_flags(size, node,
19809c2d 2651 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
2652}
2653EXPORT_SYMBOL(vzalloc_node);
2654
1da177e4 2655/**
92eac168
MR
2656 * vmalloc_exec - allocate virtually contiguous, executable memory
2657 * @size: allocation size
1da177e4 2658 *
92eac168
MR
2659 * Kernel-internal function to allocate enough pages to cover @size
2660 * the page level allocator and map them into contiguous and
2661 * executable kernel virtual space.
1da177e4 2662 *
92eac168
MR
2663 * For tight control over page level allocator and protection flags
2664 * use __vmalloc() instead.
a862f68a
MR
2665 *
2666 * Return: pointer to the allocated memory or %NULL on error
1da177e4 2667 */
1da177e4
LT
2668void *vmalloc_exec(unsigned long size)
2669{
868b104d
RE
2670 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2671 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2672 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
2673}
2674
0d08e0d3 2675#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 2676#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 2677#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 2678#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 2679#else
698d0831
MH
2680/*
2681 * 64b systems should always have either DMA or DMA32 zones. For others
2682 * GFP_DMA32 should do the right thing and use the normal zone.
2683 */
2684#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3
AK
2685#endif
2686
1da177e4 2687/**
92eac168
MR
2688 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2689 * @size: allocation size
1da177e4 2690 *
92eac168
MR
2691 * Allocate enough 32bit PA addressable pages to cover @size from the
2692 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
2693 *
2694 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2695 */
2696void *vmalloc_32(unsigned long size)
2697{
2dca6999 2698 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 2699 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 2700}
1da177e4
LT
2701EXPORT_SYMBOL(vmalloc_32);
2702
83342314 2703/**
ead04089 2704 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 2705 * @size: allocation size
ead04089
REB
2706 *
2707 * The resulting memory area is 32bit addressable and zeroed so it can be
2708 * mapped to userspace without leaking data.
a862f68a
MR
2709 *
2710 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2711 */
2712void *vmalloc_32_user(unsigned long size)
2713{
bc84c535
RP
2714 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2715 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2716 VM_USERMAP, NUMA_NO_NODE,
2717 __builtin_return_address(0));
83342314
NP
2718}
2719EXPORT_SYMBOL(vmalloc_32_user);
2720
d0107eb0
KH
2721/*
2722 * small helper routine , copy contents to buf from addr.
2723 * If the page is not present, fill zero.
2724 */
2725
2726static int aligned_vread(char *buf, char *addr, unsigned long count)
2727{
2728 struct page *p;
2729 int copied = 0;
2730
2731 while (count) {
2732 unsigned long offset, length;
2733
891c49ab 2734 offset = offset_in_page(addr);
d0107eb0
KH
2735 length = PAGE_SIZE - offset;
2736 if (length > count)
2737 length = count;
2738 p = vmalloc_to_page(addr);
2739 /*
2740 * To do safe access to this _mapped_ area, we need
2741 * lock. But adding lock here means that we need to add
2742 * overhead of vmalloc()/vfree() calles for this _debug_
2743 * interface, rarely used. Instead of that, we'll use
2744 * kmap() and get small overhead in this access function.
2745 */
2746 if (p) {
2747 /*
2748 * we can expect USER0 is not used (see vread/vwrite's
2749 * function description)
2750 */
9b04c5fe 2751 void *map = kmap_atomic(p);
d0107eb0 2752 memcpy(buf, map + offset, length);
9b04c5fe 2753 kunmap_atomic(map);
d0107eb0
KH
2754 } else
2755 memset(buf, 0, length);
2756
2757 addr += length;
2758 buf += length;
2759 copied += length;
2760 count -= length;
2761 }
2762 return copied;
2763}
2764
2765static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2766{
2767 struct page *p;
2768 int copied = 0;
2769
2770 while (count) {
2771 unsigned long offset, length;
2772
891c49ab 2773 offset = offset_in_page(addr);
d0107eb0
KH
2774 length = PAGE_SIZE - offset;
2775 if (length > count)
2776 length = count;
2777 p = vmalloc_to_page(addr);
2778 /*
2779 * To do safe access to this _mapped_ area, we need
2780 * lock. But adding lock here means that we need to add
2781 * overhead of vmalloc()/vfree() calles for this _debug_
2782 * interface, rarely used. Instead of that, we'll use
2783 * kmap() and get small overhead in this access function.
2784 */
2785 if (p) {
2786 /*
2787 * we can expect USER0 is not used (see vread/vwrite's
2788 * function description)
2789 */
9b04c5fe 2790 void *map = kmap_atomic(p);
d0107eb0 2791 memcpy(map + offset, buf, length);
9b04c5fe 2792 kunmap_atomic(map);
d0107eb0
KH
2793 }
2794 addr += length;
2795 buf += length;
2796 copied += length;
2797 count -= length;
2798 }
2799 return copied;
2800}
2801
2802/**
92eac168
MR
2803 * vread() - read vmalloc area in a safe way.
2804 * @buf: buffer for reading data
2805 * @addr: vm address.
2806 * @count: number of bytes to be read.
2807 *
92eac168
MR
2808 * This function checks that addr is a valid vmalloc'ed area, and
2809 * copy data from that area to a given buffer. If the given memory range
2810 * of [addr...addr+count) includes some valid address, data is copied to
2811 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2812 * IOREMAP area is treated as memory hole and no copy is done.
2813 *
2814 * If [addr...addr+count) doesn't includes any intersects with alive
2815 * vm_struct area, returns 0. @buf should be kernel's buffer.
2816 *
2817 * Note: In usual ops, vread() is never necessary because the caller
2818 * should know vmalloc() area is valid and can use memcpy().
2819 * This is for routines which have to access vmalloc area without
2820 * any informaion, as /dev/kmem.
a862f68a
MR
2821 *
2822 * Return: number of bytes for which addr and buf should be increased
2823 * (same number as @count) or %0 if [addr...addr+count) doesn't
2824 * include any intersection with valid vmalloc area
d0107eb0 2825 */
1da177e4
LT
2826long vread(char *buf, char *addr, unsigned long count)
2827{
e81ce85f
JK
2828 struct vmap_area *va;
2829 struct vm_struct *vm;
1da177e4 2830 char *vaddr, *buf_start = buf;
d0107eb0 2831 unsigned long buflen = count;
1da177e4
LT
2832 unsigned long n;
2833
2834 /* Don't allow overflow */
2835 if ((unsigned long) addr + count < count)
2836 count = -(unsigned long) addr;
2837
e81ce85f
JK
2838 spin_lock(&vmap_area_lock);
2839 list_for_each_entry(va, &vmap_area_list, list) {
2840 if (!count)
2841 break;
2842
2843 if (!(va->flags & VM_VM_AREA))
2844 continue;
2845
2846 vm = va->vm;
2847 vaddr = (char *) vm->addr;
762216ab 2848 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2849 continue;
2850 while (addr < vaddr) {
2851 if (count == 0)
2852 goto finished;
2853 *buf = '\0';
2854 buf++;
2855 addr++;
2856 count--;
2857 }
762216ab 2858 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2859 if (n > count)
2860 n = count;
e81ce85f 2861 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2862 aligned_vread(buf, addr, n);
2863 else /* IOREMAP area is treated as memory hole */
2864 memset(buf, 0, n);
2865 buf += n;
2866 addr += n;
2867 count -= n;
1da177e4
LT
2868 }
2869finished:
e81ce85f 2870 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2871
2872 if (buf == buf_start)
2873 return 0;
2874 /* zero-fill memory holes */
2875 if (buf != buf_start + buflen)
2876 memset(buf, 0, buflen - (buf - buf_start));
2877
2878 return buflen;
1da177e4
LT
2879}
2880
d0107eb0 2881/**
92eac168
MR
2882 * vwrite() - write vmalloc area in a safe way.
2883 * @buf: buffer for source data
2884 * @addr: vm address.
2885 * @count: number of bytes to be read.
2886 *
92eac168
MR
2887 * This function checks that addr is a valid vmalloc'ed area, and
2888 * copy data from a buffer to the given addr. If specified range of
2889 * [addr...addr+count) includes some valid address, data is copied from
2890 * proper area of @buf. If there are memory holes, no copy to hole.
2891 * IOREMAP area is treated as memory hole and no copy is done.
2892 *
2893 * If [addr...addr+count) doesn't includes any intersects with alive
2894 * vm_struct area, returns 0. @buf should be kernel's buffer.
2895 *
2896 * Note: In usual ops, vwrite() is never necessary because the caller
2897 * should know vmalloc() area is valid and can use memcpy().
2898 * This is for routines which have to access vmalloc area without
2899 * any informaion, as /dev/kmem.
a862f68a
MR
2900 *
2901 * Return: number of bytes for which addr and buf should be
2902 * increased (same number as @count) or %0 if [addr...addr+count)
2903 * doesn't include any intersection with valid vmalloc area
d0107eb0 2904 */
1da177e4
LT
2905long vwrite(char *buf, char *addr, unsigned long count)
2906{
e81ce85f
JK
2907 struct vmap_area *va;
2908 struct vm_struct *vm;
d0107eb0
KH
2909 char *vaddr;
2910 unsigned long n, buflen;
2911 int copied = 0;
1da177e4
LT
2912
2913 /* Don't allow overflow */
2914 if ((unsigned long) addr + count < count)
2915 count = -(unsigned long) addr;
d0107eb0 2916 buflen = count;
1da177e4 2917
e81ce85f
JK
2918 spin_lock(&vmap_area_lock);
2919 list_for_each_entry(va, &vmap_area_list, list) {
2920 if (!count)
2921 break;
2922
2923 if (!(va->flags & VM_VM_AREA))
2924 continue;
2925
2926 vm = va->vm;
2927 vaddr = (char *) vm->addr;
762216ab 2928 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2929 continue;
2930 while (addr < vaddr) {
2931 if (count == 0)
2932 goto finished;
2933 buf++;
2934 addr++;
2935 count--;
2936 }
762216ab 2937 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2938 if (n > count)
2939 n = count;
e81ce85f 2940 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2941 aligned_vwrite(buf, addr, n);
2942 copied++;
2943 }
2944 buf += n;
2945 addr += n;
2946 count -= n;
1da177e4
LT
2947 }
2948finished:
e81ce85f 2949 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2950 if (!copied)
2951 return 0;
2952 return buflen;
1da177e4 2953}
83342314
NP
2954
2955/**
92eac168
MR
2956 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2957 * @vma: vma to cover
2958 * @uaddr: target user address to start at
2959 * @kaddr: virtual address of vmalloc kernel memory
2960 * @size: size of map area
7682486b 2961 *
92eac168 2962 * Returns: 0 for success, -Exxx on failure
83342314 2963 *
92eac168
MR
2964 * This function checks that @kaddr is a valid vmalloc'ed area,
2965 * and that it is big enough to cover the range starting at
2966 * @uaddr in @vma. Will return failure if that criteria isn't
2967 * met.
83342314 2968 *
92eac168 2969 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 2970 */
e69e9d4a
HD
2971int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2972 void *kaddr, unsigned long size)
83342314
NP
2973{
2974 struct vm_struct *area;
83342314 2975
e69e9d4a
HD
2976 size = PAGE_ALIGN(size);
2977
2978 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
2979 return -EINVAL;
2980
e69e9d4a 2981 area = find_vm_area(kaddr);
83342314 2982 if (!area)
db64fe02 2983 return -EINVAL;
83342314
NP
2984
2985 if (!(area->flags & VM_USERMAP))
db64fe02 2986 return -EINVAL;
83342314 2987
401592d2 2988 if (kaddr + size > area->addr + get_vm_area_size(area))
db64fe02 2989 return -EINVAL;
83342314 2990
83342314 2991 do {
e69e9d4a 2992 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
2993 int ret;
2994
83342314
NP
2995 ret = vm_insert_page(vma, uaddr, page);
2996 if (ret)
2997 return ret;
2998
2999 uaddr += PAGE_SIZE;
e69e9d4a
HD
3000 kaddr += PAGE_SIZE;
3001 size -= PAGE_SIZE;
3002 } while (size > 0);
83342314 3003
314e51b9 3004 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 3005
db64fe02 3006 return 0;
83342314 3007}
e69e9d4a
HD
3008EXPORT_SYMBOL(remap_vmalloc_range_partial);
3009
3010/**
92eac168
MR
3011 * remap_vmalloc_range - map vmalloc pages to userspace
3012 * @vma: vma to cover (map full range of vma)
3013 * @addr: vmalloc memory
3014 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3015 *
92eac168 3016 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3017 *
92eac168
MR
3018 * This function checks that addr is a valid vmalloc'ed area, and
3019 * that it is big enough to cover the vma. Will return failure if
3020 * that criteria isn't met.
e69e9d4a 3021 *
92eac168 3022 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3023 */
3024int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3025 unsigned long pgoff)
3026{
3027 return remap_vmalloc_range_partial(vma, vma->vm_start,
3028 addr + (pgoff << PAGE_SHIFT),
3029 vma->vm_end - vma->vm_start);
3030}
83342314
NP
3031EXPORT_SYMBOL(remap_vmalloc_range);
3032
1eeb66a1
CH
3033/*
3034 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3035 * have one.
3036 */
3b32123d 3037void __weak vmalloc_sync_all(void)
1eeb66a1
CH
3038{
3039}
5f4352fb
JF
3040
3041
8b1e0f81 3042static int f(pte_t *pte, unsigned long addr, void *data)
5f4352fb 3043{
cd12909c
DV
3044 pte_t ***p = data;
3045
3046 if (p) {
3047 *(*p) = pte;
3048 (*p)++;
3049 }
5f4352fb
JF
3050 return 0;
3051}
3052
3053/**
92eac168
MR
3054 * alloc_vm_area - allocate a range of kernel address space
3055 * @size: size of the area
3056 * @ptes: returns the PTEs for the address space
7682486b 3057 *
92eac168 3058 * Returns: NULL on failure, vm_struct on success
5f4352fb 3059 *
92eac168
MR
3060 * This function reserves a range of kernel address space, and
3061 * allocates pagetables to map that range. No actual mappings
3062 * are created.
cd12909c 3063 *
92eac168
MR
3064 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3065 * allocated for the VM area are returned.
5f4352fb 3066 */
cd12909c 3067struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
3068{
3069 struct vm_struct *area;
3070
23016969
CL
3071 area = get_vm_area_caller(size, VM_IOREMAP,
3072 __builtin_return_address(0));
5f4352fb
JF
3073 if (area == NULL)
3074 return NULL;
3075
3076 /*
3077 * This ensures that page tables are constructed for this region
3078 * of kernel virtual address space and mapped into init_mm.
3079 */
3080 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 3081 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
3082 free_vm_area(area);
3083 return NULL;
3084 }
3085
5f4352fb
JF
3086 return area;
3087}
3088EXPORT_SYMBOL_GPL(alloc_vm_area);
3089
3090void free_vm_area(struct vm_struct *area)
3091{
3092 struct vm_struct *ret;
3093 ret = remove_vm_area(area->addr);
3094 BUG_ON(ret != area);
3095 kfree(area);
3096}
3097EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3098
4f8b02b4 3099#ifdef CONFIG_SMP
ca23e405
TH
3100static struct vmap_area *node_to_va(struct rb_node *n)
3101{
4583e773 3102 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3103}
3104
3105/**
68ad4a33
URS
3106 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3107 * @addr: target address
ca23e405 3108 *
68ad4a33
URS
3109 * Returns: vmap_area if it is found. If there is no such area
3110 * the first highest(reverse order) vmap_area is returned
3111 * i.e. va->va_start < addr && va->va_end < addr or NULL
3112 * if there are no any areas before @addr.
ca23e405 3113 */
68ad4a33
URS
3114static struct vmap_area *
3115pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3116{
68ad4a33
URS
3117 struct vmap_area *va, *tmp;
3118 struct rb_node *n;
3119
3120 n = free_vmap_area_root.rb_node;
3121 va = NULL;
ca23e405
TH
3122
3123 while (n) {
68ad4a33
URS
3124 tmp = rb_entry(n, struct vmap_area, rb_node);
3125 if (tmp->va_start <= addr) {
3126 va = tmp;
3127 if (tmp->va_end >= addr)
3128 break;
3129
ca23e405 3130 n = n->rb_right;
68ad4a33
URS
3131 } else {
3132 n = n->rb_left;
3133 }
ca23e405
TH
3134 }
3135
68ad4a33 3136 return va;
ca23e405
TH
3137}
3138
3139/**
68ad4a33
URS
3140 * pvm_determine_end_from_reverse - find the highest aligned address
3141 * of free block below VMALLOC_END
3142 * @va:
3143 * in - the VA we start the search(reverse order);
3144 * out - the VA with the highest aligned end address.
ca23e405 3145 *
68ad4a33 3146 * Returns: determined end address within vmap_area
ca23e405 3147 */
68ad4a33
URS
3148static unsigned long
3149pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3150{
68ad4a33 3151 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3152 unsigned long addr;
3153
68ad4a33
URS
3154 if (likely(*va)) {
3155 list_for_each_entry_from_reverse((*va),
3156 &free_vmap_area_list, list) {
3157 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3158 if ((*va)->va_start < addr)
3159 return addr;
3160 }
ca23e405
TH
3161 }
3162
68ad4a33 3163 return 0;
ca23e405
TH
3164}
3165
3166/**
3167 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3168 * @offsets: array containing offset of each area
3169 * @sizes: array containing size of each area
3170 * @nr_vms: the number of areas to allocate
3171 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3172 *
3173 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3174 * vm_structs on success, %NULL on failure
3175 *
3176 * Percpu allocator wants to use congruent vm areas so that it can
3177 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3178 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3179 * be scattered pretty far, distance between two areas easily going up
3180 * to gigabytes. To avoid interacting with regular vmallocs, these
3181 * areas are allocated from top.
ca23e405 3182 *
68ad4a33
URS
3183 * Despite its complicated look, this allocator is rather simple. It
3184 * does everything top-down and scans free blocks from the end looking
3185 * for matching base. While scanning, if any of the areas do not fit the
3186 * base address is pulled down to fit the area. Scanning is repeated till
3187 * all the areas fit and then all necessary data structures are inserted
3188 * and the result is returned.
ca23e405
TH
3189 */
3190struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3191 const size_t *sizes, int nr_vms,
ec3f64fc 3192 size_t align)
ca23e405
TH
3193{
3194 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3195 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3196 struct vmap_area **vas, *va;
ca23e405
TH
3197 struct vm_struct **vms;
3198 int area, area2, last_area, term_area;
68ad4a33 3199 unsigned long base, start, size, end, last_end;
ca23e405 3200 bool purged = false;
68ad4a33 3201 enum fit_type type;
ca23e405 3202
ca23e405 3203 /* verify parameters and allocate data structures */
891c49ab 3204 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3205 for (last_area = 0, area = 0; area < nr_vms; area++) {
3206 start = offsets[area];
3207 end = start + sizes[area];
3208
3209 /* is everything aligned properly? */
3210 BUG_ON(!IS_ALIGNED(offsets[area], align));
3211 BUG_ON(!IS_ALIGNED(sizes[area], align));
3212
3213 /* detect the area with the highest address */
3214 if (start > offsets[last_area])
3215 last_area = area;
3216
c568da28 3217 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3218 unsigned long start2 = offsets[area2];
3219 unsigned long end2 = start2 + sizes[area2];
3220
c568da28 3221 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3222 }
3223 }
3224 last_end = offsets[last_area] + sizes[last_area];
3225
3226 if (vmalloc_end - vmalloc_start < last_end) {
3227 WARN_ON(true);
3228 return NULL;
3229 }
3230
4d67d860
TM
3231 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3232 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3233 if (!vas || !vms)
f1db7afd 3234 goto err_free2;
ca23e405
TH
3235
3236 for (area = 0; area < nr_vms; area++) {
68ad4a33 3237 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3238 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3239 if (!vas[area] || !vms[area])
3240 goto err_free;
3241 }
3242retry:
3243 spin_lock(&vmap_area_lock);
3244
3245 /* start scanning - we scan from the top, begin with the last area */
3246 area = term_area = last_area;
3247 start = offsets[area];
3248 end = start + sizes[area];
3249
68ad4a33
URS
3250 va = pvm_find_va_enclose_addr(vmalloc_end);
3251 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3252
3253 while (true) {
ca23e405
TH
3254 /*
3255 * base might have underflowed, add last_end before
3256 * comparing.
3257 */
68ad4a33
URS
3258 if (base + last_end < vmalloc_start + last_end)
3259 goto overflow;
ca23e405
TH
3260
3261 /*
68ad4a33 3262 * Fitting base has not been found.
ca23e405 3263 */
68ad4a33
URS
3264 if (va == NULL)
3265 goto overflow;
ca23e405
TH
3266
3267 /*
68ad4a33 3268 * If this VA does not fit, move base downwards and recheck.
ca23e405 3269 */
68ad4a33
URS
3270 if (base + start < va->va_start || base + end > va->va_end) {
3271 va = node_to_va(rb_prev(&va->rb_node));
3272 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3273 term_area = area;
3274 continue;
3275 }
3276
3277 /*
3278 * This area fits, move on to the previous one. If
3279 * the previous one is the terminal one, we're done.
3280 */
3281 area = (area + nr_vms - 1) % nr_vms;
3282 if (area == term_area)
3283 break;
68ad4a33 3284
ca23e405
TH
3285 start = offsets[area];
3286 end = start + sizes[area];
68ad4a33 3287 va = pvm_find_va_enclose_addr(base + end);
ca23e405 3288 }
68ad4a33 3289
ca23e405
TH
3290 /* we've found a fitting base, insert all va's */
3291 for (area = 0; area < nr_vms; area++) {
68ad4a33 3292 int ret;
ca23e405 3293
68ad4a33
URS
3294 start = base + offsets[area];
3295 size = sizes[area];
ca23e405 3296
68ad4a33
URS
3297 va = pvm_find_va_enclose_addr(start);
3298 if (WARN_ON_ONCE(va == NULL))
3299 /* It is a BUG(), but trigger recovery instead. */
3300 goto recovery;
3301
3302 type = classify_va_fit_type(va, start, size);
3303 if (WARN_ON_ONCE(type == NOTHING_FIT))
3304 /* It is a BUG(), but trigger recovery instead. */
3305 goto recovery;
3306
3307 ret = adjust_va_to_fit_type(va, start, size, type);
3308 if (unlikely(ret))
3309 goto recovery;
3310
3311 /* Allocated area. */
3312 va = vas[area];
3313 va->va_start = start;
3314 va->va_end = start + size;
3315
3316 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
3317 }
ca23e405
TH
3318
3319 spin_unlock(&vmap_area_lock);
3320
3321 /* insert all vm's */
3322 for (area = 0; area < nr_vms; area++)
3645cb4a
ZY
3323 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
3324 pcpu_get_vm_areas);
ca23e405
TH
3325
3326 kfree(vas);
3327 return vms;
3328
68ad4a33
URS
3329recovery:
3330 /* Remove previously inserted areas. */
3331 while (area--) {
3332 __free_vmap_area(vas[area]);
3333 vas[area] = NULL;
3334 }
3335
3336overflow:
3337 spin_unlock(&vmap_area_lock);
3338 if (!purged) {
3339 purge_vmap_area_lazy();
3340 purged = true;
3341
3342 /* Before "retry", check if we recover. */
3343 for (area = 0; area < nr_vms; area++) {
3344 if (vas[area])
3345 continue;
3346
3347 vas[area] = kmem_cache_zalloc(
3348 vmap_area_cachep, GFP_KERNEL);
3349 if (!vas[area])
3350 goto err_free;
3351 }
3352
3353 goto retry;
3354 }
3355
ca23e405
TH
3356err_free:
3357 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
3358 if (vas[area])
3359 kmem_cache_free(vmap_area_cachep, vas[area]);
3360
f1db7afd 3361 kfree(vms[area]);
ca23e405 3362 }
f1db7afd 3363err_free2:
ca23e405
TH
3364 kfree(vas);
3365 kfree(vms);
3366 return NULL;
3367}
3368
3369/**
3370 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3371 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3372 * @nr_vms: the number of allocated areas
3373 *
3374 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3375 */
3376void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3377{
3378 int i;
3379
3380 for (i = 0; i < nr_vms; i++)
3381 free_vm_area(vms[i]);
3382 kfree(vms);
3383}
4f8b02b4 3384#endif /* CONFIG_SMP */
a10aa579
CL
3385
3386#ifdef CONFIG_PROC_FS
3387static void *s_start(struct seq_file *m, loff_t *pos)
d4033afd 3388 __acquires(&vmap_area_lock)
a10aa579 3389{
d4033afd 3390 spin_lock(&vmap_area_lock);
3f500069 3391 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
3392}
3393
3394static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3395{
3f500069 3396 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
3397}
3398
3399static void s_stop(struct seq_file *m, void *p)
d4033afd 3400 __releases(&vmap_area_lock)
a10aa579 3401{
d4033afd 3402 spin_unlock(&vmap_area_lock);
a10aa579
CL
3403}
3404
a47a126a
ED
3405static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3406{
e5adfffc 3407 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
3408 unsigned int nr, *counters = m->private;
3409
3410 if (!counters)
3411 return;
3412
af12346c
WL
3413 if (v->flags & VM_UNINITIALIZED)
3414 return;
7e5b528b
DV
3415 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3416 smp_rmb();
af12346c 3417
a47a126a
ED
3418 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3419
3420 for (nr = 0; nr < v->nr_pages; nr++)
3421 counters[page_to_nid(v->pages[nr])]++;
3422
3423 for_each_node_state(nr, N_HIGH_MEMORY)
3424 if (counters[nr])
3425 seq_printf(m, " N%u=%u", nr, counters[nr]);
3426 }
3427}
3428
a10aa579
CL
3429static int s_show(struct seq_file *m, void *p)
3430{
3f500069 3431 struct vmap_area *va;
d4033afd
JK
3432 struct vm_struct *v;
3433
3f500069 3434 va = list_entry(p, struct vmap_area, list);
3435
c2ce8c14
WL
3436 /*
3437 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
3438 * behalf of vmap area is being tear down or vm_map_ram allocation.
3439 */
78c72746
YX
3440 if (!(va->flags & VM_VM_AREA)) {
3441 seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
3442 (void *)va->va_start, (void *)va->va_end,
3443 va->va_end - va->va_start,
3444 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
3445
d4033afd 3446 return 0;
78c72746 3447 }
d4033afd
JK
3448
3449 v = va->vm;
a10aa579 3450
45ec1690 3451 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
3452 v->addr, v->addr + v->size, v->size);
3453
62c70bce
JP
3454 if (v->caller)
3455 seq_printf(m, " %pS", v->caller);
23016969 3456
a10aa579
CL
3457 if (v->nr_pages)
3458 seq_printf(m, " pages=%d", v->nr_pages);
3459
3460 if (v->phys_addr)
199eaa05 3461 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
3462
3463 if (v->flags & VM_IOREMAP)
f4527c90 3464 seq_puts(m, " ioremap");
a10aa579
CL
3465
3466 if (v->flags & VM_ALLOC)
f4527c90 3467 seq_puts(m, " vmalloc");
a10aa579
CL
3468
3469 if (v->flags & VM_MAP)
f4527c90 3470 seq_puts(m, " vmap");
a10aa579
CL
3471
3472 if (v->flags & VM_USERMAP)
f4527c90 3473 seq_puts(m, " user");
a10aa579 3474
244d63ee 3475 if (is_vmalloc_addr(v->pages))
f4527c90 3476 seq_puts(m, " vpages");
a10aa579 3477
a47a126a 3478 show_numa_info(m, v);
a10aa579
CL
3479 seq_putc(m, '\n');
3480 return 0;
3481}
3482
5f6a6a9c 3483static const struct seq_operations vmalloc_op = {
a10aa579
CL
3484 .start = s_start,
3485 .next = s_next,
3486 .stop = s_stop,
3487 .show = s_show,
3488};
5f6a6a9c 3489
5f6a6a9c
AD
3490static int __init proc_vmalloc_init(void)
3491{
fddda2b7 3492 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 3493 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
3494 &vmalloc_op,
3495 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 3496 else
0825a6f9 3497 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
3498 return 0;
3499}
3500module_init(proc_vmalloc_init);
db3808c1 3501
a10aa579 3502#endif