]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/vmalloc.c
mm, vmalloc: remove useless variable in vmap_block
[mirror_ubuntu-artful-kernel.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
d43c36dc 15#include <linux/sched.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
3ac7fe5a 21#include <linux/debugobjects.h>
23016969 22#include <linux/kallsyms.h>
db64fe02
NP
23#include <linux/list.h>
24#include <linux/rbtree.h>
25#include <linux/radix-tree.h>
26#include <linux/rcupdate.h>
f0aa6617 27#include <linux/pfn.h>
89219d37 28#include <linux/kmemleak.h>
60063497 29#include <linux/atomic.h>
32fcfd40 30#include <linux/llist.h>
1da177e4
LT
31#include <asm/uaccess.h>
32#include <asm/tlbflush.h>
2dca6999 33#include <asm/shmparam.h>
1da177e4 34
32fcfd40
AV
35struct vfree_deferred {
36 struct llist_head list;
37 struct work_struct wq;
38};
39static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
40
41static void __vunmap(const void *, int);
42
43static void free_work(struct work_struct *w)
44{
45 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
46 struct llist_node *llnode = llist_del_all(&p->list);
47 while (llnode) {
48 void *p = llnode;
49 llnode = llist_next(llnode);
50 __vunmap(p, 1);
51 }
52}
53
db64fe02 54/*** Page table manipulation functions ***/
b221385b 55
1da177e4
LT
56static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
57{
58 pte_t *pte;
59
60 pte = pte_offset_kernel(pmd, addr);
61 do {
62 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
63 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
64 } while (pte++, addr += PAGE_SIZE, addr != end);
65}
66
db64fe02 67static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
68{
69 pmd_t *pmd;
70 unsigned long next;
71
72 pmd = pmd_offset(pud, addr);
73 do {
74 next = pmd_addr_end(addr, end);
75 if (pmd_none_or_clear_bad(pmd))
76 continue;
77 vunmap_pte_range(pmd, addr, next);
78 } while (pmd++, addr = next, addr != end);
79}
80
db64fe02 81static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
1da177e4
LT
82{
83 pud_t *pud;
84 unsigned long next;
85
86 pud = pud_offset(pgd, addr);
87 do {
88 next = pud_addr_end(addr, end);
89 if (pud_none_or_clear_bad(pud))
90 continue;
91 vunmap_pmd_range(pud, addr, next);
92 } while (pud++, addr = next, addr != end);
93}
94
db64fe02 95static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
96{
97 pgd_t *pgd;
98 unsigned long next;
1da177e4
LT
99
100 BUG_ON(addr >= end);
101 pgd = pgd_offset_k(addr);
1da177e4
LT
102 do {
103 next = pgd_addr_end(addr, end);
104 if (pgd_none_or_clear_bad(pgd))
105 continue;
106 vunmap_pud_range(pgd, addr, next);
107 } while (pgd++, addr = next, addr != end);
1da177e4
LT
108}
109
110static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 111 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
112{
113 pte_t *pte;
114
db64fe02
NP
115 /*
116 * nr is a running index into the array which helps higher level
117 * callers keep track of where we're up to.
118 */
119
872fec16 120 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
121 if (!pte)
122 return -ENOMEM;
123 do {
db64fe02
NP
124 struct page *page = pages[*nr];
125
126 if (WARN_ON(!pte_none(*pte)))
127 return -EBUSY;
128 if (WARN_ON(!page))
1da177e4
LT
129 return -ENOMEM;
130 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 131 (*nr)++;
1da177e4
LT
132 } while (pte++, addr += PAGE_SIZE, addr != end);
133 return 0;
134}
135
db64fe02
NP
136static int vmap_pmd_range(pud_t *pud, unsigned long addr,
137 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
138{
139 pmd_t *pmd;
140 unsigned long next;
141
142 pmd = pmd_alloc(&init_mm, pud, addr);
143 if (!pmd)
144 return -ENOMEM;
145 do {
146 next = pmd_addr_end(addr, end);
db64fe02 147 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
148 return -ENOMEM;
149 } while (pmd++, addr = next, addr != end);
150 return 0;
151}
152
db64fe02
NP
153static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
154 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
155{
156 pud_t *pud;
157 unsigned long next;
158
159 pud = pud_alloc(&init_mm, pgd, addr);
160 if (!pud)
161 return -ENOMEM;
162 do {
163 next = pud_addr_end(addr, end);
db64fe02 164 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
165 return -ENOMEM;
166 } while (pud++, addr = next, addr != end);
167 return 0;
168}
169
db64fe02
NP
170/*
171 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
172 * will have pfns corresponding to the "pages" array.
173 *
174 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
175 */
8fc48985
TH
176static int vmap_page_range_noflush(unsigned long start, unsigned long end,
177 pgprot_t prot, struct page **pages)
1da177e4
LT
178{
179 pgd_t *pgd;
180 unsigned long next;
2e4e27c7 181 unsigned long addr = start;
db64fe02
NP
182 int err = 0;
183 int nr = 0;
1da177e4
LT
184
185 BUG_ON(addr >= end);
186 pgd = pgd_offset_k(addr);
1da177e4
LT
187 do {
188 next = pgd_addr_end(addr, end);
db64fe02 189 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
1da177e4 190 if (err)
bf88c8c8 191 return err;
1da177e4 192 } while (pgd++, addr = next, addr != end);
db64fe02 193
db64fe02 194 return nr;
1da177e4
LT
195}
196
8fc48985
TH
197static int vmap_page_range(unsigned long start, unsigned long end,
198 pgprot_t prot, struct page **pages)
199{
200 int ret;
201
202 ret = vmap_page_range_noflush(start, end, prot, pages);
203 flush_cache_vmap(start, end);
204 return ret;
205}
206
81ac3ad9 207int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
208{
209 /*
ab4f2ee1 210 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
211 * and fall back on vmalloc() if that fails. Others
212 * just put it in the vmalloc space.
213 */
214#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
215 unsigned long addr = (unsigned long)x;
216 if (addr >= MODULES_VADDR && addr < MODULES_END)
217 return 1;
218#endif
219 return is_vmalloc_addr(x);
220}
221
48667e7a 222/*
db64fe02 223 * Walk a vmap address to the struct page it maps.
48667e7a 224 */
b3bdda02 225struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
226{
227 unsigned long addr = (unsigned long) vmalloc_addr;
228 struct page *page = NULL;
229 pgd_t *pgd = pgd_offset_k(addr);
48667e7a 230
7aa413de
IM
231 /*
232 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
233 * architectures that do not vmalloc module space
234 */
73bdf0a6 235 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 236
48667e7a 237 if (!pgd_none(*pgd)) {
db64fe02 238 pud_t *pud = pud_offset(pgd, addr);
48667e7a 239 if (!pud_none(*pud)) {
db64fe02 240 pmd_t *pmd = pmd_offset(pud, addr);
48667e7a 241 if (!pmd_none(*pmd)) {
db64fe02
NP
242 pte_t *ptep, pte;
243
48667e7a
CL
244 ptep = pte_offset_map(pmd, addr);
245 pte = *ptep;
246 if (pte_present(pte))
247 page = pte_page(pte);
248 pte_unmap(ptep);
249 }
250 }
251 }
252 return page;
253}
254EXPORT_SYMBOL(vmalloc_to_page);
255
256/*
257 * Map a vmalloc()-space virtual address to the physical page frame number.
258 */
b3bdda02 259unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a
CL
260{
261 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
262}
263EXPORT_SYMBOL(vmalloc_to_pfn);
264
db64fe02
NP
265
266/*** Global kva allocator ***/
267
268#define VM_LAZY_FREE 0x01
269#define VM_LAZY_FREEING 0x02
270#define VM_VM_AREA 0x04
271
db64fe02 272static DEFINE_SPINLOCK(vmap_area_lock);
f1c4069e
JK
273/* Export for kexec only */
274LIST_HEAD(vmap_area_list);
89699605
NP
275static struct rb_root vmap_area_root = RB_ROOT;
276
277/* The vmap cache globals are protected by vmap_area_lock */
278static struct rb_node *free_vmap_cache;
279static unsigned long cached_hole_size;
280static unsigned long cached_vstart;
281static unsigned long cached_align;
282
ca23e405 283static unsigned long vmap_area_pcpu_hole;
db64fe02
NP
284
285static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 286{
db64fe02
NP
287 struct rb_node *n = vmap_area_root.rb_node;
288
289 while (n) {
290 struct vmap_area *va;
291
292 va = rb_entry(n, struct vmap_area, rb_node);
293 if (addr < va->va_start)
294 n = n->rb_left;
cef2ac3f 295 else if (addr >= va->va_end)
db64fe02
NP
296 n = n->rb_right;
297 else
298 return va;
299 }
300
301 return NULL;
302}
303
304static void __insert_vmap_area(struct vmap_area *va)
305{
306 struct rb_node **p = &vmap_area_root.rb_node;
307 struct rb_node *parent = NULL;
308 struct rb_node *tmp;
309
310 while (*p) {
170168d0 311 struct vmap_area *tmp_va;
db64fe02
NP
312
313 parent = *p;
170168d0
NK
314 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
315 if (va->va_start < tmp_va->va_end)
db64fe02 316 p = &(*p)->rb_left;
170168d0 317 else if (va->va_end > tmp_va->va_start)
db64fe02
NP
318 p = &(*p)->rb_right;
319 else
320 BUG();
321 }
322
323 rb_link_node(&va->rb_node, parent, p);
324 rb_insert_color(&va->rb_node, &vmap_area_root);
325
4341fa45 326 /* address-sort this list */
db64fe02
NP
327 tmp = rb_prev(&va->rb_node);
328 if (tmp) {
329 struct vmap_area *prev;
330 prev = rb_entry(tmp, struct vmap_area, rb_node);
331 list_add_rcu(&va->list, &prev->list);
332 } else
333 list_add_rcu(&va->list, &vmap_area_list);
334}
335
336static void purge_vmap_area_lazy(void);
337
338/*
339 * Allocate a region of KVA of the specified size and alignment, within the
340 * vstart and vend.
341 */
342static struct vmap_area *alloc_vmap_area(unsigned long size,
343 unsigned long align,
344 unsigned long vstart, unsigned long vend,
345 int node, gfp_t gfp_mask)
346{
347 struct vmap_area *va;
348 struct rb_node *n;
1da177e4 349 unsigned long addr;
db64fe02 350 int purged = 0;
89699605 351 struct vmap_area *first;
db64fe02 352
7766970c 353 BUG_ON(!size);
db64fe02 354 BUG_ON(size & ~PAGE_MASK);
89699605 355 BUG_ON(!is_power_of_2(align));
db64fe02 356
db64fe02
NP
357 va = kmalloc_node(sizeof(struct vmap_area),
358 gfp_mask & GFP_RECLAIM_MASK, node);
359 if (unlikely(!va))
360 return ERR_PTR(-ENOMEM);
361
362retry:
363 spin_lock(&vmap_area_lock);
89699605
NP
364 /*
365 * Invalidate cache if we have more permissive parameters.
366 * cached_hole_size notes the largest hole noticed _below_
367 * the vmap_area cached in free_vmap_cache: if size fits
368 * into that hole, we want to scan from vstart to reuse
369 * the hole instead of allocating above free_vmap_cache.
370 * Note that __free_vmap_area may update free_vmap_cache
371 * without updating cached_hole_size or cached_align.
372 */
373 if (!free_vmap_cache ||
374 size < cached_hole_size ||
375 vstart < cached_vstart ||
376 align < cached_align) {
377nocache:
378 cached_hole_size = 0;
379 free_vmap_cache = NULL;
380 }
381 /* record if we encounter less permissive parameters */
382 cached_vstart = vstart;
383 cached_align = align;
384
385 /* find starting point for our search */
386 if (free_vmap_cache) {
387 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
248ac0e1 388 addr = ALIGN(first->va_end, align);
89699605
NP
389 if (addr < vstart)
390 goto nocache;
bcb615a8 391 if (addr + size < addr)
89699605
NP
392 goto overflow;
393
394 } else {
395 addr = ALIGN(vstart, align);
bcb615a8 396 if (addr + size < addr)
89699605
NP
397 goto overflow;
398
399 n = vmap_area_root.rb_node;
400 first = NULL;
401
402 while (n) {
db64fe02
NP
403 struct vmap_area *tmp;
404 tmp = rb_entry(n, struct vmap_area, rb_node);
405 if (tmp->va_end >= addr) {
db64fe02 406 first = tmp;
89699605
NP
407 if (tmp->va_start <= addr)
408 break;
409 n = n->rb_left;
410 } else
db64fe02 411 n = n->rb_right;
89699605 412 }
db64fe02
NP
413
414 if (!first)
415 goto found;
db64fe02 416 }
89699605
NP
417
418 /* from the starting point, walk areas until a suitable hole is found */
248ac0e1 419 while (addr + size > first->va_start && addr + size <= vend) {
89699605
NP
420 if (addr + cached_hole_size < first->va_start)
421 cached_hole_size = first->va_start - addr;
248ac0e1 422 addr = ALIGN(first->va_end, align);
bcb615a8 423 if (addr + size < addr)
89699605
NP
424 goto overflow;
425
92ca922f 426 if (list_is_last(&first->list, &vmap_area_list))
89699605 427 goto found;
92ca922f
H
428
429 first = list_entry(first->list.next,
430 struct vmap_area, list);
db64fe02
NP
431 }
432
89699605
NP
433found:
434 if (addr + size > vend)
435 goto overflow;
db64fe02
NP
436
437 va->va_start = addr;
438 va->va_end = addr + size;
439 va->flags = 0;
440 __insert_vmap_area(va);
89699605 441 free_vmap_cache = &va->rb_node;
db64fe02
NP
442 spin_unlock(&vmap_area_lock);
443
89699605
NP
444 BUG_ON(va->va_start & (align-1));
445 BUG_ON(va->va_start < vstart);
446 BUG_ON(va->va_end > vend);
447
db64fe02 448 return va;
89699605
NP
449
450overflow:
451 spin_unlock(&vmap_area_lock);
452 if (!purged) {
453 purge_vmap_area_lazy();
454 purged = 1;
455 goto retry;
456 }
457 if (printk_ratelimit())
458 printk(KERN_WARNING
459 "vmap allocation for size %lu failed: "
460 "use vmalloc=<size> to increase size.\n", size);
461 kfree(va);
462 return ERR_PTR(-EBUSY);
db64fe02
NP
463}
464
db64fe02
NP
465static void __free_vmap_area(struct vmap_area *va)
466{
467 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
89699605
NP
468
469 if (free_vmap_cache) {
470 if (va->va_end < cached_vstart) {
471 free_vmap_cache = NULL;
472 } else {
473 struct vmap_area *cache;
474 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
475 if (va->va_start <= cache->va_start) {
476 free_vmap_cache = rb_prev(&va->rb_node);
477 /*
478 * We don't try to update cached_hole_size or
479 * cached_align, but it won't go very wrong.
480 */
481 }
482 }
483 }
db64fe02
NP
484 rb_erase(&va->rb_node, &vmap_area_root);
485 RB_CLEAR_NODE(&va->rb_node);
486 list_del_rcu(&va->list);
487
ca23e405
TH
488 /*
489 * Track the highest possible candidate for pcpu area
490 * allocation. Areas outside of vmalloc area can be returned
491 * here too, consider only end addresses which fall inside
492 * vmalloc area proper.
493 */
494 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
495 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
496
14769de9 497 kfree_rcu(va, rcu_head);
db64fe02
NP
498}
499
500/*
501 * Free a region of KVA allocated by alloc_vmap_area
502 */
503static void free_vmap_area(struct vmap_area *va)
504{
505 spin_lock(&vmap_area_lock);
506 __free_vmap_area(va);
507 spin_unlock(&vmap_area_lock);
508}
509
510/*
511 * Clear the pagetable entries of a given vmap_area
512 */
513static void unmap_vmap_area(struct vmap_area *va)
514{
515 vunmap_page_range(va->va_start, va->va_end);
516}
517
cd52858c
NP
518static void vmap_debug_free_range(unsigned long start, unsigned long end)
519{
520 /*
521 * Unmap page tables and force a TLB flush immediately if
522 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
523 * bugs similarly to those in linear kernel virtual address
524 * space after a page has been freed.
525 *
526 * All the lazy freeing logic is still retained, in order to
527 * minimise intrusiveness of this debugging feature.
528 *
529 * This is going to be *slow* (linear kernel virtual address
530 * debugging doesn't do a broadcast TLB flush so it is a lot
531 * faster).
532 */
533#ifdef CONFIG_DEBUG_PAGEALLOC
534 vunmap_page_range(start, end);
535 flush_tlb_kernel_range(start, end);
536#endif
537}
538
db64fe02
NP
539/*
540 * lazy_max_pages is the maximum amount of virtual address space we gather up
541 * before attempting to purge with a TLB flush.
542 *
543 * There is a tradeoff here: a larger number will cover more kernel page tables
544 * and take slightly longer to purge, but it will linearly reduce the number of
545 * global TLB flushes that must be performed. It would seem natural to scale
546 * this number up linearly with the number of CPUs (because vmapping activity
547 * could also scale linearly with the number of CPUs), however it is likely
548 * that in practice, workloads might be constrained in other ways that mean
549 * vmap activity will not scale linearly with CPUs. Also, I want to be
550 * conservative and not introduce a big latency on huge systems, so go with
551 * a less aggressive log scale. It will still be an improvement over the old
552 * code, and it will be simple to change the scale factor if we find that it
553 * becomes a problem on bigger systems.
554 */
555static unsigned long lazy_max_pages(void)
556{
557 unsigned int log;
558
559 log = fls(num_online_cpus());
560
561 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
562}
563
564static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
565
02b709df
NP
566/* for per-CPU blocks */
567static void purge_fragmented_blocks_allcpus(void);
568
3ee48b6a
CW
569/*
570 * called before a call to iounmap() if the caller wants vm_area_struct's
571 * immediately freed.
572 */
573void set_iounmap_nonlazy(void)
574{
575 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
576}
577
db64fe02
NP
578/*
579 * Purges all lazily-freed vmap areas.
580 *
581 * If sync is 0 then don't purge if there is already a purge in progress.
582 * If force_flush is 1, then flush kernel TLBs between *start and *end even
583 * if we found no lazy vmap areas to unmap (callers can use this to optimise
584 * their own TLB flushing).
585 * Returns with *start = min(*start, lowest purged address)
586 * *end = max(*end, highest purged address)
587 */
588static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
589 int sync, int force_flush)
590{
46666d8a 591 static DEFINE_SPINLOCK(purge_lock);
db64fe02
NP
592 LIST_HEAD(valist);
593 struct vmap_area *va;
cbb76676 594 struct vmap_area *n_va;
db64fe02
NP
595 int nr = 0;
596
597 /*
598 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
599 * should not expect such behaviour. This just simplifies locking for
600 * the case that isn't actually used at the moment anyway.
601 */
602 if (!sync && !force_flush) {
46666d8a 603 if (!spin_trylock(&purge_lock))
db64fe02
NP
604 return;
605 } else
46666d8a 606 spin_lock(&purge_lock);
db64fe02 607
02b709df
NP
608 if (sync)
609 purge_fragmented_blocks_allcpus();
610
db64fe02
NP
611 rcu_read_lock();
612 list_for_each_entry_rcu(va, &vmap_area_list, list) {
613 if (va->flags & VM_LAZY_FREE) {
614 if (va->va_start < *start)
615 *start = va->va_start;
616 if (va->va_end > *end)
617 *end = va->va_end;
618 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
db64fe02
NP
619 list_add_tail(&va->purge_list, &valist);
620 va->flags |= VM_LAZY_FREEING;
621 va->flags &= ~VM_LAZY_FREE;
622 }
623 }
624 rcu_read_unlock();
625
88f50044 626 if (nr)
db64fe02 627 atomic_sub(nr, &vmap_lazy_nr);
db64fe02
NP
628
629 if (nr || force_flush)
630 flush_tlb_kernel_range(*start, *end);
631
632 if (nr) {
633 spin_lock(&vmap_area_lock);
cbb76676 634 list_for_each_entry_safe(va, n_va, &valist, purge_list)
db64fe02
NP
635 __free_vmap_area(va);
636 spin_unlock(&vmap_area_lock);
637 }
46666d8a 638 spin_unlock(&purge_lock);
db64fe02
NP
639}
640
496850e5
NP
641/*
642 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
643 * is already purging.
644 */
645static void try_purge_vmap_area_lazy(void)
646{
647 unsigned long start = ULONG_MAX, end = 0;
648
649 __purge_vmap_area_lazy(&start, &end, 0, 0);
650}
651
db64fe02
NP
652/*
653 * Kick off a purge of the outstanding lazy areas.
654 */
655static void purge_vmap_area_lazy(void)
656{
657 unsigned long start = ULONG_MAX, end = 0;
658
496850e5 659 __purge_vmap_area_lazy(&start, &end, 1, 0);
db64fe02
NP
660}
661
662/*
64141da5
JF
663 * Free a vmap area, caller ensuring that the area has been unmapped
664 * and flush_cache_vunmap had been called for the correct range
665 * previously.
db64fe02 666 */
64141da5 667static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02
NP
668{
669 va->flags |= VM_LAZY_FREE;
670 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
671 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
496850e5 672 try_purge_vmap_area_lazy();
db64fe02
NP
673}
674
64141da5
JF
675/*
676 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
677 * called for the correct range previously.
678 */
679static void free_unmap_vmap_area_noflush(struct vmap_area *va)
680{
681 unmap_vmap_area(va);
682 free_vmap_area_noflush(va);
683}
684
b29acbdc
NP
685/*
686 * Free and unmap a vmap area
687 */
688static void free_unmap_vmap_area(struct vmap_area *va)
689{
690 flush_cache_vunmap(va->va_start, va->va_end);
691 free_unmap_vmap_area_noflush(va);
692}
693
db64fe02
NP
694static struct vmap_area *find_vmap_area(unsigned long addr)
695{
696 struct vmap_area *va;
697
698 spin_lock(&vmap_area_lock);
699 va = __find_vmap_area(addr);
700 spin_unlock(&vmap_area_lock);
701
702 return va;
703}
704
705static void free_unmap_vmap_area_addr(unsigned long addr)
706{
707 struct vmap_area *va;
708
709 va = find_vmap_area(addr);
710 BUG_ON(!va);
711 free_unmap_vmap_area(va);
712}
713
714
715/*** Per cpu kva allocator ***/
716
717/*
718 * vmap space is limited especially on 32 bit architectures. Ensure there is
719 * room for at least 16 percpu vmap blocks per CPU.
720 */
721/*
722 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
723 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
724 * instead (we just need a rough idea)
725 */
726#if BITS_PER_LONG == 32
727#define VMALLOC_SPACE (128UL*1024*1024)
728#else
729#define VMALLOC_SPACE (128UL*1024*1024*1024)
730#endif
731
732#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
733#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
734#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
735#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
736#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
737#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
738#define VMAP_BBMAP_BITS \
739 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
740 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
741 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
742
743#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
744
9b463334
JF
745static bool vmap_initialized __read_mostly = false;
746
db64fe02
NP
747struct vmap_block_queue {
748 spinlock_t lock;
749 struct list_head free;
db64fe02
NP
750};
751
752struct vmap_block {
753 spinlock_t lock;
754 struct vmap_area *va;
db64fe02 755 unsigned long free, dirty;
db64fe02 756 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
de560423
NP
757 struct list_head free_list;
758 struct rcu_head rcu_head;
02b709df 759 struct list_head purge;
db64fe02
NP
760};
761
762/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
763static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
764
765/*
766 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
767 * in the free path. Could get rid of this if we change the API to return a
768 * "cookie" from alloc, to be passed to free. But no big deal yet.
769 */
770static DEFINE_SPINLOCK(vmap_block_tree_lock);
771static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
772
773/*
774 * We should probably have a fallback mechanism to allocate virtual memory
775 * out of partially filled vmap blocks. However vmap block sizing should be
776 * fairly reasonable according to the vmalloc size, so it shouldn't be a
777 * big problem.
778 */
779
780static unsigned long addr_to_vb_idx(unsigned long addr)
781{
782 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
783 addr /= VMAP_BLOCK_SIZE;
784 return addr;
785}
786
787static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
788{
789 struct vmap_block_queue *vbq;
790 struct vmap_block *vb;
791 struct vmap_area *va;
792 unsigned long vb_idx;
793 int node, err;
794
795 node = numa_node_id();
796
797 vb = kmalloc_node(sizeof(struct vmap_block),
798 gfp_mask & GFP_RECLAIM_MASK, node);
799 if (unlikely(!vb))
800 return ERR_PTR(-ENOMEM);
801
802 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
803 VMALLOC_START, VMALLOC_END,
804 node, gfp_mask);
ddf9c6d4 805 if (IS_ERR(va)) {
db64fe02 806 kfree(vb);
e7d86340 807 return ERR_CAST(va);
db64fe02
NP
808 }
809
810 err = radix_tree_preload(gfp_mask);
811 if (unlikely(err)) {
812 kfree(vb);
813 free_vmap_area(va);
814 return ERR_PTR(err);
815 }
816
817 spin_lock_init(&vb->lock);
818 vb->va = va;
819 vb->free = VMAP_BBMAP_BITS;
820 vb->dirty = 0;
db64fe02
NP
821 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
822 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
823
824 vb_idx = addr_to_vb_idx(va->va_start);
825 spin_lock(&vmap_block_tree_lock);
826 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
827 spin_unlock(&vmap_block_tree_lock);
828 BUG_ON(err);
829 radix_tree_preload_end();
830
831 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 832 spin_lock(&vbq->lock);
de560423 833 list_add_rcu(&vb->free_list, &vbq->free);
db64fe02 834 spin_unlock(&vbq->lock);
3f04ba85 835 put_cpu_var(vmap_block_queue);
db64fe02
NP
836
837 return vb;
838}
839
db64fe02
NP
840static void free_vmap_block(struct vmap_block *vb)
841{
842 struct vmap_block *tmp;
843 unsigned long vb_idx;
844
db64fe02
NP
845 vb_idx = addr_to_vb_idx(vb->va->va_start);
846 spin_lock(&vmap_block_tree_lock);
847 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
848 spin_unlock(&vmap_block_tree_lock);
849 BUG_ON(tmp != vb);
850
64141da5 851 free_vmap_area_noflush(vb->va);
22a3c7d1 852 kfree_rcu(vb, rcu_head);
db64fe02
NP
853}
854
02b709df
NP
855static void purge_fragmented_blocks(int cpu)
856{
857 LIST_HEAD(purge);
858 struct vmap_block *vb;
859 struct vmap_block *n_vb;
860 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
861
862 rcu_read_lock();
863 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
864
865 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
866 continue;
867
868 spin_lock(&vb->lock);
869 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
870 vb->free = 0; /* prevent further allocs after releasing lock */
871 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
02b709df
NP
872 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
873 spin_lock(&vbq->lock);
874 list_del_rcu(&vb->free_list);
875 spin_unlock(&vbq->lock);
876 spin_unlock(&vb->lock);
877 list_add_tail(&vb->purge, &purge);
878 } else
879 spin_unlock(&vb->lock);
880 }
881 rcu_read_unlock();
882
883 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
884 list_del(&vb->purge);
885 free_vmap_block(vb);
886 }
887}
888
02b709df
NP
889static void purge_fragmented_blocks_allcpus(void)
890{
891 int cpu;
892
893 for_each_possible_cpu(cpu)
894 purge_fragmented_blocks(cpu);
895}
896
db64fe02
NP
897static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
898{
899 struct vmap_block_queue *vbq;
900 struct vmap_block *vb;
901 unsigned long addr = 0;
902 unsigned int order;
903
904 BUG_ON(size & ~PAGE_MASK);
905 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
906 if (WARN_ON(size == 0)) {
907 /*
908 * Allocating 0 bytes isn't what caller wants since
909 * get_order(0) returns funny result. Just warn and terminate
910 * early.
911 */
912 return NULL;
913 }
db64fe02
NP
914 order = get_order(size);
915
916again:
917 rcu_read_lock();
918 vbq = &get_cpu_var(vmap_block_queue);
919 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
920 int i;
921
922 spin_lock(&vb->lock);
02b709df
NP
923 if (vb->free < 1UL << order)
924 goto next;
925
3fcd76e8 926 i = VMAP_BBMAP_BITS - vb->free;
02b709df
NP
927 addr = vb->va->va_start + (i << PAGE_SHIFT);
928 BUG_ON(addr_to_vb_idx(addr) !=
929 addr_to_vb_idx(vb->va->va_start));
930 vb->free -= 1UL << order;
931 if (vb->free == 0) {
932 spin_lock(&vbq->lock);
933 list_del_rcu(&vb->free_list);
934 spin_unlock(&vbq->lock);
935 }
936 spin_unlock(&vb->lock);
937 break;
938next:
db64fe02
NP
939 spin_unlock(&vb->lock);
940 }
02b709df 941
3f04ba85 942 put_cpu_var(vmap_block_queue);
db64fe02
NP
943 rcu_read_unlock();
944
945 if (!addr) {
946 vb = new_vmap_block(gfp_mask);
947 if (IS_ERR(vb))
948 return vb;
949 goto again;
950 }
951
952 return (void *)addr;
953}
954
955static void vb_free(const void *addr, unsigned long size)
956{
957 unsigned long offset;
958 unsigned long vb_idx;
959 unsigned int order;
960 struct vmap_block *vb;
961
962 BUG_ON(size & ~PAGE_MASK);
963 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
964
965 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
966
db64fe02
NP
967 order = get_order(size);
968
969 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
970
971 vb_idx = addr_to_vb_idx((unsigned long)addr);
972 rcu_read_lock();
973 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
974 rcu_read_unlock();
975 BUG_ON(!vb);
976
64141da5
JF
977 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
978
db64fe02 979 spin_lock(&vb->lock);
de560423 980 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
d086817d 981
db64fe02
NP
982 vb->dirty += 1UL << order;
983 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 984 BUG_ON(vb->free);
db64fe02
NP
985 spin_unlock(&vb->lock);
986 free_vmap_block(vb);
987 } else
988 spin_unlock(&vb->lock);
989}
990
991/**
992 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
993 *
994 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
995 * to amortize TLB flushing overheads. What this means is that any page you
996 * have now, may, in a former life, have been mapped into kernel virtual
997 * address by the vmap layer and so there might be some CPUs with TLB entries
998 * still referencing that page (additional to the regular 1:1 kernel mapping).
999 *
1000 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1001 * be sure that none of the pages we have control over will have any aliases
1002 * from the vmap layer.
1003 */
1004void vm_unmap_aliases(void)
1005{
1006 unsigned long start = ULONG_MAX, end = 0;
1007 int cpu;
1008 int flush = 0;
1009
9b463334
JF
1010 if (unlikely(!vmap_initialized))
1011 return;
1012
db64fe02
NP
1013 for_each_possible_cpu(cpu) {
1014 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1015 struct vmap_block *vb;
1016
1017 rcu_read_lock();
1018 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1019 int i;
1020
1021 spin_lock(&vb->lock);
1022 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1023 while (i < VMAP_BBMAP_BITS) {
1024 unsigned long s, e;
1025 int j;
1026 j = find_next_zero_bit(vb->dirty_map,
1027 VMAP_BBMAP_BITS, i);
1028
1029 s = vb->va->va_start + (i << PAGE_SHIFT);
1030 e = vb->va->va_start + (j << PAGE_SHIFT);
db64fe02
NP
1031 flush = 1;
1032
1033 if (s < start)
1034 start = s;
1035 if (e > end)
1036 end = e;
1037
1038 i = j;
1039 i = find_next_bit(vb->dirty_map,
1040 VMAP_BBMAP_BITS, i);
1041 }
1042 spin_unlock(&vb->lock);
1043 }
1044 rcu_read_unlock();
1045 }
1046
1047 __purge_vmap_area_lazy(&start, &end, 1, flush);
1048}
1049EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1050
1051/**
1052 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1053 * @mem: the pointer returned by vm_map_ram
1054 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1055 */
1056void vm_unmap_ram(const void *mem, unsigned int count)
1057{
1058 unsigned long size = count << PAGE_SHIFT;
1059 unsigned long addr = (unsigned long)mem;
1060
1061 BUG_ON(!addr);
1062 BUG_ON(addr < VMALLOC_START);
1063 BUG_ON(addr > VMALLOC_END);
1064 BUG_ON(addr & (PAGE_SIZE-1));
1065
1066 debug_check_no_locks_freed(mem, size);
cd52858c 1067 vmap_debug_free_range(addr, addr+size);
db64fe02
NP
1068
1069 if (likely(count <= VMAP_MAX_ALLOC))
1070 vb_free(mem, size);
1071 else
1072 free_unmap_vmap_area_addr(addr);
1073}
1074EXPORT_SYMBOL(vm_unmap_ram);
1075
1076/**
1077 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1078 * @pages: an array of pointers to the pages to be mapped
1079 * @count: number of pages
1080 * @node: prefer to allocate data structures on this node
1081 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad
RD
1082 *
1083 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1084 */
1085void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1086{
1087 unsigned long size = count << PAGE_SHIFT;
1088 unsigned long addr;
1089 void *mem;
1090
1091 if (likely(count <= VMAP_MAX_ALLOC)) {
1092 mem = vb_alloc(size, GFP_KERNEL);
1093 if (IS_ERR(mem))
1094 return NULL;
1095 addr = (unsigned long)mem;
1096 } else {
1097 struct vmap_area *va;
1098 va = alloc_vmap_area(size, PAGE_SIZE,
1099 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1100 if (IS_ERR(va))
1101 return NULL;
1102
1103 addr = va->va_start;
1104 mem = (void *)addr;
1105 }
1106 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1107 vm_unmap_ram(mem, count);
1108 return NULL;
1109 }
1110 return mem;
1111}
1112EXPORT_SYMBOL(vm_map_ram);
1113
4341fa45 1114static struct vm_struct *vmlist __initdata;
be9b7335
NP
1115/**
1116 * vm_area_add_early - add vmap area early during boot
1117 * @vm: vm_struct to add
1118 *
1119 * This function is used to add fixed kernel vm area to vmlist before
1120 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1121 * should contain proper values and the other fields should be zero.
1122 *
1123 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1124 */
1125void __init vm_area_add_early(struct vm_struct *vm)
1126{
1127 struct vm_struct *tmp, **p;
1128
1129 BUG_ON(vmap_initialized);
1130 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1131 if (tmp->addr >= vm->addr) {
1132 BUG_ON(tmp->addr < vm->addr + vm->size);
1133 break;
1134 } else
1135 BUG_ON(tmp->addr + tmp->size > vm->addr);
1136 }
1137 vm->next = *p;
1138 *p = vm;
1139}
1140
f0aa6617
TH
1141/**
1142 * vm_area_register_early - register vmap area early during boot
1143 * @vm: vm_struct to register
c0c0a293 1144 * @align: requested alignment
f0aa6617
TH
1145 *
1146 * This function is used to register kernel vm area before
1147 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1148 * proper values on entry and other fields should be zero. On return,
1149 * vm->addr contains the allocated address.
1150 *
1151 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1152 */
c0c0a293 1153void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1154{
1155 static size_t vm_init_off __initdata;
c0c0a293
TH
1156 unsigned long addr;
1157
1158 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1159 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1160
c0c0a293 1161 vm->addr = (void *)addr;
f0aa6617 1162
be9b7335 1163 vm_area_add_early(vm);
f0aa6617
TH
1164}
1165
db64fe02
NP
1166void __init vmalloc_init(void)
1167{
822c18f2
IK
1168 struct vmap_area *va;
1169 struct vm_struct *tmp;
db64fe02
NP
1170 int i;
1171
1172 for_each_possible_cpu(i) {
1173 struct vmap_block_queue *vbq;
32fcfd40 1174 struct vfree_deferred *p;
db64fe02
NP
1175
1176 vbq = &per_cpu(vmap_block_queue, i);
1177 spin_lock_init(&vbq->lock);
1178 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1179 p = &per_cpu(vfree_deferred, i);
1180 init_llist_head(&p->list);
1181 INIT_WORK(&p->wq, free_work);
db64fe02 1182 }
9b463334 1183
822c18f2
IK
1184 /* Import existing vmlist entries. */
1185 for (tmp = vmlist; tmp; tmp = tmp->next) {
43ebdac4 1186 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
dbda591d 1187 va->flags = VM_VM_AREA;
822c18f2
IK
1188 va->va_start = (unsigned long)tmp->addr;
1189 va->va_end = va->va_start + tmp->size;
dbda591d 1190 va->vm = tmp;
822c18f2
IK
1191 __insert_vmap_area(va);
1192 }
ca23e405
TH
1193
1194 vmap_area_pcpu_hole = VMALLOC_END;
1195
9b463334 1196 vmap_initialized = true;
db64fe02
NP
1197}
1198
8fc48985
TH
1199/**
1200 * map_kernel_range_noflush - map kernel VM area with the specified pages
1201 * @addr: start of the VM area to map
1202 * @size: size of the VM area to map
1203 * @prot: page protection flags to use
1204 * @pages: pages to map
1205 *
1206 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1207 * specify should have been allocated using get_vm_area() and its
1208 * friends.
1209 *
1210 * NOTE:
1211 * This function does NOT do any cache flushing. The caller is
1212 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1213 * before calling this function.
1214 *
1215 * RETURNS:
1216 * The number of pages mapped on success, -errno on failure.
1217 */
1218int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1219 pgprot_t prot, struct page **pages)
1220{
1221 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1222}
1223
1224/**
1225 * unmap_kernel_range_noflush - unmap kernel VM area
1226 * @addr: start of the VM area to unmap
1227 * @size: size of the VM area to unmap
1228 *
1229 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1230 * specify should have been allocated using get_vm_area() and its
1231 * friends.
1232 *
1233 * NOTE:
1234 * This function does NOT do any cache flushing. The caller is
1235 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1236 * before calling this function and flush_tlb_kernel_range() after.
1237 */
1238void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1239{
1240 vunmap_page_range(addr, addr + size);
1241}
81e88fdc 1242EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
1243
1244/**
1245 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1246 * @addr: start of the VM area to unmap
1247 * @size: size of the VM area to unmap
1248 *
1249 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1250 * the unmapping and tlb after.
1251 */
db64fe02
NP
1252void unmap_kernel_range(unsigned long addr, unsigned long size)
1253{
1254 unsigned long end = addr + size;
f6fcba70
TH
1255
1256 flush_cache_vunmap(addr, end);
db64fe02
NP
1257 vunmap_page_range(addr, end);
1258 flush_tlb_kernel_range(addr, end);
1259}
1260
1261int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1262{
1263 unsigned long addr = (unsigned long)area->addr;
1264 unsigned long end = addr + area->size - PAGE_SIZE;
1265 int err;
1266
1267 err = vmap_page_range(addr, end, prot, *pages);
1268 if (err > 0) {
1269 *pages += err;
1270 err = 0;
1271 }
1272
1273 return err;
1274}
1275EXPORT_SYMBOL_GPL(map_vm_area);
1276
f5252e00 1277static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 1278 unsigned long flags, const void *caller)
cf88c790 1279{
c69480ad 1280 spin_lock(&vmap_area_lock);
cf88c790
TH
1281 vm->flags = flags;
1282 vm->addr = (void *)va->va_start;
1283 vm->size = va->va_end - va->va_start;
1284 vm->caller = caller;
db1aecaf 1285 va->vm = vm;
cf88c790 1286 va->flags |= VM_VM_AREA;
c69480ad 1287 spin_unlock(&vmap_area_lock);
f5252e00 1288}
cf88c790 1289
20fc02b4 1290static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 1291{
d4033afd 1292 /*
20fc02b4 1293 * Before removing VM_UNINITIALIZED,
d4033afd
JK
1294 * we should make sure that vm has proper values.
1295 * Pair with smp_rmb() in show_numa_info().
1296 */
1297 smp_wmb();
20fc02b4 1298 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
1299}
1300
db64fe02 1301static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 1302 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 1303 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 1304{
0006526d 1305 struct vmap_area *va;
db64fe02 1306 struct vm_struct *area;
1da177e4 1307
52fd24ca 1308 BUG_ON(in_interrupt());
0f2d4a8e
ZY
1309 if (flags & VM_IOREMAP)
1310 align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER);
db64fe02 1311
1da177e4 1312 size = PAGE_ALIGN(size);
31be8309
OH
1313 if (unlikely(!size))
1314 return NULL;
1da177e4 1315
cf88c790 1316 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1317 if (unlikely(!area))
1318 return NULL;
1319
1da177e4
LT
1320 /*
1321 * We always allocate a guard page.
1322 */
1323 size += PAGE_SIZE;
1324
db64fe02
NP
1325 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1326 if (IS_ERR(va)) {
1327 kfree(area);
1328 return NULL;
1da177e4 1329 }
1da177e4 1330
d82b1d85 1331 setup_vmalloc_vm(area, va, flags, caller);
f5252e00 1332
1da177e4 1333 return area;
1da177e4
LT
1334}
1335
930fc45a
CL
1336struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1337 unsigned long start, unsigned long end)
1338{
00ef2d2f
DR
1339 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1340 GFP_KERNEL, __builtin_return_address(0));
930fc45a 1341}
5992b6da 1342EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1343
c2968612
BH
1344struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1345 unsigned long start, unsigned long end,
5e6cafc8 1346 const void *caller)
c2968612 1347{
00ef2d2f
DR
1348 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1349 GFP_KERNEL, caller);
c2968612
BH
1350}
1351
1da177e4 1352/**
183ff22b 1353 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
1354 * @size: size of the area
1355 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1356 *
1357 * Search an area of @size in the kernel virtual mapping area,
1358 * and reserved it for out purposes. Returns the area descriptor
1359 * on success or %NULL on failure.
1360 */
1361struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1362{
2dca6999 1363 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
1364 NUMA_NO_NODE, GFP_KERNEL,
1365 __builtin_return_address(0));
23016969
CL
1366}
1367
1368struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 1369 const void *caller)
23016969 1370{
2dca6999 1371 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 1372 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
1373}
1374
e9da6e99
MS
1375/**
1376 * find_vm_area - find a continuous kernel virtual area
1377 * @addr: base address
1378 *
1379 * Search for the kernel VM area starting at @addr, and return it.
1380 * It is up to the caller to do all required locking to keep the returned
1381 * pointer valid.
1382 */
1383struct vm_struct *find_vm_area(const void *addr)
83342314 1384{
db64fe02 1385 struct vmap_area *va;
83342314 1386
db64fe02
NP
1387 va = find_vmap_area((unsigned long)addr);
1388 if (va && va->flags & VM_VM_AREA)
db1aecaf 1389 return va->vm;
1da177e4 1390
1da177e4 1391 return NULL;
1da177e4
LT
1392}
1393
7856dfeb 1394/**
183ff22b 1395 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
1396 * @addr: base address
1397 *
1398 * Search for the kernel VM area starting at @addr, and remove it.
1399 * This function returns the found VM area, but using it is NOT safe
1400 * on SMP machines, except for its size or flags.
1401 */
b3bdda02 1402struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1403{
db64fe02
NP
1404 struct vmap_area *va;
1405
1406 va = find_vmap_area((unsigned long)addr);
1407 if (va && va->flags & VM_VM_AREA) {
db1aecaf 1408 struct vm_struct *vm = va->vm;
f5252e00 1409
c69480ad
JK
1410 spin_lock(&vmap_area_lock);
1411 va->vm = NULL;
1412 va->flags &= ~VM_VM_AREA;
1413 spin_unlock(&vmap_area_lock);
1414
dd32c279
KH
1415 vmap_debug_free_range(va->va_start, va->va_end);
1416 free_unmap_vmap_area(va);
1417 vm->size -= PAGE_SIZE;
1418
db64fe02
NP
1419 return vm;
1420 }
1421 return NULL;
7856dfeb
AK
1422}
1423
b3bdda02 1424static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1425{
1426 struct vm_struct *area;
1427
1428 if (!addr)
1429 return;
1430
e69e9d4a 1431 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 1432 addr))
1da177e4 1433 return;
1da177e4
LT
1434
1435 area = remove_vm_area(addr);
1436 if (unlikely(!area)) {
4c8573e2 1437 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1438 addr);
1da177e4
LT
1439 return;
1440 }
1441
9a11b49a 1442 debug_check_no_locks_freed(addr, area->size);
3ac7fe5a 1443 debug_check_no_obj_freed(addr, area->size);
9a11b49a 1444
1da177e4
LT
1445 if (deallocate_pages) {
1446 int i;
1447
1448 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1449 struct page *page = area->pages[i];
1450
1451 BUG_ON(!page);
1452 __free_page(page);
1da177e4
LT
1453 }
1454
8757d5fa 1455 if (area->flags & VM_VPAGES)
1da177e4
LT
1456 vfree(area->pages);
1457 else
1458 kfree(area->pages);
1459 }
1460
1461 kfree(area);
1462 return;
1463}
32fcfd40 1464
1da177e4
LT
1465/**
1466 * vfree - release memory allocated by vmalloc()
1da177e4
LT
1467 * @addr: memory base address
1468 *
183ff22b 1469 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
1470 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1471 * NULL, no operation is performed.
1da177e4 1472 *
32fcfd40
AV
1473 * Must not be called in NMI context (strictly speaking, only if we don't
1474 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1475 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51
AM
1476 *
1477 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1da177e4 1478 */
b3bdda02 1479void vfree(const void *addr)
1da177e4 1480{
32fcfd40 1481 BUG_ON(in_nmi());
89219d37
CM
1482
1483 kmemleak_free(addr);
1484
32fcfd40
AV
1485 if (!addr)
1486 return;
1487 if (unlikely(in_interrupt())) {
1488 struct vfree_deferred *p = &__get_cpu_var(vfree_deferred);
59d3132f
ON
1489 if (llist_add((struct llist_node *)addr, &p->list))
1490 schedule_work(&p->wq);
32fcfd40
AV
1491 } else
1492 __vunmap(addr, 1);
1da177e4 1493}
1da177e4
LT
1494EXPORT_SYMBOL(vfree);
1495
1496/**
1497 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
1498 * @addr: memory base address
1499 *
1500 * Free the virtually contiguous memory area starting at @addr,
1501 * which was created from the page array passed to vmap().
1502 *
80e93eff 1503 * Must not be called in interrupt context.
1da177e4 1504 */
b3bdda02 1505void vunmap(const void *addr)
1da177e4
LT
1506{
1507 BUG_ON(in_interrupt());
34754b69 1508 might_sleep();
32fcfd40
AV
1509 if (addr)
1510 __vunmap(addr, 0);
1da177e4 1511}
1da177e4
LT
1512EXPORT_SYMBOL(vunmap);
1513
1514/**
1515 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
1516 * @pages: array of page pointers
1517 * @count: number of pages to map
1518 * @flags: vm_area->flags
1519 * @prot: page protection for the mapping
1520 *
1521 * Maps @count pages from @pages into contiguous kernel virtual
1522 * space.
1523 */
1524void *vmap(struct page **pages, unsigned int count,
1525 unsigned long flags, pgprot_t prot)
1526{
1527 struct vm_struct *area;
1528
34754b69
PZ
1529 might_sleep();
1530
4481374c 1531 if (count > totalram_pages)
1da177e4
LT
1532 return NULL;
1533
23016969
CL
1534 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1535 __builtin_return_address(0));
1da177e4
LT
1536 if (!area)
1537 return NULL;
23016969 1538
1da177e4
LT
1539 if (map_vm_area(area, prot, &pages)) {
1540 vunmap(area->addr);
1541 return NULL;
1542 }
1543
1544 return area->addr;
1545}
1da177e4
LT
1546EXPORT_SYMBOL(vmap);
1547
2dca6999
DM
1548static void *__vmalloc_node(unsigned long size, unsigned long align,
1549 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1550 int node, const void *caller);
e31d9eb5 1551static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
5e6cafc8 1552 pgprot_t prot, int node, const void *caller)
1da177e4 1553{
22943ab1 1554 const int order = 0;
1da177e4
LT
1555 struct page **pages;
1556 unsigned int nr_pages, array_size, i;
976d6dfb 1557 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1da177e4
LT
1558
1559 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1560 array_size = (nr_pages * sizeof(struct page *));
1561
1562 area->nr_pages = nr_pages;
1563 /* Please note that the recursion is strictly bounded. */
8757d5fa 1564 if (array_size > PAGE_SIZE) {
976d6dfb 1565 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
23016969 1566 PAGE_KERNEL, node, caller);
8757d5fa 1567 area->flags |= VM_VPAGES;
286e1ea3 1568 } else {
976d6dfb 1569 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 1570 }
1da177e4 1571 area->pages = pages;
23016969 1572 area->caller = caller;
1da177e4
LT
1573 if (!area->pages) {
1574 remove_vm_area(area->addr);
1575 kfree(area);
1576 return NULL;
1577 }
1da177e4
LT
1578
1579 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8 1580 struct page *page;
22943ab1 1581 gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
bf53d6f8 1582
930fc45a 1583 if (node < 0)
22943ab1 1584 page = alloc_page(tmp_mask);
930fc45a 1585 else
22943ab1 1586 page = alloc_pages_node(node, tmp_mask, order);
bf53d6f8
CL
1587
1588 if (unlikely(!page)) {
1da177e4
LT
1589 /* Successfully allocated i pages, free them in __vunmap() */
1590 area->nr_pages = i;
1591 goto fail;
1592 }
bf53d6f8 1593 area->pages[i] = page;
1da177e4
LT
1594 }
1595
1596 if (map_vm_area(area, prot, &pages))
1597 goto fail;
1598 return area->addr;
1599
1600fail:
3ee9a4f0
JP
1601 warn_alloc_failed(gfp_mask, order,
1602 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
22943ab1 1603 (area->nr_pages*PAGE_SIZE), area->size);
1da177e4
LT
1604 vfree(area->addr);
1605 return NULL;
1606}
1607
1608/**
d0a21265 1609 * __vmalloc_node_range - allocate virtually contiguous memory
1da177e4 1610 * @size: allocation size
2dca6999 1611 * @align: desired alignment
d0a21265
DR
1612 * @start: vm area range start
1613 * @end: vm area range end
1da177e4
LT
1614 * @gfp_mask: flags for the page level allocator
1615 * @prot: protection mask for the allocated pages
00ef2d2f 1616 * @node: node to use for allocation or NUMA_NO_NODE
c85d194b 1617 * @caller: caller's return address
1da177e4
LT
1618 *
1619 * Allocate enough pages to cover @size from the page level
1620 * allocator with @gfp_mask flags. Map them into contiguous
1621 * kernel virtual space, using a pagetable protection of @prot.
1622 */
d0a21265
DR
1623void *__vmalloc_node_range(unsigned long size, unsigned long align,
1624 unsigned long start, unsigned long end, gfp_t gfp_mask,
5e6cafc8 1625 pgprot_t prot, int node, const void *caller)
1da177e4
LT
1626{
1627 struct vm_struct *area;
89219d37
CM
1628 void *addr;
1629 unsigned long real_size = size;
1da177e4
LT
1630
1631 size = PAGE_ALIGN(size);
4481374c 1632 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
de7d2b56 1633 goto fail;
1da177e4 1634
20fc02b4 1635 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED,
f5252e00 1636 start, end, node, gfp_mask, caller);
1da177e4 1637 if (!area)
de7d2b56 1638 goto fail;
1da177e4 1639
89219d37 1640 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1368edf0 1641 if (!addr)
46c001a2 1642 goto fail;
89219d37 1643
f5252e00 1644 /*
20fc02b4
ZY
1645 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1646 * flag. It means that vm_struct is not fully initialized.
4341fa45 1647 * Now, it is fully initialized, so remove this flag here.
f5252e00 1648 */
20fc02b4 1649 clear_vm_uninitialized_flag(area);
f5252e00 1650
89219d37
CM
1651 /*
1652 * A ref_count = 3 is needed because the vm_struct and vmap_area
1653 * structures allocated in the __get_vm_area_node() function contain
1654 * references to the virtual address of the vmalloc'ed block.
1655 */
1656 kmemleak_alloc(addr, real_size, 3, gfp_mask);
1657
1658 return addr;
de7d2b56
JP
1659
1660fail:
1661 warn_alloc_failed(gfp_mask, 0,
1662 "vmalloc: allocation failure: %lu bytes\n",
1663 real_size);
1664 return NULL;
1da177e4
LT
1665}
1666
d0a21265
DR
1667/**
1668 * __vmalloc_node - allocate virtually contiguous memory
1669 * @size: allocation size
1670 * @align: desired alignment
1671 * @gfp_mask: flags for the page level allocator
1672 * @prot: protection mask for the allocated pages
00ef2d2f 1673 * @node: node to use for allocation or NUMA_NO_NODE
d0a21265
DR
1674 * @caller: caller's return address
1675 *
1676 * Allocate enough pages to cover @size from the page level
1677 * allocator with @gfp_mask flags. Map them into contiguous
1678 * kernel virtual space, using a pagetable protection of @prot.
1679 */
1680static void *__vmalloc_node(unsigned long size, unsigned long align,
1681 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1682 int node, const void *caller)
d0a21265
DR
1683{
1684 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1685 gfp_mask, prot, node, caller);
1686}
1687
930fc45a
CL
1688void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1689{
00ef2d2f 1690 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 1691 __builtin_return_address(0));
930fc45a 1692}
1da177e4
LT
1693EXPORT_SYMBOL(__vmalloc);
1694
e1ca7788
DY
1695static inline void *__vmalloc_node_flags(unsigned long size,
1696 int node, gfp_t flags)
1697{
1698 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1699 node, __builtin_return_address(0));
1700}
1701
1da177e4
LT
1702/**
1703 * vmalloc - allocate virtually contiguous memory
1da177e4 1704 * @size: allocation size
1da177e4
LT
1705 * Allocate enough pages to cover @size from the page level
1706 * allocator and map them into contiguous kernel virtual space.
1707 *
c1c8897f 1708 * For tight control over page level allocator and protection flags
1da177e4
LT
1709 * use __vmalloc() instead.
1710 */
1711void *vmalloc(unsigned long size)
1712{
00ef2d2f
DR
1713 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1714 GFP_KERNEL | __GFP_HIGHMEM);
1da177e4 1715}
1da177e4
LT
1716EXPORT_SYMBOL(vmalloc);
1717
e1ca7788
DY
1718/**
1719 * vzalloc - allocate virtually contiguous memory with zero fill
1720 * @size: allocation size
1721 * Allocate enough pages to cover @size from the page level
1722 * allocator and map them into contiguous kernel virtual space.
1723 * The memory allocated is set to zero.
1724 *
1725 * For tight control over page level allocator and protection flags
1726 * use __vmalloc() instead.
1727 */
1728void *vzalloc(unsigned long size)
1729{
00ef2d2f 1730 return __vmalloc_node_flags(size, NUMA_NO_NODE,
e1ca7788
DY
1731 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1732}
1733EXPORT_SYMBOL(vzalloc);
1734
83342314 1735/**
ead04089
REB
1736 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1737 * @size: allocation size
83342314 1738 *
ead04089
REB
1739 * The resulting memory area is zeroed so it can be mapped to userspace
1740 * without leaking data.
83342314
NP
1741 */
1742void *vmalloc_user(unsigned long size)
1743{
1744 struct vm_struct *area;
1745 void *ret;
1746
2dca6999
DM
1747 ret = __vmalloc_node(size, SHMLBA,
1748 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
00ef2d2f
DR
1749 PAGE_KERNEL, NUMA_NO_NODE,
1750 __builtin_return_address(0));
2b4ac44e 1751 if (ret) {
db64fe02 1752 area = find_vm_area(ret);
2b4ac44e 1753 area->flags |= VM_USERMAP;
2b4ac44e 1754 }
83342314
NP
1755 return ret;
1756}
1757EXPORT_SYMBOL(vmalloc_user);
1758
930fc45a
CL
1759/**
1760 * vmalloc_node - allocate memory on a specific node
930fc45a 1761 * @size: allocation size
d44e0780 1762 * @node: numa node
930fc45a
CL
1763 *
1764 * Allocate enough pages to cover @size from the page level
1765 * allocator and map them into contiguous kernel virtual space.
1766 *
c1c8897f 1767 * For tight control over page level allocator and protection flags
930fc45a
CL
1768 * use __vmalloc() instead.
1769 */
1770void *vmalloc_node(unsigned long size, int node)
1771{
2dca6999 1772 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
23016969 1773 node, __builtin_return_address(0));
930fc45a
CL
1774}
1775EXPORT_SYMBOL(vmalloc_node);
1776
e1ca7788
DY
1777/**
1778 * vzalloc_node - allocate memory on a specific node with zero fill
1779 * @size: allocation size
1780 * @node: numa node
1781 *
1782 * Allocate enough pages to cover @size from the page level
1783 * allocator and map them into contiguous kernel virtual space.
1784 * The memory allocated is set to zero.
1785 *
1786 * For tight control over page level allocator and protection flags
1787 * use __vmalloc_node() instead.
1788 */
1789void *vzalloc_node(unsigned long size, int node)
1790{
1791 return __vmalloc_node_flags(size, node,
1792 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1793}
1794EXPORT_SYMBOL(vzalloc_node);
1795
4dc3b16b
PP
1796#ifndef PAGE_KERNEL_EXEC
1797# define PAGE_KERNEL_EXEC PAGE_KERNEL
1798#endif
1799
1da177e4
LT
1800/**
1801 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
1802 * @size: allocation size
1803 *
1804 * Kernel-internal function to allocate enough pages to cover @size
1805 * the page level allocator and map them into contiguous and
1806 * executable kernel virtual space.
1807 *
c1c8897f 1808 * For tight control over page level allocator and protection flags
1da177e4
LT
1809 * use __vmalloc() instead.
1810 */
1811
1da177e4
LT
1812void *vmalloc_exec(unsigned long size)
1813{
2dca6999 1814 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
00ef2d2f 1815 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
1816}
1817
0d08e0d3 1818#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
7ac674f5 1819#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3 1820#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
7ac674f5 1821#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
0d08e0d3
AK
1822#else
1823#define GFP_VMALLOC32 GFP_KERNEL
1824#endif
1825
1da177e4
LT
1826/**
1827 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
1828 * @size: allocation size
1829 *
1830 * Allocate enough 32bit PA addressable pages to cover @size from the
1831 * page level allocator and map them into contiguous kernel virtual space.
1832 */
1833void *vmalloc_32(unsigned long size)
1834{
2dca6999 1835 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 1836 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 1837}
1da177e4
LT
1838EXPORT_SYMBOL(vmalloc_32);
1839
83342314 1840/**
ead04089 1841 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 1842 * @size: allocation size
ead04089
REB
1843 *
1844 * The resulting memory area is 32bit addressable and zeroed so it can be
1845 * mapped to userspace without leaking data.
83342314
NP
1846 */
1847void *vmalloc_32_user(unsigned long size)
1848{
1849 struct vm_struct *area;
1850 void *ret;
1851
2dca6999 1852 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
00ef2d2f 1853 NUMA_NO_NODE, __builtin_return_address(0));
2b4ac44e 1854 if (ret) {
db64fe02 1855 area = find_vm_area(ret);
2b4ac44e 1856 area->flags |= VM_USERMAP;
2b4ac44e 1857 }
83342314
NP
1858 return ret;
1859}
1860EXPORT_SYMBOL(vmalloc_32_user);
1861
d0107eb0
KH
1862/*
1863 * small helper routine , copy contents to buf from addr.
1864 * If the page is not present, fill zero.
1865 */
1866
1867static int aligned_vread(char *buf, char *addr, unsigned long count)
1868{
1869 struct page *p;
1870 int copied = 0;
1871
1872 while (count) {
1873 unsigned long offset, length;
1874
1875 offset = (unsigned long)addr & ~PAGE_MASK;
1876 length = PAGE_SIZE - offset;
1877 if (length > count)
1878 length = count;
1879 p = vmalloc_to_page(addr);
1880 /*
1881 * To do safe access to this _mapped_ area, we need
1882 * lock. But adding lock here means that we need to add
1883 * overhead of vmalloc()/vfree() calles for this _debug_
1884 * interface, rarely used. Instead of that, we'll use
1885 * kmap() and get small overhead in this access function.
1886 */
1887 if (p) {
1888 /*
1889 * we can expect USER0 is not used (see vread/vwrite's
1890 * function description)
1891 */
9b04c5fe 1892 void *map = kmap_atomic(p);
d0107eb0 1893 memcpy(buf, map + offset, length);
9b04c5fe 1894 kunmap_atomic(map);
d0107eb0
KH
1895 } else
1896 memset(buf, 0, length);
1897
1898 addr += length;
1899 buf += length;
1900 copied += length;
1901 count -= length;
1902 }
1903 return copied;
1904}
1905
1906static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1907{
1908 struct page *p;
1909 int copied = 0;
1910
1911 while (count) {
1912 unsigned long offset, length;
1913
1914 offset = (unsigned long)addr & ~PAGE_MASK;
1915 length = PAGE_SIZE - offset;
1916 if (length > count)
1917 length = count;
1918 p = vmalloc_to_page(addr);
1919 /*
1920 * To do safe access to this _mapped_ area, we need
1921 * lock. But adding lock here means that we need to add
1922 * overhead of vmalloc()/vfree() calles for this _debug_
1923 * interface, rarely used. Instead of that, we'll use
1924 * kmap() and get small overhead in this access function.
1925 */
1926 if (p) {
1927 /*
1928 * we can expect USER0 is not used (see vread/vwrite's
1929 * function description)
1930 */
9b04c5fe 1931 void *map = kmap_atomic(p);
d0107eb0 1932 memcpy(map + offset, buf, length);
9b04c5fe 1933 kunmap_atomic(map);
d0107eb0
KH
1934 }
1935 addr += length;
1936 buf += length;
1937 copied += length;
1938 count -= length;
1939 }
1940 return copied;
1941}
1942
1943/**
1944 * vread() - read vmalloc area in a safe way.
1945 * @buf: buffer for reading data
1946 * @addr: vm address.
1947 * @count: number of bytes to be read.
1948 *
1949 * Returns # of bytes which addr and buf should be increased.
1950 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1951 * includes any intersect with alive vmalloc area.
1952 *
1953 * This function checks that addr is a valid vmalloc'ed area, and
1954 * copy data from that area to a given buffer. If the given memory range
1955 * of [addr...addr+count) includes some valid address, data is copied to
1956 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1957 * IOREMAP area is treated as memory hole and no copy is done.
1958 *
1959 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 1960 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
1961 *
1962 * Note: In usual ops, vread() is never necessary because the caller
1963 * should know vmalloc() area is valid and can use memcpy().
1964 * This is for routines which have to access vmalloc area without
1965 * any informaion, as /dev/kmem.
1966 *
1967 */
1968
1da177e4
LT
1969long vread(char *buf, char *addr, unsigned long count)
1970{
e81ce85f
JK
1971 struct vmap_area *va;
1972 struct vm_struct *vm;
1da177e4 1973 char *vaddr, *buf_start = buf;
d0107eb0 1974 unsigned long buflen = count;
1da177e4
LT
1975 unsigned long n;
1976
1977 /* Don't allow overflow */
1978 if ((unsigned long) addr + count < count)
1979 count = -(unsigned long) addr;
1980
e81ce85f
JK
1981 spin_lock(&vmap_area_lock);
1982 list_for_each_entry(va, &vmap_area_list, list) {
1983 if (!count)
1984 break;
1985
1986 if (!(va->flags & VM_VM_AREA))
1987 continue;
1988
1989 vm = va->vm;
1990 vaddr = (char *) vm->addr;
1991 if (addr >= vaddr + vm->size - PAGE_SIZE)
1da177e4
LT
1992 continue;
1993 while (addr < vaddr) {
1994 if (count == 0)
1995 goto finished;
1996 *buf = '\0';
1997 buf++;
1998 addr++;
1999 count--;
2000 }
e81ce85f 2001 n = vaddr + vm->size - PAGE_SIZE - addr;
d0107eb0
KH
2002 if (n > count)
2003 n = count;
e81ce85f 2004 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2005 aligned_vread(buf, addr, n);
2006 else /* IOREMAP area is treated as memory hole */
2007 memset(buf, 0, n);
2008 buf += n;
2009 addr += n;
2010 count -= n;
1da177e4
LT
2011 }
2012finished:
e81ce85f 2013 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2014
2015 if (buf == buf_start)
2016 return 0;
2017 /* zero-fill memory holes */
2018 if (buf != buf_start + buflen)
2019 memset(buf, 0, buflen - (buf - buf_start));
2020
2021 return buflen;
1da177e4
LT
2022}
2023
d0107eb0
KH
2024/**
2025 * vwrite() - write vmalloc area in a safe way.
2026 * @buf: buffer for source data
2027 * @addr: vm address.
2028 * @count: number of bytes to be read.
2029 *
2030 * Returns # of bytes which addr and buf should be incresed.
2031 * (same number to @count).
2032 * If [addr...addr+count) doesn't includes any intersect with valid
2033 * vmalloc area, returns 0.
2034 *
2035 * This function checks that addr is a valid vmalloc'ed area, and
2036 * copy data from a buffer to the given addr. If specified range of
2037 * [addr...addr+count) includes some valid address, data is copied from
2038 * proper area of @buf. If there are memory holes, no copy to hole.
2039 * IOREMAP area is treated as memory hole and no copy is done.
2040 *
2041 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 2042 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
2043 *
2044 * Note: In usual ops, vwrite() is never necessary because the caller
2045 * should know vmalloc() area is valid and can use memcpy().
2046 * This is for routines which have to access vmalloc area without
2047 * any informaion, as /dev/kmem.
d0107eb0
KH
2048 */
2049
1da177e4
LT
2050long vwrite(char *buf, char *addr, unsigned long count)
2051{
e81ce85f
JK
2052 struct vmap_area *va;
2053 struct vm_struct *vm;
d0107eb0
KH
2054 char *vaddr;
2055 unsigned long n, buflen;
2056 int copied = 0;
1da177e4
LT
2057
2058 /* Don't allow overflow */
2059 if ((unsigned long) addr + count < count)
2060 count = -(unsigned long) addr;
d0107eb0 2061 buflen = count;
1da177e4 2062
e81ce85f
JK
2063 spin_lock(&vmap_area_lock);
2064 list_for_each_entry(va, &vmap_area_list, list) {
2065 if (!count)
2066 break;
2067
2068 if (!(va->flags & VM_VM_AREA))
2069 continue;
2070
2071 vm = va->vm;
2072 vaddr = (char *) vm->addr;
2073 if (addr >= vaddr + vm->size - PAGE_SIZE)
1da177e4
LT
2074 continue;
2075 while (addr < vaddr) {
2076 if (count == 0)
2077 goto finished;
2078 buf++;
2079 addr++;
2080 count--;
2081 }
e81ce85f 2082 n = vaddr + vm->size - PAGE_SIZE - addr;
d0107eb0
KH
2083 if (n > count)
2084 n = count;
e81ce85f 2085 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2086 aligned_vwrite(buf, addr, n);
2087 copied++;
2088 }
2089 buf += n;
2090 addr += n;
2091 count -= n;
1da177e4
LT
2092 }
2093finished:
e81ce85f 2094 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2095 if (!copied)
2096 return 0;
2097 return buflen;
1da177e4 2098}
83342314
NP
2099
2100/**
e69e9d4a
HD
2101 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2102 * @vma: vma to cover
2103 * @uaddr: target user address to start at
2104 * @kaddr: virtual address of vmalloc kernel memory
2105 * @size: size of map area
7682486b
RD
2106 *
2107 * Returns: 0 for success, -Exxx on failure
83342314 2108 *
e69e9d4a
HD
2109 * This function checks that @kaddr is a valid vmalloc'ed area,
2110 * and that it is big enough to cover the range starting at
2111 * @uaddr in @vma. Will return failure if that criteria isn't
2112 * met.
83342314 2113 *
72fd4a35 2114 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 2115 */
e69e9d4a
HD
2116int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2117 void *kaddr, unsigned long size)
83342314
NP
2118{
2119 struct vm_struct *area;
83342314 2120
e69e9d4a
HD
2121 size = PAGE_ALIGN(size);
2122
2123 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
2124 return -EINVAL;
2125
e69e9d4a 2126 area = find_vm_area(kaddr);
83342314 2127 if (!area)
db64fe02 2128 return -EINVAL;
83342314
NP
2129
2130 if (!(area->flags & VM_USERMAP))
db64fe02 2131 return -EINVAL;
83342314 2132
e69e9d4a 2133 if (kaddr + size > area->addr + area->size)
db64fe02 2134 return -EINVAL;
83342314 2135
83342314 2136 do {
e69e9d4a 2137 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
2138 int ret;
2139
83342314
NP
2140 ret = vm_insert_page(vma, uaddr, page);
2141 if (ret)
2142 return ret;
2143
2144 uaddr += PAGE_SIZE;
e69e9d4a
HD
2145 kaddr += PAGE_SIZE;
2146 size -= PAGE_SIZE;
2147 } while (size > 0);
83342314 2148
314e51b9 2149 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 2150
db64fe02 2151 return 0;
83342314 2152}
e69e9d4a
HD
2153EXPORT_SYMBOL(remap_vmalloc_range_partial);
2154
2155/**
2156 * remap_vmalloc_range - map vmalloc pages to userspace
2157 * @vma: vma to cover (map full range of vma)
2158 * @addr: vmalloc memory
2159 * @pgoff: number of pages into addr before first page to map
2160 *
2161 * Returns: 0 for success, -Exxx on failure
2162 *
2163 * This function checks that addr is a valid vmalloc'ed area, and
2164 * that it is big enough to cover the vma. Will return failure if
2165 * that criteria isn't met.
2166 *
2167 * Similar to remap_pfn_range() (see mm/memory.c)
2168 */
2169int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2170 unsigned long pgoff)
2171{
2172 return remap_vmalloc_range_partial(vma, vma->vm_start,
2173 addr + (pgoff << PAGE_SHIFT),
2174 vma->vm_end - vma->vm_start);
2175}
83342314
NP
2176EXPORT_SYMBOL(remap_vmalloc_range);
2177
1eeb66a1
CH
2178/*
2179 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2180 * have one.
2181 */
2182void __attribute__((weak)) vmalloc_sync_all(void)
2183{
2184}
5f4352fb
JF
2185
2186
2f569afd 2187static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb 2188{
cd12909c
DV
2189 pte_t ***p = data;
2190
2191 if (p) {
2192 *(*p) = pte;
2193 (*p)++;
2194 }
5f4352fb
JF
2195 return 0;
2196}
2197
2198/**
2199 * alloc_vm_area - allocate a range of kernel address space
2200 * @size: size of the area
cd12909c 2201 * @ptes: returns the PTEs for the address space
7682486b
RD
2202 *
2203 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
2204 *
2205 * This function reserves a range of kernel address space, and
2206 * allocates pagetables to map that range. No actual mappings
cd12909c
DV
2207 * are created.
2208 *
2209 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2210 * allocated for the VM area are returned.
5f4352fb 2211 */
cd12909c 2212struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
2213{
2214 struct vm_struct *area;
2215
23016969
CL
2216 area = get_vm_area_caller(size, VM_IOREMAP,
2217 __builtin_return_address(0));
5f4352fb
JF
2218 if (area == NULL)
2219 return NULL;
2220
2221 /*
2222 * This ensures that page tables are constructed for this region
2223 * of kernel virtual address space and mapped into init_mm.
2224 */
2225 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 2226 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
2227 free_vm_area(area);
2228 return NULL;
2229 }
2230
5f4352fb
JF
2231 return area;
2232}
2233EXPORT_SYMBOL_GPL(alloc_vm_area);
2234
2235void free_vm_area(struct vm_struct *area)
2236{
2237 struct vm_struct *ret;
2238 ret = remove_vm_area(area->addr);
2239 BUG_ON(ret != area);
2240 kfree(area);
2241}
2242EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 2243
4f8b02b4 2244#ifdef CONFIG_SMP
ca23e405
TH
2245static struct vmap_area *node_to_va(struct rb_node *n)
2246{
2247 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2248}
2249
2250/**
2251 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2252 * @end: target address
2253 * @pnext: out arg for the next vmap_area
2254 * @pprev: out arg for the previous vmap_area
2255 *
2256 * Returns: %true if either or both of next and prev are found,
2257 * %false if no vmap_area exists
2258 *
2259 * Find vmap_areas end addresses of which enclose @end. ie. if not
2260 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2261 */
2262static bool pvm_find_next_prev(unsigned long end,
2263 struct vmap_area **pnext,
2264 struct vmap_area **pprev)
2265{
2266 struct rb_node *n = vmap_area_root.rb_node;
2267 struct vmap_area *va = NULL;
2268
2269 while (n) {
2270 va = rb_entry(n, struct vmap_area, rb_node);
2271 if (end < va->va_end)
2272 n = n->rb_left;
2273 else if (end > va->va_end)
2274 n = n->rb_right;
2275 else
2276 break;
2277 }
2278
2279 if (!va)
2280 return false;
2281
2282 if (va->va_end > end) {
2283 *pnext = va;
2284 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2285 } else {
2286 *pprev = va;
2287 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2288 }
2289 return true;
2290}
2291
2292/**
2293 * pvm_determine_end - find the highest aligned address between two vmap_areas
2294 * @pnext: in/out arg for the next vmap_area
2295 * @pprev: in/out arg for the previous vmap_area
2296 * @align: alignment
2297 *
2298 * Returns: determined end address
2299 *
2300 * Find the highest aligned address between *@pnext and *@pprev below
2301 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2302 * down address is between the end addresses of the two vmap_areas.
2303 *
2304 * Please note that the address returned by this function may fall
2305 * inside *@pnext vmap_area. The caller is responsible for checking
2306 * that.
2307 */
2308static unsigned long pvm_determine_end(struct vmap_area **pnext,
2309 struct vmap_area **pprev,
2310 unsigned long align)
2311{
2312 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2313 unsigned long addr;
2314
2315 if (*pnext)
2316 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2317 else
2318 addr = vmalloc_end;
2319
2320 while (*pprev && (*pprev)->va_end > addr) {
2321 *pnext = *pprev;
2322 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2323 }
2324
2325 return addr;
2326}
2327
2328/**
2329 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2330 * @offsets: array containing offset of each area
2331 * @sizes: array containing size of each area
2332 * @nr_vms: the number of areas to allocate
2333 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
2334 *
2335 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2336 * vm_structs on success, %NULL on failure
2337 *
2338 * Percpu allocator wants to use congruent vm areas so that it can
2339 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
2340 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2341 * be scattered pretty far, distance between two areas easily going up
2342 * to gigabytes. To avoid interacting with regular vmallocs, these
2343 * areas are allocated from top.
ca23e405
TH
2344 *
2345 * Despite its complicated look, this allocator is rather simple. It
2346 * does everything top-down and scans areas from the end looking for
2347 * matching slot. While scanning, if any of the areas overlaps with
2348 * existing vmap_area, the base address is pulled down to fit the
2349 * area. Scanning is repeated till all the areas fit and then all
2350 * necessary data structres are inserted and the result is returned.
2351 */
2352struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2353 const size_t *sizes, int nr_vms,
ec3f64fc 2354 size_t align)
ca23e405
TH
2355{
2356 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2357 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2358 struct vmap_area **vas, *prev, *next;
2359 struct vm_struct **vms;
2360 int area, area2, last_area, term_area;
2361 unsigned long base, start, end, last_end;
2362 bool purged = false;
2363
ca23e405
TH
2364 /* verify parameters and allocate data structures */
2365 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2366 for (last_area = 0, area = 0; area < nr_vms; area++) {
2367 start = offsets[area];
2368 end = start + sizes[area];
2369
2370 /* is everything aligned properly? */
2371 BUG_ON(!IS_ALIGNED(offsets[area], align));
2372 BUG_ON(!IS_ALIGNED(sizes[area], align));
2373
2374 /* detect the area with the highest address */
2375 if (start > offsets[last_area])
2376 last_area = area;
2377
2378 for (area2 = 0; area2 < nr_vms; area2++) {
2379 unsigned long start2 = offsets[area2];
2380 unsigned long end2 = start2 + sizes[area2];
2381
2382 if (area2 == area)
2383 continue;
2384
2385 BUG_ON(start2 >= start && start2 < end);
2386 BUG_ON(end2 <= end && end2 > start);
2387 }
2388 }
2389 last_end = offsets[last_area] + sizes[last_area];
2390
2391 if (vmalloc_end - vmalloc_start < last_end) {
2392 WARN_ON(true);
2393 return NULL;
2394 }
2395
4d67d860
TM
2396 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2397 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 2398 if (!vas || !vms)
f1db7afd 2399 goto err_free2;
ca23e405
TH
2400
2401 for (area = 0; area < nr_vms; area++) {
ec3f64fc
DR
2402 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2403 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
2404 if (!vas[area] || !vms[area])
2405 goto err_free;
2406 }
2407retry:
2408 spin_lock(&vmap_area_lock);
2409
2410 /* start scanning - we scan from the top, begin with the last area */
2411 area = term_area = last_area;
2412 start = offsets[area];
2413 end = start + sizes[area];
2414
2415 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2416 base = vmalloc_end - last_end;
2417 goto found;
2418 }
2419 base = pvm_determine_end(&next, &prev, align) - end;
2420
2421 while (true) {
2422 BUG_ON(next && next->va_end <= base + end);
2423 BUG_ON(prev && prev->va_end > base + end);
2424
2425 /*
2426 * base might have underflowed, add last_end before
2427 * comparing.
2428 */
2429 if (base + last_end < vmalloc_start + last_end) {
2430 spin_unlock(&vmap_area_lock);
2431 if (!purged) {
2432 purge_vmap_area_lazy();
2433 purged = true;
2434 goto retry;
2435 }
2436 goto err_free;
2437 }
2438
2439 /*
2440 * If next overlaps, move base downwards so that it's
2441 * right below next and then recheck.
2442 */
2443 if (next && next->va_start < base + end) {
2444 base = pvm_determine_end(&next, &prev, align) - end;
2445 term_area = area;
2446 continue;
2447 }
2448
2449 /*
2450 * If prev overlaps, shift down next and prev and move
2451 * base so that it's right below new next and then
2452 * recheck.
2453 */
2454 if (prev && prev->va_end > base + start) {
2455 next = prev;
2456 prev = node_to_va(rb_prev(&next->rb_node));
2457 base = pvm_determine_end(&next, &prev, align) - end;
2458 term_area = area;
2459 continue;
2460 }
2461
2462 /*
2463 * This area fits, move on to the previous one. If
2464 * the previous one is the terminal one, we're done.
2465 */
2466 area = (area + nr_vms - 1) % nr_vms;
2467 if (area == term_area)
2468 break;
2469 start = offsets[area];
2470 end = start + sizes[area];
2471 pvm_find_next_prev(base + end, &next, &prev);
2472 }
2473found:
2474 /* we've found a fitting base, insert all va's */
2475 for (area = 0; area < nr_vms; area++) {
2476 struct vmap_area *va = vas[area];
2477
2478 va->va_start = base + offsets[area];
2479 va->va_end = va->va_start + sizes[area];
2480 __insert_vmap_area(va);
2481 }
2482
2483 vmap_area_pcpu_hole = base + offsets[last_area];
2484
2485 spin_unlock(&vmap_area_lock);
2486
2487 /* insert all vm's */
2488 for (area = 0; area < nr_vms; area++)
3645cb4a
ZY
2489 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2490 pcpu_get_vm_areas);
ca23e405
TH
2491
2492 kfree(vas);
2493 return vms;
2494
2495err_free:
2496 for (area = 0; area < nr_vms; area++) {
f1db7afd
KC
2497 kfree(vas[area]);
2498 kfree(vms[area]);
ca23e405 2499 }
f1db7afd 2500err_free2:
ca23e405
TH
2501 kfree(vas);
2502 kfree(vms);
2503 return NULL;
2504}
2505
2506/**
2507 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2508 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2509 * @nr_vms: the number of allocated areas
2510 *
2511 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2512 */
2513void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2514{
2515 int i;
2516
2517 for (i = 0; i < nr_vms; i++)
2518 free_vm_area(vms[i]);
2519 kfree(vms);
2520}
4f8b02b4 2521#endif /* CONFIG_SMP */
a10aa579
CL
2522
2523#ifdef CONFIG_PROC_FS
2524static void *s_start(struct seq_file *m, loff_t *pos)
d4033afd 2525 __acquires(&vmap_area_lock)
a10aa579
CL
2526{
2527 loff_t n = *pos;
d4033afd 2528 struct vmap_area *va;
a10aa579 2529
d4033afd
JK
2530 spin_lock(&vmap_area_lock);
2531 va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2532 while (n > 0 && &va->list != &vmap_area_list) {
a10aa579 2533 n--;
d4033afd 2534 va = list_entry(va->list.next, typeof(*va), list);
a10aa579 2535 }
d4033afd
JK
2536 if (!n && &va->list != &vmap_area_list)
2537 return va;
a10aa579
CL
2538
2539 return NULL;
2540
2541}
2542
2543static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2544{
d4033afd 2545 struct vmap_area *va = p, *next;
a10aa579
CL
2546
2547 ++*pos;
d4033afd
JK
2548 next = list_entry(va->list.next, typeof(*va), list);
2549 if (&next->list != &vmap_area_list)
2550 return next;
2551
2552 return NULL;
a10aa579
CL
2553}
2554
2555static void s_stop(struct seq_file *m, void *p)
d4033afd 2556 __releases(&vmap_area_lock)
a10aa579 2557{
d4033afd 2558 spin_unlock(&vmap_area_lock);
a10aa579
CL
2559}
2560
a47a126a
ED
2561static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2562{
e5adfffc 2563 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
2564 unsigned int nr, *counters = m->private;
2565
2566 if (!counters)
2567 return;
2568
2569 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2570
2571 for (nr = 0; nr < v->nr_pages; nr++)
2572 counters[page_to_nid(v->pages[nr])]++;
2573
2574 for_each_node_state(nr, N_HIGH_MEMORY)
2575 if (counters[nr])
2576 seq_printf(m, " N%u=%u", nr, counters[nr]);
2577 }
2578}
2579
a10aa579
CL
2580static int s_show(struct seq_file *m, void *p)
2581{
d4033afd
JK
2582 struct vmap_area *va = p;
2583 struct vm_struct *v;
2584
2585 if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2586 return 0;
2587
2588 if (!(va->flags & VM_VM_AREA)) {
2589 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
2590 (void *)va->va_start, (void *)va->va_end,
2591 va->va_end - va->va_start);
2592 return 0;
2593 }
2594
2595 v = va->vm;
a10aa579 2596
d157a558
ZY
2597 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2598 smp_rmb();
2599 if (v->flags & VM_UNINITIALIZED)
2600 return 0;
2601
45ec1690 2602 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
2603 v->addr, v->addr + v->size, v->size);
2604
62c70bce
JP
2605 if (v->caller)
2606 seq_printf(m, " %pS", v->caller);
23016969 2607
a10aa579
CL
2608 if (v->nr_pages)
2609 seq_printf(m, " pages=%d", v->nr_pages);
2610
2611 if (v->phys_addr)
ffa71f33 2612 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
a10aa579
CL
2613
2614 if (v->flags & VM_IOREMAP)
2615 seq_printf(m, " ioremap");
2616
2617 if (v->flags & VM_ALLOC)
2618 seq_printf(m, " vmalloc");
2619
2620 if (v->flags & VM_MAP)
2621 seq_printf(m, " vmap");
2622
2623 if (v->flags & VM_USERMAP)
2624 seq_printf(m, " user");
2625
2626 if (v->flags & VM_VPAGES)
2627 seq_printf(m, " vpages");
2628
a47a126a 2629 show_numa_info(m, v);
a10aa579
CL
2630 seq_putc(m, '\n');
2631 return 0;
2632}
2633
5f6a6a9c 2634static const struct seq_operations vmalloc_op = {
a10aa579
CL
2635 .start = s_start,
2636 .next = s_next,
2637 .stop = s_stop,
2638 .show = s_show,
2639};
5f6a6a9c
AD
2640
2641static int vmalloc_open(struct inode *inode, struct file *file)
2642{
2643 unsigned int *ptr = NULL;
2644 int ret;
2645
e5adfffc 2646 if (IS_ENABLED(CONFIG_NUMA)) {
5f6a6a9c 2647 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
51980ac9
KV
2648 if (ptr == NULL)
2649 return -ENOMEM;
2650 }
5f6a6a9c
AD
2651 ret = seq_open(file, &vmalloc_op);
2652 if (!ret) {
2653 struct seq_file *m = file->private_data;
2654 m->private = ptr;
2655 } else
2656 kfree(ptr);
2657 return ret;
2658}
2659
2660static const struct file_operations proc_vmalloc_operations = {
2661 .open = vmalloc_open,
2662 .read = seq_read,
2663 .llseek = seq_lseek,
2664 .release = seq_release_private,
2665};
2666
2667static int __init proc_vmalloc_init(void)
2668{
2669 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2670 return 0;
2671}
2672module_init(proc_vmalloc_init);
db3808c1
JK
2673
2674void get_vmalloc_info(struct vmalloc_info *vmi)
2675{
f98782dd 2676 struct vmap_area *va;
db3808c1
JK
2677 unsigned long free_area_size;
2678 unsigned long prev_end;
2679
2680 vmi->used = 0;
f98782dd 2681 vmi->largest_chunk = 0;
db3808c1 2682
f98782dd 2683 prev_end = VMALLOC_START;
db3808c1 2684
f98782dd 2685 spin_lock(&vmap_area_lock);
db3808c1 2686
f98782dd
JK
2687 if (list_empty(&vmap_area_list)) {
2688 vmi->largest_chunk = VMALLOC_TOTAL;
2689 goto out;
2690 }
db3808c1 2691
f98782dd
JK
2692 list_for_each_entry(va, &vmap_area_list, list) {
2693 unsigned long addr = va->va_start;
db3808c1 2694
f98782dd
JK
2695 /*
2696 * Some archs keep another range for modules in vmalloc space
2697 */
2698 if (addr < VMALLOC_START)
2699 continue;
2700 if (addr >= VMALLOC_END)
2701 break;
db3808c1 2702
f98782dd
JK
2703 if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2704 continue;
db3808c1 2705
f98782dd 2706 vmi->used += (va->va_end - va->va_start);
db3808c1 2707
f98782dd
JK
2708 free_area_size = addr - prev_end;
2709 if (vmi->largest_chunk < free_area_size)
2710 vmi->largest_chunk = free_area_size;
db3808c1 2711
f98782dd 2712 prev_end = va->va_end;
db3808c1 2713 }
f98782dd
JK
2714
2715 if (VMALLOC_END - prev_end > vmi->largest_chunk)
2716 vmi->largest_chunk = VMALLOC_END - prev_end;
2717
2718out:
2719 spin_unlock(&vmap_area_lock);
db3808c1 2720}
a10aa579
CL
2721#endif
2722