]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/vmalloc.c
selftests: vm: add fragment CONFIG_TEST_VMALLOC
[mirror_ubuntu-hirsute-kernel.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/vmalloc.c
4 *
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 9 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
10 */
11
db64fe02 12#include <linux/vmalloc.h>
1da177e4
LT
13#include <linux/mm.h>
14#include <linux/module.h>
15#include <linux/highmem.h>
c3edc401 16#include <linux/sched/signal.h>
1da177e4
LT
17#include <linux/slab.h>
18#include <linux/spinlock.h>
19#include <linux/interrupt.h>
5f6a6a9c 20#include <linux/proc_fs.h>
a10aa579 21#include <linux/seq_file.h>
868b104d 22#include <linux/set_memory.h>
3ac7fe5a 23#include <linux/debugobjects.h>
23016969 24#include <linux/kallsyms.h>
db64fe02 25#include <linux/list.h>
4da56b99 26#include <linux/notifier.h>
db64fe02
NP
27#include <linux/rbtree.h>
28#include <linux/radix-tree.h>
29#include <linux/rcupdate.h>
f0aa6617 30#include <linux/pfn.h>
89219d37 31#include <linux/kmemleak.h>
60063497 32#include <linux/atomic.h>
3b32123d 33#include <linux/compiler.h>
32fcfd40 34#include <linux/llist.h>
0f616be1 35#include <linux/bitops.h>
68ad4a33 36#include <linux/rbtree_augmented.h>
3b32123d 37
7c0f6ba6 38#include <linux/uaccess.h>
1da177e4 39#include <asm/tlbflush.h>
2dca6999 40#include <asm/shmparam.h>
1da177e4 41
dd56b046
MG
42#include "internal.h"
43
32fcfd40
AV
44struct vfree_deferred {
45 struct llist_head list;
46 struct work_struct wq;
47};
48static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
49
50static void __vunmap(const void *, int);
51
52static void free_work(struct work_struct *w)
53{
54 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
55 struct llist_node *t, *llnode;
56
57 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
58 __vunmap((void *)llnode, 1);
32fcfd40
AV
59}
60
db64fe02 61/*** Page table manipulation functions ***/
b221385b 62
1da177e4
LT
63static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
64{
65 pte_t *pte;
66
67 pte = pte_offset_kernel(pmd, addr);
68 do {
69 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
70 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
71 } while (pte++, addr += PAGE_SIZE, addr != end);
72}
73
db64fe02 74static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
75{
76 pmd_t *pmd;
77 unsigned long next;
78
79 pmd = pmd_offset(pud, addr);
80 do {
81 next = pmd_addr_end(addr, end);
b9820d8f
TK
82 if (pmd_clear_huge(pmd))
83 continue;
1da177e4
LT
84 if (pmd_none_or_clear_bad(pmd))
85 continue;
86 vunmap_pte_range(pmd, addr, next);
87 } while (pmd++, addr = next, addr != end);
88}
89
c2febafc 90static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
1da177e4
LT
91{
92 pud_t *pud;
93 unsigned long next;
94
c2febafc 95 pud = pud_offset(p4d, addr);
1da177e4
LT
96 do {
97 next = pud_addr_end(addr, end);
b9820d8f
TK
98 if (pud_clear_huge(pud))
99 continue;
1da177e4
LT
100 if (pud_none_or_clear_bad(pud))
101 continue;
102 vunmap_pmd_range(pud, addr, next);
103 } while (pud++, addr = next, addr != end);
104}
105
c2febafc
KS
106static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
107{
108 p4d_t *p4d;
109 unsigned long next;
110
111 p4d = p4d_offset(pgd, addr);
112 do {
113 next = p4d_addr_end(addr, end);
114 if (p4d_clear_huge(p4d))
115 continue;
116 if (p4d_none_or_clear_bad(p4d))
117 continue;
118 vunmap_pud_range(p4d, addr, next);
119 } while (p4d++, addr = next, addr != end);
120}
121
db64fe02 122static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
123{
124 pgd_t *pgd;
125 unsigned long next;
1da177e4
LT
126
127 BUG_ON(addr >= end);
128 pgd = pgd_offset_k(addr);
1da177e4
LT
129 do {
130 next = pgd_addr_end(addr, end);
131 if (pgd_none_or_clear_bad(pgd))
132 continue;
c2febafc 133 vunmap_p4d_range(pgd, addr, next);
1da177e4 134 } while (pgd++, addr = next, addr != end);
1da177e4
LT
135}
136
137static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 138 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
139{
140 pte_t *pte;
141
db64fe02
NP
142 /*
143 * nr is a running index into the array which helps higher level
144 * callers keep track of where we're up to.
145 */
146
872fec16 147 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
148 if (!pte)
149 return -ENOMEM;
150 do {
db64fe02
NP
151 struct page *page = pages[*nr];
152
153 if (WARN_ON(!pte_none(*pte)))
154 return -EBUSY;
155 if (WARN_ON(!page))
1da177e4
LT
156 return -ENOMEM;
157 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 158 (*nr)++;
1da177e4
LT
159 } while (pte++, addr += PAGE_SIZE, addr != end);
160 return 0;
161}
162
db64fe02
NP
163static int vmap_pmd_range(pud_t *pud, unsigned long addr,
164 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
165{
166 pmd_t *pmd;
167 unsigned long next;
168
169 pmd = pmd_alloc(&init_mm, pud, addr);
170 if (!pmd)
171 return -ENOMEM;
172 do {
173 next = pmd_addr_end(addr, end);
db64fe02 174 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
175 return -ENOMEM;
176 } while (pmd++, addr = next, addr != end);
177 return 0;
178}
179
c2febafc 180static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
db64fe02 181 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
182{
183 pud_t *pud;
184 unsigned long next;
185
c2febafc 186 pud = pud_alloc(&init_mm, p4d, addr);
1da177e4
LT
187 if (!pud)
188 return -ENOMEM;
189 do {
190 next = pud_addr_end(addr, end);
db64fe02 191 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
192 return -ENOMEM;
193 } while (pud++, addr = next, addr != end);
194 return 0;
195}
196
c2febafc
KS
197static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
198 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
199{
200 p4d_t *p4d;
201 unsigned long next;
202
203 p4d = p4d_alloc(&init_mm, pgd, addr);
204 if (!p4d)
205 return -ENOMEM;
206 do {
207 next = p4d_addr_end(addr, end);
208 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
209 return -ENOMEM;
210 } while (p4d++, addr = next, addr != end);
211 return 0;
212}
213
db64fe02
NP
214/*
215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
216 * will have pfns corresponding to the "pages" array.
217 *
218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
219 */
8fc48985
TH
220static int vmap_page_range_noflush(unsigned long start, unsigned long end,
221 pgprot_t prot, struct page **pages)
1da177e4
LT
222{
223 pgd_t *pgd;
224 unsigned long next;
2e4e27c7 225 unsigned long addr = start;
db64fe02
NP
226 int err = 0;
227 int nr = 0;
1da177e4
LT
228
229 BUG_ON(addr >= end);
230 pgd = pgd_offset_k(addr);
1da177e4
LT
231 do {
232 next = pgd_addr_end(addr, end);
c2febafc 233 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
1da177e4 234 if (err)
bf88c8c8 235 return err;
1da177e4 236 } while (pgd++, addr = next, addr != end);
db64fe02 237
db64fe02 238 return nr;
1da177e4
LT
239}
240
8fc48985
TH
241static int vmap_page_range(unsigned long start, unsigned long end,
242 pgprot_t prot, struct page **pages)
243{
244 int ret;
245
246 ret = vmap_page_range_noflush(start, end, prot, pages);
247 flush_cache_vmap(start, end);
248 return ret;
249}
250
81ac3ad9 251int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
252{
253 /*
ab4f2ee1 254 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
255 * and fall back on vmalloc() if that fails. Others
256 * just put it in the vmalloc space.
257 */
258#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
259 unsigned long addr = (unsigned long)x;
260 if (addr >= MODULES_VADDR && addr < MODULES_END)
261 return 1;
262#endif
263 return is_vmalloc_addr(x);
264}
265
48667e7a 266/*
add688fb 267 * Walk a vmap address to the struct page it maps.
48667e7a 268 */
add688fb 269struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
270{
271 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 272 struct page *page = NULL;
48667e7a 273 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
274 p4d_t *p4d;
275 pud_t *pud;
276 pmd_t *pmd;
277 pte_t *ptep, pte;
48667e7a 278
7aa413de
IM
279 /*
280 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
281 * architectures that do not vmalloc module space
282 */
73bdf0a6 283 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 284
c2febafc
KS
285 if (pgd_none(*pgd))
286 return NULL;
287 p4d = p4d_offset(pgd, addr);
288 if (p4d_none(*p4d))
289 return NULL;
290 pud = pud_offset(p4d, addr);
029c54b0
AB
291
292 /*
293 * Don't dereference bad PUD or PMD (below) entries. This will also
294 * identify huge mappings, which we may encounter on architectures
295 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
296 * identified as vmalloc addresses by is_vmalloc_addr(), but are
297 * not [unambiguously] associated with a struct page, so there is
298 * no correct value to return for them.
299 */
300 WARN_ON_ONCE(pud_bad(*pud));
301 if (pud_none(*pud) || pud_bad(*pud))
c2febafc
KS
302 return NULL;
303 pmd = pmd_offset(pud, addr);
029c54b0
AB
304 WARN_ON_ONCE(pmd_bad(*pmd));
305 if (pmd_none(*pmd) || pmd_bad(*pmd))
c2febafc
KS
306 return NULL;
307
308 ptep = pte_offset_map(pmd, addr);
309 pte = *ptep;
310 if (pte_present(pte))
311 page = pte_page(pte);
312 pte_unmap(ptep);
add688fb 313 return page;
48667e7a 314}
add688fb 315EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
316
317/*
add688fb 318 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 319 */
add688fb 320unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 321{
add688fb 322 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 323}
add688fb 324EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 325
db64fe02
NP
326
327/*** Global kva allocator ***/
328
bb850f4d 329#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 330#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 331
db64fe02 332
db64fe02 333static DEFINE_SPINLOCK(vmap_area_lock);
f1c4069e
JK
334/* Export for kexec only */
335LIST_HEAD(vmap_area_list);
80c4bd7a 336static LLIST_HEAD(vmap_purge_list);
89699605 337static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 338static bool vmap_initialized __read_mostly;
89699605 339
68ad4a33
URS
340/*
341 * This kmem_cache is used for vmap_area objects. Instead of
342 * allocating from slab we reuse an object from this cache to
343 * make things faster. Especially in "no edge" splitting of
344 * free block.
345 */
346static struct kmem_cache *vmap_area_cachep;
347
348/*
349 * This linked list is used in pair with free_vmap_area_root.
350 * It gives O(1) access to prev/next to perform fast coalescing.
351 */
352static LIST_HEAD(free_vmap_area_list);
353
354/*
355 * This augment red-black tree represents the free vmap space.
356 * All vmap_area objects in this tree are sorted by va->va_start
357 * address. It is used for allocation and merging when a vmap
358 * object is released.
359 *
360 * Each vmap_area node contains a maximum available free block
361 * of its sub-tree, right or left. Therefore it is possible to
362 * find a lowest match of free area.
363 */
364static struct rb_root free_vmap_area_root = RB_ROOT;
365
82dd23e8
URS
366/*
367 * Preload a CPU with one object for "no edge" split case. The
368 * aim is to get rid of allocations from the atomic context, thus
369 * to use more permissive allocation masks.
370 */
371static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
372
68ad4a33
URS
373static __always_inline unsigned long
374va_size(struct vmap_area *va)
375{
376 return (va->va_end - va->va_start);
377}
378
379static __always_inline unsigned long
380get_subtree_max_size(struct rb_node *node)
381{
382 struct vmap_area *va;
383
384 va = rb_entry_safe(node, struct vmap_area, rb_node);
385 return va ? va->subtree_max_size : 0;
386}
89699605 387
68ad4a33
URS
388/*
389 * Gets called when remove the node and rotate.
390 */
391static __always_inline unsigned long
392compute_subtree_max_size(struct vmap_area *va)
393{
394 return max3(va_size(va),
395 get_subtree_max_size(va->rb_node.rb_left),
396 get_subtree_max_size(va->rb_node.rb_right));
397}
398
315cc066
ML
399RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
400 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
68ad4a33
URS
401
402static void purge_vmap_area_lazy(void);
403static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
404static unsigned long lazy_max_pages(void);
db64fe02 405
97105f0a
RG
406static atomic_long_t nr_vmalloc_pages;
407
408unsigned long vmalloc_nr_pages(void)
409{
410 return atomic_long_read(&nr_vmalloc_pages);
411}
412
db64fe02 413static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 414{
db64fe02
NP
415 struct rb_node *n = vmap_area_root.rb_node;
416
417 while (n) {
418 struct vmap_area *va;
419
420 va = rb_entry(n, struct vmap_area, rb_node);
421 if (addr < va->va_start)
422 n = n->rb_left;
cef2ac3f 423 else if (addr >= va->va_end)
db64fe02
NP
424 n = n->rb_right;
425 else
426 return va;
427 }
428
429 return NULL;
430}
431
68ad4a33
URS
432/*
433 * This function returns back addresses of parent node
434 * and its left or right link for further processing.
435 */
436static __always_inline struct rb_node **
437find_va_links(struct vmap_area *va,
438 struct rb_root *root, struct rb_node *from,
439 struct rb_node **parent)
440{
441 struct vmap_area *tmp_va;
442 struct rb_node **link;
443
444 if (root) {
445 link = &root->rb_node;
446 if (unlikely(!*link)) {
447 *parent = NULL;
448 return link;
449 }
450 } else {
451 link = &from;
452 }
db64fe02 453
68ad4a33
URS
454 /*
455 * Go to the bottom of the tree. When we hit the last point
456 * we end up with parent rb_node and correct direction, i name
457 * it link, where the new va->rb_node will be attached to.
458 */
459 do {
460 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 461
68ad4a33
URS
462 /*
463 * During the traversal we also do some sanity check.
464 * Trigger the BUG() if there are sides(left/right)
465 * or full overlaps.
466 */
467 if (va->va_start < tmp_va->va_end &&
468 va->va_end <= tmp_va->va_start)
469 link = &(*link)->rb_left;
470 else if (va->va_end > tmp_va->va_start &&
471 va->va_start >= tmp_va->va_end)
472 link = &(*link)->rb_right;
db64fe02
NP
473 else
474 BUG();
68ad4a33
URS
475 } while (*link);
476
477 *parent = &tmp_va->rb_node;
478 return link;
479}
480
481static __always_inline struct list_head *
482get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
483{
484 struct list_head *list;
485
486 if (unlikely(!parent))
487 /*
488 * The red-black tree where we try to find VA neighbors
489 * before merging or inserting is empty, i.e. it means
490 * there is no free vmap space. Normally it does not
491 * happen but we handle this case anyway.
492 */
493 return NULL;
494
495 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
496 return (&parent->rb_right == link ? list->next : list);
497}
498
499static __always_inline void
500link_va(struct vmap_area *va, struct rb_root *root,
501 struct rb_node *parent, struct rb_node **link, struct list_head *head)
502{
503 /*
504 * VA is still not in the list, but we can
505 * identify its future previous list_head node.
506 */
507 if (likely(parent)) {
508 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
509 if (&parent->rb_right != link)
510 head = head->prev;
db64fe02
NP
511 }
512
68ad4a33
URS
513 /* Insert to the rb-tree */
514 rb_link_node(&va->rb_node, parent, link);
515 if (root == &free_vmap_area_root) {
516 /*
517 * Some explanation here. Just perform simple insertion
518 * to the tree. We do not set va->subtree_max_size to
519 * its current size before calling rb_insert_augmented().
520 * It is because of we populate the tree from the bottom
521 * to parent levels when the node _is_ in the tree.
522 *
523 * Therefore we set subtree_max_size to zero after insertion,
524 * to let __augment_tree_propagate_from() puts everything to
525 * the correct order later on.
526 */
527 rb_insert_augmented(&va->rb_node,
528 root, &free_vmap_area_rb_augment_cb);
529 va->subtree_max_size = 0;
530 } else {
531 rb_insert_color(&va->rb_node, root);
532 }
db64fe02 533
68ad4a33
URS
534 /* Address-sort this list */
535 list_add(&va->list, head);
db64fe02
NP
536}
537
68ad4a33
URS
538static __always_inline void
539unlink_va(struct vmap_area *va, struct rb_root *root)
540{
460e42d1
URS
541 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
542 return;
db64fe02 543
460e42d1
URS
544 if (root == &free_vmap_area_root)
545 rb_erase_augmented(&va->rb_node,
546 root, &free_vmap_area_rb_augment_cb);
547 else
548 rb_erase(&va->rb_node, root);
549
550 list_del(&va->list);
551 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
552}
553
bb850f4d
URS
554#if DEBUG_AUGMENT_PROPAGATE_CHECK
555static void
556augment_tree_propagate_check(struct rb_node *n)
557{
558 struct vmap_area *va;
559 struct rb_node *node;
560 unsigned long size;
561 bool found = false;
562
563 if (n == NULL)
564 return;
565
566 va = rb_entry(n, struct vmap_area, rb_node);
567 size = va->subtree_max_size;
568 node = n;
569
570 while (node) {
571 va = rb_entry(node, struct vmap_area, rb_node);
572
573 if (get_subtree_max_size(node->rb_left) == size) {
574 node = node->rb_left;
575 } else {
576 if (va_size(va) == size) {
577 found = true;
578 break;
579 }
580
581 node = node->rb_right;
582 }
583 }
584
585 if (!found) {
586 va = rb_entry(n, struct vmap_area, rb_node);
587 pr_emerg("tree is corrupted: %lu, %lu\n",
588 va_size(va), va->subtree_max_size);
589 }
590
591 augment_tree_propagate_check(n->rb_left);
592 augment_tree_propagate_check(n->rb_right);
593}
594#endif
595
68ad4a33
URS
596/*
597 * This function populates subtree_max_size from bottom to upper
598 * levels starting from VA point. The propagation must be done
599 * when VA size is modified by changing its va_start/va_end. Or
600 * in case of newly inserting of VA to the tree.
601 *
602 * It means that __augment_tree_propagate_from() must be called:
603 * - After VA has been inserted to the tree(free path);
604 * - After VA has been shrunk(allocation path);
605 * - After VA has been increased(merging path).
606 *
607 * Please note that, it does not mean that upper parent nodes
608 * and their subtree_max_size are recalculated all the time up
609 * to the root node.
610 *
611 * 4--8
612 * /\
613 * / \
614 * / \
615 * 2--2 8--8
616 *
617 * For example if we modify the node 4, shrinking it to 2, then
618 * no any modification is required. If we shrink the node 2 to 1
619 * its subtree_max_size is updated only, and set to 1. If we shrink
620 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
621 * node becomes 4--6.
622 */
623static __always_inline void
624augment_tree_propagate_from(struct vmap_area *va)
625{
626 struct rb_node *node = &va->rb_node;
627 unsigned long new_va_sub_max_size;
628
629 while (node) {
630 va = rb_entry(node, struct vmap_area, rb_node);
631 new_va_sub_max_size = compute_subtree_max_size(va);
632
633 /*
634 * If the newly calculated maximum available size of the
635 * subtree is equal to the current one, then it means that
636 * the tree is propagated correctly. So we have to stop at
637 * this point to save cycles.
638 */
639 if (va->subtree_max_size == new_va_sub_max_size)
640 break;
641
642 va->subtree_max_size = new_va_sub_max_size;
643 node = rb_parent(&va->rb_node);
644 }
bb850f4d
URS
645
646#if DEBUG_AUGMENT_PROPAGATE_CHECK
647 augment_tree_propagate_check(free_vmap_area_root.rb_node);
648#endif
68ad4a33
URS
649}
650
651static void
652insert_vmap_area(struct vmap_area *va,
653 struct rb_root *root, struct list_head *head)
654{
655 struct rb_node **link;
656 struct rb_node *parent;
657
658 link = find_va_links(va, root, NULL, &parent);
659 link_va(va, root, parent, link, head);
660}
661
662static void
663insert_vmap_area_augment(struct vmap_area *va,
664 struct rb_node *from, struct rb_root *root,
665 struct list_head *head)
666{
667 struct rb_node **link;
668 struct rb_node *parent;
669
670 if (from)
671 link = find_va_links(va, NULL, from, &parent);
672 else
673 link = find_va_links(va, root, NULL, &parent);
674
675 link_va(va, root, parent, link, head);
676 augment_tree_propagate_from(va);
677}
678
679/*
680 * Merge de-allocated chunk of VA memory with previous
681 * and next free blocks. If coalesce is not done a new
682 * free area is inserted. If VA has been merged, it is
683 * freed.
684 */
685static __always_inline void
686merge_or_add_vmap_area(struct vmap_area *va,
687 struct rb_root *root, struct list_head *head)
688{
689 struct vmap_area *sibling;
690 struct list_head *next;
691 struct rb_node **link;
692 struct rb_node *parent;
693 bool merged = false;
694
695 /*
696 * Find a place in the tree where VA potentially will be
697 * inserted, unless it is merged with its sibling/siblings.
698 */
699 link = find_va_links(va, root, NULL, &parent);
700
701 /*
702 * Get next node of VA to check if merging can be done.
703 */
704 next = get_va_next_sibling(parent, link);
705 if (unlikely(next == NULL))
706 goto insert;
707
708 /*
709 * start end
710 * | |
711 * |<------VA------>|<-----Next----->|
712 * | |
713 * start end
714 */
715 if (next != head) {
716 sibling = list_entry(next, struct vmap_area, list);
717 if (sibling->va_start == va->va_end) {
718 sibling->va_start = va->va_start;
719
720 /* Check and update the tree if needed. */
721 augment_tree_propagate_from(sibling);
722
68ad4a33
URS
723 /* Free vmap_area object. */
724 kmem_cache_free(vmap_area_cachep, va);
725
726 /* Point to the new merged area. */
727 va = sibling;
728 merged = true;
729 }
730 }
731
732 /*
733 * start end
734 * | |
735 * |<-----Prev----->|<------VA------>|
736 * | |
737 * start end
738 */
739 if (next->prev != head) {
740 sibling = list_entry(next->prev, struct vmap_area, list);
741 if (sibling->va_end == va->va_start) {
742 sibling->va_end = va->va_end;
743
744 /* Check and update the tree if needed. */
745 augment_tree_propagate_from(sibling);
746
54f63d9d
URS
747 if (merged)
748 unlink_va(va, root);
68ad4a33
URS
749
750 /* Free vmap_area object. */
751 kmem_cache_free(vmap_area_cachep, va);
68ad4a33
URS
752 return;
753 }
754 }
755
756insert:
757 if (!merged) {
758 link_va(va, root, parent, link, head);
759 augment_tree_propagate_from(va);
760 }
761}
762
763static __always_inline bool
764is_within_this_va(struct vmap_area *va, unsigned long size,
765 unsigned long align, unsigned long vstart)
766{
767 unsigned long nva_start_addr;
768
769 if (va->va_start > vstart)
770 nva_start_addr = ALIGN(va->va_start, align);
771 else
772 nva_start_addr = ALIGN(vstart, align);
773
774 /* Can be overflowed due to big size or alignment. */
775 if (nva_start_addr + size < nva_start_addr ||
776 nva_start_addr < vstart)
777 return false;
778
779 return (nva_start_addr + size <= va->va_end);
780}
781
782/*
783 * Find the first free block(lowest start address) in the tree,
784 * that will accomplish the request corresponding to passing
785 * parameters.
786 */
787static __always_inline struct vmap_area *
788find_vmap_lowest_match(unsigned long size,
789 unsigned long align, unsigned long vstart)
790{
791 struct vmap_area *va;
792 struct rb_node *node;
793 unsigned long length;
794
795 /* Start from the root. */
796 node = free_vmap_area_root.rb_node;
797
798 /* Adjust the search size for alignment overhead. */
799 length = size + align - 1;
800
801 while (node) {
802 va = rb_entry(node, struct vmap_area, rb_node);
803
804 if (get_subtree_max_size(node->rb_left) >= length &&
805 vstart < va->va_start) {
806 node = node->rb_left;
807 } else {
808 if (is_within_this_va(va, size, align, vstart))
809 return va;
810
811 /*
812 * Does not make sense to go deeper towards the right
813 * sub-tree if it does not have a free block that is
814 * equal or bigger to the requested search length.
815 */
816 if (get_subtree_max_size(node->rb_right) >= length) {
817 node = node->rb_right;
818 continue;
819 }
820
821 /*
3806b041 822 * OK. We roll back and find the first right sub-tree,
68ad4a33
URS
823 * that will satisfy the search criteria. It can happen
824 * only once due to "vstart" restriction.
825 */
826 while ((node = rb_parent(node))) {
827 va = rb_entry(node, struct vmap_area, rb_node);
828 if (is_within_this_va(va, size, align, vstart))
829 return va;
830
831 if (get_subtree_max_size(node->rb_right) >= length &&
832 vstart <= va->va_start) {
833 node = node->rb_right;
834 break;
835 }
836 }
837 }
838 }
839
840 return NULL;
841}
842
a6cf4e0f
URS
843#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
844#include <linux/random.h>
845
846static struct vmap_area *
847find_vmap_lowest_linear_match(unsigned long size,
848 unsigned long align, unsigned long vstart)
849{
850 struct vmap_area *va;
851
852 list_for_each_entry(va, &free_vmap_area_list, list) {
853 if (!is_within_this_va(va, size, align, vstart))
854 continue;
855
856 return va;
857 }
858
859 return NULL;
860}
861
862static void
863find_vmap_lowest_match_check(unsigned long size)
864{
865 struct vmap_area *va_1, *va_2;
866 unsigned long vstart;
867 unsigned int rnd;
868
869 get_random_bytes(&rnd, sizeof(rnd));
870 vstart = VMALLOC_START + rnd;
871
872 va_1 = find_vmap_lowest_match(size, 1, vstart);
873 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
874
875 if (va_1 != va_2)
876 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
877 va_1, va_2, vstart);
878}
879#endif
880
68ad4a33
URS
881enum fit_type {
882 NOTHING_FIT = 0,
883 FL_FIT_TYPE = 1, /* full fit */
884 LE_FIT_TYPE = 2, /* left edge fit */
885 RE_FIT_TYPE = 3, /* right edge fit */
886 NE_FIT_TYPE = 4 /* no edge fit */
887};
888
889static __always_inline enum fit_type
890classify_va_fit_type(struct vmap_area *va,
891 unsigned long nva_start_addr, unsigned long size)
892{
893 enum fit_type type;
894
895 /* Check if it is within VA. */
896 if (nva_start_addr < va->va_start ||
897 nva_start_addr + size > va->va_end)
898 return NOTHING_FIT;
899
900 /* Now classify. */
901 if (va->va_start == nva_start_addr) {
902 if (va->va_end == nva_start_addr + size)
903 type = FL_FIT_TYPE;
904 else
905 type = LE_FIT_TYPE;
906 } else if (va->va_end == nva_start_addr + size) {
907 type = RE_FIT_TYPE;
908 } else {
909 type = NE_FIT_TYPE;
910 }
911
912 return type;
913}
914
915static __always_inline int
916adjust_va_to_fit_type(struct vmap_area *va,
917 unsigned long nva_start_addr, unsigned long size,
918 enum fit_type type)
919{
2c929233 920 struct vmap_area *lva = NULL;
68ad4a33
URS
921
922 if (type == FL_FIT_TYPE) {
923 /*
924 * No need to split VA, it fully fits.
925 *
926 * | |
927 * V NVA V
928 * |---------------|
929 */
930 unlink_va(va, &free_vmap_area_root);
931 kmem_cache_free(vmap_area_cachep, va);
932 } else if (type == LE_FIT_TYPE) {
933 /*
934 * Split left edge of fit VA.
935 *
936 * | |
937 * V NVA V R
938 * |-------|-------|
939 */
940 va->va_start += size;
941 } else if (type == RE_FIT_TYPE) {
942 /*
943 * Split right edge of fit VA.
944 *
945 * | |
946 * L V NVA V
947 * |-------|-------|
948 */
949 va->va_end = nva_start_addr;
950 } else if (type == NE_FIT_TYPE) {
951 /*
952 * Split no edge of fit VA.
953 *
954 * | |
955 * L V NVA V R
956 * |---|-------|---|
957 */
82dd23e8
URS
958 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
959 if (unlikely(!lva)) {
960 /*
961 * For percpu allocator we do not do any pre-allocation
962 * and leave it as it is. The reason is it most likely
963 * never ends up with NE_FIT_TYPE splitting. In case of
964 * percpu allocations offsets and sizes are aligned to
965 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
966 * are its main fitting cases.
967 *
968 * There are a few exceptions though, as an example it is
969 * a first allocation (early boot up) when we have "one"
970 * big free space that has to be split.
060650a2
URS
971 *
972 * Also we can hit this path in case of regular "vmap"
973 * allocations, if "this" current CPU was not preloaded.
974 * See the comment in alloc_vmap_area() why. If so, then
975 * GFP_NOWAIT is used instead to get an extra object for
976 * split purpose. That is rare and most time does not
977 * occur.
978 *
979 * What happens if an allocation gets failed. Basically,
980 * an "overflow" path is triggered to purge lazily freed
981 * areas to free some memory, then, the "retry" path is
982 * triggered to repeat one more time. See more details
983 * in alloc_vmap_area() function.
82dd23e8
URS
984 */
985 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
986 if (!lva)
987 return -1;
988 }
68ad4a33
URS
989
990 /*
991 * Build the remainder.
992 */
993 lva->va_start = va->va_start;
994 lva->va_end = nva_start_addr;
995
996 /*
997 * Shrink this VA to remaining size.
998 */
999 va->va_start = nva_start_addr + size;
1000 } else {
1001 return -1;
1002 }
1003
1004 if (type != FL_FIT_TYPE) {
1005 augment_tree_propagate_from(va);
1006
2c929233 1007 if (lva) /* type == NE_FIT_TYPE */
68ad4a33
URS
1008 insert_vmap_area_augment(lva, &va->rb_node,
1009 &free_vmap_area_root, &free_vmap_area_list);
1010 }
1011
1012 return 0;
1013}
1014
1015/*
1016 * Returns a start address of the newly allocated area, if success.
1017 * Otherwise a vend is returned that indicates failure.
1018 */
1019static __always_inline unsigned long
1020__alloc_vmap_area(unsigned long size, unsigned long align,
cacca6ba 1021 unsigned long vstart, unsigned long vend)
68ad4a33
URS
1022{
1023 unsigned long nva_start_addr;
1024 struct vmap_area *va;
1025 enum fit_type type;
1026 int ret;
1027
1028 va = find_vmap_lowest_match(size, align, vstart);
1029 if (unlikely(!va))
1030 return vend;
1031
1032 if (va->va_start > vstart)
1033 nva_start_addr = ALIGN(va->va_start, align);
1034 else
1035 nva_start_addr = ALIGN(vstart, align);
1036
1037 /* Check the "vend" restriction. */
1038 if (nva_start_addr + size > vend)
1039 return vend;
1040
1041 /* Classify what we have found. */
1042 type = classify_va_fit_type(va, nva_start_addr, size);
1043 if (WARN_ON_ONCE(type == NOTHING_FIT))
1044 return vend;
1045
1046 /* Update the free vmap_area. */
1047 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1048 if (ret)
1049 return vend;
1050
a6cf4e0f
URS
1051#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1052 find_vmap_lowest_match_check(size);
1053#endif
1054
68ad4a33
URS
1055 return nva_start_addr;
1056}
4da56b99 1057
db64fe02
NP
1058/*
1059 * Allocate a region of KVA of the specified size and alignment, within the
1060 * vstart and vend.
1061 */
1062static struct vmap_area *alloc_vmap_area(unsigned long size,
1063 unsigned long align,
1064 unsigned long vstart, unsigned long vend,
1065 int node, gfp_t gfp_mask)
1066{
82dd23e8 1067 struct vmap_area *va, *pva;
1da177e4 1068 unsigned long addr;
db64fe02
NP
1069 int purged = 0;
1070
7766970c 1071 BUG_ON(!size);
891c49ab 1072 BUG_ON(offset_in_page(size));
89699605 1073 BUG_ON(!is_power_of_2(align));
db64fe02 1074
68ad4a33
URS
1075 if (unlikely(!vmap_initialized))
1076 return ERR_PTR(-EBUSY);
1077
5803ed29 1078 might_sleep();
f07116d7 1079 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
4da56b99 1080
f07116d7 1081 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
db64fe02
NP
1082 if (unlikely(!va))
1083 return ERR_PTR(-ENOMEM);
1084
7f88f88f
CM
1085 /*
1086 * Only scan the relevant parts containing pointers to other objects
1087 * to avoid false negatives.
1088 */
f07116d7 1089 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
7f88f88f 1090
db64fe02 1091retry:
82dd23e8 1092 /*
81f1ba58
URS
1093 * Preload this CPU with one extra vmap_area object. It is used
1094 * when fit type of free area is NE_FIT_TYPE. Please note, it
1095 * does not guarantee that an allocation occurs on a CPU that
1096 * is preloaded, instead we minimize the case when it is not.
1097 * It can happen because of cpu migration, because there is a
1098 * race until the below spinlock is taken.
82dd23e8
URS
1099 *
1100 * The preload is done in non-atomic context, thus it allows us
1101 * to use more permissive allocation masks to be more stable under
81f1ba58
URS
1102 * low memory condition and high memory pressure. In rare case,
1103 * if not preloaded, GFP_NOWAIT is used.
82dd23e8 1104 *
81f1ba58 1105 * Set "pva" to NULL here, because of "retry" path.
82dd23e8 1106 */
81f1ba58 1107 pva = NULL;
82dd23e8 1108
81f1ba58
URS
1109 if (!this_cpu_read(ne_fit_preload_node))
1110 /*
1111 * Even if it fails we do not really care about that.
1112 * Just proceed as it is. If needed "overflow" path
1113 * will refill the cache we allocate from.
1114 */
f07116d7 1115 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
82dd23e8 1116
db64fe02 1117 spin_lock(&vmap_area_lock);
81f1ba58
URS
1118
1119 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1120 kmem_cache_free(vmap_area_cachep, pva);
89699605 1121
afd07389 1122 /*
68ad4a33
URS
1123 * If an allocation fails, the "vend" address is
1124 * returned. Therefore trigger the overflow path.
afd07389 1125 */
cacca6ba 1126 addr = __alloc_vmap_area(size, align, vstart, vend);
68ad4a33 1127 if (unlikely(addr == vend))
89699605 1128 goto overflow;
db64fe02
NP
1129
1130 va->va_start = addr;
1131 va->va_end = addr + size;
688fcbfc 1132 va->vm = NULL;
68ad4a33
URS
1133 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1134
db64fe02
NP
1135 spin_unlock(&vmap_area_lock);
1136
61e16557 1137 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1138 BUG_ON(va->va_start < vstart);
1139 BUG_ON(va->va_end > vend);
1140
db64fe02 1141 return va;
89699605
NP
1142
1143overflow:
1144 spin_unlock(&vmap_area_lock);
1145 if (!purged) {
1146 purge_vmap_area_lazy();
1147 purged = 1;
1148 goto retry;
1149 }
4da56b99
CW
1150
1151 if (gfpflags_allow_blocking(gfp_mask)) {
1152 unsigned long freed = 0;
1153 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1154 if (freed > 0) {
1155 purged = 0;
1156 goto retry;
1157 }
1158 }
1159
03497d76 1160 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1161 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1162 size);
68ad4a33
URS
1163
1164 kmem_cache_free(vmap_area_cachep, va);
89699605 1165 return ERR_PTR(-EBUSY);
db64fe02
NP
1166}
1167
4da56b99
CW
1168int register_vmap_purge_notifier(struct notifier_block *nb)
1169{
1170 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1171}
1172EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1173
1174int unregister_vmap_purge_notifier(struct notifier_block *nb)
1175{
1176 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1177}
1178EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1179
db64fe02
NP
1180static void __free_vmap_area(struct vmap_area *va)
1181{
ca23e405 1182 /*
68ad4a33 1183 * Remove from the busy tree/list.
ca23e405 1184 */
68ad4a33 1185 unlink_va(va, &vmap_area_root);
ca23e405 1186
68ad4a33
URS
1187 /*
1188 * Merge VA with its neighbors, otherwise just add it.
1189 */
1190 merge_or_add_vmap_area(va,
1191 &free_vmap_area_root, &free_vmap_area_list);
db64fe02
NP
1192}
1193
1194/*
1195 * Free a region of KVA allocated by alloc_vmap_area
1196 */
1197static void free_vmap_area(struct vmap_area *va)
1198{
1199 spin_lock(&vmap_area_lock);
1200 __free_vmap_area(va);
1201 spin_unlock(&vmap_area_lock);
1202}
1203
1204/*
1205 * Clear the pagetable entries of a given vmap_area
1206 */
1207static void unmap_vmap_area(struct vmap_area *va)
1208{
1209 vunmap_page_range(va->va_start, va->va_end);
1210}
1211
1212/*
1213 * lazy_max_pages is the maximum amount of virtual address space we gather up
1214 * before attempting to purge with a TLB flush.
1215 *
1216 * There is a tradeoff here: a larger number will cover more kernel page tables
1217 * and take slightly longer to purge, but it will linearly reduce the number of
1218 * global TLB flushes that must be performed. It would seem natural to scale
1219 * this number up linearly with the number of CPUs (because vmapping activity
1220 * could also scale linearly with the number of CPUs), however it is likely
1221 * that in practice, workloads might be constrained in other ways that mean
1222 * vmap activity will not scale linearly with CPUs. Also, I want to be
1223 * conservative and not introduce a big latency on huge systems, so go with
1224 * a less aggressive log scale. It will still be an improvement over the old
1225 * code, and it will be simple to change the scale factor if we find that it
1226 * becomes a problem on bigger systems.
1227 */
1228static unsigned long lazy_max_pages(void)
1229{
1230 unsigned int log;
1231
1232 log = fls(num_online_cpus());
1233
1234 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1235}
1236
4d36e6f8 1237static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1238
0574ecd1
CH
1239/*
1240 * Serialize vmap purging. There is no actual criticial section protected
1241 * by this look, but we want to avoid concurrent calls for performance
1242 * reasons and to make the pcpu_get_vm_areas more deterministic.
1243 */
f9e09977 1244static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1245
02b709df
NP
1246/* for per-CPU blocks */
1247static void purge_fragmented_blocks_allcpus(void);
1248
3ee48b6a
CW
1249/*
1250 * called before a call to iounmap() if the caller wants vm_area_struct's
1251 * immediately freed.
1252 */
1253void set_iounmap_nonlazy(void)
1254{
4d36e6f8 1255 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
3ee48b6a
CW
1256}
1257
db64fe02
NP
1258/*
1259 * Purges all lazily-freed vmap areas.
db64fe02 1260 */
0574ecd1 1261static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1262{
4d36e6f8 1263 unsigned long resched_threshold;
80c4bd7a 1264 struct llist_node *valist;
db64fe02 1265 struct vmap_area *va;
cbb76676 1266 struct vmap_area *n_va;
db64fe02 1267
0574ecd1 1268 lockdep_assert_held(&vmap_purge_lock);
02b709df 1269
80c4bd7a 1270 valist = llist_del_all(&vmap_purge_list);
68571be9
URS
1271 if (unlikely(valist == NULL))
1272 return false;
1273
3f8fd02b
JR
1274 /*
1275 * First make sure the mappings are removed from all page-tables
1276 * before they are freed.
1277 */
1278 vmalloc_sync_all();
1279
68571be9
URS
1280 /*
1281 * TODO: to calculate a flush range without looping.
1282 * The list can be up to lazy_max_pages() elements.
1283 */
80c4bd7a 1284 llist_for_each_entry(va, valist, purge_list) {
0574ecd1
CH
1285 if (va->va_start < start)
1286 start = va->va_start;
1287 if (va->va_end > end)
1288 end = va->va_end;
db64fe02 1289 }
db64fe02 1290
0574ecd1 1291 flush_tlb_kernel_range(start, end);
4d36e6f8 1292 resched_threshold = lazy_max_pages() << 1;
db64fe02 1293
0574ecd1 1294 spin_lock(&vmap_area_lock);
763b218d 1295 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
4d36e6f8 1296 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
763b218d 1297
dd3b8353
URS
1298 /*
1299 * Finally insert or merge lazily-freed area. It is
1300 * detached and there is no need to "unlink" it from
1301 * anything.
1302 */
1303 merge_or_add_vmap_area(va,
1304 &free_vmap_area_root, &free_vmap_area_list);
1305
4d36e6f8 1306 atomic_long_sub(nr, &vmap_lazy_nr);
68571be9 1307
4d36e6f8 1308 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
68571be9 1309 cond_resched_lock(&vmap_area_lock);
763b218d 1310 }
0574ecd1
CH
1311 spin_unlock(&vmap_area_lock);
1312 return true;
db64fe02
NP
1313}
1314
496850e5
NP
1315/*
1316 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1317 * is already purging.
1318 */
1319static void try_purge_vmap_area_lazy(void)
1320{
f9e09977 1321 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 1322 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1323 mutex_unlock(&vmap_purge_lock);
0574ecd1 1324 }
496850e5
NP
1325}
1326
db64fe02
NP
1327/*
1328 * Kick off a purge of the outstanding lazy areas.
1329 */
1330static void purge_vmap_area_lazy(void)
1331{
f9e09977 1332 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1333 purge_fragmented_blocks_allcpus();
1334 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1335 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1336}
1337
1338/*
64141da5
JF
1339 * Free a vmap area, caller ensuring that the area has been unmapped
1340 * and flush_cache_vunmap had been called for the correct range
1341 * previously.
db64fe02 1342 */
64141da5 1343static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1344{
4d36e6f8 1345 unsigned long nr_lazy;
80c4bd7a 1346
dd3b8353
URS
1347 spin_lock(&vmap_area_lock);
1348 unlink_va(va, &vmap_area_root);
1349 spin_unlock(&vmap_area_lock);
1350
4d36e6f8
URS
1351 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1352 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a
CW
1353
1354 /* After this point, we may free va at any time */
1355 llist_add(&va->purge_list, &vmap_purge_list);
1356
1357 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 1358 try_purge_vmap_area_lazy();
db64fe02
NP
1359}
1360
b29acbdc
NP
1361/*
1362 * Free and unmap a vmap area
1363 */
1364static void free_unmap_vmap_area(struct vmap_area *va)
1365{
1366 flush_cache_vunmap(va->va_start, va->va_end);
c8eef01e 1367 unmap_vmap_area(va);
82a2e924
CP
1368 if (debug_pagealloc_enabled())
1369 flush_tlb_kernel_range(va->va_start, va->va_end);
1370
c8eef01e 1371 free_vmap_area_noflush(va);
b29acbdc
NP
1372}
1373
db64fe02
NP
1374static struct vmap_area *find_vmap_area(unsigned long addr)
1375{
1376 struct vmap_area *va;
1377
1378 spin_lock(&vmap_area_lock);
1379 va = __find_vmap_area(addr);
1380 spin_unlock(&vmap_area_lock);
1381
1382 return va;
1383}
1384
db64fe02
NP
1385/*** Per cpu kva allocator ***/
1386
1387/*
1388 * vmap space is limited especially on 32 bit architectures. Ensure there is
1389 * room for at least 16 percpu vmap blocks per CPU.
1390 */
1391/*
1392 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1393 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1394 * instead (we just need a rough idea)
1395 */
1396#if BITS_PER_LONG == 32
1397#define VMALLOC_SPACE (128UL*1024*1024)
1398#else
1399#define VMALLOC_SPACE (128UL*1024*1024*1024)
1400#endif
1401
1402#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1403#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1404#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1405#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1406#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1407#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1408#define VMAP_BBMAP_BITS \
1409 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1410 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1411 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1412
1413#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1414
1415struct vmap_block_queue {
1416 spinlock_t lock;
1417 struct list_head free;
db64fe02
NP
1418};
1419
1420struct vmap_block {
1421 spinlock_t lock;
1422 struct vmap_area *va;
db64fe02 1423 unsigned long free, dirty;
7d61bfe8 1424 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1425 struct list_head free_list;
1426 struct rcu_head rcu_head;
02b709df 1427 struct list_head purge;
db64fe02
NP
1428};
1429
1430/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1431static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1432
1433/*
1434 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1435 * in the free path. Could get rid of this if we change the API to return a
1436 * "cookie" from alloc, to be passed to free. But no big deal yet.
1437 */
1438static DEFINE_SPINLOCK(vmap_block_tree_lock);
1439static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1440
1441/*
1442 * We should probably have a fallback mechanism to allocate virtual memory
1443 * out of partially filled vmap blocks. However vmap block sizing should be
1444 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1445 * big problem.
1446 */
1447
1448static unsigned long addr_to_vb_idx(unsigned long addr)
1449{
1450 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1451 addr /= VMAP_BLOCK_SIZE;
1452 return addr;
1453}
1454
cf725ce2
RP
1455static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1456{
1457 unsigned long addr;
1458
1459 addr = va_start + (pages_off << PAGE_SHIFT);
1460 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1461 return (void *)addr;
1462}
1463
1464/**
1465 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1466 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1467 * @order: how many 2^order pages should be occupied in newly allocated block
1468 * @gfp_mask: flags for the page level allocator
1469 *
a862f68a 1470 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1471 */
1472static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1473{
1474 struct vmap_block_queue *vbq;
1475 struct vmap_block *vb;
1476 struct vmap_area *va;
1477 unsigned long vb_idx;
1478 int node, err;
cf725ce2 1479 void *vaddr;
db64fe02
NP
1480
1481 node = numa_node_id();
1482
1483 vb = kmalloc_node(sizeof(struct vmap_block),
1484 gfp_mask & GFP_RECLAIM_MASK, node);
1485 if (unlikely(!vb))
1486 return ERR_PTR(-ENOMEM);
1487
1488 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1489 VMALLOC_START, VMALLOC_END,
1490 node, gfp_mask);
ddf9c6d4 1491 if (IS_ERR(va)) {
db64fe02 1492 kfree(vb);
e7d86340 1493 return ERR_CAST(va);
db64fe02
NP
1494 }
1495
1496 err = radix_tree_preload(gfp_mask);
1497 if (unlikely(err)) {
1498 kfree(vb);
1499 free_vmap_area(va);
1500 return ERR_PTR(err);
1501 }
1502
cf725ce2 1503 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1504 spin_lock_init(&vb->lock);
1505 vb->va = va;
cf725ce2
RP
1506 /* At least something should be left free */
1507 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1508 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 1509 vb->dirty = 0;
7d61bfe8
RP
1510 vb->dirty_min = VMAP_BBMAP_BITS;
1511 vb->dirty_max = 0;
db64fe02 1512 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
1513
1514 vb_idx = addr_to_vb_idx(va->va_start);
1515 spin_lock(&vmap_block_tree_lock);
1516 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1517 spin_unlock(&vmap_block_tree_lock);
1518 BUG_ON(err);
1519 radix_tree_preload_end();
1520
1521 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 1522 spin_lock(&vbq->lock);
68ac546f 1523 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 1524 spin_unlock(&vbq->lock);
3f04ba85 1525 put_cpu_var(vmap_block_queue);
db64fe02 1526
cf725ce2 1527 return vaddr;
db64fe02
NP
1528}
1529
db64fe02
NP
1530static void free_vmap_block(struct vmap_block *vb)
1531{
1532 struct vmap_block *tmp;
1533 unsigned long vb_idx;
1534
db64fe02
NP
1535 vb_idx = addr_to_vb_idx(vb->va->va_start);
1536 spin_lock(&vmap_block_tree_lock);
1537 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1538 spin_unlock(&vmap_block_tree_lock);
1539 BUG_ON(tmp != vb);
1540
64141da5 1541 free_vmap_area_noflush(vb->va);
22a3c7d1 1542 kfree_rcu(vb, rcu_head);
db64fe02
NP
1543}
1544
02b709df
NP
1545static void purge_fragmented_blocks(int cpu)
1546{
1547 LIST_HEAD(purge);
1548 struct vmap_block *vb;
1549 struct vmap_block *n_vb;
1550 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1551
1552 rcu_read_lock();
1553 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1554
1555 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1556 continue;
1557
1558 spin_lock(&vb->lock);
1559 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1560 vb->free = 0; /* prevent further allocs after releasing lock */
1561 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
1562 vb->dirty_min = 0;
1563 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
1564 spin_lock(&vbq->lock);
1565 list_del_rcu(&vb->free_list);
1566 spin_unlock(&vbq->lock);
1567 spin_unlock(&vb->lock);
1568 list_add_tail(&vb->purge, &purge);
1569 } else
1570 spin_unlock(&vb->lock);
1571 }
1572 rcu_read_unlock();
1573
1574 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1575 list_del(&vb->purge);
1576 free_vmap_block(vb);
1577 }
1578}
1579
02b709df
NP
1580static void purge_fragmented_blocks_allcpus(void)
1581{
1582 int cpu;
1583
1584 for_each_possible_cpu(cpu)
1585 purge_fragmented_blocks(cpu);
1586}
1587
db64fe02
NP
1588static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1589{
1590 struct vmap_block_queue *vbq;
1591 struct vmap_block *vb;
cf725ce2 1592 void *vaddr = NULL;
db64fe02
NP
1593 unsigned int order;
1594
891c49ab 1595 BUG_ON(offset_in_page(size));
db64fe02 1596 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
1597 if (WARN_ON(size == 0)) {
1598 /*
1599 * Allocating 0 bytes isn't what caller wants since
1600 * get_order(0) returns funny result. Just warn and terminate
1601 * early.
1602 */
1603 return NULL;
1604 }
db64fe02
NP
1605 order = get_order(size);
1606
db64fe02
NP
1607 rcu_read_lock();
1608 vbq = &get_cpu_var(vmap_block_queue);
1609 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 1610 unsigned long pages_off;
db64fe02
NP
1611
1612 spin_lock(&vb->lock);
cf725ce2
RP
1613 if (vb->free < (1UL << order)) {
1614 spin_unlock(&vb->lock);
1615 continue;
1616 }
02b709df 1617
cf725ce2
RP
1618 pages_off = VMAP_BBMAP_BITS - vb->free;
1619 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
1620 vb->free -= 1UL << order;
1621 if (vb->free == 0) {
1622 spin_lock(&vbq->lock);
1623 list_del_rcu(&vb->free_list);
1624 spin_unlock(&vbq->lock);
1625 }
cf725ce2 1626
02b709df
NP
1627 spin_unlock(&vb->lock);
1628 break;
db64fe02 1629 }
02b709df 1630
3f04ba85 1631 put_cpu_var(vmap_block_queue);
db64fe02
NP
1632 rcu_read_unlock();
1633
cf725ce2
RP
1634 /* Allocate new block if nothing was found */
1635 if (!vaddr)
1636 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 1637
cf725ce2 1638 return vaddr;
db64fe02
NP
1639}
1640
1641static void vb_free(const void *addr, unsigned long size)
1642{
1643 unsigned long offset;
1644 unsigned long vb_idx;
1645 unsigned int order;
1646 struct vmap_block *vb;
1647
891c49ab 1648 BUG_ON(offset_in_page(size));
db64fe02 1649 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
1650
1651 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1652
db64fe02
NP
1653 order = get_order(size);
1654
1655 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
7d61bfe8 1656 offset >>= PAGE_SHIFT;
db64fe02
NP
1657
1658 vb_idx = addr_to_vb_idx((unsigned long)addr);
1659 rcu_read_lock();
1660 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1661 rcu_read_unlock();
1662 BUG_ON(!vb);
1663
64141da5
JF
1664 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1665
82a2e924
CP
1666 if (debug_pagealloc_enabled())
1667 flush_tlb_kernel_range((unsigned long)addr,
1668 (unsigned long)addr + size);
1669
db64fe02 1670 spin_lock(&vb->lock);
7d61bfe8
RP
1671
1672 /* Expand dirty range */
1673 vb->dirty_min = min(vb->dirty_min, offset);
1674 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1675
db64fe02
NP
1676 vb->dirty += 1UL << order;
1677 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1678 BUG_ON(vb->free);
db64fe02
NP
1679 spin_unlock(&vb->lock);
1680 free_vmap_block(vb);
1681 } else
1682 spin_unlock(&vb->lock);
1683}
1684
868b104d 1685static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 1686{
db64fe02 1687 int cpu;
db64fe02 1688
9b463334
JF
1689 if (unlikely(!vmap_initialized))
1690 return;
1691
5803ed29
CH
1692 might_sleep();
1693
db64fe02
NP
1694 for_each_possible_cpu(cpu) {
1695 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1696 struct vmap_block *vb;
1697
1698 rcu_read_lock();
1699 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1700 spin_lock(&vb->lock);
7d61bfe8
RP
1701 if (vb->dirty) {
1702 unsigned long va_start = vb->va->va_start;
db64fe02 1703 unsigned long s, e;
b136be5e 1704
7d61bfe8
RP
1705 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1706 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1707
7d61bfe8
RP
1708 start = min(s, start);
1709 end = max(e, end);
db64fe02 1710
7d61bfe8 1711 flush = 1;
db64fe02
NP
1712 }
1713 spin_unlock(&vb->lock);
1714 }
1715 rcu_read_unlock();
1716 }
1717
f9e09977 1718 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1719 purge_fragmented_blocks_allcpus();
1720 if (!__purge_vmap_area_lazy(start, end) && flush)
1721 flush_tlb_kernel_range(start, end);
f9e09977 1722 mutex_unlock(&vmap_purge_lock);
db64fe02 1723}
868b104d
RE
1724
1725/**
1726 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1727 *
1728 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1729 * to amortize TLB flushing overheads. What this means is that any page you
1730 * have now, may, in a former life, have been mapped into kernel virtual
1731 * address by the vmap layer and so there might be some CPUs with TLB entries
1732 * still referencing that page (additional to the regular 1:1 kernel mapping).
1733 *
1734 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1735 * be sure that none of the pages we have control over will have any aliases
1736 * from the vmap layer.
1737 */
1738void vm_unmap_aliases(void)
1739{
1740 unsigned long start = ULONG_MAX, end = 0;
1741 int flush = 0;
1742
1743 _vm_unmap_aliases(start, end, flush);
1744}
db64fe02
NP
1745EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1746
1747/**
1748 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1749 * @mem: the pointer returned by vm_map_ram
1750 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1751 */
1752void vm_unmap_ram(const void *mem, unsigned int count)
1753{
65ee03c4 1754 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 1755 unsigned long addr = (unsigned long)mem;
9c3acf60 1756 struct vmap_area *va;
db64fe02 1757
5803ed29 1758 might_sleep();
db64fe02
NP
1759 BUG_ON(!addr);
1760 BUG_ON(addr < VMALLOC_START);
1761 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 1762 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 1763
9c3acf60 1764 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 1765 debug_check_no_locks_freed(mem, size);
db64fe02 1766 vb_free(mem, size);
9c3acf60
CH
1767 return;
1768 }
1769
1770 va = find_vmap_area(addr);
1771 BUG_ON(!va);
05e3ff95
CP
1772 debug_check_no_locks_freed((void *)va->va_start,
1773 (va->va_end - va->va_start));
9c3acf60 1774 free_unmap_vmap_area(va);
db64fe02
NP
1775}
1776EXPORT_SYMBOL(vm_unmap_ram);
1777
1778/**
1779 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1780 * @pages: an array of pointers to the pages to be mapped
1781 * @count: number of pages
1782 * @node: prefer to allocate data structures on this node
1783 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad 1784 *
36437638
GK
1785 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1786 * faster than vmap so it's good. But if you mix long-life and short-life
1787 * objects with vm_map_ram(), it could consume lots of address space through
1788 * fragmentation (especially on a 32bit machine). You could see failures in
1789 * the end. Please use this function for short-lived objects.
1790 *
e99c97ad 1791 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1792 */
1793void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1794{
65ee03c4 1795 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1796 unsigned long addr;
1797 void *mem;
1798
1799 if (likely(count <= VMAP_MAX_ALLOC)) {
1800 mem = vb_alloc(size, GFP_KERNEL);
1801 if (IS_ERR(mem))
1802 return NULL;
1803 addr = (unsigned long)mem;
1804 } else {
1805 struct vmap_area *va;
1806 va = alloc_vmap_area(size, PAGE_SIZE,
1807 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1808 if (IS_ERR(va))
1809 return NULL;
1810
1811 addr = va->va_start;
1812 mem = (void *)addr;
1813 }
1814 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1815 vm_unmap_ram(mem, count);
1816 return NULL;
1817 }
1818 return mem;
1819}
1820EXPORT_SYMBOL(vm_map_ram);
1821
4341fa45 1822static struct vm_struct *vmlist __initdata;
92eac168 1823
be9b7335
NP
1824/**
1825 * vm_area_add_early - add vmap area early during boot
1826 * @vm: vm_struct to add
1827 *
1828 * This function is used to add fixed kernel vm area to vmlist before
1829 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1830 * should contain proper values and the other fields should be zero.
1831 *
1832 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1833 */
1834void __init vm_area_add_early(struct vm_struct *vm)
1835{
1836 struct vm_struct *tmp, **p;
1837
1838 BUG_ON(vmap_initialized);
1839 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1840 if (tmp->addr >= vm->addr) {
1841 BUG_ON(tmp->addr < vm->addr + vm->size);
1842 break;
1843 } else
1844 BUG_ON(tmp->addr + tmp->size > vm->addr);
1845 }
1846 vm->next = *p;
1847 *p = vm;
1848}
1849
f0aa6617
TH
1850/**
1851 * vm_area_register_early - register vmap area early during boot
1852 * @vm: vm_struct to register
c0c0a293 1853 * @align: requested alignment
f0aa6617
TH
1854 *
1855 * This function is used to register kernel vm area before
1856 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1857 * proper values on entry and other fields should be zero. On return,
1858 * vm->addr contains the allocated address.
1859 *
1860 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1861 */
c0c0a293 1862void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1863{
1864 static size_t vm_init_off __initdata;
c0c0a293
TH
1865 unsigned long addr;
1866
1867 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1868 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1869
c0c0a293 1870 vm->addr = (void *)addr;
f0aa6617 1871
be9b7335 1872 vm_area_add_early(vm);
f0aa6617
TH
1873}
1874
68ad4a33
URS
1875static void vmap_init_free_space(void)
1876{
1877 unsigned long vmap_start = 1;
1878 const unsigned long vmap_end = ULONG_MAX;
1879 struct vmap_area *busy, *free;
1880
1881 /*
1882 * B F B B B F
1883 * -|-----|.....|-----|-----|-----|.....|-
1884 * | The KVA space |
1885 * |<--------------------------------->|
1886 */
1887 list_for_each_entry(busy, &vmap_area_list, list) {
1888 if (busy->va_start - vmap_start > 0) {
1889 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1890 if (!WARN_ON_ONCE(!free)) {
1891 free->va_start = vmap_start;
1892 free->va_end = busy->va_start;
1893
1894 insert_vmap_area_augment(free, NULL,
1895 &free_vmap_area_root,
1896 &free_vmap_area_list);
1897 }
1898 }
1899
1900 vmap_start = busy->va_end;
1901 }
1902
1903 if (vmap_end - vmap_start > 0) {
1904 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1905 if (!WARN_ON_ONCE(!free)) {
1906 free->va_start = vmap_start;
1907 free->va_end = vmap_end;
1908
1909 insert_vmap_area_augment(free, NULL,
1910 &free_vmap_area_root,
1911 &free_vmap_area_list);
1912 }
1913 }
1914}
1915
db64fe02
NP
1916void __init vmalloc_init(void)
1917{
822c18f2
IK
1918 struct vmap_area *va;
1919 struct vm_struct *tmp;
db64fe02
NP
1920 int i;
1921
68ad4a33
URS
1922 /*
1923 * Create the cache for vmap_area objects.
1924 */
1925 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1926
db64fe02
NP
1927 for_each_possible_cpu(i) {
1928 struct vmap_block_queue *vbq;
32fcfd40 1929 struct vfree_deferred *p;
db64fe02
NP
1930
1931 vbq = &per_cpu(vmap_block_queue, i);
1932 spin_lock_init(&vbq->lock);
1933 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1934 p = &per_cpu(vfree_deferred, i);
1935 init_llist_head(&p->list);
1936 INIT_WORK(&p->wq, free_work);
db64fe02 1937 }
9b463334 1938
822c18f2
IK
1939 /* Import existing vmlist entries. */
1940 for (tmp = vmlist; tmp; tmp = tmp->next) {
68ad4a33
URS
1941 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1942 if (WARN_ON_ONCE(!va))
1943 continue;
1944
822c18f2
IK
1945 va->va_start = (unsigned long)tmp->addr;
1946 va->va_end = va->va_start + tmp->size;
dbda591d 1947 va->vm = tmp;
68ad4a33 1948 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
822c18f2 1949 }
ca23e405 1950
68ad4a33
URS
1951 /*
1952 * Now we can initialize a free vmap space.
1953 */
1954 vmap_init_free_space();
9b463334 1955 vmap_initialized = true;
db64fe02
NP
1956}
1957
8fc48985
TH
1958/**
1959 * map_kernel_range_noflush - map kernel VM area with the specified pages
1960 * @addr: start of the VM area to map
1961 * @size: size of the VM area to map
1962 * @prot: page protection flags to use
1963 * @pages: pages to map
1964 *
1965 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1966 * specify should have been allocated using get_vm_area() and its
1967 * friends.
1968 *
1969 * NOTE:
1970 * This function does NOT do any cache flushing. The caller is
1971 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1972 * before calling this function.
1973 *
1974 * RETURNS:
1975 * The number of pages mapped on success, -errno on failure.
1976 */
1977int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1978 pgprot_t prot, struct page **pages)
1979{
1980 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1981}
1982
1983/**
1984 * unmap_kernel_range_noflush - unmap kernel VM area
1985 * @addr: start of the VM area to unmap
1986 * @size: size of the VM area to unmap
1987 *
1988 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1989 * specify should have been allocated using get_vm_area() and its
1990 * friends.
1991 *
1992 * NOTE:
1993 * This function does NOT do any cache flushing. The caller is
1994 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1995 * before calling this function and flush_tlb_kernel_range() after.
1996 */
1997void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1998{
1999 vunmap_page_range(addr, addr + size);
2000}
81e88fdc 2001EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
2002
2003/**
2004 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2005 * @addr: start of the VM area to unmap
2006 * @size: size of the VM area to unmap
2007 *
2008 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2009 * the unmapping and tlb after.
2010 */
db64fe02
NP
2011void unmap_kernel_range(unsigned long addr, unsigned long size)
2012{
2013 unsigned long end = addr + size;
f6fcba70
TH
2014
2015 flush_cache_vunmap(addr, end);
db64fe02
NP
2016 vunmap_page_range(addr, end);
2017 flush_tlb_kernel_range(addr, end);
2018}
93ef6d6c 2019EXPORT_SYMBOL_GPL(unmap_kernel_range);
db64fe02 2020
f6f8ed47 2021int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
db64fe02
NP
2022{
2023 unsigned long addr = (unsigned long)area->addr;
762216ab 2024 unsigned long end = addr + get_vm_area_size(area);
db64fe02
NP
2025 int err;
2026
f6f8ed47 2027 err = vmap_page_range(addr, end, prot, pages);
db64fe02 2028
f6f8ed47 2029 return err > 0 ? 0 : err;
db64fe02
NP
2030}
2031EXPORT_SYMBOL_GPL(map_vm_area);
2032
f5252e00 2033static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 2034 unsigned long flags, const void *caller)
cf88c790 2035{
c69480ad 2036 spin_lock(&vmap_area_lock);
cf88c790
TH
2037 vm->flags = flags;
2038 vm->addr = (void *)va->va_start;
2039 vm->size = va->va_end - va->va_start;
2040 vm->caller = caller;
db1aecaf 2041 va->vm = vm;
c69480ad 2042 spin_unlock(&vmap_area_lock);
f5252e00 2043}
cf88c790 2044
20fc02b4 2045static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2046{
d4033afd 2047 /*
20fc02b4 2048 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2049 * we should make sure that vm has proper values.
2050 * Pair with smp_rmb() in show_numa_info().
2051 */
2052 smp_wmb();
20fc02b4 2053 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2054}
2055
db64fe02 2056static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 2057 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 2058 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 2059{
0006526d 2060 struct vmap_area *va;
db64fe02 2061 struct vm_struct *area;
1da177e4 2062
52fd24ca 2063 BUG_ON(in_interrupt());
1da177e4 2064 size = PAGE_ALIGN(size);
31be8309
OH
2065 if (unlikely(!size))
2066 return NULL;
1da177e4 2067
252e5c6e 2068 if (flags & VM_IOREMAP)
2069 align = 1ul << clamp_t(int, get_count_order_long(size),
2070 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2071
cf88c790 2072 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2073 if (unlikely(!area))
2074 return NULL;
2075
71394fe5
AR
2076 if (!(flags & VM_NO_GUARD))
2077 size += PAGE_SIZE;
1da177e4 2078
db64fe02
NP
2079 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2080 if (IS_ERR(va)) {
2081 kfree(area);
2082 return NULL;
1da177e4 2083 }
1da177e4 2084
d82b1d85 2085 setup_vmalloc_vm(area, va, flags, caller);
f5252e00 2086
1da177e4 2087 return area;
1da177e4
LT
2088}
2089
930fc45a
CL
2090struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2091 unsigned long start, unsigned long end)
2092{
00ef2d2f
DR
2093 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2094 GFP_KERNEL, __builtin_return_address(0));
930fc45a 2095}
5992b6da 2096EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 2097
c2968612
BH
2098struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2099 unsigned long start, unsigned long end,
5e6cafc8 2100 const void *caller)
c2968612 2101{
00ef2d2f
DR
2102 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2103 GFP_KERNEL, caller);
c2968612
BH
2104}
2105
1da177e4 2106/**
92eac168
MR
2107 * get_vm_area - reserve a contiguous kernel virtual area
2108 * @size: size of the area
2109 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2110 *
92eac168
MR
2111 * Search an area of @size in the kernel virtual mapping area,
2112 * and reserved it for out purposes. Returns the area descriptor
2113 * on success or %NULL on failure.
a862f68a
MR
2114 *
2115 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2116 */
2117struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2118{
2dca6999 2119 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2120 NUMA_NO_NODE, GFP_KERNEL,
2121 __builtin_return_address(0));
23016969
CL
2122}
2123
2124struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2125 const void *caller)
23016969 2126{
2dca6999 2127 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 2128 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2129}
2130
e9da6e99 2131/**
92eac168
MR
2132 * find_vm_area - find a continuous kernel virtual area
2133 * @addr: base address
e9da6e99 2134 *
92eac168
MR
2135 * Search for the kernel VM area starting at @addr, and return it.
2136 * It is up to the caller to do all required locking to keep the returned
2137 * pointer valid.
a862f68a
MR
2138 *
2139 * Return: pointer to the found area or %NULL on faulure
e9da6e99
MS
2140 */
2141struct vm_struct *find_vm_area(const void *addr)
83342314 2142{
db64fe02 2143 struct vmap_area *va;
83342314 2144
db64fe02 2145 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
2146 if (!va)
2147 return NULL;
1da177e4 2148
688fcbfc 2149 return va->vm;
1da177e4
LT
2150}
2151
7856dfeb 2152/**
92eac168
MR
2153 * remove_vm_area - find and remove a continuous kernel virtual area
2154 * @addr: base address
7856dfeb 2155 *
92eac168
MR
2156 * Search for the kernel VM area starting at @addr, and remove it.
2157 * This function returns the found VM area, but using it is NOT safe
2158 * on SMP machines, except for its size or flags.
a862f68a
MR
2159 *
2160 * Return: pointer to the found area or %NULL on faulure
7856dfeb 2161 */
b3bdda02 2162struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2163{
db64fe02
NP
2164 struct vmap_area *va;
2165
5803ed29
CH
2166 might_sleep();
2167
dd3b8353
URS
2168 spin_lock(&vmap_area_lock);
2169 va = __find_vmap_area((unsigned long)addr);
688fcbfc 2170 if (va && va->vm) {
db1aecaf 2171 struct vm_struct *vm = va->vm;
f5252e00 2172
c69480ad 2173 va->vm = NULL;
c69480ad
JK
2174 spin_unlock(&vmap_area_lock);
2175
a5af5aa8 2176 kasan_free_shadow(vm);
dd32c279 2177 free_unmap_vmap_area(va);
dd32c279 2178
db64fe02
NP
2179 return vm;
2180 }
dd3b8353
URS
2181
2182 spin_unlock(&vmap_area_lock);
db64fe02 2183 return NULL;
7856dfeb
AK
2184}
2185
868b104d
RE
2186static inline void set_area_direct_map(const struct vm_struct *area,
2187 int (*set_direct_map)(struct page *page))
2188{
2189 int i;
2190
2191 for (i = 0; i < area->nr_pages; i++)
2192 if (page_address(area->pages[i]))
2193 set_direct_map(area->pages[i]);
2194}
2195
2196/* Handle removing and resetting vm mappings related to the vm_struct. */
2197static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2198{
868b104d
RE
2199 unsigned long start = ULONG_MAX, end = 0;
2200 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
31e67340 2201 int flush_dmap = 0;
868b104d
RE
2202 int i;
2203
868b104d
RE
2204 remove_vm_area(area->addr);
2205
2206 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2207 if (!flush_reset)
2208 return;
2209
2210 /*
2211 * If not deallocating pages, just do the flush of the VM area and
2212 * return.
2213 */
2214 if (!deallocate_pages) {
2215 vm_unmap_aliases();
2216 return;
2217 }
2218
2219 /*
2220 * If execution gets here, flush the vm mapping and reset the direct
2221 * map. Find the start and end range of the direct mappings to make sure
2222 * the vm_unmap_aliases() flush includes the direct map.
2223 */
2224 for (i = 0; i < area->nr_pages; i++) {
8e41f872
RE
2225 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2226 if (addr) {
868b104d 2227 start = min(addr, start);
8e41f872 2228 end = max(addr + PAGE_SIZE, end);
31e67340 2229 flush_dmap = 1;
868b104d
RE
2230 }
2231 }
2232
2233 /*
2234 * Set direct map to something invalid so that it won't be cached if
2235 * there are any accesses after the TLB flush, then flush the TLB and
2236 * reset the direct map permissions to the default.
2237 */
2238 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2239 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2240 set_area_direct_map(area, set_direct_map_default_noflush);
2241}
2242
b3bdda02 2243static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
2244{
2245 struct vm_struct *area;
2246
2247 if (!addr)
2248 return;
2249
e69e9d4a 2250 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 2251 addr))
1da177e4 2252 return;
1da177e4 2253
6ade2032 2254 area = find_vm_area(addr);
1da177e4 2255 if (unlikely(!area)) {
4c8573e2 2256 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 2257 addr);
1da177e4
LT
2258 return;
2259 }
2260
05e3ff95
CP
2261 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2262 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 2263
868b104d
RE
2264 vm_remove_mappings(area, deallocate_pages);
2265
1da177e4
LT
2266 if (deallocate_pages) {
2267 int i;
2268
2269 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2270 struct page *page = area->pages[i];
2271
2272 BUG_ON(!page);
4949148a 2273 __free_pages(page, 0);
1da177e4 2274 }
97105f0a 2275 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2276
244d63ee 2277 kvfree(area->pages);
1da177e4
LT
2278 }
2279
2280 kfree(area);
2281 return;
2282}
bf22e37a
AR
2283
2284static inline void __vfree_deferred(const void *addr)
2285{
2286 /*
2287 * Use raw_cpu_ptr() because this can be called from preemptible
2288 * context. Preemption is absolutely fine here, because the llist_add()
2289 * implementation is lockless, so it works even if we are adding to
2290 * nother cpu's list. schedule_work() should be fine with this too.
2291 */
2292 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2293
2294 if (llist_add((struct llist_node *)addr, &p->list))
2295 schedule_work(&p->wq);
2296}
2297
2298/**
92eac168
MR
2299 * vfree_atomic - release memory allocated by vmalloc()
2300 * @addr: memory base address
bf22e37a 2301 *
92eac168
MR
2302 * This one is just like vfree() but can be called in any atomic context
2303 * except NMIs.
bf22e37a
AR
2304 */
2305void vfree_atomic(const void *addr)
2306{
2307 BUG_ON(in_nmi());
2308
2309 kmemleak_free(addr);
2310
2311 if (!addr)
2312 return;
2313 __vfree_deferred(addr);
2314}
2315
c67dc624
RP
2316static void __vfree(const void *addr)
2317{
2318 if (unlikely(in_interrupt()))
2319 __vfree_deferred(addr);
2320 else
2321 __vunmap(addr, 1);
2322}
2323
1da177e4 2324/**
92eac168
MR
2325 * vfree - release memory allocated by vmalloc()
2326 * @addr: memory base address
1da177e4 2327 *
92eac168
MR
2328 * Free the virtually continuous memory area starting at @addr, as
2329 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2330 * NULL, no operation is performed.
1da177e4 2331 *
92eac168
MR
2332 * Must not be called in NMI context (strictly speaking, only if we don't
2333 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2334 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51 2335 *
92eac168 2336 * May sleep if called *not* from interrupt context.
3ca4ea3a 2337 *
92eac168 2338 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1da177e4 2339 */
b3bdda02 2340void vfree(const void *addr)
1da177e4 2341{
32fcfd40 2342 BUG_ON(in_nmi());
89219d37
CM
2343
2344 kmemleak_free(addr);
2345
a8dda165
AR
2346 might_sleep_if(!in_interrupt());
2347
32fcfd40
AV
2348 if (!addr)
2349 return;
c67dc624
RP
2350
2351 __vfree(addr);
1da177e4 2352}
1da177e4
LT
2353EXPORT_SYMBOL(vfree);
2354
2355/**
92eac168
MR
2356 * vunmap - release virtual mapping obtained by vmap()
2357 * @addr: memory base address
1da177e4 2358 *
92eac168
MR
2359 * Free the virtually contiguous memory area starting at @addr,
2360 * which was created from the page array passed to vmap().
1da177e4 2361 *
92eac168 2362 * Must not be called in interrupt context.
1da177e4 2363 */
b3bdda02 2364void vunmap(const void *addr)
1da177e4
LT
2365{
2366 BUG_ON(in_interrupt());
34754b69 2367 might_sleep();
32fcfd40
AV
2368 if (addr)
2369 __vunmap(addr, 0);
1da177e4 2370}
1da177e4
LT
2371EXPORT_SYMBOL(vunmap);
2372
2373/**
92eac168
MR
2374 * vmap - map an array of pages into virtually contiguous space
2375 * @pages: array of page pointers
2376 * @count: number of pages to map
2377 * @flags: vm_area->flags
2378 * @prot: page protection for the mapping
2379 *
2380 * Maps @count pages from @pages into contiguous kernel virtual
2381 * space.
a862f68a
MR
2382 *
2383 * Return: the address of the area or %NULL on failure
1da177e4
LT
2384 */
2385void *vmap(struct page **pages, unsigned int count,
92eac168 2386 unsigned long flags, pgprot_t prot)
1da177e4
LT
2387{
2388 struct vm_struct *area;
65ee03c4 2389 unsigned long size; /* In bytes */
1da177e4 2390
34754b69
PZ
2391 might_sleep();
2392
ca79b0c2 2393 if (count > totalram_pages())
1da177e4
LT
2394 return NULL;
2395
65ee03c4
GJM
2396 size = (unsigned long)count << PAGE_SHIFT;
2397 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2398 if (!area)
2399 return NULL;
23016969 2400
f6f8ed47 2401 if (map_vm_area(area, prot, pages)) {
1da177e4
LT
2402 vunmap(area->addr);
2403 return NULL;
2404 }
2405
2406 return area->addr;
2407}
1da177e4
LT
2408EXPORT_SYMBOL(vmap);
2409
8594a21c
MH
2410static void *__vmalloc_node(unsigned long size, unsigned long align,
2411 gfp_t gfp_mask, pgprot_t prot,
2412 int node, const void *caller);
e31d9eb5 2413static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 2414 pgprot_t prot, int node)
1da177e4
LT
2415{
2416 struct page **pages;
2417 unsigned int nr_pages, array_size, i;
930f036b 2418 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
704b862f
LA
2419 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2420 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2421 0 :
2422 __GFP_HIGHMEM;
1da177e4 2423
762216ab 2424 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
2425 array_size = (nr_pages * sizeof(struct page *));
2426
1da177e4 2427 /* Please note that the recursion is strictly bounded. */
8757d5fa 2428 if (array_size > PAGE_SIZE) {
704b862f 2429 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
3722e13c 2430 PAGE_KERNEL, node, area->caller);
286e1ea3 2431 } else {
976d6dfb 2432 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 2433 }
7ea36242
AK
2434
2435 if (!pages) {
1da177e4
LT
2436 remove_vm_area(area->addr);
2437 kfree(area);
2438 return NULL;
2439 }
1da177e4 2440
7ea36242
AK
2441 area->pages = pages;
2442 area->nr_pages = nr_pages;
2443
1da177e4 2444 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2445 struct page *page;
2446
4b90951c 2447 if (node == NUMA_NO_NODE)
704b862f 2448 page = alloc_page(alloc_mask|highmem_mask);
930fc45a 2449 else
704b862f 2450 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
bf53d6f8
CL
2451
2452 if (unlikely(!page)) {
1da177e4
LT
2453 /* Successfully allocated i pages, free them in __vunmap() */
2454 area->nr_pages = i;
97105f0a 2455 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4
LT
2456 goto fail;
2457 }
bf53d6f8 2458 area->pages[i] = page;
dcf61ff0 2459 if (gfpflags_allow_blocking(gfp_mask))
660654f9 2460 cond_resched();
1da177e4 2461 }
97105f0a 2462 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2463
f6f8ed47 2464 if (map_vm_area(area, prot, pages))
1da177e4
LT
2465 goto fail;
2466 return area->addr;
2467
2468fail:
a8e99259 2469 warn_alloc(gfp_mask, NULL,
7877cdcc 2470 "vmalloc: allocation failure, allocated %ld of %ld bytes",
22943ab1 2471 (area->nr_pages*PAGE_SIZE), area->size);
c67dc624 2472 __vfree(area->addr);
1da177e4
LT
2473 return NULL;
2474}
2475
2476/**
92eac168
MR
2477 * __vmalloc_node_range - allocate virtually contiguous memory
2478 * @size: allocation size
2479 * @align: desired alignment
2480 * @start: vm area range start
2481 * @end: vm area range end
2482 * @gfp_mask: flags for the page level allocator
2483 * @prot: protection mask for the allocated pages
2484 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2485 * @node: node to use for allocation or NUMA_NO_NODE
2486 * @caller: caller's return address
2487 *
2488 * Allocate enough pages to cover @size from the page level
2489 * allocator with @gfp_mask flags. Map them into contiguous
2490 * kernel virtual space, using a pagetable protection of @prot.
a862f68a
MR
2491 *
2492 * Return: the address of the area or %NULL on failure
1da177e4 2493 */
d0a21265
DR
2494void *__vmalloc_node_range(unsigned long size, unsigned long align,
2495 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
2496 pgprot_t prot, unsigned long vm_flags, int node,
2497 const void *caller)
1da177e4
LT
2498{
2499 struct vm_struct *area;
89219d37
CM
2500 void *addr;
2501 unsigned long real_size = size;
1da177e4
LT
2502
2503 size = PAGE_ALIGN(size);
ca79b0c2 2504 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
de7d2b56 2505 goto fail;
1da177e4 2506
cb9e3c29
AR
2507 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2508 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 2509 if (!area)
de7d2b56 2510 goto fail;
1da177e4 2511
3722e13c 2512 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 2513 if (!addr)
b82225f3 2514 return NULL;
89219d37 2515
f5252e00 2516 /*
20fc02b4
ZY
2517 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2518 * flag. It means that vm_struct is not fully initialized.
4341fa45 2519 * Now, it is fully initialized, so remove this flag here.
f5252e00 2520 */
20fc02b4 2521 clear_vm_uninitialized_flag(area);
f5252e00 2522
94f4a161 2523 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
2524
2525 return addr;
de7d2b56
JP
2526
2527fail:
a8e99259 2528 warn_alloc(gfp_mask, NULL,
7877cdcc 2529 "vmalloc: allocation failure: %lu bytes", real_size);
de7d2b56 2530 return NULL;
1da177e4
LT
2531}
2532
153178ed
URS
2533/*
2534 * This is only for performance analysis of vmalloc and stress purpose.
2535 * It is required by vmalloc test module, therefore do not use it other
2536 * than that.
2537 */
2538#ifdef CONFIG_TEST_VMALLOC_MODULE
2539EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2540#endif
2541
d0a21265 2542/**
92eac168
MR
2543 * __vmalloc_node - allocate virtually contiguous memory
2544 * @size: allocation size
2545 * @align: desired alignment
2546 * @gfp_mask: flags for the page level allocator
2547 * @prot: protection mask for the allocated pages
2548 * @node: node to use for allocation or NUMA_NO_NODE
2549 * @caller: caller's return address
a7c3e901 2550 *
92eac168
MR
2551 * Allocate enough pages to cover @size from the page level
2552 * allocator with @gfp_mask flags. Map them into contiguous
2553 * kernel virtual space, using a pagetable protection of @prot.
a7c3e901 2554 *
92eac168
MR
2555 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2556 * and __GFP_NOFAIL are not supported
a7c3e901 2557 *
92eac168
MR
2558 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2559 * with mm people.
a862f68a
MR
2560 *
2561 * Return: pointer to the allocated memory or %NULL on error
d0a21265 2562 */
8594a21c 2563static void *__vmalloc_node(unsigned long size, unsigned long align,
d0a21265 2564 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 2565 int node, const void *caller)
d0a21265
DR
2566{
2567 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
cb9e3c29 2568 gfp_mask, prot, 0, node, caller);
d0a21265
DR
2569}
2570
930fc45a
CL
2571void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2572{
00ef2d2f 2573 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 2574 __builtin_return_address(0));
930fc45a 2575}
1da177e4
LT
2576EXPORT_SYMBOL(__vmalloc);
2577
8594a21c
MH
2578static inline void *__vmalloc_node_flags(unsigned long size,
2579 int node, gfp_t flags)
2580{
2581 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2582 node, __builtin_return_address(0));
2583}
2584
2585
2586void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2587 void *caller)
2588{
2589 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2590}
2591
1da177e4 2592/**
92eac168
MR
2593 * vmalloc - allocate virtually contiguous memory
2594 * @size: allocation size
2595 *
2596 * Allocate enough pages to cover @size from the page level
2597 * allocator and map them into contiguous kernel virtual space.
1da177e4 2598 *
92eac168
MR
2599 * For tight control over page level allocator and protection flags
2600 * use __vmalloc() instead.
a862f68a
MR
2601 *
2602 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2603 */
2604void *vmalloc(unsigned long size)
2605{
00ef2d2f 2606 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 2607 GFP_KERNEL);
1da177e4 2608}
1da177e4
LT
2609EXPORT_SYMBOL(vmalloc);
2610
e1ca7788 2611/**
92eac168
MR
2612 * vzalloc - allocate virtually contiguous memory with zero fill
2613 * @size: allocation size
2614 *
2615 * Allocate enough pages to cover @size from the page level
2616 * allocator and map them into contiguous kernel virtual space.
2617 * The memory allocated is set to zero.
2618 *
2619 * For tight control over page level allocator and protection flags
2620 * use __vmalloc() instead.
a862f68a
MR
2621 *
2622 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2623 */
2624void *vzalloc(unsigned long size)
2625{
00ef2d2f 2626 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 2627 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
2628}
2629EXPORT_SYMBOL(vzalloc);
2630
83342314 2631/**
ead04089
REB
2632 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2633 * @size: allocation size
83342314 2634 *
ead04089
REB
2635 * The resulting memory area is zeroed so it can be mapped to userspace
2636 * without leaking data.
a862f68a
MR
2637 *
2638 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2639 */
2640void *vmalloc_user(unsigned long size)
2641{
bc84c535
RP
2642 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2643 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2644 VM_USERMAP, NUMA_NO_NODE,
2645 __builtin_return_address(0));
83342314
NP
2646}
2647EXPORT_SYMBOL(vmalloc_user);
2648
930fc45a 2649/**
92eac168
MR
2650 * vmalloc_node - allocate memory on a specific node
2651 * @size: allocation size
2652 * @node: numa node
930fc45a 2653 *
92eac168
MR
2654 * Allocate enough pages to cover @size from the page level
2655 * allocator and map them into contiguous kernel virtual space.
930fc45a 2656 *
92eac168
MR
2657 * For tight control over page level allocator and protection flags
2658 * use __vmalloc() instead.
a862f68a
MR
2659 *
2660 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
2661 */
2662void *vmalloc_node(unsigned long size, int node)
2663{
19809c2d 2664 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
23016969 2665 node, __builtin_return_address(0));
930fc45a
CL
2666}
2667EXPORT_SYMBOL(vmalloc_node);
2668
e1ca7788
DY
2669/**
2670 * vzalloc_node - allocate memory on a specific node with zero fill
2671 * @size: allocation size
2672 * @node: numa node
2673 *
2674 * Allocate enough pages to cover @size from the page level
2675 * allocator and map them into contiguous kernel virtual space.
2676 * The memory allocated is set to zero.
2677 *
2678 * For tight control over page level allocator and protection flags
2679 * use __vmalloc_node() instead.
a862f68a
MR
2680 *
2681 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2682 */
2683void *vzalloc_node(unsigned long size, int node)
2684{
2685 return __vmalloc_node_flags(size, node,
19809c2d 2686 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
2687}
2688EXPORT_SYMBOL(vzalloc_node);
2689
fc970227
AN
2690/**
2691 * vmalloc_user_node_flags - allocate memory for userspace on a specific node
2692 * @size: allocation size
2693 * @node: numa node
2694 * @flags: flags for the page level allocator
2695 *
2696 * The resulting memory area is zeroed so it can be mapped to userspace
2697 * without leaking data.
2698 *
2699 * Return: pointer to the allocated memory or %NULL on error
2700 */
2701void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
2702{
2703 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2704 flags | __GFP_ZERO, PAGE_KERNEL,
2705 VM_USERMAP, node,
2706 __builtin_return_address(0));
2707}
2708EXPORT_SYMBOL(vmalloc_user_node_flags);
2709
1da177e4 2710/**
92eac168
MR
2711 * vmalloc_exec - allocate virtually contiguous, executable memory
2712 * @size: allocation size
1da177e4 2713 *
92eac168
MR
2714 * Kernel-internal function to allocate enough pages to cover @size
2715 * the page level allocator and map them into contiguous and
2716 * executable kernel virtual space.
1da177e4 2717 *
92eac168
MR
2718 * For tight control over page level allocator and protection flags
2719 * use __vmalloc() instead.
a862f68a
MR
2720 *
2721 * Return: pointer to the allocated memory or %NULL on error
1da177e4 2722 */
1da177e4
LT
2723void *vmalloc_exec(unsigned long size)
2724{
868b104d
RE
2725 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2726 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2727 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
2728}
2729
0d08e0d3 2730#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 2731#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 2732#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 2733#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 2734#else
698d0831
MH
2735/*
2736 * 64b systems should always have either DMA or DMA32 zones. For others
2737 * GFP_DMA32 should do the right thing and use the normal zone.
2738 */
2739#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3
AK
2740#endif
2741
1da177e4 2742/**
92eac168
MR
2743 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2744 * @size: allocation size
1da177e4 2745 *
92eac168
MR
2746 * Allocate enough 32bit PA addressable pages to cover @size from the
2747 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
2748 *
2749 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2750 */
2751void *vmalloc_32(unsigned long size)
2752{
2dca6999 2753 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 2754 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 2755}
1da177e4
LT
2756EXPORT_SYMBOL(vmalloc_32);
2757
83342314 2758/**
ead04089 2759 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 2760 * @size: allocation size
ead04089
REB
2761 *
2762 * The resulting memory area is 32bit addressable and zeroed so it can be
2763 * mapped to userspace without leaking data.
a862f68a
MR
2764 *
2765 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2766 */
2767void *vmalloc_32_user(unsigned long size)
2768{
bc84c535
RP
2769 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2770 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2771 VM_USERMAP, NUMA_NO_NODE,
2772 __builtin_return_address(0));
83342314
NP
2773}
2774EXPORT_SYMBOL(vmalloc_32_user);
2775
d0107eb0
KH
2776/*
2777 * small helper routine , copy contents to buf from addr.
2778 * If the page is not present, fill zero.
2779 */
2780
2781static int aligned_vread(char *buf, char *addr, unsigned long count)
2782{
2783 struct page *p;
2784 int copied = 0;
2785
2786 while (count) {
2787 unsigned long offset, length;
2788
891c49ab 2789 offset = offset_in_page(addr);
d0107eb0
KH
2790 length = PAGE_SIZE - offset;
2791 if (length > count)
2792 length = count;
2793 p = vmalloc_to_page(addr);
2794 /*
2795 * To do safe access to this _mapped_ area, we need
2796 * lock. But adding lock here means that we need to add
2797 * overhead of vmalloc()/vfree() calles for this _debug_
2798 * interface, rarely used. Instead of that, we'll use
2799 * kmap() and get small overhead in this access function.
2800 */
2801 if (p) {
2802 /*
2803 * we can expect USER0 is not used (see vread/vwrite's
2804 * function description)
2805 */
9b04c5fe 2806 void *map = kmap_atomic(p);
d0107eb0 2807 memcpy(buf, map + offset, length);
9b04c5fe 2808 kunmap_atomic(map);
d0107eb0
KH
2809 } else
2810 memset(buf, 0, length);
2811
2812 addr += length;
2813 buf += length;
2814 copied += length;
2815 count -= length;
2816 }
2817 return copied;
2818}
2819
2820static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2821{
2822 struct page *p;
2823 int copied = 0;
2824
2825 while (count) {
2826 unsigned long offset, length;
2827
891c49ab 2828 offset = offset_in_page(addr);
d0107eb0
KH
2829 length = PAGE_SIZE - offset;
2830 if (length > count)
2831 length = count;
2832 p = vmalloc_to_page(addr);
2833 /*
2834 * To do safe access to this _mapped_ area, we need
2835 * lock. But adding lock here means that we need to add
2836 * overhead of vmalloc()/vfree() calles for this _debug_
2837 * interface, rarely used. Instead of that, we'll use
2838 * kmap() and get small overhead in this access function.
2839 */
2840 if (p) {
2841 /*
2842 * we can expect USER0 is not used (see vread/vwrite's
2843 * function description)
2844 */
9b04c5fe 2845 void *map = kmap_atomic(p);
d0107eb0 2846 memcpy(map + offset, buf, length);
9b04c5fe 2847 kunmap_atomic(map);
d0107eb0
KH
2848 }
2849 addr += length;
2850 buf += length;
2851 copied += length;
2852 count -= length;
2853 }
2854 return copied;
2855}
2856
2857/**
92eac168
MR
2858 * vread() - read vmalloc area in a safe way.
2859 * @buf: buffer for reading data
2860 * @addr: vm address.
2861 * @count: number of bytes to be read.
2862 *
92eac168
MR
2863 * This function checks that addr is a valid vmalloc'ed area, and
2864 * copy data from that area to a given buffer. If the given memory range
2865 * of [addr...addr+count) includes some valid address, data is copied to
2866 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2867 * IOREMAP area is treated as memory hole and no copy is done.
2868 *
2869 * If [addr...addr+count) doesn't includes any intersects with alive
2870 * vm_struct area, returns 0. @buf should be kernel's buffer.
2871 *
2872 * Note: In usual ops, vread() is never necessary because the caller
2873 * should know vmalloc() area is valid and can use memcpy().
2874 * This is for routines which have to access vmalloc area without
d9009d67 2875 * any information, as /dev/kmem.
a862f68a
MR
2876 *
2877 * Return: number of bytes for which addr and buf should be increased
2878 * (same number as @count) or %0 if [addr...addr+count) doesn't
2879 * include any intersection with valid vmalloc area
d0107eb0 2880 */
1da177e4
LT
2881long vread(char *buf, char *addr, unsigned long count)
2882{
e81ce85f
JK
2883 struct vmap_area *va;
2884 struct vm_struct *vm;
1da177e4 2885 char *vaddr, *buf_start = buf;
d0107eb0 2886 unsigned long buflen = count;
1da177e4
LT
2887 unsigned long n;
2888
2889 /* Don't allow overflow */
2890 if ((unsigned long) addr + count < count)
2891 count = -(unsigned long) addr;
2892
e81ce85f
JK
2893 spin_lock(&vmap_area_lock);
2894 list_for_each_entry(va, &vmap_area_list, list) {
2895 if (!count)
2896 break;
2897
688fcbfc 2898 if (!va->vm)
e81ce85f
JK
2899 continue;
2900
2901 vm = va->vm;
2902 vaddr = (char *) vm->addr;
762216ab 2903 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2904 continue;
2905 while (addr < vaddr) {
2906 if (count == 0)
2907 goto finished;
2908 *buf = '\0';
2909 buf++;
2910 addr++;
2911 count--;
2912 }
762216ab 2913 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2914 if (n > count)
2915 n = count;
e81ce85f 2916 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2917 aligned_vread(buf, addr, n);
2918 else /* IOREMAP area is treated as memory hole */
2919 memset(buf, 0, n);
2920 buf += n;
2921 addr += n;
2922 count -= n;
1da177e4
LT
2923 }
2924finished:
e81ce85f 2925 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2926
2927 if (buf == buf_start)
2928 return 0;
2929 /* zero-fill memory holes */
2930 if (buf != buf_start + buflen)
2931 memset(buf, 0, buflen - (buf - buf_start));
2932
2933 return buflen;
1da177e4
LT
2934}
2935
d0107eb0 2936/**
92eac168
MR
2937 * vwrite() - write vmalloc area in a safe way.
2938 * @buf: buffer for source data
2939 * @addr: vm address.
2940 * @count: number of bytes to be read.
2941 *
92eac168
MR
2942 * This function checks that addr is a valid vmalloc'ed area, and
2943 * copy data from a buffer to the given addr. If specified range of
2944 * [addr...addr+count) includes some valid address, data is copied from
2945 * proper area of @buf. If there are memory holes, no copy to hole.
2946 * IOREMAP area is treated as memory hole and no copy is done.
2947 *
2948 * If [addr...addr+count) doesn't includes any intersects with alive
2949 * vm_struct area, returns 0. @buf should be kernel's buffer.
2950 *
2951 * Note: In usual ops, vwrite() is never necessary because the caller
2952 * should know vmalloc() area is valid and can use memcpy().
2953 * This is for routines which have to access vmalloc area without
d9009d67 2954 * any information, as /dev/kmem.
a862f68a
MR
2955 *
2956 * Return: number of bytes for which addr and buf should be
2957 * increased (same number as @count) or %0 if [addr...addr+count)
2958 * doesn't include any intersection with valid vmalloc area
d0107eb0 2959 */
1da177e4
LT
2960long vwrite(char *buf, char *addr, unsigned long count)
2961{
e81ce85f
JK
2962 struct vmap_area *va;
2963 struct vm_struct *vm;
d0107eb0
KH
2964 char *vaddr;
2965 unsigned long n, buflen;
2966 int copied = 0;
1da177e4
LT
2967
2968 /* Don't allow overflow */
2969 if ((unsigned long) addr + count < count)
2970 count = -(unsigned long) addr;
d0107eb0 2971 buflen = count;
1da177e4 2972
e81ce85f
JK
2973 spin_lock(&vmap_area_lock);
2974 list_for_each_entry(va, &vmap_area_list, list) {
2975 if (!count)
2976 break;
2977
688fcbfc 2978 if (!va->vm)
e81ce85f
JK
2979 continue;
2980
2981 vm = va->vm;
2982 vaddr = (char *) vm->addr;
762216ab 2983 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2984 continue;
2985 while (addr < vaddr) {
2986 if (count == 0)
2987 goto finished;
2988 buf++;
2989 addr++;
2990 count--;
2991 }
762216ab 2992 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2993 if (n > count)
2994 n = count;
e81ce85f 2995 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2996 aligned_vwrite(buf, addr, n);
2997 copied++;
2998 }
2999 buf += n;
3000 addr += n;
3001 count -= n;
1da177e4
LT
3002 }
3003finished:
e81ce85f 3004 spin_unlock(&vmap_area_lock);
d0107eb0
KH
3005 if (!copied)
3006 return 0;
3007 return buflen;
1da177e4 3008}
83342314
NP
3009
3010/**
92eac168
MR
3011 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3012 * @vma: vma to cover
3013 * @uaddr: target user address to start at
3014 * @kaddr: virtual address of vmalloc kernel memory
3015 * @size: size of map area
7682486b 3016 *
92eac168 3017 * Returns: 0 for success, -Exxx on failure
83342314 3018 *
92eac168
MR
3019 * This function checks that @kaddr is a valid vmalloc'ed area,
3020 * and that it is big enough to cover the range starting at
3021 * @uaddr in @vma. Will return failure if that criteria isn't
3022 * met.
83342314 3023 *
92eac168 3024 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 3025 */
e69e9d4a
HD
3026int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3027 void *kaddr, unsigned long size)
83342314
NP
3028{
3029 struct vm_struct *area;
83342314 3030
e69e9d4a
HD
3031 size = PAGE_ALIGN(size);
3032
3033 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
3034 return -EINVAL;
3035
e69e9d4a 3036 area = find_vm_area(kaddr);
83342314 3037 if (!area)
db64fe02 3038 return -EINVAL;
83342314 3039
fe9041c2 3040 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 3041 return -EINVAL;
83342314 3042
401592d2 3043 if (kaddr + size > area->addr + get_vm_area_size(area))
db64fe02 3044 return -EINVAL;
83342314 3045
83342314 3046 do {
e69e9d4a 3047 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
3048 int ret;
3049
83342314
NP
3050 ret = vm_insert_page(vma, uaddr, page);
3051 if (ret)
3052 return ret;
3053
3054 uaddr += PAGE_SIZE;
e69e9d4a
HD
3055 kaddr += PAGE_SIZE;
3056 size -= PAGE_SIZE;
3057 } while (size > 0);
83342314 3058
314e51b9 3059 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 3060
db64fe02 3061 return 0;
83342314 3062}
e69e9d4a
HD
3063EXPORT_SYMBOL(remap_vmalloc_range_partial);
3064
3065/**
92eac168
MR
3066 * remap_vmalloc_range - map vmalloc pages to userspace
3067 * @vma: vma to cover (map full range of vma)
3068 * @addr: vmalloc memory
3069 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3070 *
92eac168 3071 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3072 *
92eac168
MR
3073 * This function checks that addr is a valid vmalloc'ed area, and
3074 * that it is big enough to cover the vma. Will return failure if
3075 * that criteria isn't met.
e69e9d4a 3076 *
92eac168 3077 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3078 */
3079int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3080 unsigned long pgoff)
3081{
3082 return remap_vmalloc_range_partial(vma, vma->vm_start,
3083 addr + (pgoff << PAGE_SHIFT),
3084 vma->vm_end - vma->vm_start);
3085}
83342314
NP
3086EXPORT_SYMBOL(remap_vmalloc_range);
3087
1eeb66a1
CH
3088/*
3089 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3090 * have one.
3f8fd02b
JR
3091 *
3092 * The purpose of this function is to make sure the vmalloc area
3093 * mappings are identical in all page-tables in the system.
1eeb66a1 3094 */
3b32123d 3095void __weak vmalloc_sync_all(void)
1eeb66a1
CH
3096{
3097}
5f4352fb
JF
3098
3099
8b1e0f81 3100static int f(pte_t *pte, unsigned long addr, void *data)
5f4352fb 3101{
cd12909c
DV
3102 pte_t ***p = data;
3103
3104 if (p) {
3105 *(*p) = pte;
3106 (*p)++;
3107 }
5f4352fb
JF
3108 return 0;
3109}
3110
3111/**
92eac168
MR
3112 * alloc_vm_area - allocate a range of kernel address space
3113 * @size: size of the area
3114 * @ptes: returns the PTEs for the address space
7682486b 3115 *
92eac168 3116 * Returns: NULL on failure, vm_struct on success
5f4352fb 3117 *
92eac168
MR
3118 * This function reserves a range of kernel address space, and
3119 * allocates pagetables to map that range. No actual mappings
3120 * are created.
cd12909c 3121 *
92eac168
MR
3122 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3123 * allocated for the VM area are returned.
5f4352fb 3124 */
cd12909c 3125struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
3126{
3127 struct vm_struct *area;
3128
23016969
CL
3129 area = get_vm_area_caller(size, VM_IOREMAP,
3130 __builtin_return_address(0));
5f4352fb
JF
3131 if (area == NULL)
3132 return NULL;
3133
3134 /*
3135 * This ensures that page tables are constructed for this region
3136 * of kernel virtual address space and mapped into init_mm.
3137 */
3138 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 3139 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
3140 free_vm_area(area);
3141 return NULL;
3142 }
3143
5f4352fb
JF
3144 return area;
3145}
3146EXPORT_SYMBOL_GPL(alloc_vm_area);
3147
3148void free_vm_area(struct vm_struct *area)
3149{
3150 struct vm_struct *ret;
3151 ret = remove_vm_area(area->addr);
3152 BUG_ON(ret != area);
3153 kfree(area);
3154}
3155EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3156
4f8b02b4 3157#ifdef CONFIG_SMP
ca23e405
TH
3158static struct vmap_area *node_to_va(struct rb_node *n)
3159{
4583e773 3160 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3161}
3162
3163/**
68ad4a33
URS
3164 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3165 * @addr: target address
ca23e405 3166 *
68ad4a33
URS
3167 * Returns: vmap_area if it is found. If there is no such area
3168 * the first highest(reverse order) vmap_area is returned
3169 * i.e. va->va_start < addr && va->va_end < addr or NULL
3170 * if there are no any areas before @addr.
ca23e405 3171 */
68ad4a33
URS
3172static struct vmap_area *
3173pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3174{
68ad4a33
URS
3175 struct vmap_area *va, *tmp;
3176 struct rb_node *n;
3177
3178 n = free_vmap_area_root.rb_node;
3179 va = NULL;
ca23e405
TH
3180
3181 while (n) {
68ad4a33
URS
3182 tmp = rb_entry(n, struct vmap_area, rb_node);
3183 if (tmp->va_start <= addr) {
3184 va = tmp;
3185 if (tmp->va_end >= addr)
3186 break;
3187
ca23e405 3188 n = n->rb_right;
68ad4a33
URS
3189 } else {
3190 n = n->rb_left;
3191 }
ca23e405
TH
3192 }
3193
68ad4a33 3194 return va;
ca23e405
TH
3195}
3196
3197/**
68ad4a33
URS
3198 * pvm_determine_end_from_reverse - find the highest aligned address
3199 * of free block below VMALLOC_END
3200 * @va:
3201 * in - the VA we start the search(reverse order);
3202 * out - the VA with the highest aligned end address.
ca23e405 3203 *
68ad4a33 3204 * Returns: determined end address within vmap_area
ca23e405 3205 */
68ad4a33
URS
3206static unsigned long
3207pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3208{
68ad4a33 3209 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3210 unsigned long addr;
3211
68ad4a33
URS
3212 if (likely(*va)) {
3213 list_for_each_entry_from_reverse((*va),
3214 &free_vmap_area_list, list) {
3215 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3216 if ((*va)->va_start < addr)
3217 return addr;
3218 }
ca23e405
TH
3219 }
3220
68ad4a33 3221 return 0;
ca23e405
TH
3222}
3223
3224/**
3225 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3226 * @offsets: array containing offset of each area
3227 * @sizes: array containing size of each area
3228 * @nr_vms: the number of areas to allocate
3229 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3230 *
3231 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3232 * vm_structs on success, %NULL on failure
3233 *
3234 * Percpu allocator wants to use congruent vm areas so that it can
3235 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3236 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3237 * be scattered pretty far, distance between two areas easily going up
3238 * to gigabytes. To avoid interacting with regular vmallocs, these
3239 * areas are allocated from top.
ca23e405 3240 *
68ad4a33
URS
3241 * Despite its complicated look, this allocator is rather simple. It
3242 * does everything top-down and scans free blocks from the end looking
3243 * for matching base. While scanning, if any of the areas do not fit the
3244 * base address is pulled down to fit the area. Scanning is repeated till
3245 * all the areas fit and then all necessary data structures are inserted
3246 * and the result is returned.
ca23e405
TH
3247 */
3248struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3249 const size_t *sizes, int nr_vms,
ec3f64fc 3250 size_t align)
ca23e405
TH
3251{
3252 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3253 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3254 struct vmap_area **vas, *va;
ca23e405
TH
3255 struct vm_struct **vms;
3256 int area, area2, last_area, term_area;
68ad4a33 3257 unsigned long base, start, size, end, last_end;
ca23e405 3258 bool purged = false;
68ad4a33 3259 enum fit_type type;
ca23e405 3260
ca23e405 3261 /* verify parameters and allocate data structures */
891c49ab 3262 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3263 for (last_area = 0, area = 0; area < nr_vms; area++) {
3264 start = offsets[area];
3265 end = start + sizes[area];
3266
3267 /* is everything aligned properly? */
3268 BUG_ON(!IS_ALIGNED(offsets[area], align));
3269 BUG_ON(!IS_ALIGNED(sizes[area], align));
3270
3271 /* detect the area with the highest address */
3272 if (start > offsets[last_area])
3273 last_area = area;
3274
c568da28 3275 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3276 unsigned long start2 = offsets[area2];
3277 unsigned long end2 = start2 + sizes[area2];
3278
c568da28 3279 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3280 }
3281 }
3282 last_end = offsets[last_area] + sizes[last_area];
3283
3284 if (vmalloc_end - vmalloc_start < last_end) {
3285 WARN_ON(true);
3286 return NULL;
3287 }
3288
4d67d860
TM
3289 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3290 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3291 if (!vas || !vms)
f1db7afd 3292 goto err_free2;
ca23e405
TH
3293
3294 for (area = 0; area < nr_vms; area++) {
68ad4a33 3295 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3296 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3297 if (!vas[area] || !vms[area])
3298 goto err_free;
3299 }
3300retry:
3301 spin_lock(&vmap_area_lock);
3302
3303 /* start scanning - we scan from the top, begin with the last area */
3304 area = term_area = last_area;
3305 start = offsets[area];
3306 end = start + sizes[area];
3307
68ad4a33
URS
3308 va = pvm_find_va_enclose_addr(vmalloc_end);
3309 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3310
3311 while (true) {
ca23e405
TH
3312 /*
3313 * base might have underflowed, add last_end before
3314 * comparing.
3315 */
68ad4a33
URS
3316 if (base + last_end < vmalloc_start + last_end)
3317 goto overflow;
ca23e405
TH
3318
3319 /*
68ad4a33 3320 * Fitting base has not been found.
ca23e405 3321 */
68ad4a33
URS
3322 if (va == NULL)
3323 goto overflow;
ca23e405 3324
5336e52c
KS
3325 /*
3326 * If required width exeeds current VA block, move
3327 * base downwards and then recheck.
3328 */
3329 if (base + end > va->va_end) {
3330 base = pvm_determine_end_from_reverse(&va, align) - end;
3331 term_area = area;
3332 continue;
3333 }
3334
ca23e405 3335 /*
68ad4a33 3336 * If this VA does not fit, move base downwards and recheck.
ca23e405 3337 */
5336e52c 3338 if (base + start < va->va_start) {
68ad4a33
URS
3339 va = node_to_va(rb_prev(&va->rb_node));
3340 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3341 term_area = area;
3342 continue;
3343 }
3344
3345 /*
3346 * This area fits, move on to the previous one. If
3347 * the previous one is the terminal one, we're done.
3348 */
3349 area = (area + nr_vms - 1) % nr_vms;
3350 if (area == term_area)
3351 break;
68ad4a33 3352
ca23e405
TH
3353 start = offsets[area];
3354 end = start + sizes[area];
68ad4a33 3355 va = pvm_find_va_enclose_addr(base + end);
ca23e405 3356 }
68ad4a33 3357
ca23e405
TH
3358 /* we've found a fitting base, insert all va's */
3359 for (area = 0; area < nr_vms; area++) {
68ad4a33 3360 int ret;
ca23e405 3361
68ad4a33
URS
3362 start = base + offsets[area];
3363 size = sizes[area];
ca23e405 3364
68ad4a33
URS
3365 va = pvm_find_va_enclose_addr(start);
3366 if (WARN_ON_ONCE(va == NULL))
3367 /* It is a BUG(), but trigger recovery instead. */
3368 goto recovery;
3369
3370 type = classify_va_fit_type(va, start, size);
3371 if (WARN_ON_ONCE(type == NOTHING_FIT))
3372 /* It is a BUG(), but trigger recovery instead. */
3373 goto recovery;
3374
3375 ret = adjust_va_to_fit_type(va, start, size, type);
3376 if (unlikely(ret))
3377 goto recovery;
3378
3379 /* Allocated area. */
3380 va = vas[area];
3381 va->va_start = start;
3382 va->va_end = start + size;
3383
3384 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
3385 }
ca23e405
TH
3386
3387 spin_unlock(&vmap_area_lock);
3388
3389 /* insert all vm's */
3390 for (area = 0; area < nr_vms; area++)
3645cb4a
ZY
3391 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
3392 pcpu_get_vm_areas);
ca23e405
TH
3393
3394 kfree(vas);
3395 return vms;
3396
68ad4a33
URS
3397recovery:
3398 /* Remove previously inserted areas. */
3399 while (area--) {
3400 __free_vmap_area(vas[area]);
3401 vas[area] = NULL;
3402 }
3403
3404overflow:
3405 spin_unlock(&vmap_area_lock);
3406 if (!purged) {
3407 purge_vmap_area_lazy();
3408 purged = true;
3409
3410 /* Before "retry", check if we recover. */
3411 for (area = 0; area < nr_vms; area++) {
3412 if (vas[area])
3413 continue;
3414
3415 vas[area] = kmem_cache_zalloc(
3416 vmap_area_cachep, GFP_KERNEL);
3417 if (!vas[area])
3418 goto err_free;
3419 }
3420
3421 goto retry;
3422 }
3423
ca23e405
TH
3424err_free:
3425 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
3426 if (vas[area])
3427 kmem_cache_free(vmap_area_cachep, vas[area]);
3428
f1db7afd 3429 kfree(vms[area]);
ca23e405 3430 }
f1db7afd 3431err_free2:
ca23e405
TH
3432 kfree(vas);
3433 kfree(vms);
3434 return NULL;
3435}
3436
3437/**
3438 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3439 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3440 * @nr_vms: the number of allocated areas
3441 *
3442 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3443 */
3444void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3445{
3446 int i;
3447
3448 for (i = 0; i < nr_vms; i++)
3449 free_vm_area(vms[i]);
3450 kfree(vms);
3451}
4f8b02b4 3452#endif /* CONFIG_SMP */
a10aa579
CL
3453
3454#ifdef CONFIG_PROC_FS
3455static void *s_start(struct seq_file *m, loff_t *pos)
d4033afd 3456 __acquires(&vmap_area_lock)
a10aa579 3457{
d4033afd 3458 spin_lock(&vmap_area_lock);
3f500069 3459 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
3460}
3461
3462static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3463{
3f500069 3464 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
3465}
3466
3467static void s_stop(struct seq_file *m, void *p)
d4033afd 3468 __releases(&vmap_area_lock)
a10aa579 3469{
d4033afd 3470 spin_unlock(&vmap_area_lock);
a10aa579
CL
3471}
3472
a47a126a
ED
3473static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3474{
e5adfffc 3475 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
3476 unsigned int nr, *counters = m->private;
3477
3478 if (!counters)
3479 return;
3480
af12346c
WL
3481 if (v->flags & VM_UNINITIALIZED)
3482 return;
7e5b528b
DV
3483 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3484 smp_rmb();
af12346c 3485
a47a126a
ED
3486 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3487
3488 for (nr = 0; nr < v->nr_pages; nr++)
3489 counters[page_to_nid(v->pages[nr])]++;
3490
3491 for_each_node_state(nr, N_HIGH_MEMORY)
3492 if (counters[nr])
3493 seq_printf(m, " N%u=%u", nr, counters[nr]);
3494 }
3495}
3496
dd3b8353
URS
3497static void show_purge_info(struct seq_file *m)
3498{
3499 struct llist_node *head;
3500 struct vmap_area *va;
3501
3502 head = READ_ONCE(vmap_purge_list.first);
3503 if (head == NULL)
3504 return;
3505
3506 llist_for_each_entry(va, head, purge_list) {
3507 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3508 (void *)va->va_start, (void *)va->va_end,
3509 va->va_end - va->va_start);
3510 }
3511}
3512
a10aa579
CL
3513static int s_show(struct seq_file *m, void *p)
3514{
3f500069 3515 struct vmap_area *va;
d4033afd
JK
3516 struct vm_struct *v;
3517
3f500069 3518 va = list_entry(p, struct vmap_area, list);
3519
c2ce8c14 3520 /*
688fcbfc
PL
3521 * s_show can encounter race with remove_vm_area, !vm on behalf
3522 * of vmap area is being tear down or vm_map_ram allocation.
c2ce8c14 3523 */
688fcbfc 3524 if (!va->vm) {
dd3b8353 3525 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
78c72746 3526 (void *)va->va_start, (void *)va->va_end,
dd3b8353 3527 va->va_end - va->va_start);
78c72746 3528
d4033afd 3529 return 0;
78c72746 3530 }
d4033afd
JK
3531
3532 v = va->vm;
a10aa579 3533
45ec1690 3534 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
3535 v->addr, v->addr + v->size, v->size);
3536
62c70bce
JP
3537 if (v->caller)
3538 seq_printf(m, " %pS", v->caller);
23016969 3539
a10aa579
CL
3540 if (v->nr_pages)
3541 seq_printf(m, " pages=%d", v->nr_pages);
3542
3543 if (v->phys_addr)
199eaa05 3544 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
3545
3546 if (v->flags & VM_IOREMAP)
f4527c90 3547 seq_puts(m, " ioremap");
a10aa579
CL
3548
3549 if (v->flags & VM_ALLOC)
f4527c90 3550 seq_puts(m, " vmalloc");
a10aa579
CL
3551
3552 if (v->flags & VM_MAP)
f4527c90 3553 seq_puts(m, " vmap");
a10aa579
CL
3554
3555 if (v->flags & VM_USERMAP)
f4527c90 3556 seq_puts(m, " user");
a10aa579 3557
fe9041c2
CH
3558 if (v->flags & VM_DMA_COHERENT)
3559 seq_puts(m, " dma-coherent");
3560
244d63ee 3561 if (is_vmalloc_addr(v->pages))
f4527c90 3562 seq_puts(m, " vpages");
a10aa579 3563
a47a126a 3564 show_numa_info(m, v);
a10aa579 3565 seq_putc(m, '\n');
dd3b8353
URS
3566
3567 /*
3568 * As a final step, dump "unpurged" areas. Note,
3569 * that entire "/proc/vmallocinfo" output will not
3570 * be address sorted, because the purge list is not
3571 * sorted.
3572 */
3573 if (list_is_last(&va->list, &vmap_area_list))
3574 show_purge_info(m);
3575
a10aa579
CL
3576 return 0;
3577}
3578
5f6a6a9c 3579static const struct seq_operations vmalloc_op = {
a10aa579
CL
3580 .start = s_start,
3581 .next = s_next,
3582 .stop = s_stop,
3583 .show = s_show,
3584};
5f6a6a9c 3585
5f6a6a9c
AD
3586static int __init proc_vmalloc_init(void)
3587{
fddda2b7 3588 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 3589 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
3590 &vmalloc_op,
3591 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 3592 else
0825a6f9 3593 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
3594 return 0;
3595}
3596module_init(proc_vmalloc_init);
db3808c1 3597
a10aa579 3598#endif