]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmalloc.c
mm: remove free_unmap_vmap_area_addr()
[mirror_ubuntu-zesty-kernel.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
d43c36dc 15#include <linux/sched.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
3ac7fe5a 21#include <linux/debugobjects.h>
23016969 22#include <linux/kallsyms.h>
db64fe02 23#include <linux/list.h>
4da56b99 24#include <linux/notifier.h>
db64fe02
NP
25#include <linux/rbtree.h>
26#include <linux/radix-tree.h>
27#include <linux/rcupdate.h>
f0aa6617 28#include <linux/pfn.h>
89219d37 29#include <linux/kmemleak.h>
60063497 30#include <linux/atomic.h>
3b32123d 31#include <linux/compiler.h>
32fcfd40 32#include <linux/llist.h>
0f616be1 33#include <linux/bitops.h>
3b32123d 34
1da177e4
LT
35#include <asm/uaccess.h>
36#include <asm/tlbflush.h>
2dca6999 37#include <asm/shmparam.h>
1da177e4 38
dd56b046
MG
39#include "internal.h"
40
32fcfd40
AV
41struct vfree_deferred {
42 struct llist_head list;
43 struct work_struct wq;
44};
45static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46
47static void __vunmap(const void *, int);
48
49static void free_work(struct work_struct *w)
50{
51 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 struct llist_node *llnode = llist_del_all(&p->list);
53 while (llnode) {
54 void *p = llnode;
55 llnode = llist_next(llnode);
56 __vunmap(p, 1);
57 }
58}
59
db64fe02 60/*** Page table manipulation functions ***/
b221385b 61
1da177e4
LT
62static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
63{
64 pte_t *pte;
65
66 pte = pte_offset_kernel(pmd, addr);
67 do {
68 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
69 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
70 } while (pte++, addr += PAGE_SIZE, addr != end);
71}
72
db64fe02 73static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
74{
75 pmd_t *pmd;
76 unsigned long next;
77
78 pmd = pmd_offset(pud, addr);
79 do {
80 next = pmd_addr_end(addr, end);
b9820d8f
TK
81 if (pmd_clear_huge(pmd))
82 continue;
1da177e4
LT
83 if (pmd_none_or_clear_bad(pmd))
84 continue;
85 vunmap_pte_range(pmd, addr, next);
86 } while (pmd++, addr = next, addr != end);
87}
88
db64fe02 89static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
1da177e4
LT
90{
91 pud_t *pud;
92 unsigned long next;
93
94 pud = pud_offset(pgd, addr);
95 do {
96 next = pud_addr_end(addr, end);
b9820d8f
TK
97 if (pud_clear_huge(pud))
98 continue;
1da177e4
LT
99 if (pud_none_or_clear_bad(pud))
100 continue;
101 vunmap_pmd_range(pud, addr, next);
102 } while (pud++, addr = next, addr != end);
103}
104
db64fe02 105static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
106{
107 pgd_t *pgd;
108 unsigned long next;
1da177e4
LT
109
110 BUG_ON(addr >= end);
111 pgd = pgd_offset_k(addr);
1da177e4
LT
112 do {
113 next = pgd_addr_end(addr, end);
114 if (pgd_none_or_clear_bad(pgd))
115 continue;
116 vunmap_pud_range(pgd, addr, next);
117 } while (pgd++, addr = next, addr != end);
1da177e4
LT
118}
119
120static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 121 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
122{
123 pte_t *pte;
124
db64fe02
NP
125 /*
126 * nr is a running index into the array which helps higher level
127 * callers keep track of where we're up to.
128 */
129
872fec16 130 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
131 if (!pte)
132 return -ENOMEM;
133 do {
db64fe02
NP
134 struct page *page = pages[*nr];
135
136 if (WARN_ON(!pte_none(*pte)))
137 return -EBUSY;
138 if (WARN_ON(!page))
1da177e4
LT
139 return -ENOMEM;
140 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 141 (*nr)++;
1da177e4
LT
142 } while (pte++, addr += PAGE_SIZE, addr != end);
143 return 0;
144}
145
db64fe02
NP
146static int vmap_pmd_range(pud_t *pud, unsigned long addr,
147 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
148{
149 pmd_t *pmd;
150 unsigned long next;
151
152 pmd = pmd_alloc(&init_mm, pud, addr);
153 if (!pmd)
154 return -ENOMEM;
155 do {
156 next = pmd_addr_end(addr, end);
db64fe02 157 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
158 return -ENOMEM;
159 } while (pmd++, addr = next, addr != end);
160 return 0;
161}
162
db64fe02
NP
163static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
164 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
165{
166 pud_t *pud;
167 unsigned long next;
168
169 pud = pud_alloc(&init_mm, pgd, addr);
170 if (!pud)
171 return -ENOMEM;
172 do {
173 next = pud_addr_end(addr, end);
db64fe02 174 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
175 return -ENOMEM;
176 } while (pud++, addr = next, addr != end);
177 return 0;
178}
179
db64fe02
NP
180/*
181 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
182 * will have pfns corresponding to the "pages" array.
183 *
184 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
185 */
8fc48985
TH
186static int vmap_page_range_noflush(unsigned long start, unsigned long end,
187 pgprot_t prot, struct page **pages)
1da177e4
LT
188{
189 pgd_t *pgd;
190 unsigned long next;
2e4e27c7 191 unsigned long addr = start;
db64fe02
NP
192 int err = 0;
193 int nr = 0;
1da177e4
LT
194
195 BUG_ON(addr >= end);
196 pgd = pgd_offset_k(addr);
1da177e4
LT
197 do {
198 next = pgd_addr_end(addr, end);
db64fe02 199 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
1da177e4 200 if (err)
bf88c8c8 201 return err;
1da177e4 202 } while (pgd++, addr = next, addr != end);
db64fe02 203
db64fe02 204 return nr;
1da177e4
LT
205}
206
8fc48985
TH
207static int vmap_page_range(unsigned long start, unsigned long end,
208 pgprot_t prot, struct page **pages)
209{
210 int ret;
211
212 ret = vmap_page_range_noflush(start, end, prot, pages);
213 flush_cache_vmap(start, end);
214 return ret;
215}
216
81ac3ad9 217int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
218{
219 /*
ab4f2ee1 220 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
221 * and fall back on vmalloc() if that fails. Others
222 * just put it in the vmalloc space.
223 */
224#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
225 unsigned long addr = (unsigned long)x;
226 if (addr >= MODULES_VADDR && addr < MODULES_END)
227 return 1;
228#endif
229 return is_vmalloc_addr(x);
230}
231
48667e7a 232/*
add688fb 233 * Walk a vmap address to the struct page it maps.
48667e7a 234 */
add688fb 235struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
236{
237 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 238 struct page *page = NULL;
48667e7a 239 pgd_t *pgd = pgd_offset_k(addr);
48667e7a 240
7aa413de
IM
241 /*
242 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
243 * architectures that do not vmalloc module space
244 */
73bdf0a6 245 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 246
48667e7a 247 if (!pgd_none(*pgd)) {
db64fe02 248 pud_t *pud = pud_offset(pgd, addr);
48667e7a 249 if (!pud_none(*pud)) {
db64fe02 250 pmd_t *pmd = pmd_offset(pud, addr);
48667e7a 251 if (!pmd_none(*pmd)) {
db64fe02
NP
252 pte_t *ptep, pte;
253
48667e7a
CL
254 ptep = pte_offset_map(pmd, addr);
255 pte = *ptep;
256 if (pte_present(pte))
add688fb 257 page = pte_page(pte);
48667e7a
CL
258 pte_unmap(ptep);
259 }
260 }
261 }
add688fb 262 return page;
48667e7a 263}
add688fb 264EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
265
266/*
add688fb 267 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 268 */
add688fb 269unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 270{
add688fb 271 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 272}
add688fb 273EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 274
db64fe02
NP
275
276/*** Global kva allocator ***/
277
db64fe02
NP
278#define VM_VM_AREA 0x04
279
db64fe02 280static DEFINE_SPINLOCK(vmap_area_lock);
f1c4069e
JK
281/* Export for kexec only */
282LIST_HEAD(vmap_area_list);
80c4bd7a 283static LLIST_HEAD(vmap_purge_list);
89699605
NP
284static struct rb_root vmap_area_root = RB_ROOT;
285
286/* The vmap cache globals are protected by vmap_area_lock */
287static struct rb_node *free_vmap_cache;
288static unsigned long cached_hole_size;
289static unsigned long cached_vstart;
290static unsigned long cached_align;
291
ca23e405 292static unsigned long vmap_area_pcpu_hole;
db64fe02
NP
293
294static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 295{
db64fe02
NP
296 struct rb_node *n = vmap_area_root.rb_node;
297
298 while (n) {
299 struct vmap_area *va;
300
301 va = rb_entry(n, struct vmap_area, rb_node);
302 if (addr < va->va_start)
303 n = n->rb_left;
cef2ac3f 304 else if (addr >= va->va_end)
db64fe02
NP
305 n = n->rb_right;
306 else
307 return va;
308 }
309
310 return NULL;
311}
312
313static void __insert_vmap_area(struct vmap_area *va)
314{
315 struct rb_node **p = &vmap_area_root.rb_node;
316 struct rb_node *parent = NULL;
317 struct rb_node *tmp;
318
319 while (*p) {
170168d0 320 struct vmap_area *tmp_va;
db64fe02
NP
321
322 parent = *p;
170168d0
NK
323 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
324 if (va->va_start < tmp_va->va_end)
db64fe02 325 p = &(*p)->rb_left;
170168d0 326 else if (va->va_end > tmp_va->va_start)
db64fe02
NP
327 p = &(*p)->rb_right;
328 else
329 BUG();
330 }
331
332 rb_link_node(&va->rb_node, parent, p);
333 rb_insert_color(&va->rb_node, &vmap_area_root);
334
4341fa45 335 /* address-sort this list */
db64fe02
NP
336 tmp = rb_prev(&va->rb_node);
337 if (tmp) {
338 struct vmap_area *prev;
339 prev = rb_entry(tmp, struct vmap_area, rb_node);
340 list_add_rcu(&va->list, &prev->list);
341 } else
342 list_add_rcu(&va->list, &vmap_area_list);
343}
344
345static void purge_vmap_area_lazy(void);
346
4da56b99
CW
347static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
348
db64fe02
NP
349/*
350 * Allocate a region of KVA of the specified size and alignment, within the
351 * vstart and vend.
352 */
353static struct vmap_area *alloc_vmap_area(unsigned long size,
354 unsigned long align,
355 unsigned long vstart, unsigned long vend,
356 int node, gfp_t gfp_mask)
357{
358 struct vmap_area *va;
359 struct rb_node *n;
1da177e4 360 unsigned long addr;
db64fe02 361 int purged = 0;
89699605 362 struct vmap_area *first;
db64fe02 363
7766970c 364 BUG_ON(!size);
891c49ab 365 BUG_ON(offset_in_page(size));
89699605 366 BUG_ON(!is_power_of_2(align));
db64fe02 367
4da56b99
CW
368 might_sleep_if(gfpflags_allow_blocking(gfp_mask));
369
db64fe02
NP
370 va = kmalloc_node(sizeof(struct vmap_area),
371 gfp_mask & GFP_RECLAIM_MASK, node);
372 if (unlikely(!va))
373 return ERR_PTR(-ENOMEM);
374
7f88f88f
CM
375 /*
376 * Only scan the relevant parts containing pointers to other objects
377 * to avoid false negatives.
378 */
379 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
380
db64fe02
NP
381retry:
382 spin_lock(&vmap_area_lock);
89699605
NP
383 /*
384 * Invalidate cache if we have more permissive parameters.
385 * cached_hole_size notes the largest hole noticed _below_
386 * the vmap_area cached in free_vmap_cache: if size fits
387 * into that hole, we want to scan from vstart to reuse
388 * the hole instead of allocating above free_vmap_cache.
389 * Note that __free_vmap_area may update free_vmap_cache
390 * without updating cached_hole_size or cached_align.
391 */
392 if (!free_vmap_cache ||
393 size < cached_hole_size ||
394 vstart < cached_vstart ||
395 align < cached_align) {
396nocache:
397 cached_hole_size = 0;
398 free_vmap_cache = NULL;
399 }
400 /* record if we encounter less permissive parameters */
401 cached_vstart = vstart;
402 cached_align = align;
403
404 /* find starting point for our search */
405 if (free_vmap_cache) {
406 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
248ac0e1 407 addr = ALIGN(first->va_end, align);
89699605
NP
408 if (addr < vstart)
409 goto nocache;
bcb615a8 410 if (addr + size < addr)
89699605
NP
411 goto overflow;
412
413 } else {
414 addr = ALIGN(vstart, align);
bcb615a8 415 if (addr + size < addr)
89699605
NP
416 goto overflow;
417
418 n = vmap_area_root.rb_node;
419 first = NULL;
420
421 while (n) {
db64fe02
NP
422 struct vmap_area *tmp;
423 tmp = rb_entry(n, struct vmap_area, rb_node);
424 if (tmp->va_end >= addr) {
db64fe02 425 first = tmp;
89699605
NP
426 if (tmp->va_start <= addr)
427 break;
428 n = n->rb_left;
429 } else
db64fe02 430 n = n->rb_right;
89699605 431 }
db64fe02
NP
432
433 if (!first)
434 goto found;
db64fe02 435 }
89699605
NP
436
437 /* from the starting point, walk areas until a suitable hole is found */
248ac0e1 438 while (addr + size > first->va_start && addr + size <= vend) {
89699605
NP
439 if (addr + cached_hole_size < first->va_start)
440 cached_hole_size = first->va_start - addr;
248ac0e1 441 addr = ALIGN(first->va_end, align);
bcb615a8 442 if (addr + size < addr)
89699605
NP
443 goto overflow;
444
92ca922f 445 if (list_is_last(&first->list, &vmap_area_list))
89699605 446 goto found;
92ca922f 447
6219c2a2 448 first = list_next_entry(first, list);
db64fe02
NP
449 }
450
89699605
NP
451found:
452 if (addr + size > vend)
453 goto overflow;
db64fe02
NP
454
455 va->va_start = addr;
456 va->va_end = addr + size;
457 va->flags = 0;
458 __insert_vmap_area(va);
89699605 459 free_vmap_cache = &va->rb_node;
db64fe02
NP
460 spin_unlock(&vmap_area_lock);
461
61e16557 462 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
463 BUG_ON(va->va_start < vstart);
464 BUG_ON(va->va_end > vend);
465
db64fe02 466 return va;
89699605
NP
467
468overflow:
469 spin_unlock(&vmap_area_lock);
470 if (!purged) {
471 purge_vmap_area_lazy();
472 purged = 1;
473 goto retry;
474 }
4da56b99
CW
475
476 if (gfpflags_allow_blocking(gfp_mask)) {
477 unsigned long freed = 0;
478 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
479 if (freed > 0) {
480 purged = 0;
481 goto retry;
482 }
483 }
484
89699605 485 if (printk_ratelimit())
756a025f
JP
486 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
487 size);
89699605
NP
488 kfree(va);
489 return ERR_PTR(-EBUSY);
db64fe02
NP
490}
491
4da56b99
CW
492int register_vmap_purge_notifier(struct notifier_block *nb)
493{
494 return blocking_notifier_chain_register(&vmap_notify_list, nb);
495}
496EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
497
498int unregister_vmap_purge_notifier(struct notifier_block *nb)
499{
500 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
501}
502EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
503
db64fe02
NP
504static void __free_vmap_area(struct vmap_area *va)
505{
506 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
89699605
NP
507
508 if (free_vmap_cache) {
509 if (va->va_end < cached_vstart) {
510 free_vmap_cache = NULL;
511 } else {
512 struct vmap_area *cache;
513 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
514 if (va->va_start <= cache->va_start) {
515 free_vmap_cache = rb_prev(&va->rb_node);
516 /*
517 * We don't try to update cached_hole_size or
518 * cached_align, but it won't go very wrong.
519 */
520 }
521 }
522 }
db64fe02
NP
523 rb_erase(&va->rb_node, &vmap_area_root);
524 RB_CLEAR_NODE(&va->rb_node);
525 list_del_rcu(&va->list);
526
ca23e405
TH
527 /*
528 * Track the highest possible candidate for pcpu area
529 * allocation. Areas outside of vmalloc area can be returned
530 * here too, consider only end addresses which fall inside
531 * vmalloc area proper.
532 */
533 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
534 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
535
14769de9 536 kfree_rcu(va, rcu_head);
db64fe02
NP
537}
538
539/*
540 * Free a region of KVA allocated by alloc_vmap_area
541 */
542static void free_vmap_area(struct vmap_area *va)
543{
544 spin_lock(&vmap_area_lock);
545 __free_vmap_area(va);
546 spin_unlock(&vmap_area_lock);
547}
548
549/*
550 * Clear the pagetable entries of a given vmap_area
551 */
552static void unmap_vmap_area(struct vmap_area *va)
553{
554 vunmap_page_range(va->va_start, va->va_end);
555}
556
cd52858c
NP
557static void vmap_debug_free_range(unsigned long start, unsigned long end)
558{
559 /*
f48d97f3
JK
560 * Unmap page tables and force a TLB flush immediately if pagealloc
561 * debugging is enabled. This catches use after free bugs similarly to
562 * those in linear kernel virtual address space after a page has been
563 * freed.
cd52858c 564 *
f48d97f3
JK
565 * All the lazy freeing logic is still retained, in order to minimise
566 * intrusiveness of this debugging feature.
cd52858c 567 *
f48d97f3
JK
568 * This is going to be *slow* (linear kernel virtual address debugging
569 * doesn't do a broadcast TLB flush so it is a lot faster).
cd52858c 570 */
f48d97f3
JK
571 if (debug_pagealloc_enabled()) {
572 vunmap_page_range(start, end);
573 flush_tlb_kernel_range(start, end);
574 }
cd52858c
NP
575}
576
db64fe02
NP
577/*
578 * lazy_max_pages is the maximum amount of virtual address space we gather up
579 * before attempting to purge with a TLB flush.
580 *
581 * There is a tradeoff here: a larger number will cover more kernel page tables
582 * and take slightly longer to purge, but it will linearly reduce the number of
583 * global TLB flushes that must be performed. It would seem natural to scale
584 * this number up linearly with the number of CPUs (because vmapping activity
585 * could also scale linearly with the number of CPUs), however it is likely
586 * that in practice, workloads might be constrained in other ways that mean
587 * vmap activity will not scale linearly with CPUs. Also, I want to be
588 * conservative and not introduce a big latency on huge systems, so go with
589 * a less aggressive log scale. It will still be an improvement over the old
590 * code, and it will be simple to change the scale factor if we find that it
591 * becomes a problem on bigger systems.
592 */
593static unsigned long lazy_max_pages(void)
594{
595 unsigned int log;
596
597 log = fls(num_online_cpus());
598
599 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
600}
601
602static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
603
02b709df
NP
604/* for per-CPU blocks */
605static void purge_fragmented_blocks_allcpus(void);
606
3ee48b6a
CW
607/*
608 * called before a call to iounmap() if the caller wants vm_area_struct's
609 * immediately freed.
610 */
611void set_iounmap_nonlazy(void)
612{
613 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
614}
615
db64fe02
NP
616/*
617 * Purges all lazily-freed vmap areas.
618 *
619 * If sync is 0 then don't purge if there is already a purge in progress.
620 * If force_flush is 1, then flush kernel TLBs between *start and *end even
621 * if we found no lazy vmap areas to unmap (callers can use this to optimise
622 * their own TLB flushing).
623 * Returns with *start = min(*start, lowest purged address)
624 * *end = max(*end, highest purged address)
625 */
626static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
627 int sync, int force_flush)
628{
46666d8a 629 static DEFINE_SPINLOCK(purge_lock);
80c4bd7a 630 struct llist_node *valist;
db64fe02 631 struct vmap_area *va;
cbb76676 632 struct vmap_area *n_va;
db64fe02
NP
633 int nr = 0;
634
635 /*
636 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
637 * should not expect such behaviour. This just simplifies locking for
638 * the case that isn't actually used at the moment anyway.
639 */
640 if (!sync && !force_flush) {
46666d8a 641 if (!spin_trylock(&purge_lock))
db64fe02
NP
642 return;
643 } else
46666d8a 644 spin_lock(&purge_lock);
db64fe02 645
02b709df
NP
646 if (sync)
647 purge_fragmented_blocks_allcpus();
648
80c4bd7a
CW
649 valist = llist_del_all(&vmap_purge_list);
650 llist_for_each_entry(va, valist, purge_list) {
651 if (va->va_start < *start)
652 *start = va->va_start;
653 if (va->va_end > *end)
654 *end = va->va_end;
655 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
db64fe02 656 }
db64fe02 657
88f50044 658 if (nr)
db64fe02 659 atomic_sub(nr, &vmap_lazy_nr);
db64fe02
NP
660
661 if (nr || force_flush)
662 flush_tlb_kernel_range(*start, *end);
663
664 if (nr) {
665 spin_lock(&vmap_area_lock);
80c4bd7a 666 llist_for_each_entry_safe(va, n_va, valist, purge_list)
db64fe02
NP
667 __free_vmap_area(va);
668 spin_unlock(&vmap_area_lock);
669 }
46666d8a 670 spin_unlock(&purge_lock);
db64fe02
NP
671}
672
496850e5
NP
673/*
674 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
675 * is already purging.
676 */
677static void try_purge_vmap_area_lazy(void)
678{
679 unsigned long start = ULONG_MAX, end = 0;
680
681 __purge_vmap_area_lazy(&start, &end, 0, 0);
682}
683
db64fe02
NP
684/*
685 * Kick off a purge of the outstanding lazy areas.
686 */
687static void purge_vmap_area_lazy(void)
688{
689 unsigned long start = ULONG_MAX, end = 0;
690
496850e5 691 __purge_vmap_area_lazy(&start, &end, 1, 0);
db64fe02
NP
692}
693
694/*
64141da5
JF
695 * Free a vmap area, caller ensuring that the area has been unmapped
696 * and flush_cache_vunmap had been called for the correct range
697 * previously.
db64fe02 698 */
64141da5 699static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 700{
80c4bd7a
CW
701 int nr_lazy;
702
703 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
704 &vmap_lazy_nr);
705
706 /* After this point, we may free va at any time */
707 llist_add(&va->purge_list, &vmap_purge_list);
708
709 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 710 try_purge_vmap_area_lazy();
db64fe02
NP
711}
712
b29acbdc
NP
713/*
714 * Free and unmap a vmap area
715 */
716static void free_unmap_vmap_area(struct vmap_area *va)
717{
718 flush_cache_vunmap(va->va_start, va->va_end);
c8eef01e
CH
719 unmap_vmap_area(va);
720 free_vmap_area_noflush(va);
b29acbdc
NP
721}
722
db64fe02
NP
723static struct vmap_area *find_vmap_area(unsigned long addr)
724{
725 struct vmap_area *va;
726
727 spin_lock(&vmap_area_lock);
728 va = __find_vmap_area(addr);
729 spin_unlock(&vmap_area_lock);
730
731 return va;
732}
733
db64fe02
NP
734/*** Per cpu kva allocator ***/
735
736/*
737 * vmap space is limited especially on 32 bit architectures. Ensure there is
738 * room for at least 16 percpu vmap blocks per CPU.
739 */
740/*
741 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
742 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
743 * instead (we just need a rough idea)
744 */
745#if BITS_PER_LONG == 32
746#define VMALLOC_SPACE (128UL*1024*1024)
747#else
748#define VMALLOC_SPACE (128UL*1024*1024*1024)
749#endif
750
751#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
752#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
753#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
754#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
755#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
756#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
757#define VMAP_BBMAP_BITS \
758 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
759 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
760 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
761
762#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
763
9b463334
JF
764static bool vmap_initialized __read_mostly = false;
765
db64fe02
NP
766struct vmap_block_queue {
767 spinlock_t lock;
768 struct list_head free;
db64fe02
NP
769};
770
771struct vmap_block {
772 spinlock_t lock;
773 struct vmap_area *va;
db64fe02 774 unsigned long free, dirty;
7d61bfe8 775 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
776 struct list_head free_list;
777 struct rcu_head rcu_head;
02b709df 778 struct list_head purge;
db64fe02
NP
779};
780
781/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
782static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
783
784/*
785 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
786 * in the free path. Could get rid of this if we change the API to return a
787 * "cookie" from alloc, to be passed to free. But no big deal yet.
788 */
789static DEFINE_SPINLOCK(vmap_block_tree_lock);
790static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
791
792/*
793 * We should probably have a fallback mechanism to allocate virtual memory
794 * out of partially filled vmap blocks. However vmap block sizing should be
795 * fairly reasonable according to the vmalloc size, so it shouldn't be a
796 * big problem.
797 */
798
799static unsigned long addr_to_vb_idx(unsigned long addr)
800{
801 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
802 addr /= VMAP_BLOCK_SIZE;
803 return addr;
804}
805
cf725ce2
RP
806static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
807{
808 unsigned long addr;
809
810 addr = va_start + (pages_off << PAGE_SHIFT);
811 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
812 return (void *)addr;
813}
814
815/**
816 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
817 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
818 * @order: how many 2^order pages should be occupied in newly allocated block
819 * @gfp_mask: flags for the page level allocator
820 *
821 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
822 */
823static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
824{
825 struct vmap_block_queue *vbq;
826 struct vmap_block *vb;
827 struct vmap_area *va;
828 unsigned long vb_idx;
829 int node, err;
cf725ce2 830 void *vaddr;
db64fe02
NP
831
832 node = numa_node_id();
833
834 vb = kmalloc_node(sizeof(struct vmap_block),
835 gfp_mask & GFP_RECLAIM_MASK, node);
836 if (unlikely(!vb))
837 return ERR_PTR(-ENOMEM);
838
839 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
840 VMALLOC_START, VMALLOC_END,
841 node, gfp_mask);
ddf9c6d4 842 if (IS_ERR(va)) {
db64fe02 843 kfree(vb);
e7d86340 844 return ERR_CAST(va);
db64fe02
NP
845 }
846
847 err = radix_tree_preload(gfp_mask);
848 if (unlikely(err)) {
849 kfree(vb);
850 free_vmap_area(va);
851 return ERR_PTR(err);
852 }
853
cf725ce2 854 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
855 spin_lock_init(&vb->lock);
856 vb->va = va;
cf725ce2
RP
857 /* At least something should be left free */
858 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
859 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 860 vb->dirty = 0;
7d61bfe8
RP
861 vb->dirty_min = VMAP_BBMAP_BITS;
862 vb->dirty_max = 0;
db64fe02 863 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
864
865 vb_idx = addr_to_vb_idx(va->va_start);
866 spin_lock(&vmap_block_tree_lock);
867 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
868 spin_unlock(&vmap_block_tree_lock);
869 BUG_ON(err);
870 radix_tree_preload_end();
871
872 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 873 spin_lock(&vbq->lock);
68ac546f 874 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 875 spin_unlock(&vbq->lock);
3f04ba85 876 put_cpu_var(vmap_block_queue);
db64fe02 877
cf725ce2 878 return vaddr;
db64fe02
NP
879}
880
db64fe02
NP
881static void free_vmap_block(struct vmap_block *vb)
882{
883 struct vmap_block *tmp;
884 unsigned long vb_idx;
885
db64fe02
NP
886 vb_idx = addr_to_vb_idx(vb->va->va_start);
887 spin_lock(&vmap_block_tree_lock);
888 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
889 spin_unlock(&vmap_block_tree_lock);
890 BUG_ON(tmp != vb);
891
64141da5 892 free_vmap_area_noflush(vb->va);
22a3c7d1 893 kfree_rcu(vb, rcu_head);
db64fe02
NP
894}
895
02b709df
NP
896static void purge_fragmented_blocks(int cpu)
897{
898 LIST_HEAD(purge);
899 struct vmap_block *vb;
900 struct vmap_block *n_vb;
901 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
902
903 rcu_read_lock();
904 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
905
906 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
907 continue;
908
909 spin_lock(&vb->lock);
910 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
911 vb->free = 0; /* prevent further allocs after releasing lock */
912 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
913 vb->dirty_min = 0;
914 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
915 spin_lock(&vbq->lock);
916 list_del_rcu(&vb->free_list);
917 spin_unlock(&vbq->lock);
918 spin_unlock(&vb->lock);
919 list_add_tail(&vb->purge, &purge);
920 } else
921 spin_unlock(&vb->lock);
922 }
923 rcu_read_unlock();
924
925 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
926 list_del(&vb->purge);
927 free_vmap_block(vb);
928 }
929}
930
02b709df
NP
931static void purge_fragmented_blocks_allcpus(void)
932{
933 int cpu;
934
935 for_each_possible_cpu(cpu)
936 purge_fragmented_blocks(cpu);
937}
938
db64fe02
NP
939static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
940{
941 struct vmap_block_queue *vbq;
942 struct vmap_block *vb;
cf725ce2 943 void *vaddr = NULL;
db64fe02
NP
944 unsigned int order;
945
891c49ab 946 BUG_ON(offset_in_page(size));
db64fe02 947 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
948 if (WARN_ON(size == 0)) {
949 /*
950 * Allocating 0 bytes isn't what caller wants since
951 * get_order(0) returns funny result. Just warn and terminate
952 * early.
953 */
954 return NULL;
955 }
db64fe02
NP
956 order = get_order(size);
957
db64fe02
NP
958 rcu_read_lock();
959 vbq = &get_cpu_var(vmap_block_queue);
960 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 961 unsigned long pages_off;
db64fe02
NP
962
963 spin_lock(&vb->lock);
cf725ce2
RP
964 if (vb->free < (1UL << order)) {
965 spin_unlock(&vb->lock);
966 continue;
967 }
02b709df 968
cf725ce2
RP
969 pages_off = VMAP_BBMAP_BITS - vb->free;
970 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
971 vb->free -= 1UL << order;
972 if (vb->free == 0) {
973 spin_lock(&vbq->lock);
974 list_del_rcu(&vb->free_list);
975 spin_unlock(&vbq->lock);
976 }
cf725ce2 977
02b709df
NP
978 spin_unlock(&vb->lock);
979 break;
db64fe02 980 }
02b709df 981
3f04ba85 982 put_cpu_var(vmap_block_queue);
db64fe02
NP
983 rcu_read_unlock();
984
cf725ce2
RP
985 /* Allocate new block if nothing was found */
986 if (!vaddr)
987 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 988
cf725ce2 989 return vaddr;
db64fe02
NP
990}
991
992static void vb_free(const void *addr, unsigned long size)
993{
994 unsigned long offset;
995 unsigned long vb_idx;
996 unsigned int order;
997 struct vmap_block *vb;
998
891c49ab 999 BUG_ON(offset_in_page(size));
db64fe02 1000 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
1001
1002 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1003
db64fe02
NP
1004 order = get_order(size);
1005
1006 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
7d61bfe8 1007 offset >>= PAGE_SHIFT;
db64fe02
NP
1008
1009 vb_idx = addr_to_vb_idx((unsigned long)addr);
1010 rcu_read_lock();
1011 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1012 rcu_read_unlock();
1013 BUG_ON(!vb);
1014
64141da5
JF
1015 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1016
db64fe02 1017 spin_lock(&vb->lock);
7d61bfe8
RP
1018
1019 /* Expand dirty range */
1020 vb->dirty_min = min(vb->dirty_min, offset);
1021 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1022
db64fe02
NP
1023 vb->dirty += 1UL << order;
1024 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1025 BUG_ON(vb->free);
db64fe02
NP
1026 spin_unlock(&vb->lock);
1027 free_vmap_block(vb);
1028 } else
1029 spin_unlock(&vb->lock);
1030}
1031
1032/**
1033 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1034 *
1035 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1036 * to amortize TLB flushing overheads. What this means is that any page you
1037 * have now, may, in a former life, have been mapped into kernel virtual
1038 * address by the vmap layer and so there might be some CPUs with TLB entries
1039 * still referencing that page (additional to the regular 1:1 kernel mapping).
1040 *
1041 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1042 * be sure that none of the pages we have control over will have any aliases
1043 * from the vmap layer.
1044 */
1045void vm_unmap_aliases(void)
1046{
1047 unsigned long start = ULONG_MAX, end = 0;
1048 int cpu;
1049 int flush = 0;
1050
9b463334
JF
1051 if (unlikely(!vmap_initialized))
1052 return;
1053
db64fe02
NP
1054 for_each_possible_cpu(cpu) {
1055 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1056 struct vmap_block *vb;
1057
1058 rcu_read_lock();
1059 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1060 spin_lock(&vb->lock);
7d61bfe8
RP
1061 if (vb->dirty) {
1062 unsigned long va_start = vb->va->va_start;
db64fe02 1063 unsigned long s, e;
b136be5e 1064
7d61bfe8
RP
1065 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1066 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1067
7d61bfe8
RP
1068 start = min(s, start);
1069 end = max(e, end);
db64fe02 1070
7d61bfe8 1071 flush = 1;
db64fe02
NP
1072 }
1073 spin_unlock(&vb->lock);
1074 }
1075 rcu_read_unlock();
1076 }
1077
1078 __purge_vmap_area_lazy(&start, &end, 1, flush);
1079}
1080EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1081
1082/**
1083 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1084 * @mem: the pointer returned by vm_map_ram
1085 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1086 */
1087void vm_unmap_ram(const void *mem, unsigned int count)
1088{
65ee03c4 1089 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 1090 unsigned long addr = (unsigned long)mem;
9c3acf60 1091 struct vmap_area *va;
db64fe02
NP
1092
1093 BUG_ON(!addr);
1094 BUG_ON(addr < VMALLOC_START);
1095 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 1096 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02
NP
1097
1098 debug_check_no_locks_freed(mem, size);
cd52858c 1099 vmap_debug_free_range(addr, addr+size);
db64fe02 1100
9c3acf60 1101 if (likely(count <= VMAP_MAX_ALLOC)) {
db64fe02 1102 vb_free(mem, size);
9c3acf60
CH
1103 return;
1104 }
1105
1106 va = find_vmap_area(addr);
1107 BUG_ON(!va);
1108 free_unmap_vmap_area(va);
db64fe02
NP
1109}
1110EXPORT_SYMBOL(vm_unmap_ram);
1111
1112/**
1113 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1114 * @pages: an array of pointers to the pages to be mapped
1115 * @count: number of pages
1116 * @node: prefer to allocate data structures on this node
1117 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad 1118 *
36437638
GK
1119 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1120 * faster than vmap so it's good. But if you mix long-life and short-life
1121 * objects with vm_map_ram(), it could consume lots of address space through
1122 * fragmentation (especially on a 32bit machine). You could see failures in
1123 * the end. Please use this function for short-lived objects.
1124 *
e99c97ad 1125 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1126 */
1127void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1128{
65ee03c4 1129 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1130 unsigned long addr;
1131 void *mem;
1132
1133 if (likely(count <= VMAP_MAX_ALLOC)) {
1134 mem = vb_alloc(size, GFP_KERNEL);
1135 if (IS_ERR(mem))
1136 return NULL;
1137 addr = (unsigned long)mem;
1138 } else {
1139 struct vmap_area *va;
1140 va = alloc_vmap_area(size, PAGE_SIZE,
1141 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1142 if (IS_ERR(va))
1143 return NULL;
1144
1145 addr = va->va_start;
1146 mem = (void *)addr;
1147 }
1148 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1149 vm_unmap_ram(mem, count);
1150 return NULL;
1151 }
1152 return mem;
1153}
1154EXPORT_SYMBOL(vm_map_ram);
1155
4341fa45 1156static struct vm_struct *vmlist __initdata;
be9b7335
NP
1157/**
1158 * vm_area_add_early - add vmap area early during boot
1159 * @vm: vm_struct to add
1160 *
1161 * This function is used to add fixed kernel vm area to vmlist before
1162 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1163 * should contain proper values and the other fields should be zero.
1164 *
1165 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1166 */
1167void __init vm_area_add_early(struct vm_struct *vm)
1168{
1169 struct vm_struct *tmp, **p;
1170
1171 BUG_ON(vmap_initialized);
1172 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1173 if (tmp->addr >= vm->addr) {
1174 BUG_ON(tmp->addr < vm->addr + vm->size);
1175 break;
1176 } else
1177 BUG_ON(tmp->addr + tmp->size > vm->addr);
1178 }
1179 vm->next = *p;
1180 *p = vm;
1181}
1182
f0aa6617
TH
1183/**
1184 * vm_area_register_early - register vmap area early during boot
1185 * @vm: vm_struct to register
c0c0a293 1186 * @align: requested alignment
f0aa6617
TH
1187 *
1188 * This function is used to register kernel vm area before
1189 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1190 * proper values on entry and other fields should be zero. On return,
1191 * vm->addr contains the allocated address.
1192 *
1193 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1194 */
c0c0a293 1195void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1196{
1197 static size_t vm_init_off __initdata;
c0c0a293
TH
1198 unsigned long addr;
1199
1200 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1201 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1202
c0c0a293 1203 vm->addr = (void *)addr;
f0aa6617 1204
be9b7335 1205 vm_area_add_early(vm);
f0aa6617
TH
1206}
1207
db64fe02
NP
1208void __init vmalloc_init(void)
1209{
822c18f2
IK
1210 struct vmap_area *va;
1211 struct vm_struct *tmp;
db64fe02
NP
1212 int i;
1213
1214 for_each_possible_cpu(i) {
1215 struct vmap_block_queue *vbq;
32fcfd40 1216 struct vfree_deferred *p;
db64fe02
NP
1217
1218 vbq = &per_cpu(vmap_block_queue, i);
1219 spin_lock_init(&vbq->lock);
1220 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1221 p = &per_cpu(vfree_deferred, i);
1222 init_llist_head(&p->list);
1223 INIT_WORK(&p->wq, free_work);
db64fe02 1224 }
9b463334 1225
822c18f2
IK
1226 /* Import existing vmlist entries. */
1227 for (tmp = vmlist; tmp; tmp = tmp->next) {
43ebdac4 1228 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
dbda591d 1229 va->flags = VM_VM_AREA;
822c18f2
IK
1230 va->va_start = (unsigned long)tmp->addr;
1231 va->va_end = va->va_start + tmp->size;
dbda591d 1232 va->vm = tmp;
822c18f2
IK
1233 __insert_vmap_area(va);
1234 }
ca23e405
TH
1235
1236 vmap_area_pcpu_hole = VMALLOC_END;
1237
9b463334 1238 vmap_initialized = true;
db64fe02
NP
1239}
1240
8fc48985
TH
1241/**
1242 * map_kernel_range_noflush - map kernel VM area with the specified pages
1243 * @addr: start of the VM area to map
1244 * @size: size of the VM area to map
1245 * @prot: page protection flags to use
1246 * @pages: pages to map
1247 *
1248 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1249 * specify should have been allocated using get_vm_area() and its
1250 * friends.
1251 *
1252 * NOTE:
1253 * This function does NOT do any cache flushing. The caller is
1254 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1255 * before calling this function.
1256 *
1257 * RETURNS:
1258 * The number of pages mapped on success, -errno on failure.
1259 */
1260int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1261 pgprot_t prot, struct page **pages)
1262{
1263 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1264}
1265
1266/**
1267 * unmap_kernel_range_noflush - unmap kernel VM area
1268 * @addr: start of the VM area to unmap
1269 * @size: size of the VM area to unmap
1270 *
1271 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1272 * specify should have been allocated using get_vm_area() and its
1273 * friends.
1274 *
1275 * NOTE:
1276 * This function does NOT do any cache flushing. The caller is
1277 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1278 * before calling this function and flush_tlb_kernel_range() after.
1279 */
1280void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1281{
1282 vunmap_page_range(addr, addr + size);
1283}
81e88fdc 1284EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
1285
1286/**
1287 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1288 * @addr: start of the VM area to unmap
1289 * @size: size of the VM area to unmap
1290 *
1291 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1292 * the unmapping and tlb after.
1293 */
db64fe02
NP
1294void unmap_kernel_range(unsigned long addr, unsigned long size)
1295{
1296 unsigned long end = addr + size;
f6fcba70
TH
1297
1298 flush_cache_vunmap(addr, end);
db64fe02
NP
1299 vunmap_page_range(addr, end);
1300 flush_tlb_kernel_range(addr, end);
1301}
93ef6d6c 1302EXPORT_SYMBOL_GPL(unmap_kernel_range);
db64fe02 1303
f6f8ed47 1304int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
db64fe02
NP
1305{
1306 unsigned long addr = (unsigned long)area->addr;
762216ab 1307 unsigned long end = addr + get_vm_area_size(area);
db64fe02
NP
1308 int err;
1309
f6f8ed47 1310 err = vmap_page_range(addr, end, prot, pages);
db64fe02 1311
f6f8ed47 1312 return err > 0 ? 0 : err;
db64fe02
NP
1313}
1314EXPORT_SYMBOL_GPL(map_vm_area);
1315
f5252e00 1316static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 1317 unsigned long flags, const void *caller)
cf88c790 1318{
c69480ad 1319 spin_lock(&vmap_area_lock);
cf88c790
TH
1320 vm->flags = flags;
1321 vm->addr = (void *)va->va_start;
1322 vm->size = va->va_end - va->va_start;
1323 vm->caller = caller;
db1aecaf 1324 va->vm = vm;
cf88c790 1325 va->flags |= VM_VM_AREA;
c69480ad 1326 spin_unlock(&vmap_area_lock);
f5252e00 1327}
cf88c790 1328
20fc02b4 1329static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 1330{
d4033afd 1331 /*
20fc02b4 1332 * Before removing VM_UNINITIALIZED,
d4033afd
JK
1333 * we should make sure that vm has proper values.
1334 * Pair with smp_rmb() in show_numa_info().
1335 */
1336 smp_wmb();
20fc02b4 1337 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
1338}
1339
db64fe02 1340static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 1341 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 1342 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 1343{
0006526d 1344 struct vmap_area *va;
db64fe02 1345 struct vm_struct *area;
1da177e4 1346
52fd24ca 1347 BUG_ON(in_interrupt());
1da177e4 1348 size = PAGE_ALIGN(size);
31be8309
OH
1349 if (unlikely(!size))
1350 return NULL;
1da177e4 1351
252e5c6e 1352 if (flags & VM_IOREMAP)
1353 align = 1ul << clamp_t(int, get_count_order_long(size),
1354 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1355
cf88c790 1356 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1357 if (unlikely(!area))
1358 return NULL;
1359
71394fe5
AR
1360 if (!(flags & VM_NO_GUARD))
1361 size += PAGE_SIZE;
1da177e4 1362
db64fe02
NP
1363 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1364 if (IS_ERR(va)) {
1365 kfree(area);
1366 return NULL;
1da177e4 1367 }
1da177e4 1368
d82b1d85 1369 setup_vmalloc_vm(area, va, flags, caller);
f5252e00 1370
1da177e4 1371 return area;
1da177e4
LT
1372}
1373
930fc45a
CL
1374struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1375 unsigned long start, unsigned long end)
1376{
00ef2d2f
DR
1377 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1378 GFP_KERNEL, __builtin_return_address(0));
930fc45a 1379}
5992b6da 1380EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1381
c2968612
BH
1382struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1383 unsigned long start, unsigned long end,
5e6cafc8 1384 const void *caller)
c2968612 1385{
00ef2d2f
DR
1386 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1387 GFP_KERNEL, caller);
c2968612
BH
1388}
1389
1da177e4 1390/**
183ff22b 1391 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
1392 * @size: size of the area
1393 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1394 *
1395 * Search an area of @size in the kernel virtual mapping area,
1396 * and reserved it for out purposes. Returns the area descriptor
1397 * on success or %NULL on failure.
1398 */
1399struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1400{
2dca6999 1401 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
1402 NUMA_NO_NODE, GFP_KERNEL,
1403 __builtin_return_address(0));
23016969
CL
1404}
1405
1406struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 1407 const void *caller)
23016969 1408{
2dca6999 1409 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 1410 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
1411}
1412
e9da6e99
MS
1413/**
1414 * find_vm_area - find a continuous kernel virtual area
1415 * @addr: base address
1416 *
1417 * Search for the kernel VM area starting at @addr, and return it.
1418 * It is up to the caller to do all required locking to keep the returned
1419 * pointer valid.
1420 */
1421struct vm_struct *find_vm_area(const void *addr)
83342314 1422{
db64fe02 1423 struct vmap_area *va;
83342314 1424
db64fe02
NP
1425 va = find_vmap_area((unsigned long)addr);
1426 if (va && va->flags & VM_VM_AREA)
db1aecaf 1427 return va->vm;
1da177e4 1428
1da177e4 1429 return NULL;
1da177e4
LT
1430}
1431
7856dfeb 1432/**
183ff22b 1433 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
1434 * @addr: base address
1435 *
1436 * Search for the kernel VM area starting at @addr, and remove it.
1437 * This function returns the found VM area, but using it is NOT safe
1438 * on SMP machines, except for its size or flags.
1439 */
b3bdda02 1440struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1441{
db64fe02
NP
1442 struct vmap_area *va;
1443
1444 va = find_vmap_area((unsigned long)addr);
1445 if (va && va->flags & VM_VM_AREA) {
db1aecaf 1446 struct vm_struct *vm = va->vm;
f5252e00 1447
c69480ad
JK
1448 spin_lock(&vmap_area_lock);
1449 va->vm = NULL;
1450 va->flags &= ~VM_VM_AREA;
1451 spin_unlock(&vmap_area_lock);
1452
dd32c279 1453 vmap_debug_free_range(va->va_start, va->va_end);
a5af5aa8 1454 kasan_free_shadow(vm);
dd32c279 1455 free_unmap_vmap_area(va);
dd32c279 1456
db64fe02
NP
1457 return vm;
1458 }
1459 return NULL;
7856dfeb
AK
1460}
1461
b3bdda02 1462static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1463{
1464 struct vm_struct *area;
1465
1466 if (!addr)
1467 return;
1468
e69e9d4a 1469 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 1470 addr))
1da177e4 1471 return;
1da177e4
LT
1472
1473 area = remove_vm_area(addr);
1474 if (unlikely(!area)) {
4c8573e2 1475 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1476 addr);
1da177e4
LT
1477 return;
1478 }
1479
7511c3ed
JM
1480 debug_check_no_locks_freed(addr, get_vm_area_size(area));
1481 debug_check_no_obj_freed(addr, get_vm_area_size(area));
9a11b49a 1482
1da177e4
LT
1483 if (deallocate_pages) {
1484 int i;
1485
1486 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1487 struct page *page = area->pages[i];
1488
1489 BUG_ON(!page);
4949148a 1490 __free_pages(page, 0);
1da177e4
LT
1491 }
1492
244d63ee 1493 kvfree(area->pages);
1da177e4
LT
1494 }
1495
1496 kfree(area);
1497 return;
1498}
32fcfd40 1499
1da177e4
LT
1500/**
1501 * vfree - release memory allocated by vmalloc()
1da177e4
LT
1502 * @addr: memory base address
1503 *
183ff22b 1504 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
1505 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1506 * NULL, no operation is performed.
1da177e4 1507 *
32fcfd40
AV
1508 * Must not be called in NMI context (strictly speaking, only if we don't
1509 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1510 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51
AM
1511 *
1512 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1da177e4 1513 */
b3bdda02 1514void vfree(const void *addr)
1da177e4 1515{
32fcfd40 1516 BUG_ON(in_nmi());
89219d37
CM
1517
1518 kmemleak_free(addr);
1519
32fcfd40
AV
1520 if (!addr)
1521 return;
1522 if (unlikely(in_interrupt())) {
7c8e0181 1523 struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
59d3132f
ON
1524 if (llist_add((struct llist_node *)addr, &p->list))
1525 schedule_work(&p->wq);
32fcfd40
AV
1526 } else
1527 __vunmap(addr, 1);
1da177e4 1528}
1da177e4
LT
1529EXPORT_SYMBOL(vfree);
1530
1531/**
1532 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
1533 * @addr: memory base address
1534 *
1535 * Free the virtually contiguous memory area starting at @addr,
1536 * which was created from the page array passed to vmap().
1537 *
80e93eff 1538 * Must not be called in interrupt context.
1da177e4 1539 */
b3bdda02 1540void vunmap(const void *addr)
1da177e4
LT
1541{
1542 BUG_ON(in_interrupt());
34754b69 1543 might_sleep();
32fcfd40
AV
1544 if (addr)
1545 __vunmap(addr, 0);
1da177e4 1546}
1da177e4
LT
1547EXPORT_SYMBOL(vunmap);
1548
1549/**
1550 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
1551 * @pages: array of page pointers
1552 * @count: number of pages to map
1553 * @flags: vm_area->flags
1554 * @prot: page protection for the mapping
1555 *
1556 * Maps @count pages from @pages into contiguous kernel virtual
1557 * space.
1558 */
1559void *vmap(struct page **pages, unsigned int count,
1560 unsigned long flags, pgprot_t prot)
1561{
1562 struct vm_struct *area;
65ee03c4 1563 unsigned long size; /* In bytes */
1da177e4 1564
34754b69
PZ
1565 might_sleep();
1566
4481374c 1567 if (count > totalram_pages)
1da177e4
LT
1568 return NULL;
1569
65ee03c4
GJM
1570 size = (unsigned long)count << PAGE_SHIFT;
1571 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
1572 if (!area)
1573 return NULL;
23016969 1574
f6f8ed47 1575 if (map_vm_area(area, prot, pages)) {
1da177e4
LT
1576 vunmap(area->addr);
1577 return NULL;
1578 }
1579
1580 return area->addr;
1581}
1da177e4
LT
1582EXPORT_SYMBOL(vmap);
1583
2dca6999
DM
1584static void *__vmalloc_node(unsigned long size, unsigned long align,
1585 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1586 int node, const void *caller);
e31d9eb5 1587static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 1588 pgprot_t prot, int node)
1da177e4
LT
1589{
1590 struct page **pages;
1591 unsigned int nr_pages, array_size, i;
930f036b
DR
1592 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1593 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1da177e4 1594
762216ab 1595 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
1596 array_size = (nr_pages * sizeof(struct page *));
1597
1598 area->nr_pages = nr_pages;
1599 /* Please note that the recursion is strictly bounded. */
8757d5fa 1600 if (array_size > PAGE_SIZE) {
976d6dfb 1601 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
3722e13c 1602 PAGE_KERNEL, node, area->caller);
286e1ea3 1603 } else {
976d6dfb 1604 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 1605 }
1da177e4
LT
1606 area->pages = pages;
1607 if (!area->pages) {
1608 remove_vm_area(area->addr);
1609 kfree(area);
1610 return NULL;
1611 }
1da177e4
LT
1612
1613 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1614 struct page *page;
1615
4b90951c 1616 if (node == NUMA_NO_NODE)
7877cdcc 1617 page = alloc_page(alloc_mask);
930fc45a 1618 else
7877cdcc 1619 page = alloc_pages_node(node, alloc_mask, 0);
bf53d6f8
CL
1620
1621 if (unlikely(!page)) {
1da177e4
LT
1622 /* Successfully allocated i pages, free them in __vunmap() */
1623 area->nr_pages = i;
1624 goto fail;
1625 }
bf53d6f8 1626 area->pages[i] = page;
d0164adc 1627 if (gfpflags_allow_blocking(gfp_mask))
660654f9 1628 cond_resched();
1da177e4
LT
1629 }
1630
f6f8ed47 1631 if (map_vm_area(area, prot, pages))
1da177e4
LT
1632 goto fail;
1633 return area->addr;
1634
1635fail:
7877cdcc
MH
1636 warn_alloc(gfp_mask,
1637 "vmalloc: allocation failure, allocated %ld of %ld bytes",
22943ab1 1638 (area->nr_pages*PAGE_SIZE), area->size);
1da177e4
LT
1639 vfree(area->addr);
1640 return NULL;
1641}
1642
1643/**
d0a21265 1644 * __vmalloc_node_range - allocate virtually contiguous memory
1da177e4 1645 * @size: allocation size
2dca6999 1646 * @align: desired alignment
d0a21265
DR
1647 * @start: vm area range start
1648 * @end: vm area range end
1da177e4
LT
1649 * @gfp_mask: flags for the page level allocator
1650 * @prot: protection mask for the allocated pages
cb9e3c29 1651 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
00ef2d2f 1652 * @node: node to use for allocation or NUMA_NO_NODE
c85d194b 1653 * @caller: caller's return address
1da177e4
LT
1654 *
1655 * Allocate enough pages to cover @size from the page level
1656 * allocator with @gfp_mask flags. Map them into contiguous
1657 * kernel virtual space, using a pagetable protection of @prot.
1658 */
d0a21265
DR
1659void *__vmalloc_node_range(unsigned long size, unsigned long align,
1660 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
1661 pgprot_t prot, unsigned long vm_flags, int node,
1662 const void *caller)
1da177e4
LT
1663{
1664 struct vm_struct *area;
89219d37
CM
1665 void *addr;
1666 unsigned long real_size = size;
1da177e4
LT
1667
1668 size = PAGE_ALIGN(size);
4481374c 1669 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
de7d2b56 1670 goto fail;
1da177e4 1671
cb9e3c29
AR
1672 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1673 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 1674 if (!area)
de7d2b56 1675 goto fail;
1da177e4 1676
3722e13c 1677 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 1678 if (!addr)
b82225f3 1679 return NULL;
89219d37 1680
f5252e00 1681 /*
20fc02b4
ZY
1682 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1683 * flag. It means that vm_struct is not fully initialized.
4341fa45 1684 * Now, it is fully initialized, so remove this flag here.
f5252e00 1685 */
20fc02b4 1686 clear_vm_uninitialized_flag(area);
f5252e00 1687
89219d37 1688 /*
7f88f88f
CM
1689 * A ref_count = 2 is needed because vm_struct allocated in
1690 * __get_vm_area_node() contains a reference to the virtual address of
1691 * the vmalloc'ed block.
89219d37 1692 */
7f88f88f 1693 kmemleak_alloc(addr, real_size, 2, gfp_mask);
89219d37
CM
1694
1695 return addr;
de7d2b56
JP
1696
1697fail:
7877cdcc
MH
1698 warn_alloc(gfp_mask,
1699 "vmalloc: allocation failure: %lu bytes", real_size);
de7d2b56 1700 return NULL;
1da177e4
LT
1701}
1702
d0a21265
DR
1703/**
1704 * __vmalloc_node - allocate virtually contiguous memory
1705 * @size: allocation size
1706 * @align: desired alignment
1707 * @gfp_mask: flags for the page level allocator
1708 * @prot: protection mask for the allocated pages
00ef2d2f 1709 * @node: node to use for allocation or NUMA_NO_NODE
d0a21265
DR
1710 * @caller: caller's return address
1711 *
1712 * Allocate enough pages to cover @size from the page level
1713 * allocator with @gfp_mask flags. Map them into contiguous
1714 * kernel virtual space, using a pagetable protection of @prot.
1715 */
1716static void *__vmalloc_node(unsigned long size, unsigned long align,
1717 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1718 int node, const void *caller)
d0a21265
DR
1719{
1720 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
cb9e3c29 1721 gfp_mask, prot, 0, node, caller);
d0a21265
DR
1722}
1723
930fc45a
CL
1724void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1725{
00ef2d2f 1726 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 1727 __builtin_return_address(0));
930fc45a 1728}
1da177e4
LT
1729EXPORT_SYMBOL(__vmalloc);
1730
e1ca7788
DY
1731static inline void *__vmalloc_node_flags(unsigned long size,
1732 int node, gfp_t flags)
1733{
1734 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1735 node, __builtin_return_address(0));
1736}
1737
1da177e4
LT
1738/**
1739 * vmalloc - allocate virtually contiguous memory
1da177e4 1740 * @size: allocation size
1da177e4
LT
1741 * Allocate enough pages to cover @size from the page level
1742 * allocator and map them into contiguous kernel virtual space.
1743 *
c1c8897f 1744 * For tight control over page level allocator and protection flags
1da177e4
LT
1745 * use __vmalloc() instead.
1746 */
1747void *vmalloc(unsigned long size)
1748{
00ef2d2f
DR
1749 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1750 GFP_KERNEL | __GFP_HIGHMEM);
1da177e4 1751}
1da177e4
LT
1752EXPORT_SYMBOL(vmalloc);
1753
e1ca7788
DY
1754/**
1755 * vzalloc - allocate virtually contiguous memory with zero fill
1756 * @size: allocation size
1757 * Allocate enough pages to cover @size from the page level
1758 * allocator and map them into contiguous kernel virtual space.
1759 * The memory allocated is set to zero.
1760 *
1761 * For tight control over page level allocator and protection flags
1762 * use __vmalloc() instead.
1763 */
1764void *vzalloc(unsigned long size)
1765{
00ef2d2f 1766 return __vmalloc_node_flags(size, NUMA_NO_NODE,
e1ca7788
DY
1767 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1768}
1769EXPORT_SYMBOL(vzalloc);
1770
83342314 1771/**
ead04089
REB
1772 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1773 * @size: allocation size
83342314 1774 *
ead04089
REB
1775 * The resulting memory area is zeroed so it can be mapped to userspace
1776 * without leaking data.
83342314
NP
1777 */
1778void *vmalloc_user(unsigned long size)
1779{
1780 struct vm_struct *area;
1781 void *ret;
1782
2dca6999
DM
1783 ret = __vmalloc_node(size, SHMLBA,
1784 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
00ef2d2f
DR
1785 PAGE_KERNEL, NUMA_NO_NODE,
1786 __builtin_return_address(0));
2b4ac44e 1787 if (ret) {
db64fe02 1788 area = find_vm_area(ret);
2b4ac44e 1789 area->flags |= VM_USERMAP;
2b4ac44e 1790 }
83342314
NP
1791 return ret;
1792}
1793EXPORT_SYMBOL(vmalloc_user);
1794
930fc45a
CL
1795/**
1796 * vmalloc_node - allocate memory on a specific node
930fc45a 1797 * @size: allocation size
d44e0780 1798 * @node: numa node
930fc45a
CL
1799 *
1800 * Allocate enough pages to cover @size from the page level
1801 * allocator and map them into contiguous kernel virtual space.
1802 *
c1c8897f 1803 * For tight control over page level allocator and protection flags
930fc45a
CL
1804 * use __vmalloc() instead.
1805 */
1806void *vmalloc_node(unsigned long size, int node)
1807{
2dca6999 1808 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
23016969 1809 node, __builtin_return_address(0));
930fc45a
CL
1810}
1811EXPORT_SYMBOL(vmalloc_node);
1812
e1ca7788
DY
1813/**
1814 * vzalloc_node - allocate memory on a specific node with zero fill
1815 * @size: allocation size
1816 * @node: numa node
1817 *
1818 * Allocate enough pages to cover @size from the page level
1819 * allocator and map them into contiguous kernel virtual space.
1820 * The memory allocated is set to zero.
1821 *
1822 * For tight control over page level allocator and protection flags
1823 * use __vmalloc_node() instead.
1824 */
1825void *vzalloc_node(unsigned long size, int node)
1826{
1827 return __vmalloc_node_flags(size, node,
1828 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1829}
1830EXPORT_SYMBOL(vzalloc_node);
1831
4dc3b16b
PP
1832#ifndef PAGE_KERNEL_EXEC
1833# define PAGE_KERNEL_EXEC PAGE_KERNEL
1834#endif
1835
1da177e4
LT
1836/**
1837 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
1838 * @size: allocation size
1839 *
1840 * Kernel-internal function to allocate enough pages to cover @size
1841 * the page level allocator and map them into contiguous and
1842 * executable kernel virtual space.
1843 *
c1c8897f 1844 * For tight control over page level allocator and protection flags
1da177e4
LT
1845 * use __vmalloc() instead.
1846 */
1847
1da177e4
LT
1848void *vmalloc_exec(unsigned long size)
1849{
2dca6999 1850 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
00ef2d2f 1851 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
1852}
1853
0d08e0d3 1854#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
7ac674f5 1855#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3 1856#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
7ac674f5 1857#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
0d08e0d3
AK
1858#else
1859#define GFP_VMALLOC32 GFP_KERNEL
1860#endif
1861
1da177e4
LT
1862/**
1863 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
1864 * @size: allocation size
1865 *
1866 * Allocate enough 32bit PA addressable pages to cover @size from the
1867 * page level allocator and map them into contiguous kernel virtual space.
1868 */
1869void *vmalloc_32(unsigned long size)
1870{
2dca6999 1871 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 1872 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 1873}
1da177e4
LT
1874EXPORT_SYMBOL(vmalloc_32);
1875
83342314 1876/**
ead04089 1877 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 1878 * @size: allocation size
ead04089
REB
1879 *
1880 * The resulting memory area is 32bit addressable and zeroed so it can be
1881 * mapped to userspace without leaking data.
83342314
NP
1882 */
1883void *vmalloc_32_user(unsigned long size)
1884{
1885 struct vm_struct *area;
1886 void *ret;
1887
2dca6999 1888 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
00ef2d2f 1889 NUMA_NO_NODE, __builtin_return_address(0));
2b4ac44e 1890 if (ret) {
db64fe02 1891 area = find_vm_area(ret);
2b4ac44e 1892 area->flags |= VM_USERMAP;
2b4ac44e 1893 }
83342314
NP
1894 return ret;
1895}
1896EXPORT_SYMBOL(vmalloc_32_user);
1897
d0107eb0
KH
1898/*
1899 * small helper routine , copy contents to buf from addr.
1900 * If the page is not present, fill zero.
1901 */
1902
1903static int aligned_vread(char *buf, char *addr, unsigned long count)
1904{
1905 struct page *p;
1906 int copied = 0;
1907
1908 while (count) {
1909 unsigned long offset, length;
1910
891c49ab 1911 offset = offset_in_page(addr);
d0107eb0
KH
1912 length = PAGE_SIZE - offset;
1913 if (length > count)
1914 length = count;
1915 p = vmalloc_to_page(addr);
1916 /*
1917 * To do safe access to this _mapped_ area, we need
1918 * lock. But adding lock here means that we need to add
1919 * overhead of vmalloc()/vfree() calles for this _debug_
1920 * interface, rarely used. Instead of that, we'll use
1921 * kmap() and get small overhead in this access function.
1922 */
1923 if (p) {
1924 /*
1925 * we can expect USER0 is not used (see vread/vwrite's
1926 * function description)
1927 */
9b04c5fe 1928 void *map = kmap_atomic(p);
d0107eb0 1929 memcpy(buf, map + offset, length);
9b04c5fe 1930 kunmap_atomic(map);
d0107eb0
KH
1931 } else
1932 memset(buf, 0, length);
1933
1934 addr += length;
1935 buf += length;
1936 copied += length;
1937 count -= length;
1938 }
1939 return copied;
1940}
1941
1942static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1943{
1944 struct page *p;
1945 int copied = 0;
1946
1947 while (count) {
1948 unsigned long offset, length;
1949
891c49ab 1950 offset = offset_in_page(addr);
d0107eb0
KH
1951 length = PAGE_SIZE - offset;
1952 if (length > count)
1953 length = count;
1954 p = vmalloc_to_page(addr);
1955 /*
1956 * To do safe access to this _mapped_ area, we need
1957 * lock. But adding lock here means that we need to add
1958 * overhead of vmalloc()/vfree() calles for this _debug_
1959 * interface, rarely used. Instead of that, we'll use
1960 * kmap() and get small overhead in this access function.
1961 */
1962 if (p) {
1963 /*
1964 * we can expect USER0 is not used (see vread/vwrite's
1965 * function description)
1966 */
9b04c5fe 1967 void *map = kmap_atomic(p);
d0107eb0 1968 memcpy(map + offset, buf, length);
9b04c5fe 1969 kunmap_atomic(map);
d0107eb0
KH
1970 }
1971 addr += length;
1972 buf += length;
1973 copied += length;
1974 count -= length;
1975 }
1976 return copied;
1977}
1978
1979/**
1980 * vread() - read vmalloc area in a safe way.
1981 * @buf: buffer for reading data
1982 * @addr: vm address.
1983 * @count: number of bytes to be read.
1984 *
1985 * Returns # of bytes which addr and buf should be increased.
1986 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1987 * includes any intersect with alive vmalloc area.
1988 *
1989 * This function checks that addr is a valid vmalloc'ed area, and
1990 * copy data from that area to a given buffer. If the given memory range
1991 * of [addr...addr+count) includes some valid address, data is copied to
1992 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1993 * IOREMAP area is treated as memory hole and no copy is done.
1994 *
1995 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 1996 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
1997 *
1998 * Note: In usual ops, vread() is never necessary because the caller
1999 * should know vmalloc() area is valid and can use memcpy().
2000 * This is for routines which have to access vmalloc area without
2001 * any informaion, as /dev/kmem.
2002 *
2003 */
2004
1da177e4
LT
2005long vread(char *buf, char *addr, unsigned long count)
2006{
e81ce85f
JK
2007 struct vmap_area *va;
2008 struct vm_struct *vm;
1da177e4 2009 char *vaddr, *buf_start = buf;
d0107eb0 2010 unsigned long buflen = count;
1da177e4
LT
2011 unsigned long n;
2012
2013 /* Don't allow overflow */
2014 if ((unsigned long) addr + count < count)
2015 count = -(unsigned long) addr;
2016
e81ce85f
JK
2017 spin_lock(&vmap_area_lock);
2018 list_for_each_entry(va, &vmap_area_list, list) {
2019 if (!count)
2020 break;
2021
2022 if (!(va->flags & VM_VM_AREA))
2023 continue;
2024
2025 vm = va->vm;
2026 vaddr = (char *) vm->addr;
762216ab 2027 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2028 continue;
2029 while (addr < vaddr) {
2030 if (count == 0)
2031 goto finished;
2032 *buf = '\0';
2033 buf++;
2034 addr++;
2035 count--;
2036 }
762216ab 2037 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2038 if (n > count)
2039 n = count;
e81ce85f 2040 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2041 aligned_vread(buf, addr, n);
2042 else /* IOREMAP area is treated as memory hole */
2043 memset(buf, 0, n);
2044 buf += n;
2045 addr += n;
2046 count -= n;
1da177e4
LT
2047 }
2048finished:
e81ce85f 2049 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2050
2051 if (buf == buf_start)
2052 return 0;
2053 /* zero-fill memory holes */
2054 if (buf != buf_start + buflen)
2055 memset(buf, 0, buflen - (buf - buf_start));
2056
2057 return buflen;
1da177e4
LT
2058}
2059
d0107eb0
KH
2060/**
2061 * vwrite() - write vmalloc area in a safe way.
2062 * @buf: buffer for source data
2063 * @addr: vm address.
2064 * @count: number of bytes to be read.
2065 *
2066 * Returns # of bytes which addr and buf should be incresed.
2067 * (same number to @count).
2068 * If [addr...addr+count) doesn't includes any intersect with valid
2069 * vmalloc area, returns 0.
2070 *
2071 * This function checks that addr is a valid vmalloc'ed area, and
2072 * copy data from a buffer to the given addr. If specified range of
2073 * [addr...addr+count) includes some valid address, data is copied from
2074 * proper area of @buf. If there are memory holes, no copy to hole.
2075 * IOREMAP area is treated as memory hole and no copy is done.
2076 *
2077 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 2078 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
2079 *
2080 * Note: In usual ops, vwrite() is never necessary because the caller
2081 * should know vmalloc() area is valid and can use memcpy().
2082 * This is for routines which have to access vmalloc area without
2083 * any informaion, as /dev/kmem.
d0107eb0
KH
2084 */
2085
1da177e4
LT
2086long vwrite(char *buf, char *addr, unsigned long count)
2087{
e81ce85f
JK
2088 struct vmap_area *va;
2089 struct vm_struct *vm;
d0107eb0
KH
2090 char *vaddr;
2091 unsigned long n, buflen;
2092 int copied = 0;
1da177e4
LT
2093
2094 /* Don't allow overflow */
2095 if ((unsigned long) addr + count < count)
2096 count = -(unsigned long) addr;
d0107eb0 2097 buflen = count;
1da177e4 2098
e81ce85f
JK
2099 spin_lock(&vmap_area_lock);
2100 list_for_each_entry(va, &vmap_area_list, list) {
2101 if (!count)
2102 break;
2103
2104 if (!(va->flags & VM_VM_AREA))
2105 continue;
2106
2107 vm = va->vm;
2108 vaddr = (char *) vm->addr;
762216ab 2109 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2110 continue;
2111 while (addr < vaddr) {
2112 if (count == 0)
2113 goto finished;
2114 buf++;
2115 addr++;
2116 count--;
2117 }
762216ab 2118 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2119 if (n > count)
2120 n = count;
e81ce85f 2121 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2122 aligned_vwrite(buf, addr, n);
2123 copied++;
2124 }
2125 buf += n;
2126 addr += n;
2127 count -= n;
1da177e4
LT
2128 }
2129finished:
e81ce85f 2130 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2131 if (!copied)
2132 return 0;
2133 return buflen;
1da177e4 2134}
83342314
NP
2135
2136/**
e69e9d4a
HD
2137 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2138 * @vma: vma to cover
2139 * @uaddr: target user address to start at
2140 * @kaddr: virtual address of vmalloc kernel memory
2141 * @size: size of map area
7682486b
RD
2142 *
2143 * Returns: 0 for success, -Exxx on failure
83342314 2144 *
e69e9d4a
HD
2145 * This function checks that @kaddr is a valid vmalloc'ed area,
2146 * and that it is big enough to cover the range starting at
2147 * @uaddr in @vma. Will return failure if that criteria isn't
2148 * met.
83342314 2149 *
72fd4a35 2150 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 2151 */
e69e9d4a
HD
2152int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2153 void *kaddr, unsigned long size)
83342314
NP
2154{
2155 struct vm_struct *area;
83342314 2156
e69e9d4a
HD
2157 size = PAGE_ALIGN(size);
2158
2159 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
2160 return -EINVAL;
2161
e69e9d4a 2162 area = find_vm_area(kaddr);
83342314 2163 if (!area)
db64fe02 2164 return -EINVAL;
83342314
NP
2165
2166 if (!(area->flags & VM_USERMAP))
db64fe02 2167 return -EINVAL;
83342314 2168
e69e9d4a 2169 if (kaddr + size > area->addr + area->size)
db64fe02 2170 return -EINVAL;
83342314 2171
83342314 2172 do {
e69e9d4a 2173 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
2174 int ret;
2175
83342314
NP
2176 ret = vm_insert_page(vma, uaddr, page);
2177 if (ret)
2178 return ret;
2179
2180 uaddr += PAGE_SIZE;
e69e9d4a
HD
2181 kaddr += PAGE_SIZE;
2182 size -= PAGE_SIZE;
2183 } while (size > 0);
83342314 2184
314e51b9 2185 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 2186
db64fe02 2187 return 0;
83342314 2188}
e69e9d4a
HD
2189EXPORT_SYMBOL(remap_vmalloc_range_partial);
2190
2191/**
2192 * remap_vmalloc_range - map vmalloc pages to userspace
2193 * @vma: vma to cover (map full range of vma)
2194 * @addr: vmalloc memory
2195 * @pgoff: number of pages into addr before first page to map
2196 *
2197 * Returns: 0 for success, -Exxx on failure
2198 *
2199 * This function checks that addr is a valid vmalloc'ed area, and
2200 * that it is big enough to cover the vma. Will return failure if
2201 * that criteria isn't met.
2202 *
2203 * Similar to remap_pfn_range() (see mm/memory.c)
2204 */
2205int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2206 unsigned long pgoff)
2207{
2208 return remap_vmalloc_range_partial(vma, vma->vm_start,
2209 addr + (pgoff << PAGE_SHIFT),
2210 vma->vm_end - vma->vm_start);
2211}
83342314
NP
2212EXPORT_SYMBOL(remap_vmalloc_range);
2213
1eeb66a1
CH
2214/*
2215 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2216 * have one.
2217 */
3b32123d 2218void __weak vmalloc_sync_all(void)
1eeb66a1
CH
2219{
2220}
5f4352fb
JF
2221
2222
2f569afd 2223static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb 2224{
cd12909c
DV
2225 pte_t ***p = data;
2226
2227 if (p) {
2228 *(*p) = pte;
2229 (*p)++;
2230 }
5f4352fb
JF
2231 return 0;
2232}
2233
2234/**
2235 * alloc_vm_area - allocate a range of kernel address space
2236 * @size: size of the area
cd12909c 2237 * @ptes: returns the PTEs for the address space
7682486b
RD
2238 *
2239 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
2240 *
2241 * This function reserves a range of kernel address space, and
2242 * allocates pagetables to map that range. No actual mappings
cd12909c
DV
2243 * are created.
2244 *
2245 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2246 * allocated for the VM area are returned.
5f4352fb 2247 */
cd12909c 2248struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
2249{
2250 struct vm_struct *area;
2251
23016969
CL
2252 area = get_vm_area_caller(size, VM_IOREMAP,
2253 __builtin_return_address(0));
5f4352fb
JF
2254 if (area == NULL)
2255 return NULL;
2256
2257 /*
2258 * This ensures that page tables are constructed for this region
2259 * of kernel virtual address space and mapped into init_mm.
2260 */
2261 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 2262 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
2263 free_vm_area(area);
2264 return NULL;
2265 }
2266
5f4352fb
JF
2267 return area;
2268}
2269EXPORT_SYMBOL_GPL(alloc_vm_area);
2270
2271void free_vm_area(struct vm_struct *area)
2272{
2273 struct vm_struct *ret;
2274 ret = remove_vm_area(area->addr);
2275 BUG_ON(ret != area);
2276 kfree(area);
2277}
2278EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 2279
4f8b02b4 2280#ifdef CONFIG_SMP
ca23e405
TH
2281static struct vmap_area *node_to_va(struct rb_node *n)
2282{
2283 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2284}
2285
2286/**
2287 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2288 * @end: target address
2289 * @pnext: out arg for the next vmap_area
2290 * @pprev: out arg for the previous vmap_area
2291 *
2292 * Returns: %true if either or both of next and prev are found,
2293 * %false if no vmap_area exists
2294 *
2295 * Find vmap_areas end addresses of which enclose @end. ie. if not
2296 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2297 */
2298static bool pvm_find_next_prev(unsigned long end,
2299 struct vmap_area **pnext,
2300 struct vmap_area **pprev)
2301{
2302 struct rb_node *n = vmap_area_root.rb_node;
2303 struct vmap_area *va = NULL;
2304
2305 while (n) {
2306 va = rb_entry(n, struct vmap_area, rb_node);
2307 if (end < va->va_end)
2308 n = n->rb_left;
2309 else if (end > va->va_end)
2310 n = n->rb_right;
2311 else
2312 break;
2313 }
2314
2315 if (!va)
2316 return false;
2317
2318 if (va->va_end > end) {
2319 *pnext = va;
2320 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2321 } else {
2322 *pprev = va;
2323 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2324 }
2325 return true;
2326}
2327
2328/**
2329 * pvm_determine_end - find the highest aligned address between two vmap_areas
2330 * @pnext: in/out arg for the next vmap_area
2331 * @pprev: in/out arg for the previous vmap_area
2332 * @align: alignment
2333 *
2334 * Returns: determined end address
2335 *
2336 * Find the highest aligned address between *@pnext and *@pprev below
2337 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2338 * down address is between the end addresses of the two vmap_areas.
2339 *
2340 * Please note that the address returned by this function may fall
2341 * inside *@pnext vmap_area. The caller is responsible for checking
2342 * that.
2343 */
2344static unsigned long pvm_determine_end(struct vmap_area **pnext,
2345 struct vmap_area **pprev,
2346 unsigned long align)
2347{
2348 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2349 unsigned long addr;
2350
2351 if (*pnext)
2352 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2353 else
2354 addr = vmalloc_end;
2355
2356 while (*pprev && (*pprev)->va_end > addr) {
2357 *pnext = *pprev;
2358 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2359 }
2360
2361 return addr;
2362}
2363
2364/**
2365 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2366 * @offsets: array containing offset of each area
2367 * @sizes: array containing size of each area
2368 * @nr_vms: the number of areas to allocate
2369 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
2370 *
2371 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2372 * vm_structs on success, %NULL on failure
2373 *
2374 * Percpu allocator wants to use congruent vm areas so that it can
2375 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
2376 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2377 * be scattered pretty far, distance between two areas easily going up
2378 * to gigabytes. To avoid interacting with regular vmallocs, these
2379 * areas are allocated from top.
ca23e405
TH
2380 *
2381 * Despite its complicated look, this allocator is rather simple. It
2382 * does everything top-down and scans areas from the end looking for
2383 * matching slot. While scanning, if any of the areas overlaps with
2384 * existing vmap_area, the base address is pulled down to fit the
2385 * area. Scanning is repeated till all the areas fit and then all
2386 * necessary data structres are inserted and the result is returned.
2387 */
2388struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2389 const size_t *sizes, int nr_vms,
ec3f64fc 2390 size_t align)
ca23e405
TH
2391{
2392 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2393 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2394 struct vmap_area **vas, *prev, *next;
2395 struct vm_struct **vms;
2396 int area, area2, last_area, term_area;
2397 unsigned long base, start, end, last_end;
2398 bool purged = false;
2399
ca23e405 2400 /* verify parameters and allocate data structures */
891c49ab 2401 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
2402 for (last_area = 0, area = 0; area < nr_vms; area++) {
2403 start = offsets[area];
2404 end = start + sizes[area];
2405
2406 /* is everything aligned properly? */
2407 BUG_ON(!IS_ALIGNED(offsets[area], align));
2408 BUG_ON(!IS_ALIGNED(sizes[area], align));
2409
2410 /* detect the area with the highest address */
2411 if (start > offsets[last_area])
2412 last_area = area;
2413
2414 for (area2 = 0; area2 < nr_vms; area2++) {
2415 unsigned long start2 = offsets[area2];
2416 unsigned long end2 = start2 + sizes[area2];
2417
2418 if (area2 == area)
2419 continue;
2420
2421 BUG_ON(start2 >= start && start2 < end);
2422 BUG_ON(end2 <= end && end2 > start);
2423 }
2424 }
2425 last_end = offsets[last_area] + sizes[last_area];
2426
2427 if (vmalloc_end - vmalloc_start < last_end) {
2428 WARN_ON(true);
2429 return NULL;
2430 }
2431
4d67d860
TM
2432 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2433 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 2434 if (!vas || !vms)
f1db7afd 2435 goto err_free2;
ca23e405
TH
2436
2437 for (area = 0; area < nr_vms; area++) {
ec3f64fc
DR
2438 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2439 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
2440 if (!vas[area] || !vms[area])
2441 goto err_free;
2442 }
2443retry:
2444 spin_lock(&vmap_area_lock);
2445
2446 /* start scanning - we scan from the top, begin with the last area */
2447 area = term_area = last_area;
2448 start = offsets[area];
2449 end = start + sizes[area];
2450
2451 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2452 base = vmalloc_end - last_end;
2453 goto found;
2454 }
2455 base = pvm_determine_end(&next, &prev, align) - end;
2456
2457 while (true) {
2458 BUG_ON(next && next->va_end <= base + end);
2459 BUG_ON(prev && prev->va_end > base + end);
2460
2461 /*
2462 * base might have underflowed, add last_end before
2463 * comparing.
2464 */
2465 if (base + last_end < vmalloc_start + last_end) {
2466 spin_unlock(&vmap_area_lock);
2467 if (!purged) {
2468 purge_vmap_area_lazy();
2469 purged = true;
2470 goto retry;
2471 }
2472 goto err_free;
2473 }
2474
2475 /*
2476 * If next overlaps, move base downwards so that it's
2477 * right below next and then recheck.
2478 */
2479 if (next && next->va_start < base + end) {
2480 base = pvm_determine_end(&next, &prev, align) - end;
2481 term_area = area;
2482 continue;
2483 }
2484
2485 /*
2486 * If prev overlaps, shift down next and prev and move
2487 * base so that it's right below new next and then
2488 * recheck.
2489 */
2490 if (prev && prev->va_end > base + start) {
2491 next = prev;
2492 prev = node_to_va(rb_prev(&next->rb_node));
2493 base = pvm_determine_end(&next, &prev, align) - end;
2494 term_area = area;
2495 continue;
2496 }
2497
2498 /*
2499 * This area fits, move on to the previous one. If
2500 * the previous one is the terminal one, we're done.
2501 */
2502 area = (area + nr_vms - 1) % nr_vms;
2503 if (area == term_area)
2504 break;
2505 start = offsets[area];
2506 end = start + sizes[area];
2507 pvm_find_next_prev(base + end, &next, &prev);
2508 }
2509found:
2510 /* we've found a fitting base, insert all va's */
2511 for (area = 0; area < nr_vms; area++) {
2512 struct vmap_area *va = vas[area];
2513
2514 va->va_start = base + offsets[area];
2515 va->va_end = va->va_start + sizes[area];
2516 __insert_vmap_area(va);
2517 }
2518
2519 vmap_area_pcpu_hole = base + offsets[last_area];
2520
2521 spin_unlock(&vmap_area_lock);
2522
2523 /* insert all vm's */
2524 for (area = 0; area < nr_vms; area++)
3645cb4a
ZY
2525 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2526 pcpu_get_vm_areas);
ca23e405
TH
2527
2528 kfree(vas);
2529 return vms;
2530
2531err_free:
2532 for (area = 0; area < nr_vms; area++) {
f1db7afd
KC
2533 kfree(vas[area]);
2534 kfree(vms[area]);
ca23e405 2535 }
f1db7afd 2536err_free2:
ca23e405
TH
2537 kfree(vas);
2538 kfree(vms);
2539 return NULL;
2540}
2541
2542/**
2543 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2544 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2545 * @nr_vms: the number of allocated areas
2546 *
2547 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2548 */
2549void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2550{
2551 int i;
2552
2553 for (i = 0; i < nr_vms; i++)
2554 free_vm_area(vms[i]);
2555 kfree(vms);
2556}
4f8b02b4 2557#endif /* CONFIG_SMP */
a10aa579
CL
2558
2559#ifdef CONFIG_PROC_FS
2560static void *s_start(struct seq_file *m, loff_t *pos)
d4033afd 2561 __acquires(&vmap_area_lock)
a10aa579 2562{
d4033afd 2563 spin_lock(&vmap_area_lock);
3f500069 2564 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
2565}
2566
2567static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2568{
3f500069 2569 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
2570}
2571
2572static void s_stop(struct seq_file *m, void *p)
d4033afd 2573 __releases(&vmap_area_lock)
a10aa579 2574{
d4033afd 2575 spin_unlock(&vmap_area_lock);
a10aa579
CL
2576}
2577
a47a126a
ED
2578static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2579{
e5adfffc 2580 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
2581 unsigned int nr, *counters = m->private;
2582
2583 if (!counters)
2584 return;
2585
af12346c
WL
2586 if (v->flags & VM_UNINITIALIZED)
2587 return;
7e5b528b
DV
2588 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2589 smp_rmb();
af12346c 2590
a47a126a
ED
2591 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2592
2593 for (nr = 0; nr < v->nr_pages; nr++)
2594 counters[page_to_nid(v->pages[nr])]++;
2595
2596 for_each_node_state(nr, N_HIGH_MEMORY)
2597 if (counters[nr])
2598 seq_printf(m, " N%u=%u", nr, counters[nr]);
2599 }
2600}
2601
a10aa579
CL
2602static int s_show(struct seq_file *m, void *p)
2603{
3f500069 2604 struct vmap_area *va;
d4033afd
JK
2605 struct vm_struct *v;
2606
3f500069 2607 va = list_entry(p, struct vmap_area, list);
2608
c2ce8c14
WL
2609 /*
2610 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2611 * behalf of vmap area is being tear down or vm_map_ram allocation.
2612 */
2613 if (!(va->flags & VM_VM_AREA))
d4033afd 2614 return 0;
d4033afd
JK
2615
2616 v = va->vm;
a10aa579 2617
45ec1690 2618 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
2619 v->addr, v->addr + v->size, v->size);
2620
62c70bce
JP
2621 if (v->caller)
2622 seq_printf(m, " %pS", v->caller);
23016969 2623
a10aa579
CL
2624 if (v->nr_pages)
2625 seq_printf(m, " pages=%d", v->nr_pages);
2626
2627 if (v->phys_addr)
ffa71f33 2628 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
a10aa579
CL
2629
2630 if (v->flags & VM_IOREMAP)
f4527c90 2631 seq_puts(m, " ioremap");
a10aa579
CL
2632
2633 if (v->flags & VM_ALLOC)
f4527c90 2634 seq_puts(m, " vmalloc");
a10aa579
CL
2635
2636 if (v->flags & VM_MAP)
f4527c90 2637 seq_puts(m, " vmap");
a10aa579
CL
2638
2639 if (v->flags & VM_USERMAP)
f4527c90 2640 seq_puts(m, " user");
a10aa579 2641
244d63ee 2642 if (is_vmalloc_addr(v->pages))
f4527c90 2643 seq_puts(m, " vpages");
a10aa579 2644
a47a126a 2645 show_numa_info(m, v);
a10aa579
CL
2646 seq_putc(m, '\n');
2647 return 0;
2648}
2649
5f6a6a9c 2650static const struct seq_operations vmalloc_op = {
a10aa579
CL
2651 .start = s_start,
2652 .next = s_next,
2653 .stop = s_stop,
2654 .show = s_show,
2655};
5f6a6a9c
AD
2656
2657static int vmalloc_open(struct inode *inode, struct file *file)
2658{
703394c1
RJ
2659 if (IS_ENABLED(CONFIG_NUMA))
2660 return seq_open_private(file, &vmalloc_op,
2661 nr_node_ids * sizeof(unsigned int));
2662 else
2663 return seq_open(file, &vmalloc_op);
5f6a6a9c
AD
2664}
2665
2666static const struct file_operations proc_vmalloc_operations = {
2667 .open = vmalloc_open,
2668 .read = seq_read,
2669 .llseek = seq_lseek,
2670 .release = seq_release_private,
2671};
2672
2673static int __init proc_vmalloc_init(void)
2674{
2675 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2676 return 0;
2677}
2678module_init(proc_vmalloc_init);
db3808c1 2679
a10aa579
CL
2680#endif
2681