]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/vmalloc.c
mm: only allow page table mappings for built-in zsmalloc
[mirror_ubuntu-kernels.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/vmalloc.c
4 *
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 9 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
10 */
11
db64fe02 12#include <linux/vmalloc.h>
1da177e4
LT
13#include <linux/mm.h>
14#include <linux/module.h>
15#include <linux/highmem.h>
c3edc401 16#include <linux/sched/signal.h>
1da177e4
LT
17#include <linux/slab.h>
18#include <linux/spinlock.h>
19#include <linux/interrupt.h>
5f6a6a9c 20#include <linux/proc_fs.h>
a10aa579 21#include <linux/seq_file.h>
868b104d 22#include <linux/set_memory.h>
3ac7fe5a 23#include <linux/debugobjects.h>
23016969 24#include <linux/kallsyms.h>
db64fe02 25#include <linux/list.h>
4da56b99 26#include <linux/notifier.h>
db64fe02
NP
27#include <linux/rbtree.h>
28#include <linux/radix-tree.h>
29#include <linux/rcupdate.h>
f0aa6617 30#include <linux/pfn.h>
89219d37 31#include <linux/kmemleak.h>
60063497 32#include <linux/atomic.h>
3b32123d 33#include <linux/compiler.h>
32fcfd40 34#include <linux/llist.h>
0f616be1 35#include <linux/bitops.h>
68ad4a33 36#include <linux/rbtree_augmented.h>
bdebd6a2 37#include <linux/overflow.h>
3b32123d 38
7c0f6ba6 39#include <linux/uaccess.h>
1da177e4 40#include <asm/tlbflush.h>
2dca6999 41#include <asm/shmparam.h>
1da177e4 42
dd56b046
MG
43#include "internal.h"
44
186525bd
IM
45bool is_vmalloc_addr(const void *x)
46{
47 unsigned long addr = (unsigned long)x;
48
49 return addr >= VMALLOC_START && addr < VMALLOC_END;
50}
51EXPORT_SYMBOL(is_vmalloc_addr);
52
32fcfd40
AV
53struct vfree_deferred {
54 struct llist_head list;
55 struct work_struct wq;
56};
57static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
58
59static void __vunmap(const void *, int);
60
61static void free_work(struct work_struct *w)
62{
63 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
64 struct llist_node *t, *llnode;
65
66 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
67 __vunmap((void *)llnode, 1);
32fcfd40
AV
68}
69
db64fe02 70/*** Page table manipulation functions ***/
b221385b 71
1da177e4
LT
72static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
73{
74 pte_t *pte;
75
76 pte = pte_offset_kernel(pmd, addr);
77 do {
78 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
79 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
80 } while (pte++, addr += PAGE_SIZE, addr != end);
81}
82
db64fe02 83static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
84{
85 pmd_t *pmd;
86 unsigned long next;
87
88 pmd = pmd_offset(pud, addr);
89 do {
90 next = pmd_addr_end(addr, end);
b9820d8f
TK
91 if (pmd_clear_huge(pmd))
92 continue;
1da177e4
LT
93 if (pmd_none_or_clear_bad(pmd))
94 continue;
95 vunmap_pte_range(pmd, addr, next);
96 } while (pmd++, addr = next, addr != end);
97}
98
c2febafc 99static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
1da177e4
LT
100{
101 pud_t *pud;
102 unsigned long next;
103
c2febafc 104 pud = pud_offset(p4d, addr);
1da177e4
LT
105 do {
106 next = pud_addr_end(addr, end);
b9820d8f
TK
107 if (pud_clear_huge(pud))
108 continue;
1da177e4
LT
109 if (pud_none_or_clear_bad(pud))
110 continue;
111 vunmap_pmd_range(pud, addr, next);
112 } while (pud++, addr = next, addr != end);
113}
114
c2febafc
KS
115static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
116{
117 p4d_t *p4d;
118 unsigned long next;
119
120 p4d = p4d_offset(pgd, addr);
121 do {
122 next = p4d_addr_end(addr, end);
123 if (p4d_clear_huge(p4d))
124 continue;
125 if (p4d_none_or_clear_bad(p4d))
126 continue;
127 vunmap_pud_range(p4d, addr, next);
128 } while (p4d++, addr = next, addr != end);
129}
130
db64fe02 131static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
132{
133 pgd_t *pgd;
134 unsigned long next;
1da177e4
LT
135
136 BUG_ON(addr >= end);
137 pgd = pgd_offset_k(addr);
1da177e4
LT
138 do {
139 next = pgd_addr_end(addr, end);
140 if (pgd_none_or_clear_bad(pgd))
141 continue;
c2febafc 142 vunmap_p4d_range(pgd, addr, next);
1da177e4 143 } while (pgd++, addr = next, addr != end);
1da177e4
LT
144}
145
146static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 147 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
148{
149 pte_t *pte;
150
db64fe02
NP
151 /*
152 * nr is a running index into the array which helps higher level
153 * callers keep track of where we're up to.
154 */
155
872fec16 156 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
157 if (!pte)
158 return -ENOMEM;
159 do {
db64fe02
NP
160 struct page *page = pages[*nr];
161
162 if (WARN_ON(!pte_none(*pte)))
163 return -EBUSY;
164 if (WARN_ON(!page))
1da177e4
LT
165 return -ENOMEM;
166 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 167 (*nr)++;
1da177e4
LT
168 } while (pte++, addr += PAGE_SIZE, addr != end);
169 return 0;
170}
171
db64fe02
NP
172static int vmap_pmd_range(pud_t *pud, unsigned long addr,
173 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
174{
175 pmd_t *pmd;
176 unsigned long next;
177
178 pmd = pmd_alloc(&init_mm, pud, addr);
179 if (!pmd)
180 return -ENOMEM;
181 do {
182 next = pmd_addr_end(addr, end);
db64fe02 183 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
184 return -ENOMEM;
185 } while (pmd++, addr = next, addr != end);
186 return 0;
187}
188
c2febafc 189static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
db64fe02 190 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
191{
192 pud_t *pud;
193 unsigned long next;
194
c2febafc 195 pud = pud_alloc(&init_mm, p4d, addr);
1da177e4
LT
196 if (!pud)
197 return -ENOMEM;
198 do {
199 next = pud_addr_end(addr, end);
db64fe02 200 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
201 return -ENOMEM;
202 } while (pud++, addr = next, addr != end);
203 return 0;
204}
205
c2febafc
KS
206static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
207 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
208{
209 p4d_t *p4d;
210 unsigned long next;
211
212 p4d = p4d_alloc(&init_mm, pgd, addr);
213 if (!p4d)
214 return -ENOMEM;
215 do {
216 next = p4d_addr_end(addr, end);
217 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
218 return -ENOMEM;
219 } while (p4d++, addr = next, addr != end);
220 return 0;
221}
222
db64fe02
NP
223/*
224 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
225 * will have pfns corresponding to the "pages" array.
226 *
227 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
228 */
8fc48985
TH
229static int vmap_page_range_noflush(unsigned long start, unsigned long end,
230 pgprot_t prot, struct page **pages)
1da177e4
LT
231{
232 pgd_t *pgd;
233 unsigned long next;
2e4e27c7 234 unsigned long addr = start;
db64fe02
NP
235 int err = 0;
236 int nr = 0;
1da177e4
LT
237
238 BUG_ON(addr >= end);
239 pgd = pgd_offset_k(addr);
1da177e4
LT
240 do {
241 next = pgd_addr_end(addr, end);
c2febafc 242 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
1da177e4 243 if (err)
bf88c8c8 244 return err;
1da177e4 245 } while (pgd++, addr = next, addr != end);
db64fe02 246
db64fe02 247 return nr;
1da177e4
LT
248}
249
8fc48985
TH
250static int vmap_page_range(unsigned long start, unsigned long end,
251 pgprot_t prot, struct page **pages)
252{
253 int ret;
254
255 ret = vmap_page_range_noflush(start, end, prot, pages);
256 flush_cache_vmap(start, end);
257 return ret;
258}
259
81ac3ad9 260int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
261{
262 /*
ab4f2ee1 263 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
264 * and fall back on vmalloc() if that fails. Others
265 * just put it in the vmalloc space.
266 */
267#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
268 unsigned long addr = (unsigned long)x;
269 if (addr >= MODULES_VADDR && addr < MODULES_END)
270 return 1;
271#endif
272 return is_vmalloc_addr(x);
273}
274
48667e7a 275/*
add688fb 276 * Walk a vmap address to the struct page it maps.
48667e7a 277 */
add688fb 278struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
279{
280 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 281 struct page *page = NULL;
48667e7a 282 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
283 p4d_t *p4d;
284 pud_t *pud;
285 pmd_t *pmd;
286 pte_t *ptep, pte;
48667e7a 287
7aa413de
IM
288 /*
289 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
290 * architectures that do not vmalloc module space
291 */
73bdf0a6 292 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 293
c2febafc
KS
294 if (pgd_none(*pgd))
295 return NULL;
296 p4d = p4d_offset(pgd, addr);
297 if (p4d_none(*p4d))
298 return NULL;
299 pud = pud_offset(p4d, addr);
029c54b0
AB
300
301 /*
302 * Don't dereference bad PUD or PMD (below) entries. This will also
303 * identify huge mappings, which we may encounter on architectures
304 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
305 * identified as vmalloc addresses by is_vmalloc_addr(), but are
306 * not [unambiguously] associated with a struct page, so there is
307 * no correct value to return for them.
308 */
309 WARN_ON_ONCE(pud_bad(*pud));
310 if (pud_none(*pud) || pud_bad(*pud))
c2febafc
KS
311 return NULL;
312 pmd = pmd_offset(pud, addr);
029c54b0
AB
313 WARN_ON_ONCE(pmd_bad(*pmd));
314 if (pmd_none(*pmd) || pmd_bad(*pmd))
c2febafc
KS
315 return NULL;
316
317 ptep = pte_offset_map(pmd, addr);
318 pte = *ptep;
319 if (pte_present(pte))
320 page = pte_page(pte);
321 pte_unmap(ptep);
add688fb 322 return page;
48667e7a 323}
add688fb 324EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
325
326/*
add688fb 327 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 328 */
add688fb 329unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 330{
add688fb 331 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 332}
add688fb 333EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 334
db64fe02
NP
335
336/*** Global kva allocator ***/
337
bb850f4d 338#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 339#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 340
db64fe02 341
db64fe02 342static DEFINE_SPINLOCK(vmap_area_lock);
e36176be 343static DEFINE_SPINLOCK(free_vmap_area_lock);
f1c4069e
JK
344/* Export for kexec only */
345LIST_HEAD(vmap_area_list);
80c4bd7a 346static LLIST_HEAD(vmap_purge_list);
89699605 347static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 348static bool vmap_initialized __read_mostly;
89699605 349
68ad4a33
URS
350/*
351 * This kmem_cache is used for vmap_area objects. Instead of
352 * allocating from slab we reuse an object from this cache to
353 * make things faster. Especially in "no edge" splitting of
354 * free block.
355 */
356static struct kmem_cache *vmap_area_cachep;
357
358/*
359 * This linked list is used in pair with free_vmap_area_root.
360 * It gives O(1) access to prev/next to perform fast coalescing.
361 */
362static LIST_HEAD(free_vmap_area_list);
363
364/*
365 * This augment red-black tree represents the free vmap space.
366 * All vmap_area objects in this tree are sorted by va->va_start
367 * address. It is used for allocation and merging when a vmap
368 * object is released.
369 *
370 * Each vmap_area node contains a maximum available free block
371 * of its sub-tree, right or left. Therefore it is possible to
372 * find a lowest match of free area.
373 */
374static struct rb_root free_vmap_area_root = RB_ROOT;
375
82dd23e8
URS
376/*
377 * Preload a CPU with one object for "no edge" split case. The
378 * aim is to get rid of allocations from the atomic context, thus
379 * to use more permissive allocation masks.
380 */
381static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
382
68ad4a33
URS
383static __always_inline unsigned long
384va_size(struct vmap_area *va)
385{
386 return (va->va_end - va->va_start);
387}
388
389static __always_inline unsigned long
390get_subtree_max_size(struct rb_node *node)
391{
392 struct vmap_area *va;
393
394 va = rb_entry_safe(node, struct vmap_area, rb_node);
395 return va ? va->subtree_max_size : 0;
396}
89699605 397
68ad4a33
URS
398/*
399 * Gets called when remove the node and rotate.
400 */
401static __always_inline unsigned long
402compute_subtree_max_size(struct vmap_area *va)
403{
404 return max3(va_size(va),
405 get_subtree_max_size(va->rb_node.rb_left),
406 get_subtree_max_size(va->rb_node.rb_right));
407}
408
315cc066
ML
409RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
410 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
68ad4a33
URS
411
412static void purge_vmap_area_lazy(void);
413static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
414static unsigned long lazy_max_pages(void);
db64fe02 415
97105f0a
RG
416static atomic_long_t nr_vmalloc_pages;
417
418unsigned long vmalloc_nr_pages(void)
419{
420 return atomic_long_read(&nr_vmalloc_pages);
421}
422
db64fe02 423static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 424{
db64fe02
NP
425 struct rb_node *n = vmap_area_root.rb_node;
426
427 while (n) {
428 struct vmap_area *va;
429
430 va = rb_entry(n, struct vmap_area, rb_node);
431 if (addr < va->va_start)
432 n = n->rb_left;
cef2ac3f 433 else if (addr >= va->va_end)
db64fe02
NP
434 n = n->rb_right;
435 else
436 return va;
437 }
438
439 return NULL;
440}
441
68ad4a33
URS
442/*
443 * This function returns back addresses of parent node
444 * and its left or right link for further processing.
445 */
446static __always_inline struct rb_node **
447find_va_links(struct vmap_area *va,
448 struct rb_root *root, struct rb_node *from,
449 struct rb_node **parent)
450{
451 struct vmap_area *tmp_va;
452 struct rb_node **link;
453
454 if (root) {
455 link = &root->rb_node;
456 if (unlikely(!*link)) {
457 *parent = NULL;
458 return link;
459 }
460 } else {
461 link = &from;
462 }
db64fe02 463
68ad4a33
URS
464 /*
465 * Go to the bottom of the tree. When we hit the last point
466 * we end up with parent rb_node and correct direction, i name
467 * it link, where the new va->rb_node will be attached to.
468 */
469 do {
470 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 471
68ad4a33
URS
472 /*
473 * During the traversal we also do some sanity check.
474 * Trigger the BUG() if there are sides(left/right)
475 * or full overlaps.
476 */
477 if (va->va_start < tmp_va->va_end &&
478 va->va_end <= tmp_va->va_start)
479 link = &(*link)->rb_left;
480 else if (va->va_end > tmp_va->va_start &&
481 va->va_start >= tmp_va->va_end)
482 link = &(*link)->rb_right;
db64fe02
NP
483 else
484 BUG();
68ad4a33
URS
485 } while (*link);
486
487 *parent = &tmp_va->rb_node;
488 return link;
489}
490
491static __always_inline struct list_head *
492get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
493{
494 struct list_head *list;
495
496 if (unlikely(!parent))
497 /*
498 * The red-black tree where we try to find VA neighbors
499 * before merging or inserting is empty, i.e. it means
500 * there is no free vmap space. Normally it does not
501 * happen but we handle this case anyway.
502 */
503 return NULL;
504
505 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
506 return (&parent->rb_right == link ? list->next : list);
507}
508
509static __always_inline void
510link_va(struct vmap_area *va, struct rb_root *root,
511 struct rb_node *parent, struct rb_node **link, struct list_head *head)
512{
513 /*
514 * VA is still not in the list, but we can
515 * identify its future previous list_head node.
516 */
517 if (likely(parent)) {
518 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
519 if (&parent->rb_right != link)
520 head = head->prev;
db64fe02
NP
521 }
522
68ad4a33
URS
523 /* Insert to the rb-tree */
524 rb_link_node(&va->rb_node, parent, link);
525 if (root == &free_vmap_area_root) {
526 /*
527 * Some explanation here. Just perform simple insertion
528 * to the tree. We do not set va->subtree_max_size to
529 * its current size before calling rb_insert_augmented().
530 * It is because of we populate the tree from the bottom
531 * to parent levels when the node _is_ in the tree.
532 *
533 * Therefore we set subtree_max_size to zero after insertion,
534 * to let __augment_tree_propagate_from() puts everything to
535 * the correct order later on.
536 */
537 rb_insert_augmented(&va->rb_node,
538 root, &free_vmap_area_rb_augment_cb);
539 va->subtree_max_size = 0;
540 } else {
541 rb_insert_color(&va->rb_node, root);
542 }
db64fe02 543
68ad4a33
URS
544 /* Address-sort this list */
545 list_add(&va->list, head);
db64fe02
NP
546}
547
68ad4a33
URS
548static __always_inline void
549unlink_va(struct vmap_area *va, struct rb_root *root)
550{
460e42d1
URS
551 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
552 return;
db64fe02 553
460e42d1
URS
554 if (root == &free_vmap_area_root)
555 rb_erase_augmented(&va->rb_node,
556 root, &free_vmap_area_rb_augment_cb);
557 else
558 rb_erase(&va->rb_node, root);
559
560 list_del(&va->list);
561 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
562}
563
bb850f4d
URS
564#if DEBUG_AUGMENT_PROPAGATE_CHECK
565static void
566augment_tree_propagate_check(struct rb_node *n)
567{
568 struct vmap_area *va;
569 struct rb_node *node;
570 unsigned long size;
571 bool found = false;
572
573 if (n == NULL)
574 return;
575
576 va = rb_entry(n, struct vmap_area, rb_node);
577 size = va->subtree_max_size;
578 node = n;
579
580 while (node) {
581 va = rb_entry(node, struct vmap_area, rb_node);
582
583 if (get_subtree_max_size(node->rb_left) == size) {
584 node = node->rb_left;
585 } else {
586 if (va_size(va) == size) {
587 found = true;
588 break;
589 }
590
591 node = node->rb_right;
592 }
593 }
594
595 if (!found) {
596 va = rb_entry(n, struct vmap_area, rb_node);
597 pr_emerg("tree is corrupted: %lu, %lu\n",
598 va_size(va), va->subtree_max_size);
599 }
600
601 augment_tree_propagate_check(n->rb_left);
602 augment_tree_propagate_check(n->rb_right);
603}
604#endif
605
68ad4a33
URS
606/*
607 * This function populates subtree_max_size from bottom to upper
608 * levels starting from VA point. The propagation must be done
609 * when VA size is modified by changing its va_start/va_end. Or
610 * in case of newly inserting of VA to the tree.
611 *
612 * It means that __augment_tree_propagate_from() must be called:
613 * - After VA has been inserted to the tree(free path);
614 * - After VA has been shrunk(allocation path);
615 * - After VA has been increased(merging path).
616 *
617 * Please note that, it does not mean that upper parent nodes
618 * and their subtree_max_size are recalculated all the time up
619 * to the root node.
620 *
621 * 4--8
622 * /\
623 * / \
624 * / \
625 * 2--2 8--8
626 *
627 * For example if we modify the node 4, shrinking it to 2, then
628 * no any modification is required. If we shrink the node 2 to 1
629 * its subtree_max_size is updated only, and set to 1. If we shrink
630 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
631 * node becomes 4--6.
632 */
633static __always_inline void
634augment_tree_propagate_from(struct vmap_area *va)
635{
636 struct rb_node *node = &va->rb_node;
637 unsigned long new_va_sub_max_size;
638
639 while (node) {
640 va = rb_entry(node, struct vmap_area, rb_node);
641 new_va_sub_max_size = compute_subtree_max_size(va);
642
643 /*
644 * If the newly calculated maximum available size of the
645 * subtree is equal to the current one, then it means that
646 * the tree is propagated correctly. So we have to stop at
647 * this point to save cycles.
648 */
649 if (va->subtree_max_size == new_va_sub_max_size)
650 break;
651
652 va->subtree_max_size = new_va_sub_max_size;
653 node = rb_parent(&va->rb_node);
654 }
bb850f4d
URS
655
656#if DEBUG_AUGMENT_PROPAGATE_CHECK
657 augment_tree_propagate_check(free_vmap_area_root.rb_node);
658#endif
68ad4a33
URS
659}
660
661static void
662insert_vmap_area(struct vmap_area *va,
663 struct rb_root *root, struct list_head *head)
664{
665 struct rb_node **link;
666 struct rb_node *parent;
667
668 link = find_va_links(va, root, NULL, &parent);
669 link_va(va, root, parent, link, head);
670}
671
672static void
673insert_vmap_area_augment(struct vmap_area *va,
674 struct rb_node *from, struct rb_root *root,
675 struct list_head *head)
676{
677 struct rb_node **link;
678 struct rb_node *parent;
679
680 if (from)
681 link = find_va_links(va, NULL, from, &parent);
682 else
683 link = find_va_links(va, root, NULL, &parent);
684
685 link_va(va, root, parent, link, head);
686 augment_tree_propagate_from(va);
687}
688
689/*
690 * Merge de-allocated chunk of VA memory with previous
691 * and next free blocks. If coalesce is not done a new
692 * free area is inserted. If VA has been merged, it is
693 * freed.
694 */
3c5c3cfb 695static __always_inline struct vmap_area *
68ad4a33
URS
696merge_or_add_vmap_area(struct vmap_area *va,
697 struct rb_root *root, struct list_head *head)
698{
699 struct vmap_area *sibling;
700 struct list_head *next;
701 struct rb_node **link;
702 struct rb_node *parent;
703 bool merged = false;
704
705 /*
706 * Find a place in the tree where VA potentially will be
707 * inserted, unless it is merged with its sibling/siblings.
708 */
709 link = find_va_links(va, root, NULL, &parent);
710
711 /*
712 * Get next node of VA to check if merging can be done.
713 */
714 next = get_va_next_sibling(parent, link);
715 if (unlikely(next == NULL))
716 goto insert;
717
718 /*
719 * start end
720 * | |
721 * |<------VA------>|<-----Next----->|
722 * | |
723 * start end
724 */
725 if (next != head) {
726 sibling = list_entry(next, struct vmap_area, list);
727 if (sibling->va_start == va->va_end) {
728 sibling->va_start = va->va_start;
729
730 /* Check and update the tree if needed. */
731 augment_tree_propagate_from(sibling);
732
68ad4a33
URS
733 /* Free vmap_area object. */
734 kmem_cache_free(vmap_area_cachep, va);
735
736 /* Point to the new merged area. */
737 va = sibling;
738 merged = true;
739 }
740 }
741
742 /*
743 * start end
744 * | |
745 * |<-----Prev----->|<------VA------>|
746 * | |
747 * start end
748 */
749 if (next->prev != head) {
750 sibling = list_entry(next->prev, struct vmap_area, list);
751 if (sibling->va_end == va->va_start) {
752 sibling->va_end = va->va_end;
753
754 /* Check and update the tree if needed. */
755 augment_tree_propagate_from(sibling);
756
54f63d9d
URS
757 if (merged)
758 unlink_va(va, root);
68ad4a33
URS
759
760 /* Free vmap_area object. */
761 kmem_cache_free(vmap_area_cachep, va);
3c5c3cfb
DA
762
763 /* Point to the new merged area. */
764 va = sibling;
765 merged = true;
68ad4a33
URS
766 }
767 }
768
769insert:
770 if (!merged) {
771 link_va(va, root, parent, link, head);
772 augment_tree_propagate_from(va);
773 }
3c5c3cfb
DA
774
775 return va;
68ad4a33
URS
776}
777
778static __always_inline bool
779is_within_this_va(struct vmap_area *va, unsigned long size,
780 unsigned long align, unsigned long vstart)
781{
782 unsigned long nva_start_addr;
783
784 if (va->va_start > vstart)
785 nva_start_addr = ALIGN(va->va_start, align);
786 else
787 nva_start_addr = ALIGN(vstart, align);
788
789 /* Can be overflowed due to big size or alignment. */
790 if (nva_start_addr + size < nva_start_addr ||
791 nva_start_addr < vstart)
792 return false;
793
794 return (nva_start_addr + size <= va->va_end);
795}
796
797/*
798 * Find the first free block(lowest start address) in the tree,
799 * that will accomplish the request corresponding to passing
800 * parameters.
801 */
802static __always_inline struct vmap_area *
803find_vmap_lowest_match(unsigned long size,
804 unsigned long align, unsigned long vstart)
805{
806 struct vmap_area *va;
807 struct rb_node *node;
808 unsigned long length;
809
810 /* Start from the root. */
811 node = free_vmap_area_root.rb_node;
812
813 /* Adjust the search size for alignment overhead. */
814 length = size + align - 1;
815
816 while (node) {
817 va = rb_entry(node, struct vmap_area, rb_node);
818
819 if (get_subtree_max_size(node->rb_left) >= length &&
820 vstart < va->va_start) {
821 node = node->rb_left;
822 } else {
823 if (is_within_this_va(va, size, align, vstart))
824 return va;
825
826 /*
827 * Does not make sense to go deeper towards the right
828 * sub-tree if it does not have a free block that is
829 * equal or bigger to the requested search length.
830 */
831 if (get_subtree_max_size(node->rb_right) >= length) {
832 node = node->rb_right;
833 continue;
834 }
835
836 /*
3806b041 837 * OK. We roll back and find the first right sub-tree,
68ad4a33
URS
838 * that will satisfy the search criteria. It can happen
839 * only once due to "vstart" restriction.
840 */
841 while ((node = rb_parent(node))) {
842 va = rb_entry(node, struct vmap_area, rb_node);
843 if (is_within_this_va(va, size, align, vstart))
844 return va;
845
846 if (get_subtree_max_size(node->rb_right) >= length &&
847 vstart <= va->va_start) {
848 node = node->rb_right;
849 break;
850 }
851 }
852 }
853 }
854
855 return NULL;
856}
857
a6cf4e0f
URS
858#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
859#include <linux/random.h>
860
861static struct vmap_area *
862find_vmap_lowest_linear_match(unsigned long size,
863 unsigned long align, unsigned long vstart)
864{
865 struct vmap_area *va;
866
867 list_for_each_entry(va, &free_vmap_area_list, list) {
868 if (!is_within_this_va(va, size, align, vstart))
869 continue;
870
871 return va;
872 }
873
874 return NULL;
875}
876
877static void
878find_vmap_lowest_match_check(unsigned long size)
879{
880 struct vmap_area *va_1, *va_2;
881 unsigned long vstart;
882 unsigned int rnd;
883
884 get_random_bytes(&rnd, sizeof(rnd));
885 vstart = VMALLOC_START + rnd;
886
887 va_1 = find_vmap_lowest_match(size, 1, vstart);
888 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
889
890 if (va_1 != va_2)
891 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
892 va_1, va_2, vstart);
893}
894#endif
895
68ad4a33
URS
896enum fit_type {
897 NOTHING_FIT = 0,
898 FL_FIT_TYPE = 1, /* full fit */
899 LE_FIT_TYPE = 2, /* left edge fit */
900 RE_FIT_TYPE = 3, /* right edge fit */
901 NE_FIT_TYPE = 4 /* no edge fit */
902};
903
904static __always_inline enum fit_type
905classify_va_fit_type(struct vmap_area *va,
906 unsigned long nva_start_addr, unsigned long size)
907{
908 enum fit_type type;
909
910 /* Check if it is within VA. */
911 if (nva_start_addr < va->va_start ||
912 nva_start_addr + size > va->va_end)
913 return NOTHING_FIT;
914
915 /* Now classify. */
916 if (va->va_start == nva_start_addr) {
917 if (va->va_end == nva_start_addr + size)
918 type = FL_FIT_TYPE;
919 else
920 type = LE_FIT_TYPE;
921 } else if (va->va_end == nva_start_addr + size) {
922 type = RE_FIT_TYPE;
923 } else {
924 type = NE_FIT_TYPE;
925 }
926
927 return type;
928}
929
930static __always_inline int
931adjust_va_to_fit_type(struct vmap_area *va,
932 unsigned long nva_start_addr, unsigned long size,
933 enum fit_type type)
934{
2c929233 935 struct vmap_area *lva = NULL;
68ad4a33
URS
936
937 if (type == FL_FIT_TYPE) {
938 /*
939 * No need to split VA, it fully fits.
940 *
941 * | |
942 * V NVA V
943 * |---------------|
944 */
945 unlink_va(va, &free_vmap_area_root);
946 kmem_cache_free(vmap_area_cachep, va);
947 } else if (type == LE_FIT_TYPE) {
948 /*
949 * Split left edge of fit VA.
950 *
951 * | |
952 * V NVA V R
953 * |-------|-------|
954 */
955 va->va_start += size;
956 } else if (type == RE_FIT_TYPE) {
957 /*
958 * Split right edge of fit VA.
959 *
960 * | |
961 * L V NVA V
962 * |-------|-------|
963 */
964 va->va_end = nva_start_addr;
965 } else if (type == NE_FIT_TYPE) {
966 /*
967 * Split no edge of fit VA.
968 *
969 * | |
970 * L V NVA V R
971 * |---|-------|---|
972 */
82dd23e8
URS
973 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
974 if (unlikely(!lva)) {
975 /*
976 * For percpu allocator we do not do any pre-allocation
977 * and leave it as it is. The reason is it most likely
978 * never ends up with NE_FIT_TYPE splitting. In case of
979 * percpu allocations offsets and sizes are aligned to
980 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
981 * are its main fitting cases.
982 *
983 * There are a few exceptions though, as an example it is
984 * a first allocation (early boot up) when we have "one"
985 * big free space that has to be split.
060650a2
URS
986 *
987 * Also we can hit this path in case of regular "vmap"
988 * allocations, if "this" current CPU was not preloaded.
989 * See the comment in alloc_vmap_area() why. If so, then
990 * GFP_NOWAIT is used instead to get an extra object for
991 * split purpose. That is rare and most time does not
992 * occur.
993 *
994 * What happens if an allocation gets failed. Basically,
995 * an "overflow" path is triggered to purge lazily freed
996 * areas to free some memory, then, the "retry" path is
997 * triggered to repeat one more time. See more details
998 * in alloc_vmap_area() function.
82dd23e8
URS
999 */
1000 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1001 if (!lva)
1002 return -1;
1003 }
68ad4a33
URS
1004
1005 /*
1006 * Build the remainder.
1007 */
1008 lva->va_start = va->va_start;
1009 lva->va_end = nva_start_addr;
1010
1011 /*
1012 * Shrink this VA to remaining size.
1013 */
1014 va->va_start = nva_start_addr + size;
1015 } else {
1016 return -1;
1017 }
1018
1019 if (type != FL_FIT_TYPE) {
1020 augment_tree_propagate_from(va);
1021
2c929233 1022 if (lva) /* type == NE_FIT_TYPE */
68ad4a33
URS
1023 insert_vmap_area_augment(lva, &va->rb_node,
1024 &free_vmap_area_root, &free_vmap_area_list);
1025 }
1026
1027 return 0;
1028}
1029
1030/*
1031 * Returns a start address of the newly allocated area, if success.
1032 * Otherwise a vend is returned that indicates failure.
1033 */
1034static __always_inline unsigned long
1035__alloc_vmap_area(unsigned long size, unsigned long align,
cacca6ba 1036 unsigned long vstart, unsigned long vend)
68ad4a33
URS
1037{
1038 unsigned long nva_start_addr;
1039 struct vmap_area *va;
1040 enum fit_type type;
1041 int ret;
1042
1043 va = find_vmap_lowest_match(size, align, vstart);
1044 if (unlikely(!va))
1045 return vend;
1046
1047 if (va->va_start > vstart)
1048 nva_start_addr = ALIGN(va->va_start, align);
1049 else
1050 nva_start_addr = ALIGN(vstart, align);
1051
1052 /* Check the "vend" restriction. */
1053 if (nva_start_addr + size > vend)
1054 return vend;
1055
1056 /* Classify what we have found. */
1057 type = classify_va_fit_type(va, nva_start_addr, size);
1058 if (WARN_ON_ONCE(type == NOTHING_FIT))
1059 return vend;
1060
1061 /* Update the free vmap_area. */
1062 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1063 if (ret)
1064 return vend;
1065
a6cf4e0f
URS
1066#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1067 find_vmap_lowest_match_check(size);
1068#endif
1069
68ad4a33
URS
1070 return nva_start_addr;
1071}
4da56b99 1072
d98c9e83
AR
1073/*
1074 * Free a region of KVA allocated by alloc_vmap_area
1075 */
1076static void free_vmap_area(struct vmap_area *va)
1077{
1078 /*
1079 * Remove from the busy tree/list.
1080 */
1081 spin_lock(&vmap_area_lock);
1082 unlink_va(va, &vmap_area_root);
1083 spin_unlock(&vmap_area_lock);
1084
1085 /*
1086 * Insert/Merge it back to the free tree/list.
1087 */
1088 spin_lock(&free_vmap_area_lock);
1089 merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
1090 spin_unlock(&free_vmap_area_lock);
1091}
1092
db64fe02
NP
1093/*
1094 * Allocate a region of KVA of the specified size and alignment, within the
1095 * vstart and vend.
1096 */
1097static struct vmap_area *alloc_vmap_area(unsigned long size,
1098 unsigned long align,
1099 unsigned long vstart, unsigned long vend,
1100 int node, gfp_t gfp_mask)
1101{
82dd23e8 1102 struct vmap_area *va, *pva;
1da177e4 1103 unsigned long addr;
db64fe02 1104 int purged = 0;
d98c9e83 1105 int ret;
db64fe02 1106
7766970c 1107 BUG_ON(!size);
891c49ab 1108 BUG_ON(offset_in_page(size));
89699605 1109 BUG_ON(!is_power_of_2(align));
db64fe02 1110
68ad4a33
URS
1111 if (unlikely(!vmap_initialized))
1112 return ERR_PTR(-EBUSY);
1113
5803ed29 1114 might_sleep();
f07116d7 1115 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
4da56b99 1116
f07116d7 1117 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
db64fe02
NP
1118 if (unlikely(!va))
1119 return ERR_PTR(-ENOMEM);
1120
7f88f88f
CM
1121 /*
1122 * Only scan the relevant parts containing pointers to other objects
1123 * to avoid false negatives.
1124 */
f07116d7 1125 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
7f88f88f 1126
db64fe02 1127retry:
82dd23e8 1128 /*
81f1ba58
URS
1129 * Preload this CPU with one extra vmap_area object. It is used
1130 * when fit type of free area is NE_FIT_TYPE. Please note, it
1131 * does not guarantee that an allocation occurs on a CPU that
1132 * is preloaded, instead we minimize the case when it is not.
1133 * It can happen because of cpu migration, because there is a
1134 * race until the below spinlock is taken.
82dd23e8
URS
1135 *
1136 * The preload is done in non-atomic context, thus it allows us
1137 * to use more permissive allocation masks to be more stable under
81f1ba58
URS
1138 * low memory condition and high memory pressure. In rare case,
1139 * if not preloaded, GFP_NOWAIT is used.
82dd23e8 1140 *
81f1ba58 1141 * Set "pva" to NULL here, because of "retry" path.
82dd23e8 1142 */
81f1ba58 1143 pva = NULL;
82dd23e8 1144
81f1ba58
URS
1145 if (!this_cpu_read(ne_fit_preload_node))
1146 /*
1147 * Even if it fails we do not really care about that.
1148 * Just proceed as it is. If needed "overflow" path
1149 * will refill the cache we allocate from.
1150 */
f07116d7 1151 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
82dd23e8 1152
e36176be 1153 spin_lock(&free_vmap_area_lock);
81f1ba58
URS
1154
1155 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1156 kmem_cache_free(vmap_area_cachep, pva);
89699605 1157
afd07389 1158 /*
68ad4a33
URS
1159 * If an allocation fails, the "vend" address is
1160 * returned. Therefore trigger the overflow path.
afd07389 1161 */
cacca6ba 1162 addr = __alloc_vmap_area(size, align, vstart, vend);
e36176be
URS
1163 spin_unlock(&free_vmap_area_lock);
1164
68ad4a33 1165 if (unlikely(addr == vend))
89699605 1166 goto overflow;
db64fe02
NP
1167
1168 va->va_start = addr;
1169 va->va_end = addr + size;
688fcbfc 1170 va->vm = NULL;
68ad4a33 1171
d98c9e83 1172
e36176be
URS
1173 spin_lock(&vmap_area_lock);
1174 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
db64fe02
NP
1175 spin_unlock(&vmap_area_lock);
1176
61e16557 1177 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1178 BUG_ON(va->va_start < vstart);
1179 BUG_ON(va->va_end > vend);
1180
d98c9e83
AR
1181 ret = kasan_populate_vmalloc(addr, size);
1182 if (ret) {
1183 free_vmap_area(va);
1184 return ERR_PTR(ret);
1185 }
1186
db64fe02 1187 return va;
89699605
NP
1188
1189overflow:
89699605
NP
1190 if (!purged) {
1191 purge_vmap_area_lazy();
1192 purged = 1;
1193 goto retry;
1194 }
4da56b99
CW
1195
1196 if (gfpflags_allow_blocking(gfp_mask)) {
1197 unsigned long freed = 0;
1198 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1199 if (freed > 0) {
1200 purged = 0;
1201 goto retry;
1202 }
1203 }
1204
03497d76 1205 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1206 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1207 size);
68ad4a33
URS
1208
1209 kmem_cache_free(vmap_area_cachep, va);
89699605 1210 return ERR_PTR(-EBUSY);
db64fe02
NP
1211}
1212
4da56b99
CW
1213int register_vmap_purge_notifier(struct notifier_block *nb)
1214{
1215 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1216}
1217EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1218
1219int unregister_vmap_purge_notifier(struct notifier_block *nb)
1220{
1221 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1222}
1223EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1224
db64fe02
NP
1225/*
1226 * Clear the pagetable entries of a given vmap_area
1227 */
1228static void unmap_vmap_area(struct vmap_area *va)
1229{
1230 vunmap_page_range(va->va_start, va->va_end);
1231}
1232
1233/*
1234 * lazy_max_pages is the maximum amount of virtual address space we gather up
1235 * before attempting to purge with a TLB flush.
1236 *
1237 * There is a tradeoff here: a larger number will cover more kernel page tables
1238 * and take slightly longer to purge, but it will linearly reduce the number of
1239 * global TLB flushes that must be performed. It would seem natural to scale
1240 * this number up linearly with the number of CPUs (because vmapping activity
1241 * could also scale linearly with the number of CPUs), however it is likely
1242 * that in practice, workloads might be constrained in other ways that mean
1243 * vmap activity will not scale linearly with CPUs. Also, I want to be
1244 * conservative and not introduce a big latency on huge systems, so go with
1245 * a less aggressive log scale. It will still be an improvement over the old
1246 * code, and it will be simple to change the scale factor if we find that it
1247 * becomes a problem on bigger systems.
1248 */
1249static unsigned long lazy_max_pages(void)
1250{
1251 unsigned int log;
1252
1253 log = fls(num_online_cpus());
1254
1255 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1256}
1257
4d36e6f8 1258static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1259
0574ecd1
CH
1260/*
1261 * Serialize vmap purging. There is no actual criticial section protected
1262 * by this look, but we want to avoid concurrent calls for performance
1263 * reasons and to make the pcpu_get_vm_areas more deterministic.
1264 */
f9e09977 1265static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1266
02b709df
NP
1267/* for per-CPU blocks */
1268static void purge_fragmented_blocks_allcpus(void);
1269
3ee48b6a
CW
1270/*
1271 * called before a call to iounmap() if the caller wants vm_area_struct's
1272 * immediately freed.
1273 */
1274void set_iounmap_nonlazy(void)
1275{
4d36e6f8 1276 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
3ee48b6a
CW
1277}
1278
db64fe02
NP
1279/*
1280 * Purges all lazily-freed vmap areas.
db64fe02 1281 */
0574ecd1 1282static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1283{
4d36e6f8 1284 unsigned long resched_threshold;
80c4bd7a 1285 struct llist_node *valist;
db64fe02 1286 struct vmap_area *va;
cbb76676 1287 struct vmap_area *n_va;
db64fe02 1288
0574ecd1 1289 lockdep_assert_held(&vmap_purge_lock);
02b709df 1290
80c4bd7a 1291 valist = llist_del_all(&vmap_purge_list);
68571be9
URS
1292 if (unlikely(valist == NULL))
1293 return false;
1294
3f8fd02b
JR
1295 /*
1296 * First make sure the mappings are removed from all page-tables
1297 * before they are freed.
1298 */
763802b5 1299 vmalloc_sync_unmappings();
3f8fd02b 1300
68571be9
URS
1301 /*
1302 * TODO: to calculate a flush range without looping.
1303 * The list can be up to lazy_max_pages() elements.
1304 */
80c4bd7a 1305 llist_for_each_entry(va, valist, purge_list) {
0574ecd1
CH
1306 if (va->va_start < start)
1307 start = va->va_start;
1308 if (va->va_end > end)
1309 end = va->va_end;
db64fe02 1310 }
db64fe02 1311
0574ecd1 1312 flush_tlb_kernel_range(start, end);
4d36e6f8 1313 resched_threshold = lazy_max_pages() << 1;
db64fe02 1314
e36176be 1315 spin_lock(&free_vmap_area_lock);
763b218d 1316 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
4d36e6f8 1317 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
3c5c3cfb
DA
1318 unsigned long orig_start = va->va_start;
1319 unsigned long orig_end = va->va_end;
763b218d 1320
dd3b8353
URS
1321 /*
1322 * Finally insert or merge lazily-freed area. It is
1323 * detached and there is no need to "unlink" it from
1324 * anything.
1325 */
3c5c3cfb
DA
1326 va = merge_or_add_vmap_area(va, &free_vmap_area_root,
1327 &free_vmap_area_list);
1328
1329 if (is_vmalloc_or_module_addr((void *)orig_start))
1330 kasan_release_vmalloc(orig_start, orig_end,
1331 va->va_start, va->va_end);
dd3b8353 1332
4d36e6f8 1333 atomic_long_sub(nr, &vmap_lazy_nr);
68571be9 1334
4d36e6f8 1335 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
e36176be 1336 cond_resched_lock(&free_vmap_area_lock);
763b218d 1337 }
e36176be 1338 spin_unlock(&free_vmap_area_lock);
0574ecd1 1339 return true;
db64fe02
NP
1340}
1341
496850e5
NP
1342/*
1343 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1344 * is already purging.
1345 */
1346static void try_purge_vmap_area_lazy(void)
1347{
f9e09977 1348 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 1349 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1350 mutex_unlock(&vmap_purge_lock);
0574ecd1 1351 }
496850e5
NP
1352}
1353
db64fe02
NP
1354/*
1355 * Kick off a purge of the outstanding lazy areas.
1356 */
1357static void purge_vmap_area_lazy(void)
1358{
f9e09977 1359 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1360 purge_fragmented_blocks_allcpus();
1361 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1362 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1363}
1364
1365/*
64141da5
JF
1366 * Free a vmap area, caller ensuring that the area has been unmapped
1367 * and flush_cache_vunmap had been called for the correct range
1368 * previously.
db64fe02 1369 */
64141da5 1370static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1371{
4d36e6f8 1372 unsigned long nr_lazy;
80c4bd7a 1373
dd3b8353
URS
1374 spin_lock(&vmap_area_lock);
1375 unlink_va(va, &vmap_area_root);
1376 spin_unlock(&vmap_area_lock);
1377
4d36e6f8
URS
1378 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1379 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a
CW
1380
1381 /* After this point, we may free va at any time */
1382 llist_add(&va->purge_list, &vmap_purge_list);
1383
1384 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 1385 try_purge_vmap_area_lazy();
db64fe02
NP
1386}
1387
b29acbdc
NP
1388/*
1389 * Free and unmap a vmap area
1390 */
1391static void free_unmap_vmap_area(struct vmap_area *va)
1392{
1393 flush_cache_vunmap(va->va_start, va->va_end);
c8eef01e 1394 unmap_vmap_area(va);
8e57f8ac 1395 if (debug_pagealloc_enabled_static())
82a2e924
CP
1396 flush_tlb_kernel_range(va->va_start, va->va_end);
1397
c8eef01e 1398 free_vmap_area_noflush(va);
b29acbdc
NP
1399}
1400
db64fe02
NP
1401static struct vmap_area *find_vmap_area(unsigned long addr)
1402{
1403 struct vmap_area *va;
1404
1405 spin_lock(&vmap_area_lock);
1406 va = __find_vmap_area(addr);
1407 spin_unlock(&vmap_area_lock);
1408
1409 return va;
1410}
1411
db64fe02
NP
1412/*** Per cpu kva allocator ***/
1413
1414/*
1415 * vmap space is limited especially on 32 bit architectures. Ensure there is
1416 * room for at least 16 percpu vmap blocks per CPU.
1417 */
1418/*
1419 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1420 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1421 * instead (we just need a rough idea)
1422 */
1423#if BITS_PER_LONG == 32
1424#define VMALLOC_SPACE (128UL*1024*1024)
1425#else
1426#define VMALLOC_SPACE (128UL*1024*1024*1024)
1427#endif
1428
1429#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1430#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1431#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1432#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1433#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1434#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1435#define VMAP_BBMAP_BITS \
1436 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1437 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1438 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1439
1440#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1441
1442struct vmap_block_queue {
1443 spinlock_t lock;
1444 struct list_head free;
db64fe02
NP
1445};
1446
1447struct vmap_block {
1448 spinlock_t lock;
1449 struct vmap_area *va;
db64fe02 1450 unsigned long free, dirty;
7d61bfe8 1451 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1452 struct list_head free_list;
1453 struct rcu_head rcu_head;
02b709df 1454 struct list_head purge;
db64fe02
NP
1455};
1456
1457/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1458static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1459
1460/*
1461 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1462 * in the free path. Could get rid of this if we change the API to return a
1463 * "cookie" from alloc, to be passed to free. But no big deal yet.
1464 */
1465static DEFINE_SPINLOCK(vmap_block_tree_lock);
1466static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1467
1468/*
1469 * We should probably have a fallback mechanism to allocate virtual memory
1470 * out of partially filled vmap blocks. However vmap block sizing should be
1471 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1472 * big problem.
1473 */
1474
1475static unsigned long addr_to_vb_idx(unsigned long addr)
1476{
1477 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1478 addr /= VMAP_BLOCK_SIZE;
1479 return addr;
1480}
1481
cf725ce2
RP
1482static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1483{
1484 unsigned long addr;
1485
1486 addr = va_start + (pages_off << PAGE_SHIFT);
1487 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1488 return (void *)addr;
1489}
1490
1491/**
1492 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1493 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1494 * @order: how many 2^order pages should be occupied in newly allocated block
1495 * @gfp_mask: flags for the page level allocator
1496 *
a862f68a 1497 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1498 */
1499static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1500{
1501 struct vmap_block_queue *vbq;
1502 struct vmap_block *vb;
1503 struct vmap_area *va;
1504 unsigned long vb_idx;
1505 int node, err;
cf725ce2 1506 void *vaddr;
db64fe02
NP
1507
1508 node = numa_node_id();
1509
1510 vb = kmalloc_node(sizeof(struct vmap_block),
1511 gfp_mask & GFP_RECLAIM_MASK, node);
1512 if (unlikely(!vb))
1513 return ERR_PTR(-ENOMEM);
1514
1515 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1516 VMALLOC_START, VMALLOC_END,
1517 node, gfp_mask);
ddf9c6d4 1518 if (IS_ERR(va)) {
db64fe02 1519 kfree(vb);
e7d86340 1520 return ERR_CAST(va);
db64fe02
NP
1521 }
1522
1523 err = radix_tree_preload(gfp_mask);
1524 if (unlikely(err)) {
1525 kfree(vb);
1526 free_vmap_area(va);
1527 return ERR_PTR(err);
1528 }
1529
cf725ce2 1530 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1531 spin_lock_init(&vb->lock);
1532 vb->va = va;
cf725ce2
RP
1533 /* At least something should be left free */
1534 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1535 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 1536 vb->dirty = 0;
7d61bfe8
RP
1537 vb->dirty_min = VMAP_BBMAP_BITS;
1538 vb->dirty_max = 0;
db64fe02 1539 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
1540
1541 vb_idx = addr_to_vb_idx(va->va_start);
1542 spin_lock(&vmap_block_tree_lock);
1543 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1544 spin_unlock(&vmap_block_tree_lock);
1545 BUG_ON(err);
1546 radix_tree_preload_end();
1547
1548 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 1549 spin_lock(&vbq->lock);
68ac546f 1550 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 1551 spin_unlock(&vbq->lock);
3f04ba85 1552 put_cpu_var(vmap_block_queue);
db64fe02 1553
cf725ce2 1554 return vaddr;
db64fe02
NP
1555}
1556
db64fe02
NP
1557static void free_vmap_block(struct vmap_block *vb)
1558{
1559 struct vmap_block *tmp;
1560 unsigned long vb_idx;
1561
db64fe02
NP
1562 vb_idx = addr_to_vb_idx(vb->va->va_start);
1563 spin_lock(&vmap_block_tree_lock);
1564 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1565 spin_unlock(&vmap_block_tree_lock);
1566 BUG_ON(tmp != vb);
1567
64141da5 1568 free_vmap_area_noflush(vb->va);
22a3c7d1 1569 kfree_rcu(vb, rcu_head);
db64fe02
NP
1570}
1571
02b709df
NP
1572static void purge_fragmented_blocks(int cpu)
1573{
1574 LIST_HEAD(purge);
1575 struct vmap_block *vb;
1576 struct vmap_block *n_vb;
1577 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1578
1579 rcu_read_lock();
1580 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1581
1582 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1583 continue;
1584
1585 spin_lock(&vb->lock);
1586 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1587 vb->free = 0; /* prevent further allocs after releasing lock */
1588 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
1589 vb->dirty_min = 0;
1590 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
1591 spin_lock(&vbq->lock);
1592 list_del_rcu(&vb->free_list);
1593 spin_unlock(&vbq->lock);
1594 spin_unlock(&vb->lock);
1595 list_add_tail(&vb->purge, &purge);
1596 } else
1597 spin_unlock(&vb->lock);
1598 }
1599 rcu_read_unlock();
1600
1601 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1602 list_del(&vb->purge);
1603 free_vmap_block(vb);
1604 }
1605}
1606
02b709df
NP
1607static void purge_fragmented_blocks_allcpus(void)
1608{
1609 int cpu;
1610
1611 for_each_possible_cpu(cpu)
1612 purge_fragmented_blocks(cpu);
1613}
1614
db64fe02
NP
1615static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1616{
1617 struct vmap_block_queue *vbq;
1618 struct vmap_block *vb;
cf725ce2 1619 void *vaddr = NULL;
db64fe02
NP
1620 unsigned int order;
1621
891c49ab 1622 BUG_ON(offset_in_page(size));
db64fe02 1623 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
1624 if (WARN_ON(size == 0)) {
1625 /*
1626 * Allocating 0 bytes isn't what caller wants since
1627 * get_order(0) returns funny result. Just warn and terminate
1628 * early.
1629 */
1630 return NULL;
1631 }
db64fe02
NP
1632 order = get_order(size);
1633
db64fe02
NP
1634 rcu_read_lock();
1635 vbq = &get_cpu_var(vmap_block_queue);
1636 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 1637 unsigned long pages_off;
db64fe02
NP
1638
1639 spin_lock(&vb->lock);
cf725ce2
RP
1640 if (vb->free < (1UL << order)) {
1641 spin_unlock(&vb->lock);
1642 continue;
1643 }
02b709df 1644
cf725ce2
RP
1645 pages_off = VMAP_BBMAP_BITS - vb->free;
1646 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
1647 vb->free -= 1UL << order;
1648 if (vb->free == 0) {
1649 spin_lock(&vbq->lock);
1650 list_del_rcu(&vb->free_list);
1651 spin_unlock(&vbq->lock);
1652 }
cf725ce2 1653
02b709df
NP
1654 spin_unlock(&vb->lock);
1655 break;
db64fe02 1656 }
02b709df 1657
3f04ba85 1658 put_cpu_var(vmap_block_queue);
db64fe02
NP
1659 rcu_read_unlock();
1660
cf725ce2
RP
1661 /* Allocate new block if nothing was found */
1662 if (!vaddr)
1663 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 1664
cf725ce2 1665 return vaddr;
db64fe02
NP
1666}
1667
1668static void vb_free(const void *addr, unsigned long size)
1669{
1670 unsigned long offset;
1671 unsigned long vb_idx;
1672 unsigned int order;
1673 struct vmap_block *vb;
1674
891c49ab 1675 BUG_ON(offset_in_page(size));
db64fe02 1676 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
1677
1678 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1679
db64fe02
NP
1680 order = get_order(size);
1681
1682 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
7d61bfe8 1683 offset >>= PAGE_SHIFT;
db64fe02
NP
1684
1685 vb_idx = addr_to_vb_idx((unsigned long)addr);
1686 rcu_read_lock();
1687 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1688 rcu_read_unlock();
1689 BUG_ON(!vb);
1690
64141da5
JF
1691 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1692
8e57f8ac 1693 if (debug_pagealloc_enabled_static())
82a2e924
CP
1694 flush_tlb_kernel_range((unsigned long)addr,
1695 (unsigned long)addr + size);
1696
db64fe02 1697 spin_lock(&vb->lock);
7d61bfe8
RP
1698
1699 /* Expand dirty range */
1700 vb->dirty_min = min(vb->dirty_min, offset);
1701 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1702
db64fe02
NP
1703 vb->dirty += 1UL << order;
1704 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1705 BUG_ON(vb->free);
db64fe02
NP
1706 spin_unlock(&vb->lock);
1707 free_vmap_block(vb);
1708 } else
1709 spin_unlock(&vb->lock);
1710}
1711
868b104d 1712static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 1713{
db64fe02 1714 int cpu;
db64fe02 1715
9b463334
JF
1716 if (unlikely(!vmap_initialized))
1717 return;
1718
5803ed29
CH
1719 might_sleep();
1720
db64fe02
NP
1721 for_each_possible_cpu(cpu) {
1722 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1723 struct vmap_block *vb;
1724
1725 rcu_read_lock();
1726 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1727 spin_lock(&vb->lock);
7d61bfe8
RP
1728 if (vb->dirty) {
1729 unsigned long va_start = vb->va->va_start;
db64fe02 1730 unsigned long s, e;
b136be5e 1731
7d61bfe8
RP
1732 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1733 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1734
7d61bfe8
RP
1735 start = min(s, start);
1736 end = max(e, end);
db64fe02 1737
7d61bfe8 1738 flush = 1;
db64fe02
NP
1739 }
1740 spin_unlock(&vb->lock);
1741 }
1742 rcu_read_unlock();
1743 }
1744
f9e09977 1745 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1746 purge_fragmented_blocks_allcpus();
1747 if (!__purge_vmap_area_lazy(start, end) && flush)
1748 flush_tlb_kernel_range(start, end);
f9e09977 1749 mutex_unlock(&vmap_purge_lock);
db64fe02 1750}
868b104d
RE
1751
1752/**
1753 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1754 *
1755 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1756 * to amortize TLB flushing overheads. What this means is that any page you
1757 * have now, may, in a former life, have been mapped into kernel virtual
1758 * address by the vmap layer and so there might be some CPUs with TLB entries
1759 * still referencing that page (additional to the regular 1:1 kernel mapping).
1760 *
1761 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1762 * be sure that none of the pages we have control over will have any aliases
1763 * from the vmap layer.
1764 */
1765void vm_unmap_aliases(void)
1766{
1767 unsigned long start = ULONG_MAX, end = 0;
1768 int flush = 0;
1769
1770 _vm_unmap_aliases(start, end, flush);
1771}
db64fe02
NP
1772EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1773
1774/**
1775 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1776 * @mem: the pointer returned by vm_map_ram
1777 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1778 */
1779void vm_unmap_ram(const void *mem, unsigned int count)
1780{
65ee03c4 1781 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 1782 unsigned long addr = (unsigned long)mem;
9c3acf60 1783 struct vmap_area *va;
db64fe02 1784
5803ed29 1785 might_sleep();
db64fe02
NP
1786 BUG_ON(!addr);
1787 BUG_ON(addr < VMALLOC_START);
1788 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 1789 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 1790
d98c9e83
AR
1791 kasan_poison_vmalloc(mem, size);
1792
9c3acf60 1793 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 1794 debug_check_no_locks_freed(mem, size);
db64fe02 1795 vb_free(mem, size);
9c3acf60
CH
1796 return;
1797 }
1798
1799 va = find_vmap_area(addr);
1800 BUG_ON(!va);
05e3ff95
CP
1801 debug_check_no_locks_freed((void *)va->va_start,
1802 (va->va_end - va->va_start));
9c3acf60 1803 free_unmap_vmap_area(va);
db64fe02
NP
1804}
1805EXPORT_SYMBOL(vm_unmap_ram);
1806
1807/**
1808 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1809 * @pages: an array of pointers to the pages to be mapped
1810 * @count: number of pages
1811 * @node: prefer to allocate data structures on this node
1812 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad 1813 *
36437638
GK
1814 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1815 * faster than vmap so it's good. But if you mix long-life and short-life
1816 * objects with vm_map_ram(), it could consume lots of address space through
1817 * fragmentation (especially on a 32bit machine). You could see failures in
1818 * the end. Please use this function for short-lived objects.
1819 *
e99c97ad 1820 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1821 */
1822void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1823{
65ee03c4 1824 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1825 unsigned long addr;
1826 void *mem;
1827
1828 if (likely(count <= VMAP_MAX_ALLOC)) {
1829 mem = vb_alloc(size, GFP_KERNEL);
1830 if (IS_ERR(mem))
1831 return NULL;
1832 addr = (unsigned long)mem;
1833 } else {
1834 struct vmap_area *va;
1835 va = alloc_vmap_area(size, PAGE_SIZE,
1836 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1837 if (IS_ERR(va))
1838 return NULL;
1839
1840 addr = va->va_start;
1841 mem = (void *)addr;
1842 }
d98c9e83
AR
1843
1844 kasan_unpoison_vmalloc(mem, size);
1845
db64fe02
NP
1846 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1847 vm_unmap_ram(mem, count);
1848 return NULL;
1849 }
1850 return mem;
1851}
1852EXPORT_SYMBOL(vm_map_ram);
1853
4341fa45 1854static struct vm_struct *vmlist __initdata;
92eac168 1855
be9b7335
NP
1856/**
1857 * vm_area_add_early - add vmap area early during boot
1858 * @vm: vm_struct to add
1859 *
1860 * This function is used to add fixed kernel vm area to vmlist before
1861 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1862 * should contain proper values and the other fields should be zero.
1863 *
1864 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1865 */
1866void __init vm_area_add_early(struct vm_struct *vm)
1867{
1868 struct vm_struct *tmp, **p;
1869
1870 BUG_ON(vmap_initialized);
1871 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1872 if (tmp->addr >= vm->addr) {
1873 BUG_ON(tmp->addr < vm->addr + vm->size);
1874 break;
1875 } else
1876 BUG_ON(tmp->addr + tmp->size > vm->addr);
1877 }
1878 vm->next = *p;
1879 *p = vm;
1880}
1881
f0aa6617
TH
1882/**
1883 * vm_area_register_early - register vmap area early during boot
1884 * @vm: vm_struct to register
c0c0a293 1885 * @align: requested alignment
f0aa6617
TH
1886 *
1887 * This function is used to register kernel vm area before
1888 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1889 * proper values on entry and other fields should be zero. On return,
1890 * vm->addr contains the allocated address.
1891 *
1892 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1893 */
c0c0a293 1894void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1895{
1896 static size_t vm_init_off __initdata;
c0c0a293
TH
1897 unsigned long addr;
1898
1899 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1900 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1901
c0c0a293 1902 vm->addr = (void *)addr;
f0aa6617 1903
be9b7335 1904 vm_area_add_early(vm);
f0aa6617
TH
1905}
1906
68ad4a33
URS
1907static void vmap_init_free_space(void)
1908{
1909 unsigned long vmap_start = 1;
1910 const unsigned long vmap_end = ULONG_MAX;
1911 struct vmap_area *busy, *free;
1912
1913 /*
1914 * B F B B B F
1915 * -|-----|.....|-----|-----|-----|.....|-
1916 * | The KVA space |
1917 * |<--------------------------------->|
1918 */
1919 list_for_each_entry(busy, &vmap_area_list, list) {
1920 if (busy->va_start - vmap_start > 0) {
1921 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1922 if (!WARN_ON_ONCE(!free)) {
1923 free->va_start = vmap_start;
1924 free->va_end = busy->va_start;
1925
1926 insert_vmap_area_augment(free, NULL,
1927 &free_vmap_area_root,
1928 &free_vmap_area_list);
1929 }
1930 }
1931
1932 vmap_start = busy->va_end;
1933 }
1934
1935 if (vmap_end - vmap_start > 0) {
1936 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1937 if (!WARN_ON_ONCE(!free)) {
1938 free->va_start = vmap_start;
1939 free->va_end = vmap_end;
1940
1941 insert_vmap_area_augment(free, NULL,
1942 &free_vmap_area_root,
1943 &free_vmap_area_list);
1944 }
1945 }
1946}
1947
db64fe02
NP
1948void __init vmalloc_init(void)
1949{
822c18f2
IK
1950 struct vmap_area *va;
1951 struct vm_struct *tmp;
db64fe02
NP
1952 int i;
1953
68ad4a33
URS
1954 /*
1955 * Create the cache for vmap_area objects.
1956 */
1957 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1958
db64fe02
NP
1959 for_each_possible_cpu(i) {
1960 struct vmap_block_queue *vbq;
32fcfd40 1961 struct vfree_deferred *p;
db64fe02
NP
1962
1963 vbq = &per_cpu(vmap_block_queue, i);
1964 spin_lock_init(&vbq->lock);
1965 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1966 p = &per_cpu(vfree_deferred, i);
1967 init_llist_head(&p->list);
1968 INIT_WORK(&p->wq, free_work);
db64fe02 1969 }
9b463334 1970
822c18f2
IK
1971 /* Import existing vmlist entries. */
1972 for (tmp = vmlist; tmp; tmp = tmp->next) {
68ad4a33
URS
1973 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1974 if (WARN_ON_ONCE(!va))
1975 continue;
1976
822c18f2
IK
1977 va->va_start = (unsigned long)tmp->addr;
1978 va->va_end = va->va_start + tmp->size;
dbda591d 1979 va->vm = tmp;
68ad4a33 1980 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
822c18f2 1981 }
ca23e405 1982
68ad4a33
URS
1983 /*
1984 * Now we can initialize a free vmap space.
1985 */
1986 vmap_init_free_space();
9b463334 1987 vmap_initialized = true;
db64fe02
NP
1988}
1989
8fc48985
TH
1990/**
1991 * map_kernel_range_noflush - map kernel VM area with the specified pages
1992 * @addr: start of the VM area to map
1993 * @size: size of the VM area to map
1994 * @prot: page protection flags to use
1995 * @pages: pages to map
1996 *
1997 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1998 * specify should have been allocated using get_vm_area() and its
1999 * friends.
2000 *
2001 * NOTE:
2002 * This function does NOT do any cache flushing. The caller is
2003 * responsible for calling flush_cache_vmap() on to-be-mapped areas
2004 * before calling this function.
2005 *
2006 * RETURNS:
2007 * The number of pages mapped on success, -errno on failure.
2008 */
2009int map_kernel_range_noflush(unsigned long addr, unsigned long size,
2010 pgprot_t prot, struct page **pages)
2011{
2012 return vmap_page_range_noflush(addr, addr + size, prot, pages);
2013}
2014
2015/**
2016 * unmap_kernel_range_noflush - unmap kernel VM area
2017 * @addr: start of the VM area to unmap
2018 * @size: size of the VM area to unmap
2019 *
2020 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
2021 * specify should have been allocated using get_vm_area() and its
2022 * friends.
2023 *
2024 * NOTE:
2025 * This function does NOT do any cache flushing. The caller is
2026 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
2027 * before calling this function and flush_tlb_kernel_range() after.
2028 */
2029void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
2030{
2031 vunmap_page_range(addr, addr + size);
2032}
2033
2034/**
2035 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2036 * @addr: start of the VM area to unmap
2037 * @size: size of the VM area to unmap
2038 *
2039 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2040 * the unmapping and tlb after.
2041 */
db64fe02
NP
2042void unmap_kernel_range(unsigned long addr, unsigned long size)
2043{
2044 unsigned long end = addr + size;
f6fcba70
TH
2045
2046 flush_cache_vunmap(addr, end);
db64fe02
NP
2047 vunmap_page_range(addr, end);
2048 flush_tlb_kernel_range(addr, end);
2049}
2050
f6f8ed47 2051int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
db64fe02
NP
2052{
2053 unsigned long addr = (unsigned long)area->addr;
762216ab 2054 unsigned long end = addr + get_vm_area_size(area);
db64fe02
NP
2055 int err;
2056
f6f8ed47 2057 err = vmap_page_range(addr, end, prot, pages);
db64fe02 2058
f6f8ed47 2059 return err > 0 ? 0 : err;
db64fe02 2060}
db64fe02 2061
e36176be
URS
2062static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2063 struct vmap_area *va, unsigned long flags, const void *caller)
cf88c790 2064{
cf88c790
TH
2065 vm->flags = flags;
2066 vm->addr = (void *)va->va_start;
2067 vm->size = va->va_end - va->va_start;
2068 vm->caller = caller;
db1aecaf 2069 va->vm = vm;
e36176be
URS
2070}
2071
2072static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2073 unsigned long flags, const void *caller)
2074{
2075 spin_lock(&vmap_area_lock);
2076 setup_vmalloc_vm_locked(vm, va, flags, caller);
c69480ad 2077 spin_unlock(&vmap_area_lock);
f5252e00 2078}
cf88c790 2079
20fc02b4 2080static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2081{
d4033afd 2082 /*
20fc02b4 2083 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2084 * we should make sure that vm has proper values.
2085 * Pair with smp_rmb() in show_numa_info().
2086 */
2087 smp_wmb();
20fc02b4 2088 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2089}
2090
db64fe02 2091static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 2092 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 2093 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 2094{
0006526d 2095 struct vmap_area *va;
db64fe02 2096 struct vm_struct *area;
d98c9e83 2097 unsigned long requested_size = size;
1da177e4 2098
52fd24ca 2099 BUG_ON(in_interrupt());
1da177e4 2100 size = PAGE_ALIGN(size);
31be8309
OH
2101 if (unlikely(!size))
2102 return NULL;
1da177e4 2103
252e5c6e 2104 if (flags & VM_IOREMAP)
2105 align = 1ul << clamp_t(int, get_count_order_long(size),
2106 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2107
cf88c790 2108 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2109 if (unlikely(!area))
2110 return NULL;
2111
71394fe5
AR
2112 if (!(flags & VM_NO_GUARD))
2113 size += PAGE_SIZE;
1da177e4 2114
db64fe02
NP
2115 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2116 if (IS_ERR(va)) {
2117 kfree(area);
2118 return NULL;
1da177e4 2119 }
1da177e4 2120
d98c9e83 2121 kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
f5252e00 2122
d98c9e83 2123 setup_vmalloc_vm(area, va, flags, caller);
3c5c3cfb 2124
1da177e4 2125 return area;
1da177e4
LT
2126}
2127
c2968612
BH
2128struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2129 unsigned long start, unsigned long end,
5e6cafc8 2130 const void *caller)
c2968612 2131{
00ef2d2f
DR
2132 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2133 GFP_KERNEL, caller);
c2968612
BH
2134}
2135
1da177e4 2136/**
92eac168
MR
2137 * get_vm_area - reserve a contiguous kernel virtual area
2138 * @size: size of the area
2139 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2140 *
92eac168
MR
2141 * Search an area of @size in the kernel virtual mapping area,
2142 * and reserved it for out purposes. Returns the area descriptor
2143 * on success or %NULL on failure.
a862f68a
MR
2144 *
2145 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2146 */
2147struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2148{
2dca6999 2149 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2150 NUMA_NO_NODE, GFP_KERNEL,
2151 __builtin_return_address(0));
23016969
CL
2152}
2153
2154struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2155 const void *caller)
23016969 2156{
2dca6999 2157 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 2158 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2159}
2160
e9da6e99 2161/**
92eac168
MR
2162 * find_vm_area - find a continuous kernel virtual area
2163 * @addr: base address
e9da6e99 2164 *
92eac168
MR
2165 * Search for the kernel VM area starting at @addr, and return it.
2166 * It is up to the caller to do all required locking to keep the returned
2167 * pointer valid.
a862f68a
MR
2168 *
2169 * Return: pointer to the found area or %NULL on faulure
e9da6e99
MS
2170 */
2171struct vm_struct *find_vm_area(const void *addr)
83342314 2172{
db64fe02 2173 struct vmap_area *va;
83342314 2174
db64fe02 2175 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
2176 if (!va)
2177 return NULL;
1da177e4 2178
688fcbfc 2179 return va->vm;
1da177e4
LT
2180}
2181
7856dfeb 2182/**
92eac168
MR
2183 * remove_vm_area - find and remove a continuous kernel virtual area
2184 * @addr: base address
7856dfeb 2185 *
92eac168
MR
2186 * Search for the kernel VM area starting at @addr, and remove it.
2187 * This function returns the found VM area, but using it is NOT safe
2188 * on SMP machines, except for its size or flags.
a862f68a
MR
2189 *
2190 * Return: pointer to the found area or %NULL on faulure
7856dfeb 2191 */
b3bdda02 2192struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2193{
db64fe02
NP
2194 struct vmap_area *va;
2195
5803ed29
CH
2196 might_sleep();
2197
dd3b8353
URS
2198 spin_lock(&vmap_area_lock);
2199 va = __find_vmap_area((unsigned long)addr);
688fcbfc 2200 if (va && va->vm) {
db1aecaf 2201 struct vm_struct *vm = va->vm;
f5252e00 2202
c69480ad 2203 va->vm = NULL;
c69480ad
JK
2204 spin_unlock(&vmap_area_lock);
2205
a5af5aa8 2206 kasan_free_shadow(vm);
dd32c279 2207 free_unmap_vmap_area(va);
dd32c279 2208
db64fe02
NP
2209 return vm;
2210 }
dd3b8353
URS
2211
2212 spin_unlock(&vmap_area_lock);
db64fe02 2213 return NULL;
7856dfeb
AK
2214}
2215
868b104d
RE
2216static inline void set_area_direct_map(const struct vm_struct *area,
2217 int (*set_direct_map)(struct page *page))
2218{
2219 int i;
2220
2221 for (i = 0; i < area->nr_pages; i++)
2222 if (page_address(area->pages[i]))
2223 set_direct_map(area->pages[i]);
2224}
2225
2226/* Handle removing and resetting vm mappings related to the vm_struct. */
2227static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2228{
868b104d
RE
2229 unsigned long start = ULONG_MAX, end = 0;
2230 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
31e67340 2231 int flush_dmap = 0;
868b104d
RE
2232 int i;
2233
868b104d
RE
2234 remove_vm_area(area->addr);
2235
2236 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2237 if (!flush_reset)
2238 return;
2239
2240 /*
2241 * If not deallocating pages, just do the flush of the VM area and
2242 * return.
2243 */
2244 if (!deallocate_pages) {
2245 vm_unmap_aliases();
2246 return;
2247 }
2248
2249 /*
2250 * If execution gets here, flush the vm mapping and reset the direct
2251 * map. Find the start and end range of the direct mappings to make sure
2252 * the vm_unmap_aliases() flush includes the direct map.
2253 */
2254 for (i = 0; i < area->nr_pages; i++) {
8e41f872
RE
2255 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2256 if (addr) {
868b104d 2257 start = min(addr, start);
8e41f872 2258 end = max(addr + PAGE_SIZE, end);
31e67340 2259 flush_dmap = 1;
868b104d
RE
2260 }
2261 }
2262
2263 /*
2264 * Set direct map to something invalid so that it won't be cached if
2265 * there are any accesses after the TLB flush, then flush the TLB and
2266 * reset the direct map permissions to the default.
2267 */
2268 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2269 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2270 set_area_direct_map(area, set_direct_map_default_noflush);
2271}
2272
b3bdda02 2273static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
2274{
2275 struct vm_struct *area;
2276
2277 if (!addr)
2278 return;
2279
e69e9d4a 2280 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 2281 addr))
1da177e4 2282 return;
1da177e4 2283
6ade2032 2284 area = find_vm_area(addr);
1da177e4 2285 if (unlikely(!area)) {
4c8573e2 2286 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 2287 addr);
1da177e4
LT
2288 return;
2289 }
2290
05e3ff95
CP
2291 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2292 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 2293
d98c9e83 2294 kasan_poison_vmalloc(area->addr, area->size);
3c5c3cfb 2295
868b104d
RE
2296 vm_remove_mappings(area, deallocate_pages);
2297
1da177e4
LT
2298 if (deallocate_pages) {
2299 int i;
2300
2301 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2302 struct page *page = area->pages[i];
2303
2304 BUG_ON(!page);
4949148a 2305 __free_pages(page, 0);
1da177e4 2306 }
97105f0a 2307 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2308
244d63ee 2309 kvfree(area->pages);
1da177e4
LT
2310 }
2311
2312 kfree(area);
2313 return;
2314}
bf22e37a
AR
2315
2316static inline void __vfree_deferred(const void *addr)
2317{
2318 /*
2319 * Use raw_cpu_ptr() because this can be called from preemptible
2320 * context. Preemption is absolutely fine here, because the llist_add()
2321 * implementation is lockless, so it works even if we are adding to
2322 * nother cpu's list. schedule_work() should be fine with this too.
2323 */
2324 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2325
2326 if (llist_add((struct llist_node *)addr, &p->list))
2327 schedule_work(&p->wq);
2328}
2329
2330/**
92eac168
MR
2331 * vfree_atomic - release memory allocated by vmalloc()
2332 * @addr: memory base address
bf22e37a 2333 *
92eac168
MR
2334 * This one is just like vfree() but can be called in any atomic context
2335 * except NMIs.
bf22e37a
AR
2336 */
2337void vfree_atomic(const void *addr)
2338{
2339 BUG_ON(in_nmi());
2340
2341 kmemleak_free(addr);
2342
2343 if (!addr)
2344 return;
2345 __vfree_deferred(addr);
2346}
2347
c67dc624
RP
2348static void __vfree(const void *addr)
2349{
2350 if (unlikely(in_interrupt()))
2351 __vfree_deferred(addr);
2352 else
2353 __vunmap(addr, 1);
2354}
2355
1da177e4 2356/**
92eac168
MR
2357 * vfree - release memory allocated by vmalloc()
2358 * @addr: memory base address
1da177e4 2359 *
92eac168
MR
2360 * Free the virtually continuous memory area starting at @addr, as
2361 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2362 * NULL, no operation is performed.
1da177e4 2363 *
92eac168
MR
2364 * Must not be called in NMI context (strictly speaking, only if we don't
2365 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2366 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51 2367 *
92eac168 2368 * May sleep if called *not* from interrupt context.
3ca4ea3a 2369 *
92eac168 2370 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1da177e4 2371 */
b3bdda02 2372void vfree(const void *addr)
1da177e4 2373{
32fcfd40 2374 BUG_ON(in_nmi());
89219d37
CM
2375
2376 kmemleak_free(addr);
2377
a8dda165
AR
2378 might_sleep_if(!in_interrupt());
2379
32fcfd40
AV
2380 if (!addr)
2381 return;
c67dc624
RP
2382
2383 __vfree(addr);
1da177e4 2384}
1da177e4
LT
2385EXPORT_SYMBOL(vfree);
2386
2387/**
92eac168
MR
2388 * vunmap - release virtual mapping obtained by vmap()
2389 * @addr: memory base address
1da177e4 2390 *
92eac168
MR
2391 * Free the virtually contiguous memory area starting at @addr,
2392 * which was created from the page array passed to vmap().
1da177e4 2393 *
92eac168 2394 * Must not be called in interrupt context.
1da177e4 2395 */
b3bdda02 2396void vunmap(const void *addr)
1da177e4
LT
2397{
2398 BUG_ON(in_interrupt());
34754b69 2399 might_sleep();
32fcfd40
AV
2400 if (addr)
2401 __vunmap(addr, 0);
1da177e4 2402}
1da177e4
LT
2403EXPORT_SYMBOL(vunmap);
2404
2405/**
92eac168
MR
2406 * vmap - map an array of pages into virtually contiguous space
2407 * @pages: array of page pointers
2408 * @count: number of pages to map
2409 * @flags: vm_area->flags
2410 * @prot: page protection for the mapping
2411 *
2412 * Maps @count pages from @pages into contiguous kernel virtual
2413 * space.
a862f68a
MR
2414 *
2415 * Return: the address of the area or %NULL on failure
1da177e4
LT
2416 */
2417void *vmap(struct page **pages, unsigned int count,
92eac168 2418 unsigned long flags, pgprot_t prot)
1da177e4
LT
2419{
2420 struct vm_struct *area;
65ee03c4 2421 unsigned long size; /* In bytes */
1da177e4 2422
34754b69
PZ
2423 might_sleep();
2424
ca79b0c2 2425 if (count > totalram_pages())
1da177e4
LT
2426 return NULL;
2427
65ee03c4
GJM
2428 size = (unsigned long)count << PAGE_SHIFT;
2429 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2430 if (!area)
2431 return NULL;
23016969 2432
f6f8ed47 2433 if (map_vm_area(area, prot, pages)) {
1da177e4
LT
2434 vunmap(area->addr);
2435 return NULL;
2436 }
2437
2438 return area->addr;
2439}
1da177e4
LT
2440EXPORT_SYMBOL(vmap);
2441
8594a21c
MH
2442static void *__vmalloc_node(unsigned long size, unsigned long align,
2443 gfp_t gfp_mask, pgprot_t prot,
2444 int node, const void *caller);
e31d9eb5 2445static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 2446 pgprot_t prot, int node)
1da177e4
LT
2447{
2448 struct page **pages;
2449 unsigned int nr_pages, array_size, i;
930f036b 2450 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
704b862f
LA
2451 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2452 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2453 0 :
2454 __GFP_HIGHMEM;
1da177e4 2455
762216ab 2456 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
2457 array_size = (nr_pages * sizeof(struct page *));
2458
1da177e4 2459 /* Please note that the recursion is strictly bounded. */
8757d5fa 2460 if (array_size > PAGE_SIZE) {
704b862f 2461 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
3722e13c 2462 PAGE_KERNEL, node, area->caller);
286e1ea3 2463 } else {
976d6dfb 2464 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 2465 }
7ea36242
AK
2466
2467 if (!pages) {
1da177e4
LT
2468 remove_vm_area(area->addr);
2469 kfree(area);
2470 return NULL;
2471 }
1da177e4 2472
7ea36242
AK
2473 area->pages = pages;
2474 area->nr_pages = nr_pages;
2475
1da177e4 2476 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2477 struct page *page;
2478
4b90951c 2479 if (node == NUMA_NO_NODE)
704b862f 2480 page = alloc_page(alloc_mask|highmem_mask);
930fc45a 2481 else
704b862f 2482 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
bf53d6f8
CL
2483
2484 if (unlikely(!page)) {
1da177e4
LT
2485 /* Successfully allocated i pages, free them in __vunmap() */
2486 area->nr_pages = i;
97105f0a 2487 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4
LT
2488 goto fail;
2489 }
bf53d6f8 2490 area->pages[i] = page;
dcf61ff0 2491 if (gfpflags_allow_blocking(gfp_mask))
660654f9 2492 cond_resched();
1da177e4 2493 }
97105f0a 2494 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2495
f6f8ed47 2496 if (map_vm_area(area, prot, pages))
1da177e4
LT
2497 goto fail;
2498 return area->addr;
2499
2500fail:
a8e99259 2501 warn_alloc(gfp_mask, NULL,
7877cdcc 2502 "vmalloc: allocation failure, allocated %ld of %ld bytes",
22943ab1 2503 (area->nr_pages*PAGE_SIZE), area->size);
c67dc624 2504 __vfree(area->addr);
1da177e4
LT
2505 return NULL;
2506}
2507
2508/**
92eac168
MR
2509 * __vmalloc_node_range - allocate virtually contiguous memory
2510 * @size: allocation size
2511 * @align: desired alignment
2512 * @start: vm area range start
2513 * @end: vm area range end
2514 * @gfp_mask: flags for the page level allocator
2515 * @prot: protection mask for the allocated pages
2516 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2517 * @node: node to use for allocation or NUMA_NO_NODE
2518 * @caller: caller's return address
2519 *
2520 * Allocate enough pages to cover @size from the page level
2521 * allocator with @gfp_mask flags. Map them into contiguous
2522 * kernel virtual space, using a pagetable protection of @prot.
a862f68a
MR
2523 *
2524 * Return: the address of the area or %NULL on failure
1da177e4 2525 */
d0a21265
DR
2526void *__vmalloc_node_range(unsigned long size, unsigned long align,
2527 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
2528 pgprot_t prot, unsigned long vm_flags, int node,
2529 const void *caller)
1da177e4
LT
2530{
2531 struct vm_struct *area;
89219d37
CM
2532 void *addr;
2533 unsigned long real_size = size;
1da177e4
LT
2534
2535 size = PAGE_ALIGN(size);
ca79b0c2 2536 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
de7d2b56 2537 goto fail;
1da177e4 2538
d98c9e83 2539 area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
cb9e3c29 2540 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 2541 if (!area)
de7d2b56 2542 goto fail;
1da177e4 2543
3722e13c 2544 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 2545 if (!addr)
b82225f3 2546 return NULL;
89219d37 2547
f5252e00 2548 /*
20fc02b4
ZY
2549 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2550 * flag. It means that vm_struct is not fully initialized.
4341fa45 2551 * Now, it is fully initialized, so remove this flag here.
f5252e00 2552 */
20fc02b4 2553 clear_vm_uninitialized_flag(area);
f5252e00 2554
94f4a161 2555 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
2556
2557 return addr;
de7d2b56
JP
2558
2559fail:
a8e99259 2560 warn_alloc(gfp_mask, NULL,
7877cdcc 2561 "vmalloc: allocation failure: %lu bytes", real_size);
de7d2b56 2562 return NULL;
1da177e4
LT
2563}
2564
153178ed
URS
2565/*
2566 * This is only for performance analysis of vmalloc and stress purpose.
2567 * It is required by vmalloc test module, therefore do not use it other
2568 * than that.
2569 */
2570#ifdef CONFIG_TEST_VMALLOC_MODULE
2571EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2572#endif
2573
d0a21265 2574/**
92eac168
MR
2575 * __vmalloc_node - allocate virtually contiguous memory
2576 * @size: allocation size
2577 * @align: desired alignment
2578 * @gfp_mask: flags for the page level allocator
2579 * @prot: protection mask for the allocated pages
2580 * @node: node to use for allocation or NUMA_NO_NODE
2581 * @caller: caller's return address
a7c3e901 2582 *
92eac168
MR
2583 * Allocate enough pages to cover @size from the page level
2584 * allocator with @gfp_mask flags. Map them into contiguous
2585 * kernel virtual space, using a pagetable protection of @prot.
a7c3e901 2586 *
92eac168
MR
2587 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2588 * and __GFP_NOFAIL are not supported
a7c3e901 2589 *
92eac168
MR
2590 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2591 * with mm people.
a862f68a
MR
2592 *
2593 * Return: pointer to the allocated memory or %NULL on error
d0a21265 2594 */
8594a21c 2595static void *__vmalloc_node(unsigned long size, unsigned long align,
d0a21265 2596 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 2597 int node, const void *caller)
d0a21265
DR
2598{
2599 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
cb9e3c29 2600 gfp_mask, prot, 0, node, caller);
d0a21265
DR
2601}
2602
930fc45a
CL
2603void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2604{
00ef2d2f 2605 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 2606 __builtin_return_address(0));
930fc45a 2607}
1da177e4
LT
2608EXPORT_SYMBOL(__vmalloc);
2609
8594a21c
MH
2610static inline void *__vmalloc_node_flags(unsigned long size,
2611 int node, gfp_t flags)
2612{
2613 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2614 node, __builtin_return_address(0));
2615}
2616
2617
2618void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2619 void *caller)
2620{
2621 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2622}
2623
1da177e4 2624/**
92eac168
MR
2625 * vmalloc - allocate virtually contiguous memory
2626 * @size: allocation size
2627 *
2628 * Allocate enough pages to cover @size from the page level
2629 * allocator and map them into contiguous kernel virtual space.
1da177e4 2630 *
92eac168
MR
2631 * For tight control over page level allocator and protection flags
2632 * use __vmalloc() instead.
a862f68a
MR
2633 *
2634 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2635 */
2636void *vmalloc(unsigned long size)
2637{
00ef2d2f 2638 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 2639 GFP_KERNEL);
1da177e4 2640}
1da177e4
LT
2641EXPORT_SYMBOL(vmalloc);
2642
e1ca7788 2643/**
92eac168
MR
2644 * vzalloc - allocate virtually contiguous memory with zero fill
2645 * @size: allocation size
2646 *
2647 * Allocate enough pages to cover @size from the page level
2648 * allocator and map them into contiguous kernel virtual space.
2649 * The memory allocated is set to zero.
2650 *
2651 * For tight control over page level allocator and protection flags
2652 * use __vmalloc() instead.
a862f68a
MR
2653 *
2654 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2655 */
2656void *vzalloc(unsigned long size)
2657{
00ef2d2f 2658 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 2659 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
2660}
2661EXPORT_SYMBOL(vzalloc);
2662
83342314 2663/**
ead04089
REB
2664 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2665 * @size: allocation size
83342314 2666 *
ead04089
REB
2667 * The resulting memory area is zeroed so it can be mapped to userspace
2668 * without leaking data.
a862f68a
MR
2669 *
2670 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2671 */
2672void *vmalloc_user(unsigned long size)
2673{
bc84c535
RP
2674 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2675 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2676 VM_USERMAP, NUMA_NO_NODE,
2677 __builtin_return_address(0));
83342314
NP
2678}
2679EXPORT_SYMBOL(vmalloc_user);
2680
930fc45a 2681/**
92eac168
MR
2682 * vmalloc_node - allocate memory on a specific node
2683 * @size: allocation size
2684 * @node: numa node
930fc45a 2685 *
92eac168
MR
2686 * Allocate enough pages to cover @size from the page level
2687 * allocator and map them into contiguous kernel virtual space.
930fc45a 2688 *
92eac168
MR
2689 * For tight control over page level allocator and protection flags
2690 * use __vmalloc() instead.
a862f68a
MR
2691 *
2692 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
2693 */
2694void *vmalloc_node(unsigned long size, int node)
2695{
19809c2d 2696 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
23016969 2697 node, __builtin_return_address(0));
930fc45a
CL
2698}
2699EXPORT_SYMBOL(vmalloc_node);
2700
e1ca7788
DY
2701/**
2702 * vzalloc_node - allocate memory on a specific node with zero fill
2703 * @size: allocation size
2704 * @node: numa node
2705 *
2706 * Allocate enough pages to cover @size from the page level
2707 * allocator and map them into contiguous kernel virtual space.
2708 * The memory allocated is set to zero.
2709 *
2710 * For tight control over page level allocator and protection flags
2711 * use __vmalloc_node() instead.
a862f68a
MR
2712 *
2713 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2714 */
2715void *vzalloc_node(unsigned long size, int node)
2716{
2717 return __vmalloc_node_flags(size, node,
19809c2d 2718 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
2719}
2720EXPORT_SYMBOL(vzalloc_node);
2721
fc970227
AN
2722/**
2723 * vmalloc_user_node_flags - allocate memory for userspace on a specific node
2724 * @size: allocation size
2725 * @node: numa node
2726 * @flags: flags for the page level allocator
2727 *
2728 * The resulting memory area is zeroed so it can be mapped to userspace
2729 * without leaking data.
2730 *
2731 * Return: pointer to the allocated memory or %NULL on error
2732 */
2733void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
2734{
2735 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2736 flags | __GFP_ZERO, PAGE_KERNEL,
2737 VM_USERMAP, node,
2738 __builtin_return_address(0));
2739}
2740EXPORT_SYMBOL(vmalloc_user_node_flags);
2741
1da177e4 2742/**
92eac168
MR
2743 * vmalloc_exec - allocate virtually contiguous, executable memory
2744 * @size: allocation size
1da177e4 2745 *
92eac168
MR
2746 * Kernel-internal function to allocate enough pages to cover @size
2747 * the page level allocator and map them into contiguous and
2748 * executable kernel virtual space.
1da177e4 2749 *
92eac168
MR
2750 * For tight control over page level allocator and protection flags
2751 * use __vmalloc() instead.
a862f68a
MR
2752 *
2753 * Return: pointer to the allocated memory or %NULL on error
1da177e4 2754 */
1da177e4
LT
2755void *vmalloc_exec(unsigned long size)
2756{
868b104d
RE
2757 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2758 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2759 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
2760}
2761
0d08e0d3 2762#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 2763#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 2764#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 2765#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 2766#else
698d0831
MH
2767/*
2768 * 64b systems should always have either DMA or DMA32 zones. For others
2769 * GFP_DMA32 should do the right thing and use the normal zone.
2770 */
2771#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3
AK
2772#endif
2773
1da177e4 2774/**
92eac168
MR
2775 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2776 * @size: allocation size
1da177e4 2777 *
92eac168
MR
2778 * Allocate enough 32bit PA addressable pages to cover @size from the
2779 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
2780 *
2781 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2782 */
2783void *vmalloc_32(unsigned long size)
2784{
2dca6999 2785 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 2786 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 2787}
1da177e4
LT
2788EXPORT_SYMBOL(vmalloc_32);
2789
83342314 2790/**
ead04089 2791 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 2792 * @size: allocation size
ead04089
REB
2793 *
2794 * The resulting memory area is 32bit addressable and zeroed so it can be
2795 * mapped to userspace without leaking data.
a862f68a
MR
2796 *
2797 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2798 */
2799void *vmalloc_32_user(unsigned long size)
2800{
bc84c535
RP
2801 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2802 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2803 VM_USERMAP, NUMA_NO_NODE,
2804 __builtin_return_address(0));
83342314
NP
2805}
2806EXPORT_SYMBOL(vmalloc_32_user);
2807
d0107eb0
KH
2808/*
2809 * small helper routine , copy contents to buf from addr.
2810 * If the page is not present, fill zero.
2811 */
2812
2813static int aligned_vread(char *buf, char *addr, unsigned long count)
2814{
2815 struct page *p;
2816 int copied = 0;
2817
2818 while (count) {
2819 unsigned long offset, length;
2820
891c49ab 2821 offset = offset_in_page(addr);
d0107eb0
KH
2822 length = PAGE_SIZE - offset;
2823 if (length > count)
2824 length = count;
2825 p = vmalloc_to_page(addr);
2826 /*
2827 * To do safe access to this _mapped_ area, we need
2828 * lock. But adding lock here means that we need to add
2829 * overhead of vmalloc()/vfree() calles for this _debug_
2830 * interface, rarely used. Instead of that, we'll use
2831 * kmap() and get small overhead in this access function.
2832 */
2833 if (p) {
2834 /*
2835 * we can expect USER0 is not used (see vread/vwrite's
2836 * function description)
2837 */
9b04c5fe 2838 void *map = kmap_atomic(p);
d0107eb0 2839 memcpy(buf, map + offset, length);
9b04c5fe 2840 kunmap_atomic(map);
d0107eb0
KH
2841 } else
2842 memset(buf, 0, length);
2843
2844 addr += length;
2845 buf += length;
2846 copied += length;
2847 count -= length;
2848 }
2849 return copied;
2850}
2851
2852static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2853{
2854 struct page *p;
2855 int copied = 0;
2856
2857 while (count) {
2858 unsigned long offset, length;
2859
891c49ab 2860 offset = offset_in_page(addr);
d0107eb0
KH
2861 length = PAGE_SIZE - offset;
2862 if (length > count)
2863 length = count;
2864 p = vmalloc_to_page(addr);
2865 /*
2866 * To do safe access to this _mapped_ area, we need
2867 * lock. But adding lock here means that we need to add
2868 * overhead of vmalloc()/vfree() calles for this _debug_
2869 * interface, rarely used. Instead of that, we'll use
2870 * kmap() and get small overhead in this access function.
2871 */
2872 if (p) {
2873 /*
2874 * we can expect USER0 is not used (see vread/vwrite's
2875 * function description)
2876 */
9b04c5fe 2877 void *map = kmap_atomic(p);
d0107eb0 2878 memcpy(map + offset, buf, length);
9b04c5fe 2879 kunmap_atomic(map);
d0107eb0
KH
2880 }
2881 addr += length;
2882 buf += length;
2883 copied += length;
2884 count -= length;
2885 }
2886 return copied;
2887}
2888
2889/**
92eac168
MR
2890 * vread() - read vmalloc area in a safe way.
2891 * @buf: buffer for reading data
2892 * @addr: vm address.
2893 * @count: number of bytes to be read.
2894 *
92eac168
MR
2895 * This function checks that addr is a valid vmalloc'ed area, and
2896 * copy data from that area to a given buffer. If the given memory range
2897 * of [addr...addr+count) includes some valid address, data is copied to
2898 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2899 * IOREMAP area is treated as memory hole and no copy is done.
2900 *
2901 * If [addr...addr+count) doesn't includes any intersects with alive
2902 * vm_struct area, returns 0. @buf should be kernel's buffer.
2903 *
2904 * Note: In usual ops, vread() is never necessary because the caller
2905 * should know vmalloc() area is valid and can use memcpy().
2906 * This is for routines which have to access vmalloc area without
d9009d67 2907 * any information, as /dev/kmem.
a862f68a
MR
2908 *
2909 * Return: number of bytes for which addr and buf should be increased
2910 * (same number as @count) or %0 if [addr...addr+count) doesn't
2911 * include any intersection with valid vmalloc area
d0107eb0 2912 */
1da177e4
LT
2913long vread(char *buf, char *addr, unsigned long count)
2914{
e81ce85f
JK
2915 struct vmap_area *va;
2916 struct vm_struct *vm;
1da177e4 2917 char *vaddr, *buf_start = buf;
d0107eb0 2918 unsigned long buflen = count;
1da177e4
LT
2919 unsigned long n;
2920
2921 /* Don't allow overflow */
2922 if ((unsigned long) addr + count < count)
2923 count = -(unsigned long) addr;
2924
e81ce85f
JK
2925 spin_lock(&vmap_area_lock);
2926 list_for_each_entry(va, &vmap_area_list, list) {
2927 if (!count)
2928 break;
2929
688fcbfc 2930 if (!va->vm)
e81ce85f
JK
2931 continue;
2932
2933 vm = va->vm;
2934 vaddr = (char *) vm->addr;
762216ab 2935 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2936 continue;
2937 while (addr < vaddr) {
2938 if (count == 0)
2939 goto finished;
2940 *buf = '\0';
2941 buf++;
2942 addr++;
2943 count--;
2944 }
762216ab 2945 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2946 if (n > count)
2947 n = count;
e81ce85f 2948 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2949 aligned_vread(buf, addr, n);
2950 else /* IOREMAP area is treated as memory hole */
2951 memset(buf, 0, n);
2952 buf += n;
2953 addr += n;
2954 count -= n;
1da177e4
LT
2955 }
2956finished:
e81ce85f 2957 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2958
2959 if (buf == buf_start)
2960 return 0;
2961 /* zero-fill memory holes */
2962 if (buf != buf_start + buflen)
2963 memset(buf, 0, buflen - (buf - buf_start));
2964
2965 return buflen;
1da177e4
LT
2966}
2967
d0107eb0 2968/**
92eac168
MR
2969 * vwrite() - write vmalloc area in a safe way.
2970 * @buf: buffer for source data
2971 * @addr: vm address.
2972 * @count: number of bytes to be read.
2973 *
92eac168
MR
2974 * This function checks that addr is a valid vmalloc'ed area, and
2975 * copy data from a buffer to the given addr. If specified range of
2976 * [addr...addr+count) includes some valid address, data is copied from
2977 * proper area of @buf. If there are memory holes, no copy to hole.
2978 * IOREMAP area is treated as memory hole and no copy is done.
2979 *
2980 * If [addr...addr+count) doesn't includes any intersects with alive
2981 * vm_struct area, returns 0. @buf should be kernel's buffer.
2982 *
2983 * Note: In usual ops, vwrite() is never necessary because the caller
2984 * should know vmalloc() area is valid and can use memcpy().
2985 * This is for routines which have to access vmalloc area without
d9009d67 2986 * any information, as /dev/kmem.
a862f68a
MR
2987 *
2988 * Return: number of bytes for which addr and buf should be
2989 * increased (same number as @count) or %0 if [addr...addr+count)
2990 * doesn't include any intersection with valid vmalloc area
d0107eb0 2991 */
1da177e4
LT
2992long vwrite(char *buf, char *addr, unsigned long count)
2993{
e81ce85f
JK
2994 struct vmap_area *va;
2995 struct vm_struct *vm;
d0107eb0
KH
2996 char *vaddr;
2997 unsigned long n, buflen;
2998 int copied = 0;
1da177e4
LT
2999
3000 /* Don't allow overflow */
3001 if ((unsigned long) addr + count < count)
3002 count = -(unsigned long) addr;
d0107eb0 3003 buflen = count;
1da177e4 3004
e81ce85f
JK
3005 spin_lock(&vmap_area_lock);
3006 list_for_each_entry(va, &vmap_area_list, list) {
3007 if (!count)
3008 break;
3009
688fcbfc 3010 if (!va->vm)
e81ce85f
JK
3011 continue;
3012
3013 vm = va->vm;
3014 vaddr = (char *) vm->addr;
762216ab 3015 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
3016 continue;
3017 while (addr < vaddr) {
3018 if (count == 0)
3019 goto finished;
3020 buf++;
3021 addr++;
3022 count--;
3023 }
762216ab 3024 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
3025 if (n > count)
3026 n = count;
e81ce85f 3027 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
3028 aligned_vwrite(buf, addr, n);
3029 copied++;
3030 }
3031 buf += n;
3032 addr += n;
3033 count -= n;
1da177e4
LT
3034 }
3035finished:
e81ce85f 3036 spin_unlock(&vmap_area_lock);
d0107eb0
KH
3037 if (!copied)
3038 return 0;
3039 return buflen;
1da177e4 3040}
83342314
NP
3041
3042/**
92eac168
MR
3043 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3044 * @vma: vma to cover
3045 * @uaddr: target user address to start at
3046 * @kaddr: virtual address of vmalloc kernel memory
bdebd6a2 3047 * @pgoff: offset from @kaddr to start at
92eac168 3048 * @size: size of map area
7682486b 3049 *
92eac168 3050 * Returns: 0 for success, -Exxx on failure
83342314 3051 *
92eac168
MR
3052 * This function checks that @kaddr is a valid vmalloc'ed area,
3053 * and that it is big enough to cover the range starting at
3054 * @uaddr in @vma. Will return failure if that criteria isn't
3055 * met.
83342314 3056 *
92eac168 3057 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 3058 */
e69e9d4a 3059int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
bdebd6a2
JH
3060 void *kaddr, unsigned long pgoff,
3061 unsigned long size)
83342314
NP
3062{
3063 struct vm_struct *area;
bdebd6a2
JH
3064 unsigned long off;
3065 unsigned long end_index;
3066
3067 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3068 return -EINVAL;
83342314 3069
e69e9d4a
HD
3070 size = PAGE_ALIGN(size);
3071
3072 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
3073 return -EINVAL;
3074
e69e9d4a 3075 area = find_vm_area(kaddr);
83342314 3076 if (!area)
db64fe02 3077 return -EINVAL;
83342314 3078
fe9041c2 3079 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 3080 return -EINVAL;
83342314 3081
bdebd6a2
JH
3082 if (check_add_overflow(size, off, &end_index) ||
3083 end_index > get_vm_area_size(area))
db64fe02 3084 return -EINVAL;
bdebd6a2 3085 kaddr += off;
83342314 3086
83342314 3087 do {
e69e9d4a 3088 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
3089 int ret;
3090
83342314
NP
3091 ret = vm_insert_page(vma, uaddr, page);
3092 if (ret)
3093 return ret;
3094
3095 uaddr += PAGE_SIZE;
e69e9d4a
HD
3096 kaddr += PAGE_SIZE;
3097 size -= PAGE_SIZE;
3098 } while (size > 0);
83342314 3099
314e51b9 3100 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 3101
db64fe02 3102 return 0;
83342314 3103}
e69e9d4a
HD
3104EXPORT_SYMBOL(remap_vmalloc_range_partial);
3105
3106/**
92eac168
MR
3107 * remap_vmalloc_range - map vmalloc pages to userspace
3108 * @vma: vma to cover (map full range of vma)
3109 * @addr: vmalloc memory
3110 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3111 *
92eac168 3112 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3113 *
92eac168
MR
3114 * This function checks that addr is a valid vmalloc'ed area, and
3115 * that it is big enough to cover the vma. Will return failure if
3116 * that criteria isn't met.
e69e9d4a 3117 *
92eac168 3118 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3119 */
3120int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3121 unsigned long pgoff)
3122{
3123 return remap_vmalloc_range_partial(vma, vma->vm_start,
bdebd6a2 3124 addr, pgoff,
e69e9d4a
HD
3125 vma->vm_end - vma->vm_start);
3126}
83342314
NP
3127EXPORT_SYMBOL(remap_vmalloc_range);
3128
1eeb66a1 3129/*
763802b5
JR
3130 * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose
3131 * not to have one.
3f8fd02b
JR
3132 *
3133 * The purpose of this function is to make sure the vmalloc area
3134 * mappings are identical in all page-tables in the system.
1eeb66a1 3135 */
763802b5 3136void __weak vmalloc_sync_mappings(void)
1eeb66a1
CH
3137{
3138}
5f4352fb 3139
763802b5
JR
3140void __weak vmalloc_sync_unmappings(void)
3141{
3142}
5f4352fb 3143
8b1e0f81 3144static int f(pte_t *pte, unsigned long addr, void *data)
5f4352fb 3145{
cd12909c
DV
3146 pte_t ***p = data;
3147
3148 if (p) {
3149 *(*p) = pte;
3150 (*p)++;
3151 }
5f4352fb
JF
3152 return 0;
3153}
3154
3155/**
92eac168
MR
3156 * alloc_vm_area - allocate a range of kernel address space
3157 * @size: size of the area
3158 * @ptes: returns the PTEs for the address space
7682486b 3159 *
92eac168 3160 * Returns: NULL on failure, vm_struct on success
5f4352fb 3161 *
92eac168
MR
3162 * This function reserves a range of kernel address space, and
3163 * allocates pagetables to map that range. No actual mappings
3164 * are created.
cd12909c 3165 *
92eac168
MR
3166 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3167 * allocated for the VM area are returned.
5f4352fb 3168 */
cd12909c 3169struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
3170{
3171 struct vm_struct *area;
3172
23016969
CL
3173 area = get_vm_area_caller(size, VM_IOREMAP,
3174 __builtin_return_address(0));
5f4352fb
JF
3175 if (area == NULL)
3176 return NULL;
3177
3178 /*
3179 * This ensures that page tables are constructed for this region
3180 * of kernel virtual address space and mapped into init_mm.
3181 */
3182 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 3183 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
3184 free_vm_area(area);
3185 return NULL;
3186 }
3187
5f4352fb
JF
3188 return area;
3189}
3190EXPORT_SYMBOL_GPL(alloc_vm_area);
3191
3192void free_vm_area(struct vm_struct *area)
3193{
3194 struct vm_struct *ret;
3195 ret = remove_vm_area(area->addr);
3196 BUG_ON(ret != area);
3197 kfree(area);
3198}
3199EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3200
4f8b02b4 3201#ifdef CONFIG_SMP
ca23e405
TH
3202static struct vmap_area *node_to_va(struct rb_node *n)
3203{
4583e773 3204 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3205}
3206
3207/**
68ad4a33
URS
3208 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3209 * @addr: target address
ca23e405 3210 *
68ad4a33
URS
3211 * Returns: vmap_area if it is found. If there is no such area
3212 * the first highest(reverse order) vmap_area is returned
3213 * i.e. va->va_start < addr && va->va_end < addr or NULL
3214 * if there are no any areas before @addr.
ca23e405 3215 */
68ad4a33
URS
3216static struct vmap_area *
3217pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3218{
68ad4a33
URS
3219 struct vmap_area *va, *tmp;
3220 struct rb_node *n;
3221
3222 n = free_vmap_area_root.rb_node;
3223 va = NULL;
ca23e405
TH
3224
3225 while (n) {
68ad4a33
URS
3226 tmp = rb_entry(n, struct vmap_area, rb_node);
3227 if (tmp->va_start <= addr) {
3228 va = tmp;
3229 if (tmp->va_end >= addr)
3230 break;
3231
ca23e405 3232 n = n->rb_right;
68ad4a33
URS
3233 } else {
3234 n = n->rb_left;
3235 }
ca23e405
TH
3236 }
3237
68ad4a33 3238 return va;
ca23e405
TH
3239}
3240
3241/**
68ad4a33
URS
3242 * pvm_determine_end_from_reverse - find the highest aligned address
3243 * of free block below VMALLOC_END
3244 * @va:
3245 * in - the VA we start the search(reverse order);
3246 * out - the VA with the highest aligned end address.
ca23e405 3247 *
68ad4a33 3248 * Returns: determined end address within vmap_area
ca23e405 3249 */
68ad4a33
URS
3250static unsigned long
3251pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3252{
68ad4a33 3253 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3254 unsigned long addr;
3255
68ad4a33
URS
3256 if (likely(*va)) {
3257 list_for_each_entry_from_reverse((*va),
3258 &free_vmap_area_list, list) {
3259 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3260 if ((*va)->va_start < addr)
3261 return addr;
3262 }
ca23e405
TH
3263 }
3264
68ad4a33 3265 return 0;
ca23e405
TH
3266}
3267
3268/**
3269 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3270 * @offsets: array containing offset of each area
3271 * @sizes: array containing size of each area
3272 * @nr_vms: the number of areas to allocate
3273 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3274 *
3275 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3276 * vm_structs on success, %NULL on failure
3277 *
3278 * Percpu allocator wants to use congruent vm areas so that it can
3279 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3280 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3281 * be scattered pretty far, distance between two areas easily going up
3282 * to gigabytes. To avoid interacting with regular vmallocs, these
3283 * areas are allocated from top.
ca23e405 3284 *
68ad4a33
URS
3285 * Despite its complicated look, this allocator is rather simple. It
3286 * does everything top-down and scans free blocks from the end looking
3287 * for matching base. While scanning, if any of the areas do not fit the
3288 * base address is pulled down to fit the area. Scanning is repeated till
3289 * all the areas fit and then all necessary data structures are inserted
3290 * and the result is returned.
ca23e405
TH
3291 */
3292struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3293 const size_t *sizes, int nr_vms,
ec3f64fc 3294 size_t align)
ca23e405
TH
3295{
3296 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3297 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3298 struct vmap_area **vas, *va;
ca23e405
TH
3299 struct vm_struct **vms;
3300 int area, area2, last_area, term_area;
253a496d 3301 unsigned long base, start, size, end, last_end, orig_start, orig_end;
ca23e405 3302 bool purged = false;
68ad4a33 3303 enum fit_type type;
ca23e405 3304
ca23e405 3305 /* verify parameters and allocate data structures */
891c49ab 3306 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3307 for (last_area = 0, area = 0; area < nr_vms; area++) {
3308 start = offsets[area];
3309 end = start + sizes[area];
3310
3311 /* is everything aligned properly? */
3312 BUG_ON(!IS_ALIGNED(offsets[area], align));
3313 BUG_ON(!IS_ALIGNED(sizes[area], align));
3314
3315 /* detect the area with the highest address */
3316 if (start > offsets[last_area])
3317 last_area = area;
3318
c568da28 3319 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3320 unsigned long start2 = offsets[area2];
3321 unsigned long end2 = start2 + sizes[area2];
3322
c568da28 3323 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3324 }
3325 }
3326 last_end = offsets[last_area] + sizes[last_area];
3327
3328 if (vmalloc_end - vmalloc_start < last_end) {
3329 WARN_ON(true);
3330 return NULL;
3331 }
3332
4d67d860
TM
3333 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3334 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3335 if (!vas || !vms)
f1db7afd 3336 goto err_free2;
ca23e405
TH
3337
3338 for (area = 0; area < nr_vms; area++) {
68ad4a33 3339 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3340 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3341 if (!vas[area] || !vms[area])
3342 goto err_free;
3343 }
3344retry:
e36176be 3345 spin_lock(&free_vmap_area_lock);
ca23e405
TH
3346
3347 /* start scanning - we scan from the top, begin with the last area */
3348 area = term_area = last_area;
3349 start = offsets[area];
3350 end = start + sizes[area];
3351
68ad4a33
URS
3352 va = pvm_find_va_enclose_addr(vmalloc_end);
3353 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3354
3355 while (true) {
ca23e405
TH
3356 /*
3357 * base might have underflowed, add last_end before
3358 * comparing.
3359 */
68ad4a33
URS
3360 if (base + last_end < vmalloc_start + last_end)
3361 goto overflow;
ca23e405
TH
3362
3363 /*
68ad4a33 3364 * Fitting base has not been found.
ca23e405 3365 */
68ad4a33
URS
3366 if (va == NULL)
3367 goto overflow;
ca23e405 3368
5336e52c 3369 /*
d8cc323d 3370 * If required width exceeds current VA block, move
5336e52c
KS
3371 * base downwards and then recheck.
3372 */
3373 if (base + end > va->va_end) {
3374 base = pvm_determine_end_from_reverse(&va, align) - end;
3375 term_area = area;
3376 continue;
3377 }
3378
ca23e405 3379 /*
68ad4a33 3380 * If this VA does not fit, move base downwards and recheck.
ca23e405 3381 */
5336e52c 3382 if (base + start < va->va_start) {
68ad4a33
URS
3383 va = node_to_va(rb_prev(&va->rb_node));
3384 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3385 term_area = area;
3386 continue;
3387 }
3388
3389 /*
3390 * This area fits, move on to the previous one. If
3391 * the previous one is the terminal one, we're done.
3392 */
3393 area = (area + nr_vms - 1) % nr_vms;
3394 if (area == term_area)
3395 break;
68ad4a33 3396
ca23e405
TH
3397 start = offsets[area];
3398 end = start + sizes[area];
68ad4a33 3399 va = pvm_find_va_enclose_addr(base + end);
ca23e405 3400 }
68ad4a33 3401
ca23e405
TH
3402 /* we've found a fitting base, insert all va's */
3403 for (area = 0; area < nr_vms; area++) {
68ad4a33 3404 int ret;
ca23e405 3405
68ad4a33
URS
3406 start = base + offsets[area];
3407 size = sizes[area];
ca23e405 3408
68ad4a33
URS
3409 va = pvm_find_va_enclose_addr(start);
3410 if (WARN_ON_ONCE(va == NULL))
3411 /* It is a BUG(), but trigger recovery instead. */
3412 goto recovery;
3413
3414 type = classify_va_fit_type(va, start, size);
3415 if (WARN_ON_ONCE(type == NOTHING_FIT))
3416 /* It is a BUG(), but trigger recovery instead. */
3417 goto recovery;
3418
3419 ret = adjust_va_to_fit_type(va, start, size, type);
3420 if (unlikely(ret))
3421 goto recovery;
3422
3423 /* Allocated area. */
3424 va = vas[area];
3425 va->va_start = start;
3426 va->va_end = start + size;
68ad4a33 3427 }
ca23e405 3428
e36176be 3429 spin_unlock(&free_vmap_area_lock);
ca23e405 3430
253a496d
DA
3431 /* populate the kasan shadow space */
3432 for (area = 0; area < nr_vms; area++) {
3433 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3434 goto err_free_shadow;
3435
3436 kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3437 sizes[area]);
3438 }
3439
ca23e405 3440 /* insert all vm's */
e36176be
URS
3441 spin_lock(&vmap_area_lock);
3442 for (area = 0; area < nr_vms; area++) {
3443 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3444
3445 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3645cb4a 3446 pcpu_get_vm_areas);
e36176be
URS
3447 }
3448 spin_unlock(&vmap_area_lock);
ca23e405
TH
3449
3450 kfree(vas);
3451 return vms;
3452
68ad4a33 3453recovery:
e36176be
URS
3454 /*
3455 * Remove previously allocated areas. There is no
3456 * need in removing these areas from the busy tree,
3457 * because they are inserted only on the final step
3458 * and when pcpu_get_vm_areas() is success.
3459 */
68ad4a33 3460 while (area--) {
253a496d
DA
3461 orig_start = vas[area]->va_start;
3462 orig_end = vas[area]->va_end;
3463 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3464 &free_vmap_area_list);
3465 kasan_release_vmalloc(orig_start, orig_end,
3466 va->va_start, va->va_end);
68ad4a33
URS
3467 vas[area] = NULL;
3468 }
3469
3470overflow:
e36176be 3471 spin_unlock(&free_vmap_area_lock);
68ad4a33
URS
3472 if (!purged) {
3473 purge_vmap_area_lazy();
3474 purged = true;
3475
3476 /* Before "retry", check if we recover. */
3477 for (area = 0; area < nr_vms; area++) {
3478 if (vas[area])
3479 continue;
3480
3481 vas[area] = kmem_cache_zalloc(
3482 vmap_area_cachep, GFP_KERNEL);
3483 if (!vas[area])
3484 goto err_free;
3485 }
3486
3487 goto retry;
3488 }
3489
ca23e405
TH
3490err_free:
3491 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
3492 if (vas[area])
3493 kmem_cache_free(vmap_area_cachep, vas[area]);
3494
f1db7afd 3495 kfree(vms[area]);
ca23e405 3496 }
f1db7afd 3497err_free2:
ca23e405
TH
3498 kfree(vas);
3499 kfree(vms);
3500 return NULL;
253a496d
DA
3501
3502err_free_shadow:
3503 spin_lock(&free_vmap_area_lock);
3504 /*
3505 * We release all the vmalloc shadows, even the ones for regions that
3506 * hadn't been successfully added. This relies on kasan_release_vmalloc
3507 * being able to tolerate this case.
3508 */
3509 for (area = 0; area < nr_vms; area++) {
3510 orig_start = vas[area]->va_start;
3511 orig_end = vas[area]->va_end;
3512 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3513 &free_vmap_area_list);
3514 kasan_release_vmalloc(orig_start, orig_end,
3515 va->va_start, va->va_end);
3516 vas[area] = NULL;
3517 kfree(vms[area]);
3518 }
3519 spin_unlock(&free_vmap_area_lock);
3520 kfree(vas);
3521 kfree(vms);
3522 return NULL;
ca23e405
TH
3523}
3524
3525/**
3526 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3527 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3528 * @nr_vms: the number of allocated areas
3529 *
3530 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3531 */
3532void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3533{
3534 int i;
3535
3536 for (i = 0; i < nr_vms; i++)
3537 free_vm_area(vms[i]);
3538 kfree(vms);
3539}
4f8b02b4 3540#endif /* CONFIG_SMP */
a10aa579
CL
3541
3542#ifdef CONFIG_PROC_FS
3543static void *s_start(struct seq_file *m, loff_t *pos)
e36176be 3544 __acquires(&vmap_purge_lock)
d4033afd 3545 __acquires(&vmap_area_lock)
a10aa579 3546{
e36176be 3547 mutex_lock(&vmap_purge_lock);
d4033afd 3548 spin_lock(&vmap_area_lock);
e36176be 3549
3f500069 3550 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
3551}
3552
3553static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3554{
3f500069 3555 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
3556}
3557
3558static void s_stop(struct seq_file *m, void *p)
e36176be 3559 __releases(&vmap_purge_lock)
d4033afd 3560 __releases(&vmap_area_lock)
a10aa579 3561{
e36176be 3562 mutex_unlock(&vmap_purge_lock);
d4033afd 3563 spin_unlock(&vmap_area_lock);
a10aa579
CL
3564}
3565
a47a126a
ED
3566static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3567{
e5adfffc 3568 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
3569 unsigned int nr, *counters = m->private;
3570
3571 if (!counters)
3572 return;
3573
af12346c
WL
3574 if (v->flags & VM_UNINITIALIZED)
3575 return;
7e5b528b
DV
3576 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3577 smp_rmb();
af12346c 3578
a47a126a
ED
3579 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3580
3581 for (nr = 0; nr < v->nr_pages; nr++)
3582 counters[page_to_nid(v->pages[nr])]++;
3583
3584 for_each_node_state(nr, N_HIGH_MEMORY)
3585 if (counters[nr])
3586 seq_printf(m, " N%u=%u", nr, counters[nr]);
3587 }
3588}
3589
dd3b8353
URS
3590static void show_purge_info(struct seq_file *m)
3591{
3592 struct llist_node *head;
3593 struct vmap_area *va;
3594
3595 head = READ_ONCE(vmap_purge_list.first);
3596 if (head == NULL)
3597 return;
3598
3599 llist_for_each_entry(va, head, purge_list) {
3600 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3601 (void *)va->va_start, (void *)va->va_end,
3602 va->va_end - va->va_start);
3603 }
3604}
3605
a10aa579
CL
3606static int s_show(struct seq_file *m, void *p)
3607{
3f500069 3608 struct vmap_area *va;
d4033afd
JK
3609 struct vm_struct *v;
3610
3f500069 3611 va = list_entry(p, struct vmap_area, list);
3612
c2ce8c14 3613 /*
688fcbfc
PL
3614 * s_show can encounter race with remove_vm_area, !vm on behalf
3615 * of vmap area is being tear down or vm_map_ram allocation.
c2ce8c14 3616 */
688fcbfc 3617 if (!va->vm) {
dd3b8353 3618 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
78c72746 3619 (void *)va->va_start, (void *)va->va_end,
dd3b8353 3620 va->va_end - va->va_start);
78c72746 3621
d4033afd 3622 return 0;
78c72746 3623 }
d4033afd
JK
3624
3625 v = va->vm;
a10aa579 3626
45ec1690 3627 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
3628 v->addr, v->addr + v->size, v->size);
3629
62c70bce
JP
3630 if (v->caller)
3631 seq_printf(m, " %pS", v->caller);
23016969 3632
a10aa579
CL
3633 if (v->nr_pages)
3634 seq_printf(m, " pages=%d", v->nr_pages);
3635
3636 if (v->phys_addr)
199eaa05 3637 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
3638
3639 if (v->flags & VM_IOREMAP)
f4527c90 3640 seq_puts(m, " ioremap");
a10aa579
CL
3641
3642 if (v->flags & VM_ALLOC)
f4527c90 3643 seq_puts(m, " vmalloc");
a10aa579
CL
3644
3645 if (v->flags & VM_MAP)
f4527c90 3646 seq_puts(m, " vmap");
a10aa579
CL
3647
3648 if (v->flags & VM_USERMAP)
f4527c90 3649 seq_puts(m, " user");
a10aa579 3650
fe9041c2
CH
3651 if (v->flags & VM_DMA_COHERENT)
3652 seq_puts(m, " dma-coherent");
3653
244d63ee 3654 if (is_vmalloc_addr(v->pages))
f4527c90 3655 seq_puts(m, " vpages");
a10aa579 3656
a47a126a 3657 show_numa_info(m, v);
a10aa579 3658 seq_putc(m, '\n');
dd3b8353
URS
3659
3660 /*
3661 * As a final step, dump "unpurged" areas. Note,
3662 * that entire "/proc/vmallocinfo" output will not
3663 * be address sorted, because the purge list is not
3664 * sorted.
3665 */
3666 if (list_is_last(&va->list, &vmap_area_list))
3667 show_purge_info(m);
3668
a10aa579
CL
3669 return 0;
3670}
3671
5f6a6a9c 3672static const struct seq_operations vmalloc_op = {
a10aa579
CL
3673 .start = s_start,
3674 .next = s_next,
3675 .stop = s_stop,
3676 .show = s_show,
3677};
5f6a6a9c 3678
5f6a6a9c
AD
3679static int __init proc_vmalloc_init(void)
3680{
fddda2b7 3681 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 3682 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
3683 &vmalloc_op,
3684 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 3685 else
0825a6f9 3686 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
3687 return 0;
3688}
3689module_init(proc_vmalloc_init);
db3808c1 3690
a10aa579 3691#endif