]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmalloc.c
mm/vmalloc: occupy newly allocated vmap block just after allocation
[mirror_ubuntu-zesty-kernel.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
d43c36dc 15#include <linux/sched.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
3ac7fe5a 21#include <linux/debugobjects.h>
23016969 22#include <linux/kallsyms.h>
db64fe02
NP
23#include <linux/list.h>
24#include <linux/rbtree.h>
25#include <linux/radix-tree.h>
26#include <linux/rcupdate.h>
f0aa6617 27#include <linux/pfn.h>
89219d37 28#include <linux/kmemleak.h>
60063497 29#include <linux/atomic.h>
3b32123d 30#include <linux/compiler.h>
32fcfd40 31#include <linux/llist.h>
0f616be1 32#include <linux/bitops.h>
3b32123d 33
1da177e4
LT
34#include <asm/uaccess.h>
35#include <asm/tlbflush.h>
2dca6999 36#include <asm/shmparam.h>
1da177e4 37
32fcfd40
AV
38struct vfree_deferred {
39 struct llist_head list;
40 struct work_struct wq;
41};
42static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
43
44static void __vunmap(const void *, int);
45
46static void free_work(struct work_struct *w)
47{
48 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
49 struct llist_node *llnode = llist_del_all(&p->list);
50 while (llnode) {
51 void *p = llnode;
52 llnode = llist_next(llnode);
53 __vunmap(p, 1);
54 }
55}
56
db64fe02 57/*** Page table manipulation functions ***/
b221385b 58
1da177e4
LT
59static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
60{
61 pte_t *pte;
62
63 pte = pte_offset_kernel(pmd, addr);
64 do {
65 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
66 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
67 } while (pte++, addr += PAGE_SIZE, addr != end);
68}
69
db64fe02 70static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
71{
72 pmd_t *pmd;
73 unsigned long next;
74
75 pmd = pmd_offset(pud, addr);
76 do {
77 next = pmd_addr_end(addr, end);
b9820d8f
TK
78 if (pmd_clear_huge(pmd))
79 continue;
1da177e4
LT
80 if (pmd_none_or_clear_bad(pmd))
81 continue;
82 vunmap_pte_range(pmd, addr, next);
83 } while (pmd++, addr = next, addr != end);
84}
85
db64fe02 86static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
1da177e4
LT
87{
88 pud_t *pud;
89 unsigned long next;
90
91 pud = pud_offset(pgd, addr);
92 do {
93 next = pud_addr_end(addr, end);
b9820d8f
TK
94 if (pud_clear_huge(pud))
95 continue;
1da177e4
LT
96 if (pud_none_or_clear_bad(pud))
97 continue;
98 vunmap_pmd_range(pud, addr, next);
99 } while (pud++, addr = next, addr != end);
100}
101
db64fe02 102static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
103{
104 pgd_t *pgd;
105 unsigned long next;
1da177e4
LT
106
107 BUG_ON(addr >= end);
108 pgd = pgd_offset_k(addr);
1da177e4
LT
109 do {
110 next = pgd_addr_end(addr, end);
111 if (pgd_none_or_clear_bad(pgd))
112 continue;
113 vunmap_pud_range(pgd, addr, next);
114 } while (pgd++, addr = next, addr != end);
1da177e4
LT
115}
116
117static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 118 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
119{
120 pte_t *pte;
121
db64fe02
NP
122 /*
123 * nr is a running index into the array which helps higher level
124 * callers keep track of where we're up to.
125 */
126
872fec16 127 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
128 if (!pte)
129 return -ENOMEM;
130 do {
db64fe02
NP
131 struct page *page = pages[*nr];
132
133 if (WARN_ON(!pte_none(*pte)))
134 return -EBUSY;
135 if (WARN_ON(!page))
1da177e4
LT
136 return -ENOMEM;
137 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 138 (*nr)++;
1da177e4
LT
139 } while (pte++, addr += PAGE_SIZE, addr != end);
140 return 0;
141}
142
db64fe02
NP
143static int vmap_pmd_range(pud_t *pud, unsigned long addr,
144 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
145{
146 pmd_t *pmd;
147 unsigned long next;
148
149 pmd = pmd_alloc(&init_mm, pud, addr);
150 if (!pmd)
151 return -ENOMEM;
152 do {
153 next = pmd_addr_end(addr, end);
db64fe02 154 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
155 return -ENOMEM;
156 } while (pmd++, addr = next, addr != end);
157 return 0;
158}
159
db64fe02
NP
160static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
161 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
162{
163 pud_t *pud;
164 unsigned long next;
165
166 pud = pud_alloc(&init_mm, pgd, addr);
167 if (!pud)
168 return -ENOMEM;
169 do {
170 next = pud_addr_end(addr, end);
db64fe02 171 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
172 return -ENOMEM;
173 } while (pud++, addr = next, addr != end);
174 return 0;
175}
176
db64fe02
NP
177/*
178 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
179 * will have pfns corresponding to the "pages" array.
180 *
181 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
182 */
8fc48985
TH
183static int vmap_page_range_noflush(unsigned long start, unsigned long end,
184 pgprot_t prot, struct page **pages)
1da177e4
LT
185{
186 pgd_t *pgd;
187 unsigned long next;
2e4e27c7 188 unsigned long addr = start;
db64fe02
NP
189 int err = 0;
190 int nr = 0;
1da177e4
LT
191
192 BUG_ON(addr >= end);
193 pgd = pgd_offset_k(addr);
1da177e4
LT
194 do {
195 next = pgd_addr_end(addr, end);
db64fe02 196 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
1da177e4 197 if (err)
bf88c8c8 198 return err;
1da177e4 199 } while (pgd++, addr = next, addr != end);
db64fe02 200
db64fe02 201 return nr;
1da177e4
LT
202}
203
8fc48985
TH
204static int vmap_page_range(unsigned long start, unsigned long end,
205 pgprot_t prot, struct page **pages)
206{
207 int ret;
208
209 ret = vmap_page_range_noflush(start, end, prot, pages);
210 flush_cache_vmap(start, end);
211 return ret;
212}
213
81ac3ad9 214int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
215{
216 /*
ab4f2ee1 217 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
218 * and fall back on vmalloc() if that fails. Others
219 * just put it in the vmalloc space.
220 */
221#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
222 unsigned long addr = (unsigned long)x;
223 if (addr >= MODULES_VADDR && addr < MODULES_END)
224 return 1;
225#endif
226 return is_vmalloc_addr(x);
227}
228
48667e7a 229/*
add688fb 230 * Walk a vmap address to the struct page it maps.
48667e7a 231 */
add688fb 232struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
233{
234 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 235 struct page *page = NULL;
48667e7a 236 pgd_t *pgd = pgd_offset_k(addr);
48667e7a 237
7aa413de
IM
238 /*
239 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
240 * architectures that do not vmalloc module space
241 */
73bdf0a6 242 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 243
48667e7a 244 if (!pgd_none(*pgd)) {
db64fe02 245 pud_t *pud = pud_offset(pgd, addr);
48667e7a 246 if (!pud_none(*pud)) {
db64fe02 247 pmd_t *pmd = pmd_offset(pud, addr);
48667e7a 248 if (!pmd_none(*pmd)) {
db64fe02
NP
249 pte_t *ptep, pte;
250
48667e7a
CL
251 ptep = pte_offset_map(pmd, addr);
252 pte = *ptep;
253 if (pte_present(pte))
add688fb 254 page = pte_page(pte);
48667e7a
CL
255 pte_unmap(ptep);
256 }
257 }
258 }
add688fb 259 return page;
48667e7a 260}
add688fb 261EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
262
263/*
add688fb 264 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 265 */
add688fb 266unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 267{
add688fb 268 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 269}
add688fb 270EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 271
db64fe02
NP
272
273/*** Global kva allocator ***/
274
275#define VM_LAZY_FREE 0x01
276#define VM_LAZY_FREEING 0x02
277#define VM_VM_AREA 0x04
278
db64fe02 279static DEFINE_SPINLOCK(vmap_area_lock);
f1c4069e
JK
280/* Export for kexec only */
281LIST_HEAD(vmap_area_list);
89699605
NP
282static struct rb_root vmap_area_root = RB_ROOT;
283
284/* The vmap cache globals are protected by vmap_area_lock */
285static struct rb_node *free_vmap_cache;
286static unsigned long cached_hole_size;
287static unsigned long cached_vstart;
288static unsigned long cached_align;
289
ca23e405 290static unsigned long vmap_area_pcpu_hole;
db64fe02
NP
291
292static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 293{
db64fe02
NP
294 struct rb_node *n = vmap_area_root.rb_node;
295
296 while (n) {
297 struct vmap_area *va;
298
299 va = rb_entry(n, struct vmap_area, rb_node);
300 if (addr < va->va_start)
301 n = n->rb_left;
cef2ac3f 302 else if (addr >= va->va_end)
db64fe02
NP
303 n = n->rb_right;
304 else
305 return va;
306 }
307
308 return NULL;
309}
310
311static void __insert_vmap_area(struct vmap_area *va)
312{
313 struct rb_node **p = &vmap_area_root.rb_node;
314 struct rb_node *parent = NULL;
315 struct rb_node *tmp;
316
317 while (*p) {
170168d0 318 struct vmap_area *tmp_va;
db64fe02
NP
319
320 parent = *p;
170168d0
NK
321 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
322 if (va->va_start < tmp_va->va_end)
db64fe02 323 p = &(*p)->rb_left;
170168d0 324 else if (va->va_end > tmp_va->va_start)
db64fe02
NP
325 p = &(*p)->rb_right;
326 else
327 BUG();
328 }
329
330 rb_link_node(&va->rb_node, parent, p);
331 rb_insert_color(&va->rb_node, &vmap_area_root);
332
4341fa45 333 /* address-sort this list */
db64fe02
NP
334 tmp = rb_prev(&va->rb_node);
335 if (tmp) {
336 struct vmap_area *prev;
337 prev = rb_entry(tmp, struct vmap_area, rb_node);
338 list_add_rcu(&va->list, &prev->list);
339 } else
340 list_add_rcu(&va->list, &vmap_area_list);
341}
342
343static void purge_vmap_area_lazy(void);
344
345/*
346 * Allocate a region of KVA of the specified size and alignment, within the
347 * vstart and vend.
348 */
349static struct vmap_area *alloc_vmap_area(unsigned long size,
350 unsigned long align,
351 unsigned long vstart, unsigned long vend,
352 int node, gfp_t gfp_mask)
353{
354 struct vmap_area *va;
355 struct rb_node *n;
1da177e4 356 unsigned long addr;
db64fe02 357 int purged = 0;
89699605 358 struct vmap_area *first;
db64fe02 359
7766970c 360 BUG_ON(!size);
db64fe02 361 BUG_ON(size & ~PAGE_MASK);
89699605 362 BUG_ON(!is_power_of_2(align));
db64fe02 363
db64fe02
NP
364 va = kmalloc_node(sizeof(struct vmap_area),
365 gfp_mask & GFP_RECLAIM_MASK, node);
366 if (unlikely(!va))
367 return ERR_PTR(-ENOMEM);
368
7f88f88f
CM
369 /*
370 * Only scan the relevant parts containing pointers to other objects
371 * to avoid false negatives.
372 */
373 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
374
db64fe02
NP
375retry:
376 spin_lock(&vmap_area_lock);
89699605
NP
377 /*
378 * Invalidate cache if we have more permissive parameters.
379 * cached_hole_size notes the largest hole noticed _below_
380 * the vmap_area cached in free_vmap_cache: if size fits
381 * into that hole, we want to scan from vstart to reuse
382 * the hole instead of allocating above free_vmap_cache.
383 * Note that __free_vmap_area may update free_vmap_cache
384 * without updating cached_hole_size or cached_align.
385 */
386 if (!free_vmap_cache ||
387 size < cached_hole_size ||
388 vstart < cached_vstart ||
389 align < cached_align) {
390nocache:
391 cached_hole_size = 0;
392 free_vmap_cache = NULL;
393 }
394 /* record if we encounter less permissive parameters */
395 cached_vstart = vstart;
396 cached_align = align;
397
398 /* find starting point for our search */
399 if (free_vmap_cache) {
400 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
248ac0e1 401 addr = ALIGN(first->va_end, align);
89699605
NP
402 if (addr < vstart)
403 goto nocache;
bcb615a8 404 if (addr + size < addr)
89699605
NP
405 goto overflow;
406
407 } else {
408 addr = ALIGN(vstart, align);
bcb615a8 409 if (addr + size < addr)
89699605
NP
410 goto overflow;
411
412 n = vmap_area_root.rb_node;
413 first = NULL;
414
415 while (n) {
db64fe02
NP
416 struct vmap_area *tmp;
417 tmp = rb_entry(n, struct vmap_area, rb_node);
418 if (tmp->va_end >= addr) {
db64fe02 419 first = tmp;
89699605
NP
420 if (tmp->va_start <= addr)
421 break;
422 n = n->rb_left;
423 } else
db64fe02 424 n = n->rb_right;
89699605 425 }
db64fe02
NP
426
427 if (!first)
428 goto found;
db64fe02 429 }
89699605
NP
430
431 /* from the starting point, walk areas until a suitable hole is found */
248ac0e1 432 while (addr + size > first->va_start && addr + size <= vend) {
89699605
NP
433 if (addr + cached_hole_size < first->va_start)
434 cached_hole_size = first->va_start - addr;
248ac0e1 435 addr = ALIGN(first->va_end, align);
bcb615a8 436 if (addr + size < addr)
89699605
NP
437 goto overflow;
438
92ca922f 439 if (list_is_last(&first->list, &vmap_area_list))
89699605 440 goto found;
92ca922f
H
441
442 first = list_entry(first->list.next,
443 struct vmap_area, list);
db64fe02
NP
444 }
445
89699605
NP
446found:
447 if (addr + size > vend)
448 goto overflow;
db64fe02
NP
449
450 va->va_start = addr;
451 va->va_end = addr + size;
452 va->flags = 0;
453 __insert_vmap_area(va);
89699605 454 free_vmap_cache = &va->rb_node;
db64fe02
NP
455 spin_unlock(&vmap_area_lock);
456
89699605
NP
457 BUG_ON(va->va_start & (align-1));
458 BUG_ON(va->va_start < vstart);
459 BUG_ON(va->va_end > vend);
460
db64fe02 461 return va;
89699605
NP
462
463overflow:
464 spin_unlock(&vmap_area_lock);
465 if (!purged) {
466 purge_vmap_area_lazy();
467 purged = 1;
468 goto retry;
469 }
470 if (printk_ratelimit())
0cbc8533 471 pr_warn("vmap allocation for size %lu failed: "
89699605
NP
472 "use vmalloc=<size> to increase size.\n", size);
473 kfree(va);
474 return ERR_PTR(-EBUSY);
db64fe02
NP
475}
476
db64fe02
NP
477static void __free_vmap_area(struct vmap_area *va)
478{
479 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
89699605
NP
480
481 if (free_vmap_cache) {
482 if (va->va_end < cached_vstart) {
483 free_vmap_cache = NULL;
484 } else {
485 struct vmap_area *cache;
486 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
487 if (va->va_start <= cache->va_start) {
488 free_vmap_cache = rb_prev(&va->rb_node);
489 /*
490 * We don't try to update cached_hole_size or
491 * cached_align, but it won't go very wrong.
492 */
493 }
494 }
495 }
db64fe02
NP
496 rb_erase(&va->rb_node, &vmap_area_root);
497 RB_CLEAR_NODE(&va->rb_node);
498 list_del_rcu(&va->list);
499
ca23e405
TH
500 /*
501 * Track the highest possible candidate for pcpu area
502 * allocation. Areas outside of vmalloc area can be returned
503 * here too, consider only end addresses which fall inside
504 * vmalloc area proper.
505 */
506 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
507 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
508
14769de9 509 kfree_rcu(va, rcu_head);
db64fe02
NP
510}
511
512/*
513 * Free a region of KVA allocated by alloc_vmap_area
514 */
515static void free_vmap_area(struct vmap_area *va)
516{
517 spin_lock(&vmap_area_lock);
518 __free_vmap_area(va);
519 spin_unlock(&vmap_area_lock);
520}
521
522/*
523 * Clear the pagetable entries of a given vmap_area
524 */
525static void unmap_vmap_area(struct vmap_area *va)
526{
527 vunmap_page_range(va->va_start, va->va_end);
528}
529
cd52858c
NP
530static void vmap_debug_free_range(unsigned long start, unsigned long end)
531{
532 /*
533 * Unmap page tables and force a TLB flush immediately if
534 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
535 * bugs similarly to those in linear kernel virtual address
536 * space after a page has been freed.
537 *
538 * All the lazy freeing logic is still retained, in order to
539 * minimise intrusiveness of this debugging feature.
540 *
541 * This is going to be *slow* (linear kernel virtual address
542 * debugging doesn't do a broadcast TLB flush so it is a lot
543 * faster).
544 */
545#ifdef CONFIG_DEBUG_PAGEALLOC
546 vunmap_page_range(start, end);
547 flush_tlb_kernel_range(start, end);
548#endif
549}
550
db64fe02
NP
551/*
552 * lazy_max_pages is the maximum amount of virtual address space we gather up
553 * before attempting to purge with a TLB flush.
554 *
555 * There is a tradeoff here: a larger number will cover more kernel page tables
556 * and take slightly longer to purge, but it will linearly reduce the number of
557 * global TLB flushes that must be performed. It would seem natural to scale
558 * this number up linearly with the number of CPUs (because vmapping activity
559 * could also scale linearly with the number of CPUs), however it is likely
560 * that in practice, workloads might be constrained in other ways that mean
561 * vmap activity will not scale linearly with CPUs. Also, I want to be
562 * conservative and not introduce a big latency on huge systems, so go with
563 * a less aggressive log scale. It will still be an improvement over the old
564 * code, and it will be simple to change the scale factor if we find that it
565 * becomes a problem on bigger systems.
566 */
567static unsigned long lazy_max_pages(void)
568{
569 unsigned int log;
570
571 log = fls(num_online_cpus());
572
573 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
574}
575
576static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
577
02b709df
NP
578/* for per-CPU blocks */
579static void purge_fragmented_blocks_allcpus(void);
580
3ee48b6a
CW
581/*
582 * called before a call to iounmap() if the caller wants vm_area_struct's
583 * immediately freed.
584 */
585void set_iounmap_nonlazy(void)
586{
587 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
588}
589
db64fe02
NP
590/*
591 * Purges all lazily-freed vmap areas.
592 *
593 * If sync is 0 then don't purge if there is already a purge in progress.
594 * If force_flush is 1, then flush kernel TLBs between *start and *end even
595 * if we found no lazy vmap areas to unmap (callers can use this to optimise
596 * their own TLB flushing).
597 * Returns with *start = min(*start, lowest purged address)
598 * *end = max(*end, highest purged address)
599 */
600static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
601 int sync, int force_flush)
602{
46666d8a 603 static DEFINE_SPINLOCK(purge_lock);
db64fe02
NP
604 LIST_HEAD(valist);
605 struct vmap_area *va;
cbb76676 606 struct vmap_area *n_va;
db64fe02
NP
607 int nr = 0;
608
609 /*
610 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
611 * should not expect such behaviour. This just simplifies locking for
612 * the case that isn't actually used at the moment anyway.
613 */
614 if (!sync && !force_flush) {
46666d8a 615 if (!spin_trylock(&purge_lock))
db64fe02
NP
616 return;
617 } else
46666d8a 618 spin_lock(&purge_lock);
db64fe02 619
02b709df
NP
620 if (sync)
621 purge_fragmented_blocks_allcpus();
622
db64fe02
NP
623 rcu_read_lock();
624 list_for_each_entry_rcu(va, &vmap_area_list, list) {
625 if (va->flags & VM_LAZY_FREE) {
626 if (va->va_start < *start)
627 *start = va->va_start;
628 if (va->va_end > *end)
629 *end = va->va_end;
630 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
db64fe02
NP
631 list_add_tail(&va->purge_list, &valist);
632 va->flags |= VM_LAZY_FREEING;
633 va->flags &= ~VM_LAZY_FREE;
634 }
635 }
636 rcu_read_unlock();
637
88f50044 638 if (nr)
db64fe02 639 atomic_sub(nr, &vmap_lazy_nr);
db64fe02
NP
640
641 if (nr || force_flush)
642 flush_tlb_kernel_range(*start, *end);
643
644 if (nr) {
645 spin_lock(&vmap_area_lock);
cbb76676 646 list_for_each_entry_safe(va, n_va, &valist, purge_list)
db64fe02
NP
647 __free_vmap_area(va);
648 spin_unlock(&vmap_area_lock);
649 }
46666d8a 650 spin_unlock(&purge_lock);
db64fe02
NP
651}
652
496850e5
NP
653/*
654 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
655 * is already purging.
656 */
657static void try_purge_vmap_area_lazy(void)
658{
659 unsigned long start = ULONG_MAX, end = 0;
660
661 __purge_vmap_area_lazy(&start, &end, 0, 0);
662}
663
db64fe02
NP
664/*
665 * Kick off a purge of the outstanding lazy areas.
666 */
667static void purge_vmap_area_lazy(void)
668{
669 unsigned long start = ULONG_MAX, end = 0;
670
496850e5 671 __purge_vmap_area_lazy(&start, &end, 1, 0);
db64fe02
NP
672}
673
674/*
64141da5
JF
675 * Free a vmap area, caller ensuring that the area has been unmapped
676 * and flush_cache_vunmap had been called for the correct range
677 * previously.
db64fe02 678 */
64141da5 679static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02
NP
680{
681 va->flags |= VM_LAZY_FREE;
682 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
683 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
496850e5 684 try_purge_vmap_area_lazy();
db64fe02
NP
685}
686
64141da5
JF
687/*
688 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
689 * called for the correct range previously.
690 */
691static void free_unmap_vmap_area_noflush(struct vmap_area *va)
692{
693 unmap_vmap_area(va);
694 free_vmap_area_noflush(va);
695}
696
b29acbdc
NP
697/*
698 * Free and unmap a vmap area
699 */
700static void free_unmap_vmap_area(struct vmap_area *va)
701{
702 flush_cache_vunmap(va->va_start, va->va_end);
703 free_unmap_vmap_area_noflush(va);
704}
705
db64fe02
NP
706static struct vmap_area *find_vmap_area(unsigned long addr)
707{
708 struct vmap_area *va;
709
710 spin_lock(&vmap_area_lock);
711 va = __find_vmap_area(addr);
712 spin_unlock(&vmap_area_lock);
713
714 return va;
715}
716
717static void free_unmap_vmap_area_addr(unsigned long addr)
718{
719 struct vmap_area *va;
720
721 va = find_vmap_area(addr);
722 BUG_ON(!va);
723 free_unmap_vmap_area(va);
724}
725
726
727/*** Per cpu kva allocator ***/
728
729/*
730 * vmap space is limited especially on 32 bit architectures. Ensure there is
731 * room for at least 16 percpu vmap blocks per CPU.
732 */
733/*
734 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
735 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
736 * instead (we just need a rough idea)
737 */
738#if BITS_PER_LONG == 32
739#define VMALLOC_SPACE (128UL*1024*1024)
740#else
741#define VMALLOC_SPACE (128UL*1024*1024*1024)
742#endif
743
744#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
745#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
746#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
747#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
748#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
749#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
750#define VMAP_BBMAP_BITS \
751 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
752 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
753 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
754
755#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
756
9b463334
JF
757static bool vmap_initialized __read_mostly = false;
758
db64fe02
NP
759struct vmap_block_queue {
760 spinlock_t lock;
761 struct list_head free;
db64fe02
NP
762};
763
764struct vmap_block {
765 spinlock_t lock;
766 struct vmap_area *va;
db64fe02 767 unsigned long free, dirty;
db64fe02 768 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
de560423
NP
769 struct list_head free_list;
770 struct rcu_head rcu_head;
02b709df 771 struct list_head purge;
db64fe02
NP
772};
773
774/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
775static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
776
777/*
778 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
779 * in the free path. Could get rid of this if we change the API to return a
780 * "cookie" from alloc, to be passed to free. But no big deal yet.
781 */
782static DEFINE_SPINLOCK(vmap_block_tree_lock);
783static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
784
785/*
786 * We should probably have a fallback mechanism to allocate virtual memory
787 * out of partially filled vmap blocks. However vmap block sizing should be
788 * fairly reasonable according to the vmalloc size, so it shouldn't be a
789 * big problem.
790 */
791
792static unsigned long addr_to_vb_idx(unsigned long addr)
793{
794 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
795 addr /= VMAP_BLOCK_SIZE;
796 return addr;
797}
798
cf725ce2
RP
799static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
800{
801 unsigned long addr;
802
803 addr = va_start + (pages_off << PAGE_SHIFT);
804 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
805 return (void *)addr;
806}
807
808/**
809 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
810 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
811 * @order: how many 2^order pages should be occupied in newly allocated block
812 * @gfp_mask: flags for the page level allocator
813 *
814 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
815 */
816static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
817{
818 struct vmap_block_queue *vbq;
819 struct vmap_block *vb;
820 struct vmap_area *va;
821 unsigned long vb_idx;
822 int node, err;
cf725ce2 823 void *vaddr;
db64fe02
NP
824
825 node = numa_node_id();
826
827 vb = kmalloc_node(sizeof(struct vmap_block),
828 gfp_mask & GFP_RECLAIM_MASK, node);
829 if (unlikely(!vb))
830 return ERR_PTR(-ENOMEM);
831
832 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
833 VMALLOC_START, VMALLOC_END,
834 node, gfp_mask);
ddf9c6d4 835 if (IS_ERR(va)) {
db64fe02 836 kfree(vb);
e7d86340 837 return ERR_CAST(va);
db64fe02
NP
838 }
839
840 err = radix_tree_preload(gfp_mask);
841 if (unlikely(err)) {
842 kfree(vb);
843 free_vmap_area(va);
844 return ERR_PTR(err);
845 }
846
cf725ce2 847 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
848 spin_lock_init(&vb->lock);
849 vb->va = va;
cf725ce2
RP
850 /* At least something should be left free */
851 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
852 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 853 vb->dirty = 0;
db64fe02
NP
854 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
855 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
856
857 vb_idx = addr_to_vb_idx(va->va_start);
858 spin_lock(&vmap_block_tree_lock);
859 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
860 spin_unlock(&vmap_block_tree_lock);
861 BUG_ON(err);
862 radix_tree_preload_end();
863
864 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 865 spin_lock(&vbq->lock);
68ac546f 866 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 867 spin_unlock(&vbq->lock);
3f04ba85 868 put_cpu_var(vmap_block_queue);
db64fe02 869
cf725ce2 870 return vaddr;
db64fe02
NP
871}
872
db64fe02
NP
873static void free_vmap_block(struct vmap_block *vb)
874{
875 struct vmap_block *tmp;
876 unsigned long vb_idx;
877
db64fe02
NP
878 vb_idx = addr_to_vb_idx(vb->va->va_start);
879 spin_lock(&vmap_block_tree_lock);
880 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
881 spin_unlock(&vmap_block_tree_lock);
882 BUG_ON(tmp != vb);
883
64141da5 884 free_vmap_area_noflush(vb->va);
22a3c7d1 885 kfree_rcu(vb, rcu_head);
db64fe02
NP
886}
887
02b709df
NP
888static void purge_fragmented_blocks(int cpu)
889{
890 LIST_HEAD(purge);
891 struct vmap_block *vb;
892 struct vmap_block *n_vb;
893 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
894
895 rcu_read_lock();
896 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
897
898 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
899 continue;
900
901 spin_lock(&vb->lock);
902 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
903 vb->free = 0; /* prevent further allocs after releasing lock */
904 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
02b709df
NP
905 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
906 spin_lock(&vbq->lock);
907 list_del_rcu(&vb->free_list);
908 spin_unlock(&vbq->lock);
909 spin_unlock(&vb->lock);
910 list_add_tail(&vb->purge, &purge);
911 } else
912 spin_unlock(&vb->lock);
913 }
914 rcu_read_unlock();
915
916 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
917 list_del(&vb->purge);
918 free_vmap_block(vb);
919 }
920}
921
02b709df
NP
922static void purge_fragmented_blocks_allcpus(void)
923{
924 int cpu;
925
926 for_each_possible_cpu(cpu)
927 purge_fragmented_blocks(cpu);
928}
929
db64fe02
NP
930static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
931{
932 struct vmap_block_queue *vbq;
933 struct vmap_block *vb;
cf725ce2 934 void *vaddr = NULL;
db64fe02
NP
935 unsigned int order;
936
937 BUG_ON(size & ~PAGE_MASK);
938 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
939 if (WARN_ON(size == 0)) {
940 /*
941 * Allocating 0 bytes isn't what caller wants since
942 * get_order(0) returns funny result. Just warn and terminate
943 * early.
944 */
945 return NULL;
946 }
db64fe02
NP
947 order = get_order(size);
948
db64fe02
NP
949 rcu_read_lock();
950 vbq = &get_cpu_var(vmap_block_queue);
951 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 952 unsigned long pages_off;
db64fe02
NP
953
954 spin_lock(&vb->lock);
cf725ce2
RP
955 if (vb->free < (1UL << order)) {
956 spin_unlock(&vb->lock);
957 continue;
958 }
02b709df 959
cf725ce2
RP
960 pages_off = VMAP_BBMAP_BITS - vb->free;
961 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
962 vb->free -= 1UL << order;
963 if (vb->free == 0) {
964 spin_lock(&vbq->lock);
965 list_del_rcu(&vb->free_list);
966 spin_unlock(&vbq->lock);
967 }
cf725ce2 968
02b709df
NP
969 spin_unlock(&vb->lock);
970 break;
db64fe02 971 }
02b709df 972
3f04ba85 973 put_cpu_var(vmap_block_queue);
db64fe02
NP
974 rcu_read_unlock();
975
cf725ce2
RP
976 /* Allocate new block if nothing was found */
977 if (!vaddr)
978 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 979
cf725ce2 980 return vaddr;
db64fe02
NP
981}
982
983static void vb_free(const void *addr, unsigned long size)
984{
985 unsigned long offset;
986 unsigned long vb_idx;
987 unsigned int order;
988 struct vmap_block *vb;
989
990 BUG_ON(size & ~PAGE_MASK);
991 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
992
993 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
994
db64fe02
NP
995 order = get_order(size);
996
997 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
998
999 vb_idx = addr_to_vb_idx((unsigned long)addr);
1000 rcu_read_lock();
1001 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1002 rcu_read_unlock();
1003 BUG_ON(!vb);
1004
64141da5
JF
1005 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1006
db64fe02 1007 spin_lock(&vb->lock);
de560423 1008 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
d086817d 1009
db64fe02
NP
1010 vb->dirty += 1UL << order;
1011 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1012 BUG_ON(vb->free);
db64fe02
NP
1013 spin_unlock(&vb->lock);
1014 free_vmap_block(vb);
1015 } else
1016 spin_unlock(&vb->lock);
1017}
1018
1019/**
1020 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1021 *
1022 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1023 * to amortize TLB flushing overheads. What this means is that any page you
1024 * have now, may, in a former life, have been mapped into kernel virtual
1025 * address by the vmap layer and so there might be some CPUs with TLB entries
1026 * still referencing that page (additional to the regular 1:1 kernel mapping).
1027 *
1028 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1029 * be sure that none of the pages we have control over will have any aliases
1030 * from the vmap layer.
1031 */
1032void vm_unmap_aliases(void)
1033{
1034 unsigned long start = ULONG_MAX, end = 0;
1035 int cpu;
1036 int flush = 0;
1037
9b463334
JF
1038 if (unlikely(!vmap_initialized))
1039 return;
1040
db64fe02
NP
1041 for_each_possible_cpu(cpu) {
1042 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1043 struct vmap_block *vb;
1044
1045 rcu_read_lock();
1046 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
b136be5e 1047 int i, j;
db64fe02
NP
1048
1049 spin_lock(&vb->lock);
1050 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
b136be5e 1051 if (i < VMAP_BBMAP_BITS) {
db64fe02 1052 unsigned long s, e;
b136be5e
JK
1053
1054 j = find_last_bit(vb->dirty_map,
1055 VMAP_BBMAP_BITS);
1056 j = j + 1; /* need exclusive index */
db64fe02
NP
1057
1058 s = vb->va->va_start + (i << PAGE_SHIFT);
1059 e = vb->va->va_start + (j << PAGE_SHIFT);
db64fe02
NP
1060 flush = 1;
1061
1062 if (s < start)
1063 start = s;
1064 if (e > end)
1065 end = e;
db64fe02
NP
1066 }
1067 spin_unlock(&vb->lock);
1068 }
1069 rcu_read_unlock();
1070 }
1071
1072 __purge_vmap_area_lazy(&start, &end, 1, flush);
1073}
1074EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1075
1076/**
1077 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1078 * @mem: the pointer returned by vm_map_ram
1079 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1080 */
1081void vm_unmap_ram(const void *mem, unsigned int count)
1082{
1083 unsigned long size = count << PAGE_SHIFT;
1084 unsigned long addr = (unsigned long)mem;
1085
1086 BUG_ON(!addr);
1087 BUG_ON(addr < VMALLOC_START);
1088 BUG_ON(addr > VMALLOC_END);
1089 BUG_ON(addr & (PAGE_SIZE-1));
1090
1091 debug_check_no_locks_freed(mem, size);
cd52858c 1092 vmap_debug_free_range(addr, addr+size);
db64fe02
NP
1093
1094 if (likely(count <= VMAP_MAX_ALLOC))
1095 vb_free(mem, size);
1096 else
1097 free_unmap_vmap_area_addr(addr);
1098}
1099EXPORT_SYMBOL(vm_unmap_ram);
1100
1101/**
1102 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1103 * @pages: an array of pointers to the pages to be mapped
1104 * @count: number of pages
1105 * @node: prefer to allocate data structures on this node
1106 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad 1107 *
36437638
GK
1108 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1109 * faster than vmap so it's good. But if you mix long-life and short-life
1110 * objects with vm_map_ram(), it could consume lots of address space through
1111 * fragmentation (especially on a 32bit machine). You could see failures in
1112 * the end. Please use this function for short-lived objects.
1113 *
e99c97ad 1114 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1115 */
1116void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1117{
1118 unsigned long size = count << PAGE_SHIFT;
1119 unsigned long addr;
1120 void *mem;
1121
1122 if (likely(count <= VMAP_MAX_ALLOC)) {
1123 mem = vb_alloc(size, GFP_KERNEL);
1124 if (IS_ERR(mem))
1125 return NULL;
1126 addr = (unsigned long)mem;
1127 } else {
1128 struct vmap_area *va;
1129 va = alloc_vmap_area(size, PAGE_SIZE,
1130 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1131 if (IS_ERR(va))
1132 return NULL;
1133
1134 addr = va->va_start;
1135 mem = (void *)addr;
1136 }
1137 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1138 vm_unmap_ram(mem, count);
1139 return NULL;
1140 }
1141 return mem;
1142}
1143EXPORT_SYMBOL(vm_map_ram);
1144
4341fa45 1145static struct vm_struct *vmlist __initdata;
be9b7335
NP
1146/**
1147 * vm_area_add_early - add vmap area early during boot
1148 * @vm: vm_struct to add
1149 *
1150 * This function is used to add fixed kernel vm area to vmlist before
1151 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1152 * should contain proper values and the other fields should be zero.
1153 *
1154 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1155 */
1156void __init vm_area_add_early(struct vm_struct *vm)
1157{
1158 struct vm_struct *tmp, **p;
1159
1160 BUG_ON(vmap_initialized);
1161 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1162 if (tmp->addr >= vm->addr) {
1163 BUG_ON(tmp->addr < vm->addr + vm->size);
1164 break;
1165 } else
1166 BUG_ON(tmp->addr + tmp->size > vm->addr);
1167 }
1168 vm->next = *p;
1169 *p = vm;
1170}
1171
f0aa6617
TH
1172/**
1173 * vm_area_register_early - register vmap area early during boot
1174 * @vm: vm_struct to register
c0c0a293 1175 * @align: requested alignment
f0aa6617
TH
1176 *
1177 * This function is used to register kernel vm area before
1178 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1179 * proper values on entry and other fields should be zero. On return,
1180 * vm->addr contains the allocated address.
1181 *
1182 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1183 */
c0c0a293 1184void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1185{
1186 static size_t vm_init_off __initdata;
c0c0a293
TH
1187 unsigned long addr;
1188
1189 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1190 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1191
c0c0a293 1192 vm->addr = (void *)addr;
f0aa6617 1193
be9b7335 1194 vm_area_add_early(vm);
f0aa6617
TH
1195}
1196
db64fe02
NP
1197void __init vmalloc_init(void)
1198{
822c18f2
IK
1199 struct vmap_area *va;
1200 struct vm_struct *tmp;
db64fe02
NP
1201 int i;
1202
1203 for_each_possible_cpu(i) {
1204 struct vmap_block_queue *vbq;
32fcfd40 1205 struct vfree_deferred *p;
db64fe02
NP
1206
1207 vbq = &per_cpu(vmap_block_queue, i);
1208 spin_lock_init(&vbq->lock);
1209 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1210 p = &per_cpu(vfree_deferred, i);
1211 init_llist_head(&p->list);
1212 INIT_WORK(&p->wq, free_work);
db64fe02 1213 }
9b463334 1214
822c18f2
IK
1215 /* Import existing vmlist entries. */
1216 for (tmp = vmlist; tmp; tmp = tmp->next) {
43ebdac4 1217 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
dbda591d 1218 va->flags = VM_VM_AREA;
822c18f2
IK
1219 va->va_start = (unsigned long)tmp->addr;
1220 va->va_end = va->va_start + tmp->size;
dbda591d 1221 va->vm = tmp;
822c18f2
IK
1222 __insert_vmap_area(va);
1223 }
ca23e405
TH
1224
1225 vmap_area_pcpu_hole = VMALLOC_END;
1226
9b463334 1227 vmap_initialized = true;
db64fe02
NP
1228}
1229
8fc48985
TH
1230/**
1231 * map_kernel_range_noflush - map kernel VM area with the specified pages
1232 * @addr: start of the VM area to map
1233 * @size: size of the VM area to map
1234 * @prot: page protection flags to use
1235 * @pages: pages to map
1236 *
1237 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1238 * specify should have been allocated using get_vm_area() and its
1239 * friends.
1240 *
1241 * NOTE:
1242 * This function does NOT do any cache flushing. The caller is
1243 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1244 * before calling this function.
1245 *
1246 * RETURNS:
1247 * The number of pages mapped on success, -errno on failure.
1248 */
1249int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1250 pgprot_t prot, struct page **pages)
1251{
1252 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1253}
1254
1255/**
1256 * unmap_kernel_range_noflush - unmap kernel VM area
1257 * @addr: start of the VM area to unmap
1258 * @size: size of the VM area to unmap
1259 *
1260 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1261 * specify should have been allocated using get_vm_area() and its
1262 * friends.
1263 *
1264 * NOTE:
1265 * This function does NOT do any cache flushing. The caller is
1266 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1267 * before calling this function and flush_tlb_kernel_range() after.
1268 */
1269void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1270{
1271 vunmap_page_range(addr, addr + size);
1272}
81e88fdc 1273EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
1274
1275/**
1276 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1277 * @addr: start of the VM area to unmap
1278 * @size: size of the VM area to unmap
1279 *
1280 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1281 * the unmapping and tlb after.
1282 */
db64fe02
NP
1283void unmap_kernel_range(unsigned long addr, unsigned long size)
1284{
1285 unsigned long end = addr + size;
f6fcba70
TH
1286
1287 flush_cache_vunmap(addr, end);
db64fe02
NP
1288 vunmap_page_range(addr, end);
1289 flush_tlb_kernel_range(addr, end);
1290}
93ef6d6c 1291EXPORT_SYMBOL_GPL(unmap_kernel_range);
db64fe02 1292
f6f8ed47 1293int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
db64fe02
NP
1294{
1295 unsigned long addr = (unsigned long)area->addr;
762216ab 1296 unsigned long end = addr + get_vm_area_size(area);
db64fe02
NP
1297 int err;
1298
f6f8ed47 1299 err = vmap_page_range(addr, end, prot, pages);
db64fe02 1300
f6f8ed47 1301 return err > 0 ? 0 : err;
db64fe02
NP
1302}
1303EXPORT_SYMBOL_GPL(map_vm_area);
1304
f5252e00 1305static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 1306 unsigned long flags, const void *caller)
cf88c790 1307{
c69480ad 1308 spin_lock(&vmap_area_lock);
cf88c790
TH
1309 vm->flags = flags;
1310 vm->addr = (void *)va->va_start;
1311 vm->size = va->va_end - va->va_start;
1312 vm->caller = caller;
db1aecaf 1313 va->vm = vm;
cf88c790 1314 va->flags |= VM_VM_AREA;
c69480ad 1315 spin_unlock(&vmap_area_lock);
f5252e00 1316}
cf88c790 1317
20fc02b4 1318static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 1319{
d4033afd 1320 /*
20fc02b4 1321 * Before removing VM_UNINITIALIZED,
d4033afd
JK
1322 * we should make sure that vm has proper values.
1323 * Pair with smp_rmb() in show_numa_info().
1324 */
1325 smp_wmb();
20fc02b4 1326 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
1327}
1328
db64fe02 1329static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 1330 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 1331 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 1332{
0006526d 1333 struct vmap_area *va;
db64fe02 1334 struct vm_struct *area;
1da177e4 1335
52fd24ca 1336 BUG_ON(in_interrupt());
0f2d4a8e 1337 if (flags & VM_IOREMAP)
0f616be1
TK
1338 align = 1ul << clamp_t(int, fls_long(size),
1339 PAGE_SHIFT, IOREMAP_MAX_ORDER);
db64fe02 1340
1da177e4 1341 size = PAGE_ALIGN(size);
31be8309
OH
1342 if (unlikely(!size))
1343 return NULL;
1da177e4 1344
cf88c790 1345 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1346 if (unlikely(!area))
1347 return NULL;
1348
71394fe5
AR
1349 if (!(flags & VM_NO_GUARD))
1350 size += PAGE_SIZE;
1da177e4 1351
db64fe02
NP
1352 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1353 if (IS_ERR(va)) {
1354 kfree(area);
1355 return NULL;
1da177e4 1356 }
1da177e4 1357
d82b1d85 1358 setup_vmalloc_vm(area, va, flags, caller);
f5252e00 1359
1da177e4 1360 return area;
1da177e4
LT
1361}
1362
930fc45a
CL
1363struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1364 unsigned long start, unsigned long end)
1365{
00ef2d2f
DR
1366 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1367 GFP_KERNEL, __builtin_return_address(0));
930fc45a 1368}
5992b6da 1369EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1370
c2968612
BH
1371struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1372 unsigned long start, unsigned long end,
5e6cafc8 1373 const void *caller)
c2968612 1374{
00ef2d2f
DR
1375 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1376 GFP_KERNEL, caller);
c2968612
BH
1377}
1378
1da177e4 1379/**
183ff22b 1380 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
1381 * @size: size of the area
1382 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1383 *
1384 * Search an area of @size in the kernel virtual mapping area,
1385 * and reserved it for out purposes. Returns the area descriptor
1386 * on success or %NULL on failure.
1387 */
1388struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1389{
2dca6999 1390 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
1391 NUMA_NO_NODE, GFP_KERNEL,
1392 __builtin_return_address(0));
23016969
CL
1393}
1394
1395struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 1396 const void *caller)
23016969 1397{
2dca6999 1398 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 1399 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
1400}
1401
e9da6e99
MS
1402/**
1403 * find_vm_area - find a continuous kernel virtual area
1404 * @addr: base address
1405 *
1406 * Search for the kernel VM area starting at @addr, and return it.
1407 * It is up to the caller to do all required locking to keep the returned
1408 * pointer valid.
1409 */
1410struct vm_struct *find_vm_area(const void *addr)
83342314 1411{
db64fe02 1412 struct vmap_area *va;
83342314 1413
db64fe02
NP
1414 va = find_vmap_area((unsigned long)addr);
1415 if (va && va->flags & VM_VM_AREA)
db1aecaf 1416 return va->vm;
1da177e4 1417
1da177e4 1418 return NULL;
1da177e4
LT
1419}
1420
7856dfeb 1421/**
183ff22b 1422 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
1423 * @addr: base address
1424 *
1425 * Search for the kernel VM area starting at @addr, and remove it.
1426 * This function returns the found VM area, but using it is NOT safe
1427 * on SMP machines, except for its size or flags.
1428 */
b3bdda02 1429struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1430{
db64fe02
NP
1431 struct vmap_area *va;
1432
1433 va = find_vmap_area((unsigned long)addr);
1434 if (va && va->flags & VM_VM_AREA) {
db1aecaf 1435 struct vm_struct *vm = va->vm;
f5252e00 1436
c69480ad
JK
1437 spin_lock(&vmap_area_lock);
1438 va->vm = NULL;
1439 va->flags &= ~VM_VM_AREA;
1440 spin_unlock(&vmap_area_lock);
1441
dd32c279 1442 vmap_debug_free_range(va->va_start, va->va_end);
a5af5aa8 1443 kasan_free_shadow(vm);
dd32c279
KH
1444 free_unmap_vmap_area(va);
1445 vm->size -= PAGE_SIZE;
1446
db64fe02
NP
1447 return vm;
1448 }
1449 return NULL;
7856dfeb
AK
1450}
1451
b3bdda02 1452static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1453{
1454 struct vm_struct *area;
1455
1456 if (!addr)
1457 return;
1458
e69e9d4a 1459 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 1460 addr))
1da177e4 1461 return;
1da177e4
LT
1462
1463 area = remove_vm_area(addr);
1464 if (unlikely(!area)) {
4c8573e2 1465 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1466 addr);
1da177e4
LT
1467 return;
1468 }
1469
9a11b49a 1470 debug_check_no_locks_freed(addr, area->size);
3ac7fe5a 1471 debug_check_no_obj_freed(addr, area->size);
9a11b49a 1472
1da177e4
LT
1473 if (deallocate_pages) {
1474 int i;
1475
1476 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1477 struct page *page = area->pages[i];
1478
1479 BUG_ON(!page);
1480 __free_page(page);
1da177e4
LT
1481 }
1482
8757d5fa 1483 if (area->flags & VM_VPAGES)
1da177e4
LT
1484 vfree(area->pages);
1485 else
1486 kfree(area->pages);
1487 }
1488
1489 kfree(area);
1490 return;
1491}
32fcfd40 1492
1da177e4
LT
1493/**
1494 * vfree - release memory allocated by vmalloc()
1da177e4
LT
1495 * @addr: memory base address
1496 *
183ff22b 1497 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
1498 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1499 * NULL, no operation is performed.
1da177e4 1500 *
32fcfd40
AV
1501 * Must not be called in NMI context (strictly speaking, only if we don't
1502 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1503 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51
AM
1504 *
1505 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1da177e4 1506 */
b3bdda02 1507void vfree(const void *addr)
1da177e4 1508{
32fcfd40 1509 BUG_ON(in_nmi());
89219d37
CM
1510
1511 kmemleak_free(addr);
1512
32fcfd40
AV
1513 if (!addr)
1514 return;
1515 if (unlikely(in_interrupt())) {
7c8e0181 1516 struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
59d3132f
ON
1517 if (llist_add((struct llist_node *)addr, &p->list))
1518 schedule_work(&p->wq);
32fcfd40
AV
1519 } else
1520 __vunmap(addr, 1);
1da177e4 1521}
1da177e4
LT
1522EXPORT_SYMBOL(vfree);
1523
1524/**
1525 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
1526 * @addr: memory base address
1527 *
1528 * Free the virtually contiguous memory area starting at @addr,
1529 * which was created from the page array passed to vmap().
1530 *
80e93eff 1531 * Must not be called in interrupt context.
1da177e4 1532 */
b3bdda02 1533void vunmap(const void *addr)
1da177e4
LT
1534{
1535 BUG_ON(in_interrupt());
34754b69 1536 might_sleep();
32fcfd40
AV
1537 if (addr)
1538 __vunmap(addr, 0);
1da177e4 1539}
1da177e4
LT
1540EXPORT_SYMBOL(vunmap);
1541
1542/**
1543 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
1544 * @pages: array of page pointers
1545 * @count: number of pages to map
1546 * @flags: vm_area->flags
1547 * @prot: page protection for the mapping
1548 *
1549 * Maps @count pages from @pages into contiguous kernel virtual
1550 * space.
1551 */
1552void *vmap(struct page **pages, unsigned int count,
1553 unsigned long flags, pgprot_t prot)
1554{
1555 struct vm_struct *area;
1556
34754b69
PZ
1557 might_sleep();
1558
4481374c 1559 if (count > totalram_pages)
1da177e4
LT
1560 return NULL;
1561
23016969
CL
1562 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1563 __builtin_return_address(0));
1da177e4
LT
1564 if (!area)
1565 return NULL;
23016969 1566
f6f8ed47 1567 if (map_vm_area(area, prot, pages)) {
1da177e4
LT
1568 vunmap(area->addr);
1569 return NULL;
1570 }
1571
1572 return area->addr;
1573}
1da177e4
LT
1574EXPORT_SYMBOL(vmap);
1575
2dca6999
DM
1576static void *__vmalloc_node(unsigned long size, unsigned long align,
1577 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1578 int node, const void *caller);
e31d9eb5 1579static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 1580 pgprot_t prot, int node)
1da177e4 1581{
22943ab1 1582 const int order = 0;
1da177e4
LT
1583 struct page **pages;
1584 unsigned int nr_pages, array_size, i;
930f036b
DR
1585 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1586 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1da177e4 1587
762216ab 1588 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
1589 array_size = (nr_pages * sizeof(struct page *));
1590
1591 area->nr_pages = nr_pages;
1592 /* Please note that the recursion is strictly bounded. */
8757d5fa 1593 if (array_size > PAGE_SIZE) {
976d6dfb 1594 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
3722e13c 1595 PAGE_KERNEL, node, area->caller);
8757d5fa 1596 area->flags |= VM_VPAGES;
286e1ea3 1597 } else {
976d6dfb 1598 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 1599 }
1da177e4
LT
1600 area->pages = pages;
1601 if (!area->pages) {
1602 remove_vm_area(area->addr);
1603 kfree(area);
1604 return NULL;
1605 }
1da177e4
LT
1606
1607 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1608 struct page *page;
1609
4b90951c 1610 if (node == NUMA_NO_NODE)
930f036b 1611 page = alloc_page(alloc_mask);
930fc45a 1612 else
930f036b 1613 page = alloc_pages_node(node, alloc_mask, order);
bf53d6f8
CL
1614
1615 if (unlikely(!page)) {
1da177e4
LT
1616 /* Successfully allocated i pages, free them in __vunmap() */
1617 area->nr_pages = i;
1618 goto fail;
1619 }
bf53d6f8 1620 area->pages[i] = page;
660654f9
ED
1621 if (gfp_mask & __GFP_WAIT)
1622 cond_resched();
1da177e4
LT
1623 }
1624
f6f8ed47 1625 if (map_vm_area(area, prot, pages))
1da177e4
LT
1626 goto fail;
1627 return area->addr;
1628
1629fail:
3ee9a4f0
JP
1630 warn_alloc_failed(gfp_mask, order,
1631 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
22943ab1 1632 (area->nr_pages*PAGE_SIZE), area->size);
1da177e4
LT
1633 vfree(area->addr);
1634 return NULL;
1635}
1636
1637/**
d0a21265 1638 * __vmalloc_node_range - allocate virtually contiguous memory
1da177e4 1639 * @size: allocation size
2dca6999 1640 * @align: desired alignment
d0a21265
DR
1641 * @start: vm area range start
1642 * @end: vm area range end
1da177e4
LT
1643 * @gfp_mask: flags for the page level allocator
1644 * @prot: protection mask for the allocated pages
cb9e3c29 1645 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
00ef2d2f 1646 * @node: node to use for allocation or NUMA_NO_NODE
c85d194b 1647 * @caller: caller's return address
1da177e4
LT
1648 *
1649 * Allocate enough pages to cover @size from the page level
1650 * allocator with @gfp_mask flags. Map them into contiguous
1651 * kernel virtual space, using a pagetable protection of @prot.
1652 */
d0a21265
DR
1653void *__vmalloc_node_range(unsigned long size, unsigned long align,
1654 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
1655 pgprot_t prot, unsigned long vm_flags, int node,
1656 const void *caller)
1da177e4
LT
1657{
1658 struct vm_struct *area;
89219d37
CM
1659 void *addr;
1660 unsigned long real_size = size;
1da177e4
LT
1661
1662 size = PAGE_ALIGN(size);
4481374c 1663 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
de7d2b56 1664 goto fail;
1da177e4 1665
cb9e3c29
AR
1666 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1667 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 1668 if (!area)
de7d2b56 1669 goto fail;
1da177e4 1670
3722e13c 1671 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 1672 if (!addr)
b82225f3 1673 return NULL;
89219d37 1674
f5252e00 1675 /*
20fc02b4
ZY
1676 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1677 * flag. It means that vm_struct is not fully initialized.
4341fa45 1678 * Now, it is fully initialized, so remove this flag here.
f5252e00 1679 */
20fc02b4 1680 clear_vm_uninitialized_flag(area);
f5252e00 1681
89219d37 1682 /*
7f88f88f
CM
1683 * A ref_count = 2 is needed because vm_struct allocated in
1684 * __get_vm_area_node() contains a reference to the virtual address of
1685 * the vmalloc'ed block.
89219d37 1686 */
7f88f88f 1687 kmemleak_alloc(addr, real_size, 2, gfp_mask);
89219d37
CM
1688
1689 return addr;
de7d2b56
JP
1690
1691fail:
1692 warn_alloc_failed(gfp_mask, 0,
1693 "vmalloc: allocation failure: %lu bytes\n",
1694 real_size);
1695 return NULL;
1da177e4
LT
1696}
1697
d0a21265
DR
1698/**
1699 * __vmalloc_node - allocate virtually contiguous memory
1700 * @size: allocation size
1701 * @align: desired alignment
1702 * @gfp_mask: flags for the page level allocator
1703 * @prot: protection mask for the allocated pages
00ef2d2f 1704 * @node: node to use for allocation or NUMA_NO_NODE
d0a21265
DR
1705 * @caller: caller's return address
1706 *
1707 * Allocate enough pages to cover @size from the page level
1708 * allocator with @gfp_mask flags. Map them into contiguous
1709 * kernel virtual space, using a pagetable protection of @prot.
1710 */
1711static void *__vmalloc_node(unsigned long size, unsigned long align,
1712 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1713 int node, const void *caller)
d0a21265
DR
1714{
1715 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
cb9e3c29 1716 gfp_mask, prot, 0, node, caller);
d0a21265
DR
1717}
1718
930fc45a
CL
1719void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1720{
00ef2d2f 1721 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 1722 __builtin_return_address(0));
930fc45a 1723}
1da177e4
LT
1724EXPORT_SYMBOL(__vmalloc);
1725
e1ca7788
DY
1726static inline void *__vmalloc_node_flags(unsigned long size,
1727 int node, gfp_t flags)
1728{
1729 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1730 node, __builtin_return_address(0));
1731}
1732
1da177e4
LT
1733/**
1734 * vmalloc - allocate virtually contiguous memory
1da177e4 1735 * @size: allocation size
1da177e4
LT
1736 * Allocate enough pages to cover @size from the page level
1737 * allocator and map them into contiguous kernel virtual space.
1738 *
c1c8897f 1739 * For tight control over page level allocator and protection flags
1da177e4
LT
1740 * use __vmalloc() instead.
1741 */
1742void *vmalloc(unsigned long size)
1743{
00ef2d2f
DR
1744 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1745 GFP_KERNEL | __GFP_HIGHMEM);
1da177e4 1746}
1da177e4
LT
1747EXPORT_SYMBOL(vmalloc);
1748
e1ca7788
DY
1749/**
1750 * vzalloc - allocate virtually contiguous memory with zero fill
1751 * @size: allocation size
1752 * Allocate enough pages to cover @size from the page level
1753 * allocator and map them into contiguous kernel virtual space.
1754 * The memory allocated is set to zero.
1755 *
1756 * For tight control over page level allocator and protection flags
1757 * use __vmalloc() instead.
1758 */
1759void *vzalloc(unsigned long size)
1760{
00ef2d2f 1761 return __vmalloc_node_flags(size, NUMA_NO_NODE,
e1ca7788
DY
1762 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1763}
1764EXPORT_SYMBOL(vzalloc);
1765
83342314 1766/**
ead04089
REB
1767 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1768 * @size: allocation size
83342314 1769 *
ead04089
REB
1770 * The resulting memory area is zeroed so it can be mapped to userspace
1771 * without leaking data.
83342314
NP
1772 */
1773void *vmalloc_user(unsigned long size)
1774{
1775 struct vm_struct *area;
1776 void *ret;
1777
2dca6999
DM
1778 ret = __vmalloc_node(size, SHMLBA,
1779 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
00ef2d2f
DR
1780 PAGE_KERNEL, NUMA_NO_NODE,
1781 __builtin_return_address(0));
2b4ac44e 1782 if (ret) {
db64fe02 1783 area = find_vm_area(ret);
2b4ac44e 1784 area->flags |= VM_USERMAP;
2b4ac44e 1785 }
83342314
NP
1786 return ret;
1787}
1788EXPORT_SYMBOL(vmalloc_user);
1789
930fc45a
CL
1790/**
1791 * vmalloc_node - allocate memory on a specific node
930fc45a 1792 * @size: allocation size
d44e0780 1793 * @node: numa node
930fc45a
CL
1794 *
1795 * Allocate enough pages to cover @size from the page level
1796 * allocator and map them into contiguous kernel virtual space.
1797 *
c1c8897f 1798 * For tight control over page level allocator and protection flags
930fc45a
CL
1799 * use __vmalloc() instead.
1800 */
1801void *vmalloc_node(unsigned long size, int node)
1802{
2dca6999 1803 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
23016969 1804 node, __builtin_return_address(0));
930fc45a
CL
1805}
1806EXPORT_SYMBOL(vmalloc_node);
1807
e1ca7788
DY
1808/**
1809 * vzalloc_node - allocate memory on a specific node with zero fill
1810 * @size: allocation size
1811 * @node: numa node
1812 *
1813 * Allocate enough pages to cover @size from the page level
1814 * allocator and map them into contiguous kernel virtual space.
1815 * The memory allocated is set to zero.
1816 *
1817 * For tight control over page level allocator and protection flags
1818 * use __vmalloc_node() instead.
1819 */
1820void *vzalloc_node(unsigned long size, int node)
1821{
1822 return __vmalloc_node_flags(size, node,
1823 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1824}
1825EXPORT_SYMBOL(vzalloc_node);
1826
4dc3b16b
PP
1827#ifndef PAGE_KERNEL_EXEC
1828# define PAGE_KERNEL_EXEC PAGE_KERNEL
1829#endif
1830
1da177e4
LT
1831/**
1832 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
1833 * @size: allocation size
1834 *
1835 * Kernel-internal function to allocate enough pages to cover @size
1836 * the page level allocator and map them into contiguous and
1837 * executable kernel virtual space.
1838 *
c1c8897f 1839 * For tight control over page level allocator and protection flags
1da177e4
LT
1840 * use __vmalloc() instead.
1841 */
1842
1da177e4
LT
1843void *vmalloc_exec(unsigned long size)
1844{
2dca6999 1845 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
00ef2d2f 1846 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
1847}
1848
0d08e0d3 1849#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
7ac674f5 1850#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3 1851#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
7ac674f5 1852#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
0d08e0d3
AK
1853#else
1854#define GFP_VMALLOC32 GFP_KERNEL
1855#endif
1856
1da177e4
LT
1857/**
1858 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
1859 * @size: allocation size
1860 *
1861 * Allocate enough 32bit PA addressable pages to cover @size from the
1862 * page level allocator and map them into contiguous kernel virtual space.
1863 */
1864void *vmalloc_32(unsigned long size)
1865{
2dca6999 1866 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 1867 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 1868}
1da177e4
LT
1869EXPORT_SYMBOL(vmalloc_32);
1870
83342314 1871/**
ead04089 1872 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 1873 * @size: allocation size
ead04089
REB
1874 *
1875 * The resulting memory area is 32bit addressable and zeroed so it can be
1876 * mapped to userspace without leaking data.
83342314
NP
1877 */
1878void *vmalloc_32_user(unsigned long size)
1879{
1880 struct vm_struct *area;
1881 void *ret;
1882
2dca6999 1883 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
00ef2d2f 1884 NUMA_NO_NODE, __builtin_return_address(0));
2b4ac44e 1885 if (ret) {
db64fe02 1886 area = find_vm_area(ret);
2b4ac44e 1887 area->flags |= VM_USERMAP;
2b4ac44e 1888 }
83342314
NP
1889 return ret;
1890}
1891EXPORT_SYMBOL(vmalloc_32_user);
1892
d0107eb0
KH
1893/*
1894 * small helper routine , copy contents to buf from addr.
1895 * If the page is not present, fill zero.
1896 */
1897
1898static int aligned_vread(char *buf, char *addr, unsigned long count)
1899{
1900 struct page *p;
1901 int copied = 0;
1902
1903 while (count) {
1904 unsigned long offset, length;
1905
1906 offset = (unsigned long)addr & ~PAGE_MASK;
1907 length = PAGE_SIZE - offset;
1908 if (length > count)
1909 length = count;
1910 p = vmalloc_to_page(addr);
1911 /*
1912 * To do safe access to this _mapped_ area, we need
1913 * lock. But adding lock here means that we need to add
1914 * overhead of vmalloc()/vfree() calles for this _debug_
1915 * interface, rarely used. Instead of that, we'll use
1916 * kmap() and get small overhead in this access function.
1917 */
1918 if (p) {
1919 /*
1920 * we can expect USER0 is not used (see vread/vwrite's
1921 * function description)
1922 */
9b04c5fe 1923 void *map = kmap_atomic(p);
d0107eb0 1924 memcpy(buf, map + offset, length);
9b04c5fe 1925 kunmap_atomic(map);
d0107eb0
KH
1926 } else
1927 memset(buf, 0, length);
1928
1929 addr += length;
1930 buf += length;
1931 copied += length;
1932 count -= length;
1933 }
1934 return copied;
1935}
1936
1937static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1938{
1939 struct page *p;
1940 int copied = 0;
1941
1942 while (count) {
1943 unsigned long offset, length;
1944
1945 offset = (unsigned long)addr & ~PAGE_MASK;
1946 length = PAGE_SIZE - offset;
1947 if (length > count)
1948 length = count;
1949 p = vmalloc_to_page(addr);
1950 /*
1951 * To do safe access to this _mapped_ area, we need
1952 * lock. But adding lock here means that we need to add
1953 * overhead of vmalloc()/vfree() calles for this _debug_
1954 * interface, rarely used. Instead of that, we'll use
1955 * kmap() and get small overhead in this access function.
1956 */
1957 if (p) {
1958 /*
1959 * we can expect USER0 is not used (see vread/vwrite's
1960 * function description)
1961 */
9b04c5fe 1962 void *map = kmap_atomic(p);
d0107eb0 1963 memcpy(map + offset, buf, length);
9b04c5fe 1964 kunmap_atomic(map);
d0107eb0
KH
1965 }
1966 addr += length;
1967 buf += length;
1968 copied += length;
1969 count -= length;
1970 }
1971 return copied;
1972}
1973
1974/**
1975 * vread() - read vmalloc area in a safe way.
1976 * @buf: buffer for reading data
1977 * @addr: vm address.
1978 * @count: number of bytes to be read.
1979 *
1980 * Returns # of bytes which addr and buf should be increased.
1981 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1982 * includes any intersect with alive vmalloc area.
1983 *
1984 * This function checks that addr is a valid vmalloc'ed area, and
1985 * copy data from that area to a given buffer. If the given memory range
1986 * of [addr...addr+count) includes some valid address, data is copied to
1987 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1988 * IOREMAP area is treated as memory hole and no copy is done.
1989 *
1990 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 1991 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
1992 *
1993 * Note: In usual ops, vread() is never necessary because the caller
1994 * should know vmalloc() area is valid and can use memcpy().
1995 * This is for routines which have to access vmalloc area without
1996 * any informaion, as /dev/kmem.
1997 *
1998 */
1999
1da177e4
LT
2000long vread(char *buf, char *addr, unsigned long count)
2001{
e81ce85f
JK
2002 struct vmap_area *va;
2003 struct vm_struct *vm;
1da177e4 2004 char *vaddr, *buf_start = buf;
d0107eb0 2005 unsigned long buflen = count;
1da177e4
LT
2006 unsigned long n;
2007
2008 /* Don't allow overflow */
2009 if ((unsigned long) addr + count < count)
2010 count = -(unsigned long) addr;
2011
e81ce85f
JK
2012 spin_lock(&vmap_area_lock);
2013 list_for_each_entry(va, &vmap_area_list, list) {
2014 if (!count)
2015 break;
2016
2017 if (!(va->flags & VM_VM_AREA))
2018 continue;
2019
2020 vm = va->vm;
2021 vaddr = (char *) vm->addr;
762216ab 2022 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2023 continue;
2024 while (addr < vaddr) {
2025 if (count == 0)
2026 goto finished;
2027 *buf = '\0';
2028 buf++;
2029 addr++;
2030 count--;
2031 }
762216ab 2032 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2033 if (n > count)
2034 n = count;
e81ce85f 2035 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2036 aligned_vread(buf, addr, n);
2037 else /* IOREMAP area is treated as memory hole */
2038 memset(buf, 0, n);
2039 buf += n;
2040 addr += n;
2041 count -= n;
1da177e4
LT
2042 }
2043finished:
e81ce85f 2044 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2045
2046 if (buf == buf_start)
2047 return 0;
2048 /* zero-fill memory holes */
2049 if (buf != buf_start + buflen)
2050 memset(buf, 0, buflen - (buf - buf_start));
2051
2052 return buflen;
1da177e4
LT
2053}
2054
d0107eb0
KH
2055/**
2056 * vwrite() - write vmalloc area in a safe way.
2057 * @buf: buffer for source data
2058 * @addr: vm address.
2059 * @count: number of bytes to be read.
2060 *
2061 * Returns # of bytes which addr and buf should be incresed.
2062 * (same number to @count).
2063 * If [addr...addr+count) doesn't includes any intersect with valid
2064 * vmalloc area, returns 0.
2065 *
2066 * This function checks that addr is a valid vmalloc'ed area, and
2067 * copy data from a buffer to the given addr. If specified range of
2068 * [addr...addr+count) includes some valid address, data is copied from
2069 * proper area of @buf. If there are memory holes, no copy to hole.
2070 * IOREMAP area is treated as memory hole and no copy is done.
2071 *
2072 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 2073 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
2074 *
2075 * Note: In usual ops, vwrite() is never necessary because the caller
2076 * should know vmalloc() area is valid and can use memcpy().
2077 * This is for routines which have to access vmalloc area without
2078 * any informaion, as /dev/kmem.
d0107eb0
KH
2079 */
2080
1da177e4
LT
2081long vwrite(char *buf, char *addr, unsigned long count)
2082{
e81ce85f
JK
2083 struct vmap_area *va;
2084 struct vm_struct *vm;
d0107eb0
KH
2085 char *vaddr;
2086 unsigned long n, buflen;
2087 int copied = 0;
1da177e4
LT
2088
2089 /* Don't allow overflow */
2090 if ((unsigned long) addr + count < count)
2091 count = -(unsigned long) addr;
d0107eb0 2092 buflen = count;
1da177e4 2093
e81ce85f
JK
2094 spin_lock(&vmap_area_lock);
2095 list_for_each_entry(va, &vmap_area_list, list) {
2096 if (!count)
2097 break;
2098
2099 if (!(va->flags & VM_VM_AREA))
2100 continue;
2101
2102 vm = va->vm;
2103 vaddr = (char *) vm->addr;
762216ab 2104 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2105 continue;
2106 while (addr < vaddr) {
2107 if (count == 0)
2108 goto finished;
2109 buf++;
2110 addr++;
2111 count--;
2112 }
762216ab 2113 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2114 if (n > count)
2115 n = count;
e81ce85f 2116 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2117 aligned_vwrite(buf, addr, n);
2118 copied++;
2119 }
2120 buf += n;
2121 addr += n;
2122 count -= n;
1da177e4
LT
2123 }
2124finished:
e81ce85f 2125 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2126 if (!copied)
2127 return 0;
2128 return buflen;
1da177e4 2129}
83342314
NP
2130
2131/**
e69e9d4a
HD
2132 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2133 * @vma: vma to cover
2134 * @uaddr: target user address to start at
2135 * @kaddr: virtual address of vmalloc kernel memory
2136 * @size: size of map area
7682486b
RD
2137 *
2138 * Returns: 0 for success, -Exxx on failure
83342314 2139 *
e69e9d4a
HD
2140 * This function checks that @kaddr is a valid vmalloc'ed area,
2141 * and that it is big enough to cover the range starting at
2142 * @uaddr in @vma. Will return failure if that criteria isn't
2143 * met.
83342314 2144 *
72fd4a35 2145 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 2146 */
e69e9d4a
HD
2147int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2148 void *kaddr, unsigned long size)
83342314
NP
2149{
2150 struct vm_struct *area;
83342314 2151
e69e9d4a
HD
2152 size = PAGE_ALIGN(size);
2153
2154 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
2155 return -EINVAL;
2156
e69e9d4a 2157 area = find_vm_area(kaddr);
83342314 2158 if (!area)
db64fe02 2159 return -EINVAL;
83342314
NP
2160
2161 if (!(area->flags & VM_USERMAP))
db64fe02 2162 return -EINVAL;
83342314 2163
e69e9d4a 2164 if (kaddr + size > area->addr + area->size)
db64fe02 2165 return -EINVAL;
83342314 2166
83342314 2167 do {
e69e9d4a 2168 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
2169 int ret;
2170
83342314
NP
2171 ret = vm_insert_page(vma, uaddr, page);
2172 if (ret)
2173 return ret;
2174
2175 uaddr += PAGE_SIZE;
e69e9d4a
HD
2176 kaddr += PAGE_SIZE;
2177 size -= PAGE_SIZE;
2178 } while (size > 0);
83342314 2179
314e51b9 2180 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 2181
db64fe02 2182 return 0;
83342314 2183}
e69e9d4a
HD
2184EXPORT_SYMBOL(remap_vmalloc_range_partial);
2185
2186/**
2187 * remap_vmalloc_range - map vmalloc pages to userspace
2188 * @vma: vma to cover (map full range of vma)
2189 * @addr: vmalloc memory
2190 * @pgoff: number of pages into addr before first page to map
2191 *
2192 * Returns: 0 for success, -Exxx on failure
2193 *
2194 * This function checks that addr is a valid vmalloc'ed area, and
2195 * that it is big enough to cover the vma. Will return failure if
2196 * that criteria isn't met.
2197 *
2198 * Similar to remap_pfn_range() (see mm/memory.c)
2199 */
2200int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2201 unsigned long pgoff)
2202{
2203 return remap_vmalloc_range_partial(vma, vma->vm_start,
2204 addr + (pgoff << PAGE_SHIFT),
2205 vma->vm_end - vma->vm_start);
2206}
83342314
NP
2207EXPORT_SYMBOL(remap_vmalloc_range);
2208
1eeb66a1
CH
2209/*
2210 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2211 * have one.
2212 */
3b32123d 2213void __weak vmalloc_sync_all(void)
1eeb66a1
CH
2214{
2215}
5f4352fb
JF
2216
2217
2f569afd 2218static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb 2219{
cd12909c
DV
2220 pte_t ***p = data;
2221
2222 if (p) {
2223 *(*p) = pte;
2224 (*p)++;
2225 }
5f4352fb
JF
2226 return 0;
2227}
2228
2229/**
2230 * alloc_vm_area - allocate a range of kernel address space
2231 * @size: size of the area
cd12909c 2232 * @ptes: returns the PTEs for the address space
7682486b
RD
2233 *
2234 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
2235 *
2236 * This function reserves a range of kernel address space, and
2237 * allocates pagetables to map that range. No actual mappings
cd12909c
DV
2238 * are created.
2239 *
2240 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2241 * allocated for the VM area are returned.
5f4352fb 2242 */
cd12909c 2243struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
2244{
2245 struct vm_struct *area;
2246
23016969
CL
2247 area = get_vm_area_caller(size, VM_IOREMAP,
2248 __builtin_return_address(0));
5f4352fb
JF
2249 if (area == NULL)
2250 return NULL;
2251
2252 /*
2253 * This ensures that page tables are constructed for this region
2254 * of kernel virtual address space and mapped into init_mm.
2255 */
2256 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 2257 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
2258 free_vm_area(area);
2259 return NULL;
2260 }
2261
5f4352fb
JF
2262 return area;
2263}
2264EXPORT_SYMBOL_GPL(alloc_vm_area);
2265
2266void free_vm_area(struct vm_struct *area)
2267{
2268 struct vm_struct *ret;
2269 ret = remove_vm_area(area->addr);
2270 BUG_ON(ret != area);
2271 kfree(area);
2272}
2273EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 2274
4f8b02b4 2275#ifdef CONFIG_SMP
ca23e405
TH
2276static struct vmap_area *node_to_va(struct rb_node *n)
2277{
2278 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2279}
2280
2281/**
2282 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2283 * @end: target address
2284 * @pnext: out arg for the next vmap_area
2285 * @pprev: out arg for the previous vmap_area
2286 *
2287 * Returns: %true if either or both of next and prev are found,
2288 * %false if no vmap_area exists
2289 *
2290 * Find vmap_areas end addresses of which enclose @end. ie. if not
2291 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2292 */
2293static bool pvm_find_next_prev(unsigned long end,
2294 struct vmap_area **pnext,
2295 struct vmap_area **pprev)
2296{
2297 struct rb_node *n = vmap_area_root.rb_node;
2298 struct vmap_area *va = NULL;
2299
2300 while (n) {
2301 va = rb_entry(n, struct vmap_area, rb_node);
2302 if (end < va->va_end)
2303 n = n->rb_left;
2304 else if (end > va->va_end)
2305 n = n->rb_right;
2306 else
2307 break;
2308 }
2309
2310 if (!va)
2311 return false;
2312
2313 if (va->va_end > end) {
2314 *pnext = va;
2315 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2316 } else {
2317 *pprev = va;
2318 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2319 }
2320 return true;
2321}
2322
2323/**
2324 * pvm_determine_end - find the highest aligned address between two vmap_areas
2325 * @pnext: in/out arg for the next vmap_area
2326 * @pprev: in/out arg for the previous vmap_area
2327 * @align: alignment
2328 *
2329 * Returns: determined end address
2330 *
2331 * Find the highest aligned address between *@pnext and *@pprev below
2332 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2333 * down address is between the end addresses of the two vmap_areas.
2334 *
2335 * Please note that the address returned by this function may fall
2336 * inside *@pnext vmap_area. The caller is responsible for checking
2337 * that.
2338 */
2339static unsigned long pvm_determine_end(struct vmap_area **pnext,
2340 struct vmap_area **pprev,
2341 unsigned long align)
2342{
2343 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2344 unsigned long addr;
2345
2346 if (*pnext)
2347 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2348 else
2349 addr = vmalloc_end;
2350
2351 while (*pprev && (*pprev)->va_end > addr) {
2352 *pnext = *pprev;
2353 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2354 }
2355
2356 return addr;
2357}
2358
2359/**
2360 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2361 * @offsets: array containing offset of each area
2362 * @sizes: array containing size of each area
2363 * @nr_vms: the number of areas to allocate
2364 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
2365 *
2366 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2367 * vm_structs on success, %NULL on failure
2368 *
2369 * Percpu allocator wants to use congruent vm areas so that it can
2370 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
2371 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2372 * be scattered pretty far, distance between two areas easily going up
2373 * to gigabytes. To avoid interacting with regular vmallocs, these
2374 * areas are allocated from top.
ca23e405
TH
2375 *
2376 * Despite its complicated look, this allocator is rather simple. It
2377 * does everything top-down and scans areas from the end looking for
2378 * matching slot. While scanning, if any of the areas overlaps with
2379 * existing vmap_area, the base address is pulled down to fit the
2380 * area. Scanning is repeated till all the areas fit and then all
2381 * necessary data structres are inserted and the result is returned.
2382 */
2383struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2384 const size_t *sizes, int nr_vms,
ec3f64fc 2385 size_t align)
ca23e405
TH
2386{
2387 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2388 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2389 struct vmap_area **vas, *prev, *next;
2390 struct vm_struct **vms;
2391 int area, area2, last_area, term_area;
2392 unsigned long base, start, end, last_end;
2393 bool purged = false;
2394
ca23e405
TH
2395 /* verify parameters and allocate data structures */
2396 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2397 for (last_area = 0, area = 0; area < nr_vms; area++) {
2398 start = offsets[area];
2399 end = start + sizes[area];
2400
2401 /* is everything aligned properly? */
2402 BUG_ON(!IS_ALIGNED(offsets[area], align));
2403 BUG_ON(!IS_ALIGNED(sizes[area], align));
2404
2405 /* detect the area with the highest address */
2406 if (start > offsets[last_area])
2407 last_area = area;
2408
2409 for (area2 = 0; area2 < nr_vms; area2++) {
2410 unsigned long start2 = offsets[area2];
2411 unsigned long end2 = start2 + sizes[area2];
2412
2413 if (area2 == area)
2414 continue;
2415
2416 BUG_ON(start2 >= start && start2 < end);
2417 BUG_ON(end2 <= end && end2 > start);
2418 }
2419 }
2420 last_end = offsets[last_area] + sizes[last_area];
2421
2422 if (vmalloc_end - vmalloc_start < last_end) {
2423 WARN_ON(true);
2424 return NULL;
2425 }
2426
4d67d860
TM
2427 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2428 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 2429 if (!vas || !vms)
f1db7afd 2430 goto err_free2;
ca23e405
TH
2431
2432 for (area = 0; area < nr_vms; area++) {
ec3f64fc
DR
2433 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2434 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
2435 if (!vas[area] || !vms[area])
2436 goto err_free;
2437 }
2438retry:
2439 spin_lock(&vmap_area_lock);
2440
2441 /* start scanning - we scan from the top, begin with the last area */
2442 area = term_area = last_area;
2443 start = offsets[area];
2444 end = start + sizes[area];
2445
2446 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2447 base = vmalloc_end - last_end;
2448 goto found;
2449 }
2450 base = pvm_determine_end(&next, &prev, align) - end;
2451
2452 while (true) {
2453 BUG_ON(next && next->va_end <= base + end);
2454 BUG_ON(prev && prev->va_end > base + end);
2455
2456 /*
2457 * base might have underflowed, add last_end before
2458 * comparing.
2459 */
2460 if (base + last_end < vmalloc_start + last_end) {
2461 spin_unlock(&vmap_area_lock);
2462 if (!purged) {
2463 purge_vmap_area_lazy();
2464 purged = true;
2465 goto retry;
2466 }
2467 goto err_free;
2468 }
2469
2470 /*
2471 * If next overlaps, move base downwards so that it's
2472 * right below next and then recheck.
2473 */
2474 if (next && next->va_start < base + end) {
2475 base = pvm_determine_end(&next, &prev, align) - end;
2476 term_area = area;
2477 continue;
2478 }
2479
2480 /*
2481 * If prev overlaps, shift down next and prev and move
2482 * base so that it's right below new next and then
2483 * recheck.
2484 */
2485 if (prev && prev->va_end > base + start) {
2486 next = prev;
2487 prev = node_to_va(rb_prev(&next->rb_node));
2488 base = pvm_determine_end(&next, &prev, align) - end;
2489 term_area = area;
2490 continue;
2491 }
2492
2493 /*
2494 * This area fits, move on to the previous one. If
2495 * the previous one is the terminal one, we're done.
2496 */
2497 area = (area + nr_vms - 1) % nr_vms;
2498 if (area == term_area)
2499 break;
2500 start = offsets[area];
2501 end = start + sizes[area];
2502 pvm_find_next_prev(base + end, &next, &prev);
2503 }
2504found:
2505 /* we've found a fitting base, insert all va's */
2506 for (area = 0; area < nr_vms; area++) {
2507 struct vmap_area *va = vas[area];
2508
2509 va->va_start = base + offsets[area];
2510 va->va_end = va->va_start + sizes[area];
2511 __insert_vmap_area(va);
2512 }
2513
2514 vmap_area_pcpu_hole = base + offsets[last_area];
2515
2516 spin_unlock(&vmap_area_lock);
2517
2518 /* insert all vm's */
2519 for (area = 0; area < nr_vms; area++)
3645cb4a
ZY
2520 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2521 pcpu_get_vm_areas);
ca23e405
TH
2522
2523 kfree(vas);
2524 return vms;
2525
2526err_free:
2527 for (area = 0; area < nr_vms; area++) {
f1db7afd
KC
2528 kfree(vas[area]);
2529 kfree(vms[area]);
ca23e405 2530 }
f1db7afd 2531err_free2:
ca23e405
TH
2532 kfree(vas);
2533 kfree(vms);
2534 return NULL;
2535}
2536
2537/**
2538 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2539 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2540 * @nr_vms: the number of allocated areas
2541 *
2542 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2543 */
2544void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2545{
2546 int i;
2547
2548 for (i = 0; i < nr_vms; i++)
2549 free_vm_area(vms[i]);
2550 kfree(vms);
2551}
4f8b02b4 2552#endif /* CONFIG_SMP */
a10aa579
CL
2553
2554#ifdef CONFIG_PROC_FS
2555static void *s_start(struct seq_file *m, loff_t *pos)
d4033afd 2556 __acquires(&vmap_area_lock)
a10aa579
CL
2557{
2558 loff_t n = *pos;
d4033afd 2559 struct vmap_area *va;
a10aa579 2560
d4033afd
JK
2561 spin_lock(&vmap_area_lock);
2562 va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2563 while (n > 0 && &va->list != &vmap_area_list) {
a10aa579 2564 n--;
d4033afd 2565 va = list_entry(va->list.next, typeof(*va), list);
a10aa579 2566 }
d4033afd
JK
2567 if (!n && &va->list != &vmap_area_list)
2568 return va;
a10aa579
CL
2569
2570 return NULL;
2571
2572}
2573
2574static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2575{
d4033afd 2576 struct vmap_area *va = p, *next;
a10aa579
CL
2577
2578 ++*pos;
d4033afd
JK
2579 next = list_entry(va->list.next, typeof(*va), list);
2580 if (&next->list != &vmap_area_list)
2581 return next;
2582
2583 return NULL;
a10aa579
CL
2584}
2585
2586static void s_stop(struct seq_file *m, void *p)
d4033afd 2587 __releases(&vmap_area_lock)
a10aa579 2588{
d4033afd 2589 spin_unlock(&vmap_area_lock);
a10aa579
CL
2590}
2591
a47a126a
ED
2592static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2593{
e5adfffc 2594 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
2595 unsigned int nr, *counters = m->private;
2596
2597 if (!counters)
2598 return;
2599
af12346c
WL
2600 if (v->flags & VM_UNINITIALIZED)
2601 return;
7e5b528b
DV
2602 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2603 smp_rmb();
af12346c 2604
a47a126a
ED
2605 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2606
2607 for (nr = 0; nr < v->nr_pages; nr++)
2608 counters[page_to_nid(v->pages[nr])]++;
2609
2610 for_each_node_state(nr, N_HIGH_MEMORY)
2611 if (counters[nr])
2612 seq_printf(m, " N%u=%u", nr, counters[nr]);
2613 }
2614}
2615
a10aa579
CL
2616static int s_show(struct seq_file *m, void *p)
2617{
d4033afd
JK
2618 struct vmap_area *va = p;
2619 struct vm_struct *v;
2620
c2ce8c14
WL
2621 /*
2622 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2623 * behalf of vmap area is being tear down or vm_map_ram allocation.
2624 */
2625 if (!(va->flags & VM_VM_AREA))
d4033afd 2626 return 0;
d4033afd
JK
2627
2628 v = va->vm;
a10aa579 2629
45ec1690 2630 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
2631 v->addr, v->addr + v->size, v->size);
2632
62c70bce
JP
2633 if (v->caller)
2634 seq_printf(m, " %pS", v->caller);
23016969 2635
a10aa579
CL
2636 if (v->nr_pages)
2637 seq_printf(m, " pages=%d", v->nr_pages);
2638
2639 if (v->phys_addr)
ffa71f33 2640 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
a10aa579
CL
2641
2642 if (v->flags & VM_IOREMAP)
f4527c90 2643 seq_puts(m, " ioremap");
a10aa579
CL
2644
2645 if (v->flags & VM_ALLOC)
f4527c90 2646 seq_puts(m, " vmalloc");
a10aa579
CL
2647
2648 if (v->flags & VM_MAP)
f4527c90 2649 seq_puts(m, " vmap");
a10aa579
CL
2650
2651 if (v->flags & VM_USERMAP)
f4527c90 2652 seq_puts(m, " user");
a10aa579
CL
2653
2654 if (v->flags & VM_VPAGES)
f4527c90 2655 seq_puts(m, " vpages");
a10aa579 2656
a47a126a 2657 show_numa_info(m, v);
a10aa579
CL
2658 seq_putc(m, '\n');
2659 return 0;
2660}
2661
5f6a6a9c 2662static const struct seq_operations vmalloc_op = {
a10aa579
CL
2663 .start = s_start,
2664 .next = s_next,
2665 .stop = s_stop,
2666 .show = s_show,
2667};
5f6a6a9c
AD
2668
2669static int vmalloc_open(struct inode *inode, struct file *file)
2670{
703394c1
RJ
2671 if (IS_ENABLED(CONFIG_NUMA))
2672 return seq_open_private(file, &vmalloc_op,
2673 nr_node_ids * sizeof(unsigned int));
2674 else
2675 return seq_open(file, &vmalloc_op);
5f6a6a9c
AD
2676}
2677
2678static const struct file_operations proc_vmalloc_operations = {
2679 .open = vmalloc_open,
2680 .read = seq_read,
2681 .llseek = seq_lseek,
2682 .release = seq_release_private,
2683};
2684
2685static int __init proc_vmalloc_init(void)
2686{
2687 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2688 return 0;
2689}
2690module_init(proc_vmalloc_init);
db3808c1
JK
2691
2692void get_vmalloc_info(struct vmalloc_info *vmi)
2693{
f98782dd 2694 struct vmap_area *va;
db3808c1
JK
2695 unsigned long free_area_size;
2696 unsigned long prev_end;
2697
2698 vmi->used = 0;
f98782dd 2699 vmi->largest_chunk = 0;
db3808c1 2700
f98782dd 2701 prev_end = VMALLOC_START;
db3808c1 2702
474750ab 2703 rcu_read_lock();
db3808c1 2704
f98782dd
JK
2705 if (list_empty(&vmap_area_list)) {
2706 vmi->largest_chunk = VMALLOC_TOTAL;
2707 goto out;
2708 }
db3808c1 2709
474750ab 2710 list_for_each_entry_rcu(va, &vmap_area_list, list) {
f98782dd 2711 unsigned long addr = va->va_start;
db3808c1 2712
f98782dd
JK
2713 /*
2714 * Some archs keep another range for modules in vmalloc space
2715 */
2716 if (addr < VMALLOC_START)
2717 continue;
2718 if (addr >= VMALLOC_END)
2719 break;
db3808c1 2720
f98782dd
JK
2721 if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2722 continue;
db3808c1 2723
f98782dd 2724 vmi->used += (va->va_end - va->va_start);
db3808c1 2725
f98782dd
JK
2726 free_area_size = addr - prev_end;
2727 if (vmi->largest_chunk < free_area_size)
2728 vmi->largest_chunk = free_area_size;
db3808c1 2729
f98782dd 2730 prev_end = va->va_end;
db3808c1 2731 }
f98782dd
JK
2732
2733 if (VMALLOC_END - prev_end > vmi->largest_chunk)
2734 vmi->largest_chunk = VMALLOC_END - prev_end;
2735
2736out:
474750ab 2737 rcu_read_unlock();
db3808c1 2738}
a10aa579
CL
2739#endif
2740