]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/vmalloc.c
mm/vmalloc: rework vmap_area_lock
[mirror_ubuntu-jammy-kernel.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/vmalloc.c
4 *
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 9 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
10 */
11
db64fe02 12#include <linux/vmalloc.h>
1da177e4
LT
13#include <linux/mm.h>
14#include <linux/module.h>
15#include <linux/highmem.h>
c3edc401 16#include <linux/sched/signal.h>
1da177e4
LT
17#include <linux/slab.h>
18#include <linux/spinlock.h>
19#include <linux/interrupt.h>
5f6a6a9c 20#include <linux/proc_fs.h>
a10aa579 21#include <linux/seq_file.h>
868b104d 22#include <linux/set_memory.h>
3ac7fe5a 23#include <linux/debugobjects.h>
23016969 24#include <linux/kallsyms.h>
db64fe02 25#include <linux/list.h>
4da56b99 26#include <linux/notifier.h>
db64fe02
NP
27#include <linux/rbtree.h>
28#include <linux/radix-tree.h>
29#include <linux/rcupdate.h>
f0aa6617 30#include <linux/pfn.h>
89219d37 31#include <linux/kmemleak.h>
60063497 32#include <linux/atomic.h>
3b32123d 33#include <linux/compiler.h>
32fcfd40 34#include <linux/llist.h>
0f616be1 35#include <linux/bitops.h>
68ad4a33 36#include <linux/rbtree_augmented.h>
3b32123d 37
7c0f6ba6 38#include <linux/uaccess.h>
1da177e4 39#include <asm/tlbflush.h>
2dca6999 40#include <asm/shmparam.h>
1da177e4 41
dd56b046
MG
42#include "internal.h"
43
32fcfd40
AV
44struct vfree_deferred {
45 struct llist_head list;
46 struct work_struct wq;
47};
48static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
49
50static void __vunmap(const void *, int);
51
52static void free_work(struct work_struct *w)
53{
54 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
55 struct llist_node *t, *llnode;
56
57 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
58 __vunmap((void *)llnode, 1);
32fcfd40
AV
59}
60
db64fe02 61/*** Page table manipulation functions ***/
b221385b 62
1da177e4
LT
63static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
64{
65 pte_t *pte;
66
67 pte = pte_offset_kernel(pmd, addr);
68 do {
69 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
70 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
71 } while (pte++, addr += PAGE_SIZE, addr != end);
72}
73
db64fe02 74static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
75{
76 pmd_t *pmd;
77 unsigned long next;
78
79 pmd = pmd_offset(pud, addr);
80 do {
81 next = pmd_addr_end(addr, end);
b9820d8f
TK
82 if (pmd_clear_huge(pmd))
83 continue;
1da177e4
LT
84 if (pmd_none_or_clear_bad(pmd))
85 continue;
86 vunmap_pte_range(pmd, addr, next);
87 } while (pmd++, addr = next, addr != end);
88}
89
c2febafc 90static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
1da177e4
LT
91{
92 pud_t *pud;
93 unsigned long next;
94
c2febafc 95 pud = pud_offset(p4d, addr);
1da177e4
LT
96 do {
97 next = pud_addr_end(addr, end);
b9820d8f
TK
98 if (pud_clear_huge(pud))
99 continue;
1da177e4
LT
100 if (pud_none_or_clear_bad(pud))
101 continue;
102 vunmap_pmd_range(pud, addr, next);
103 } while (pud++, addr = next, addr != end);
104}
105
c2febafc
KS
106static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
107{
108 p4d_t *p4d;
109 unsigned long next;
110
111 p4d = p4d_offset(pgd, addr);
112 do {
113 next = p4d_addr_end(addr, end);
114 if (p4d_clear_huge(p4d))
115 continue;
116 if (p4d_none_or_clear_bad(p4d))
117 continue;
118 vunmap_pud_range(p4d, addr, next);
119 } while (p4d++, addr = next, addr != end);
120}
121
db64fe02 122static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
123{
124 pgd_t *pgd;
125 unsigned long next;
1da177e4
LT
126
127 BUG_ON(addr >= end);
128 pgd = pgd_offset_k(addr);
1da177e4
LT
129 do {
130 next = pgd_addr_end(addr, end);
131 if (pgd_none_or_clear_bad(pgd))
132 continue;
c2febafc 133 vunmap_p4d_range(pgd, addr, next);
1da177e4 134 } while (pgd++, addr = next, addr != end);
1da177e4
LT
135}
136
137static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 138 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
139{
140 pte_t *pte;
141
db64fe02
NP
142 /*
143 * nr is a running index into the array which helps higher level
144 * callers keep track of where we're up to.
145 */
146
872fec16 147 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
148 if (!pte)
149 return -ENOMEM;
150 do {
db64fe02
NP
151 struct page *page = pages[*nr];
152
153 if (WARN_ON(!pte_none(*pte)))
154 return -EBUSY;
155 if (WARN_ON(!page))
1da177e4
LT
156 return -ENOMEM;
157 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 158 (*nr)++;
1da177e4
LT
159 } while (pte++, addr += PAGE_SIZE, addr != end);
160 return 0;
161}
162
db64fe02
NP
163static int vmap_pmd_range(pud_t *pud, unsigned long addr,
164 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
165{
166 pmd_t *pmd;
167 unsigned long next;
168
169 pmd = pmd_alloc(&init_mm, pud, addr);
170 if (!pmd)
171 return -ENOMEM;
172 do {
173 next = pmd_addr_end(addr, end);
db64fe02 174 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
175 return -ENOMEM;
176 } while (pmd++, addr = next, addr != end);
177 return 0;
178}
179
c2febafc 180static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
db64fe02 181 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
182{
183 pud_t *pud;
184 unsigned long next;
185
c2febafc 186 pud = pud_alloc(&init_mm, p4d, addr);
1da177e4
LT
187 if (!pud)
188 return -ENOMEM;
189 do {
190 next = pud_addr_end(addr, end);
db64fe02 191 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
192 return -ENOMEM;
193 } while (pud++, addr = next, addr != end);
194 return 0;
195}
196
c2febafc
KS
197static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
198 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
199{
200 p4d_t *p4d;
201 unsigned long next;
202
203 p4d = p4d_alloc(&init_mm, pgd, addr);
204 if (!p4d)
205 return -ENOMEM;
206 do {
207 next = p4d_addr_end(addr, end);
208 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
209 return -ENOMEM;
210 } while (p4d++, addr = next, addr != end);
211 return 0;
212}
213
db64fe02
NP
214/*
215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
216 * will have pfns corresponding to the "pages" array.
217 *
218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
219 */
8fc48985
TH
220static int vmap_page_range_noflush(unsigned long start, unsigned long end,
221 pgprot_t prot, struct page **pages)
1da177e4
LT
222{
223 pgd_t *pgd;
224 unsigned long next;
2e4e27c7 225 unsigned long addr = start;
db64fe02
NP
226 int err = 0;
227 int nr = 0;
1da177e4
LT
228
229 BUG_ON(addr >= end);
230 pgd = pgd_offset_k(addr);
1da177e4
LT
231 do {
232 next = pgd_addr_end(addr, end);
c2febafc 233 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
1da177e4 234 if (err)
bf88c8c8 235 return err;
1da177e4 236 } while (pgd++, addr = next, addr != end);
db64fe02 237
db64fe02 238 return nr;
1da177e4
LT
239}
240
8fc48985
TH
241static int vmap_page_range(unsigned long start, unsigned long end,
242 pgprot_t prot, struct page **pages)
243{
244 int ret;
245
246 ret = vmap_page_range_noflush(start, end, prot, pages);
247 flush_cache_vmap(start, end);
248 return ret;
249}
250
81ac3ad9 251int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
252{
253 /*
ab4f2ee1 254 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
255 * and fall back on vmalloc() if that fails. Others
256 * just put it in the vmalloc space.
257 */
258#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
259 unsigned long addr = (unsigned long)x;
260 if (addr >= MODULES_VADDR && addr < MODULES_END)
261 return 1;
262#endif
263 return is_vmalloc_addr(x);
264}
265
48667e7a 266/*
add688fb 267 * Walk a vmap address to the struct page it maps.
48667e7a 268 */
add688fb 269struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
270{
271 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 272 struct page *page = NULL;
48667e7a 273 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
274 p4d_t *p4d;
275 pud_t *pud;
276 pmd_t *pmd;
277 pte_t *ptep, pte;
48667e7a 278
7aa413de
IM
279 /*
280 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
281 * architectures that do not vmalloc module space
282 */
73bdf0a6 283 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 284
c2febafc
KS
285 if (pgd_none(*pgd))
286 return NULL;
287 p4d = p4d_offset(pgd, addr);
288 if (p4d_none(*p4d))
289 return NULL;
290 pud = pud_offset(p4d, addr);
029c54b0
AB
291
292 /*
293 * Don't dereference bad PUD or PMD (below) entries. This will also
294 * identify huge mappings, which we may encounter on architectures
295 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
296 * identified as vmalloc addresses by is_vmalloc_addr(), but are
297 * not [unambiguously] associated with a struct page, so there is
298 * no correct value to return for them.
299 */
300 WARN_ON_ONCE(pud_bad(*pud));
301 if (pud_none(*pud) || pud_bad(*pud))
c2febafc
KS
302 return NULL;
303 pmd = pmd_offset(pud, addr);
029c54b0
AB
304 WARN_ON_ONCE(pmd_bad(*pmd));
305 if (pmd_none(*pmd) || pmd_bad(*pmd))
c2febafc
KS
306 return NULL;
307
308 ptep = pte_offset_map(pmd, addr);
309 pte = *ptep;
310 if (pte_present(pte))
311 page = pte_page(pte);
312 pte_unmap(ptep);
add688fb 313 return page;
48667e7a 314}
add688fb 315EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
316
317/*
add688fb 318 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 319 */
add688fb 320unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 321{
add688fb 322 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 323}
add688fb 324EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 325
db64fe02
NP
326
327/*** Global kva allocator ***/
328
bb850f4d 329#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 330#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 331
db64fe02 332
db64fe02 333static DEFINE_SPINLOCK(vmap_area_lock);
e36176be 334static DEFINE_SPINLOCK(free_vmap_area_lock);
f1c4069e
JK
335/* Export for kexec only */
336LIST_HEAD(vmap_area_list);
80c4bd7a 337static LLIST_HEAD(vmap_purge_list);
89699605 338static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 339static bool vmap_initialized __read_mostly;
89699605 340
68ad4a33
URS
341/*
342 * This kmem_cache is used for vmap_area objects. Instead of
343 * allocating from slab we reuse an object from this cache to
344 * make things faster. Especially in "no edge" splitting of
345 * free block.
346 */
347static struct kmem_cache *vmap_area_cachep;
348
349/*
350 * This linked list is used in pair with free_vmap_area_root.
351 * It gives O(1) access to prev/next to perform fast coalescing.
352 */
353static LIST_HEAD(free_vmap_area_list);
354
355/*
356 * This augment red-black tree represents the free vmap space.
357 * All vmap_area objects in this tree are sorted by va->va_start
358 * address. It is used for allocation and merging when a vmap
359 * object is released.
360 *
361 * Each vmap_area node contains a maximum available free block
362 * of its sub-tree, right or left. Therefore it is possible to
363 * find a lowest match of free area.
364 */
365static struct rb_root free_vmap_area_root = RB_ROOT;
366
82dd23e8
URS
367/*
368 * Preload a CPU with one object for "no edge" split case. The
369 * aim is to get rid of allocations from the atomic context, thus
370 * to use more permissive allocation masks.
371 */
372static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
373
68ad4a33
URS
374static __always_inline unsigned long
375va_size(struct vmap_area *va)
376{
377 return (va->va_end - va->va_start);
378}
379
380static __always_inline unsigned long
381get_subtree_max_size(struct rb_node *node)
382{
383 struct vmap_area *va;
384
385 va = rb_entry_safe(node, struct vmap_area, rb_node);
386 return va ? va->subtree_max_size : 0;
387}
89699605 388
68ad4a33
URS
389/*
390 * Gets called when remove the node and rotate.
391 */
392static __always_inline unsigned long
393compute_subtree_max_size(struct vmap_area *va)
394{
395 return max3(va_size(va),
396 get_subtree_max_size(va->rb_node.rb_left),
397 get_subtree_max_size(va->rb_node.rb_right));
398}
399
315cc066
ML
400RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
401 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
68ad4a33
URS
402
403static void purge_vmap_area_lazy(void);
404static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
405static unsigned long lazy_max_pages(void);
db64fe02 406
97105f0a
RG
407static atomic_long_t nr_vmalloc_pages;
408
409unsigned long vmalloc_nr_pages(void)
410{
411 return atomic_long_read(&nr_vmalloc_pages);
412}
413
db64fe02 414static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 415{
db64fe02
NP
416 struct rb_node *n = vmap_area_root.rb_node;
417
418 while (n) {
419 struct vmap_area *va;
420
421 va = rb_entry(n, struct vmap_area, rb_node);
422 if (addr < va->va_start)
423 n = n->rb_left;
cef2ac3f 424 else if (addr >= va->va_end)
db64fe02
NP
425 n = n->rb_right;
426 else
427 return va;
428 }
429
430 return NULL;
431}
432
68ad4a33
URS
433/*
434 * This function returns back addresses of parent node
435 * and its left or right link for further processing.
436 */
437static __always_inline struct rb_node **
438find_va_links(struct vmap_area *va,
439 struct rb_root *root, struct rb_node *from,
440 struct rb_node **parent)
441{
442 struct vmap_area *tmp_va;
443 struct rb_node **link;
444
445 if (root) {
446 link = &root->rb_node;
447 if (unlikely(!*link)) {
448 *parent = NULL;
449 return link;
450 }
451 } else {
452 link = &from;
453 }
db64fe02 454
68ad4a33
URS
455 /*
456 * Go to the bottom of the tree. When we hit the last point
457 * we end up with parent rb_node and correct direction, i name
458 * it link, where the new va->rb_node will be attached to.
459 */
460 do {
461 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 462
68ad4a33
URS
463 /*
464 * During the traversal we also do some sanity check.
465 * Trigger the BUG() if there are sides(left/right)
466 * or full overlaps.
467 */
468 if (va->va_start < tmp_va->va_end &&
469 va->va_end <= tmp_va->va_start)
470 link = &(*link)->rb_left;
471 else if (va->va_end > tmp_va->va_start &&
472 va->va_start >= tmp_va->va_end)
473 link = &(*link)->rb_right;
db64fe02
NP
474 else
475 BUG();
68ad4a33
URS
476 } while (*link);
477
478 *parent = &tmp_va->rb_node;
479 return link;
480}
481
482static __always_inline struct list_head *
483get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
484{
485 struct list_head *list;
486
487 if (unlikely(!parent))
488 /*
489 * The red-black tree where we try to find VA neighbors
490 * before merging or inserting is empty, i.e. it means
491 * there is no free vmap space. Normally it does not
492 * happen but we handle this case anyway.
493 */
494 return NULL;
495
496 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
497 return (&parent->rb_right == link ? list->next : list);
498}
499
500static __always_inline void
501link_va(struct vmap_area *va, struct rb_root *root,
502 struct rb_node *parent, struct rb_node **link, struct list_head *head)
503{
504 /*
505 * VA is still not in the list, but we can
506 * identify its future previous list_head node.
507 */
508 if (likely(parent)) {
509 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
510 if (&parent->rb_right != link)
511 head = head->prev;
db64fe02
NP
512 }
513
68ad4a33
URS
514 /* Insert to the rb-tree */
515 rb_link_node(&va->rb_node, parent, link);
516 if (root == &free_vmap_area_root) {
517 /*
518 * Some explanation here. Just perform simple insertion
519 * to the tree. We do not set va->subtree_max_size to
520 * its current size before calling rb_insert_augmented().
521 * It is because of we populate the tree from the bottom
522 * to parent levels when the node _is_ in the tree.
523 *
524 * Therefore we set subtree_max_size to zero after insertion,
525 * to let __augment_tree_propagate_from() puts everything to
526 * the correct order later on.
527 */
528 rb_insert_augmented(&va->rb_node,
529 root, &free_vmap_area_rb_augment_cb);
530 va->subtree_max_size = 0;
531 } else {
532 rb_insert_color(&va->rb_node, root);
533 }
db64fe02 534
68ad4a33
URS
535 /* Address-sort this list */
536 list_add(&va->list, head);
db64fe02
NP
537}
538
68ad4a33
URS
539static __always_inline void
540unlink_va(struct vmap_area *va, struct rb_root *root)
541{
460e42d1
URS
542 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
543 return;
db64fe02 544
460e42d1
URS
545 if (root == &free_vmap_area_root)
546 rb_erase_augmented(&va->rb_node,
547 root, &free_vmap_area_rb_augment_cb);
548 else
549 rb_erase(&va->rb_node, root);
550
551 list_del(&va->list);
552 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
553}
554
bb850f4d
URS
555#if DEBUG_AUGMENT_PROPAGATE_CHECK
556static void
557augment_tree_propagate_check(struct rb_node *n)
558{
559 struct vmap_area *va;
560 struct rb_node *node;
561 unsigned long size;
562 bool found = false;
563
564 if (n == NULL)
565 return;
566
567 va = rb_entry(n, struct vmap_area, rb_node);
568 size = va->subtree_max_size;
569 node = n;
570
571 while (node) {
572 va = rb_entry(node, struct vmap_area, rb_node);
573
574 if (get_subtree_max_size(node->rb_left) == size) {
575 node = node->rb_left;
576 } else {
577 if (va_size(va) == size) {
578 found = true;
579 break;
580 }
581
582 node = node->rb_right;
583 }
584 }
585
586 if (!found) {
587 va = rb_entry(n, struct vmap_area, rb_node);
588 pr_emerg("tree is corrupted: %lu, %lu\n",
589 va_size(va), va->subtree_max_size);
590 }
591
592 augment_tree_propagate_check(n->rb_left);
593 augment_tree_propagate_check(n->rb_right);
594}
595#endif
596
68ad4a33
URS
597/*
598 * This function populates subtree_max_size from bottom to upper
599 * levels starting from VA point. The propagation must be done
600 * when VA size is modified by changing its va_start/va_end. Or
601 * in case of newly inserting of VA to the tree.
602 *
603 * It means that __augment_tree_propagate_from() must be called:
604 * - After VA has been inserted to the tree(free path);
605 * - After VA has been shrunk(allocation path);
606 * - After VA has been increased(merging path).
607 *
608 * Please note that, it does not mean that upper parent nodes
609 * and their subtree_max_size are recalculated all the time up
610 * to the root node.
611 *
612 * 4--8
613 * /\
614 * / \
615 * / \
616 * 2--2 8--8
617 *
618 * For example if we modify the node 4, shrinking it to 2, then
619 * no any modification is required. If we shrink the node 2 to 1
620 * its subtree_max_size is updated only, and set to 1. If we shrink
621 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
622 * node becomes 4--6.
623 */
624static __always_inline void
625augment_tree_propagate_from(struct vmap_area *va)
626{
627 struct rb_node *node = &va->rb_node;
628 unsigned long new_va_sub_max_size;
629
630 while (node) {
631 va = rb_entry(node, struct vmap_area, rb_node);
632 new_va_sub_max_size = compute_subtree_max_size(va);
633
634 /*
635 * If the newly calculated maximum available size of the
636 * subtree is equal to the current one, then it means that
637 * the tree is propagated correctly. So we have to stop at
638 * this point to save cycles.
639 */
640 if (va->subtree_max_size == new_va_sub_max_size)
641 break;
642
643 va->subtree_max_size = new_va_sub_max_size;
644 node = rb_parent(&va->rb_node);
645 }
bb850f4d
URS
646
647#if DEBUG_AUGMENT_PROPAGATE_CHECK
648 augment_tree_propagate_check(free_vmap_area_root.rb_node);
649#endif
68ad4a33
URS
650}
651
652static void
653insert_vmap_area(struct vmap_area *va,
654 struct rb_root *root, struct list_head *head)
655{
656 struct rb_node **link;
657 struct rb_node *parent;
658
659 link = find_va_links(va, root, NULL, &parent);
660 link_va(va, root, parent, link, head);
661}
662
663static void
664insert_vmap_area_augment(struct vmap_area *va,
665 struct rb_node *from, struct rb_root *root,
666 struct list_head *head)
667{
668 struct rb_node **link;
669 struct rb_node *parent;
670
671 if (from)
672 link = find_va_links(va, NULL, from, &parent);
673 else
674 link = find_va_links(va, root, NULL, &parent);
675
676 link_va(va, root, parent, link, head);
677 augment_tree_propagate_from(va);
678}
679
680/*
681 * Merge de-allocated chunk of VA memory with previous
682 * and next free blocks. If coalesce is not done a new
683 * free area is inserted. If VA has been merged, it is
684 * freed.
685 */
686static __always_inline void
687merge_or_add_vmap_area(struct vmap_area *va,
688 struct rb_root *root, struct list_head *head)
689{
690 struct vmap_area *sibling;
691 struct list_head *next;
692 struct rb_node **link;
693 struct rb_node *parent;
694 bool merged = false;
695
696 /*
697 * Find a place in the tree where VA potentially will be
698 * inserted, unless it is merged with its sibling/siblings.
699 */
700 link = find_va_links(va, root, NULL, &parent);
701
702 /*
703 * Get next node of VA to check if merging can be done.
704 */
705 next = get_va_next_sibling(parent, link);
706 if (unlikely(next == NULL))
707 goto insert;
708
709 /*
710 * start end
711 * | |
712 * |<------VA------>|<-----Next----->|
713 * | |
714 * start end
715 */
716 if (next != head) {
717 sibling = list_entry(next, struct vmap_area, list);
718 if (sibling->va_start == va->va_end) {
719 sibling->va_start = va->va_start;
720
721 /* Check and update the tree if needed. */
722 augment_tree_propagate_from(sibling);
723
68ad4a33
URS
724 /* Free vmap_area object. */
725 kmem_cache_free(vmap_area_cachep, va);
726
727 /* Point to the new merged area. */
728 va = sibling;
729 merged = true;
730 }
731 }
732
733 /*
734 * start end
735 * | |
736 * |<-----Prev----->|<------VA------>|
737 * | |
738 * start end
739 */
740 if (next->prev != head) {
741 sibling = list_entry(next->prev, struct vmap_area, list);
742 if (sibling->va_end == va->va_start) {
743 sibling->va_end = va->va_end;
744
745 /* Check and update the tree if needed. */
746 augment_tree_propagate_from(sibling);
747
54f63d9d
URS
748 if (merged)
749 unlink_va(va, root);
68ad4a33
URS
750
751 /* Free vmap_area object. */
752 kmem_cache_free(vmap_area_cachep, va);
68ad4a33
URS
753 return;
754 }
755 }
756
757insert:
758 if (!merged) {
759 link_va(va, root, parent, link, head);
760 augment_tree_propagate_from(va);
761 }
762}
763
764static __always_inline bool
765is_within_this_va(struct vmap_area *va, unsigned long size,
766 unsigned long align, unsigned long vstart)
767{
768 unsigned long nva_start_addr;
769
770 if (va->va_start > vstart)
771 nva_start_addr = ALIGN(va->va_start, align);
772 else
773 nva_start_addr = ALIGN(vstart, align);
774
775 /* Can be overflowed due to big size or alignment. */
776 if (nva_start_addr + size < nva_start_addr ||
777 nva_start_addr < vstart)
778 return false;
779
780 return (nva_start_addr + size <= va->va_end);
781}
782
783/*
784 * Find the first free block(lowest start address) in the tree,
785 * that will accomplish the request corresponding to passing
786 * parameters.
787 */
788static __always_inline struct vmap_area *
789find_vmap_lowest_match(unsigned long size,
790 unsigned long align, unsigned long vstart)
791{
792 struct vmap_area *va;
793 struct rb_node *node;
794 unsigned long length;
795
796 /* Start from the root. */
797 node = free_vmap_area_root.rb_node;
798
799 /* Adjust the search size for alignment overhead. */
800 length = size + align - 1;
801
802 while (node) {
803 va = rb_entry(node, struct vmap_area, rb_node);
804
805 if (get_subtree_max_size(node->rb_left) >= length &&
806 vstart < va->va_start) {
807 node = node->rb_left;
808 } else {
809 if (is_within_this_va(va, size, align, vstart))
810 return va;
811
812 /*
813 * Does not make sense to go deeper towards the right
814 * sub-tree if it does not have a free block that is
815 * equal or bigger to the requested search length.
816 */
817 if (get_subtree_max_size(node->rb_right) >= length) {
818 node = node->rb_right;
819 continue;
820 }
821
822 /*
3806b041 823 * OK. We roll back and find the first right sub-tree,
68ad4a33
URS
824 * that will satisfy the search criteria. It can happen
825 * only once due to "vstart" restriction.
826 */
827 while ((node = rb_parent(node))) {
828 va = rb_entry(node, struct vmap_area, rb_node);
829 if (is_within_this_va(va, size, align, vstart))
830 return va;
831
832 if (get_subtree_max_size(node->rb_right) >= length &&
833 vstart <= va->va_start) {
834 node = node->rb_right;
835 break;
836 }
837 }
838 }
839 }
840
841 return NULL;
842}
843
a6cf4e0f
URS
844#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
845#include <linux/random.h>
846
847static struct vmap_area *
848find_vmap_lowest_linear_match(unsigned long size,
849 unsigned long align, unsigned long vstart)
850{
851 struct vmap_area *va;
852
853 list_for_each_entry(va, &free_vmap_area_list, list) {
854 if (!is_within_this_va(va, size, align, vstart))
855 continue;
856
857 return va;
858 }
859
860 return NULL;
861}
862
863static void
864find_vmap_lowest_match_check(unsigned long size)
865{
866 struct vmap_area *va_1, *va_2;
867 unsigned long vstart;
868 unsigned int rnd;
869
870 get_random_bytes(&rnd, sizeof(rnd));
871 vstart = VMALLOC_START + rnd;
872
873 va_1 = find_vmap_lowest_match(size, 1, vstart);
874 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
875
876 if (va_1 != va_2)
877 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
878 va_1, va_2, vstart);
879}
880#endif
881
68ad4a33
URS
882enum fit_type {
883 NOTHING_FIT = 0,
884 FL_FIT_TYPE = 1, /* full fit */
885 LE_FIT_TYPE = 2, /* left edge fit */
886 RE_FIT_TYPE = 3, /* right edge fit */
887 NE_FIT_TYPE = 4 /* no edge fit */
888};
889
890static __always_inline enum fit_type
891classify_va_fit_type(struct vmap_area *va,
892 unsigned long nva_start_addr, unsigned long size)
893{
894 enum fit_type type;
895
896 /* Check if it is within VA. */
897 if (nva_start_addr < va->va_start ||
898 nva_start_addr + size > va->va_end)
899 return NOTHING_FIT;
900
901 /* Now classify. */
902 if (va->va_start == nva_start_addr) {
903 if (va->va_end == nva_start_addr + size)
904 type = FL_FIT_TYPE;
905 else
906 type = LE_FIT_TYPE;
907 } else if (va->va_end == nva_start_addr + size) {
908 type = RE_FIT_TYPE;
909 } else {
910 type = NE_FIT_TYPE;
911 }
912
913 return type;
914}
915
916static __always_inline int
917adjust_va_to_fit_type(struct vmap_area *va,
918 unsigned long nva_start_addr, unsigned long size,
919 enum fit_type type)
920{
2c929233 921 struct vmap_area *lva = NULL;
68ad4a33
URS
922
923 if (type == FL_FIT_TYPE) {
924 /*
925 * No need to split VA, it fully fits.
926 *
927 * | |
928 * V NVA V
929 * |---------------|
930 */
931 unlink_va(va, &free_vmap_area_root);
932 kmem_cache_free(vmap_area_cachep, va);
933 } else if (type == LE_FIT_TYPE) {
934 /*
935 * Split left edge of fit VA.
936 *
937 * | |
938 * V NVA V R
939 * |-------|-------|
940 */
941 va->va_start += size;
942 } else if (type == RE_FIT_TYPE) {
943 /*
944 * Split right edge of fit VA.
945 *
946 * | |
947 * L V NVA V
948 * |-------|-------|
949 */
950 va->va_end = nva_start_addr;
951 } else if (type == NE_FIT_TYPE) {
952 /*
953 * Split no edge of fit VA.
954 *
955 * | |
956 * L V NVA V R
957 * |---|-------|---|
958 */
82dd23e8
URS
959 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
960 if (unlikely(!lva)) {
961 /*
962 * For percpu allocator we do not do any pre-allocation
963 * and leave it as it is. The reason is it most likely
964 * never ends up with NE_FIT_TYPE splitting. In case of
965 * percpu allocations offsets and sizes are aligned to
966 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
967 * are its main fitting cases.
968 *
969 * There are a few exceptions though, as an example it is
970 * a first allocation (early boot up) when we have "one"
971 * big free space that has to be split.
060650a2
URS
972 *
973 * Also we can hit this path in case of regular "vmap"
974 * allocations, if "this" current CPU was not preloaded.
975 * See the comment in alloc_vmap_area() why. If so, then
976 * GFP_NOWAIT is used instead to get an extra object for
977 * split purpose. That is rare and most time does not
978 * occur.
979 *
980 * What happens if an allocation gets failed. Basically,
981 * an "overflow" path is triggered to purge lazily freed
982 * areas to free some memory, then, the "retry" path is
983 * triggered to repeat one more time. See more details
984 * in alloc_vmap_area() function.
82dd23e8
URS
985 */
986 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
987 if (!lva)
988 return -1;
989 }
68ad4a33
URS
990
991 /*
992 * Build the remainder.
993 */
994 lva->va_start = va->va_start;
995 lva->va_end = nva_start_addr;
996
997 /*
998 * Shrink this VA to remaining size.
999 */
1000 va->va_start = nva_start_addr + size;
1001 } else {
1002 return -1;
1003 }
1004
1005 if (type != FL_FIT_TYPE) {
1006 augment_tree_propagate_from(va);
1007
2c929233 1008 if (lva) /* type == NE_FIT_TYPE */
68ad4a33
URS
1009 insert_vmap_area_augment(lva, &va->rb_node,
1010 &free_vmap_area_root, &free_vmap_area_list);
1011 }
1012
1013 return 0;
1014}
1015
1016/*
1017 * Returns a start address of the newly allocated area, if success.
1018 * Otherwise a vend is returned that indicates failure.
1019 */
1020static __always_inline unsigned long
1021__alloc_vmap_area(unsigned long size, unsigned long align,
cacca6ba 1022 unsigned long vstart, unsigned long vend)
68ad4a33
URS
1023{
1024 unsigned long nva_start_addr;
1025 struct vmap_area *va;
1026 enum fit_type type;
1027 int ret;
1028
1029 va = find_vmap_lowest_match(size, align, vstart);
1030 if (unlikely(!va))
1031 return vend;
1032
1033 if (va->va_start > vstart)
1034 nva_start_addr = ALIGN(va->va_start, align);
1035 else
1036 nva_start_addr = ALIGN(vstart, align);
1037
1038 /* Check the "vend" restriction. */
1039 if (nva_start_addr + size > vend)
1040 return vend;
1041
1042 /* Classify what we have found. */
1043 type = classify_va_fit_type(va, nva_start_addr, size);
1044 if (WARN_ON_ONCE(type == NOTHING_FIT))
1045 return vend;
1046
1047 /* Update the free vmap_area. */
1048 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1049 if (ret)
1050 return vend;
1051
a6cf4e0f
URS
1052#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1053 find_vmap_lowest_match_check(size);
1054#endif
1055
68ad4a33
URS
1056 return nva_start_addr;
1057}
4da56b99 1058
db64fe02
NP
1059/*
1060 * Allocate a region of KVA of the specified size and alignment, within the
1061 * vstart and vend.
1062 */
1063static struct vmap_area *alloc_vmap_area(unsigned long size,
1064 unsigned long align,
1065 unsigned long vstart, unsigned long vend,
1066 int node, gfp_t gfp_mask)
1067{
82dd23e8 1068 struct vmap_area *va, *pva;
1da177e4 1069 unsigned long addr;
db64fe02
NP
1070 int purged = 0;
1071
7766970c 1072 BUG_ON(!size);
891c49ab 1073 BUG_ON(offset_in_page(size));
89699605 1074 BUG_ON(!is_power_of_2(align));
db64fe02 1075
68ad4a33
URS
1076 if (unlikely(!vmap_initialized))
1077 return ERR_PTR(-EBUSY);
1078
5803ed29 1079 might_sleep();
f07116d7 1080 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
4da56b99 1081
f07116d7 1082 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
db64fe02
NP
1083 if (unlikely(!va))
1084 return ERR_PTR(-ENOMEM);
1085
7f88f88f
CM
1086 /*
1087 * Only scan the relevant parts containing pointers to other objects
1088 * to avoid false negatives.
1089 */
f07116d7 1090 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
7f88f88f 1091
db64fe02 1092retry:
82dd23e8 1093 /*
81f1ba58
URS
1094 * Preload this CPU with one extra vmap_area object. It is used
1095 * when fit type of free area is NE_FIT_TYPE. Please note, it
1096 * does not guarantee that an allocation occurs on a CPU that
1097 * is preloaded, instead we minimize the case when it is not.
1098 * It can happen because of cpu migration, because there is a
1099 * race until the below spinlock is taken.
82dd23e8
URS
1100 *
1101 * The preload is done in non-atomic context, thus it allows us
1102 * to use more permissive allocation masks to be more stable under
81f1ba58
URS
1103 * low memory condition and high memory pressure. In rare case,
1104 * if not preloaded, GFP_NOWAIT is used.
82dd23e8 1105 *
81f1ba58 1106 * Set "pva" to NULL here, because of "retry" path.
82dd23e8 1107 */
81f1ba58 1108 pva = NULL;
82dd23e8 1109
81f1ba58
URS
1110 if (!this_cpu_read(ne_fit_preload_node))
1111 /*
1112 * Even if it fails we do not really care about that.
1113 * Just proceed as it is. If needed "overflow" path
1114 * will refill the cache we allocate from.
1115 */
f07116d7 1116 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
82dd23e8 1117
e36176be 1118 spin_lock(&free_vmap_area_lock);
81f1ba58
URS
1119
1120 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1121 kmem_cache_free(vmap_area_cachep, pva);
89699605 1122
afd07389 1123 /*
68ad4a33
URS
1124 * If an allocation fails, the "vend" address is
1125 * returned. Therefore trigger the overflow path.
afd07389 1126 */
cacca6ba 1127 addr = __alloc_vmap_area(size, align, vstart, vend);
e36176be
URS
1128 spin_unlock(&free_vmap_area_lock);
1129
68ad4a33 1130 if (unlikely(addr == vend))
89699605 1131 goto overflow;
db64fe02
NP
1132
1133 va->va_start = addr;
1134 va->va_end = addr + size;
688fcbfc 1135 va->vm = NULL;
68ad4a33 1136
e36176be
URS
1137 spin_lock(&vmap_area_lock);
1138 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
db64fe02
NP
1139 spin_unlock(&vmap_area_lock);
1140
61e16557 1141 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1142 BUG_ON(va->va_start < vstart);
1143 BUG_ON(va->va_end > vend);
1144
db64fe02 1145 return va;
89699605
NP
1146
1147overflow:
89699605
NP
1148 if (!purged) {
1149 purge_vmap_area_lazy();
1150 purged = 1;
1151 goto retry;
1152 }
4da56b99
CW
1153
1154 if (gfpflags_allow_blocking(gfp_mask)) {
1155 unsigned long freed = 0;
1156 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1157 if (freed > 0) {
1158 purged = 0;
1159 goto retry;
1160 }
1161 }
1162
03497d76 1163 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1164 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1165 size);
68ad4a33
URS
1166
1167 kmem_cache_free(vmap_area_cachep, va);
89699605 1168 return ERR_PTR(-EBUSY);
db64fe02
NP
1169}
1170
4da56b99
CW
1171int register_vmap_purge_notifier(struct notifier_block *nb)
1172{
1173 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1174}
1175EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1176
1177int unregister_vmap_purge_notifier(struct notifier_block *nb)
1178{
1179 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1180}
1181EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1182
e36176be
URS
1183/*
1184 * Free a region of KVA allocated by alloc_vmap_area
1185 */
1186static void free_vmap_area(struct vmap_area *va)
db64fe02 1187{
ca23e405 1188 /*
68ad4a33 1189 * Remove from the busy tree/list.
ca23e405 1190 */
e36176be 1191 spin_lock(&vmap_area_lock);
68ad4a33 1192 unlink_va(va, &vmap_area_root);
e36176be 1193 spin_unlock(&vmap_area_lock);
ca23e405 1194
68ad4a33 1195 /*
e36176be 1196 * Insert/Merge it back to the free tree/list.
68ad4a33 1197 */
e36176be 1198 spin_lock(&free_vmap_area_lock);
68ad4a33
URS
1199 merge_or_add_vmap_area(va,
1200 &free_vmap_area_root, &free_vmap_area_list);
e36176be 1201 spin_unlock(&free_vmap_area_lock);
db64fe02
NP
1202}
1203
1204/*
1205 * Clear the pagetable entries of a given vmap_area
1206 */
1207static void unmap_vmap_area(struct vmap_area *va)
1208{
1209 vunmap_page_range(va->va_start, va->va_end);
1210}
1211
1212/*
1213 * lazy_max_pages is the maximum amount of virtual address space we gather up
1214 * before attempting to purge with a TLB flush.
1215 *
1216 * There is a tradeoff here: a larger number will cover more kernel page tables
1217 * and take slightly longer to purge, but it will linearly reduce the number of
1218 * global TLB flushes that must be performed. It would seem natural to scale
1219 * this number up linearly with the number of CPUs (because vmapping activity
1220 * could also scale linearly with the number of CPUs), however it is likely
1221 * that in practice, workloads might be constrained in other ways that mean
1222 * vmap activity will not scale linearly with CPUs. Also, I want to be
1223 * conservative and not introduce a big latency on huge systems, so go with
1224 * a less aggressive log scale. It will still be an improvement over the old
1225 * code, and it will be simple to change the scale factor if we find that it
1226 * becomes a problem on bigger systems.
1227 */
1228static unsigned long lazy_max_pages(void)
1229{
1230 unsigned int log;
1231
1232 log = fls(num_online_cpus());
1233
1234 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1235}
1236
4d36e6f8 1237static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1238
0574ecd1
CH
1239/*
1240 * Serialize vmap purging. There is no actual criticial section protected
1241 * by this look, but we want to avoid concurrent calls for performance
1242 * reasons and to make the pcpu_get_vm_areas more deterministic.
1243 */
f9e09977 1244static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1245
02b709df
NP
1246/* for per-CPU blocks */
1247static void purge_fragmented_blocks_allcpus(void);
1248
3ee48b6a
CW
1249/*
1250 * called before a call to iounmap() if the caller wants vm_area_struct's
1251 * immediately freed.
1252 */
1253void set_iounmap_nonlazy(void)
1254{
4d36e6f8 1255 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
3ee48b6a
CW
1256}
1257
db64fe02
NP
1258/*
1259 * Purges all lazily-freed vmap areas.
db64fe02 1260 */
0574ecd1 1261static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1262{
4d36e6f8 1263 unsigned long resched_threshold;
80c4bd7a 1264 struct llist_node *valist;
db64fe02 1265 struct vmap_area *va;
cbb76676 1266 struct vmap_area *n_va;
db64fe02 1267
0574ecd1 1268 lockdep_assert_held(&vmap_purge_lock);
02b709df 1269
80c4bd7a 1270 valist = llist_del_all(&vmap_purge_list);
68571be9
URS
1271 if (unlikely(valist == NULL))
1272 return false;
1273
3f8fd02b
JR
1274 /*
1275 * First make sure the mappings are removed from all page-tables
1276 * before they are freed.
1277 */
1278 vmalloc_sync_all();
1279
68571be9
URS
1280 /*
1281 * TODO: to calculate a flush range without looping.
1282 * The list can be up to lazy_max_pages() elements.
1283 */
80c4bd7a 1284 llist_for_each_entry(va, valist, purge_list) {
0574ecd1
CH
1285 if (va->va_start < start)
1286 start = va->va_start;
1287 if (va->va_end > end)
1288 end = va->va_end;
db64fe02 1289 }
db64fe02 1290
0574ecd1 1291 flush_tlb_kernel_range(start, end);
4d36e6f8 1292 resched_threshold = lazy_max_pages() << 1;
db64fe02 1293
e36176be 1294 spin_lock(&free_vmap_area_lock);
763b218d 1295 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
4d36e6f8 1296 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
763b218d 1297
dd3b8353
URS
1298 /*
1299 * Finally insert or merge lazily-freed area. It is
1300 * detached and there is no need to "unlink" it from
1301 * anything.
1302 */
1303 merge_or_add_vmap_area(va,
1304 &free_vmap_area_root, &free_vmap_area_list);
1305
4d36e6f8 1306 atomic_long_sub(nr, &vmap_lazy_nr);
68571be9 1307
4d36e6f8 1308 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
e36176be 1309 cond_resched_lock(&free_vmap_area_lock);
763b218d 1310 }
e36176be 1311 spin_unlock(&free_vmap_area_lock);
0574ecd1 1312 return true;
db64fe02
NP
1313}
1314
496850e5
NP
1315/*
1316 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1317 * is already purging.
1318 */
1319static void try_purge_vmap_area_lazy(void)
1320{
f9e09977 1321 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 1322 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1323 mutex_unlock(&vmap_purge_lock);
0574ecd1 1324 }
496850e5
NP
1325}
1326
db64fe02
NP
1327/*
1328 * Kick off a purge of the outstanding lazy areas.
1329 */
1330static void purge_vmap_area_lazy(void)
1331{
f9e09977 1332 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1333 purge_fragmented_blocks_allcpus();
1334 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1335 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1336}
1337
1338/*
64141da5
JF
1339 * Free a vmap area, caller ensuring that the area has been unmapped
1340 * and flush_cache_vunmap had been called for the correct range
1341 * previously.
db64fe02 1342 */
64141da5 1343static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1344{
4d36e6f8 1345 unsigned long nr_lazy;
80c4bd7a 1346
dd3b8353
URS
1347 spin_lock(&vmap_area_lock);
1348 unlink_va(va, &vmap_area_root);
1349 spin_unlock(&vmap_area_lock);
1350
4d36e6f8
URS
1351 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1352 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a
CW
1353
1354 /* After this point, we may free va at any time */
1355 llist_add(&va->purge_list, &vmap_purge_list);
1356
1357 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 1358 try_purge_vmap_area_lazy();
db64fe02
NP
1359}
1360
b29acbdc
NP
1361/*
1362 * Free and unmap a vmap area
1363 */
1364static void free_unmap_vmap_area(struct vmap_area *va)
1365{
1366 flush_cache_vunmap(va->va_start, va->va_end);
c8eef01e 1367 unmap_vmap_area(va);
82a2e924
CP
1368 if (debug_pagealloc_enabled())
1369 flush_tlb_kernel_range(va->va_start, va->va_end);
1370
c8eef01e 1371 free_vmap_area_noflush(va);
b29acbdc
NP
1372}
1373
db64fe02
NP
1374static struct vmap_area *find_vmap_area(unsigned long addr)
1375{
1376 struct vmap_area *va;
1377
1378 spin_lock(&vmap_area_lock);
1379 va = __find_vmap_area(addr);
1380 spin_unlock(&vmap_area_lock);
1381
1382 return va;
1383}
1384
db64fe02
NP
1385/*** Per cpu kva allocator ***/
1386
1387/*
1388 * vmap space is limited especially on 32 bit architectures. Ensure there is
1389 * room for at least 16 percpu vmap blocks per CPU.
1390 */
1391/*
1392 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1393 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1394 * instead (we just need a rough idea)
1395 */
1396#if BITS_PER_LONG == 32
1397#define VMALLOC_SPACE (128UL*1024*1024)
1398#else
1399#define VMALLOC_SPACE (128UL*1024*1024*1024)
1400#endif
1401
1402#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1403#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1404#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1405#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1406#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1407#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1408#define VMAP_BBMAP_BITS \
1409 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1410 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1411 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1412
1413#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1414
1415struct vmap_block_queue {
1416 spinlock_t lock;
1417 struct list_head free;
db64fe02
NP
1418};
1419
1420struct vmap_block {
1421 spinlock_t lock;
1422 struct vmap_area *va;
db64fe02 1423 unsigned long free, dirty;
7d61bfe8 1424 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1425 struct list_head free_list;
1426 struct rcu_head rcu_head;
02b709df 1427 struct list_head purge;
db64fe02
NP
1428};
1429
1430/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1431static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1432
1433/*
1434 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1435 * in the free path. Could get rid of this if we change the API to return a
1436 * "cookie" from alloc, to be passed to free. But no big deal yet.
1437 */
1438static DEFINE_SPINLOCK(vmap_block_tree_lock);
1439static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1440
1441/*
1442 * We should probably have a fallback mechanism to allocate virtual memory
1443 * out of partially filled vmap blocks. However vmap block sizing should be
1444 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1445 * big problem.
1446 */
1447
1448static unsigned long addr_to_vb_idx(unsigned long addr)
1449{
1450 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1451 addr /= VMAP_BLOCK_SIZE;
1452 return addr;
1453}
1454
cf725ce2
RP
1455static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1456{
1457 unsigned long addr;
1458
1459 addr = va_start + (pages_off << PAGE_SHIFT);
1460 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1461 return (void *)addr;
1462}
1463
1464/**
1465 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1466 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1467 * @order: how many 2^order pages should be occupied in newly allocated block
1468 * @gfp_mask: flags for the page level allocator
1469 *
a862f68a 1470 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1471 */
1472static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1473{
1474 struct vmap_block_queue *vbq;
1475 struct vmap_block *vb;
1476 struct vmap_area *va;
1477 unsigned long vb_idx;
1478 int node, err;
cf725ce2 1479 void *vaddr;
db64fe02
NP
1480
1481 node = numa_node_id();
1482
1483 vb = kmalloc_node(sizeof(struct vmap_block),
1484 gfp_mask & GFP_RECLAIM_MASK, node);
1485 if (unlikely(!vb))
1486 return ERR_PTR(-ENOMEM);
1487
1488 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1489 VMALLOC_START, VMALLOC_END,
1490 node, gfp_mask);
ddf9c6d4 1491 if (IS_ERR(va)) {
db64fe02 1492 kfree(vb);
e7d86340 1493 return ERR_CAST(va);
db64fe02
NP
1494 }
1495
1496 err = radix_tree_preload(gfp_mask);
1497 if (unlikely(err)) {
1498 kfree(vb);
1499 free_vmap_area(va);
1500 return ERR_PTR(err);
1501 }
1502
cf725ce2 1503 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1504 spin_lock_init(&vb->lock);
1505 vb->va = va;
cf725ce2
RP
1506 /* At least something should be left free */
1507 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1508 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 1509 vb->dirty = 0;
7d61bfe8
RP
1510 vb->dirty_min = VMAP_BBMAP_BITS;
1511 vb->dirty_max = 0;
db64fe02 1512 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
1513
1514 vb_idx = addr_to_vb_idx(va->va_start);
1515 spin_lock(&vmap_block_tree_lock);
1516 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1517 spin_unlock(&vmap_block_tree_lock);
1518 BUG_ON(err);
1519 radix_tree_preload_end();
1520
1521 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 1522 spin_lock(&vbq->lock);
68ac546f 1523 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 1524 spin_unlock(&vbq->lock);
3f04ba85 1525 put_cpu_var(vmap_block_queue);
db64fe02 1526
cf725ce2 1527 return vaddr;
db64fe02
NP
1528}
1529
db64fe02
NP
1530static void free_vmap_block(struct vmap_block *vb)
1531{
1532 struct vmap_block *tmp;
1533 unsigned long vb_idx;
1534
db64fe02
NP
1535 vb_idx = addr_to_vb_idx(vb->va->va_start);
1536 spin_lock(&vmap_block_tree_lock);
1537 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1538 spin_unlock(&vmap_block_tree_lock);
1539 BUG_ON(tmp != vb);
1540
64141da5 1541 free_vmap_area_noflush(vb->va);
22a3c7d1 1542 kfree_rcu(vb, rcu_head);
db64fe02
NP
1543}
1544
02b709df
NP
1545static void purge_fragmented_blocks(int cpu)
1546{
1547 LIST_HEAD(purge);
1548 struct vmap_block *vb;
1549 struct vmap_block *n_vb;
1550 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1551
1552 rcu_read_lock();
1553 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1554
1555 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1556 continue;
1557
1558 spin_lock(&vb->lock);
1559 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1560 vb->free = 0; /* prevent further allocs after releasing lock */
1561 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
1562 vb->dirty_min = 0;
1563 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
1564 spin_lock(&vbq->lock);
1565 list_del_rcu(&vb->free_list);
1566 spin_unlock(&vbq->lock);
1567 spin_unlock(&vb->lock);
1568 list_add_tail(&vb->purge, &purge);
1569 } else
1570 spin_unlock(&vb->lock);
1571 }
1572 rcu_read_unlock();
1573
1574 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1575 list_del(&vb->purge);
1576 free_vmap_block(vb);
1577 }
1578}
1579
02b709df
NP
1580static void purge_fragmented_blocks_allcpus(void)
1581{
1582 int cpu;
1583
1584 for_each_possible_cpu(cpu)
1585 purge_fragmented_blocks(cpu);
1586}
1587
db64fe02
NP
1588static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1589{
1590 struct vmap_block_queue *vbq;
1591 struct vmap_block *vb;
cf725ce2 1592 void *vaddr = NULL;
db64fe02
NP
1593 unsigned int order;
1594
891c49ab 1595 BUG_ON(offset_in_page(size));
db64fe02 1596 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
1597 if (WARN_ON(size == 0)) {
1598 /*
1599 * Allocating 0 bytes isn't what caller wants since
1600 * get_order(0) returns funny result. Just warn and terminate
1601 * early.
1602 */
1603 return NULL;
1604 }
db64fe02
NP
1605 order = get_order(size);
1606
db64fe02
NP
1607 rcu_read_lock();
1608 vbq = &get_cpu_var(vmap_block_queue);
1609 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 1610 unsigned long pages_off;
db64fe02
NP
1611
1612 spin_lock(&vb->lock);
cf725ce2
RP
1613 if (vb->free < (1UL << order)) {
1614 spin_unlock(&vb->lock);
1615 continue;
1616 }
02b709df 1617
cf725ce2
RP
1618 pages_off = VMAP_BBMAP_BITS - vb->free;
1619 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
1620 vb->free -= 1UL << order;
1621 if (vb->free == 0) {
1622 spin_lock(&vbq->lock);
1623 list_del_rcu(&vb->free_list);
1624 spin_unlock(&vbq->lock);
1625 }
cf725ce2 1626
02b709df
NP
1627 spin_unlock(&vb->lock);
1628 break;
db64fe02 1629 }
02b709df 1630
3f04ba85 1631 put_cpu_var(vmap_block_queue);
db64fe02
NP
1632 rcu_read_unlock();
1633
cf725ce2
RP
1634 /* Allocate new block if nothing was found */
1635 if (!vaddr)
1636 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 1637
cf725ce2 1638 return vaddr;
db64fe02
NP
1639}
1640
1641static void vb_free(const void *addr, unsigned long size)
1642{
1643 unsigned long offset;
1644 unsigned long vb_idx;
1645 unsigned int order;
1646 struct vmap_block *vb;
1647
891c49ab 1648 BUG_ON(offset_in_page(size));
db64fe02 1649 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
1650
1651 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1652
db64fe02
NP
1653 order = get_order(size);
1654
1655 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
7d61bfe8 1656 offset >>= PAGE_SHIFT;
db64fe02
NP
1657
1658 vb_idx = addr_to_vb_idx((unsigned long)addr);
1659 rcu_read_lock();
1660 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1661 rcu_read_unlock();
1662 BUG_ON(!vb);
1663
64141da5
JF
1664 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1665
82a2e924
CP
1666 if (debug_pagealloc_enabled())
1667 flush_tlb_kernel_range((unsigned long)addr,
1668 (unsigned long)addr + size);
1669
db64fe02 1670 spin_lock(&vb->lock);
7d61bfe8
RP
1671
1672 /* Expand dirty range */
1673 vb->dirty_min = min(vb->dirty_min, offset);
1674 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1675
db64fe02
NP
1676 vb->dirty += 1UL << order;
1677 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1678 BUG_ON(vb->free);
db64fe02
NP
1679 spin_unlock(&vb->lock);
1680 free_vmap_block(vb);
1681 } else
1682 spin_unlock(&vb->lock);
1683}
1684
868b104d 1685static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 1686{
db64fe02 1687 int cpu;
db64fe02 1688
9b463334
JF
1689 if (unlikely(!vmap_initialized))
1690 return;
1691
5803ed29
CH
1692 might_sleep();
1693
db64fe02
NP
1694 for_each_possible_cpu(cpu) {
1695 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1696 struct vmap_block *vb;
1697
1698 rcu_read_lock();
1699 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1700 spin_lock(&vb->lock);
7d61bfe8
RP
1701 if (vb->dirty) {
1702 unsigned long va_start = vb->va->va_start;
db64fe02 1703 unsigned long s, e;
b136be5e 1704
7d61bfe8
RP
1705 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1706 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1707
7d61bfe8
RP
1708 start = min(s, start);
1709 end = max(e, end);
db64fe02 1710
7d61bfe8 1711 flush = 1;
db64fe02
NP
1712 }
1713 spin_unlock(&vb->lock);
1714 }
1715 rcu_read_unlock();
1716 }
1717
f9e09977 1718 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1719 purge_fragmented_blocks_allcpus();
1720 if (!__purge_vmap_area_lazy(start, end) && flush)
1721 flush_tlb_kernel_range(start, end);
f9e09977 1722 mutex_unlock(&vmap_purge_lock);
db64fe02 1723}
868b104d
RE
1724
1725/**
1726 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1727 *
1728 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1729 * to amortize TLB flushing overheads. What this means is that any page you
1730 * have now, may, in a former life, have been mapped into kernel virtual
1731 * address by the vmap layer and so there might be some CPUs with TLB entries
1732 * still referencing that page (additional to the regular 1:1 kernel mapping).
1733 *
1734 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1735 * be sure that none of the pages we have control over will have any aliases
1736 * from the vmap layer.
1737 */
1738void vm_unmap_aliases(void)
1739{
1740 unsigned long start = ULONG_MAX, end = 0;
1741 int flush = 0;
1742
1743 _vm_unmap_aliases(start, end, flush);
1744}
db64fe02
NP
1745EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1746
1747/**
1748 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1749 * @mem: the pointer returned by vm_map_ram
1750 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1751 */
1752void vm_unmap_ram(const void *mem, unsigned int count)
1753{
65ee03c4 1754 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 1755 unsigned long addr = (unsigned long)mem;
9c3acf60 1756 struct vmap_area *va;
db64fe02 1757
5803ed29 1758 might_sleep();
db64fe02
NP
1759 BUG_ON(!addr);
1760 BUG_ON(addr < VMALLOC_START);
1761 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 1762 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 1763
9c3acf60 1764 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 1765 debug_check_no_locks_freed(mem, size);
db64fe02 1766 vb_free(mem, size);
9c3acf60
CH
1767 return;
1768 }
1769
1770 va = find_vmap_area(addr);
1771 BUG_ON(!va);
05e3ff95
CP
1772 debug_check_no_locks_freed((void *)va->va_start,
1773 (va->va_end - va->va_start));
9c3acf60 1774 free_unmap_vmap_area(va);
db64fe02
NP
1775}
1776EXPORT_SYMBOL(vm_unmap_ram);
1777
1778/**
1779 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1780 * @pages: an array of pointers to the pages to be mapped
1781 * @count: number of pages
1782 * @node: prefer to allocate data structures on this node
1783 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad 1784 *
36437638
GK
1785 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1786 * faster than vmap so it's good. But if you mix long-life and short-life
1787 * objects with vm_map_ram(), it could consume lots of address space through
1788 * fragmentation (especially on a 32bit machine). You could see failures in
1789 * the end. Please use this function for short-lived objects.
1790 *
e99c97ad 1791 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1792 */
1793void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1794{
65ee03c4 1795 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1796 unsigned long addr;
1797 void *mem;
1798
1799 if (likely(count <= VMAP_MAX_ALLOC)) {
1800 mem = vb_alloc(size, GFP_KERNEL);
1801 if (IS_ERR(mem))
1802 return NULL;
1803 addr = (unsigned long)mem;
1804 } else {
1805 struct vmap_area *va;
1806 va = alloc_vmap_area(size, PAGE_SIZE,
1807 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1808 if (IS_ERR(va))
1809 return NULL;
1810
1811 addr = va->va_start;
1812 mem = (void *)addr;
1813 }
1814 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1815 vm_unmap_ram(mem, count);
1816 return NULL;
1817 }
1818 return mem;
1819}
1820EXPORT_SYMBOL(vm_map_ram);
1821
4341fa45 1822static struct vm_struct *vmlist __initdata;
92eac168 1823
be9b7335
NP
1824/**
1825 * vm_area_add_early - add vmap area early during boot
1826 * @vm: vm_struct to add
1827 *
1828 * This function is used to add fixed kernel vm area to vmlist before
1829 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1830 * should contain proper values and the other fields should be zero.
1831 *
1832 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1833 */
1834void __init vm_area_add_early(struct vm_struct *vm)
1835{
1836 struct vm_struct *tmp, **p;
1837
1838 BUG_ON(vmap_initialized);
1839 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1840 if (tmp->addr >= vm->addr) {
1841 BUG_ON(tmp->addr < vm->addr + vm->size);
1842 break;
1843 } else
1844 BUG_ON(tmp->addr + tmp->size > vm->addr);
1845 }
1846 vm->next = *p;
1847 *p = vm;
1848}
1849
f0aa6617
TH
1850/**
1851 * vm_area_register_early - register vmap area early during boot
1852 * @vm: vm_struct to register
c0c0a293 1853 * @align: requested alignment
f0aa6617
TH
1854 *
1855 * This function is used to register kernel vm area before
1856 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1857 * proper values on entry and other fields should be zero. On return,
1858 * vm->addr contains the allocated address.
1859 *
1860 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1861 */
c0c0a293 1862void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1863{
1864 static size_t vm_init_off __initdata;
c0c0a293
TH
1865 unsigned long addr;
1866
1867 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1868 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1869
c0c0a293 1870 vm->addr = (void *)addr;
f0aa6617 1871
be9b7335 1872 vm_area_add_early(vm);
f0aa6617
TH
1873}
1874
68ad4a33
URS
1875static void vmap_init_free_space(void)
1876{
1877 unsigned long vmap_start = 1;
1878 const unsigned long vmap_end = ULONG_MAX;
1879 struct vmap_area *busy, *free;
1880
1881 /*
1882 * B F B B B F
1883 * -|-----|.....|-----|-----|-----|.....|-
1884 * | The KVA space |
1885 * |<--------------------------------->|
1886 */
1887 list_for_each_entry(busy, &vmap_area_list, list) {
1888 if (busy->va_start - vmap_start > 0) {
1889 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1890 if (!WARN_ON_ONCE(!free)) {
1891 free->va_start = vmap_start;
1892 free->va_end = busy->va_start;
1893
1894 insert_vmap_area_augment(free, NULL,
1895 &free_vmap_area_root,
1896 &free_vmap_area_list);
1897 }
1898 }
1899
1900 vmap_start = busy->va_end;
1901 }
1902
1903 if (vmap_end - vmap_start > 0) {
1904 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1905 if (!WARN_ON_ONCE(!free)) {
1906 free->va_start = vmap_start;
1907 free->va_end = vmap_end;
1908
1909 insert_vmap_area_augment(free, NULL,
1910 &free_vmap_area_root,
1911 &free_vmap_area_list);
1912 }
1913 }
1914}
1915
db64fe02
NP
1916void __init vmalloc_init(void)
1917{
822c18f2
IK
1918 struct vmap_area *va;
1919 struct vm_struct *tmp;
db64fe02
NP
1920 int i;
1921
68ad4a33
URS
1922 /*
1923 * Create the cache for vmap_area objects.
1924 */
1925 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1926
db64fe02
NP
1927 for_each_possible_cpu(i) {
1928 struct vmap_block_queue *vbq;
32fcfd40 1929 struct vfree_deferred *p;
db64fe02
NP
1930
1931 vbq = &per_cpu(vmap_block_queue, i);
1932 spin_lock_init(&vbq->lock);
1933 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1934 p = &per_cpu(vfree_deferred, i);
1935 init_llist_head(&p->list);
1936 INIT_WORK(&p->wq, free_work);
db64fe02 1937 }
9b463334 1938
822c18f2
IK
1939 /* Import existing vmlist entries. */
1940 for (tmp = vmlist; tmp; tmp = tmp->next) {
68ad4a33
URS
1941 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1942 if (WARN_ON_ONCE(!va))
1943 continue;
1944
822c18f2
IK
1945 va->va_start = (unsigned long)tmp->addr;
1946 va->va_end = va->va_start + tmp->size;
dbda591d 1947 va->vm = tmp;
68ad4a33 1948 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
822c18f2 1949 }
ca23e405 1950
68ad4a33
URS
1951 /*
1952 * Now we can initialize a free vmap space.
1953 */
1954 vmap_init_free_space();
9b463334 1955 vmap_initialized = true;
db64fe02
NP
1956}
1957
8fc48985
TH
1958/**
1959 * map_kernel_range_noflush - map kernel VM area with the specified pages
1960 * @addr: start of the VM area to map
1961 * @size: size of the VM area to map
1962 * @prot: page protection flags to use
1963 * @pages: pages to map
1964 *
1965 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1966 * specify should have been allocated using get_vm_area() and its
1967 * friends.
1968 *
1969 * NOTE:
1970 * This function does NOT do any cache flushing. The caller is
1971 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1972 * before calling this function.
1973 *
1974 * RETURNS:
1975 * The number of pages mapped on success, -errno on failure.
1976 */
1977int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1978 pgprot_t prot, struct page **pages)
1979{
1980 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1981}
1982
1983/**
1984 * unmap_kernel_range_noflush - unmap kernel VM area
1985 * @addr: start of the VM area to unmap
1986 * @size: size of the VM area to unmap
1987 *
1988 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1989 * specify should have been allocated using get_vm_area() and its
1990 * friends.
1991 *
1992 * NOTE:
1993 * This function does NOT do any cache flushing. The caller is
1994 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1995 * before calling this function and flush_tlb_kernel_range() after.
1996 */
1997void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1998{
1999 vunmap_page_range(addr, addr + size);
2000}
81e88fdc 2001EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
2002
2003/**
2004 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2005 * @addr: start of the VM area to unmap
2006 * @size: size of the VM area to unmap
2007 *
2008 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2009 * the unmapping and tlb after.
2010 */
db64fe02
NP
2011void unmap_kernel_range(unsigned long addr, unsigned long size)
2012{
2013 unsigned long end = addr + size;
f6fcba70
TH
2014
2015 flush_cache_vunmap(addr, end);
db64fe02
NP
2016 vunmap_page_range(addr, end);
2017 flush_tlb_kernel_range(addr, end);
2018}
93ef6d6c 2019EXPORT_SYMBOL_GPL(unmap_kernel_range);
db64fe02 2020
f6f8ed47 2021int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
db64fe02
NP
2022{
2023 unsigned long addr = (unsigned long)area->addr;
762216ab 2024 unsigned long end = addr + get_vm_area_size(area);
db64fe02
NP
2025 int err;
2026
f6f8ed47 2027 err = vmap_page_range(addr, end, prot, pages);
db64fe02 2028
f6f8ed47 2029 return err > 0 ? 0 : err;
db64fe02
NP
2030}
2031EXPORT_SYMBOL_GPL(map_vm_area);
2032
e36176be
URS
2033static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2034 struct vmap_area *va, unsigned long flags, const void *caller)
cf88c790 2035{
cf88c790
TH
2036 vm->flags = flags;
2037 vm->addr = (void *)va->va_start;
2038 vm->size = va->va_end - va->va_start;
2039 vm->caller = caller;
db1aecaf 2040 va->vm = vm;
e36176be
URS
2041}
2042
2043static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2044 unsigned long flags, const void *caller)
2045{
2046 spin_lock(&vmap_area_lock);
2047 setup_vmalloc_vm_locked(vm, va, flags, caller);
c69480ad 2048 spin_unlock(&vmap_area_lock);
f5252e00 2049}
cf88c790 2050
20fc02b4 2051static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2052{
d4033afd 2053 /*
20fc02b4 2054 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2055 * we should make sure that vm has proper values.
2056 * Pair with smp_rmb() in show_numa_info().
2057 */
2058 smp_wmb();
20fc02b4 2059 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2060}
2061
db64fe02 2062static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 2063 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 2064 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 2065{
0006526d 2066 struct vmap_area *va;
db64fe02 2067 struct vm_struct *area;
1da177e4 2068
52fd24ca 2069 BUG_ON(in_interrupt());
1da177e4 2070 size = PAGE_ALIGN(size);
31be8309
OH
2071 if (unlikely(!size))
2072 return NULL;
1da177e4 2073
252e5c6e 2074 if (flags & VM_IOREMAP)
2075 align = 1ul << clamp_t(int, get_count_order_long(size),
2076 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2077
cf88c790 2078 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2079 if (unlikely(!area))
2080 return NULL;
2081
71394fe5
AR
2082 if (!(flags & VM_NO_GUARD))
2083 size += PAGE_SIZE;
1da177e4 2084
db64fe02
NP
2085 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2086 if (IS_ERR(va)) {
2087 kfree(area);
2088 return NULL;
1da177e4 2089 }
1da177e4 2090
d82b1d85 2091 setup_vmalloc_vm(area, va, flags, caller);
f5252e00 2092
1da177e4 2093 return area;
1da177e4
LT
2094}
2095
930fc45a
CL
2096struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2097 unsigned long start, unsigned long end)
2098{
00ef2d2f
DR
2099 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2100 GFP_KERNEL, __builtin_return_address(0));
930fc45a 2101}
5992b6da 2102EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 2103
c2968612
BH
2104struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2105 unsigned long start, unsigned long end,
5e6cafc8 2106 const void *caller)
c2968612 2107{
00ef2d2f
DR
2108 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2109 GFP_KERNEL, caller);
c2968612
BH
2110}
2111
1da177e4 2112/**
92eac168
MR
2113 * get_vm_area - reserve a contiguous kernel virtual area
2114 * @size: size of the area
2115 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2116 *
92eac168
MR
2117 * Search an area of @size in the kernel virtual mapping area,
2118 * and reserved it for out purposes. Returns the area descriptor
2119 * on success or %NULL on failure.
a862f68a
MR
2120 *
2121 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2122 */
2123struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2124{
2dca6999 2125 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2126 NUMA_NO_NODE, GFP_KERNEL,
2127 __builtin_return_address(0));
23016969
CL
2128}
2129
2130struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2131 const void *caller)
23016969 2132{
2dca6999 2133 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 2134 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2135}
2136
e9da6e99 2137/**
92eac168
MR
2138 * find_vm_area - find a continuous kernel virtual area
2139 * @addr: base address
e9da6e99 2140 *
92eac168
MR
2141 * Search for the kernel VM area starting at @addr, and return it.
2142 * It is up to the caller to do all required locking to keep the returned
2143 * pointer valid.
a862f68a
MR
2144 *
2145 * Return: pointer to the found area or %NULL on faulure
e9da6e99
MS
2146 */
2147struct vm_struct *find_vm_area(const void *addr)
83342314 2148{
db64fe02 2149 struct vmap_area *va;
83342314 2150
db64fe02 2151 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
2152 if (!va)
2153 return NULL;
1da177e4 2154
688fcbfc 2155 return va->vm;
1da177e4
LT
2156}
2157
7856dfeb 2158/**
92eac168
MR
2159 * remove_vm_area - find and remove a continuous kernel virtual area
2160 * @addr: base address
7856dfeb 2161 *
92eac168
MR
2162 * Search for the kernel VM area starting at @addr, and remove it.
2163 * This function returns the found VM area, but using it is NOT safe
2164 * on SMP machines, except for its size or flags.
a862f68a
MR
2165 *
2166 * Return: pointer to the found area or %NULL on faulure
7856dfeb 2167 */
b3bdda02 2168struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2169{
db64fe02
NP
2170 struct vmap_area *va;
2171
5803ed29
CH
2172 might_sleep();
2173
dd3b8353
URS
2174 spin_lock(&vmap_area_lock);
2175 va = __find_vmap_area((unsigned long)addr);
688fcbfc 2176 if (va && va->vm) {
db1aecaf 2177 struct vm_struct *vm = va->vm;
f5252e00 2178
c69480ad 2179 va->vm = NULL;
c69480ad
JK
2180 spin_unlock(&vmap_area_lock);
2181
a5af5aa8 2182 kasan_free_shadow(vm);
dd32c279 2183 free_unmap_vmap_area(va);
dd32c279 2184
db64fe02
NP
2185 return vm;
2186 }
dd3b8353
URS
2187
2188 spin_unlock(&vmap_area_lock);
db64fe02 2189 return NULL;
7856dfeb
AK
2190}
2191
868b104d
RE
2192static inline void set_area_direct_map(const struct vm_struct *area,
2193 int (*set_direct_map)(struct page *page))
2194{
2195 int i;
2196
2197 for (i = 0; i < area->nr_pages; i++)
2198 if (page_address(area->pages[i]))
2199 set_direct_map(area->pages[i]);
2200}
2201
2202/* Handle removing and resetting vm mappings related to the vm_struct. */
2203static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2204{
868b104d
RE
2205 unsigned long start = ULONG_MAX, end = 0;
2206 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
31e67340 2207 int flush_dmap = 0;
868b104d
RE
2208 int i;
2209
868b104d
RE
2210 remove_vm_area(area->addr);
2211
2212 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2213 if (!flush_reset)
2214 return;
2215
2216 /*
2217 * If not deallocating pages, just do the flush of the VM area and
2218 * return.
2219 */
2220 if (!deallocate_pages) {
2221 vm_unmap_aliases();
2222 return;
2223 }
2224
2225 /*
2226 * If execution gets here, flush the vm mapping and reset the direct
2227 * map. Find the start and end range of the direct mappings to make sure
2228 * the vm_unmap_aliases() flush includes the direct map.
2229 */
2230 for (i = 0; i < area->nr_pages; i++) {
8e41f872
RE
2231 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2232 if (addr) {
868b104d 2233 start = min(addr, start);
8e41f872 2234 end = max(addr + PAGE_SIZE, end);
31e67340 2235 flush_dmap = 1;
868b104d
RE
2236 }
2237 }
2238
2239 /*
2240 * Set direct map to something invalid so that it won't be cached if
2241 * there are any accesses after the TLB flush, then flush the TLB and
2242 * reset the direct map permissions to the default.
2243 */
2244 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2245 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2246 set_area_direct_map(area, set_direct_map_default_noflush);
2247}
2248
b3bdda02 2249static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
2250{
2251 struct vm_struct *area;
2252
2253 if (!addr)
2254 return;
2255
e69e9d4a 2256 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 2257 addr))
1da177e4 2258 return;
1da177e4 2259
6ade2032 2260 area = find_vm_area(addr);
1da177e4 2261 if (unlikely(!area)) {
4c8573e2 2262 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 2263 addr);
1da177e4
LT
2264 return;
2265 }
2266
05e3ff95
CP
2267 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2268 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 2269
868b104d
RE
2270 vm_remove_mappings(area, deallocate_pages);
2271
1da177e4
LT
2272 if (deallocate_pages) {
2273 int i;
2274
2275 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2276 struct page *page = area->pages[i];
2277
2278 BUG_ON(!page);
4949148a 2279 __free_pages(page, 0);
1da177e4 2280 }
97105f0a 2281 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2282
244d63ee 2283 kvfree(area->pages);
1da177e4
LT
2284 }
2285
2286 kfree(area);
2287 return;
2288}
bf22e37a
AR
2289
2290static inline void __vfree_deferred(const void *addr)
2291{
2292 /*
2293 * Use raw_cpu_ptr() because this can be called from preemptible
2294 * context. Preemption is absolutely fine here, because the llist_add()
2295 * implementation is lockless, so it works even if we are adding to
2296 * nother cpu's list. schedule_work() should be fine with this too.
2297 */
2298 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2299
2300 if (llist_add((struct llist_node *)addr, &p->list))
2301 schedule_work(&p->wq);
2302}
2303
2304/**
92eac168
MR
2305 * vfree_atomic - release memory allocated by vmalloc()
2306 * @addr: memory base address
bf22e37a 2307 *
92eac168
MR
2308 * This one is just like vfree() but can be called in any atomic context
2309 * except NMIs.
bf22e37a
AR
2310 */
2311void vfree_atomic(const void *addr)
2312{
2313 BUG_ON(in_nmi());
2314
2315 kmemleak_free(addr);
2316
2317 if (!addr)
2318 return;
2319 __vfree_deferred(addr);
2320}
2321
c67dc624
RP
2322static void __vfree(const void *addr)
2323{
2324 if (unlikely(in_interrupt()))
2325 __vfree_deferred(addr);
2326 else
2327 __vunmap(addr, 1);
2328}
2329
1da177e4 2330/**
92eac168
MR
2331 * vfree - release memory allocated by vmalloc()
2332 * @addr: memory base address
1da177e4 2333 *
92eac168
MR
2334 * Free the virtually continuous memory area starting at @addr, as
2335 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2336 * NULL, no operation is performed.
1da177e4 2337 *
92eac168
MR
2338 * Must not be called in NMI context (strictly speaking, only if we don't
2339 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2340 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51 2341 *
92eac168 2342 * May sleep if called *not* from interrupt context.
3ca4ea3a 2343 *
92eac168 2344 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1da177e4 2345 */
b3bdda02 2346void vfree(const void *addr)
1da177e4 2347{
32fcfd40 2348 BUG_ON(in_nmi());
89219d37
CM
2349
2350 kmemleak_free(addr);
2351
a8dda165
AR
2352 might_sleep_if(!in_interrupt());
2353
32fcfd40
AV
2354 if (!addr)
2355 return;
c67dc624
RP
2356
2357 __vfree(addr);
1da177e4 2358}
1da177e4
LT
2359EXPORT_SYMBOL(vfree);
2360
2361/**
92eac168
MR
2362 * vunmap - release virtual mapping obtained by vmap()
2363 * @addr: memory base address
1da177e4 2364 *
92eac168
MR
2365 * Free the virtually contiguous memory area starting at @addr,
2366 * which was created from the page array passed to vmap().
1da177e4 2367 *
92eac168 2368 * Must not be called in interrupt context.
1da177e4 2369 */
b3bdda02 2370void vunmap(const void *addr)
1da177e4
LT
2371{
2372 BUG_ON(in_interrupt());
34754b69 2373 might_sleep();
32fcfd40
AV
2374 if (addr)
2375 __vunmap(addr, 0);
1da177e4 2376}
1da177e4
LT
2377EXPORT_SYMBOL(vunmap);
2378
2379/**
92eac168
MR
2380 * vmap - map an array of pages into virtually contiguous space
2381 * @pages: array of page pointers
2382 * @count: number of pages to map
2383 * @flags: vm_area->flags
2384 * @prot: page protection for the mapping
2385 *
2386 * Maps @count pages from @pages into contiguous kernel virtual
2387 * space.
a862f68a
MR
2388 *
2389 * Return: the address of the area or %NULL on failure
1da177e4
LT
2390 */
2391void *vmap(struct page **pages, unsigned int count,
92eac168 2392 unsigned long flags, pgprot_t prot)
1da177e4
LT
2393{
2394 struct vm_struct *area;
65ee03c4 2395 unsigned long size; /* In bytes */
1da177e4 2396
34754b69
PZ
2397 might_sleep();
2398
ca79b0c2 2399 if (count > totalram_pages())
1da177e4
LT
2400 return NULL;
2401
65ee03c4
GJM
2402 size = (unsigned long)count << PAGE_SHIFT;
2403 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2404 if (!area)
2405 return NULL;
23016969 2406
f6f8ed47 2407 if (map_vm_area(area, prot, pages)) {
1da177e4
LT
2408 vunmap(area->addr);
2409 return NULL;
2410 }
2411
2412 return area->addr;
2413}
1da177e4
LT
2414EXPORT_SYMBOL(vmap);
2415
8594a21c
MH
2416static void *__vmalloc_node(unsigned long size, unsigned long align,
2417 gfp_t gfp_mask, pgprot_t prot,
2418 int node, const void *caller);
e31d9eb5 2419static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 2420 pgprot_t prot, int node)
1da177e4
LT
2421{
2422 struct page **pages;
2423 unsigned int nr_pages, array_size, i;
930f036b 2424 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
704b862f
LA
2425 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2426 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2427 0 :
2428 __GFP_HIGHMEM;
1da177e4 2429
762216ab 2430 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
2431 array_size = (nr_pages * sizeof(struct page *));
2432
1da177e4 2433 /* Please note that the recursion is strictly bounded. */
8757d5fa 2434 if (array_size > PAGE_SIZE) {
704b862f 2435 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
3722e13c 2436 PAGE_KERNEL, node, area->caller);
286e1ea3 2437 } else {
976d6dfb 2438 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 2439 }
7ea36242
AK
2440
2441 if (!pages) {
1da177e4
LT
2442 remove_vm_area(area->addr);
2443 kfree(area);
2444 return NULL;
2445 }
1da177e4 2446
7ea36242
AK
2447 area->pages = pages;
2448 area->nr_pages = nr_pages;
2449
1da177e4 2450 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2451 struct page *page;
2452
4b90951c 2453 if (node == NUMA_NO_NODE)
704b862f 2454 page = alloc_page(alloc_mask|highmem_mask);
930fc45a 2455 else
704b862f 2456 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
bf53d6f8
CL
2457
2458 if (unlikely(!page)) {
1da177e4
LT
2459 /* Successfully allocated i pages, free them in __vunmap() */
2460 area->nr_pages = i;
97105f0a 2461 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4
LT
2462 goto fail;
2463 }
bf53d6f8 2464 area->pages[i] = page;
dcf61ff0 2465 if (gfpflags_allow_blocking(gfp_mask))
660654f9 2466 cond_resched();
1da177e4 2467 }
97105f0a 2468 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2469
f6f8ed47 2470 if (map_vm_area(area, prot, pages))
1da177e4
LT
2471 goto fail;
2472 return area->addr;
2473
2474fail:
a8e99259 2475 warn_alloc(gfp_mask, NULL,
7877cdcc 2476 "vmalloc: allocation failure, allocated %ld of %ld bytes",
22943ab1 2477 (area->nr_pages*PAGE_SIZE), area->size);
c67dc624 2478 __vfree(area->addr);
1da177e4
LT
2479 return NULL;
2480}
2481
2482/**
92eac168
MR
2483 * __vmalloc_node_range - allocate virtually contiguous memory
2484 * @size: allocation size
2485 * @align: desired alignment
2486 * @start: vm area range start
2487 * @end: vm area range end
2488 * @gfp_mask: flags for the page level allocator
2489 * @prot: protection mask for the allocated pages
2490 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2491 * @node: node to use for allocation or NUMA_NO_NODE
2492 * @caller: caller's return address
2493 *
2494 * Allocate enough pages to cover @size from the page level
2495 * allocator with @gfp_mask flags. Map them into contiguous
2496 * kernel virtual space, using a pagetable protection of @prot.
a862f68a
MR
2497 *
2498 * Return: the address of the area or %NULL on failure
1da177e4 2499 */
d0a21265
DR
2500void *__vmalloc_node_range(unsigned long size, unsigned long align,
2501 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
2502 pgprot_t prot, unsigned long vm_flags, int node,
2503 const void *caller)
1da177e4
LT
2504{
2505 struct vm_struct *area;
89219d37
CM
2506 void *addr;
2507 unsigned long real_size = size;
1da177e4
LT
2508
2509 size = PAGE_ALIGN(size);
ca79b0c2 2510 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
de7d2b56 2511 goto fail;
1da177e4 2512
cb9e3c29
AR
2513 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2514 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 2515 if (!area)
de7d2b56 2516 goto fail;
1da177e4 2517
3722e13c 2518 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 2519 if (!addr)
b82225f3 2520 return NULL;
89219d37 2521
f5252e00 2522 /*
20fc02b4
ZY
2523 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2524 * flag. It means that vm_struct is not fully initialized.
4341fa45 2525 * Now, it is fully initialized, so remove this flag here.
f5252e00 2526 */
20fc02b4 2527 clear_vm_uninitialized_flag(area);
f5252e00 2528
94f4a161 2529 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
2530
2531 return addr;
de7d2b56
JP
2532
2533fail:
a8e99259 2534 warn_alloc(gfp_mask, NULL,
7877cdcc 2535 "vmalloc: allocation failure: %lu bytes", real_size);
de7d2b56 2536 return NULL;
1da177e4
LT
2537}
2538
153178ed
URS
2539/*
2540 * This is only for performance analysis of vmalloc and stress purpose.
2541 * It is required by vmalloc test module, therefore do not use it other
2542 * than that.
2543 */
2544#ifdef CONFIG_TEST_VMALLOC_MODULE
2545EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2546#endif
2547
d0a21265 2548/**
92eac168
MR
2549 * __vmalloc_node - allocate virtually contiguous memory
2550 * @size: allocation size
2551 * @align: desired alignment
2552 * @gfp_mask: flags for the page level allocator
2553 * @prot: protection mask for the allocated pages
2554 * @node: node to use for allocation or NUMA_NO_NODE
2555 * @caller: caller's return address
a7c3e901 2556 *
92eac168
MR
2557 * Allocate enough pages to cover @size from the page level
2558 * allocator with @gfp_mask flags. Map them into contiguous
2559 * kernel virtual space, using a pagetable protection of @prot.
a7c3e901 2560 *
92eac168
MR
2561 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2562 * and __GFP_NOFAIL are not supported
a7c3e901 2563 *
92eac168
MR
2564 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2565 * with mm people.
a862f68a
MR
2566 *
2567 * Return: pointer to the allocated memory or %NULL on error
d0a21265 2568 */
8594a21c 2569static void *__vmalloc_node(unsigned long size, unsigned long align,
d0a21265 2570 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 2571 int node, const void *caller)
d0a21265
DR
2572{
2573 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
cb9e3c29 2574 gfp_mask, prot, 0, node, caller);
d0a21265
DR
2575}
2576
930fc45a
CL
2577void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2578{
00ef2d2f 2579 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 2580 __builtin_return_address(0));
930fc45a 2581}
1da177e4
LT
2582EXPORT_SYMBOL(__vmalloc);
2583
8594a21c
MH
2584static inline void *__vmalloc_node_flags(unsigned long size,
2585 int node, gfp_t flags)
2586{
2587 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2588 node, __builtin_return_address(0));
2589}
2590
2591
2592void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2593 void *caller)
2594{
2595 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2596}
2597
1da177e4 2598/**
92eac168
MR
2599 * vmalloc - allocate virtually contiguous memory
2600 * @size: allocation size
2601 *
2602 * Allocate enough pages to cover @size from the page level
2603 * allocator and map them into contiguous kernel virtual space.
1da177e4 2604 *
92eac168
MR
2605 * For tight control over page level allocator and protection flags
2606 * use __vmalloc() instead.
a862f68a
MR
2607 *
2608 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2609 */
2610void *vmalloc(unsigned long size)
2611{
00ef2d2f 2612 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 2613 GFP_KERNEL);
1da177e4 2614}
1da177e4
LT
2615EXPORT_SYMBOL(vmalloc);
2616
e1ca7788 2617/**
92eac168
MR
2618 * vzalloc - allocate virtually contiguous memory with zero fill
2619 * @size: allocation size
2620 *
2621 * Allocate enough pages to cover @size from the page level
2622 * allocator and map them into contiguous kernel virtual space.
2623 * The memory allocated is set to zero.
2624 *
2625 * For tight control over page level allocator and protection flags
2626 * use __vmalloc() instead.
a862f68a
MR
2627 *
2628 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2629 */
2630void *vzalloc(unsigned long size)
2631{
00ef2d2f 2632 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 2633 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
2634}
2635EXPORT_SYMBOL(vzalloc);
2636
83342314 2637/**
ead04089
REB
2638 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2639 * @size: allocation size
83342314 2640 *
ead04089
REB
2641 * The resulting memory area is zeroed so it can be mapped to userspace
2642 * without leaking data.
a862f68a
MR
2643 *
2644 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2645 */
2646void *vmalloc_user(unsigned long size)
2647{
bc84c535
RP
2648 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2649 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2650 VM_USERMAP, NUMA_NO_NODE,
2651 __builtin_return_address(0));
83342314
NP
2652}
2653EXPORT_SYMBOL(vmalloc_user);
2654
930fc45a 2655/**
92eac168
MR
2656 * vmalloc_node - allocate memory on a specific node
2657 * @size: allocation size
2658 * @node: numa node
930fc45a 2659 *
92eac168
MR
2660 * Allocate enough pages to cover @size from the page level
2661 * allocator and map them into contiguous kernel virtual space.
930fc45a 2662 *
92eac168
MR
2663 * For tight control over page level allocator and protection flags
2664 * use __vmalloc() instead.
a862f68a
MR
2665 *
2666 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
2667 */
2668void *vmalloc_node(unsigned long size, int node)
2669{
19809c2d 2670 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
23016969 2671 node, __builtin_return_address(0));
930fc45a
CL
2672}
2673EXPORT_SYMBOL(vmalloc_node);
2674
e1ca7788
DY
2675/**
2676 * vzalloc_node - allocate memory on a specific node with zero fill
2677 * @size: allocation size
2678 * @node: numa node
2679 *
2680 * Allocate enough pages to cover @size from the page level
2681 * allocator and map them into contiguous kernel virtual space.
2682 * The memory allocated is set to zero.
2683 *
2684 * For tight control over page level allocator and protection flags
2685 * use __vmalloc_node() instead.
a862f68a
MR
2686 *
2687 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2688 */
2689void *vzalloc_node(unsigned long size, int node)
2690{
2691 return __vmalloc_node_flags(size, node,
19809c2d 2692 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
2693}
2694EXPORT_SYMBOL(vzalloc_node);
2695
fc970227
AN
2696/**
2697 * vmalloc_user_node_flags - allocate memory for userspace on a specific node
2698 * @size: allocation size
2699 * @node: numa node
2700 * @flags: flags for the page level allocator
2701 *
2702 * The resulting memory area is zeroed so it can be mapped to userspace
2703 * without leaking data.
2704 *
2705 * Return: pointer to the allocated memory or %NULL on error
2706 */
2707void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
2708{
2709 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2710 flags | __GFP_ZERO, PAGE_KERNEL,
2711 VM_USERMAP, node,
2712 __builtin_return_address(0));
2713}
2714EXPORT_SYMBOL(vmalloc_user_node_flags);
2715
1da177e4 2716/**
92eac168
MR
2717 * vmalloc_exec - allocate virtually contiguous, executable memory
2718 * @size: allocation size
1da177e4 2719 *
92eac168
MR
2720 * Kernel-internal function to allocate enough pages to cover @size
2721 * the page level allocator and map them into contiguous and
2722 * executable kernel virtual space.
1da177e4 2723 *
92eac168
MR
2724 * For tight control over page level allocator and protection flags
2725 * use __vmalloc() instead.
a862f68a
MR
2726 *
2727 * Return: pointer to the allocated memory or %NULL on error
1da177e4 2728 */
1da177e4
LT
2729void *vmalloc_exec(unsigned long size)
2730{
868b104d
RE
2731 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2732 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2733 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
2734}
2735
0d08e0d3 2736#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 2737#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 2738#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 2739#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 2740#else
698d0831
MH
2741/*
2742 * 64b systems should always have either DMA or DMA32 zones. For others
2743 * GFP_DMA32 should do the right thing and use the normal zone.
2744 */
2745#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3
AK
2746#endif
2747
1da177e4 2748/**
92eac168
MR
2749 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2750 * @size: allocation size
1da177e4 2751 *
92eac168
MR
2752 * Allocate enough 32bit PA addressable pages to cover @size from the
2753 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
2754 *
2755 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2756 */
2757void *vmalloc_32(unsigned long size)
2758{
2dca6999 2759 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 2760 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 2761}
1da177e4
LT
2762EXPORT_SYMBOL(vmalloc_32);
2763
83342314 2764/**
ead04089 2765 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 2766 * @size: allocation size
ead04089
REB
2767 *
2768 * The resulting memory area is 32bit addressable and zeroed so it can be
2769 * mapped to userspace without leaking data.
a862f68a
MR
2770 *
2771 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2772 */
2773void *vmalloc_32_user(unsigned long size)
2774{
bc84c535
RP
2775 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2776 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2777 VM_USERMAP, NUMA_NO_NODE,
2778 __builtin_return_address(0));
83342314
NP
2779}
2780EXPORT_SYMBOL(vmalloc_32_user);
2781
d0107eb0
KH
2782/*
2783 * small helper routine , copy contents to buf from addr.
2784 * If the page is not present, fill zero.
2785 */
2786
2787static int aligned_vread(char *buf, char *addr, unsigned long count)
2788{
2789 struct page *p;
2790 int copied = 0;
2791
2792 while (count) {
2793 unsigned long offset, length;
2794
891c49ab 2795 offset = offset_in_page(addr);
d0107eb0
KH
2796 length = PAGE_SIZE - offset;
2797 if (length > count)
2798 length = count;
2799 p = vmalloc_to_page(addr);
2800 /*
2801 * To do safe access to this _mapped_ area, we need
2802 * lock. But adding lock here means that we need to add
2803 * overhead of vmalloc()/vfree() calles for this _debug_
2804 * interface, rarely used. Instead of that, we'll use
2805 * kmap() and get small overhead in this access function.
2806 */
2807 if (p) {
2808 /*
2809 * we can expect USER0 is not used (see vread/vwrite's
2810 * function description)
2811 */
9b04c5fe 2812 void *map = kmap_atomic(p);
d0107eb0 2813 memcpy(buf, map + offset, length);
9b04c5fe 2814 kunmap_atomic(map);
d0107eb0
KH
2815 } else
2816 memset(buf, 0, length);
2817
2818 addr += length;
2819 buf += length;
2820 copied += length;
2821 count -= length;
2822 }
2823 return copied;
2824}
2825
2826static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2827{
2828 struct page *p;
2829 int copied = 0;
2830
2831 while (count) {
2832 unsigned long offset, length;
2833
891c49ab 2834 offset = offset_in_page(addr);
d0107eb0
KH
2835 length = PAGE_SIZE - offset;
2836 if (length > count)
2837 length = count;
2838 p = vmalloc_to_page(addr);
2839 /*
2840 * To do safe access to this _mapped_ area, we need
2841 * lock. But adding lock here means that we need to add
2842 * overhead of vmalloc()/vfree() calles for this _debug_
2843 * interface, rarely used. Instead of that, we'll use
2844 * kmap() and get small overhead in this access function.
2845 */
2846 if (p) {
2847 /*
2848 * we can expect USER0 is not used (see vread/vwrite's
2849 * function description)
2850 */
9b04c5fe 2851 void *map = kmap_atomic(p);
d0107eb0 2852 memcpy(map + offset, buf, length);
9b04c5fe 2853 kunmap_atomic(map);
d0107eb0
KH
2854 }
2855 addr += length;
2856 buf += length;
2857 copied += length;
2858 count -= length;
2859 }
2860 return copied;
2861}
2862
2863/**
92eac168
MR
2864 * vread() - read vmalloc area in a safe way.
2865 * @buf: buffer for reading data
2866 * @addr: vm address.
2867 * @count: number of bytes to be read.
2868 *
92eac168
MR
2869 * This function checks that addr is a valid vmalloc'ed area, and
2870 * copy data from that area to a given buffer. If the given memory range
2871 * of [addr...addr+count) includes some valid address, data is copied to
2872 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2873 * IOREMAP area is treated as memory hole and no copy is done.
2874 *
2875 * If [addr...addr+count) doesn't includes any intersects with alive
2876 * vm_struct area, returns 0. @buf should be kernel's buffer.
2877 *
2878 * Note: In usual ops, vread() is never necessary because the caller
2879 * should know vmalloc() area is valid and can use memcpy().
2880 * This is for routines which have to access vmalloc area without
d9009d67 2881 * any information, as /dev/kmem.
a862f68a
MR
2882 *
2883 * Return: number of bytes for which addr and buf should be increased
2884 * (same number as @count) or %0 if [addr...addr+count) doesn't
2885 * include any intersection with valid vmalloc area
d0107eb0 2886 */
1da177e4
LT
2887long vread(char *buf, char *addr, unsigned long count)
2888{
e81ce85f
JK
2889 struct vmap_area *va;
2890 struct vm_struct *vm;
1da177e4 2891 char *vaddr, *buf_start = buf;
d0107eb0 2892 unsigned long buflen = count;
1da177e4
LT
2893 unsigned long n;
2894
2895 /* Don't allow overflow */
2896 if ((unsigned long) addr + count < count)
2897 count = -(unsigned long) addr;
2898
e81ce85f
JK
2899 spin_lock(&vmap_area_lock);
2900 list_for_each_entry(va, &vmap_area_list, list) {
2901 if (!count)
2902 break;
2903
688fcbfc 2904 if (!va->vm)
e81ce85f
JK
2905 continue;
2906
2907 vm = va->vm;
2908 vaddr = (char *) vm->addr;
762216ab 2909 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2910 continue;
2911 while (addr < vaddr) {
2912 if (count == 0)
2913 goto finished;
2914 *buf = '\0';
2915 buf++;
2916 addr++;
2917 count--;
2918 }
762216ab 2919 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2920 if (n > count)
2921 n = count;
e81ce85f 2922 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2923 aligned_vread(buf, addr, n);
2924 else /* IOREMAP area is treated as memory hole */
2925 memset(buf, 0, n);
2926 buf += n;
2927 addr += n;
2928 count -= n;
1da177e4
LT
2929 }
2930finished:
e81ce85f 2931 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2932
2933 if (buf == buf_start)
2934 return 0;
2935 /* zero-fill memory holes */
2936 if (buf != buf_start + buflen)
2937 memset(buf, 0, buflen - (buf - buf_start));
2938
2939 return buflen;
1da177e4
LT
2940}
2941
d0107eb0 2942/**
92eac168
MR
2943 * vwrite() - write vmalloc area in a safe way.
2944 * @buf: buffer for source data
2945 * @addr: vm address.
2946 * @count: number of bytes to be read.
2947 *
92eac168
MR
2948 * This function checks that addr is a valid vmalloc'ed area, and
2949 * copy data from a buffer to the given addr. If specified range of
2950 * [addr...addr+count) includes some valid address, data is copied from
2951 * proper area of @buf. If there are memory holes, no copy to hole.
2952 * IOREMAP area is treated as memory hole and no copy is done.
2953 *
2954 * If [addr...addr+count) doesn't includes any intersects with alive
2955 * vm_struct area, returns 0. @buf should be kernel's buffer.
2956 *
2957 * Note: In usual ops, vwrite() is never necessary because the caller
2958 * should know vmalloc() area is valid and can use memcpy().
2959 * This is for routines which have to access vmalloc area without
d9009d67 2960 * any information, as /dev/kmem.
a862f68a
MR
2961 *
2962 * Return: number of bytes for which addr and buf should be
2963 * increased (same number as @count) or %0 if [addr...addr+count)
2964 * doesn't include any intersection with valid vmalloc area
d0107eb0 2965 */
1da177e4
LT
2966long vwrite(char *buf, char *addr, unsigned long count)
2967{
e81ce85f
JK
2968 struct vmap_area *va;
2969 struct vm_struct *vm;
d0107eb0
KH
2970 char *vaddr;
2971 unsigned long n, buflen;
2972 int copied = 0;
1da177e4
LT
2973
2974 /* Don't allow overflow */
2975 if ((unsigned long) addr + count < count)
2976 count = -(unsigned long) addr;
d0107eb0 2977 buflen = count;
1da177e4 2978
e81ce85f
JK
2979 spin_lock(&vmap_area_lock);
2980 list_for_each_entry(va, &vmap_area_list, list) {
2981 if (!count)
2982 break;
2983
688fcbfc 2984 if (!va->vm)
e81ce85f
JK
2985 continue;
2986
2987 vm = va->vm;
2988 vaddr = (char *) vm->addr;
762216ab 2989 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2990 continue;
2991 while (addr < vaddr) {
2992 if (count == 0)
2993 goto finished;
2994 buf++;
2995 addr++;
2996 count--;
2997 }
762216ab 2998 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2999 if (n > count)
3000 n = count;
e81ce85f 3001 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
3002 aligned_vwrite(buf, addr, n);
3003 copied++;
3004 }
3005 buf += n;
3006 addr += n;
3007 count -= n;
1da177e4
LT
3008 }
3009finished:
e81ce85f 3010 spin_unlock(&vmap_area_lock);
d0107eb0
KH
3011 if (!copied)
3012 return 0;
3013 return buflen;
1da177e4 3014}
83342314
NP
3015
3016/**
92eac168
MR
3017 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3018 * @vma: vma to cover
3019 * @uaddr: target user address to start at
3020 * @kaddr: virtual address of vmalloc kernel memory
3021 * @size: size of map area
7682486b 3022 *
92eac168 3023 * Returns: 0 for success, -Exxx on failure
83342314 3024 *
92eac168
MR
3025 * This function checks that @kaddr is a valid vmalloc'ed area,
3026 * and that it is big enough to cover the range starting at
3027 * @uaddr in @vma. Will return failure if that criteria isn't
3028 * met.
83342314 3029 *
92eac168 3030 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 3031 */
e69e9d4a
HD
3032int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3033 void *kaddr, unsigned long size)
83342314
NP
3034{
3035 struct vm_struct *area;
83342314 3036
e69e9d4a
HD
3037 size = PAGE_ALIGN(size);
3038
3039 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
3040 return -EINVAL;
3041
e69e9d4a 3042 area = find_vm_area(kaddr);
83342314 3043 if (!area)
db64fe02 3044 return -EINVAL;
83342314 3045
fe9041c2 3046 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 3047 return -EINVAL;
83342314 3048
401592d2 3049 if (kaddr + size > area->addr + get_vm_area_size(area))
db64fe02 3050 return -EINVAL;
83342314 3051
83342314 3052 do {
e69e9d4a 3053 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
3054 int ret;
3055
83342314
NP
3056 ret = vm_insert_page(vma, uaddr, page);
3057 if (ret)
3058 return ret;
3059
3060 uaddr += PAGE_SIZE;
e69e9d4a
HD
3061 kaddr += PAGE_SIZE;
3062 size -= PAGE_SIZE;
3063 } while (size > 0);
83342314 3064
314e51b9 3065 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 3066
db64fe02 3067 return 0;
83342314 3068}
e69e9d4a
HD
3069EXPORT_SYMBOL(remap_vmalloc_range_partial);
3070
3071/**
92eac168
MR
3072 * remap_vmalloc_range - map vmalloc pages to userspace
3073 * @vma: vma to cover (map full range of vma)
3074 * @addr: vmalloc memory
3075 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3076 *
92eac168 3077 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3078 *
92eac168
MR
3079 * This function checks that addr is a valid vmalloc'ed area, and
3080 * that it is big enough to cover the vma. Will return failure if
3081 * that criteria isn't met.
e69e9d4a 3082 *
92eac168 3083 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3084 */
3085int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3086 unsigned long pgoff)
3087{
3088 return remap_vmalloc_range_partial(vma, vma->vm_start,
3089 addr + (pgoff << PAGE_SHIFT),
3090 vma->vm_end - vma->vm_start);
3091}
83342314
NP
3092EXPORT_SYMBOL(remap_vmalloc_range);
3093
1eeb66a1
CH
3094/*
3095 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3096 * have one.
3f8fd02b
JR
3097 *
3098 * The purpose of this function is to make sure the vmalloc area
3099 * mappings are identical in all page-tables in the system.
1eeb66a1 3100 */
3b32123d 3101void __weak vmalloc_sync_all(void)
1eeb66a1
CH
3102{
3103}
5f4352fb
JF
3104
3105
8b1e0f81 3106static int f(pte_t *pte, unsigned long addr, void *data)
5f4352fb 3107{
cd12909c
DV
3108 pte_t ***p = data;
3109
3110 if (p) {
3111 *(*p) = pte;
3112 (*p)++;
3113 }
5f4352fb
JF
3114 return 0;
3115}
3116
3117/**
92eac168
MR
3118 * alloc_vm_area - allocate a range of kernel address space
3119 * @size: size of the area
3120 * @ptes: returns the PTEs for the address space
7682486b 3121 *
92eac168 3122 * Returns: NULL on failure, vm_struct on success
5f4352fb 3123 *
92eac168
MR
3124 * This function reserves a range of kernel address space, and
3125 * allocates pagetables to map that range. No actual mappings
3126 * are created.
cd12909c 3127 *
92eac168
MR
3128 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3129 * allocated for the VM area are returned.
5f4352fb 3130 */
cd12909c 3131struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
3132{
3133 struct vm_struct *area;
3134
23016969
CL
3135 area = get_vm_area_caller(size, VM_IOREMAP,
3136 __builtin_return_address(0));
5f4352fb
JF
3137 if (area == NULL)
3138 return NULL;
3139
3140 /*
3141 * This ensures that page tables are constructed for this region
3142 * of kernel virtual address space and mapped into init_mm.
3143 */
3144 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 3145 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
3146 free_vm_area(area);
3147 return NULL;
3148 }
3149
5f4352fb
JF
3150 return area;
3151}
3152EXPORT_SYMBOL_GPL(alloc_vm_area);
3153
3154void free_vm_area(struct vm_struct *area)
3155{
3156 struct vm_struct *ret;
3157 ret = remove_vm_area(area->addr);
3158 BUG_ON(ret != area);
3159 kfree(area);
3160}
3161EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3162
4f8b02b4 3163#ifdef CONFIG_SMP
ca23e405
TH
3164static struct vmap_area *node_to_va(struct rb_node *n)
3165{
4583e773 3166 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3167}
3168
3169/**
68ad4a33
URS
3170 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3171 * @addr: target address
ca23e405 3172 *
68ad4a33
URS
3173 * Returns: vmap_area if it is found. If there is no such area
3174 * the first highest(reverse order) vmap_area is returned
3175 * i.e. va->va_start < addr && va->va_end < addr or NULL
3176 * if there are no any areas before @addr.
ca23e405 3177 */
68ad4a33
URS
3178static struct vmap_area *
3179pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3180{
68ad4a33
URS
3181 struct vmap_area *va, *tmp;
3182 struct rb_node *n;
3183
3184 n = free_vmap_area_root.rb_node;
3185 va = NULL;
ca23e405
TH
3186
3187 while (n) {
68ad4a33
URS
3188 tmp = rb_entry(n, struct vmap_area, rb_node);
3189 if (tmp->va_start <= addr) {
3190 va = tmp;
3191 if (tmp->va_end >= addr)
3192 break;
3193
ca23e405 3194 n = n->rb_right;
68ad4a33
URS
3195 } else {
3196 n = n->rb_left;
3197 }
ca23e405
TH
3198 }
3199
68ad4a33 3200 return va;
ca23e405
TH
3201}
3202
3203/**
68ad4a33
URS
3204 * pvm_determine_end_from_reverse - find the highest aligned address
3205 * of free block below VMALLOC_END
3206 * @va:
3207 * in - the VA we start the search(reverse order);
3208 * out - the VA with the highest aligned end address.
ca23e405 3209 *
68ad4a33 3210 * Returns: determined end address within vmap_area
ca23e405 3211 */
68ad4a33
URS
3212static unsigned long
3213pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3214{
68ad4a33 3215 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3216 unsigned long addr;
3217
68ad4a33
URS
3218 if (likely(*va)) {
3219 list_for_each_entry_from_reverse((*va),
3220 &free_vmap_area_list, list) {
3221 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3222 if ((*va)->va_start < addr)
3223 return addr;
3224 }
ca23e405
TH
3225 }
3226
68ad4a33 3227 return 0;
ca23e405
TH
3228}
3229
3230/**
3231 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3232 * @offsets: array containing offset of each area
3233 * @sizes: array containing size of each area
3234 * @nr_vms: the number of areas to allocate
3235 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3236 *
3237 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3238 * vm_structs on success, %NULL on failure
3239 *
3240 * Percpu allocator wants to use congruent vm areas so that it can
3241 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3242 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3243 * be scattered pretty far, distance between two areas easily going up
3244 * to gigabytes. To avoid interacting with regular vmallocs, these
3245 * areas are allocated from top.
ca23e405 3246 *
68ad4a33
URS
3247 * Despite its complicated look, this allocator is rather simple. It
3248 * does everything top-down and scans free blocks from the end looking
3249 * for matching base. While scanning, if any of the areas do not fit the
3250 * base address is pulled down to fit the area. Scanning is repeated till
3251 * all the areas fit and then all necessary data structures are inserted
3252 * and the result is returned.
ca23e405
TH
3253 */
3254struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3255 const size_t *sizes, int nr_vms,
ec3f64fc 3256 size_t align)
ca23e405
TH
3257{
3258 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3259 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3260 struct vmap_area **vas, *va;
ca23e405
TH
3261 struct vm_struct **vms;
3262 int area, area2, last_area, term_area;
68ad4a33 3263 unsigned long base, start, size, end, last_end;
ca23e405 3264 bool purged = false;
68ad4a33 3265 enum fit_type type;
ca23e405 3266
ca23e405 3267 /* verify parameters and allocate data structures */
891c49ab 3268 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3269 for (last_area = 0, area = 0; area < nr_vms; area++) {
3270 start = offsets[area];
3271 end = start + sizes[area];
3272
3273 /* is everything aligned properly? */
3274 BUG_ON(!IS_ALIGNED(offsets[area], align));
3275 BUG_ON(!IS_ALIGNED(sizes[area], align));
3276
3277 /* detect the area with the highest address */
3278 if (start > offsets[last_area])
3279 last_area = area;
3280
c568da28 3281 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3282 unsigned long start2 = offsets[area2];
3283 unsigned long end2 = start2 + sizes[area2];
3284
c568da28 3285 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3286 }
3287 }
3288 last_end = offsets[last_area] + sizes[last_area];
3289
3290 if (vmalloc_end - vmalloc_start < last_end) {
3291 WARN_ON(true);
3292 return NULL;
3293 }
3294
4d67d860
TM
3295 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3296 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3297 if (!vas || !vms)
f1db7afd 3298 goto err_free2;
ca23e405
TH
3299
3300 for (area = 0; area < nr_vms; area++) {
68ad4a33 3301 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3302 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3303 if (!vas[area] || !vms[area])
3304 goto err_free;
3305 }
3306retry:
e36176be 3307 spin_lock(&free_vmap_area_lock);
ca23e405
TH
3308
3309 /* start scanning - we scan from the top, begin with the last area */
3310 area = term_area = last_area;
3311 start = offsets[area];
3312 end = start + sizes[area];
3313
68ad4a33
URS
3314 va = pvm_find_va_enclose_addr(vmalloc_end);
3315 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3316
3317 while (true) {
ca23e405
TH
3318 /*
3319 * base might have underflowed, add last_end before
3320 * comparing.
3321 */
68ad4a33
URS
3322 if (base + last_end < vmalloc_start + last_end)
3323 goto overflow;
ca23e405
TH
3324
3325 /*
68ad4a33 3326 * Fitting base has not been found.
ca23e405 3327 */
68ad4a33
URS
3328 if (va == NULL)
3329 goto overflow;
ca23e405 3330
5336e52c
KS
3331 /*
3332 * If required width exeeds current VA block, move
3333 * base downwards and then recheck.
3334 */
3335 if (base + end > va->va_end) {
3336 base = pvm_determine_end_from_reverse(&va, align) - end;
3337 term_area = area;
3338 continue;
3339 }
3340
ca23e405 3341 /*
68ad4a33 3342 * If this VA does not fit, move base downwards and recheck.
ca23e405 3343 */
5336e52c 3344 if (base + start < va->va_start) {
68ad4a33
URS
3345 va = node_to_va(rb_prev(&va->rb_node));
3346 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3347 term_area = area;
3348 continue;
3349 }
3350
3351 /*
3352 * This area fits, move on to the previous one. If
3353 * the previous one is the terminal one, we're done.
3354 */
3355 area = (area + nr_vms - 1) % nr_vms;
3356 if (area == term_area)
3357 break;
68ad4a33 3358
ca23e405
TH
3359 start = offsets[area];
3360 end = start + sizes[area];
68ad4a33 3361 va = pvm_find_va_enclose_addr(base + end);
ca23e405 3362 }
68ad4a33 3363
ca23e405
TH
3364 /* we've found a fitting base, insert all va's */
3365 for (area = 0; area < nr_vms; area++) {
68ad4a33 3366 int ret;
ca23e405 3367
68ad4a33
URS
3368 start = base + offsets[area];
3369 size = sizes[area];
ca23e405 3370
68ad4a33
URS
3371 va = pvm_find_va_enclose_addr(start);
3372 if (WARN_ON_ONCE(va == NULL))
3373 /* It is a BUG(), but trigger recovery instead. */
3374 goto recovery;
3375
3376 type = classify_va_fit_type(va, start, size);
3377 if (WARN_ON_ONCE(type == NOTHING_FIT))
3378 /* It is a BUG(), but trigger recovery instead. */
3379 goto recovery;
3380
3381 ret = adjust_va_to_fit_type(va, start, size, type);
3382 if (unlikely(ret))
3383 goto recovery;
3384
3385 /* Allocated area. */
3386 va = vas[area];
3387 va->va_start = start;
3388 va->va_end = start + size;
68ad4a33 3389 }
ca23e405 3390
e36176be 3391 spin_unlock(&free_vmap_area_lock);
ca23e405
TH
3392
3393 /* insert all vm's */
e36176be
URS
3394 spin_lock(&vmap_area_lock);
3395 for (area = 0; area < nr_vms; area++) {
3396 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3397
3398 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3645cb4a 3399 pcpu_get_vm_areas);
e36176be
URS
3400 }
3401 spin_unlock(&vmap_area_lock);
ca23e405
TH
3402
3403 kfree(vas);
3404 return vms;
3405
68ad4a33 3406recovery:
e36176be
URS
3407 /*
3408 * Remove previously allocated areas. There is no
3409 * need in removing these areas from the busy tree,
3410 * because they are inserted only on the final step
3411 * and when pcpu_get_vm_areas() is success.
3412 */
68ad4a33 3413 while (area--) {
e36176be
URS
3414 merge_or_add_vmap_area(vas[area],
3415 &free_vmap_area_root, &free_vmap_area_list);
68ad4a33
URS
3416 vas[area] = NULL;
3417 }
3418
3419overflow:
e36176be 3420 spin_unlock(&free_vmap_area_lock);
68ad4a33
URS
3421 if (!purged) {
3422 purge_vmap_area_lazy();
3423 purged = true;
3424
3425 /* Before "retry", check if we recover. */
3426 for (area = 0; area < nr_vms; area++) {
3427 if (vas[area])
3428 continue;
3429
3430 vas[area] = kmem_cache_zalloc(
3431 vmap_area_cachep, GFP_KERNEL);
3432 if (!vas[area])
3433 goto err_free;
3434 }
3435
3436 goto retry;
3437 }
3438
ca23e405
TH
3439err_free:
3440 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
3441 if (vas[area])
3442 kmem_cache_free(vmap_area_cachep, vas[area]);
3443
f1db7afd 3444 kfree(vms[area]);
ca23e405 3445 }
f1db7afd 3446err_free2:
ca23e405
TH
3447 kfree(vas);
3448 kfree(vms);
3449 return NULL;
3450}
3451
3452/**
3453 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3454 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3455 * @nr_vms: the number of allocated areas
3456 *
3457 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3458 */
3459void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3460{
3461 int i;
3462
3463 for (i = 0; i < nr_vms; i++)
3464 free_vm_area(vms[i]);
3465 kfree(vms);
3466}
4f8b02b4 3467#endif /* CONFIG_SMP */
a10aa579
CL
3468
3469#ifdef CONFIG_PROC_FS
3470static void *s_start(struct seq_file *m, loff_t *pos)
e36176be 3471 __acquires(&vmap_purge_lock)
d4033afd 3472 __acquires(&vmap_area_lock)
a10aa579 3473{
e36176be 3474 mutex_lock(&vmap_purge_lock);
d4033afd 3475 spin_lock(&vmap_area_lock);
e36176be 3476
3f500069 3477 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
3478}
3479
3480static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3481{
3f500069 3482 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
3483}
3484
3485static void s_stop(struct seq_file *m, void *p)
e36176be 3486 __releases(&vmap_purge_lock)
d4033afd 3487 __releases(&vmap_area_lock)
a10aa579 3488{
e36176be 3489 mutex_unlock(&vmap_purge_lock);
d4033afd 3490 spin_unlock(&vmap_area_lock);
a10aa579
CL
3491}
3492
a47a126a
ED
3493static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3494{
e5adfffc 3495 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
3496 unsigned int nr, *counters = m->private;
3497
3498 if (!counters)
3499 return;
3500
af12346c
WL
3501 if (v->flags & VM_UNINITIALIZED)
3502 return;
7e5b528b
DV
3503 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3504 smp_rmb();
af12346c 3505
a47a126a
ED
3506 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3507
3508 for (nr = 0; nr < v->nr_pages; nr++)
3509 counters[page_to_nid(v->pages[nr])]++;
3510
3511 for_each_node_state(nr, N_HIGH_MEMORY)
3512 if (counters[nr])
3513 seq_printf(m, " N%u=%u", nr, counters[nr]);
3514 }
3515}
3516
dd3b8353
URS
3517static void show_purge_info(struct seq_file *m)
3518{
3519 struct llist_node *head;
3520 struct vmap_area *va;
3521
3522 head = READ_ONCE(vmap_purge_list.first);
3523 if (head == NULL)
3524 return;
3525
3526 llist_for_each_entry(va, head, purge_list) {
3527 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3528 (void *)va->va_start, (void *)va->va_end,
3529 va->va_end - va->va_start);
3530 }
3531}
3532
a10aa579
CL
3533static int s_show(struct seq_file *m, void *p)
3534{
3f500069 3535 struct vmap_area *va;
d4033afd
JK
3536 struct vm_struct *v;
3537
3f500069 3538 va = list_entry(p, struct vmap_area, list);
3539
c2ce8c14 3540 /*
688fcbfc
PL
3541 * s_show can encounter race with remove_vm_area, !vm on behalf
3542 * of vmap area is being tear down or vm_map_ram allocation.
c2ce8c14 3543 */
688fcbfc 3544 if (!va->vm) {
dd3b8353 3545 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
78c72746 3546 (void *)va->va_start, (void *)va->va_end,
dd3b8353 3547 va->va_end - va->va_start);
78c72746 3548
d4033afd 3549 return 0;
78c72746 3550 }
d4033afd
JK
3551
3552 v = va->vm;
a10aa579 3553
45ec1690 3554 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
3555 v->addr, v->addr + v->size, v->size);
3556
62c70bce
JP
3557 if (v->caller)
3558 seq_printf(m, " %pS", v->caller);
23016969 3559
a10aa579
CL
3560 if (v->nr_pages)
3561 seq_printf(m, " pages=%d", v->nr_pages);
3562
3563 if (v->phys_addr)
199eaa05 3564 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
3565
3566 if (v->flags & VM_IOREMAP)
f4527c90 3567 seq_puts(m, " ioremap");
a10aa579
CL
3568
3569 if (v->flags & VM_ALLOC)
f4527c90 3570 seq_puts(m, " vmalloc");
a10aa579
CL
3571
3572 if (v->flags & VM_MAP)
f4527c90 3573 seq_puts(m, " vmap");
a10aa579
CL
3574
3575 if (v->flags & VM_USERMAP)
f4527c90 3576 seq_puts(m, " user");
a10aa579 3577
fe9041c2
CH
3578 if (v->flags & VM_DMA_COHERENT)
3579 seq_puts(m, " dma-coherent");
3580
244d63ee 3581 if (is_vmalloc_addr(v->pages))
f4527c90 3582 seq_puts(m, " vpages");
a10aa579 3583
a47a126a 3584 show_numa_info(m, v);
a10aa579 3585 seq_putc(m, '\n');
dd3b8353
URS
3586
3587 /*
3588 * As a final step, dump "unpurged" areas. Note,
3589 * that entire "/proc/vmallocinfo" output will not
3590 * be address sorted, because the purge list is not
3591 * sorted.
3592 */
3593 if (list_is_last(&va->list, &vmap_area_list))
3594 show_purge_info(m);
3595
a10aa579
CL
3596 return 0;
3597}
3598
5f6a6a9c 3599static const struct seq_operations vmalloc_op = {
a10aa579
CL
3600 .start = s_start,
3601 .next = s_next,
3602 .stop = s_stop,
3603 .show = s_show,
3604};
5f6a6a9c 3605
5f6a6a9c
AD
3606static int __init proc_vmalloc_init(void)
3607{
fddda2b7 3608 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 3609 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
3610 &vmalloc_op,
3611 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 3612 else
0825a6f9 3613 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
3614 return 0;
3615}
3616module_init(proc_vmalloc_init);
db3808c1 3617
a10aa579 3618#endif