]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/vmalloc.c
mm/vmalloc: respect passed gfp_mask when doing preloading
[mirror_ubuntu-jammy-kernel.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/vmalloc.c
4 *
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 9 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
10 */
11
db64fe02 12#include <linux/vmalloc.h>
1da177e4
LT
13#include <linux/mm.h>
14#include <linux/module.h>
15#include <linux/highmem.h>
c3edc401 16#include <linux/sched/signal.h>
1da177e4
LT
17#include <linux/slab.h>
18#include <linux/spinlock.h>
19#include <linux/interrupt.h>
5f6a6a9c 20#include <linux/proc_fs.h>
a10aa579 21#include <linux/seq_file.h>
868b104d 22#include <linux/set_memory.h>
3ac7fe5a 23#include <linux/debugobjects.h>
23016969 24#include <linux/kallsyms.h>
db64fe02 25#include <linux/list.h>
4da56b99 26#include <linux/notifier.h>
db64fe02
NP
27#include <linux/rbtree.h>
28#include <linux/radix-tree.h>
29#include <linux/rcupdate.h>
f0aa6617 30#include <linux/pfn.h>
89219d37 31#include <linux/kmemleak.h>
60063497 32#include <linux/atomic.h>
3b32123d 33#include <linux/compiler.h>
32fcfd40 34#include <linux/llist.h>
0f616be1 35#include <linux/bitops.h>
68ad4a33 36#include <linux/rbtree_augmented.h>
3b32123d 37
7c0f6ba6 38#include <linux/uaccess.h>
1da177e4 39#include <asm/tlbflush.h>
2dca6999 40#include <asm/shmparam.h>
1da177e4 41
dd56b046
MG
42#include "internal.h"
43
32fcfd40
AV
44struct vfree_deferred {
45 struct llist_head list;
46 struct work_struct wq;
47};
48static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
49
50static void __vunmap(const void *, int);
51
52static void free_work(struct work_struct *w)
53{
54 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
55 struct llist_node *t, *llnode;
56
57 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
58 __vunmap((void *)llnode, 1);
32fcfd40
AV
59}
60
db64fe02 61/*** Page table manipulation functions ***/
b221385b 62
1da177e4
LT
63static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
64{
65 pte_t *pte;
66
67 pte = pte_offset_kernel(pmd, addr);
68 do {
69 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
70 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
71 } while (pte++, addr += PAGE_SIZE, addr != end);
72}
73
db64fe02 74static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
75{
76 pmd_t *pmd;
77 unsigned long next;
78
79 pmd = pmd_offset(pud, addr);
80 do {
81 next = pmd_addr_end(addr, end);
b9820d8f
TK
82 if (pmd_clear_huge(pmd))
83 continue;
1da177e4
LT
84 if (pmd_none_or_clear_bad(pmd))
85 continue;
86 vunmap_pte_range(pmd, addr, next);
87 } while (pmd++, addr = next, addr != end);
88}
89
c2febafc 90static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
1da177e4
LT
91{
92 pud_t *pud;
93 unsigned long next;
94
c2febafc 95 pud = pud_offset(p4d, addr);
1da177e4
LT
96 do {
97 next = pud_addr_end(addr, end);
b9820d8f
TK
98 if (pud_clear_huge(pud))
99 continue;
1da177e4
LT
100 if (pud_none_or_clear_bad(pud))
101 continue;
102 vunmap_pmd_range(pud, addr, next);
103 } while (pud++, addr = next, addr != end);
104}
105
c2febafc
KS
106static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
107{
108 p4d_t *p4d;
109 unsigned long next;
110
111 p4d = p4d_offset(pgd, addr);
112 do {
113 next = p4d_addr_end(addr, end);
114 if (p4d_clear_huge(p4d))
115 continue;
116 if (p4d_none_or_clear_bad(p4d))
117 continue;
118 vunmap_pud_range(p4d, addr, next);
119 } while (p4d++, addr = next, addr != end);
120}
121
db64fe02 122static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
123{
124 pgd_t *pgd;
125 unsigned long next;
1da177e4
LT
126
127 BUG_ON(addr >= end);
128 pgd = pgd_offset_k(addr);
1da177e4
LT
129 do {
130 next = pgd_addr_end(addr, end);
131 if (pgd_none_or_clear_bad(pgd))
132 continue;
c2febafc 133 vunmap_p4d_range(pgd, addr, next);
1da177e4 134 } while (pgd++, addr = next, addr != end);
1da177e4
LT
135}
136
137static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 138 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
139{
140 pte_t *pte;
141
db64fe02
NP
142 /*
143 * nr is a running index into the array which helps higher level
144 * callers keep track of where we're up to.
145 */
146
872fec16 147 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
148 if (!pte)
149 return -ENOMEM;
150 do {
db64fe02
NP
151 struct page *page = pages[*nr];
152
153 if (WARN_ON(!pte_none(*pte)))
154 return -EBUSY;
155 if (WARN_ON(!page))
1da177e4
LT
156 return -ENOMEM;
157 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 158 (*nr)++;
1da177e4
LT
159 } while (pte++, addr += PAGE_SIZE, addr != end);
160 return 0;
161}
162
db64fe02
NP
163static int vmap_pmd_range(pud_t *pud, unsigned long addr,
164 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
165{
166 pmd_t *pmd;
167 unsigned long next;
168
169 pmd = pmd_alloc(&init_mm, pud, addr);
170 if (!pmd)
171 return -ENOMEM;
172 do {
173 next = pmd_addr_end(addr, end);
db64fe02 174 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
175 return -ENOMEM;
176 } while (pmd++, addr = next, addr != end);
177 return 0;
178}
179
c2febafc 180static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
db64fe02 181 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
182{
183 pud_t *pud;
184 unsigned long next;
185
c2febafc 186 pud = pud_alloc(&init_mm, p4d, addr);
1da177e4
LT
187 if (!pud)
188 return -ENOMEM;
189 do {
190 next = pud_addr_end(addr, end);
db64fe02 191 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
192 return -ENOMEM;
193 } while (pud++, addr = next, addr != end);
194 return 0;
195}
196
c2febafc
KS
197static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
198 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
199{
200 p4d_t *p4d;
201 unsigned long next;
202
203 p4d = p4d_alloc(&init_mm, pgd, addr);
204 if (!p4d)
205 return -ENOMEM;
206 do {
207 next = p4d_addr_end(addr, end);
208 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
209 return -ENOMEM;
210 } while (p4d++, addr = next, addr != end);
211 return 0;
212}
213
db64fe02
NP
214/*
215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
216 * will have pfns corresponding to the "pages" array.
217 *
218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
219 */
8fc48985
TH
220static int vmap_page_range_noflush(unsigned long start, unsigned long end,
221 pgprot_t prot, struct page **pages)
1da177e4
LT
222{
223 pgd_t *pgd;
224 unsigned long next;
2e4e27c7 225 unsigned long addr = start;
db64fe02
NP
226 int err = 0;
227 int nr = 0;
1da177e4
LT
228
229 BUG_ON(addr >= end);
230 pgd = pgd_offset_k(addr);
1da177e4
LT
231 do {
232 next = pgd_addr_end(addr, end);
c2febafc 233 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
1da177e4 234 if (err)
bf88c8c8 235 return err;
1da177e4 236 } while (pgd++, addr = next, addr != end);
db64fe02 237
db64fe02 238 return nr;
1da177e4
LT
239}
240
8fc48985
TH
241static int vmap_page_range(unsigned long start, unsigned long end,
242 pgprot_t prot, struct page **pages)
243{
244 int ret;
245
246 ret = vmap_page_range_noflush(start, end, prot, pages);
247 flush_cache_vmap(start, end);
248 return ret;
249}
250
81ac3ad9 251int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
252{
253 /*
ab4f2ee1 254 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
255 * and fall back on vmalloc() if that fails. Others
256 * just put it in the vmalloc space.
257 */
258#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
259 unsigned long addr = (unsigned long)x;
260 if (addr >= MODULES_VADDR && addr < MODULES_END)
261 return 1;
262#endif
263 return is_vmalloc_addr(x);
264}
265
48667e7a 266/*
add688fb 267 * Walk a vmap address to the struct page it maps.
48667e7a 268 */
add688fb 269struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
270{
271 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 272 struct page *page = NULL;
48667e7a 273 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
274 p4d_t *p4d;
275 pud_t *pud;
276 pmd_t *pmd;
277 pte_t *ptep, pte;
48667e7a 278
7aa413de
IM
279 /*
280 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
281 * architectures that do not vmalloc module space
282 */
73bdf0a6 283 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 284
c2febafc
KS
285 if (pgd_none(*pgd))
286 return NULL;
287 p4d = p4d_offset(pgd, addr);
288 if (p4d_none(*p4d))
289 return NULL;
290 pud = pud_offset(p4d, addr);
029c54b0
AB
291
292 /*
293 * Don't dereference bad PUD or PMD (below) entries. This will also
294 * identify huge mappings, which we may encounter on architectures
295 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
296 * identified as vmalloc addresses by is_vmalloc_addr(), but are
297 * not [unambiguously] associated with a struct page, so there is
298 * no correct value to return for them.
299 */
300 WARN_ON_ONCE(pud_bad(*pud));
301 if (pud_none(*pud) || pud_bad(*pud))
c2febafc
KS
302 return NULL;
303 pmd = pmd_offset(pud, addr);
029c54b0
AB
304 WARN_ON_ONCE(pmd_bad(*pmd));
305 if (pmd_none(*pmd) || pmd_bad(*pmd))
c2febafc
KS
306 return NULL;
307
308 ptep = pte_offset_map(pmd, addr);
309 pte = *ptep;
310 if (pte_present(pte))
311 page = pte_page(pte);
312 pte_unmap(ptep);
add688fb 313 return page;
48667e7a 314}
add688fb 315EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
316
317/*
add688fb 318 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 319 */
add688fb 320unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 321{
add688fb 322 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 323}
add688fb 324EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 325
db64fe02
NP
326
327/*** Global kva allocator ***/
328
bb850f4d 329#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 330#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 331
db64fe02 332
db64fe02 333static DEFINE_SPINLOCK(vmap_area_lock);
f1c4069e
JK
334/* Export for kexec only */
335LIST_HEAD(vmap_area_list);
80c4bd7a 336static LLIST_HEAD(vmap_purge_list);
89699605 337static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 338static bool vmap_initialized __read_mostly;
89699605 339
68ad4a33
URS
340/*
341 * This kmem_cache is used for vmap_area objects. Instead of
342 * allocating from slab we reuse an object from this cache to
343 * make things faster. Especially in "no edge" splitting of
344 * free block.
345 */
346static struct kmem_cache *vmap_area_cachep;
347
348/*
349 * This linked list is used in pair with free_vmap_area_root.
350 * It gives O(1) access to prev/next to perform fast coalescing.
351 */
352static LIST_HEAD(free_vmap_area_list);
353
354/*
355 * This augment red-black tree represents the free vmap space.
356 * All vmap_area objects in this tree are sorted by va->va_start
357 * address. It is used for allocation and merging when a vmap
358 * object is released.
359 *
360 * Each vmap_area node contains a maximum available free block
361 * of its sub-tree, right or left. Therefore it is possible to
362 * find a lowest match of free area.
363 */
364static struct rb_root free_vmap_area_root = RB_ROOT;
365
82dd23e8
URS
366/*
367 * Preload a CPU with one object for "no edge" split case. The
368 * aim is to get rid of allocations from the atomic context, thus
369 * to use more permissive allocation masks.
370 */
371static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
372
68ad4a33
URS
373static __always_inline unsigned long
374va_size(struct vmap_area *va)
375{
376 return (va->va_end - va->va_start);
377}
378
379static __always_inline unsigned long
380get_subtree_max_size(struct rb_node *node)
381{
382 struct vmap_area *va;
383
384 va = rb_entry_safe(node, struct vmap_area, rb_node);
385 return va ? va->subtree_max_size : 0;
386}
89699605 387
68ad4a33
URS
388/*
389 * Gets called when remove the node and rotate.
390 */
391static __always_inline unsigned long
392compute_subtree_max_size(struct vmap_area *va)
393{
394 return max3(va_size(va),
395 get_subtree_max_size(va->rb_node.rb_left),
396 get_subtree_max_size(va->rb_node.rb_right));
397}
398
315cc066
ML
399RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
400 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
68ad4a33
URS
401
402static void purge_vmap_area_lazy(void);
403static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
404static unsigned long lazy_max_pages(void);
db64fe02 405
97105f0a
RG
406static atomic_long_t nr_vmalloc_pages;
407
408unsigned long vmalloc_nr_pages(void)
409{
410 return atomic_long_read(&nr_vmalloc_pages);
411}
412
db64fe02 413static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 414{
db64fe02
NP
415 struct rb_node *n = vmap_area_root.rb_node;
416
417 while (n) {
418 struct vmap_area *va;
419
420 va = rb_entry(n, struct vmap_area, rb_node);
421 if (addr < va->va_start)
422 n = n->rb_left;
cef2ac3f 423 else if (addr >= va->va_end)
db64fe02
NP
424 n = n->rb_right;
425 else
426 return va;
427 }
428
429 return NULL;
430}
431
68ad4a33
URS
432/*
433 * This function returns back addresses of parent node
434 * and its left or right link for further processing.
435 */
436static __always_inline struct rb_node **
437find_va_links(struct vmap_area *va,
438 struct rb_root *root, struct rb_node *from,
439 struct rb_node **parent)
440{
441 struct vmap_area *tmp_va;
442 struct rb_node **link;
443
444 if (root) {
445 link = &root->rb_node;
446 if (unlikely(!*link)) {
447 *parent = NULL;
448 return link;
449 }
450 } else {
451 link = &from;
452 }
db64fe02 453
68ad4a33
URS
454 /*
455 * Go to the bottom of the tree. When we hit the last point
456 * we end up with parent rb_node and correct direction, i name
457 * it link, where the new va->rb_node will be attached to.
458 */
459 do {
460 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 461
68ad4a33
URS
462 /*
463 * During the traversal we also do some sanity check.
464 * Trigger the BUG() if there are sides(left/right)
465 * or full overlaps.
466 */
467 if (va->va_start < tmp_va->va_end &&
468 va->va_end <= tmp_va->va_start)
469 link = &(*link)->rb_left;
470 else if (va->va_end > tmp_va->va_start &&
471 va->va_start >= tmp_va->va_end)
472 link = &(*link)->rb_right;
db64fe02
NP
473 else
474 BUG();
68ad4a33
URS
475 } while (*link);
476
477 *parent = &tmp_va->rb_node;
478 return link;
479}
480
481static __always_inline struct list_head *
482get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
483{
484 struct list_head *list;
485
486 if (unlikely(!parent))
487 /*
488 * The red-black tree where we try to find VA neighbors
489 * before merging or inserting is empty, i.e. it means
490 * there is no free vmap space. Normally it does not
491 * happen but we handle this case anyway.
492 */
493 return NULL;
494
495 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
496 return (&parent->rb_right == link ? list->next : list);
497}
498
499static __always_inline void
500link_va(struct vmap_area *va, struct rb_root *root,
501 struct rb_node *parent, struct rb_node **link, struct list_head *head)
502{
503 /*
504 * VA is still not in the list, but we can
505 * identify its future previous list_head node.
506 */
507 if (likely(parent)) {
508 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
509 if (&parent->rb_right != link)
510 head = head->prev;
db64fe02
NP
511 }
512
68ad4a33
URS
513 /* Insert to the rb-tree */
514 rb_link_node(&va->rb_node, parent, link);
515 if (root == &free_vmap_area_root) {
516 /*
517 * Some explanation here. Just perform simple insertion
518 * to the tree. We do not set va->subtree_max_size to
519 * its current size before calling rb_insert_augmented().
520 * It is because of we populate the tree from the bottom
521 * to parent levels when the node _is_ in the tree.
522 *
523 * Therefore we set subtree_max_size to zero after insertion,
524 * to let __augment_tree_propagate_from() puts everything to
525 * the correct order later on.
526 */
527 rb_insert_augmented(&va->rb_node,
528 root, &free_vmap_area_rb_augment_cb);
529 va->subtree_max_size = 0;
530 } else {
531 rb_insert_color(&va->rb_node, root);
532 }
db64fe02 533
68ad4a33
URS
534 /* Address-sort this list */
535 list_add(&va->list, head);
db64fe02
NP
536}
537
68ad4a33
URS
538static __always_inline void
539unlink_va(struct vmap_area *va, struct rb_root *root)
540{
460e42d1
URS
541 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
542 return;
db64fe02 543
460e42d1
URS
544 if (root == &free_vmap_area_root)
545 rb_erase_augmented(&va->rb_node,
546 root, &free_vmap_area_rb_augment_cb);
547 else
548 rb_erase(&va->rb_node, root);
549
550 list_del(&va->list);
551 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
552}
553
bb850f4d
URS
554#if DEBUG_AUGMENT_PROPAGATE_CHECK
555static void
556augment_tree_propagate_check(struct rb_node *n)
557{
558 struct vmap_area *va;
559 struct rb_node *node;
560 unsigned long size;
561 bool found = false;
562
563 if (n == NULL)
564 return;
565
566 va = rb_entry(n, struct vmap_area, rb_node);
567 size = va->subtree_max_size;
568 node = n;
569
570 while (node) {
571 va = rb_entry(node, struct vmap_area, rb_node);
572
573 if (get_subtree_max_size(node->rb_left) == size) {
574 node = node->rb_left;
575 } else {
576 if (va_size(va) == size) {
577 found = true;
578 break;
579 }
580
581 node = node->rb_right;
582 }
583 }
584
585 if (!found) {
586 va = rb_entry(n, struct vmap_area, rb_node);
587 pr_emerg("tree is corrupted: %lu, %lu\n",
588 va_size(va), va->subtree_max_size);
589 }
590
591 augment_tree_propagate_check(n->rb_left);
592 augment_tree_propagate_check(n->rb_right);
593}
594#endif
595
68ad4a33
URS
596/*
597 * This function populates subtree_max_size from bottom to upper
598 * levels starting from VA point. The propagation must be done
599 * when VA size is modified by changing its va_start/va_end. Or
600 * in case of newly inserting of VA to the tree.
601 *
602 * It means that __augment_tree_propagate_from() must be called:
603 * - After VA has been inserted to the tree(free path);
604 * - After VA has been shrunk(allocation path);
605 * - After VA has been increased(merging path).
606 *
607 * Please note that, it does not mean that upper parent nodes
608 * and their subtree_max_size are recalculated all the time up
609 * to the root node.
610 *
611 * 4--8
612 * /\
613 * / \
614 * / \
615 * 2--2 8--8
616 *
617 * For example if we modify the node 4, shrinking it to 2, then
618 * no any modification is required. If we shrink the node 2 to 1
619 * its subtree_max_size is updated only, and set to 1. If we shrink
620 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
621 * node becomes 4--6.
622 */
623static __always_inline void
624augment_tree_propagate_from(struct vmap_area *va)
625{
626 struct rb_node *node = &va->rb_node;
627 unsigned long new_va_sub_max_size;
628
629 while (node) {
630 va = rb_entry(node, struct vmap_area, rb_node);
631 new_va_sub_max_size = compute_subtree_max_size(va);
632
633 /*
634 * If the newly calculated maximum available size of the
635 * subtree is equal to the current one, then it means that
636 * the tree is propagated correctly. So we have to stop at
637 * this point to save cycles.
638 */
639 if (va->subtree_max_size == new_va_sub_max_size)
640 break;
641
642 va->subtree_max_size = new_va_sub_max_size;
643 node = rb_parent(&va->rb_node);
644 }
bb850f4d
URS
645
646#if DEBUG_AUGMENT_PROPAGATE_CHECK
647 augment_tree_propagate_check(free_vmap_area_root.rb_node);
648#endif
68ad4a33
URS
649}
650
651static void
652insert_vmap_area(struct vmap_area *va,
653 struct rb_root *root, struct list_head *head)
654{
655 struct rb_node **link;
656 struct rb_node *parent;
657
658 link = find_va_links(va, root, NULL, &parent);
659 link_va(va, root, parent, link, head);
660}
661
662static void
663insert_vmap_area_augment(struct vmap_area *va,
664 struct rb_node *from, struct rb_root *root,
665 struct list_head *head)
666{
667 struct rb_node **link;
668 struct rb_node *parent;
669
670 if (from)
671 link = find_va_links(va, NULL, from, &parent);
672 else
673 link = find_va_links(va, root, NULL, &parent);
674
675 link_va(va, root, parent, link, head);
676 augment_tree_propagate_from(va);
677}
678
679/*
680 * Merge de-allocated chunk of VA memory with previous
681 * and next free blocks. If coalesce is not done a new
682 * free area is inserted. If VA has been merged, it is
683 * freed.
684 */
685static __always_inline void
686merge_or_add_vmap_area(struct vmap_area *va,
687 struct rb_root *root, struct list_head *head)
688{
689 struct vmap_area *sibling;
690 struct list_head *next;
691 struct rb_node **link;
692 struct rb_node *parent;
693 bool merged = false;
694
695 /*
696 * Find a place in the tree where VA potentially will be
697 * inserted, unless it is merged with its sibling/siblings.
698 */
699 link = find_va_links(va, root, NULL, &parent);
700
701 /*
702 * Get next node of VA to check if merging can be done.
703 */
704 next = get_va_next_sibling(parent, link);
705 if (unlikely(next == NULL))
706 goto insert;
707
708 /*
709 * start end
710 * | |
711 * |<------VA------>|<-----Next----->|
712 * | |
713 * start end
714 */
715 if (next != head) {
716 sibling = list_entry(next, struct vmap_area, list);
717 if (sibling->va_start == va->va_end) {
718 sibling->va_start = va->va_start;
719
720 /* Check and update the tree if needed. */
721 augment_tree_propagate_from(sibling);
722
68ad4a33
URS
723 /* Free vmap_area object. */
724 kmem_cache_free(vmap_area_cachep, va);
725
726 /* Point to the new merged area. */
727 va = sibling;
728 merged = true;
729 }
730 }
731
732 /*
733 * start end
734 * | |
735 * |<-----Prev----->|<------VA------>|
736 * | |
737 * start end
738 */
739 if (next->prev != head) {
740 sibling = list_entry(next->prev, struct vmap_area, list);
741 if (sibling->va_end == va->va_start) {
742 sibling->va_end = va->va_end;
743
744 /* Check and update the tree if needed. */
745 augment_tree_propagate_from(sibling);
746
54f63d9d
URS
747 if (merged)
748 unlink_va(va, root);
68ad4a33
URS
749
750 /* Free vmap_area object. */
751 kmem_cache_free(vmap_area_cachep, va);
68ad4a33
URS
752 return;
753 }
754 }
755
756insert:
757 if (!merged) {
758 link_va(va, root, parent, link, head);
759 augment_tree_propagate_from(va);
760 }
761}
762
763static __always_inline bool
764is_within_this_va(struct vmap_area *va, unsigned long size,
765 unsigned long align, unsigned long vstart)
766{
767 unsigned long nva_start_addr;
768
769 if (va->va_start > vstart)
770 nva_start_addr = ALIGN(va->va_start, align);
771 else
772 nva_start_addr = ALIGN(vstart, align);
773
774 /* Can be overflowed due to big size or alignment. */
775 if (nva_start_addr + size < nva_start_addr ||
776 nva_start_addr < vstart)
777 return false;
778
779 return (nva_start_addr + size <= va->va_end);
780}
781
782/*
783 * Find the first free block(lowest start address) in the tree,
784 * that will accomplish the request corresponding to passing
785 * parameters.
786 */
787static __always_inline struct vmap_area *
788find_vmap_lowest_match(unsigned long size,
789 unsigned long align, unsigned long vstart)
790{
791 struct vmap_area *va;
792 struct rb_node *node;
793 unsigned long length;
794
795 /* Start from the root. */
796 node = free_vmap_area_root.rb_node;
797
798 /* Adjust the search size for alignment overhead. */
799 length = size + align - 1;
800
801 while (node) {
802 va = rb_entry(node, struct vmap_area, rb_node);
803
804 if (get_subtree_max_size(node->rb_left) >= length &&
805 vstart < va->va_start) {
806 node = node->rb_left;
807 } else {
808 if (is_within_this_va(va, size, align, vstart))
809 return va;
810
811 /*
812 * Does not make sense to go deeper towards the right
813 * sub-tree if it does not have a free block that is
814 * equal or bigger to the requested search length.
815 */
816 if (get_subtree_max_size(node->rb_right) >= length) {
817 node = node->rb_right;
818 continue;
819 }
820
821 /*
3806b041 822 * OK. We roll back and find the first right sub-tree,
68ad4a33
URS
823 * that will satisfy the search criteria. It can happen
824 * only once due to "vstart" restriction.
825 */
826 while ((node = rb_parent(node))) {
827 va = rb_entry(node, struct vmap_area, rb_node);
828 if (is_within_this_va(va, size, align, vstart))
829 return va;
830
831 if (get_subtree_max_size(node->rb_right) >= length &&
832 vstart <= va->va_start) {
833 node = node->rb_right;
834 break;
835 }
836 }
837 }
838 }
839
840 return NULL;
841}
842
a6cf4e0f
URS
843#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
844#include <linux/random.h>
845
846static struct vmap_area *
847find_vmap_lowest_linear_match(unsigned long size,
848 unsigned long align, unsigned long vstart)
849{
850 struct vmap_area *va;
851
852 list_for_each_entry(va, &free_vmap_area_list, list) {
853 if (!is_within_this_va(va, size, align, vstart))
854 continue;
855
856 return va;
857 }
858
859 return NULL;
860}
861
862static void
863find_vmap_lowest_match_check(unsigned long size)
864{
865 struct vmap_area *va_1, *va_2;
866 unsigned long vstart;
867 unsigned int rnd;
868
869 get_random_bytes(&rnd, sizeof(rnd));
870 vstart = VMALLOC_START + rnd;
871
872 va_1 = find_vmap_lowest_match(size, 1, vstart);
873 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
874
875 if (va_1 != va_2)
876 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
877 va_1, va_2, vstart);
878}
879#endif
880
68ad4a33
URS
881enum fit_type {
882 NOTHING_FIT = 0,
883 FL_FIT_TYPE = 1, /* full fit */
884 LE_FIT_TYPE = 2, /* left edge fit */
885 RE_FIT_TYPE = 3, /* right edge fit */
886 NE_FIT_TYPE = 4 /* no edge fit */
887};
888
889static __always_inline enum fit_type
890classify_va_fit_type(struct vmap_area *va,
891 unsigned long nva_start_addr, unsigned long size)
892{
893 enum fit_type type;
894
895 /* Check if it is within VA. */
896 if (nva_start_addr < va->va_start ||
897 nva_start_addr + size > va->va_end)
898 return NOTHING_FIT;
899
900 /* Now classify. */
901 if (va->va_start == nva_start_addr) {
902 if (va->va_end == nva_start_addr + size)
903 type = FL_FIT_TYPE;
904 else
905 type = LE_FIT_TYPE;
906 } else if (va->va_end == nva_start_addr + size) {
907 type = RE_FIT_TYPE;
908 } else {
909 type = NE_FIT_TYPE;
910 }
911
912 return type;
913}
914
915static __always_inline int
916adjust_va_to_fit_type(struct vmap_area *va,
917 unsigned long nva_start_addr, unsigned long size,
918 enum fit_type type)
919{
2c929233 920 struct vmap_area *lva = NULL;
68ad4a33
URS
921
922 if (type == FL_FIT_TYPE) {
923 /*
924 * No need to split VA, it fully fits.
925 *
926 * | |
927 * V NVA V
928 * |---------------|
929 */
930 unlink_va(va, &free_vmap_area_root);
931 kmem_cache_free(vmap_area_cachep, va);
932 } else if (type == LE_FIT_TYPE) {
933 /*
934 * Split left edge of fit VA.
935 *
936 * | |
937 * V NVA V R
938 * |-------|-------|
939 */
940 va->va_start += size;
941 } else if (type == RE_FIT_TYPE) {
942 /*
943 * Split right edge of fit VA.
944 *
945 * | |
946 * L V NVA V
947 * |-------|-------|
948 */
949 va->va_end = nva_start_addr;
950 } else if (type == NE_FIT_TYPE) {
951 /*
952 * Split no edge of fit VA.
953 *
954 * | |
955 * L V NVA V R
956 * |---|-------|---|
957 */
82dd23e8
URS
958 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
959 if (unlikely(!lva)) {
960 /*
961 * For percpu allocator we do not do any pre-allocation
962 * and leave it as it is. The reason is it most likely
963 * never ends up with NE_FIT_TYPE splitting. In case of
964 * percpu allocations offsets and sizes are aligned to
965 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
966 * are its main fitting cases.
967 *
968 * There are a few exceptions though, as an example it is
969 * a first allocation (early boot up) when we have "one"
970 * big free space that has to be split.
971 */
972 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
973 if (!lva)
974 return -1;
975 }
68ad4a33
URS
976
977 /*
978 * Build the remainder.
979 */
980 lva->va_start = va->va_start;
981 lva->va_end = nva_start_addr;
982
983 /*
984 * Shrink this VA to remaining size.
985 */
986 va->va_start = nva_start_addr + size;
987 } else {
988 return -1;
989 }
990
991 if (type != FL_FIT_TYPE) {
992 augment_tree_propagate_from(va);
993
2c929233 994 if (lva) /* type == NE_FIT_TYPE */
68ad4a33
URS
995 insert_vmap_area_augment(lva, &va->rb_node,
996 &free_vmap_area_root, &free_vmap_area_list);
997 }
998
999 return 0;
1000}
1001
1002/*
1003 * Returns a start address of the newly allocated area, if success.
1004 * Otherwise a vend is returned that indicates failure.
1005 */
1006static __always_inline unsigned long
1007__alloc_vmap_area(unsigned long size, unsigned long align,
cacca6ba 1008 unsigned long vstart, unsigned long vend)
68ad4a33
URS
1009{
1010 unsigned long nva_start_addr;
1011 struct vmap_area *va;
1012 enum fit_type type;
1013 int ret;
1014
1015 va = find_vmap_lowest_match(size, align, vstart);
1016 if (unlikely(!va))
1017 return vend;
1018
1019 if (va->va_start > vstart)
1020 nva_start_addr = ALIGN(va->va_start, align);
1021 else
1022 nva_start_addr = ALIGN(vstart, align);
1023
1024 /* Check the "vend" restriction. */
1025 if (nva_start_addr + size > vend)
1026 return vend;
1027
1028 /* Classify what we have found. */
1029 type = classify_va_fit_type(va, nva_start_addr, size);
1030 if (WARN_ON_ONCE(type == NOTHING_FIT))
1031 return vend;
1032
1033 /* Update the free vmap_area. */
1034 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1035 if (ret)
1036 return vend;
1037
a6cf4e0f
URS
1038#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1039 find_vmap_lowest_match_check(size);
1040#endif
1041
68ad4a33
URS
1042 return nva_start_addr;
1043}
4da56b99 1044
db64fe02
NP
1045/*
1046 * Allocate a region of KVA of the specified size and alignment, within the
1047 * vstart and vend.
1048 */
1049static struct vmap_area *alloc_vmap_area(unsigned long size,
1050 unsigned long align,
1051 unsigned long vstart, unsigned long vend,
1052 int node, gfp_t gfp_mask)
1053{
82dd23e8 1054 struct vmap_area *va, *pva;
1da177e4 1055 unsigned long addr;
db64fe02
NP
1056 int purged = 0;
1057
7766970c 1058 BUG_ON(!size);
891c49ab 1059 BUG_ON(offset_in_page(size));
89699605 1060 BUG_ON(!is_power_of_2(align));
db64fe02 1061
68ad4a33
URS
1062 if (unlikely(!vmap_initialized))
1063 return ERR_PTR(-EBUSY);
1064
5803ed29 1065 might_sleep();
f07116d7 1066 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
4da56b99 1067
f07116d7 1068 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
db64fe02
NP
1069 if (unlikely(!va))
1070 return ERR_PTR(-ENOMEM);
1071
7f88f88f
CM
1072 /*
1073 * Only scan the relevant parts containing pointers to other objects
1074 * to avoid false negatives.
1075 */
f07116d7 1076 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
7f88f88f 1077
db64fe02 1078retry:
82dd23e8 1079 /*
81f1ba58
URS
1080 * Preload this CPU with one extra vmap_area object. It is used
1081 * when fit type of free area is NE_FIT_TYPE. Please note, it
1082 * does not guarantee that an allocation occurs on a CPU that
1083 * is preloaded, instead we minimize the case when it is not.
1084 * It can happen because of cpu migration, because there is a
1085 * race until the below spinlock is taken.
82dd23e8
URS
1086 *
1087 * The preload is done in non-atomic context, thus it allows us
1088 * to use more permissive allocation masks to be more stable under
81f1ba58
URS
1089 * low memory condition and high memory pressure. In rare case,
1090 * if not preloaded, GFP_NOWAIT is used.
82dd23e8 1091 *
81f1ba58 1092 * Set "pva" to NULL here, because of "retry" path.
82dd23e8 1093 */
81f1ba58 1094 pva = NULL;
82dd23e8 1095
81f1ba58
URS
1096 if (!this_cpu_read(ne_fit_preload_node))
1097 /*
1098 * Even if it fails we do not really care about that.
1099 * Just proceed as it is. If needed "overflow" path
1100 * will refill the cache we allocate from.
1101 */
f07116d7 1102 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
82dd23e8 1103
db64fe02 1104 spin_lock(&vmap_area_lock);
81f1ba58
URS
1105
1106 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1107 kmem_cache_free(vmap_area_cachep, pva);
89699605 1108
afd07389 1109 /*
68ad4a33
URS
1110 * If an allocation fails, the "vend" address is
1111 * returned. Therefore trigger the overflow path.
afd07389 1112 */
cacca6ba 1113 addr = __alloc_vmap_area(size, align, vstart, vend);
68ad4a33 1114 if (unlikely(addr == vend))
89699605 1115 goto overflow;
db64fe02
NP
1116
1117 va->va_start = addr;
1118 va->va_end = addr + size;
688fcbfc 1119 va->vm = NULL;
68ad4a33
URS
1120 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1121
db64fe02
NP
1122 spin_unlock(&vmap_area_lock);
1123
61e16557 1124 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1125 BUG_ON(va->va_start < vstart);
1126 BUG_ON(va->va_end > vend);
1127
db64fe02 1128 return va;
89699605
NP
1129
1130overflow:
1131 spin_unlock(&vmap_area_lock);
1132 if (!purged) {
1133 purge_vmap_area_lazy();
1134 purged = 1;
1135 goto retry;
1136 }
4da56b99
CW
1137
1138 if (gfpflags_allow_blocking(gfp_mask)) {
1139 unsigned long freed = 0;
1140 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1141 if (freed > 0) {
1142 purged = 0;
1143 goto retry;
1144 }
1145 }
1146
03497d76 1147 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1148 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1149 size);
68ad4a33
URS
1150
1151 kmem_cache_free(vmap_area_cachep, va);
89699605 1152 return ERR_PTR(-EBUSY);
db64fe02
NP
1153}
1154
4da56b99
CW
1155int register_vmap_purge_notifier(struct notifier_block *nb)
1156{
1157 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1158}
1159EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1160
1161int unregister_vmap_purge_notifier(struct notifier_block *nb)
1162{
1163 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1164}
1165EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1166
db64fe02
NP
1167static void __free_vmap_area(struct vmap_area *va)
1168{
ca23e405 1169 /*
68ad4a33 1170 * Remove from the busy tree/list.
ca23e405 1171 */
68ad4a33 1172 unlink_va(va, &vmap_area_root);
ca23e405 1173
68ad4a33
URS
1174 /*
1175 * Merge VA with its neighbors, otherwise just add it.
1176 */
1177 merge_or_add_vmap_area(va,
1178 &free_vmap_area_root, &free_vmap_area_list);
db64fe02
NP
1179}
1180
1181/*
1182 * Free a region of KVA allocated by alloc_vmap_area
1183 */
1184static void free_vmap_area(struct vmap_area *va)
1185{
1186 spin_lock(&vmap_area_lock);
1187 __free_vmap_area(va);
1188 spin_unlock(&vmap_area_lock);
1189}
1190
1191/*
1192 * Clear the pagetable entries of a given vmap_area
1193 */
1194static void unmap_vmap_area(struct vmap_area *va)
1195{
1196 vunmap_page_range(va->va_start, va->va_end);
1197}
1198
1199/*
1200 * lazy_max_pages is the maximum amount of virtual address space we gather up
1201 * before attempting to purge with a TLB flush.
1202 *
1203 * There is a tradeoff here: a larger number will cover more kernel page tables
1204 * and take slightly longer to purge, but it will linearly reduce the number of
1205 * global TLB flushes that must be performed. It would seem natural to scale
1206 * this number up linearly with the number of CPUs (because vmapping activity
1207 * could also scale linearly with the number of CPUs), however it is likely
1208 * that in practice, workloads might be constrained in other ways that mean
1209 * vmap activity will not scale linearly with CPUs. Also, I want to be
1210 * conservative and not introduce a big latency on huge systems, so go with
1211 * a less aggressive log scale. It will still be an improvement over the old
1212 * code, and it will be simple to change the scale factor if we find that it
1213 * becomes a problem on bigger systems.
1214 */
1215static unsigned long lazy_max_pages(void)
1216{
1217 unsigned int log;
1218
1219 log = fls(num_online_cpus());
1220
1221 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1222}
1223
4d36e6f8 1224static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1225
0574ecd1
CH
1226/*
1227 * Serialize vmap purging. There is no actual criticial section protected
1228 * by this look, but we want to avoid concurrent calls for performance
1229 * reasons and to make the pcpu_get_vm_areas more deterministic.
1230 */
f9e09977 1231static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1232
02b709df
NP
1233/* for per-CPU blocks */
1234static void purge_fragmented_blocks_allcpus(void);
1235
3ee48b6a
CW
1236/*
1237 * called before a call to iounmap() if the caller wants vm_area_struct's
1238 * immediately freed.
1239 */
1240void set_iounmap_nonlazy(void)
1241{
4d36e6f8 1242 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
3ee48b6a
CW
1243}
1244
db64fe02
NP
1245/*
1246 * Purges all lazily-freed vmap areas.
db64fe02 1247 */
0574ecd1 1248static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1249{
4d36e6f8 1250 unsigned long resched_threshold;
80c4bd7a 1251 struct llist_node *valist;
db64fe02 1252 struct vmap_area *va;
cbb76676 1253 struct vmap_area *n_va;
db64fe02 1254
0574ecd1 1255 lockdep_assert_held(&vmap_purge_lock);
02b709df 1256
80c4bd7a 1257 valist = llist_del_all(&vmap_purge_list);
68571be9
URS
1258 if (unlikely(valist == NULL))
1259 return false;
1260
3f8fd02b
JR
1261 /*
1262 * First make sure the mappings are removed from all page-tables
1263 * before they are freed.
1264 */
1265 vmalloc_sync_all();
1266
68571be9
URS
1267 /*
1268 * TODO: to calculate a flush range without looping.
1269 * The list can be up to lazy_max_pages() elements.
1270 */
80c4bd7a 1271 llist_for_each_entry(va, valist, purge_list) {
0574ecd1
CH
1272 if (va->va_start < start)
1273 start = va->va_start;
1274 if (va->va_end > end)
1275 end = va->va_end;
db64fe02 1276 }
db64fe02 1277
0574ecd1 1278 flush_tlb_kernel_range(start, end);
4d36e6f8 1279 resched_threshold = lazy_max_pages() << 1;
db64fe02 1280
0574ecd1 1281 spin_lock(&vmap_area_lock);
763b218d 1282 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
4d36e6f8 1283 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
763b218d 1284
dd3b8353
URS
1285 /*
1286 * Finally insert or merge lazily-freed area. It is
1287 * detached and there is no need to "unlink" it from
1288 * anything.
1289 */
1290 merge_or_add_vmap_area(va,
1291 &free_vmap_area_root, &free_vmap_area_list);
1292
4d36e6f8 1293 atomic_long_sub(nr, &vmap_lazy_nr);
68571be9 1294
4d36e6f8 1295 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
68571be9 1296 cond_resched_lock(&vmap_area_lock);
763b218d 1297 }
0574ecd1
CH
1298 spin_unlock(&vmap_area_lock);
1299 return true;
db64fe02
NP
1300}
1301
496850e5
NP
1302/*
1303 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1304 * is already purging.
1305 */
1306static void try_purge_vmap_area_lazy(void)
1307{
f9e09977 1308 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 1309 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1310 mutex_unlock(&vmap_purge_lock);
0574ecd1 1311 }
496850e5
NP
1312}
1313
db64fe02
NP
1314/*
1315 * Kick off a purge of the outstanding lazy areas.
1316 */
1317static void purge_vmap_area_lazy(void)
1318{
f9e09977 1319 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1320 purge_fragmented_blocks_allcpus();
1321 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1322 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1323}
1324
1325/*
64141da5
JF
1326 * Free a vmap area, caller ensuring that the area has been unmapped
1327 * and flush_cache_vunmap had been called for the correct range
1328 * previously.
db64fe02 1329 */
64141da5 1330static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1331{
4d36e6f8 1332 unsigned long nr_lazy;
80c4bd7a 1333
dd3b8353
URS
1334 spin_lock(&vmap_area_lock);
1335 unlink_va(va, &vmap_area_root);
1336 spin_unlock(&vmap_area_lock);
1337
4d36e6f8
URS
1338 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1339 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a
CW
1340
1341 /* After this point, we may free va at any time */
1342 llist_add(&va->purge_list, &vmap_purge_list);
1343
1344 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 1345 try_purge_vmap_area_lazy();
db64fe02
NP
1346}
1347
b29acbdc
NP
1348/*
1349 * Free and unmap a vmap area
1350 */
1351static void free_unmap_vmap_area(struct vmap_area *va)
1352{
1353 flush_cache_vunmap(va->va_start, va->va_end);
c8eef01e 1354 unmap_vmap_area(va);
82a2e924
CP
1355 if (debug_pagealloc_enabled())
1356 flush_tlb_kernel_range(va->va_start, va->va_end);
1357
c8eef01e 1358 free_vmap_area_noflush(va);
b29acbdc
NP
1359}
1360
db64fe02
NP
1361static struct vmap_area *find_vmap_area(unsigned long addr)
1362{
1363 struct vmap_area *va;
1364
1365 spin_lock(&vmap_area_lock);
1366 va = __find_vmap_area(addr);
1367 spin_unlock(&vmap_area_lock);
1368
1369 return va;
1370}
1371
db64fe02
NP
1372/*** Per cpu kva allocator ***/
1373
1374/*
1375 * vmap space is limited especially on 32 bit architectures. Ensure there is
1376 * room for at least 16 percpu vmap blocks per CPU.
1377 */
1378/*
1379 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1380 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1381 * instead (we just need a rough idea)
1382 */
1383#if BITS_PER_LONG == 32
1384#define VMALLOC_SPACE (128UL*1024*1024)
1385#else
1386#define VMALLOC_SPACE (128UL*1024*1024*1024)
1387#endif
1388
1389#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1390#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1391#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1392#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1393#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1394#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1395#define VMAP_BBMAP_BITS \
1396 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1397 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1398 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1399
1400#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1401
1402struct vmap_block_queue {
1403 spinlock_t lock;
1404 struct list_head free;
db64fe02
NP
1405};
1406
1407struct vmap_block {
1408 spinlock_t lock;
1409 struct vmap_area *va;
db64fe02 1410 unsigned long free, dirty;
7d61bfe8 1411 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1412 struct list_head free_list;
1413 struct rcu_head rcu_head;
02b709df 1414 struct list_head purge;
db64fe02
NP
1415};
1416
1417/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1418static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1419
1420/*
1421 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1422 * in the free path. Could get rid of this if we change the API to return a
1423 * "cookie" from alloc, to be passed to free. But no big deal yet.
1424 */
1425static DEFINE_SPINLOCK(vmap_block_tree_lock);
1426static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1427
1428/*
1429 * We should probably have a fallback mechanism to allocate virtual memory
1430 * out of partially filled vmap blocks. However vmap block sizing should be
1431 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1432 * big problem.
1433 */
1434
1435static unsigned long addr_to_vb_idx(unsigned long addr)
1436{
1437 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1438 addr /= VMAP_BLOCK_SIZE;
1439 return addr;
1440}
1441
cf725ce2
RP
1442static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1443{
1444 unsigned long addr;
1445
1446 addr = va_start + (pages_off << PAGE_SHIFT);
1447 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1448 return (void *)addr;
1449}
1450
1451/**
1452 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1453 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1454 * @order: how many 2^order pages should be occupied in newly allocated block
1455 * @gfp_mask: flags for the page level allocator
1456 *
a862f68a 1457 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1458 */
1459static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1460{
1461 struct vmap_block_queue *vbq;
1462 struct vmap_block *vb;
1463 struct vmap_area *va;
1464 unsigned long vb_idx;
1465 int node, err;
cf725ce2 1466 void *vaddr;
db64fe02
NP
1467
1468 node = numa_node_id();
1469
1470 vb = kmalloc_node(sizeof(struct vmap_block),
1471 gfp_mask & GFP_RECLAIM_MASK, node);
1472 if (unlikely(!vb))
1473 return ERR_PTR(-ENOMEM);
1474
1475 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1476 VMALLOC_START, VMALLOC_END,
1477 node, gfp_mask);
ddf9c6d4 1478 if (IS_ERR(va)) {
db64fe02 1479 kfree(vb);
e7d86340 1480 return ERR_CAST(va);
db64fe02
NP
1481 }
1482
1483 err = radix_tree_preload(gfp_mask);
1484 if (unlikely(err)) {
1485 kfree(vb);
1486 free_vmap_area(va);
1487 return ERR_PTR(err);
1488 }
1489
cf725ce2 1490 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1491 spin_lock_init(&vb->lock);
1492 vb->va = va;
cf725ce2
RP
1493 /* At least something should be left free */
1494 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1495 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 1496 vb->dirty = 0;
7d61bfe8
RP
1497 vb->dirty_min = VMAP_BBMAP_BITS;
1498 vb->dirty_max = 0;
db64fe02 1499 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
1500
1501 vb_idx = addr_to_vb_idx(va->va_start);
1502 spin_lock(&vmap_block_tree_lock);
1503 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1504 spin_unlock(&vmap_block_tree_lock);
1505 BUG_ON(err);
1506 radix_tree_preload_end();
1507
1508 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 1509 spin_lock(&vbq->lock);
68ac546f 1510 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 1511 spin_unlock(&vbq->lock);
3f04ba85 1512 put_cpu_var(vmap_block_queue);
db64fe02 1513
cf725ce2 1514 return vaddr;
db64fe02
NP
1515}
1516
db64fe02
NP
1517static void free_vmap_block(struct vmap_block *vb)
1518{
1519 struct vmap_block *tmp;
1520 unsigned long vb_idx;
1521
db64fe02
NP
1522 vb_idx = addr_to_vb_idx(vb->va->va_start);
1523 spin_lock(&vmap_block_tree_lock);
1524 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1525 spin_unlock(&vmap_block_tree_lock);
1526 BUG_ON(tmp != vb);
1527
64141da5 1528 free_vmap_area_noflush(vb->va);
22a3c7d1 1529 kfree_rcu(vb, rcu_head);
db64fe02
NP
1530}
1531
02b709df
NP
1532static void purge_fragmented_blocks(int cpu)
1533{
1534 LIST_HEAD(purge);
1535 struct vmap_block *vb;
1536 struct vmap_block *n_vb;
1537 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1538
1539 rcu_read_lock();
1540 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1541
1542 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1543 continue;
1544
1545 spin_lock(&vb->lock);
1546 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1547 vb->free = 0; /* prevent further allocs after releasing lock */
1548 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
1549 vb->dirty_min = 0;
1550 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
1551 spin_lock(&vbq->lock);
1552 list_del_rcu(&vb->free_list);
1553 spin_unlock(&vbq->lock);
1554 spin_unlock(&vb->lock);
1555 list_add_tail(&vb->purge, &purge);
1556 } else
1557 spin_unlock(&vb->lock);
1558 }
1559 rcu_read_unlock();
1560
1561 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1562 list_del(&vb->purge);
1563 free_vmap_block(vb);
1564 }
1565}
1566
02b709df
NP
1567static void purge_fragmented_blocks_allcpus(void)
1568{
1569 int cpu;
1570
1571 for_each_possible_cpu(cpu)
1572 purge_fragmented_blocks(cpu);
1573}
1574
db64fe02
NP
1575static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1576{
1577 struct vmap_block_queue *vbq;
1578 struct vmap_block *vb;
cf725ce2 1579 void *vaddr = NULL;
db64fe02
NP
1580 unsigned int order;
1581
891c49ab 1582 BUG_ON(offset_in_page(size));
db64fe02 1583 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
1584 if (WARN_ON(size == 0)) {
1585 /*
1586 * Allocating 0 bytes isn't what caller wants since
1587 * get_order(0) returns funny result. Just warn and terminate
1588 * early.
1589 */
1590 return NULL;
1591 }
db64fe02
NP
1592 order = get_order(size);
1593
db64fe02
NP
1594 rcu_read_lock();
1595 vbq = &get_cpu_var(vmap_block_queue);
1596 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 1597 unsigned long pages_off;
db64fe02
NP
1598
1599 spin_lock(&vb->lock);
cf725ce2
RP
1600 if (vb->free < (1UL << order)) {
1601 spin_unlock(&vb->lock);
1602 continue;
1603 }
02b709df 1604
cf725ce2
RP
1605 pages_off = VMAP_BBMAP_BITS - vb->free;
1606 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
1607 vb->free -= 1UL << order;
1608 if (vb->free == 0) {
1609 spin_lock(&vbq->lock);
1610 list_del_rcu(&vb->free_list);
1611 spin_unlock(&vbq->lock);
1612 }
cf725ce2 1613
02b709df
NP
1614 spin_unlock(&vb->lock);
1615 break;
db64fe02 1616 }
02b709df 1617
3f04ba85 1618 put_cpu_var(vmap_block_queue);
db64fe02
NP
1619 rcu_read_unlock();
1620
cf725ce2
RP
1621 /* Allocate new block if nothing was found */
1622 if (!vaddr)
1623 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 1624
cf725ce2 1625 return vaddr;
db64fe02
NP
1626}
1627
1628static void vb_free(const void *addr, unsigned long size)
1629{
1630 unsigned long offset;
1631 unsigned long vb_idx;
1632 unsigned int order;
1633 struct vmap_block *vb;
1634
891c49ab 1635 BUG_ON(offset_in_page(size));
db64fe02 1636 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
1637
1638 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1639
db64fe02
NP
1640 order = get_order(size);
1641
1642 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
7d61bfe8 1643 offset >>= PAGE_SHIFT;
db64fe02
NP
1644
1645 vb_idx = addr_to_vb_idx((unsigned long)addr);
1646 rcu_read_lock();
1647 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1648 rcu_read_unlock();
1649 BUG_ON(!vb);
1650
64141da5
JF
1651 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1652
82a2e924
CP
1653 if (debug_pagealloc_enabled())
1654 flush_tlb_kernel_range((unsigned long)addr,
1655 (unsigned long)addr + size);
1656
db64fe02 1657 spin_lock(&vb->lock);
7d61bfe8
RP
1658
1659 /* Expand dirty range */
1660 vb->dirty_min = min(vb->dirty_min, offset);
1661 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1662
db64fe02
NP
1663 vb->dirty += 1UL << order;
1664 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1665 BUG_ON(vb->free);
db64fe02
NP
1666 spin_unlock(&vb->lock);
1667 free_vmap_block(vb);
1668 } else
1669 spin_unlock(&vb->lock);
1670}
1671
868b104d 1672static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 1673{
db64fe02 1674 int cpu;
db64fe02 1675
9b463334
JF
1676 if (unlikely(!vmap_initialized))
1677 return;
1678
5803ed29
CH
1679 might_sleep();
1680
db64fe02
NP
1681 for_each_possible_cpu(cpu) {
1682 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1683 struct vmap_block *vb;
1684
1685 rcu_read_lock();
1686 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1687 spin_lock(&vb->lock);
7d61bfe8
RP
1688 if (vb->dirty) {
1689 unsigned long va_start = vb->va->va_start;
db64fe02 1690 unsigned long s, e;
b136be5e 1691
7d61bfe8
RP
1692 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1693 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1694
7d61bfe8
RP
1695 start = min(s, start);
1696 end = max(e, end);
db64fe02 1697
7d61bfe8 1698 flush = 1;
db64fe02
NP
1699 }
1700 spin_unlock(&vb->lock);
1701 }
1702 rcu_read_unlock();
1703 }
1704
f9e09977 1705 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1706 purge_fragmented_blocks_allcpus();
1707 if (!__purge_vmap_area_lazy(start, end) && flush)
1708 flush_tlb_kernel_range(start, end);
f9e09977 1709 mutex_unlock(&vmap_purge_lock);
db64fe02 1710}
868b104d
RE
1711
1712/**
1713 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1714 *
1715 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1716 * to amortize TLB flushing overheads. What this means is that any page you
1717 * have now, may, in a former life, have been mapped into kernel virtual
1718 * address by the vmap layer and so there might be some CPUs with TLB entries
1719 * still referencing that page (additional to the regular 1:1 kernel mapping).
1720 *
1721 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1722 * be sure that none of the pages we have control over will have any aliases
1723 * from the vmap layer.
1724 */
1725void vm_unmap_aliases(void)
1726{
1727 unsigned long start = ULONG_MAX, end = 0;
1728 int flush = 0;
1729
1730 _vm_unmap_aliases(start, end, flush);
1731}
db64fe02
NP
1732EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1733
1734/**
1735 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1736 * @mem: the pointer returned by vm_map_ram
1737 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1738 */
1739void vm_unmap_ram(const void *mem, unsigned int count)
1740{
65ee03c4 1741 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 1742 unsigned long addr = (unsigned long)mem;
9c3acf60 1743 struct vmap_area *va;
db64fe02 1744
5803ed29 1745 might_sleep();
db64fe02
NP
1746 BUG_ON(!addr);
1747 BUG_ON(addr < VMALLOC_START);
1748 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 1749 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 1750
9c3acf60 1751 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 1752 debug_check_no_locks_freed(mem, size);
db64fe02 1753 vb_free(mem, size);
9c3acf60
CH
1754 return;
1755 }
1756
1757 va = find_vmap_area(addr);
1758 BUG_ON(!va);
05e3ff95
CP
1759 debug_check_no_locks_freed((void *)va->va_start,
1760 (va->va_end - va->va_start));
9c3acf60 1761 free_unmap_vmap_area(va);
db64fe02
NP
1762}
1763EXPORT_SYMBOL(vm_unmap_ram);
1764
1765/**
1766 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1767 * @pages: an array of pointers to the pages to be mapped
1768 * @count: number of pages
1769 * @node: prefer to allocate data structures on this node
1770 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad 1771 *
36437638
GK
1772 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1773 * faster than vmap so it's good. But if you mix long-life and short-life
1774 * objects with vm_map_ram(), it could consume lots of address space through
1775 * fragmentation (especially on a 32bit machine). You could see failures in
1776 * the end. Please use this function for short-lived objects.
1777 *
e99c97ad 1778 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1779 */
1780void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1781{
65ee03c4 1782 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1783 unsigned long addr;
1784 void *mem;
1785
1786 if (likely(count <= VMAP_MAX_ALLOC)) {
1787 mem = vb_alloc(size, GFP_KERNEL);
1788 if (IS_ERR(mem))
1789 return NULL;
1790 addr = (unsigned long)mem;
1791 } else {
1792 struct vmap_area *va;
1793 va = alloc_vmap_area(size, PAGE_SIZE,
1794 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1795 if (IS_ERR(va))
1796 return NULL;
1797
1798 addr = va->va_start;
1799 mem = (void *)addr;
1800 }
1801 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1802 vm_unmap_ram(mem, count);
1803 return NULL;
1804 }
1805 return mem;
1806}
1807EXPORT_SYMBOL(vm_map_ram);
1808
4341fa45 1809static struct vm_struct *vmlist __initdata;
92eac168 1810
be9b7335
NP
1811/**
1812 * vm_area_add_early - add vmap area early during boot
1813 * @vm: vm_struct to add
1814 *
1815 * This function is used to add fixed kernel vm area to vmlist before
1816 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1817 * should contain proper values and the other fields should be zero.
1818 *
1819 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1820 */
1821void __init vm_area_add_early(struct vm_struct *vm)
1822{
1823 struct vm_struct *tmp, **p;
1824
1825 BUG_ON(vmap_initialized);
1826 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1827 if (tmp->addr >= vm->addr) {
1828 BUG_ON(tmp->addr < vm->addr + vm->size);
1829 break;
1830 } else
1831 BUG_ON(tmp->addr + tmp->size > vm->addr);
1832 }
1833 vm->next = *p;
1834 *p = vm;
1835}
1836
f0aa6617
TH
1837/**
1838 * vm_area_register_early - register vmap area early during boot
1839 * @vm: vm_struct to register
c0c0a293 1840 * @align: requested alignment
f0aa6617
TH
1841 *
1842 * This function is used to register kernel vm area before
1843 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1844 * proper values on entry and other fields should be zero. On return,
1845 * vm->addr contains the allocated address.
1846 *
1847 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1848 */
c0c0a293 1849void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1850{
1851 static size_t vm_init_off __initdata;
c0c0a293
TH
1852 unsigned long addr;
1853
1854 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1855 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1856
c0c0a293 1857 vm->addr = (void *)addr;
f0aa6617 1858
be9b7335 1859 vm_area_add_early(vm);
f0aa6617
TH
1860}
1861
68ad4a33
URS
1862static void vmap_init_free_space(void)
1863{
1864 unsigned long vmap_start = 1;
1865 const unsigned long vmap_end = ULONG_MAX;
1866 struct vmap_area *busy, *free;
1867
1868 /*
1869 * B F B B B F
1870 * -|-----|.....|-----|-----|-----|.....|-
1871 * | The KVA space |
1872 * |<--------------------------------->|
1873 */
1874 list_for_each_entry(busy, &vmap_area_list, list) {
1875 if (busy->va_start - vmap_start > 0) {
1876 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1877 if (!WARN_ON_ONCE(!free)) {
1878 free->va_start = vmap_start;
1879 free->va_end = busy->va_start;
1880
1881 insert_vmap_area_augment(free, NULL,
1882 &free_vmap_area_root,
1883 &free_vmap_area_list);
1884 }
1885 }
1886
1887 vmap_start = busy->va_end;
1888 }
1889
1890 if (vmap_end - vmap_start > 0) {
1891 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1892 if (!WARN_ON_ONCE(!free)) {
1893 free->va_start = vmap_start;
1894 free->va_end = vmap_end;
1895
1896 insert_vmap_area_augment(free, NULL,
1897 &free_vmap_area_root,
1898 &free_vmap_area_list);
1899 }
1900 }
1901}
1902
db64fe02
NP
1903void __init vmalloc_init(void)
1904{
822c18f2
IK
1905 struct vmap_area *va;
1906 struct vm_struct *tmp;
db64fe02
NP
1907 int i;
1908
68ad4a33
URS
1909 /*
1910 * Create the cache for vmap_area objects.
1911 */
1912 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1913
db64fe02
NP
1914 for_each_possible_cpu(i) {
1915 struct vmap_block_queue *vbq;
32fcfd40 1916 struct vfree_deferred *p;
db64fe02
NP
1917
1918 vbq = &per_cpu(vmap_block_queue, i);
1919 spin_lock_init(&vbq->lock);
1920 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1921 p = &per_cpu(vfree_deferred, i);
1922 init_llist_head(&p->list);
1923 INIT_WORK(&p->wq, free_work);
db64fe02 1924 }
9b463334 1925
822c18f2
IK
1926 /* Import existing vmlist entries. */
1927 for (tmp = vmlist; tmp; tmp = tmp->next) {
68ad4a33
URS
1928 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1929 if (WARN_ON_ONCE(!va))
1930 continue;
1931
822c18f2
IK
1932 va->va_start = (unsigned long)tmp->addr;
1933 va->va_end = va->va_start + tmp->size;
dbda591d 1934 va->vm = tmp;
68ad4a33 1935 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
822c18f2 1936 }
ca23e405 1937
68ad4a33
URS
1938 /*
1939 * Now we can initialize a free vmap space.
1940 */
1941 vmap_init_free_space();
9b463334 1942 vmap_initialized = true;
db64fe02
NP
1943}
1944
8fc48985
TH
1945/**
1946 * map_kernel_range_noflush - map kernel VM area with the specified pages
1947 * @addr: start of the VM area to map
1948 * @size: size of the VM area to map
1949 * @prot: page protection flags to use
1950 * @pages: pages to map
1951 *
1952 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1953 * specify should have been allocated using get_vm_area() and its
1954 * friends.
1955 *
1956 * NOTE:
1957 * This function does NOT do any cache flushing. The caller is
1958 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1959 * before calling this function.
1960 *
1961 * RETURNS:
1962 * The number of pages mapped on success, -errno on failure.
1963 */
1964int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1965 pgprot_t prot, struct page **pages)
1966{
1967 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1968}
1969
1970/**
1971 * unmap_kernel_range_noflush - unmap kernel VM area
1972 * @addr: start of the VM area to unmap
1973 * @size: size of the VM area to unmap
1974 *
1975 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1976 * specify should have been allocated using get_vm_area() and its
1977 * friends.
1978 *
1979 * NOTE:
1980 * This function does NOT do any cache flushing. The caller is
1981 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1982 * before calling this function and flush_tlb_kernel_range() after.
1983 */
1984void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1985{
1986 vunmap_page_range(addr, addr + size);
1987}
81e88fdc 1988EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
1989
1990/**
1991 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1992 * @addr: start of the VM area to unmap
1993 * @size: size of the VM area to unmap
1994 *
1995 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1996 * the unmapping and tlb after.
1997 */
db64fe02
NP
1998void unmap_kernel_range(unsigned long addr, unsigned long size)
1999{
2000 unsigned long end = addr + size;
f6fcba70
TH
2001
2002 flush_cache_vunmap(addr, end);
db64fe02
NP
2003 vunmap_page_range(addr, end);
2004 flush_tlb_kernel_range(addr, end);
2005}
93ef6d6c 2006EXPORT_SYMBOL_GPL(unmap_kernel_range);
db64fe02 2007
f6f8ed47 2008int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
db64fe02
NP
2009{
2010 unsigned long addr = (unsigned long)area->addr;
762216ab 2011 unsigned long end = addr + get_vm_area_size(area);
db64fe02
NP
2012 int err;
2013
f6f8ed47 2014 err = vmap_page_range(addr, end, prot, pages);
db64fe02 2015
f6f8ed47 2016 return err > 0 ? 0 : err;
db64fe02
NP
2017}
2018EXPORT_SYMBOL_GPL(map_vm_area);
2019
f5252e00 2020static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 2021 unsigned long flags, const void *caller)
cf88c790 2022{
c69480ad 2023 spin_lock(&vmap_area_lock);
cf88c790
TH
2024 vm->flags = flags;
2025 vm->addr = (void *)va->va_start;
2026 vm->size = va->va_end - va->va_start;
2027 vm->caller = caller;
db1aecaf 2028 va->vm = vm;
c69480ad 2029 spin_unlock(&vmap_area_lock);
f5252e00 2030}
cf88c790 2031
20fc02b4 2032static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2033{
d4033afd 2034 /*
20fc02b4 2035 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2036 * we should make sure that vm has proper values.
2037 * Pair with smp_rmb() in show_numa_info().
2038 */
2039 smp_wmb();
20fc02b4 2040 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2041}
2042
db64fe02 2043static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 2044 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 2045 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 2046{
0006526d 2047 struct vmap_area *va;
db64fe02 2048 struct vm_struct *area;
1da177e4 2049
52fd24ca 2050 BUG_ON(in_interrupt());
1da177e4 2051 size = PAGE_ALIGN(size);
31be8309
OH
2052 if (unlikely(!size))
2053 return NULL;
1da177e4 2054
252e5c6e 2055 if (flags & VM_IOREMAP)
2056 align = 1ul << clamp_t(int, get_count_order_long(size),
2057 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2058
cf88c790 2059 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2060 if (unlikely(!area))
2061 return NULL;
2062
71394fe5
AR
2063 if (!(flags & VM_NO_GUARD))
2064 size += PAGE_SIZE;
1da177e4 2065
db64fe02
NP
2066 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2067 if (IS_ERR(va)) {
2068 kfree(area);
2069 return NULL;
1da177e4 2070 }
1da177e4 2071
d82b1d85 2072 setup_vmalloc_vm(area, va, flags, caller);
f5252e00 2073
1da177e4 2074 return area;
1da177e4
LT
2075}
2076
930fc45a
CL
2077struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2078 unsigned long start, unsigned long end)
2079{
00ef2d2f
DR
2080 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2081 GFP_KERNEL, __builtin_return_address(0));
930fc45a 2082}
5992b6da 2083EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 2084
c2968612
BH
2085struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2086 unsigned long start, unsigned long end,
5e6cafc8 2087 const void *caller)
c2968612 2088{
00ef2d2f
DR
2089 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2090 GFP_KERNEL, caller);
c2968612
BH
2091}
2092
1da177e4 2093/**
92eac168
MR
2094 * get_vm_area - reserve a contiguous kernel virtual area
2095 * @size: size of the area
2096 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2097 *
92eac168
MR
2098 * Search an area of @size in the kernel virtual mapping area,
2099 * and reserved it for out purposes. Returns the area descriptor
2100 * on success or %NULL on failure.
a862f68a
MR
2101 *
2102 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2103 */
2104struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2105{
2dca6999 2106 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2107 NUMA_NO_NODE, GFP_KERNEL,
2108 __builtin_return_address(0));
23016969
CL
2109}
2110
2111struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2112 const void *caller)
23016969 2113{
2dca6999 2114 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 2115 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2116}
2117
e9da6e99 2118/**
92eac168
MR
2119 * find_vm_area - find a continuous kernel virtual area
2120 * @addr: base address
e9da6e99 2121 *
92eac168
MR
2122 * Search for the kernel VM area starting at @addr, and return it.
2123 * It is up to the caller to do all required locking to keep the returned
2124 * pointer valid.
a862f68a
MR
2125 *
2126 * Return: pointer to the found area or %NULL on faulure
e9da6e99
MS
2127 */
2128struct vm_struct *find_vm_area(const void *addr)
83342314 2129{
db64fe02 2130 struct vmap_area *va;
83342314 2131
db64fe02 2132 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
2133 if (!va)
2134 return NULL;
1da177e4 2135
688fcbfc 2136 return va->vm;
1da177e4
LT
2137}
2138
7856dfeb 2139/**
92eac168
MR
2140 * remove_vm_area - find and remove a continuous kernel virtual area
2141 * @addr: base address
7856dfeb 2142 *
92eac168
MR
2143 * Search for the kernel VM area starting at @addr, and remove it.
2144 * This function returns the found VM area, but using it is NOT safe
2145 * on SMP machines, except for its size or flags.
a862f68a
MR
2146 *
2147 * Return: pointer to the found area or %NULL on faulure
7856dfeb 2148 */
b3bdda02 2149struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2150{
db64fe02
NP
2151 struct vmap_area *va;
2152
5803ed29
CH
2153 might_sleep();
2154
dd3b8353
URS
2155 spin_lock(&vmap_area_lock);
2156 va = __find_vmap_area((unsigned long)addr);
688fcbfc 2157 if (va && va->vm) {
db1aecaf 2158 struct vm_struct *vm = va->vm;
f5252e00 2159
c69480ad 2160 va->vm = NULL;
c69480ad
JK
2161 spin_unlock(&vmap_area_lock);
2162
a5af5aa8 2163 kasan_free_shadow(vm);
dd32c279 2164 free_unmap_vmap_area(va);
dd32c279 2165
db64fe02
NP
2166 return vm;
2167 }
dd3b8353
URS
2168
2169 spin_unlock(&vmap_area_lock);
db64fe02 2170 return NULL;
7856dfeb
AK
2171}
2172
868b104d
RE
2173static inline void set_area_direct_map(const struct vm_struct *area,
2174 int (*set_direct_map)(struct page *page))
2175{
2176 int i;
2177
2178 for (i = 0; i < area->nr_pages; i++)
2179 if (page_address(area->pages[i]))
2180 set_direct_map(area->pages[i]);
2181}
2182
2183/* Handle removing and resetting vm mappings related to the vm_struct. */
2184static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2185{
868b104d
RE
2186 unsigned long start = ULONG_MAX, end = 0;
2187 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
31e67340 2188 int flush_dmap = 0;
868b104d
RE
2189 int i;
2190
868b104d
RE
2191 remove_vm_area(area->addr);
2192
2193 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2194 if (!flush_reset)
2195 return;
2196
2197 /*
2198 * If not deallocating pages, just do the flush of the VM area and
2199 * return.
2200 */
2201 if (!deallocate_pages) {
2202 vm_unmap_aliases();
2203 return;
2204 }
2205
2206 /*
2207 * If execution gets here, flush the vm mapping and reset the direct
2208 * map. Find the start and end range of the direct mappings to make sure
2209 * the vm_unmap_aliases() flush includes the direct map.
2210 */
2211 for (i = 0; i < area->nr_pages; i++) {
8e41f872
RE
2212 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2213 if (addr) {
868b104d 2214 start = min(addr, start);
8e41f872 2215 end = max(addr + PAGE_SIZE, end);
31e67340 2216 flush_dmap = 1;
868b104d
RE
2217 }
2218 }
2219
2220 /*
2221 * Set direct map to something invalid so that it won't be cached if
2222 * there are any accesses after the TLB flush, then flush the TLB and
2223 * reset the direct map permissions to the default.
2224 */
2225 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2226 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2227 set_area_direct_map(area, set_direct_map_default_noflush);
2228}
2229
b3bdda02 2230static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
2231{
2232 struct vm_struct *area;
2233
2234 if (!addr)
2235 return;
2236
e69e9d4a 2237 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 2238 addr))
1da177e4 2239 return;
1da177e4 2240
6ade2032 2241 area = find_vm_area(addr);
1da177e4 2242 if (unlikely(!area)) {
4c8573e2 2243 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 2244 addr);
1da177e4
LT
2245 return;
2246 }
2247
05e3ff95
CP
2248 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2249 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 2250
868b104d
RE
2251 vm_remove_mappings(area, deallocate_pages);
2252
1da177e4
LT
2253 if (deallocate_pages) {
2254 int i;
2255
2256 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2257 struct page *page = area->pages[i];
2258
2259 BUG_ON(!page);
4949148a 2260 __free_pages(page, 0);
1da177e4 2261 }
97105f0a 2262 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2263
244d63ee 2264 kvfree(area->pages);
1da177e4
LT
2265 }
2266
2267 kfree(area);
2268 return;
2269}
bf22e37a
AR
2270
2271static inline void __vfree_deferred(const void *addr)
2272{
2273 /*
2274 * Use raw_cpu_ptr() because this can be called from preemptible
2275 * context. Preemption is absolutely fine here, because the llist_add()
2276 * implementation is lockless, so it works even if we are adding to
2277 * nother cpu's list. schedule_work() should be fine with this too.
2278 */
2279 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2280
2281 if (llist_add((struct llist_node *)addr, &p->list))
2282 schedule_work(&p->wq);
2283}
2284
2285/**
92eac168
MR
2286 * vfree_atomic - release memory allocated by vmalloc()
2287 * @addr: memory base address
bf22e37a 2288 *
92eac168
MR
2289 * This one is just like vfree() but can be called in any atomic context
2290 * except NMIs.
bf22e37a
AR
2291 */
2292void vfree_atomic(const void *addr)
2293{
2294 BUG_ON(in_nmi());
2295
2296 kmemleak_free(addr);
2297
2298 if (!addr)
2299 return;
2300 __vfree_deferred(addr);
2301}
2302
c67dc624
RP
2303static void __vfree(const void *addr)
2304{
2305 if (unlikely(in_interrupt()))
2306 __vfree_deferred(addr);
2307 else
2308 __vunmap(addr, 1);
2309}
2310
1da177e4 2311/**
92eac168
MR
2312 * vfree - release memory allocated by vmalloc()
2313 * @addr: memory base address
1da177e4 2314 *
92eac168
MR
2315 * Free the virtually continuous memory area starting at @addr, as
2316 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2317 * NULL, no operation is performed.
1da177e4 2318 *
92eac168
MR
2319 * Must not be called in NMI context (strictly speaking, only if we don't
2320 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2321 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51 2322 *
92eac168 2323 * May sleep if called *not* from interrupt context.
3ca4ea3a 2324 *
92eac168 2325 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1da177e4 2326 */
b3bdda02 2327void vfree(const void *addr)
1da177e4 2328{
32fcfd40 2329 BUG_ON(in_nmi());
89219d37
CM
2330
2331 kmemleak_free(addr);
2332
a8dda165
AR
2333 might_sleep_if(!in_interrupt());
2334
32fcfd40
AV
2335 if (!addr)
2336 return;
c67dc624
RP
2337
2338 __vfree(addr);
1da177e4 2339}
1da177e4
LT
2340EXPORT_SYMBOL(vfree);
2341
2342/**
92eac168
MR
2343 * vunmap - release virtual mapping obtained by vmap()
2344 * @addr: memory base address
1da177e4 2345 *
92eac168
MR
2346 * Free the virtually contiguous memory area starting at @addr,
2347 * which was created from the page array passed to vmap().
1da177e4 2348 *
92eac168 2349 * Must not be called in interrupt context.
1da177e4 2350 */
b3bdda02 2351void vunmap(const void *addr)
1da177e4
LT
2352{
2353 BUG_ON(in_interrupt());
34754b69 2354 might_sleep();
32fcfd40
AV
2355 if (addr)
2356 __vunmap(addr, 0);
1da177e4 2357}
1da177e4
LT
2358EXPORT_SYMBOL(vunmap);
2359
2360/**
92eac168
MR
2361 * vmap - map an array of pages into virtually contiguous space
2362 * @pages: array of page pointers
2363 * @count: number of pages to map
2364 * @flags: vm_area->flags
2365 * @prot: page protection for the mapping
2366 *
2367 * Maps @count pages from @pages into contiguous kernel virtual
2368 * space.
a862f68a
MR
2369 *
2370 * Return: the address of the area or %NULL on failure
1da177e4
LT
2371 */
2372void *vmap(struct page **pages, unsigned int count,
92eac168 2373 unsigned long flags, pgprot_t prot)
1da177e4
LT
2374{
2375 struct vm_struct *area;
65ee03c4 2376 unsigned long size; /* In bytes */
1da177e4 2377
34754b69
PZ
2378 might_sleep();
2379
ca79b0c2 2380 if (count > totalram_pages())
1da177e4
LT
2381 return NULL;
2382
65ee03c4
GJM
2383 size = (unsigned long)count << PAGE_SHIFT;
2384 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2385 if (!area)
2386 return NULL;
23016969 2387
f6f8ed47 2388 if (map_vm_area(area, prot, pages)) {
1da177e4
LT
2389 vunmap(area->addr);
2390 return NULL;
2391 }
2392
2393 return area->addr;
2394}
1da177e4
LT
2395EXPORT_SYMBOL(vmap);
2396
8594a21c
MH
2397static void *__vmalloc_node(unsigned long size, unsigned long align,
2398 gfp_t gfp_mask, pgprot_t prot,
2399 int node, const void *caller);
e31d9eb5 2400static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 2401 pgprot_t prot, int node)
1da177e4
LT
2402{
2403 struct page **pages;
2404 unsigned int nr_pages, array_size, i;
930f036b 2405 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
704b862f
LA
2406 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2407 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2408 0 :
2409 __GFP_HIGHMEM;
1da177e4 2410
762216ab 2411 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
2412 array_size = (nr_pages * sizeof(struct page *));
2413
1da177e4 2414 /* Please note that the recursion is strictly bounded. */
8757d5fa 2415 if (array_size > PAGE_SIZE) {
704b862f 2416 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
3722e13c 2417 PAGE_KERNEL, node, area->caller);
286e1ea3 2418 } else {
976d6dfb 2419 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 2420 }
7ea36242
AK
2421
2422 if (!pages) {
1da177e4
LT
2423 remove_vm_area(area->addr);
2424 kfree(area);
2425 return NULL;
2426 }
1da177e4 2427
7ea36242
AK
2428 area->pages = pages;
2429 area->nr_pages = nr_pages;
2430
1da177e4 2431 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2432 struct page *page;
2433
4b90951c 2434 if (node == NUMA_NO_NODE)
704b862f 2435 page = alloc_page(alloc_mask|highmem_mask);
930fc45a 2436 else
704b862f 2437 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
bf53d6f8
CL
2438
2439 if (unlikely(!page)) {
1da177e4
LT
2440 /* Successfully allocated i pages, free them in __vunmap() */
2441 area->nr_pages = i;
97105f0a 2442 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4
LT
2443 goto fail;
2444 }
bf53d6f8 2445 area->pages[i] = page;
dcf61ff0 2446 if (gfpflags_allow_blocking(gfp_mask))
660654f9 2447 cond_resched();
1da177e4 2448 }
97105f0a 2449 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2450
f6f8ed47 2451 if (map_vm_area(area, prot, pages))
1da177e4
LT
2452 goto fail;
2453 return area->addr;
2454
2455fail:
a8e99259 2456 warn_alloc(gfp_mask, NULL,
7877cdcc 2457 "vmalloc: allocation failure, allocated %ld of %ld bytes",
22943ab1 2458 (area->nr_pages*PAGE_SIZE), area->size);
c67dc624 2459 __vfree(area->addr);
1da177e4
LT
2460 return NULL;
2461}
2462
2463/**
92eac168
MR
2464 * __vmalloc_node_range - allocate virtually contiguous memory
2465 * @size: allocation size
2466 * @align: desired alignment
2467 * @start: vm area range start
2468 * @end: vm area range end
2469 * @gfp_mask: flags for the page level allocator
2470 * @prot: protection mask for the allocated pages
2471 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2472 * @node: node to use for allocation or NUMA_NO_NODE
2473 * @caller: caller's return address
2474 *
2475 * Allocate enough pages to cover @size from the page level
2476 * allocator with @gfp_mask flags. Map them into contiguous
2477 * kernel virtual space, using a pagetable protection of @prot.
a862f68a
MR
2478 *
2479 * Return: the address of the area or %NULL on failure
1da177e4 2480 */
d0a21265
DR
2481void *__vmalloc_node_range(unsigned long size, unsigned long align,
2482 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
2483 pgprot_t prot, unsigned long vm_flags, int node,
2484 const void *caller)
1da177e4
LT
2485{
2486 struct vm_struct *area;
89219d37
CM
2487 void *addr;
2488 unsigned long real_size = size;
1da177e4
LT
2489
2490 size = PAGE_ALIGN(size);
ca79b0c2 2491 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
de7d2b56 2492 goto fail;
1da177e4 2493
cb9e3c29
AR
2494 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2495 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 2496 if (!area)
de7d2b56 2497 goto fail;
1da177e4 2498
3722e13c 2499 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 2500 if (!addr)
b82225f3 2501 return NULL;
89219d37 2502
f5252e00 2503 /*
20fc02b4
ZY
2504 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2505 * flag. It means that vm_struct is not fully initialized.
4341fa45 2506 * Now, it is fully initialized, so remove this flag here.
f5252e00 2507 */
20fc02b4 2508 clear_vm_uninitialized_flag(area);
f5252e00 2509
94f4a161 2510 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
2511
2512 return addr;
de7d2b56
JP
2513
2514fail:
a8e99259 2515 warn_alloc(gfp_mask, NULL,
7877cdcc 2516 "vmalloc: allocation failure: %lu bytes", real_size);
de7d2b56 2517 return NULL;
1da177e4
LT
2518}
2519
153178ed
URS
2520/*
2521 * This is only for performance analysis of vmalloc and stress purpose.
2522 * It is required by vmalloc test module, therefore do not use it other
2523 * than that.
2524 */
2525#ifdef CONFIG_TEST_VMALLOC_MODULE
2526EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2527#endif
2528
d0a21265 2529/**
92eac168
MR
2530 * __vmalloc_node - allocate virtually contiguous memory
2531 * @size: allocation size
2532 * @align: desired alignment
2533 * @gfp_mask: flags for the page level allocator
2534 * @prot: protection mask for the allocated pages
2535 * @node: node to use for allocation or NUMA_NO_NODE
2536 * @caller: caller's return address
a7c3e901 2537 *
92eac168
MR
2538 * Allocate enough pages to cover @size from the page level
2539 * allocator with @gfp_mask flags. Map them into contiguous
2540 * kernel virtual space, using a pagetable protection of @prot.
a7c3e901 2541 *
92eac168
MR
2542 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2543 * and __GFP_NOFAIL are not supported
a7c3e901 2544 *
92eac168
MR
2545 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2546 * with mm people.
a862f68a
MR
2547 *
2548 * Return: pointer to the allocated memory or %NULL on error
d0a21265 2549 */
8594a21c 2550static void *__vmalloc_node(unsigned long size, unsigned long align,
d0a21265 2551 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 2552 int node, const void *caller)
d0a21265
DR
2553{
2554 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
cb9e3c29 2555 gfp_mask, prot, 0, node, caller);
d0a21265
DR
2556}
2557
930fc45a
CL
2558void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2559{
00ef2d2f 2560 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 2561 __builtin_return_address(0));
930fc45a 2562}
1da177e4
LT
2563EXPORT_SYMBOL(__vmalloc);
2564
8594a21c
MH
2565static inline void *__vmalloc_node_flags(unsigned long size,
2566 int node, gfp_t flags)
2567{
2568 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2569 node, __builtin_return_address(0));
2570}
2571
2572
2573void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2574 void *caller)
2575{
2576 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2577}
2578
1da177e4 2579/**
92eac168
MR
2580 * vmalloc - allocate virtually contiguous memory
2581 * @size: allocation size
2582 *
2583 * Allocate enough pages to cover @size from the page level
2584 * allocator and map them into contiguous kernel virtual space.
1da177e4 2585 *
92eac168
MR
2586 * For tight control over page level allocator and protection flags
2587 * use __vmalloc() instead.
a862f68a
MR
2588 *
2589 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2590 */
2591void *vmalloc(unsigned long size)
2592{
00ef2d2f 2593 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 2594 GFP_KERNEL);
1da177e4 2595}
1da177e4
LT
2596EXPORT_SYMBOL(vmalloc);
2597
e1ca7788 2598/**
92eac168
MR
2599 * vzalloc - allocate virtually contiguous memory with zero fill
2600 * @size: allocation size
2601 *
2602 * Allocate enough pages to cover @size from the page level
2603 * allocator and map them into contiguous kernel virtual space.
2604 * The memory allocated is set to zero.
2605 *
2606 * For tight control over page level allocator and protection flags
2607 * use __vmalloc() instead.
a862f68a
MR
2608 *
2609 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2610 */
2611void *vzalloc(unsigned long size)
2612{
00ef2d2f 2613 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 2614 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
2615}
2616EXPORT_SYMBOL(vzalloc);
2617
83342314 2618/**
ead04089
REB
2619 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2620 * @size: allocation size
83342314 2621 *
ead04089
REB
2622 * The resulting memory area is zeroed so it can be mapped to userspace
2623 * without leaking data.
a862f68a
MR
2624 *
2625 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2626 */
2627void *vmalloc_user(unsigned long size)
2628{
bc84c535
RP
2629 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2630 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2631 VM_USERMAP, NUMA_NO_NODE,
2632 __builtin_return_address(0));
83342314
NP
2633}
2634EXPORT_SYMBOL(vmalloc_user);
2635
930fc45a 2636/**
92eac168
MR
2637 * vmalloc_node - allocate memory on a specific node
2638 * @size: allocation size
2639 * @node: numa node
930fc45a 2640 *
92eac168
MR
2641 * Allocate enough pages to cover @size from the page level
2642 * allocator and map them into contiguous kernel virtual space.
930fc45a 2643 *
92eac168
MR
2644 * For tight control over page level allocator and protection flags
2645 * use __vmalloc() instead.
a862f68a
MR
2646 *
2647 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
2648 */
2649void *vmalloc_node(unsigned long size, int node)
2650{
19809c2d 2651 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
23016969 2652 node, __builtin_return_address(0));
930fc45a
CL
2653}
2654EXPORT_SYMBOL(vmalloc_node);
2655
e1ca7788
DY
2656/**
2657 * vzalloc_node - allocate memory on a specific node with zero fill
2658 * @size: allocation size
2659 * @node: numa node
2660 *
2661 * Allocate enough pages to cover @size from the page level
2662 * allocator and map them into contiguous kernel virtual space.
2663 * The memory allocated is set to zero.
2664 *
2665 * For tight control over page level allocator and protection flags
2666 * use __vmalloc_node() instead.
a862f68a
MR
2667 *
2668 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2669 */
2670void *vzalloc_node(unsigned long size, int node)
2671{
2672 return __vmalloc_node_flags(size, node,
19809c2d 2673 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
2674}
2675EXPORT_SYMBOL(vzalloc_node);
2676
fc970227
AN
2677/**
2678 * vmalloc_user_node_flags - allocate memory for userspace on a specific node
2679 * @size: allocation size
2680 * @node: numa node
2681 * @flags: flags for the page level allocator
2682 *
2683 * The resulting memory area is zeroed so it can be mapped to userspace
2684 * without leaking data.
2685 *
2686 * Return: pointer to the allocated memory or %NULL on error
2687 */
2688void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
2689{
2690 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2691 flags | __GFP_ZERO, PAGE_KERNEL,
2692 VM_USERMAP, node,
2693 __builtin_return_address(0));
2694}
2695EXPORT_SYMBOL(vmalloc_user_node_flags);
2696
1da177e4 2697/**
92eac168
MR
2698 * vmalloc_exec - allocate virtually contiguous, executable memory
2699 * @size: allocation size
1da177e4 2700 *
92eac168
MR
2701 * Kernel-internal function to allocate enough pages to cover @size
2702 * the page level allocator and map them into contiguous and
2703 * executable kernel virtual space.
1da177e4 2704 *
92eac168
MR
2705 * For tight control over page level allocator and protection flags
2706 * use __vmalloc() instead.
a862f68a
MR
2707 *
2708 * Return: pointer to the allocated memory or %NULL on error
1da177e4 2709 */
1da177e4
LT
2710void *vmalloc_exec(unsigned long size)
2711{
868b104d
RE
2712 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2713 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2714 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
2715}
2716
0d08e0d3 2717#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 2718#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 2719#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 2720#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 2721#else
698d0831
MH
2722/*
2723 * 64b systems should always have either DMA or DMA32 zones. For others
2724 * GFP_DMA32 should do the right thing and use the normal zone.
2725 */
2726#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3
AK
2727#endif
2728
1da177e4 2729/**
92eac168
MR
2730 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2731 * @size: allocation size
1da177e4 2732 *
92eac168
MR
2733 * Allocate enough 32bit PA addressable pages to cover @size from the
2734 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
2735 *
2736 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2737 */
2738void *vmalloc_32(unsigned long size)
2739{
2dca6999 2740 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 2741 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 2742}
1da177e4
LT
2743EXPORT_SYMBOL(vmalloc_32);
2744
83342314 2745/**
ead04089 2746 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 2747 * @size: allocation size
ead04089
REB
2748 *
2749 * The resulting memory area is 32bit addressable and zeroed so it can be
2750 * mapped to userspace without leaking data.
a862f68a
MR
2751 *
2752 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2753 */
2754void *vmalloc_32_user(unsigned long size)
2755{
bc84c535
RP
2756 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2757 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2758 VM_USERMAP, NUMA_NO_NODE,
2759 __builtin_return_address(0));
83342314
NP
2760}
2761EXPORT_SYMBOL(vmalloc_32_user);
2762
d0107eb0
KH
2763/*
2764 * small helper routine , copy contents to buf from addr.
2765 * If the page is not present, fill zero.
2766 */
2767
2768static int aligned_vread(char *buf, char *addr, unsigned long count)
2769{
2770 struct page *p;
2771 int copied = 0;
2772
2773 while (count) {
2774 unsigned long offset, length;
2775
891c49ab 2776 offset = offset_in_page(addr);
d0107eb0
KH
2777 length = PAGE_SIZE - offset;
2778 if (length > count)
2779 length = count;
2780 p = vmalloc_to_page(addr);
2781 /*
2782 * To do safe access to this _mapped_ area, we need
2783 * lock. But adding lock here means that we need to add
2784 * overhead of vmalloc()/vfree() calles for this _debug_
2785 * interface, rarely used. Instead of that, we'll use
2786 * kmap() and get small overhead in this access function.
2787 */
2788 if (p) {
2789 /*
2790 * we can expect USER0 is not used (see vread/vwrite's
2791 * function description)
2792 */
9b04c5fe 2793 void *map = kmap_atomic(p);
d0107eb0 2794 memcpy(buf, map + offset, length);
9b04c5fe 2795 kunmap_atomic(map);
d0107eb0
KH
2796 } else
2797 memset(buf, 0, length);
2798
2799 addr += length;
2800 buf += length;
2801 copied += length;
2802 count -= length;
2803 }
2804 return copied;
2805}
2806
2807static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2808{
2809 struct page *p;
2810 int copied = 0;
2811
2812 while (count) {
2813 unsigned long offset, length;
2814
891c49ab 2815 offset = offset_in_page(addr);
d0107eb0
KH
2816 length = PAGE_SIZE - offset;
2817 if (length > count)
2818 length = count;
2819 p = vmalloc_to_page(addr);
2820 /*
2821 * To do safe access to this _mapped_ area, we need
2822 * lock. But adding lock here means that we need to add
2823 * overhead of vmalloc()/vfree() calles for this _debug_
2824 * interface, rarely used. Instead of that, we'll use
2825 * kmap() and get small overhead in this access function.
2826 */
2827 if (p) {
2828 /*
2829 * we can expect USER0 is not used (see vread/vwrite's
2830 * function description)
2831 */
9b04c5fe 2832 void *map = kmap_atomic(p);
d0107eb0 2833 memcpy(map + offset, buf, length);
9b04c5fe 2834 kunmap_atomic(map);
d0107eb0
KH
2835 }
2836 addr += length;
2837 buf += length;
2838 copied += length;
2839 count -= length;
2840 }
2841 return copied;
2842}
2843
2844/**
92eac168
MR
2845 * vread() - read vmalloc area in a safe way.
2846 * @buf: buffer for reading data
2847 * @addr: vm address.
2848 * @count: number of bytes to be read.
2849 *
92eac168
MR
2850 * This function checks that addr is a valid vmalloc'ed area, and
2851 * copy data from that area to a given buffer. If the given memory range
2852 * of [addr...addr+count) includes some valid address, data is copied to
2853 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2854 * IOREMAP area is treated as memory hole and no copy is done.
2855 *
2856 * If [addr...addr+count) doesn't includes any intersects with alive
2857 * vm_struct area, returns 0. @buf should be kernel's buffer.
2858 *
2859 * Note: In usual ops, vread() is never necessary because the caller
2860 * should know vmalloc() area is valid and can use memcpy().
2861 * This is for routines which have to access vmalloc area without
d9009d67 2862 * any information, as /dev/kmem.
a862f68a
MR
2863 *
2864 * Return: number of bytes for which addr and buf should be increased
2865 * (same number as @count) or %0 if [addr...addr+count) doesn't
2866 * include any intersection with valid vmalloc area
d0107eb0 2867 */
1da177e4
LT
2868long vread(char *buf, char *addr, unsigned long count)
2869{
e81ce85f
JK
2870 struct vmap_area *va;
2871 struct vm_struct *vm;
1da177e4 2872 char *vaddr, *buf_start = buf;
d0107eb0 2873 unsigned long buflen = count;
1da177e4
LT
2874 unsigned long n;
2875
2876 /* Don't allow overflow */
2877 if ((unsigned long) addr + count < count)
2878 count = -(unsigned long) addr;
2879
e81ce85f
JK
2880 spin_lock(&vmap_area_lock);
2881 list_for_each_entry(va, &vmap_area_list, list) {
2882 if (!count)
2883 break;
2884
688fcbfc 2885 if (!va->vm)
e81ce85f
JK
2886 continue;
2887
2888 vm = va->vm;
2889 vaddr = (char *) vm->addr;
762216ab 2890 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2891 continue;
2892 while (addr < vaddr) {
2893 if (count == 0)
2894 goto finished;
2895 *buf = '\0';
2896 buf++;
2897 addr++;
2898 count--;
2899 }
762216ab 2900 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2901 if (n > count)
2902 n = count;
e81ce85f 2903 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2904 aligned_vread(buf, addr, n);
2905 else /* IOREMAP area is treated as memory hole */
2906 memset(buf, 0, n);
2907 buf += n;
2908 addr += n;
2909 count -= n;
1da177e4
LT
2910 }
2911finished:
e81ce85f 2912 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2913
2914 if (buf == buf_start)
2915 return 0;
2916 /* zero-fill memory holes */
2917 if (buf != buf_start + buflen)
2918 memset(buf, 0, buflen - (buf - buf_start));
2919
2920 return buflen;
1da177e4
LT
2921}
2922
d0107eb0 2923/**
92eac168
MR
2924 * vwrite() - write vmalloc area in a safe way.
2925 * @buf: buffer for source data
2926 * @addr: vm address.
2927 * @count: number of bytes to be read.
2928 *
92eac168
MR
2929 * This function checks that addr is a valid vmalloc'ed area, and
2930 * copy data from a buffer to the given addr. If specified range of
2931 * [addr...addr+count) includes some valid address, data is copied from
2932 * proper area of @buf. If there are memory holes, no copy to hole.
2933 * IOREMAP area is treated as memory hole and no copy is done.
2934 *
2935 * If [addr...addr+count) doesn't includes any intersects with alive
2936 * vm_struct area, returns 0. @buf should be kernel's buffer.
2937 *
2938 * Note: In usual ops, vwrite() is never necessary because the caller
2939 * should know vmalloc() area is valid and can use memcpy().
2940 * This is for routines which have to access vmalloc area without
d9009d67 2941 * any information, as /dev/kmem.
a862f68a
MR
2942 *
2943 * Return: number of bytes for which addr and buf should be
2944 * increased (same number as @count) or %0 if [addr...addr+count)
2945 * doesn't include any intersection with valid vmalloc area
d0107eb0 2946 */
1da177e4
LT
2947long vwrite(char *buf, char *addr, unsigned long count)
2948{
e81ce85f
JK
2949 struct vmap_area *va;
2950 struct vm_struct *vm;
d0107eb0
KH
2951 char *vaddr;
2952 unsigned long n, buflen;
2953 int copied = 0;
1da177e4
LT
2954
2955 /* Don't allow overflow */
2956 if ((unsigned long) addr + count < count)
2957 count = -(unsigned long) addr;
d0107eb0 2958 buflen = count;
1da177e4 2959
e81ce85f
JK
2960 spin_lock(&vmap_area_lock);
2961 list_for_each_entry(va, &vmap_area_list, list) {
2962 if (!count)
2963 break;
2964
688fcbfc 2965 if (!va->vm)
e81ce85f
JK
2966 continue;
2967
2968 vm = va->vm;
2969 vaddr = (char *) vm->addr;
762216ab 2970 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2971 continue;
2972 while (addr < vaddr) {
2973 if (count == 0)
2974 goto finished;
2975 buf++;
2976 addr++;
2977 count--;
2978 }
762216ab 2979 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2980 if (n > count)
2981 n = count;
e81ce85f 2982 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2983 aligned_vwrite(buf, addr, n);
2984 copied++;
2985 }
2986 buf += n;
2987 addr += n;
2988 count -= n;
1da177e4
LT
2989 }
2990finished:
e81ce85f 2991 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2992 if (!copied)
2993 return 0;
2994 return buflen;
1da177e4 2995}
83342314
NP
2996
2997/**
92eac168
MR
2998 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2999 * @vma: vma to cover
3000 * @uaddr: target user address to start at
3001 * @kaddr: virtual address of vmalloc kernel memory
3002 * @size: size of map area
7682486b 3003 *
92eac168 3004 * Returns: 0 for success, -Exxx on failure
83342314 3005 *
92eac168
MR
3006 * This function checks that @kaddr is a valid vmalloc'ed area,
3007 * and that it is big enough to cover the range starting at
3008 * @uaddr in @vma. Will return failure if that criteria isn't
3009 * met.
83342314 3010 *
92eac168 3011 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 3012 */
e69e9d4a
HD
3013int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3014 void *kaddr, unsigned long size)
83342314
NP
3015{
3016 struct vm_struct *area;
83342314 3017
e69e9d4a
HD
3018 size = PAGE_ALIGN(size);
3019
3020 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
3021 return -EINVAL;
3022
e69e9d4a 3023 area = find_vm_area(kaddr);
83342314 3024 if (!area)
db64fe02 3025 return -EINVAL;
83342314 3026
fe9041c2 3027 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 3028 return -EINVAL;
83342314 3029
401592d2 3030 if (kaddr + size > area->addr + get_vm_area_size(area))
db64fe02 3031 return -EINVAL;
83342314 3032
83342314 3033 do {
e69e9d4a 3034 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
3035 int ret;
3036
83342314
NP
3037 ret = vm_insert_page(vma, uaddr, page);
3038 if (ret)
3039 return ret;
3040
3041 uaddr += PAGE_SIZE;
e69e9d4a
HD
3042 kaddr += PAGE_SIZE;
3043 size -= PAGE_SIZE;
3044 } while (size > 0);
83342314 3045
314e51b9 3046 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 3047
db64fe02 3048 return 0;
83342314 3049}
e69e9d4a
HD
3050EXPORT_SYMBOL(remap_vmalloc_range_partial);
3051
3052/**
92eac168
MR
3053 * remap_vmalloc_range - map vmalloc pages to userspace
3054 * @vma: vma to cover (map full range of vma)
3055 * @addr: vmalloc memory
3056 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3057 *
92eac168 3058 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3059 *
92eac168
MR
3060 * This function checks that addr is a valid vmalloc'ed area, and
3061 * that it is big enough to cover the vma. Will return failure if
3062 * that criteria isn't met.
e69e9d4a 3063 *
92eac168 3064 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3065 */
3066int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3067 unsigned long pgoff)
3068{
3069 return remap_vmalloc_range_partial(vma, vma->vm_start,
3070 addr + (pgoff << PAGE_SHIFT),
3071 vma->vm_end - vma->vm_start);
3072}
83342314
NP
3073EXPORT_SYMBOL(remap_vmalloc_range);
3074
1eeb66a1
CH
3075/*
3076 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3077 * have one.
3f8fd02b
JR
3078 *
3079 * The purpose of this function is to make sure the vmalloc area
3080 * mappings are identical in all page-tables in the system.
1eeb66a1 3081 */
3b32123d 3082void __weak vmalloc_sync_all(void)
1eeb66a1
CH
3083{
3084}
5f4352fb
JF
3085
3086
8b1e0f81 3087static int f(pte_t *pte, unsigned long addr, void *data)
5f4352fb 3088{
cd12909c
DV
3089 pte_t ***p = data;
3090
3091 if (p) {
3092 *(*p) = pte;
3093 (*p)++;
3094 }
5f4352fb
JF
3095 return 0;
3096}
3097
3098/**
92eac168
MR
3099 * alloc_vm_area - allocate a range of kernel address space
3100 * @size: size of the area
3101 * @ptes: returns the PTEs for the address space
7682486b 3102 *
92eac168 3103 * Returns: NULL on failure, vm_struct on success
5f4352fb 3104 *
92eac168
MR
3105 * This function reserves a range of kernel address space, and
3106 * allocates pagetables to map that range. No actual mappings
3107 * are created.
cd12909c 3108 *
92eac168
MR
3109 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3110 * allocated for the VM area are returned.
5f4352fb 3111 */
cd12909c 3112struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
3113{
3114 struct vm_struct *area;
3115
23016969
CL
3116 area = get_vm_area_caller(size, VM_IOREMAP,
3117 __builtin_return_address(0));
5f4352fb
JF
3118 if (area == NULL)
3119 return NULL;
3120
3121 /*
3122 * This ensures that page tables are constructed for this region
3123 * of kernel virtual address space and mapped into init_mm.
3124 */
3125 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 3126 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
3127 free_vm_area(area);
3128 return NULL;
3129 }
3130
5f4352fb
JF
3131 return area;
3132}
3133EXPORT_SYMBOL_GPL(alloc_vm_area);
3134
3135void free_vm_area(struct vm_struct *area)
3136{
3137 struct vm_struct *ret;
3138 ret = remove_vm_area(area->addr);
3139 BUG_ON(ret != area);
3140 kfree(area);
3141}
3142EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3143
4f8b02b4 3144#ifdef CONFIG_SMP
ca23e405
TH
3145static struct vmap_area *node_to_va(struct rb_node *n)
3146{
4583e773 3147 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3148}
3149
3150/**
68ad4a33
URS
3151 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3152 * @addr: target address
ca23e405 3153 *
68ad4a33
URS
3154 * Returns: vmap_area if it is found. If there is no such area
3155 * the first highest(reverse order) vmap_area is returned
3156 * i.e. va->va_start < addr && va->va_end < addr or NULL
3157 * if there are no any areas before @addr.
ca23e405 3158 */
68ad4a33
URS
3159static struct vmap_area *
3160pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3161{
68ad4a33
URS
3162 struct vmap_area *va, *tmp;
3163 struct rb_node *n;
3164
3165 n = free_vmap_area_root.rb_node;
3166 va = NULL;
ca23e405
TH
3167
3168 while (n) {
68ad4a33
URS
3169 tmp = rb_entry(n, struct vmap_area, rb_node);
3170 if (tmp->va_start <= addr) {
3171 va = tmp;
3172 if (tmp->va_end >= addr)
3173 break;
3174
ca23e405 3175 n = n->rb_right;
68ad4a33
URS
3176 } else {
3177 n = n->rb_left;
3178 }
ca23e405
TH
3179 }
3180
68ad4a33 3181 return va;
ca23e405
TH
3182}
3183
3184/**
68ad4a33
URS
3185 * pvm_determine_end_from_reverse - find the highest aligned address
3186 * of free block below VMALLOC_END
3187 * @va:
3188 * in - the VA we start the search(reverse order);
3189 * out - the VA with the highest aligned end address.
ca23e405 3190 *
68ad4a33 3191 * Returns: determined end address within vmap_area
ca23e405 3192 */
68ad4a33
URS
3193static unsigned long
3194pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3195{
68ad4a33 3196 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3197 unsigned long addr;
3198
68ad4a33
URS
3199 if (likely(*va)) {
3200 list_for_each_entry_from_reverse((*va),
3201 &free_vmap_area_list, list) {
3202 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3203 if ((*va)->va_start < addr)
3204 return addr;
3205 }
ca23e405
TH
3206 }
3207
68ad4a33 3208 return 0;
ca23e405
TH
3209}
3210
3211/**
3212 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3213 * @offsets: array containing offset of each area
3214 * @sizes: array containing size of each area
3215 * @nr_vms: the number of areas to allocate
3216 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3217 *
3218 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3219 * vm_structs on success, %NULL on failure
3220 *
3221 * Percpu allocator wants to use congruent vm areas so that it can
3222 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3223 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3224 * be scattered pretty far, distance between two areas easily going up
3225 * to gigabytes. To avoid interacting with regular vmallocs, these
3226 * areas are allocated from top.
ca23e405 3227 *
68ad4a33
URS
3228 * Despite its complicated look, this allocator is rather simple. It
3229 * does everything top-down and scans free blocks from the end looking
3230 * for matching base. While scanning, if any of the areas do not fit the
3231 * base address is pulled down to fit the area. Scanning is repeated till
3232 * all the areas fit and then all necessary data structures are inserted
3233 * and the result is returned.
ca23e405
TH
3234 */
3235struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3236 const size_t *sizes, int nr_vms,
ec3f64fc 3237 size_t align)
ca23e405
TH
3238{
3239 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3240 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3241 struct vmap_area **vas, *va;
ca23e405
TH
3242 struct vm_struct **vms;
3243 int area, area2, last_area, term_area;
68ad4a33 3244 unsigned long base, start, size, end, last_end;
ca23e405 3245 bool purged = false;
68ad4a33 3246 enum fit_type type;
ca23e405 3247
ca23e405 3248 /* verify parameters and allocate data structures */
891c49ab 3249 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3250 for (last_area = 0, area = 0; area < nr_vms; area++) {
3251 start = offsets[area];
3252 end = start + sizes[area];
3253
3254 /* is everything aligned properly? */
3255 BUG_ON(!IS_ALIGNED(offsets[area], align));
3256 BUG_ON(!IS_ALIGNED(sizes[area], align));
3257
3258 /* detect the area with the highest address */
3259 if (start > offsets[last_area])
3260 last_area = area;
3261
c568da28 3262 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3263 unsigned long start2 = offsets[area2];
3264 unsigned long end2 = start2 + sizes[area2];
3265
c568da28 3266 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3267 }
3268 }
3269 last_end = offsets[last_area] + sizes[last_area];
3270
3271 if (vmalloc_end - vmalloc_start < last_end) {
3272 WARN_ON(true);
3273 return NULL;
3274 }
3275
4d67d860
TM
3276 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3277 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3278 if (!vas || !vms)
f1db7afd 3279 goto err_free2;
ca23e405
TH
3280
3281 for (area = 0; area < nr_vms; area++) {
68ad4a33 3282 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3283 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3284 if (!vas[area] || !vms[area])
3285 goto err_free;
3286 }
3287retry:
3288 spin_lock(&vmap_area_lock);
3289
3290 /* start scanning - we scan from the top, begin with the last area */
3291 area = term_area = last_area;
3292 start = offsets[area];
3293 end = start + sizes[area];
3294
68ad4a33
URS
3295 va = pvm_find_va_enclose_addr(vmalloc_end);
3296 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3297
3298 while (true) {
ca23e405
TH
3299 /*
3300 * base might have underflowed, add last_end before
3301 * comparing.
3302 */
68ad4a33
URS
3303 if (base + last_end < vmalloc_start + last_end)
3304 goto overflow;
ca23e405
TH
3305
3306 /*
68ad4a33 3307 * Fitting base has not been found.
ca23e405 3308 */
68ad4a33
URS
3309 if (va == NULL)
3310 goto overflow;
ca23e405 3311
5336e52c
KS
3312 /*
3313 * If required width exeeds current VA block, move
3314 * base downwards and then recheck.
3315 */
3316 if (base + end > va->va_end) {
3317 base = pvm_determine_end_from_reverse(&va, align) - end;
3318 term_area = area;
3319 continue;
3320 }
3321
ca23e405 3322 /*
68ad4a33 3323 * If this VA does not fit, move base downwards and recheck.
ca23e405 3324 */
5336e52c 3325 if (base + start < va->va_start) {
68ad4a33
URS
3326 va = node_to_va(rb_prev(&va->rb_node));
3327 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3328 term_area = area;
3329 continue;
3330 }
3331
3332 /*
3333 * This area fits, move on to the previous one. If
3334 * the previous one is the terminal one, we're done.
3335 */
3336 area = (area + nr_vms - 1) % nr_vms;
3337 if (area == term_area)
3338 break;
68ad4a33 3339
ca23e405
TH
3340 start = offsets[area];
3341 end = start + sizes[area];
68ad4a33 3342 va = pvm_find_va_enclose_addr(base + end);
ca23e405 3343 }
68ad4a33 3344
ca23e405
TH
3345 /* we've found a fitting base, insert all va's */
3346 for (area = 0; area < nr_vms; area++) {
68ad4a33 3347 int ret;
ca23e405 3348
68ad4a33
URS
3349 start = base + offsets[area];
3350 size = sizes[area];
ca23e405 3351
68ad4a33
URS
3352 va = pvm_find_va_enclose_addr(start);
3353 if (WARN_ON_ONCE(va == NULL))
3354 /* It is a BUG(), but trigger recovery instead. */
3355 goto recovery;
3356
3357 type = classify_va_fit_type(va, start, size);
3358 if (WARN_ON_ONCE(type == NOTHING_FIT))
3359 /* It is a BUG(), but trigger recovery instead. */
3360 goto recovery;
3361
3362 ret = adjust_va_to_fit_type(va, start, size, type);
3363 if (unlikely(ret))
3364 goto recovery;
3365
3366 /* Allocated area. */
3367 va = vas[area];
3368 va->va_start = start;
3369 va->va_end = start + size;
3370
3371 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
3372 }
ca23e405
TH
3373
3374 spin_unlock(&vmap_area_lock);
3375
3376 /* insert all vm's */
3377 for (area = 0; area < nr_vms; area++)
3645cb4a
ZY
3378 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
3379 pcpu_get_vm_areas);
ca23e405
TH
3380
3381 kfree(vas);
3382 return vms;
3383
68ad4a33
URS
3384recovery:
3385 /* Remove previously inserted areas. */
3386 while (area--) {
3387 __free_vmap_area(vas[area]);
3388 vas[area] = NULL;
3389 }
3390
3391overflow:
3392 spin_unlock(&vmap_area_lock);
3393 if (!purged) {
3394 purge_vmap_area_lazy();
3395 purged = true;
3396
3397 /* Before "retry", check if we recover. */
3398 for (area = 0; area < nr_vms; area++) {
3399 if (vas[area])
3400 continue;
3401
3402 vas[area] = kmem_cache_zalloc(
3403 vmap_area_cachep, GFP_KERNEL);
3404 if (!vas[area])
3405 goto err_free;
3406 }
3407
3408 goto retry;
3409 }
3410
ca23e405
TH
3411err_free:
3412 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
3413 if (vas[area])
3414 kmem_cache_free(vmap_area_cachep, vas[area]);
3415
f1db7afd 3416 kfree(vms[area]);
ca23e405 3417 }
f1db7afd 3418err_free2:
ca23e405
TH
3419 kfree(vas);
3420 kfree(vms);
3421 return NULL;
3422}
3423
3424/**
3425 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3426 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3427 * @nr_vms: the number of allocated areas
3428 *
3429 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3430 */
3431void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3432{
3433 int i;
3434
3435 for (i = 0; i < nr_vms; i++)
3436 free_vm_area(vms[i]);
3437 kfree(vms);
3438}
4f8b02b4 3439#endif /* CONFIG_SMP */
a10aa579
CL
3440
3441#ifdef CONFIG_PROC_FS
3442static void *s_start(struct seq_file *m, loff_t *pos)
d4033afd 3443 __acquires(&vmap_area_lock)
a10aa579 3444{
d4033afd 3445 spin_lock(&vmap_area_lock);
3f500069 3446 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
3447}
3448
3449static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3450{
3f500069 3451 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
3452}
3453
3454static void s_stop(struct seq_file *m, void *p)
d4033afd 3455 __releases(&vmap_area_lock)
a10aa579 3456{
d4033afd 3457 spin_unlock(&vmap_area_lock);
a10aa579
CL
3458}
3459
a47a126a
ED
3460static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3461{
e5adfffc 3462 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
3463 unsigned int nr, *counters = m->private;
3464
3465 if (!counters)
3466 return;
3467
af12346c
WL
3468 if (v->flags & VM_UNINITIALIZED)
3469 return;
7e5b528b
DV
3470 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3471 smp_rmb();
af12346c 3472
a47a126a
ED
3473 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3474
3475 for (nr = 0; nr < v->nr_pages; nr++)
3476 counters[page_to_nid(v->pages[nr])]++;
3477
3478 for_each_node_state(nr, N_HIGH_MEMORY)
3479 if (counters[nr])
3480 seq_printf(m, " N%u=%u", nr, counters[nr]);
3481 }
3482}
3483
dd3b8353
URS
3484static void show_purge_info(struct seq_file *m)
3485{
3486 struct llist_node *head;
3487 struct vmap_area *va;
3488
3489 head = READ_ONCE(vmap_purge_list.first);
3490 if (head == NULL)
3491 return;
3492
3493 llist_for_each_entry(va, head, purge_list) {
3494 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3495 (void *)va->va_start, (void *)va->va_end,
3496 va->va_end - va->va_start);
3497 }
3498}
3499
a10aa579
CL
3500static int s_show(struct seq_file *m, void *p)
3501{
3f500069 3502 struct vmap_area *va;
d4033afd
JK
3503 struct vm_struct *v;
3504
3f500069 3505 va = list_entry(p, struct vmap_area, list);
3506
c2ce8c14 3507 /*
688fcbfc
PL
3508 * s_show can encounter race with remove_vm_area, !vm on behalf
3509 * of vmap area is being tear down or vm_map_ram allocation.
c2ce8c14 3510 */
688fcbfc 3511 if (!va->vm) {
dd3b8353 3512 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
78c72746 3513 (void *)va->va_start, (void *)va->va_end,
dd3b8353 3514 va->va_end - va->va_start);
78c72746 3515
d4033afd 3516 return 0;
78c72746 3517 }
d4033afd
JK
3518
3519 v = va->vm;
a10aa579 3520
45ec1690 3521 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
3522 v->addr, v->addr + v->size, v->size);
3523
62c70bce
JP
3524 if (v->caller)
3525 seq_printf(m, " %pS", v->caller);
23016969 3526
a10aa579
CL
3527 if (v->nr_pages)
3528 seq_printf(m, " pages=%d", v->nr_pages);
3529
3530 if (v->phys_addr)
199eaa05 3531 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
3532
3533 if (v->flags & VM_IOREMAP)
f4527c90 3534 seq_puts(m, " ioremap");
a10aa579
CL
3535
3536 if (v->flags & VM_ALLOC)
f4527c90 3537 seq_puts(m, " vmalloc");
a10aa579
CL
3538
3539 if (v->flags & VM_MAP)
f4527c90 3540 seq_puts(m, " vmap");
a10aa579
CL
3541
3542 if (v->flags & VM_USERMAP)
f4527c90 3543 seq_puts(m, " user");
a10aa579 3544
fe9041c2
CH
3545 if (v->flags & VM_DMA_COHERENT)
3546 seq_puts(m, " dma-coherent");
3547
244d63ee 3548 if (is_vmalloc_addr(v->pages))
f4527c90 3549 seq_puts(m, " vpages");
a10aa579 3550
a47a126a 3551 show_numa_info(m, v);
a10aa579 3552 seq_putc(m, '\n');
dd3b8353
URS
3553
3554 /*
3555 * As a final step, dump "unpurged" areas. Note,
3556 * that entire "/proc/vmallocinfo" output will not
3557 * be address sorted, because the purge list is not
3558 * sorted.
3559 */
3560 if (list_is_last(&va->list, &vmap_area_list))
3561 show_purge_info(m);
3562
a10aa579
CL
3563 return 0;
3564}
3565
5f6a6a9c 3566static const struct seq_operations vmalloc_op = {
a10aa579
CL
3567 .start = s_start,
3568 .next = s_next,
3569 .stop = s_stop,
3570 .show = s_show,
3571};
5f6a6a9c 3572
5f6a6a9c
AD
3573static int __init proc_vmalloc_init(void)
3574{
fddda2b7 3575 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 3576 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
3577 &vmalloc_op,
3578 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 3579 else
0825a6f9 3580 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
3581 return 0;
3582}
3583module_init(proc_vmalloc_init);
db3808c1 3584
a10aa579 3585#endif