]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/vmalloc.c
treewide: remove editor modelines and cruft
[mirror_ubuntu-jammy-kernel.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 7 * Numa awareness, Christoph Lameter, SGI, June 2005
d758ffe6 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
c3edc401 15#include <linux/sched/signal.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
868b104d 21#include <linux/set_memory.h>
3ac7fe5a 22#include <linux/debugobjects.h>
23016969 23#include <linux/kallsyms.h>
db64fe02 24#include <linux/list.h>
4da56b99 25#include <linux/notifier.h>
db64fe02 26#include <linux/rbtree.h>
0f14599c 27#include <linux/xarray.h>
db64fe02 28#include <linux/rcupdate.h>
f0aa6617 29#include <linux/pfn.h>
89219d37 30#include <linux/kmemleak.h>
60063497 31#include <linux/atomic.h>
3b32123d 32#include <linux/compiler.h>
32fcfd40 33#include <linux/llist.h>
0f616be1 34#include <linux/bitops.h>
68ad4a33 35#include <linux/rbtree_augmented.h>
bdebd6a2 36#include <linux/overflow.h>
c0eb315a 37#include <linux/pgtable.h>
7c0f6ba6 38#include <linux/uaccess.h>
1da177e4 39#include <asm/tlbflush.h>
2dca6999 40#include <asm/shmparam.h>
1da177e4 41
dd56b046 42#include "internal.h"
2a681cfa 43#include "pgalloc-track.h"
dd56b046 44
121e6f32
NP
45#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
46static bool __ro_after_init vmap_allow_huge = true;
47
48static int __init set_nohugevmalloc(char *str)
49{
50 vmap_allow_huge = false;
51 return 0;
52}
53early_param("nohugevmalloc", set_nohugevmalloc);
54#else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
55static const bool vmap_allow_huge = false;
56#endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
57
186525bd
IM
58bool is_vmalloc_addr(const void *x)
59{
60 unsigned long addr = (unsigned long)x;
61
62 return addr >= VMALLOC_START && addr < VMALLOC_END;
63}
64EXPORT_SYMBOL(is_vmalloc_addr);
65
32fcfd40
AV
66struct vfree_deferred {
67 struct llist_head list;
68 struct work_struct wq;
69};
70static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
71
72static void __vunmap(const void *, int);
73
74static void free_work(struct work_struct *w)
75{
76 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
77 struct llist_node *t, *llnode;
78
79 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
80 __vunmap((void *)llnode, 1);
32fcfd40
AV
81}
82
db64fe02 83/*** Page table manipulation functions ***/
5e9e3d77
NP
84static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
85 phys_addr_t phys_addr, pgprot_t prot,
86 pgtbl_mod_mask *mask)
87{
88 pte_t *pte;
89 u64 pfn;
90
91 pfn = phys_addr >> PAGE_SHIFT;
92 pte = pte_alloc_kernel_track(pmd, addr, mask);
93 if (!pte)
94 return -ENOMEM;
95 do {
96 BUG_ON(!pte_none(*pte));
97 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
98 pfn++;
99 } while (pte++, addr += PAGE_SIZE, addr != end);
100 *mask |= PGTBL_PTE_MODIFIED;
101 return 0;
102}
103
104static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
105 phys_addr_t phys_addr, pgprot_t prot,
106 unsigned int max_page_shift)
107{
108 if (max_page_shift < PMD_SHIFT)
109 return 0;
110
111 if (!arch_vmap_pmd_supported(prot))
112 return 0;
113
114 if ((end - addr) != PMD_SIZE)
115 return 0;
116
117 if (!IS_ALIGNED(addr, PMD_SIZE))
118 return 0;
119
120 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
121 return 0;
122
123 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
124 return 0;
125
126 return pmd_set_huge(pmd, phys_addr, prot);
127}
128
129static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
130 phys_addr_t phys_addr, pgprot_t prot,
131 unsigned int max_page_shift, pgtbl_mod_mask *mask)
132{
133 pmd_t *pmd;
134 unsigned long next;
135
136 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
137 if (!pmd)
138 return -ENOMEM;
139 do {
140 next = pmd_addr_end(addr, end);
141
142 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
143 max_page_shift)) {
144 *mask |= PGTBL_PMD_MODIFIED;
145 continue;
146 }
147
148 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, mask))
149 return -ENOMEM;
150 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
151 return 0;
152}
153
154static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
155 phys_addr_t phys_addr, pgprot_t prot,
156 unsigned int max_page_shift)
157{
158 if (max_page_shift < PUD_SHIFT)
159 return 0;
160
161 if (!arch_vmap_pud_supported(prot))
162 return 0;
163
164 if ((end - addr) != PUD_SIZE)
165 return 0;
166
167 if (!IS_ALIGNED(addr, PUD_SIZE))
168 return 0;
169
170 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
171 return 0;
172
173 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
174 return 0;
175
176 return pud_set_huge(pud, phys_addr, prot);
177}
178
179static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
180 phys_addr_t phys_addr, pgprot_t prot,
181 unsigned int max_page_shift, pgtbl_mod_mask *mask)
182{
183 pud_t *pud;
184 unsigned long next;
185
186 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
187 if (!pud)
188 return -ENOMEM;
189 do {
190 next = pud_addr_end(addr, end);
191
192 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
193 max_page_shift)) {
194 *mask |= PGTBL_PUD_MODIFIED;
195 continue;
196 }
197
198 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
199 max_page_shift, mask))
200 return -ENOMEM;
201 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
202 return 0;
203}
204
205static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
206 phys_addr_t phys_addr, pgprot_t prot,
207 unsigned int max_page_shift)
208{
209 if (max_page_shift < P4D_SHIFT)
210 return 0;
211
212 if (!arch_vmap_p4d_supported(prot))
213 return 0;
214
215 if ((end - addr) != P4D_SIZE)
216 return 0;
217
218 if (!IS_ALIGNED(addr, P4D_SIZE))
219 return 0;
220
221 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
222 return 0;
223
224 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
225 return 0;
226
227 return p4d_set_huge(p4d, phys_addr, prot);
228}
229
230static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
231 phys_addr_t phys_addr, pgprot_t prot,
232 unsigned int max_page_shift, pgtbl_mod_mask *mask)
233{
234 p4d_t *p4d;
235 unsigned long next;
236
237 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
238 if (!p4d)
239 return -ENOMEM;
240 do {
241 next = p4d_addr_end(addr, end);
242
243 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
244 max_page_shift)) {
245 *mask |= PGTBL_P4D_MODIFIED;
246 continue;
247 }
248
249 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
250 max_page_shift, mask))
251 return -ENOMEM;
252 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
253 return 0;
254}
255
5d87510d 256static int vmap_range_noflush(unsigned long addr, unsigned long end,
5e9e3d77
NP
257 phys_addr_t phys_addr, pgprot_t prot,
258 unsigned int max_page_shift)
259{
260 pgd_t *pgd;
261 unsigned long start;
262 unsigned long next;
263 int err;
264 pgtbl_mod_mask mask = 0;
265
266 might_sleep();
267 BUG_ON(addr >= end);
268
269 start = addr;
270 pgd = pgd_offset_k(addr);
271 do {
272 next = pgd_addr_end(addr, end);
273 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
274 max_page_shift, &mask);
275 if (err)
276 break;
277 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
278
5e9e3d77
NP
279 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
280 arch_sync_kernel_mappings(start, end);
281
282 return err;
283}
b221385b 284
5d87510d
NP
285int vmap_range(unsigned long addr, unsigned long end,
286 phys_addr_t phys_addr, pgprot_t prot,
287 unsigned int max_page_shift)
288{
289 int err;
290
291 err = vmap_range_noflush(addr, end, phys_addr, prot, max_page_shift);
292 flush_cache_vmap(addr, end);
293
294 return err;
295}
296
2ba3e694
JR
297static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
298 pgtbl_mod_mask *mask)
1da177e4
LT
299{
300 pte_t *pte;
301
302 pte = pte_offset_kernel(pmd, addr);
303 do {
304 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
305 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
306 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 307 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
308}
309
2ba3e694
JR
310static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
311 pgtbl_mod_mask *mask)
1da177e4
LT
312{
313 pmd_t *pmd;
314 unsigned long next;
2ba3e694 315 int cleared;
1da177e4
LT
316
317 pmd = pmd_offset(pud, addr);
318 do {
319 next = pmd_addr_end(addr, end);
2ba3e694
JR
320
321 cleared = pmd_clear_huge(pmd);
322 if (cleared || pmd_bad(*pmd))
323 *mask |= PGTBL_PMD_MODIFIED;
324
325 if (cleared)
b9820d8f 326 continue;
1da177e4
LT
327 if (pmd_none_or_clear_bad(pmd))
328 continue;
2ba3e694 329 vunmap_pte_range(pmd, addr, next, mask);
e47110e9
AK
330
331 cond_resched();
1da177e4
LT
332 } while (pmd++, addr = next, addr != end);
333}
334
2ba3e694
JR
335static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
336 pgtbl_mod_mask *mask)
1da177e4
LT
337{
338 pud_t *pud;
339 unsigned long next;
2ba3e694 340 int cleared;
1da177e4 341
c2febafc 342 pud = pud_offset(p4d, addr);
1da177e4
LT
343 do {
344 next = pud_addr_end(addr, end);
2ba3e694
JR
345
346 cleared = pud_clear_huge(pud);
347 if (cleared || pud_bad(*pud))
348 *mask |= PGTBL_PUD_MODIFIED;
349
350 if (cleared)
b9820d8f 351 continue;
1da177e4
LT
352 if (pud_none_or_clear_bad(pud))
353 continue;
2ba3e694 354 vunmap_pmd_range(pud, addr, next, mask);
1da177e4
LT
355 } while (pud++, addr = next, addr != end);
356}
357
2ba3e694
JR
358static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
359 pgtbl_mod_mask *mask)
c2febafc
KS
360{
361 p4d_t *p4d;
362 unsigned long next;
2ba3e694 363 int cleared;
c2febafc
KS
364
365 p4d = p4d_offset(pgd, addr);
366 do {
367 next = p4d_addr_end(addr, end);
2ba3e694
JR
368
369 cleared = p4d_clear_huge(p4d);
370 if (cleared || p4d_bad(*p4d))
371 *mask |= PGTBL_P4D_MODIFIED;
372
373 if (cleared)
c2febafc
KS
374 continue;
375 if (p4d_none_or_clear_bad(p4d))
376 continue;
2ba3e694 377 vunmap_pud_range(p4d, addr, next, mask);
c2febafc
KS
378 } while (p4d++, addr = next, addr != end);
379}
380
4ad0ae8c
NP
381/*
382 * vunmap_range_noflush is similar to vunmap_range, but does not
383 * flush caches or TLBs.
b521c43f 384 *
4ad0ae8c
NP
385 * The caller is responsible for calling flush_cache_vmap() before calling
386 * this function, and flush_tlb_kernel_range after it has returned
387 * successfully (and before the addresses are expected to cause a page fault
388 * or be re-mapped for something else, if TLB flushes are being delayed or
389 * coalesced).
b521c43f 390 *
4ad0ae8c 391 * This is an internal function only. Do not use outside mm/.
b521c43f 392 */
4ad0ae8c 393void vunmap_range_noflush(unsigned long start, unsigned long end)
1da177e4 394{
1da177e4 395 unsigned long next;
b521c43f 396 pgd_t *pgd;
2ba3e694
JR
397 unsigned long addr = start;
398 pgtbl_mod_mask mask = 0;
1da177e4
LT
399
400 BUG_ON(addr >= end);
401 pgd = pgd_offset_k(addr);
1da177e4
LT
402 do {
403 next = pgd_addr_end(addr, end);
2ba3e694
JR
404 if (pgd_bad(*pgd))
405 mask |= PGTBL_PGD_MODIFIED;
1da177e4
LT
406 if (pgd_none_or_clear_bad(pgd))
407 continue;
2ba3e694 408 vunmap_p4d_range(pgd, addr, next, &mask);
1da177e4 409 } while (pgd++, addr = next, addr != end);
2ba3e694
JR
410
411 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
412 arch_sync_kernel_mappings(start, end);
1da177e4
LT
413}
414
4ad0ae8c
NP
415/**
416 * vunmap_range - unmap kernel virtual addresses
417 * @addr: start of the VM area to unmap
418 * @end: end of the VM area to unmap (non-inclusive)
419 *
420 * Clears any present PTEs in the virtual address range, flushes TLBs and
421 * caches. Any subsequent access to the address before it has been re-mapped
422 * is a kernel bug.
423 */
424void vunmap_range(unsigned long addr, unsigned long end)
425{
426 flush_cache_vunmap(addr, end);
427 vunmap_range_noflush(addr, end);
428 flush_tlb_kernel_range(addr, end);
429}
430
0a264884 431static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
2ba3e694
JR
432 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
433 pgtbl_mod_mask *mask)
1da177e4
LT
434{
435 pte_t *pte;
436
db64fe02
NP
437 /*
438 * nr is a running index into the array which helps higher level
439 * callers keep track of where we're up to.
440 */
441
2ba3e694 442 pte = pte_alloc_kernel_track(pmd, addr, mask);
1da177e4
LT
443 if (!pte)
444 return -ENOMEM;
445 do {
db64fe02
NP
446 struct page *page = pages[*nr];
447
448 if (WARN_ON(!pte_none(*pte)))
449 return -EBUSY;
450 if (WARN_ON(!page))
1da177e4
LT
451 return -ENOMEM;
452 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 453 (*nr)++;
1da177e4 454 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 455 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
456 return 0;
457}
458
0a264884 459static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
2ba3e694
JR
460 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
461 pgtbl_mod_mask *mask)
1da177e4
LT
462{
463 pmd_t *pmd;
464 unsigned long next;
465
2ba3e694 466 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
1da177e4
LT
467 if (!pmd)
468 return -ENOMEM;
469 do {
470 next = pmd_addr_end(addr, end);
0a264884 471 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
1da177e4
LT
472 return -ENOMEM;
473 } while (pmd++, addr = next, addr != end);
474 return 0;
475}
476
0a264884 477static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
2ba3e694
JR
478 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
479 pgtbl_mod_mask *mask)
1da177e4
LT
480{
481 pud_t *pud;
482 unsigned long next;
483
2ba3e694 484 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
1da177e4
LT
485 if (!pud)
486 return -ENOMEM;
487 do {
488 next = pud_addr_end(addr, end);
0a264884 489 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
1da177e4
LT
490 return -ENOMEM;
491 } while (pud++, addr = next, addr != end);
492 return 0;
493}
494
0a264884 495static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
2ba3e694
JR
496 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
497 pgtbl_mod_mask *mask)
c2febafc
KS
498{
499 p4d_t *p4d;
500 unsigned long next;
501
2ba3e694 502 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
c2febafc
KS
503 if (!p4d)
504 return -ENOMEM;
505 do {
506 next = p4d_addr_end(addr, end);
0a264884 507 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
c2febafc
KS
508 return -ENOMEM;
509 } while (p4d++, addr = next, addr != end);
510 return 0;
511}
512
121e6f32
NP
513static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
514 pgprot_t prot, struct page **pages)
1da177e4 515{
2ba3e694 516 unsigned long start = addr;
b521c43f 517 pgd_t *pgd;
121e6f32 518 unsigned long next;
db64fe02
NP
519 int err = 0;
520 int nr = 0;
2ba3e694 521 pgtbl_mod_mask mask = 0;
1da177e4
LT
522
523 BUG_ON(addr >= end);
524 pgd = pgd_offset_k(addr);
1da177e4
LT
525 do {
526 next = pgd_addr_end(addr, end);
2ba3e694
JR
527 if (pgd_bad(*pgd))
528 mask |= PGTBL_PGD_MODIFIED;
0a264884 529 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
1da177e4 530 if (err)
bf88c8c8 531 return err;
1da177e4 532 } while (pgd++, addr = next, addr != end);
db64fe02 533
2ba3e694
JR
534 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
535 arch_sync_kernel_mappings(start, end);
536
60bb4465 537 return 0;
1da177e4
LT
538}
539
b67177ec
NP
540/*
541 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
542 * flush caches.
543 *
544 * The caller is responsible for calling flush_cache_vmap() after this
545 * function returns successfully and before the addresses are accessed.
546 *
547 * This is an internal function only. Do not use outside mm/.
548 */
549int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
121e6f32
NP
550 pgprot_t prot, struct page **pages, unsigned int page_shift)
551{
552 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
553
554 WARN_ON(page_shift < PAGE_SHIFT);
555
556 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
557 page_shift == PAGE_SHIFT)
558 return vmap_small_pages_range_noflush(addr, end, prot, pages);
559
560 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
561 int err;
562
563 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
564 __pa(page_address(pages[i])), prot,
565 page_shift);
566 if (err)
567 return err;
568
569 addr += 1UL << page_shift;
570 }
571
572 return 0;
573}
574
121e6f32 575/**
b67177ec 576 * vmap_pages_range - map pages to a kernel virtual address
121e6f32 577 * @addr: start of the VM area to map
b67177ec 578 * @end: end of the VM area to map (non-inclusive)
121e6f32 579 * @prot: page protection flags to use
b67177ec
NP
580 * @pages: pages to map (always PAGE_SIZE pages)
581 * @page_shift: maximum shift that the pages may be mapped with, @pages must
582 * be aligned and contiguous up to at least this shift.
121e6f32
NP
583 *
584 * RETURNS:
585 * 0 on success, -errno on failure.
586 */
b67177ec
NP
587static int vmap_pages_range(unsigned long addr, unsigned long end,
588 pgprot_t prot, struct page **pages, unsigned int page_shift)
8fc48985 589{
b67177ec 590 int err;
8fc48985 591
b67177ec
NP
592 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
593 flush_cache_vmap(addr, end);
594 return err;
8fc48985
TH
595}
596
81ac3ad9 597int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
598{
599 /*
ab4f2ee1 600 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
601 * and fall back on vmalloc() if that fails. Others
602 * just put it in the vmalloc space.
603 */
604#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
605 unsigned long addr = (unsigned long)x;
606 if (addr >= MODULES_VADDR && addr < MODULES_END)
607 return 1;
608#endif
609 return is_vmalloc_addr(x);
610}
611
48667e7a 612/*
c0eb315a
NP
613 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
614 * return the tail page that corresponds to the base page address, which
615 * matches small vmap mappings.
48667e7a 616 */
add688fb 617struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
618{
619 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 620 struct page *page = NULL;
48667e7a 621 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
622 p4d_t *p4d;
623 pud_t *pud;
624 pmd_t *pmd;
625 pte_t *ptep, pte;
48667e7a 626
7aa413de
IM
627 /*
628 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
629 * architectures that do not vmalloc module space
630 */
73bdf0a6 631 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 632
c2febafc
KS
633 if (pgd_none(*pgd))
634 return NULL;
c0eb315a
NP
635 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
636 return NULL; /* XXX: no allowance for huge pgd */
637 if (WARN_ON_ONCE(pgd_bad(*pgd)))
638 return NULL;
639
c2febafc
KS
640 p4d = p4d_offset(pgd, addr);
641 if (p4d_none(*p4d))
642 return NULL;
c0eb315a
NP
643 if (p4d_leaf(*p4d))
644 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
645 if (WARN_ON_ONCE(p4d_bad(*p4d)))
646 return NULL;
029c54b0 647
c0eb315a
NP
648 pud = pud_offset(p4d, addr);
649 if (pud_none(*pud))
650 return NULL;
651 if (pud_leaf(*pud))
652 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
653 if (WARN_ON_ONCE(pud_bad(*pud)))
c2febafc 654 return NULL;
c0eb315a 655
c2febafc 656 pmd = pmd_offset(pud, addr);
c0eb315a
NP
657 if (pmd_none(*pmd))
658 return NULL;
659 if (pmd_leaf(*pmd))
660 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
661 if (WARN_ON_ONCE(pmd_bad(*pmd)))
c2febafc
KS
662 return NULL;
663
664 ptep = pte_offset_map(pmd, addr);
665 pte = *ptep;
666 if (pte_present(pte))
667 page = pte_page(pte);
668 pte_unmap(ptep);
c0eb315a 669
add688fb 670 return page;
48667e7a 671}
add688fb 672EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
673
674/*
add688fb 675 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 676 */
add688fb 677unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 678{
add688fb 679 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 680}
add688fb 681EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 682
db64fe02
NP
683
684/*** Global kva allocator ***/
685
bb850f4d 686#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 687#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 688
db64fe02 689
db64fe02 690static DEFINE_SPINLOCK(vmap_area_lock);
e36176be 691static DEFINE_SPINLOCK(free_vmap_area_lock);
f1c4069e
JK
692/* Export for kexec only */
693LIST_HEAD(vmap_area_list);
89699605 694static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 695static bool vmap_initialized __read_mostly;
89699605 696
96e2db45
URS
697static struct rb_root purge_vmap_area_root = RB_ROOT;
698static LIST_HEAD(purge_vmap_area_list);
699static DEFINE_SPINLOCK(purge_vmap_area_lock);
700
68ad4a33
URS
701/*
702 * This kmem_cache is used for vmap_area objects. Instead of
703 * allocating from slab we reuse an object from this cache to
704 * make things faster. Especially in "no edge" splitting of
705 * free block.
706 */
707static struct kmem_cache *vmap_area_cachep;
708
709/*
710 * This linked list is used in pair with free_vmap_area_root.
711 * It gives O(1) access to prev/next to perform fast coalescing.
712 */
713static LIST_HEAD(free_vmap_area_list);
714
715/*
716 * This augment red-black tree represents the free vmap space.
717 * All vmap_area objects in this tree are sorted by va->va_start
718 * address. It is used for allocation and merging when a vmap
719 * object is released.
720 *
721 * Each vmap_area node contains a maximum available free block
722 * of its sub-tree, right or left. Therefore it is possible to
723 * find a lowest match of free area.
724 */
725static struct rb_root free_vmap_area_root = RB_ROOT;
726
82dd23e8
URS
727/*
728 * Preload a CPU with one object for "no edge" split case. The
729 * aim is to get rid of allocations from the atomic context, thus
730 * to use more permissive allocation masks.
731 */
732static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
733
68ad4a33
URS
734static __always_inline unsigned long
735va_size(struct vmap_area *va)
736{
737 return (va->va_end - va->va_start);
738}
739
740static __always_inline unsigned long
741get_subtree_max_size(struct rb_node *node)
742{
743 struct vmap_area *va;
744
745 va = rb_entry_safe(node, struct vmap_area, rb_node);
746 return va ? va->subtree_max_size : 0;
747}
89699605 748
68ad4a33
URS
749/*
750 * Gets called when remove the node and rotate.
751 */
752static __always_inline unsigned long
753compute_subtree_max_size(struct vmap_area *va)
754{
755 return max3(va_size(va),
756 get_subtree_max_size(va->rb_node.rb_left),
757 get_subtree_max_size(va->rb_node.rb_right));
758}
759
315cc066
ML
760RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
761 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
68ad4a33
URS
762
763static void purge_vmap_area_lazy(void);
764static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
765static unsigned long lazy_max_pages(void);
db64fe02 766
97105f0a
RG
767static atomic_long_t nr_vmalloc_pages;
768
769unsigned long vmalloc_nr_pages(void)
770{
771 return atomic_long_read(&nr_vmalloc_pages);
772}
773
db64fe02 774static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 775{
db64fe02
NP
776 struct rb_node *n = vmap_area_root.rb_node;
777
778 while (n) {
779 struct vmap_area *va;
780
781 va = rb_entry(n, struct vmap_area, rb_node);
782 if (addr < va->va_start)
783 n = n->rb_left;
cef2ac3f 784 else if (addr >= va->va_end)
db64fe02
NP
785 n = n->rb_right;
786 else
787 return va;
788 }
789
790 return NULL;
791}
792
68ad4a33
URS
793/*
794 * This function returns back addresses of parent node
795 * and its left or right link for further processing.
9c801f61
URS
796 *
797 * Otherwise NULL is returned. In that case all further
798 * steps regarding inserting of conflicting overlap range
799 * have to be declined and actually considered as a bug.
68ad4a33
URS
800 */
801static __always_inline struct rb_node **
802find_va_links(struct vmap_area *va,
803 struct rb_root *root, struct rb_node *from,
804 struct rb_node **parent)
805{
806 struct vmap_area *tmp_va;
807 struct rb_node **link;
808
809 if (root) {
810 link = &root->rb_node;
811 if (unlikely(!*link)) {
812 *parent = NULL;
813 return link;
814 }
815 } else {
816 link = &from;
817 }
db64fe02 818
68ad4a33
URS
819 /*
820 * Go to the bottom of the tree. When we hit the last point
821 * we end up with parent rb_node and correct direction, i name
822 * it link, where the new va->rb_node will be attached to.
823 */
824 do {
825 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 826
68ad4a33
URS
827 /*
828 * During the traversal we also do some sanity check.
829 * Trigger the BUG() if there are sides(left/right)
830 * or full overlaps.
831 */
832 if (va->va_start < tmp_va->va_end &&
833 va->va_end <= tmp_va->va_start)
834 link = &(*link)->rb_left;
835 else if (va->va_end > tmp_va->va_start &&
836 va->va_start >= tmp_va->va_end)
837 link = &(*link)->rb_right;
9c801f61
URS
838 else {
839 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
840 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
841
842 return NULL;
843 }
68ad4a33
URS
844 } while (*link);
845
846 *parent = &tmp_va->rb_node;
847 return link;
848}
849
850static __always_inline struct list_head *
851get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
852{
853 struct list_head *list;
854
855 if (unlikely(!parent))
856 /*
857 * The red-black tree where we try to find VA neighbors
858 * before merging or inserting is empty, i.e. it means
859 * there is no free vmap space. Normally it does not
860 * happen but we handle this case anyway.
861 */
862 return NULL;
863
864 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
865 return (&parent->rb_right == link ? list->next : list);
866}
867
868static __always_inline void
869link_va(struct vmap_area *va, struct rb_root *root,
870 struct rb_node *parent, struct rb_node **link, struct list_head *head)
871{
872 /*
873 * VA is still not in the list, but we can
874 * identify its future previous list_head node.
875 */
876 if (likely(parent)) {
877 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
878 if (&parent->rb_right != link)
879 head = head->prev;
db64fe02
NP
880 }
881
68ad4a33
URS
882 /* Insert to the rb-tree */
883 rb_link_node(&va->rb_node, parent, link);
884 if (root == &free_vmap_area_root) {
885 /*
886 * Some explanation here. Just perform simple insertion
887 * to the tree. We do not set va->subtree_max_size to
888 * its current size before calling rb_insert_augmented().
889 * It is because of we populate the tree from the bottom
890 * to parent levels when the node _is_ in the tree.
891 *
892 * Therefore we set subtree_max_size to zero after insertion,
893 * to let __augment_tree_propagate_from() puts everything to
894 * the correct order later on.
895 */
896 rb_insert_augmented(&va->rb_node,
897 root, &free_vmap_area_rb_augment_cb);
898 va->subtree_max_size = 0;
899 } else {
900 rb_insert_color(&va->rb_node, root);
901 }
db64fe02 902
68ad4a33
URS
903 /* Address-sort this list */
904 list_add(&va->list, head);
db64fe02
NP
905}
906
68ad4a33
URS
907static __always_inline void
908unlink_va(struct vmap_area *va, struct rb_root *root)
909{
460e42d1
URS
910 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
911 return;
db64fe02 912
460e42d1
URS
913 if (root == &free_vmap_area_root)
914 rb_erase_augmented(&va->rb_node,
915 root, &free_vmap_area_rb_augment_cb);
916 else
917 rb_erase(&va->rb_node, root);
918
919 list_del(&va->list);
920 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
921}
922
bb850f4d
URS
923#if DEBUG_AUGMENT_PROPAGATE_CHECK
924static void
da27c9ed 925augment_tree_propagate_check(void)
bb850f4d
URS
926{
927 struct vmap_area *va;
da27c9ed 928 unsigned long computed_size;
bb850f4d 929
da27c9ed
URS
930 list_for_each_entry(va, &free_vmap_area_list, list) {
931 computed_size = compute_subtree_max_size(va);
932 if (computed_size != va->subtree_max_size)
933 pr_emerg("tree is corrupted: %lu, %lu\n",
934 va_size(va), va->subtree_max_size);
bb850f4d 935 }
bb850f4d
URS
936}
937#endif
938
68ad4a33
URS
939/*
940 * This function populates subtree_max_size from bottom to upper
941 * levels starting from VA point. The propagation must be done
942 * when VA size is modified by changing its va_start/va_end. Or
943 * in case of newly inserting of VA to the tree.
944 *
945 * It means that __augment_tree_propagate_from() must be called:
946 * - After VA has been inserted to the tree(free path);
947 * - After VA has been shrunk(allocation path);
948 * - After VA has been increased(merging path).
949 *
950 * Please note that, it does not mean that upper parent nodes
951 * and their subtree_max_size are recalculated all the time up
952 * to the root node.
953 *
954 * 4--8
955 * /\
956 * / \
957 * / \
958 * 2--2 8--8
959 *
960 * For example if we modify the node 4, shrinking it to 2, then
961 * no any modification is required. If we shrink the node 2 to 1
962 * its subtree_max_size is updated only, and set to 1. If we shrink
963 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
964 * node becomes 4--6.
965 */
966static __always_inline void
967augment_tree_propagate_from(struct vmap_area *va)
968{
15ae144f
URS
969 /*
970 * Populate the tree from bottom towards the root until
971 * the calculated maximum available size of checked node
972 * is equal to its current one.
973 */
974 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
bb850f4d
URS
975
976#if DEBUG_AUGMENT_PROPAGATE_CHECK
da27c9ed 977 augment_tree_propagate_check();
bb850f4d 978#endif
68ad4a33
URS
979}
980
981static void
982insert_vmap_area(struct vmap_area *va,
983 struct rb_root *root, struct list_head *head)
984{
985 struct rb_node **link;
986 struct rb_node *parent;
987
988 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
989 if (link)
990 link_va(va, root, parent, link, head);
68ad4a33
URS
991}
992
993static void
994insert_vmap_area_augment(struct vmap_area *va,
995 struct rb_node *from, struct rb_root *root,
996 struct list_head *head)
997{
998 struct rb_node **link;
999 struct rb_node *parent;
1000
1001 if (from)
1002 link = find_va_links(va, NULL, from, &parent);
1003 else
1004 link = find_va_links(va, root, NULL, &parent);
1005
9c801f61
URS
1006 if (link) {
1007 link_va(va, root, parent, link, head);
1008 augment_tree_propagate_from(va);
1009 }
68ad4a33
URS
1010}
1011
1012/*
1013 * Merge de-allocated chunk of VA memory with previous
1014 * and next free blocks. If coalesce is not done a new
1015 * free area is inserted. If VA has been merged, it is
1016 * freed.
9c801f61
URS
1017 *
1018 * Please note, it can return NULL in case of overlap
1019 * ranges, followed by WARN() report. Despite it is a
1020 * buggy behaviour, a system can be alive and keep
1021 * ongoing.
68ad4a33 1022 */
3c5c3cfb 1023static __always_inline struct vmap_area *
68ad4a33
URS
1024merge_or_add_vmap_area(struct vmap_area *va,
1025 struct rb_root *root, struct list_head *head)
1026{
1027 struct vmap_area *sibling;
1028 struct list_head *next;
1029 struct rb_node **link;
1030 struct rb_node *parent;
1031 bool merged = false;
1032
1033 /*
1034 * Find a place in the tree where VA potentially will be
1035 * inserted, unless it is merged with its sibling/siblings.
1036 */
1037 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
1038 if (!link)
1039 return NULL;
68ad4a33
URS
1040
1041 /*
1042 * Get next node of VA to check if merging can be done.
1043 */
1044 next = get_va_next_sibling(parent, link);
1045 if (unlikely(next == NULL))
1046 goto insert;
1047
1048 /*
1049 * start end
1050 * | |
1051 * |<------VA------>|<-----Next----->|
1052 * | |
1053 * start end
1054 */
1055 if (next != head) {
1056 sibling = list_entry(next, struct vmap_area, list);
1057 if (sibling->va_start == va->va_end) {
1058 sibling->va_start = va->va_start;
1059
68ad4a33
URS
1060 /* Free vmap_area object. */
1061 kmem_cache_free(vmap_area_cachep, va);
1062
1063 /* Point to the new merged area. */
1064 va = sibling;
1065 merged = true;
1066 }
1067 }
1068
1069 /*
1070 * start end
1071 * | |
1072 * |<-----Prev----->|<------VA------>|
1073 * | |
1074 * start end
1075 */
1076 if (next->prev != head) {
1077 sibling = list_entry(next->prev, struct vmap_area, list);
1078 if (sibling->va_end == va->va_start) {
5dd78640
URS
1079 /*
1080 * If both neighbors are coalesced, it is important
1081 * to unlink the "next" node first, followed by merging
1082 * with "previous" one. Otherwise the tree might not be
1083 * fully populated if a sibling's augmented value is
1084 * "normalized" because of rotation operations.
1085 */
54f63d9d
URS
1086 if (merged)
1087 unlink_va(va, root);
68ad4a33 1088
5dd78640
URS
1089 sibling->va_end = va->va_end;
1090
68ad4a33
URS
1091 /* Free vmap_area object. */
1092 kmem_cache_free(vmap_area_cachep, va);
3c5c3cfb
DA
1093
1094 /* Point to the new merged area. */
1095 va = sibling;
1096 merged = true;
68ad4a33
URS
1097 }
1098 }
1099
1100insert:
5dd78640 1101 if (!merged)
68ad4a33 1102 link_va(va, root, parent, link, head);
3c5c3cfb 1103
96e2db45
URS
1104 return va;
1105}
1106
1107static __always_inline struct vmap_area *
1108merge_or_add_vmap_area_augment(struct vmap_area *va,
1109 struct rb_root *root, struct list_head *head)
1110{
1111 va = merge_or_add_vmap_area(va, root, head);
1112 if (va)
1113 augment_tree_propagate_from(va);
1114
3c5c3cfb 1115 return va;
68ad4a33
URS
1116}
1117
1118static __always_inline bool
1119is_within_this_va(struct vmap_area *va, unsigned long size,
1120 unsigned long align, unsigned long vstart)
1121{
1122 unsigned long nva_start_addr;
1123
1124 if (va->va_start > vstart)
1125 nva_start_addr = ALIGN(va->va_start, align);
1126 else
1127 nva_start_addr = ALIGN(vstart, align);
1128
1129 /* Can be overflowed due to big size or alignment. */
1130 if (nva_start_addr + size < nva_start_addr ||
1131 nva_start_addr < vstart)
1132 return false;
1133
1134 return (nva_start_addr + size <= va->va_end);
1135}
1136
1137/*
1138 * Find the first free block(lowest start address) in the tree,
1139 * that will accomplish the request corresponding to passing
1140 * parameters.
1141 */
1142static __always_inline struct vmap_area *
1143find_vmap_lowest_match(unsigned long size,
1144 unsigned long align, unsigned long vstart)
1145{
1146 struct vmap_area *va;
1147 struct rb_node *node;
1148 unsigned long length;
1149
1150 /* Start from the root. */
1151 node = free_vmap_area_root.rb_node;
1152
1153 /* Adjust the search size for alignment overhead. */
1154 length = size + align - 1;
1155
1156 while (node) {
1157 va = rb_entry(node, struct vmap_area, rb_node);
1158
1159 if (get_subtree_max_size(node->rb_left) >= length &&
1160 vstart < va->va_start) {
1161 node = node->rb_left;
1162 } else {
1163 if (is_within_this_va(va, size, align, vstart))
1164 return va;
1165
1166 /*
1167 * Does not make sense to go deeper towards the right
1168 * sub-tree if it does not have a free block that is
1169 * equal or bigger to the requested search length.
1170 */
1171 if (get_subtree_max_size(node->rb_right) >= length) {
1172 node = node->rb_right;
1173 continue;
1174 }
1175
1176 /*
3806b041 1177 * OK. We roll back and find the first right sub-tree,
68ad4a33
URS
1178 * that will satisfy the search criteria. It can happen
1179 * only once due to "vstart" restriction.
1180 */
1181 while ((node = rb_parent(node))) {
1182 va = rb_entry(node, struct vmap_area, rb_node);
1183 if (is_within_this_va(va, size, align, vstart))
1184 return va;
1185
1186 if (get_subtree_max_size(node->rb_right) >= length &&
1187 vstart <= va->va_start) {
1188 node = node->rb_right;
1189 break;
1190 }
1191 }
1192 }
1193 }
1194
1195 return NULL;
1196}
1197
a6cf4e0f
URS
1198#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1199#include <linux/random.h>
1200
1201static struct vmap_area *
1202find_vmap_lowest_linear_match(unsigned long size,
1203 unsigned long align, unsigned long vstart)
1204{
1205 struct vmap_area *va;
1206
1207 list_for_each_entry(va, &free_vmap_area_list, list) {
1208 if (!is_within_this_va(va, size, align, vstart))
1209 continue;
1210
1211 return va;
1212 }
1213
1214 return NULL;
1215}
1216
1217static void
1218find_vmap_lowest_match_check(unsigned long size)
1219{
1220 struct vmap_area *va_1, *va_2;
1221 unsigned long vstart;
1222 unsigned int rnd;
1223
1224 get_random_bytes(&rnd, sizeof(rnd));
1225 vstart = VMALLOC_START + rnd;
1226
1227 va_1 = find_vmap_lowest_match(size, 1, vstart);
1228 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
1229
1230 if (va_1 != va_2)
1231 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1232 va_1, va_2, vstart);
1233}
1234#endif
1235
68ad4a33
URS
1236enum fit_type {
1237 NOTHING_FIT = 0,
1238 FL_FIT_TYPE = 1, /* full fit */
1239 LE_FIT_TYPE = 2, /* left edge fit */
1240 RE_FIT_TYPE = 3, /* right edge fit */
1241 NE_FIT_TYPE = 4 /* no edge fit */
1242};
1243
1244static __always_inline enum fit_type
1245classify_va_fit_type(struct vmap_area *va,
1246 unsigned long nva_start_addr, unsigned long size)
1247{
1248 enum fit_type type;
1249
1250 /* Check if it is within VA. */
1251 if (nva_start_addr < va->va_start ||
1252 nva_start_addr + size > va->va_end)
1253 return NOTHING_FIT;
1254
1255 /* Now classify. */
1256 if (va->va_start == nva_start_addr) {
1257 if (va->va_end == nva_start_addr + size)
1258 type = FL_FIT_TYPE;
1259 else
1260 type = LE_FIT_TYPE;
1261 } else if (va->va_end == nva_start_addr + size) {
1262 type = RE_FIT_TYPE;
1263 } else {
1264 type = NE_FIT_TYPE;
1265 }
1266
1267 return type;
1268}
1269
1270static __always_inline int
1271adjust_va_to_fit_type(struct vmap_area *va,
1272 unsigned long nva_start_addr, unsigned long size,
1273 enum fit_type type)
1274{
2c929233 1275 struct vmap_area *lva = NULL;
68ad4a33
URS
1276
1277 if (type == FL_FIT_TYPE) {
1278 /*
1279 * No need to split VA, it fully fits.
1280 *
1281 * | |
1282 * V NVA V
1283 * |---------------|
1284 */
1285 unlink_va(va, &free_vmap_area_root);
1286 kmem_cache_free(vmap_area_cachep, va);
1287 } else if (type == LE_FIT_TYPE) {
1288 /*
1289 * Split left edge of fit VA.
1290 *
1291 * | |
1292 * V NVA V R
1293 * |-------|-------|
1294 */
1295 va->va_start += size;
1296 } else if (type == RE_FIT_TYPE) {
1297 /*
1298 * Split right edge of fit VA.
1299 *
1300 * | |
1301 * L V NVA V
1302 * |-------|-------|
1303 */
1304 va->va_end = nva_start_addr;
1305 } else if (type == NE_FIT_TYPE) {
1306 /*
1307 * Split no edge of fit VA.
1308 *
1309 * | |
1310 * L V NVA V R
1311 * |---|-------|---|
1312 */
82dd23e8
URS
1313 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1314 if (unlikely(!lva)) {
1315 /*
1316 * For percpu allocator we do not do any pre-allocation
1317 * and leave it as it is. The reason is it most likely
1318 * never ends up with NE_FIT_TYPE splitting. In case of
1319 * percpu allocations offsets and sizes are aligned to
1320 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1321 * are its main fitting cases.
1322 *
1323 * There are a few exceptions though, as an example it is
1324 * a first allocation (early boot up) when we have "one"
1325 * big free space that has to be split.
060650a2
URS
1326 *
1327 * Also we can hit this path in case of regular "vmap"
1328 * allocations, if "this" current CPU was not preloaded.
1329 * See the comment in alloc_vmap_area() why. If so, then
1330 * GFP_NOWAIT is used instead to get an extra object for
1331 * split purpose. That is rare and most time does not
1332 * occur.
1333 *
1334 * What happens if an allocation gets failed. Basically,
1335 * an "overflow" path is triggered to purge lazily freed
1336 * areas to free some memory, then, the "retry" path is
1337 * triggered to repeat one more time. See more details
1338 * in alloc_vmap_area() function.
82dd23e8
URS
1339 */
1340 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1341 if (!lva)
1342 return -1;
1343 }
68ad4a33
URS
1344
1345 /*
1346 * Build the remainder.
1347 */
1348 lva->va_start = va->va_start;
1349 lva->va_end = nva_start_addr;
1350
1351 /*
1352 * Shrink this VA to remaining size.
1353 */
1354 va->va_start = nva_start_addr + size;
1355 } else {
1356 return -1;
1357 }
1358
1359 if (type != FL_FIT_TYPE) {
1360 augment_tree_propagate_from(va);
1361
2c929233 1362 if (lva) /* type == NE_FIT_TYPE */
68ad4a33
URS
1363 insert_vmap_area_augment(lva, &va->rb_node,
1364 &free_vmap_area_root, &free_vmap_area_list);
1365 }
1366
1367 return 0;
1368}
1369
1370/*
1371 * Returns a start address of the newly allocated area, if success.
1372 * Otherwise a vend is returned that indicates failure.
1373 */
1374static __always_inline unsigned long
1375__alloc_vmap_area(unsigned long size, unsigned long align,
cacca6ba 1376 unsigned long vstart, unsigned long vend)
68ad4a33
URS
1377{
1378 unsigned long nva_start_addr;
1379 struct vmap_area *va;
1380 enum fit_type type;
1381 int ret;
1382
1383 va = find_vmap_lowest_match(size, align, vstart);
1384 if (unlikely(!va))
1385 return vend;
1386
1387 if (va->va_start > vstart)
1388 nva_start_addr = ALIGN(va->va_start, align);
1389 else
1390 nva_start_addr = ALIGN(vstart, align);
1391
1392 /* Check the "vend" restriction. */
1393 if (nva_start_addr + size > vend)
1394 return vend;
1395
1396 /* Classify what we have found. */
1397 type = classify_va_fit_type(va, nva_start_addr, size);
1398 if (WARN_ON_ONCE(type == NOTHING_FIT))
1399 return vend;
1400
1401 /* Update the free vmap_area. */
1402 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1403 if (ret)
1404 return vend;
1405
a6cf4e0f
URS
1406#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1407 find_vmap_lowest_match_check(size);
1408#endif
1409
68ad4a33
URS
1410 return nva_start_addr;
1411}
4da56b99 1412
d98c9e83
AR
1413/*
1414 * Free a region of KVA allocated by alloc_vmap_area
1415 */
1416static void free_vmap_area(struct vmap_area *va)
1417{
1418 /*
1419 * Remove from the busy tree/list.
1420 */
1421 spin_lock(&vmap_area_lock);
1422 unlink_va(va, &vmap_area_root);
1423 spin_unlock(&vmap_area_lock);
1424
1425 /*
1426 * Insert/Merge it back to the free tree/list.
1427 */
1428 spin_lock(&free_vmap_area_lock);
96e2db45 1429 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
d98c9e83
AR
1430 spin_unlock(&free_vmap_area_lock);
1431}
1432
187f8cc4
URS
1433static inline void
1434preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1435{
1436 struct vmap_area *va = NULL;
1437
1438 /*
1439 * Preload this CPU with one extra vmap_area object. It is used
1440 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1441 * a CPU that does an allocation is preloaded.
1442 *
1443 * We do it in non-atomic context, thus it allows us to use more
1444 * permissive allocation masks to be more stable under low memory
1445 * condition and high memory pressure.
1446 */
1447 if (!this_cpu_read(ne_fit_preload_node))
1448 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1449
1450 spin_lock(lock);
1451
1452 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1453 kmem_cache_free(vmap_area_cachep, va);
1454}
1455
db64fe02
NP
1456/*
1457 * Allocate a region of KVA of the specified size and alignment, within the
1458 * vstart and vend.
1459 */
1460static struct vmap_area *alloc_vmap_area(unsigned long size,
1461 unsigned long align,
1462 unsigned long vstart, unsigned long vend,
1463 int node, gfp_t gfp_mask)
1464{
187f8cc4 1465 struct vmap_area *va;
1da177e4 1466 unsigned long addr;
db64fe02 1467 int purged = 0;
d98c9e83 1468 int ret;
db64fe02 1469
7766970c 1470 BUG_ON(!size);
891c49ab 1471 BUG_ON(offset_in_page(size));
89699605 1472 BUG_ON(!is_power_of_2(align));
db64fe02 1473
68ad4a33
URS
1474 if (unlikely(!vmap_initialized))
1475 return ERR_PTR(-EBUSY);
1476
5803ed29 1477 might_sleep();
f07116d7 1478 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
4da56b99 1479
f07116d7 1480 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
db64fe02
NP
1481 if (unlikely(!va))
1482 return ERR_PTR(-ENOMEM);
1483
7f88f88f
CM
1484 /*
1485 * Only scan the relevant parts containing pointers to other objects
1486 * to avoid false negatives.
1487 */
f07116d7 1488 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
7f88f88f 1489
db64fe02 1490retry:
187f8cc4
URS
1491 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1492 addr = __alloc_vmap_area(size, align, vstart, vend);
1493 spin_unlock(&free_vmap_area_lock);
89699605 1494
afd07389 1495 /*
68ad4a33
URS
1496 * If an allocation fails, the "vend" address is
1497 * returned. Therefore trigger the overflow path.
afd07389 1498 */
68ad4a33 1499 if (unlikely(addr == vend))
89699605 1500 goto overflow;
db64fe02
NP
1501
1502 va->va_start = addr;
1503 va->va_end = addr + size;
688fcbfc 1504 va->vm = NULL;
68ad4a33 1505
e36176be
URS
1506 spin_lock(&vmap_area_lock);
1507 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
db64fe02
NP
1508 spin_unlock(&vmap_area_lock);
1509
61e16557 1510 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1511 BUG_ON(va->va_start < vstart);
1512 BUG_ON(va->va_end > vend);
1513
d98c9e83
AR
1514 ret = kasan_populate_vmalloc(addr, size);
1515 if (ret) {
1516 free_vmap_area(va);
1517 return ERR_PTR(ret);
1518 }
1519
db64fe02 1520 return va;
89699605
NP
1521
1522overflow:
89699605
NP
1523 if (!purged) {
1524 purge_vmap_area_lazy();
1525 purged = 1;
1526 goto retry;
1527 }
4da56b99
CW
1528
1529 if (gfpflags_allow_blocking(gfp_mask)) {
1530 unsigned long freed = 0;
1531 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1532 if (freed > 0) {
1533 purged = 0;
1534 goto retry;
1535 }
1536 }
1537
03497d76 1538 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1539 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1540 size);
68ad4a33
URS
1541
1542 kmem_cache_free(vmap_area_cachep, va);
89699605 1543 return ERR_PTR(-EBUSY);
db64fe02
NP
1544}
1545
4da56b99
CW
1546int register_vmap_purge_notifier(struct notifier_block *nb)
1547{
1548 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1549}
1550EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1551
1552int unregister_vmap_purge_notifier(struct notifier_block *nb)
1553{
1554 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1555}
1556EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1557
db64fe02
NP
1558/*
1559 * lazy_max_pages is the maximum amount of virtual address space we gather up
1560 * before attempting to purge with a TLB flush.
1561 *
1562 * There is a tradeoff here: a larger number will cover more kernel page tables
1563 * and take slightly longer to purge, but it will linearly reduce the number of
1564 * global TLB flushes that must be performed. It would seem natural to scale
1565 * this number up linearly with the number of CPUs (because vmapping activity
1566 * could also scale linearly with the number of CPUs), however it is likely
1567 * that in practice, workloads might be constrained in other ways that mean
1568 * vmap activity will not scale linearly with CPUs. Also, I want to be
1569 * conservative and not introduce a big latency on huge systems, so go with
1570 * a less aggressive log scale. It will still be an improvement over the old
1571 * code, and it will be simple to change the scale factor if we find that it
1572 * becomes a problem on bigger systems.
1573 */
1574static unsigned long lazy_max_pages(void)
1575{
1576 unsigned int log;
1577
1578 log = fls(num_online_cpus());
1579
1580 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1581}
1582
4d36e6f8 1583static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1584
0574ecd1
CH
1585/*
1586 * Serialize vmap purging. There is no actual criticial section protected
1587 * by this look, but we want to avoid concurrent calls for performance
1588 * reasons and to make the pcpu_get_vm_areas more deterministic.
1589 */
f9e09977 1590static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1591
02b709df
NP
1592/* for per-CPU blocks */
1593static void purge_fragmented_blocks_allcpus(void);
1594
3ee48b6a
CW
1595/*
1596 * called before a call to iounmap() if the caller wants vm_area_struct's
1597 * immediately freed.
1598 */
1599void set_iounmap_nonlazy(void)
1600{
4d36e6f8 1601 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
3ee48b6a
CW
1602}
1603
db64fe02
NP
1604/*
1605 * Purges all lazily-freed vmap areas.
db64fe02 1606 */
0574ecd1 1607static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1608{
4d36e6f8 1609 unsigned long resched_threshold;
96e2db45
URS
1610 struct list_head local_pure_list;
1611 struct vmap_area *va, *n_va;
db64fe02 1612
0574ecd1 1613 lockdep_assert_held(&vmap_purge_lock);
02b709df 1614
96e2db45
URS
1615 spin_lock(&purge_vmap_area_lock);
1616 purge_vmap_area_root = RB_ROOT;
1617 list_replace_init(&purge_vmap_area_list, &local_pure_list);
1618 spin_unlock(&purge_vmap_area_lock);
1619
1620 if (unlikely(list_empty(&local_pure_list)))
68571be9
URS
1621 return false;
1622
96e2db45
URS
1623 start = min(start,
1624 list_first_entry(&local_pure_list,
1625 struct vmap_area, list)->va_start);
1626
1627 end = max(end,
1628 list_last_entry(&local_pure_list,
1629 struct vmap_area, list)->va_end);
db64fe02 1630
0574ecd1 1631 flush_tlb_kernel_range(start, end);
4d36e6f8 1632 resched_threshold = lazy_max_pages() << 1;
db64fe02 1633
e36176be 1634 spin_lock(&free_vmap_area_lock);
96e2db45 1635 list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
4d36e6f8 1636 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
3c5c3cfb
DA
1637 unsigned long orig_start = va->va_start;
1638 unsigned long orig_end = va->va_end;
763b218d 1639
dd3b8353
URS
1640 /*
1641 * Finally insert or merge lazily-freed area. It is
1642 * detached and there is no need to "unlink" it from
1643 * anything.
1644 */
96e2db45
URS
1645 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1646 &free_vmap_area_list);
3c5c3cfb 1647
9c801f61
URS
1648 if (!va)
1649 continue;
1650
3c5c3cfb
DA
1651 if (is_vmalloc_or_module_addr((void *)orig_start))
1652 kasan_release_vmalloc(orig_start, orig_end,
1653 va->va_start, va->va_end);
dd3b8353 1654
4d36e6f8 1655 atomic_long_sub(nr, &vmap_lazy_nr);
68571be9 1656
4d36e6f8 1657 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
e36176be 1658 cond_resched_lock(&free_vmap_area_lock);
763b218d 1659 }
e36176be 1660 spin_unlock(&free_vmap_area_lock);
0574ecd1 1661 return true;
db64fe02
NP
1662}
1663
496850e5
NP
1664/*
1665 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1666 * is already purging.
1667 */
1668static void try_purge_vmap_area_lazy(void)
1669{
f9e09977 1670 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 1671 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1672 mutex_unlock(&vmap_purge_lock);
0574ecd1 1673 }
496850e5
NP
1674}
1675
db64fe02
NP
1676/*
1677 * Kick off a purge of the outstanding lazy areas.
1678 */
1679static void purge_vmap_area_lazy(void)
1680{
f9e09977 1681 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1682 purge_fragmented_blocks_allcpus();
1683 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1684 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1685}
1686
1687/*
64141da5
JF
1688 * Free a vmap area, caller ensuring that the area has been unmapped
1689 * and flush_cache_vunmap had been called for the correct range
1690 * previously.
db64fe02 1691 */
64141da5 1692static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1693{
4d36e6f8 1694 unsigned long nr_lazy;
80c4bd7a 1695
dd3b8353
URS
1696 spin_lock(&vmap_area_lock);
1697 unlink_va(va, &vmap_area_root);
1698 spin_unlock(&vmap_area_lock);
1699
4d36e6f8
URS
1700 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1701 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a 1702
96e2db45
URS
1703 /*
1704 * Merge or place it to the purge tree/list.
1705 */
1706 spin_lock(&purge_vmap_area_lock);
1707 merge_or_add_vmap_area(va,
1708 &purge_vmap_area_root, &purge_vmap_area_list);
1709 spin_unlock(&purge_vmap_area_lock);
80c4bd7a 1710
96e2db45 1711 /* After this point, we may free va at any time */
80c4bd7a 1712 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 1713 try_purge_vmap_area_lazy();
db64fe02
NP
1714}
1715
b29acbdc
NP
1716/*
1717 * Free and unmap a vmap area
1718 */
1719static void free_unmap_vmap_area(struct vmap_area *va)
1720{
1721 flush_cache_vunmap(va->va_start, va->va_end);
4ad0ae8c 1722 vunmap_range_noflush(va->va_start, va->va_end);
8e57f8ac 1723 if (debug_pagealloc_enabled_static())
82a2e924
CP
1724 flush_tlb_kernel_range(va->va_start, va->va_end);
1725
c8eef01e 1726 free_vmap_area_noflush(va);
b29acbdc
NP
1727}
1728
db64fe02
NP
1729static struct vmap_area *find_vmap_area(unsigned long addr)
1730{
1731 struct vmap_area *va;
1732
1733 spin_lock(&vmap_area_lock);
1734 va = __find_vmap_area(addr);
1735 spin_unlock(&vmap_area_lock);
1736
1737 return va;
1738}
1739
db64fe02
NP
1740/*** Per cpu kva allocator ***/
1741
1742/*
1743 * vmap space is limited especially on 32 bit architectures. Ensure there is
1744 * room for at least 16 percpu vmap blocks per CPU.
1745 */
1746/*
1747 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1748 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1749 * instead (we just need a rough idea)
1750 */
1751#if BITS_PER_LONG == 32
1752#define VMALLOC_SPACE (128UL*1024*1024)
1753#else
1754#define VMALLOC_SPACE (128UL*1024*1024*1024)
1755#endif
1756
1757#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1758#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1759#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1760#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1761#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1762#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1763#define VMAP_BBMAP_BITS \
1764 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1765 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1766 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1767
1768#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1769
1770struct vmap_block_queue {
1771 spinlock_t lock;
1772 struct list_head free;
db64fe02
NP
1773};
1774
1775struct vmap_block {
1776 spinlock_t lock;
1777 struct vmap_area *va;
db64fe02 1778 unsigned long free, dirty;
7d61bfe8 1779 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1780 struct list_head free_list;
1781 struct rcu_head rcu_head;
02b709df 1782 struct list_head purge;
db64fe02
NP
1783};
1784
1785/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1786static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1787
1788/*
0f14599c 1789 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
db64fe02
NP
1790 * in the free path. Could get rid of this if we change the API to return a
1791 * "cookie" from alloc, to be passed to free. But no big deal yet.
1792 */
0f14599c 1793static DEFINE_XARRAY(vmap_blocks);
db64fe02
NP
1794
1795/*
1796 * We should probably have a fallback mechanism to allocate virtual memory
1797 * out of partially filled vmap blocks. However vmap block sizing should be
1798 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1799 * big problem.
1800 */
1801
1802static unsigned long addr_to_vb_idx(unsigned long addr)
1803{
1804 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1805 addr /= VMAP_BLOCK_SIZE;
1806 return addr;
1807}
1808
cf725ce2
RP
1809static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1810{
1811 unsigned long addr;
1812
1813 addr = va_start + (pages_off << PAGE_SHIFT);
1814 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1815 return (void *)addr;
1816}
1817
1818/**
1819 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1820 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1821 * @order: how many 2^order pages should be occupied in newly allocated block
1822 * @gfp_mask: flags for the page level allocator
1823 *
a862f68a 1824 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1825 */
1826static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1827{
1828 struct vmap_block_queue *vbq;
1829 struct vmap_block *vb;
1830 struct vmap_area *va;
1831 unsigned long vb_idx;
1832 int node, err;
cf725ce2 1833 void *vaddr;
db64fe02
NP
1834
1835 node = numa_node_id();
1836
1837 vb = kmalloc_node(sizeof(struct vmap_block),
1838 gfp_mask & GFP_RECLAIM_MASK, node);
1839 if (unlikely(!vb))
1840 return ERR_PTR(-ENOMEM);
1841
1842 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1843 VMALLOC_START, VMALLOC_END,
1844 node, gfp_mask);
ddf9c6d4 1845 if (IS_ERR(va)) {
db64fe02 1846 kfree(vb);
e7d86340 1847 return ERR_CAST(va);
db64fe02
NP
1848 }
1849
cf725ce2 1850 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1851 spin_lock_init(&vb->lock);
1852 vb->va = va;
cf725ce2
RP
1853 /* At least something should be left free */
1854 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1855 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 1856 vb->dirty = 0;
7d61bfe8
RP
1857 vb->dirty_min = VMAP_BBMAP_BITS;
1858 vb->dirty_max = 0;
db64fe02 1859 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
1860
1861 vb_idx = addr_to_vb_idx(va->va_start);
0f14599c
MWO
1862 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1863 if (err) {
1864 kfree(vb);
1865 free_vmap_area(va);
1866 return ERR_PTR(err);
1867 }
db64fe02
NP
1868
1869 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 1870 spin_lock(&vbq->lock);
68ac546f 1871 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 1872 spin_unlock(&vbq->lock);
3f04ba85 1873 put_cpu_var(vmap_block_queue);
db64fe02 1874
cf725ce2 1875 return vaddr;
db64fe02
NP
1876}
1877
db64fe02
NP
1878static void free_vmap_block(struct vmap_block *vb)
1879{
1880 struct vmap_block *tmp;
db64fe02 1881
0f14599c 1882 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
db64fe02
NP
1883 BUG_ON(tmp != vb);
1884
64141da5 1885 free_vmap_area_noflush(vb->va);
22a3c7d1 1886 kfree_rcu(vb, rcu_head);
db64fe02
NP
1887}
1888
02b709df
NP
1889static void purge_fragmented_blocks(int cpu)
1890{
1891 LIST_HEAD(purge);
1892 struct vmap_block *vb;
1893 struct vmap_block *n_vb;
1894 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1895
1896 rcu_read_lock();
1897 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1898
1899 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1900 continue;
1901
1902 spin_lock(&vb->lock);
1903 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1904 vb->free = 0; /* prevent further allocs after releasing lock */
1905 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
1906 vb->dirty_min = 0;
1907 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
1908 spin_lock(&vbq->lock);
1909 list_del_rcu(&vb->free_list);
1910 spin_unlock(&vbq->lock);
1911 spin_unlock(&vb->lock);
1912 list_add_tail(&vb->purge, &purge);
1913 } else
1914 spin_unlock(&vb->lock);
1915 }
1916 rcu_read_unlock();
1917
1918 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1919 list_del(&vb->purge);
1920 free_vmap_block(vb);
1921 }
1922}
1923
02b709df
NP
1924static void purge_fragmented_blocks_allcpus(void)
1925{
1926 int cpu;
1927
1928 for_each_possible_cpu(cpu)
1929 purge_fragmented_blocks(cpu);
1930}
1931
db64fe02
NP
1932static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1933{
1934 struct vmap_block_queue *vbq;
1935 struct vmap_block *vb;
cf725ce2 1936 void *vaddr = NULL;
db64fe02
NP
1937 unsigned int order;
1938
891c49ab 1939 BUG_ON(offset_in_page(size));
db64fe02 1940 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
1941 if (WARN_ON(size == 0)) {
1942 /*
1943 * Allocating 0 bytes isn't what caller wants since
1944 * get_order(0) returns funny result. Just warn and terminate
1945 * early.
1946 */
1947 return NULL;
1948 }
db64fe02
NP
1949 order = get_order(size);
1950
db64fe02
NP
1951 rcu_read_lock();
1952 vbq = &get_cpu_var(vmap_block_queue);
1953 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 1954 unsigned long pages_off;
db64fe02
NP
1955
1956 spin_lock(&vb->lock);
cf725ce2
RP
1957 if (vb->free < (1UL << order)) {
1958 spin_unlock(&vb->lock);
1959 continue;
1960 }
02b709df 1961
cf725ce2
RP
1962 pages_off = VMAP_BBMAP_BITS - vb->free;
1963 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
1964 vb->free -= 1UL << order;
1965 if (vb->free == 0) {
1966 spin_lock(&vbq->lock);
1967 list_del_rcu(&vb->free_list);
1968 spin_unlock(&vbq->lock);
1969 }
cf725ce2 1970
02b709df
NP
1971 spin_unlock(&vb->lock);
1972 break;
db64fe02 1973 }
02b709df 1974
3f04ba85 1975 put_cpu_var(vmap_block_queue);
db64fe02
NP
1976 rcu_read_unlock();
1977
cf725ce2
RP
1978 /* Allocate new block if nothing was found */
1979 if (!vaddr)
1980 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 1981
cf725ce2 1982 return vaddr;
db64fe02
NP
1983}
1984
78a0e8c4 1985static void vb_free(unsigned long addr, unsigned long size)
db64fe02
NP
1986{
1987 unsigned long offset;
db64fe02
NP
1988 unsigned int order;
1989 struct vmap_block *vb;
1990
891c49ab 1991 BUG_ON(offset_in_page(size));
db64fe02 1992 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc 1993
78a0e8c4 1994 flush_cache_vunmap(addr, addr + size);
b29acbdc 1995
db64fe02 1996 order = get_order(size);
78a0e8c4 1997 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
0f14599c 1998 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
db64fe02 1999
4ad0ae8c 2000 vunmap_range_noflush(addr, addr + size);
64141da5 2001
8e57f8ac 2002 if (debug_pagealloc_enabled_static())
78a0e8c4 2003 flush_tlb_kernel_range(addr, addr + size);
82a2e924 2004
db64fe02 2005 spin_lock(&vb->lock);
7d61bfe8
RP
2006
2007 /* Expand dirty range */
2008 vb->dirty_min = min(vb->dirty_min, offset);
2009 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 2010
db64fe02
NP
2011 vb->dirty += 1UL << order;
2012 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 2013 BUG_ON(vb->free);
db64fe02
NP
2014 spin_unlock(&vb->lock);
2015 free_vmap_block(vb);
2016 } else
2017 spin_unlock(&vb->lock);
2018}
2019
868b104d 2020static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 2021{
db64fe02 2022 int cpu;
db64fe02 2023
9b463334
JF
2024 if (unlikely(!vmap_initialized))
2025 return;
2026
5803ed29
CH
2027 might_sleep();
2028
db64fe02
NP
2029 for_each_possible_cpu(cpu) {
2030 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2031 struct vmap_block *vb;
2032
2033 rcu_read_lock();
2034 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 2035 spin_lock(&vb->lock);
ad216c03 2036 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
7d61bfe8 2037 unsigned long va_start = vb->va->va_start;
db64fe02 2038 unsigned long s, e;
b136be5e 2039
7d61bfe8
RP
2040 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2041 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 2042
7d61bfe8
RP
2043 start = min(s, start);
2044 end = max(e, end);
db64fe02 2045
7d61bfe8 2046 flush = 1;
db64fe02
NP
2047 }
2048 spin_unlock(&vb->lock);
2049 }
2050 rcu_read_unlock();
2051 }
2052
f9e09977 2053 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
2054 purge_fragmented_blocks_allcpus();
2055 if (!__purge_vmap_area_lazy(start, end) && flush)
2056 flush_tlb_kernel_range(start, end);
f9e09977 2057 mutex_unlock(&vmap_purge_lock);
db64fe02 2058}
868b104d
RE
2059
2060/**
2061 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2062 *
2063 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2064 * to amortize TLB flushing overheads. What this means is that any page you
2065 * have now, may, in a former life, have been mapped into kernel virtual
2066 * address by the vmap layer and so there might be some CPUs with TLB entries
2067 * still referencing that page (additional to the regular 1:1 kernel mapping).
2068 *
2069 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2070 * be sure that none of the pages we have control over will have any aliases
2071 * from the vmap layer.
2072 */
2073void vm_unmap_aliases(void)
2074{
2075 unsigned long start = ULONG_MAX, end = 0;
2076 int flush = 0;
2077
2078 _vm_unmap_aliases(start, end, flush);
2079}
db64fe02
NP
2080EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2081
2082/**
2083 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2084 * @mem: the pointer returned by vm_map_ram
2085 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2086 */
2087void vm_unmap_ram(const void *mem, unsigned int count)
2088{
65ee03c4 2089 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 2090 unsigned long addr = (unsigned long)mem;
9c3acf60 2091 struct vmap_area *va;
db64fe02 2092
5803ed29 2093 might_sleep();
db64fe02
NP
2094 BUG_ON(!addr);
2095 BUG_ON(addr < VMALLOC_START);
2096 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 2097 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 2098
d98c9e83
AR
2099 kasan_poison_vmalloc(mem, size);
2100
9c3acf60 2101 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 2102 debug_check_no_locks_freed(mem, size);
78a0e8c4 2103 vb_free(addr, size);
9c3acf60
CH
2104 return;
2105 }
2106
2107 va = find_vmap_area(addr);
2108 BUG_ON(!va);
05e3ff95
CP
2109 debug_check_no_locks_freed((void *)va->va_start,
2110 (va->va_end - va->va_start));
9c3acf60 2111 free_unmap_vmap_area(va);
db64fe02
NP
2112}
2113EXPORT_SYMBOL(vm_unmap_ram);
2114
2115/**
2116 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2117 * @pages: an array of pointers to the pages to be mapped
2118 * @count: number of pages
2119 * @node: prefer to allocate data structures on this node
e99c97ad 2120 *
36437638
GK
2121 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2122 * faster than vmap so it's good. But if you mix long-life and short-life
2123 * objects with vm_map_ram(), it could consume lots of address space through
2124 * fragmentation (especially on a 32bit machine). You could see failures in
2125 * the end. Please use this function for short-lived objects.
2126 *
e99c97ad 2127 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02 2128 */
d4efd79a 2129void *vm_map_ram(struct page **pages, unsigned int count, int node)
db64fe02 2130{
65ee03c4 2131 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
2132 unsigned long addr;
2133 void *mem;
2134
2135 if (likely(count <= VMAP_MAX_ALLOC)) {
2136 mem = vb_alloc(size, GFP_KERNEL);
2137 if (IS_ERR(mem))
2138 return NULL;
2139 addr = (unsigned long)mem;
2140 } else {
2141 struct vmap_area *va;
2142 va = alloc_vmap_area(size, PAGE_SIZE,
2143 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2144 if (IS_ERR(va))
2145 return NULL;
2146
2147 addr = va->va_start;
2148 mem = (void *)addr;
2149 }
d98c9e83
AR
2150
2151 kasan_unpoison_vmalloc(mem, size);
2152
b67177ec
NP
2153 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2154 pages, PAGE_SHIFT) < 0) {
db64fe02
NP
2155 vm_unmap_ram(mem, count);
2156 return NULL;
2157 }
b67177ec 2158
db64fe02
NP
2159 return mem;
2160}
2161EXPORT_SYMBOL(vm_map_ram);
2162
4341fa45 2163static struct vm_struct *vmlist __initdata;
92eac168 2164
121e6f32
NP
2165static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2166{
2167#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2168 return vm->page_order;
2169#else
2170 return 0;
2171#endif
2172}
2173
2174static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2175{
2176#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2177 vm->page_order = order;
2178#else
2179 BUG_ON(order != 0);
2180#endif
2181}
2182
be9b7335
NP
2183/**
2184 * vm_area_add_early - add vmap area early during boot
2185 * @vm: vm_struct to add
2186 *
2187 * This function is used to add fixed kernel vm area to vmlist before
2188 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
2189 * should contain proper values and the other fields should be zero.
2190 *
2191 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2192 */
2193void __init vm_area_add_early(struct vm_struct *vm)
2194{
2195 struct vm_struct *tmp, **p;
2196
2197 BUG_ON(vmap_initialized);
2198 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2199 if (tmp->addr >= vm->addr) {
2200 BUG_ON(tmp->addr < vm->addr + vm->size);
2201 break;
2202 } else
2203 BUG_ON(tmp->addr + tmp->size > vm->addr);
2204 }
2205 vm->next = *p;
2206 *p = vm;
2207}
2208
f0aa6617
TH
2209/**
2210 * vm_area_register_early - register vmap area early during boot
2211 * @vm: vm_struct to register
c0c0a293 2212 * @align: requested alignment
f0aa6617
TH
2213 *
2214 * This function is used to register kernel vm area before
2215 * vmalloc_init() is called. @vm->size and @vm->flags should contain
2216 * proper values on entry and other fields should be zero. On return,
2217 * vm->addr contains the allocated address.
2218 *
2219 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2220 */
c0c0a293 2221void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
2222{
2223 static size_t vm_init_off __initdata;
c0c0a293
TH
2224 unsigned long addr;
2225
2226 addr = ALIGN(VMALLOC_START + vm_init_off, align);
2227 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 2228
c0c0a293 2229 vm->addr = (void *)addr;
f0aa6617 2230
be9b7335 2231 vm_area_add_early(vm);
f0aa6617
TH
2232}
2233
68ad4a33
URS
2234static void vmap_init_free_space(void)
2235{
2236 unsigned long vmap_start = 1;
2237 const unsigned long vmap_end = ULONG_MAX;
2238 struct vmap_area *busy, *free;
2239
2240 /*
2241 * B F B B B F
2242 * -|-----|.....|-----|-----|-----|.....|-
2243 * | The KVA space |
2244 * |<--------------------------------->|
2245 */
2246 list_for_each_entry(busy, &vmap_area_list, list) {
2247 if (busy->va_start - vmap_start > 0) {
2248 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2249 if (!WARN_ON_ONCE(!free)) {
2250 free->va_start = vmap_start;
2251 free->va_end = busy->va_start;
2252
2253 insert_vmap_area_augment(free, NULL,
2254 &free_vmap_area_root,
2255 &free_vmap_area_list);
2256 }
2257 }
2258
2259 vmap_start = busy->va_end;
2260 }
2261
2262 if (vmap_end - vmap_start > 0) {
2263 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2264 if (!WARN_ON_ONCE(!free)) {
2265 free->va_start = vmap_start;
2266 free->va_end = vmap_end;
2267
2268 insert_vmap_area_augment(free, NULL,
2269 &free_vmap_area_root,
2270 &free_vmap_area_list);
2271 }
2272 }
2273}
2274
db64fe02
NP
2275void __init vmalloc_init(void)
2276{
822c18f2
IK
2277 struct vmap_area *va;
2278 struct vm_struct *tmp;
db64fe02
NP
2279 int i;
2280
68ad4a33
URS
2281 /*
2282 * Create the cache for vmap_area objects.
2283 */
2284 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2285
db64fe02
NP
2286 for_each_possible_cpu(i) {
2287 struct vmap_block_queue *vbq;
32fcfd40 2288 struct vfree_deferred *p;
db64fe02
NP
2289
2290 vbq = &per_cpu(vmap_block_queue, i);
2291 spin_lock_init(&vbq->lock);
2292 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
2293 p = &per_cpu(vfree_deferred, i);
2294 init_llist_head(&p->list);
2295 INIT_WORK(&p->wq, free_work);
db64fe02 2296 }
9b463334 2297
822c18f2
IK
2298 /* Import existing vmlist entries. */
2299 for (tmp = vmlist; tmp; tmp = tmp->next) {
68ad4a33
URS
2300 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2301 if (WARN_ON_ONCE(!va))
2302 continue;
2303
822c18f2
IK
2304 va->va_start = (unsigned long)tmp->addr;
2305 va->va_end = va->va_start + tmp->size;
dbda591d 2306 va->vm = tmp;
68ad4a33 2307 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
822c18f2 2308 }
ca23e405 2309
68ad4a33
URS
2310 /*
2311 * Now we can initialize a free vmap space.
2312 */
2313 vmap_init_free_space();
9b463334 2314 vmap_initialized = true;
db64fe02
NP
2315}
2316
e36176be
URS
2317static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2318 struct vmap_area *va, unsigned long flags, const void *caller)
cf88c790 2319{
cf88c790
TH
2320 vm->flags = flags;
2321 vm->addr = (void *)va->va_start;
2322 vm->size = va->va_end - va->va_start;
2323 vm->caller = caller;
db1aecaf 2324 va->vm = vm;
e36176be
URS
2325}
2326
2327static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2328 unsigned long flags, const void *caller)
2329{
2330 spin_lock(&vmap_area_lock);
2331 setup_vmalloc_vm_locked(vm, va, flags, caller);
c69480ad 2332 spin_unlock(&vmap_area_lock);
f5252e00 2333}
cf88c790 2334
20fc02b4 2335static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2336{
d4033afd 2337 /*
20fc02b4 2338 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2339 * we should make sure that vm has proper values.
2340 * Pair with smp_rmb() in show_numa_info().
2341 */
2342 smp_wmb();
20fc02b4 2343 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2344}
2345
db64fe02 2346static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 2347 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 2348 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 2349{
0006526d 2350 struct vmap_area *va;
db64fe02 2351 struct vm_struct *area;
d98c9e83 2352 unsigned long requested_size = size;
1da177e4 2353
52fd24ca 2354 BUG_ON(in_interrupt());
1da177e4 2355 size = PAGE_ALIGN(size);
31be8309
OH
2356 if (unlikely(!size))
2357 return NULL;
1da177e4 2358
252e5c6e 2359 if (flags & VM_IOREMAP)
2360 align = 1ul << clamp_t(int, get_count_order_long(size),
2361 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2362
cf88c790 2363 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2364 if (unlikely(!area))
2365 return NULL;
2366
71394fe5
AR
2367 if (!(flags & VM_NO_GUARD))
2368 size += PAGE_SIZE;
1da177e4 2369
db64fe02
NP
2370 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2371 if (IS_ERR(va)) {
2372 kfree(area);
2373 return NULL;
1da177e4 2374 }
1da177e4 2375
d98c9e83 2376 kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
f5252e00 2377
d98c9e83 2378 setup_vmalloc_vm(area, va, flags, caller);
3c5c3cfb 2379
1da177e4 2380 return area;
1da177e4
LT
2381}
2382
c2968612
BH
2383struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2384 unsigned long start, unsigned long end,
5e6cafc8 2385 const void *caller)
c2968612 2386{
00ef2d2f
DR
2387 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2388 GFP_KERNEL, caller);
c2968612
BH
2389}
2390
1da177e4 2391/**
92eac168
MR
2392 * get_vm_area - reserve a contiguous kernel virtual area
2393 * @size: size of the area
2394 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2395 *
92eac168
MR
2396 * Search an area of @size in the kernel virtual mapping area,
2397 * and reserved it for out purposes. Returns the area descriptor
2398 * on success or %NULL on failure.
a862f68a
MR
2399 *
2400 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2401 */
2402struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2403{
2dca6999 2404 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2405 NUMA_NO_NODE, GFP_KERNEL,
2406 __builtin_return_address(0));
23016969
CL
2407}
2408
2409struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2410 const void *caller)
23016969 2411{
2dca6999 2412 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 2413 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2414}
2415
e9da6e99 2416/**
92eac168
MR
2417 * find_vm_area - find a continuous kernel virtual area
2418 * @addr: base address
e9da6e99 2419 *
92eac168
MR
2420 * Search for the kernel VM area starting at @addr, and return it.
2421 * It is up to the caller to do all required locking to keep the returned
2422 * pointer valid.
a862f68a 2423 *
74640617 2424 * Return: the area descriptor on success or %NULL on failure.
e9da6e99
MS
2425 */
2426struct vm_struct *find_vm_area(const void *addr)
83342314 2427{
db64fe02 2428 struct vmap_area *va;
83342314 2429
db64fe02 2430 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
2431 if (!va)
2432 return NULL;
1da177e4 2433
688fcbfc 2434 return va->vm;
1da177e4
LT
2435}
2436
7856dfeb 2437/**
92eac168
MR
2438 * remove_vm_area - find and remove a continuous kernel virtual area
2439 * @addr: base address
7856dfeb 2440 *
92eac168
MR
2441 * Search for the kernel VM area starting at @addr, and remove it.
2442 * This function returns the found VM area, but using it is NOT safe
2443 * on SMP machines, except for its size or flags.
a862f68a 2444 *
74640617 2445 * Return: the area descriptor on success or %NULL on failure.
7856dfeb 2446 */
b3bdda02 2447struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2448{
db64fe02
NP
2449 struct vmap_area *va;
2450
5803ed29
CH
2451 might_sleep();
2452
dd3b8353
URS
2453 spin_lock(&vmap_area_lock);
2454 va = __find_vmap_area((unsigned long)addr);
688fcbfc 2455 if (va && va->vm) {
db1aecaf 2456 struct vm_struct *vm = va->vm;
f5252e00 2457
c69480ad 2458 va->vm = NULL;
c69480ad
JK
2459 spin_unlock(&vmap_area_lock);
2460
a5af5aa8 2461 kasan_free_shadow(vm);
dd32c279 2462 free_unmap_vmap_area(va);
dd32c279 2463
db64fe02
NP
2464 return vm;
2465 }
dd3b8353
URS
2466
2467 spin_unlock(&vmap_area_lock);
db64fe02 2468 return NULL;
7856dfeb
AK
2469}
2470
868b104d
RE
2471static inline void set_area_direct_map(const struct vm_struct *area,
2472 int (*set_direct_map)(struct page *page))
2473{
2474 int i;
2475
121e6f32 2476 /* HUGE_VMALLOC passes small pages to set_direct_map */
868b104d
RE
2477 for (i = 0; i < area->nr_pages; i++)
2478 if (page_address(area->pages[i]))
2479 set_direct_map(area->pages[i]);
2480}
2481
2482/* Handle removing and resetting vm mappings related to the vm_struct. */
2483static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2484{
868b104d 2485 unsigned long start = ULONG_MAX, end = 0;
121e6f32 2486 unsigned int page_order = vm_area_page_order(area);
868b104d 2487 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
31e67340 2488 int flush_dmap = 0;
868b104d
RE
2489 int i;
2490
868b104d
RE
2491 remove_vm_area(area->addr);
2492
2493 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2494 if (!flush_reset)
2495 return;
2496
2497 /*
2498 * If not deallocating pages, just do the flush of the VM area and
2499 * return.
2500 */
2501 if (!deallocate_pages) {
2502 vm_unmap_aliases();
2503 return;
2504 }
2505
2506 /*
2507 * If execution gets here, flush the vm mapping and reset the direct
2508 * map. Find the start and end range of the direct mappings to make sure
2509 * the vm_unmap_aliases() flush includes the direct map.
2510 */
121e6f32 2511 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
8e41f872
RE
2512 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2513 if (addr) {
121e6f32
NP
2514 unsigned long page_size;
2515
2516 page_size = PAGE_SIZE << page_order;
868b104d 2517 start = min(addr, start);
121e6f32 2518 end = max(addr + page_size, end);
31e67340 2519 flush_dmap = 1;
868b104d
RE
2520 }
2521 }
2522
2523 /*
2524 * Set direct map to something invalid so that it won't be cached if
2525 * there are any accesses after the TLB flush, then flush the TLB and
2526 * reset the direct map permissions to the default.
2527 */
2528 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2529 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2530 set_area_direct_map(area, set_direct_map_default_noflush);
2531}
2532
b3bdda02 2533static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
2534{
2535 struct vm_struct *area;
2536
2537 if (!addr)
2538 return;
2539
e69e9d4a 2540 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 2541 addr))
1da177e4 2542 return;
1da177e4 2543
6ade2032 2544 area = find_vm_area(addr);
1da177e4 2545 if (unlikely(!area)) {
4c8573e2 2546 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 2547 addr);
1da177e4
LT
2548 return;
2549 }
2550
05e3ff95
CP
2551 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2552 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 2553
c041098c 2554 kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
3c5c3cfb 2555
868b104d
RE
2556 vm_remove_mappings(area, deallocate_pages);
2557
1da177e4 2558 if (deallocate_pages) {
121e6f32 2559 unsigned int page_order = vm_area_page_order(area);
1da177e4
LT
2560 int i;
2561
121e6f32 2562 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
bf53d6f8
CL
2563 struct page *page = area->pages[i];
2564
2565 BUG_ON(!page);
121e6f32 2566 __free_pages(page, page_order);
1da177e4 2567 }
97105f0a 2568 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2569
244d63ee 2570 kvfree(area->pages);
1da177e4
LT
2571 }
2572
2573 kfree(area);
1da177e4 2574}
bf22e37a
AR
2575
2576static inline void __vfree_deferred(const void *addr)
2577{
2578 /*
2579 * Use raw_cpu_ptr() because this can be called from preemptible
2580 * context. Preemption is absolutely fine here, because the llist_add()
2581 * implementation is lockless, so it works even if we are adding to
73221d88 2582 * another cpu's list. schedule_work() should be fine with this too.
bf22e37a
AR
2583 */
2584 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2585
2586 if (llist_add((struct llist_node *)addr, &p->list))
2587 schedule_work(&p->wq);
2588}
2589
2590/**
92eac168
MR
2591 * vfree_atomic - release memory allocated by vmalloc()
2592 * @addr: memory base address
bf22e37a 2593 *
92eac168
MR
2594 * This one is just like vfree() but can be called in any atomic context
2595 * except NMIs.
bf22e37a
AR
2596 */
2597void vfree_atomic(const void *addr)
2598{
2599 BUG_ON(in_nmi());
2600
2601 kmemleak_free(addr);
2602
2603 if (!addr)
2604 return;
2605 __vfree_deferred(addr);
2606}
2607
c67dc624
RP
2608static void __vfree(const void *addr)
2609{
2610 if (unlikely(in_interrupt()))
2611 __vfree_deferred(addr);
2612 else
2613 __vunmap(addr, 1);
2614}
2615
1da177e4 2616/**
fa307474
MWO
2617 * vfree - Release memory allocated by vmalloc()
2618 * @addr: Memory base address
1da177e4 2619 *
fa307474
MWO
2620 * Free the virtually continuous memory area starting at @addr, as obtained
2621 * from one of the vmalloc() family of APIs. This will usually also free the
2622 * physical memory underlying the virtual allocation, but that memory is
2623 * reference counted, so it will not be freed until the last user goes away.
1da177e4 2624 *
fa307474 2625 * If @addr is NULL, no operation is performed.
c9fcee51 2626 *
fa307474 2627 * Context:
92eac168 2628 * May sleep if called *not* from interrupt context.
fa307474
MWO
2629 * Must not be called in NMI context (strictly speaking, it could be
2630 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2631 * conventions for vfree() arch-depenedent would be a really bad idea).
1da177e4 2632 */
b3bdda02 2633void vfree(const void *addr)
1da177e4 2634{
32fcfd40 2635 BUG_ON(in_nmi());
89219d37
CM
2636
2637 kmemleak_free(addr);
2638
a8dda165
AR
2639 might_sleep_if(!in_interrupt());
2640
32fcfd40
AV
2641 if (!addr)
2642 return;
c67dc624
RP
2643
2644 __vfree(addr);
1da177e4 2645}
1da177e4
LT
2646EXPORT_SYMBOL(vfree);
2647
2648/**
92eac168
MR
2649 * vunmap - release virtual mapping obtained by vmap()
2650 * @addr: memory base address
1da177e4 2651 *
92eac168
MR
2652 * Free the virtually contiguous memory area starting at @addr,
2653 * which was created from the page array passed to vmap().
1da177e4 2654 *
92eac168 2655 * Must not be called in interrupt context.
1da177e4 2656 */
b3bdda02 2657void vunmap(const void *addr)
1da177e4
LT
2658{
2659 BUG_ON(in_interrupt());
34754b69 2660 might_sleep();
32fcfd40
AV
2661 if (addr)
2662 __vunmap(addr, 0);
1da177e4 2663}
1da177e4
LT
2664EXPORT_SYMBOL(vunmap);
2665
2666/**
92eac168
MR
2667 * vmap - map an array of pages into virtually contiguous space
2668 * @pages: array of page pointers
2669 * @count: number of pages to map
2670 * @flags: vm_area->flags
2671 * @prot: page protection for the mapping
2672 *
b944afc9
CH
2673 * Maps @count pages from @pages into contiguous kernel virtual space.
2674 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2675 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2676 * are transferred from the caller to vmap(), and will be freed / dropped when
2677 * vfree() is called on the return value.
a862f68a
MR
2678 *
2679 * Return: the address of the area or %NULL on failure
1da177e4
LT
2680 */
2681void *vmap(struct page **pages, unsigned int count,
92eac168 2682 unsigned long flags, pgprot_t prot)
1da177e4
LT
2683{
2684 struct vm_struct *area;
b67177ec 2685 unsigned long addr;
65ee03c4 2686 unsigned long size; /* In bytes */
1da177e4 2687
34754b69
PZ
2688 might_sleep();
2689
ca79b0c2 2690 if (count > totalram_pages())
1da177e4
LT
2691 return NULL;
2692
65ee03c4
GJM
2693 size = (unsigned long)count << PAGE_SHIFT;
2694 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2695 if (!area)
2696 return NULL;
23016969 2697
b67177ec
NP
2698 addr = (unsigned long)area->addr;
2699 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2700 pages, PAGE_SHIFT) < 0) {
1da177e4
LT
2701 vunmap(area->addr);
2702 return NULL;
2703 }
2704
c22ee528 2705 if (flags & VM_MAP_PUT_PAGES) {
b944afc9 2706 area->pages = pages;
c22ee528
ML
2707 area->nr_pages = count;
2708 }
1da177e4
LT
2709 return area->addr;
2710}
1da177e4
LT
2711EXPORT_SYMBOL(vmap);
2712
3e9a9e25
CH
2713#ifdef CONFIG_VMAP_PFN
2714struct vmap_pfn_data {
2715 unsigned long *pfns;
2716 pgprot_t prot;
2717 unsigned int idx;
2718};
2719
2720static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2721{
2722 struct vmap_pfn_data *data = private;
2723
2724 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2725 return -EINVAL;
2726 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2727 return 0;
2728}
2729
2730/**
2731 * vmap_pfn - map an array of PFNs into virtually contiguous space
2732 * @pfns: array of PFNs
2733 * @count: number of pages to map
2734 * @prot: page protection for the mapping
2735 *
2736 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2737 * the start address of the mapping.
2738 */
2739void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2740{
2741 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2742 struct vm_struct *area;
2743
2744 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2745 __builtin_return_address(0));
2746 if (!area)
2747 return NULL;
2748 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2749 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2750 free_vm_area(area);
2751 return NULL;
2752 }
2753 return area->addr;
2754}
2755EXPORT_SYMBOL_GPL(vmap_pfn);
2756#endif /* CONFIG_VMAP_PFN */
2757
e31d9eb5 2758static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
121e6f32
NP
2759 pgprot_t prot, unsigned int page_shift,
2760 int node)
1da177e4 2761{
930f036b 2762 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
121e6f32
NP
2763 unsigned long addr = (unsigned long)area->addr;
2764 unsigned long size = get_vm_area_size(area);
34fe6537 2765 unsigned long array_size;
121e6f32
NP
2766 unsigned int nr_small_pages = size >> PAGE_SHIFT;
2767 unsigned int page_order;
f255935b 2768 struct page **pages;
121e6f32 2769 unsigned int i;
1da177e4 2770
121e6f32 2771 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
f255935b
CH
2772 gfp_mask |= __GFP_NOWARN;
2773 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2774 gfp_mask |= __GFP_HIGHMEM;
1da177e4 2775
1da177e4 2776 /* Please note that the recursion is strictly bounded. */
8757d5fa 2777 if (array_size > PAGE_SIZE) {
f255935b
CH
2778 pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2779 area->caller);
286e1ea3 2780 } else {
976d6dfb 2781 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 2782 }
7ea36242
AK
2783
2784 if (!pages) {
8945a723 2785 free_vm_area(area);
d70bec8c
NP
2786 warn_alloc(gfp_mask, NULL,
2787 "vmalloc size %lu allocation failure: "
2788 "page array size %lu allocation failed",
2789 nr_small_pages * PAGE_SIZE, array_size);
1da177e4
LT
2790 return NULL;
2791 }
1da177e4 2792
7ea36242 2793 area->pages = pages;
121e6f32
NP
2794 area->nr_pages = nr_small_pages;
2795 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
7ea36242 2796
121e6f32 2797 page_order = vm_area_page_order(area);
bf53d6f8 2798
121e6f32
NP
2799 /*
2800 * Careful, we allocate and map page_order pages, but tracking is done
2801 * per PAGE_SIZE page so as to keep the vm_struct APIs independent of
2802 * the physical/mapped size.
2803 */
2804 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2805 struct page *page;
2806 int p;
bf53d6f8 2807
121e6f32
NP
2808 /* Compound pages required for remap_vmalloc_page */
2809 page = alloc_pages_node(node, gfp_mask | __GFP_COMP, page_order);
bf53d6f8 2810 if (unlikely(!page)) {
82afbc32 2811 /* Successfully allocated i pages, free them in __vfree() */
1da177e4 2812 area->nr_pages = i;
97105f0a 2813 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
d70bec8c
NP
2814 warn_alloc(gfp_mask, NULL,
2815 "vmalloc size %lu allocation failure: "
2816 "page order %u allocation failed",
2817 area->nr_pages * PAGE_SIZE, page_order);
1da177e4
LT
2818 goto fail;
2819 }
121e6f32
NP
2820
2821 for (p = 0; p < (1U << page_order); p++)
2822 area->pages[i + p] = page + p;
2823
dcf61ff0 2824 if (gfpflags_allow_blocking(gfp_mask))
660654f9 2825 cond_resched();
1da177e4 2826 }
97105f0a 2827 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2828
d70bec8c
NP
2829 if (vmap_pages_range(addr, addr + size, prot, pages, page_shift) < 0) {
2830 warn_alloc(gfp_mask, NULL,
2831 "vmalloc size %lu allocation failure: "
2832 "failed to map pages",
2833 area->nr_pages * PAGE_SIZE);
1da177e4 2834 goto fail;
d70bec8c 2835 }
ed1f324c 2836
1da177e4
LT
2837 return area->addr;
2838
2839fail:
c67dc624 2840 __vfree(area->addr);
1da177e4
LT
2841 return NULL;
2842}
2843
2844/**
92eac168
MR
2845 * __vmalloc_node_range - allocate virtually contiguous memory
2846 * @size: allocation size
2847 * @align: desired alignment
2848 * @start: vm area range start
2849 * @end: vm area range end
2850 * @gfp_mask: flags for the page level allocator
2851 * @prot: protection mask for the allocated pages
2852 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2853 * @node: node to use for allocation or NUMA_NO_NODE
2854 * @caller: caller's return address
2855 *
2856 * Allocate enough pages to cover @size from the page level
2857 * allocator with @gfp_mask flags. Map them into contiguous
2858 * kernel virtual space, using a pagetable protection of @prot.
a862f68a
MR
2859 *
2860 * Return: the address of the area or %NULL on failure
1da177e4 2861 */
d0a21265
DR
2862void *__vmalloc_node_range(unsigned long size, unsigned long align,
2863 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
2864 pgprot_t prot, unsigned long vm_flags, int node,
2865 const void *caller)
1da177e4
LT
2866{
2867 struct vm_struct *area;
89219d37
CM
2868 void *addr;
2869 unsigned long real_size = size;
121e6f32
NP
2870 unsigned long real_align = align;
2871 unsigned int shift = PAGE_SHIFT;
1da177e4 2872
d70bec8c
NP
2873 if (WARN_ON_ONCE(!size))
2874 return NULL;
2875
2876 if ((size >> PAGE_SHIFT) > totalram_pages()) {
2877 warn_alloc(gfp_mask, NULL,
2878 "vmalloc size %lu allocation failure: "
2879 "exceeds total pages", real_size);
2880 return NULL;
121e6f32
NP
2881 }
2882
2883 if (vmap_allow_huge && !(vm_flags & VM_NO_HUGE_VMAP) &&
2884 arch_vmap_pmd_supported(prot)) {
2885 unsigned long size_per_node;
1da177e4 2886
121e6f32
NP
2887 /*
2888 * Try huge pages. Only try for PAGE_KERNEL allocations,
2889 * others like modules don't yet expect huge pages in
2890 * their allocations due to apply_to_page_range not
2891 * supporting them.
2892 */
2893
2894 size_per_node = size;
2895 if (node == NUMA_NO_NODE)
2896 size_per_node /= num_online_nodes();
2897 if (size_per_node >= PMD_SIZE) {
2898 shift = PMD_SHIFT;
2899 align = max(real_align, 1UL << shift);
2900 size = ALIGN(real_size, 1UL << shift);
2901 }
2902 }
2903
2904again:
2905 size = PAGE_ALIGN(size);
2906 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
cb9e3c29 2907 vm_flags, start, end, node, gfp_mask, caller);
d70bec8c
NP
2908 if (!area) {
2909 warn_alloc(gfp_mask, NULL,
2910 "vmalloc size %lu allocation failure: "
2911 "vm_struct allocation failed", real_size);
de7d2b56 2912 goto fail;
d70bec8c 2913 }
1da177e4 2914
121e6f32 2915 addr = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
1368edf0 2916 if (!addr)
121e6f32 2917 goto fail;
89219d37 2918
f5252e00 2919 /*
20fc02b4
ZY
2920 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2921 * flag. It means that vm_struct is not fully initialized.
4341fa45 2922 * Now, it is fully initialized, so remove this flag here.
f5252e00 2923 */
20fc02b4 2924 clear_vm_uninitialized_flag(area);
f5252e00 2925
94f4a161 2926 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
2927
2928 return addr;
de7d2b56
JP
2929
2930fail:
121e6f32
NP
2931 if (shift > PAGE_SHIFT) {
2932 shift = PAGE_SHIFT;
2933 align = real_align;
2934 size = real_size;
2935 goto again;
2936 }
2937
de7d2b56 2938 return NULL;
1da177e4
LT
2939}
2940
d0a21265 2941/**
92eac168
MR
2942 * __vmalloc_node - allocate virtually contiguous memory
2943 * @size: allocation size
2944 * @align: desired alignment
2945 * @gfp_mask: flags for the page level allocator
92eac168
MR
2946 * @node: node to use for allocation or NUMA_NO_NODE
2947 * @caller: caller's return address
a7c3e901 2948 *
f38fcb9c
CH
2949 * Allocate enough pages to cover @size from the page level allocator with
2950 * @gfp_mask flags. Map them into contiguous kernel virtual space.
a7c3e901 2951 *
92eac168
MR
2952 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2953 * and __GFP_NOFAIL are not supported
a7c3e901 2954 *
92eac168
MR
2955 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2956 * with mm people.
a862f68a
MR
2957 *
2958 * Return: pointer to the allocated memory or %NULL on error
d0a21265 2959 */
2b905948 2960void *__vmalloc_node(unsigned long size, unsigned long align,
f38fcb9c 2961 gfp_t gfp_mask, int node, const void *caller)
d0a21265
DR
2962{
2963 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
f38fcb9c 2964 gfp_mask, PAGE_KERNEL, 0, node, caller);
d0a21265 2965}
c3f896dc
CH
2966/*
2967 * This is only for performance analysis of vmalloc and stress purpose.
2968 * It is required by vmalloc test module, therefore do not use it other
2969 * than that.
2970 */
2971#ifdef CONFIG_TEST_VMALLOC_MODULE
2972EXPORT_SYMBOL_GPL(__vmalloc_node);
2973#endif
d0a21265 2974
88dca4ca 2975void *__vmalloc(unsigned long size, gfp_t gfp_mask)
930fc45a 2976{
f38fcb9c 2977 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
23016969 2978 __builtin_return_address(0));
930fc45a 2979}
1da177e4
LT
2980EXPORT_SYMBOL(__vmalloc);
2981
2982/**
92eac168
MR
2983 * vmalloc - allocate virtually contiguous memory
2984 * @size: allocation size
2985 *
2986 * Allocate enough pages to cover @size from the page level
2987 * allocator and map them into contiguous kernel virtual space.
1da177e4 2988 *
92eac168
MR
2989 * For tight control over page level allocator and protection flags
2990 * use __vmalloc() instead.
a862f68a
MR
2991 *
2992 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2993 */
2994void *vmalloc(unsigned long size)
2995{
4d39d728
CH
2996 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
2997 __builtin_return_address(0));
1da177e4 2998}
1da177e4
LT
2999EXPORT_SYMBOL(vmalloc);
3000
e1ca7788 3001/**
92eac168
MR
3002 * vzalloc - allocate virtually contiguous memory with zero fill
3003 * @size: allocation size
3004 *
3005 * Allocate enough pages to cover @size from the page level
3006 * allocator and map them into contiguous kernel virtual space.
3007 * The memory allocated is set to zero.
3008 *
3009 * For tight control over page level allocator and protection flags
3010 * use __vmalloc() instead.
a862f68a
MR
3011 *
3012 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
3013 */
3014void *vzalloc(unsigned long size)
3015{
4d39d728
CH
3016 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3017 __builtin_return_address(0));
e1ca7788
DY
3018}
3019EXPORT_SYMBOL(vzalloc);
3020
83342314 3021/**
ead04089
REB
3022 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3023 * @size: allocation size
83342314 3024 *
ead04089
REB
3025 * The resulting memory area is zeroed so it can be mapped to userspace
3026 * without leaking data.
a862f68a
MR
3027 *
3028 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
3029 */
3030void *vmalloc_user(unsigned long size)
3031{
bc84c535
RP
3032 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3033 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3034 VM_USERMAP, NUMA_NO_NODE,
3035 __builtin_return_address(0));
83342314
NP
3036}
3037EXPORT_SYMBOL(vmalloc_user);
3038
930fc45a 3039/**
92eac168
MR
3040 * vmalloc_node - allocate memory on a specific node
3041 * @size: allocation size
3042 * @node: numa node
930fc45a 3043 *
92eac168
MR
3044 * Allocate enough pages to cover @size from the page level
3045 * allocator and map them into contiguous kernel virtual space.
930fc45a 3046 *
92eac168
MR
3047 * For tight control over page level allocator and protection flags
3048 * use __vmalloc() instead.
a862f68a
MR
3049 *
3050 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
3051 */
3052void *vmalloc_node(unsigned long size, int node)
3053{
f38fcb9c
CH
3054 return __vmalloc_node(size, 1, GFP_KERNEL, node,
3055 __builtin_return_address(0));
930fc45a
CL
3056}
3057EXPORT_SYMBOL(vmalloc_node);
3058
e1ca7788
DY
3059/**
3060 * vzalloc_node - allocate memory on a specific node with zero fill
3061 * @size: allocation size
3062 * @node: numa node
3063 *
3064 * Allocate enough pages to cover @size from the page level
3065 * allocator and map them into contiguous kernel virtual space.
3066 * The memory allocated is set to zero.
3067 *
a862f68a 3068 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
3069 */
3070void *vzalloc_node(unsigned long size, int node)
3071{
4d39d728
CH
3072 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3073 __builtin_return_address(0));
e1ca7788
DY
3074}
3075EXPORT_SYMBOL(vzalloc_node);
3076
0d08e0d3 3077#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 3078#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 3079#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 3080#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 3081#else
698d0831
MH
3082/*
3083 * 64b systems should always have either DMA or DMA32 zones. For others
3084 * GFP_DMA32 should do the right thing and use the normal zone.
3085 */
68d68ff6 3086#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3
AK
3087#endif
3088
1da177e4 3089/**
92eac168
MR
3090 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3091 * @size: allocation size
1da177e4 3092 *
92eac168
MR
3093 * Allocate enough 32bit PA addressable pages to cover @size from the
3094 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
3095 *
3096 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
3097 */
3098void *vmalloc_32(unsigned long size)
3099{
f38fcb9c
CH
3100 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3101 __builtin_return_address(0));
1da177e4 3102}
1da177e4
LT
3103EXPORT_SYMBOL(vmalloc_32);
3104
83342314 3105/**
ead04089 3106 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 3107 * @size: allocation size
ead04089
REB
3108 *
3109 * The resulting memory area is 32bit addressable and zeroed so it can be
3110 * mapped to userspace without leaking data.
a862f68a
MR
3111 *
3112 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
3113 */
3114void *vmalloc_32_user(unsigned long size)
3115{
bc84c535
RP
3116 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3117 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3118 VM_USERMAP, NUMA_NO_NODE,
3119 __builtin_return_address(0));
83342314
NP
3120}
3121EXPORT_SYMBOL(vmalloc_32_user);
3122
d0107eb0
KH
3123/*
3124 * small helper routine , copy contents to buf from addr.
3125 * If the page is not present, fill zero.
3126 */
3127
3128static int aligned_vread(char *buf, char *addr, unsigned long count)
3129{
3130 struct page *p;
3131 int copied = 0;
3132
3133 while (count) {
3134 unsigned long offset, length;
3135
891c49ab 3136 offset = offset_in_page(addr);
d0107eb0
KH
3137 length = PAGE_SIZE - offset;
3138 if (length > count)
3139 length = count;
3140 p = vmalloc_to_page(addr);
3141 /*
3142 * To do safe access to this _mapped_ area, we need
3143 * lock. But adding lock here means that we need to add
3144 * overhead of vmalloc()/vfree() calles for this _debug_
3145 * interface, rarely used. Instead of that, we'll use
3146 * kmap() and get small overhead in this access function.
3147 */
3148 if (p) {
f7c8ce44 3149 /* We can expect USER0 is not used -- see vread() */
9b04c5fe 3150 void *map = kmap_atomic(p);
d0107eb0 3151 memcpy(buf, map + offset, length);
9b04c5fe 3152 kunmap_atomic(map);
d0107eb0
KH
3153 } else
3154 memset(buf, 0, length);
3155
3156 addr += length;
3157 buf += length;
3158 copied += length;
3159 count -= length;
3160 }
3161 return copied;
3162}
3163
d0107eb0 3164/**
92eac168
MR
3165 * vread() - read vmalloc area in a safe way.
3166 * @buf: buffer for reading data
3167 * @addr: vm address.
3168 * @count: number of bytes to be read.
3169 *
92eac168
MR
3170 * This function checks that addr is a valid vmalloc'ed area, and
3171 * copy data from that area to a given buffer. If the given memory range
3172 * of [addr...addr+count) includes some valid address, data is copied to
3173 * proper area of @buf. If there are memory holes, they'll be zero-filled.
3174 * IOREMAP area is treated as memory hole and no copy is done.
3175 *
3176 * If [addr...addr+count) doesn't includes any intersects with alive
3177 * vm_struct area, returns 0. @buf should be kernel's buffer.
3178 *
3179 * Note: In usual ops, vread() is never necessary because the caller
3180 * should know vmalloc() area is valid and can use memcpy().
3181 * This is for routines which have to access vmalloc area without
bbcd53c9 3182 * any information, as /proc/kcore.
a862f68a
MR
3183 *
3184 * Return: number of bytes for which addr and buf should be increased
3185 * (same number as @count) or %0 if [addr...addr+count) doesn't
3186 * include any intersection with valid vmalloc area
d0107eb0 3187 */
1da177e4
LT
3188long vread(char *buf, char *addr, unsigned long count)
3189{
e81ce85f
JK
3190 struct vmap_area *va;
3191 struct vm_struct *vm;
1da177e4 3192 char *vaddr, *buf_start = buf;
d0107eb0 3193 unsigned long buflen = count;
1da177e4
LT
3194 unsigned long n;
3195
3196 /* Don't allow overflow */
3197 if ((unsigned long) addr + count < count)
3198 count = -(unsigned long) addr;
3199
e81ce85f 3200 spin_lock(&vmap_area_lock);
f608788c
SD
3201 va = __find_vmap_area((unsigned long)addr);
3202 if (!va)
3203 goto finished;
3204 list_for_each_entry_from(va, &vmap_area_list, list) {
e81ce85f
JK
3205 if (!count)
3206 break;
3207
688fcbfc 3208 if (!va->vm)
e81ce85f
JK
3209 continue;
3210
3211 vm = va->vm;
3212 vaddr = (char *) vm->addr;
762216ab 3213 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
3214 continue;
3215 while (addr < vaddr) {
3216 if (count == 0)
3217 goto finished;
3218 *buf = '\0';
3219 buf++;
3220 addr++;
3221 count--;
3222 }
762216ab 3223 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
3224 if (n > count)
3225 n = count;
e81ce85f 3226 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
3227 aligned_vread(buf, addr, n);
3228 else /* IOREMAP area is treated as memory hole */
3229 memset(buf, 0, n);
3230 buf += n;
3231 addr += n;
3232 count -= n;
1da177e4
LT
3233 }
3234finished:
e81ce85f 3235 spin_unlock(&vmap_area_lock);
d0107eb0
KH
3236
3237 if (buf == buf_start)
3238 return 0;
3239 /* zero-fill memory holes */
3240 if (buf != buf_start + buflen)
3241 memset(buf, 0, buflen - (buf - buf_start));
3242
3243 return buflen;
1da177e4
LT
3244}
3245
83342314 3246/**
92eac168
MR
3247 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3248 * @vma: vma to cover
3249 * @uaddr: target user address to start at
3250 * @kaddr: virtual address of vmalloc kernel memory
bdebd6a2 3251 * @pgoff: offset from @kaddr to start at
92eac168 3252 * @size: size of map area
7682486b 3253 *
92eac168 3254 * Returns: 0 for success, -Exxx on failure
83342314 3255 *
92eac168
MR
3256 * This function checks that @kaddr is a valid vmalloc'ed area,
3257 * and that it is big enough to cover the range starting at
3258 * @uaddr in @vma. Will return failure if that criteria isn't
3259 * met.
83342314 3260 *
92eac168 3261 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 3262 */
e69e9d4a 3263int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
bdebd6a2
JH
3264 void *kaddr, unsigned long pgoff,
3265 unsigned long size)
83342314
NP
3266{
3267 struct vm_struct *area;
bdebd6a2
JH
3268 unsigned long off;
3269 unsigned long end_index;
3270
3271 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3272 return -EINVAL;
83342314 3273
e69e9d4a
HD
3274 size = PAGE_ALIGN(size);
3275
3276 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
3277 return -EINVAL;
3278
e69e9d4a 3279 area = find_vm_area(kaddr);
83342314 3280 if (!area)
db64fe02 3281 return -EINVAL;
83342314 3282
fe9041c2 3283 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 3284 return -EINVAL;
83342314 3285
bdebd6a2
JH
3286 if (check_add_overflow(size, off, &end_index) ||
3287 end_index > get_vm_area_size(area))
db64fe02 3288 return -EINVAL;
bdebd6a2 3289 kaddr += off;
83342314 3290
83342314 3291 do {
e69e9d4a 3292 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
3293 int ret;
3294
83342314
NP
3295 ret = vm_insert_page(vma, uaddr, page);
3296 if (ret)
3297 return ret;
3298
3299 uaddr += PAGE_SIZE;
e69e9d4a
HD
3300 kaddr += PAGE_SIZE;
3301 size -= PAGE_SIZE;
3302 } while (size > 0);
83342314 3303
314e51b9 3304 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 3305
db64fe02 3306 return 0;
83342314 3307}
e69e9d4a
HD
3308
3309/**
92eac168
MR
3310 * remap_vmalloc_range - map vmalloc pages to userspace
3311 * @vma: vma to cover (map full range of vma)
3312 * @addr: vmalloc memory
3313 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3314 *
92eac168 3315 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3316 *
92eac168
MR
3317 * This function checks that addr is a valid vmalloc'ed area, and
3318 * that it is big enough to cover the vma. Will return failure if
3319 * that criteria isn't met.
e69e9d4a 3320 *
92eac168 3321 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3322 */
3323int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3324 unsigned long pgoff)
3325{
3326 return remap_vmalloc_range_partial(vma, vma->vm_start,
bdebd6a2 3327 addr, pgoff,
e69e9d4a
HD
3328 vma->vm_end - vma->vm_start);
3329}
83342314
NP
3330EXPORT_SYMBOL(remap_vmalloc_range);
3331
5f4352fb
JF
3332void free_vm_area(struct vm_struct *area)
3333{
3334 struct vm_struct *ret;
3335 ret = remove_vm_area(area->addr);
3336 BUG_ON(ret != area);
3337 kfree(area);
3338}
3339EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3340
4f8b02b4 3341#ifdef CONFIG_SMP
ca23e405
TH
3342static struct vmap_area *node_to_va(struct rb_node *n)
3343{
4583e773 3344 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3345}
3346
3347/**
68ad4a33
URS
3348 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3349 * @addr: target address
ca23e405 3350 *
68ad4a33
URS
3351 * Returns: vmap_area if it is found. If there is no such area
3352 * the first highest(reverse order) vmap_area is returned
3353 * i.e. va->va_start < addr && va->va_end < addr or NULL
3354 * if there are no any areas before @addr.
ca23e405 3355 */
68ad4a33
URS
3356static struct vmap_area *
3357pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3358{
68ad4a33
URS
3359 struct vmap_area *va, *tmp;
3360 struct rb_node *n;
3361
3362 n = free_vmap_area_root.rb_node;
3363 va = NULL;
ca23e405
TH
3364
3365 while (n) {
68ad4a33
URS
3366 tmp = rb_entry(n, struct vmap_area, rb_node);
3367 if (tmp->va_start <= addr) {
3368 va = tmp;
3369 if (tmp->va_end >= addr)
3370 break;
3371
ca23e405 3372 n = n->rb_right;
68ad4a33
URS
3373 } else {
3374 n = n->rb_left;
3375 }
ca23e405
TH
3376 }
3377
68ad4a33 3378 return va;
ca23e405
TH
3379}
3380
3381/**
68ad4a33
URS
3382 * pvm_determine_end_from_reverse - find the highest aligned address
3383 * of free block below VMALLOC_END
3384 * @va:
3385 * in - the VA we start the search(reverse order);
3386 * out - the VA with the highest aligned end address.
799fa85d 3387 * @align: alignment for required highest address
ca23e405 3388 *
68ad4a33 3389 * Returns: determined end address within vmap_area
ca23e405 3390 */
68ad4a33
URS
3391static unsigned long
3392pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3393{
68ad4a33 3394 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3395 unsigned long addr;
3396
68ad4a33
URS
3397 if (likely(*va)) {
3398 list_for_each_entry_from_reverse((*va),
3399 &free_vmap_area_list, list) {
3400 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3401 if ((*va)->va_start < addr)
3402 return addr;
3403 }
ca23e405
TH
3404 }
3405
68ad4a33 3406 return 0;
ca23e405
TH
3407}
3408
3409/**
3410 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3411 * @offsets: array containing offset of each area
3412 * @sizes: array containing size of each area
3413 * @nr_vms: the number of areas to allocate
3414 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3415 *
3416 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3417 * vm_structs on success, %NULL on failure
3418 *
3419 * Percpu allocator wants to use congruent vm areas so that it can
3420 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3421 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3422 * be scattered pretty far, distance between two areas easily going up
3423 * to gigabytes. To avoid interacting with regular vmallocs, these
3424 * areas are allocated from top.
ca23e405 3425 *
68ad4a33
URS
3426 * Despite its complicated look, this allocator is rather simple. It
3427 * does everything top-down and scans free blocks from the end looking
3428 * for matching base. While scanning, if any of the areas do not fit the
3429 * base address is pulled down to fit the area. Scanning is repeated till
3430 * all the areas fit and then all necessary data structures are inserted
3431 * and the result is returned.
ca23e405
TH
3432 */
3433struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3434 const size_t *sizes, int nr_vms,
ec3f64fc 3435 size_t align)
ca23e405
TH
3436{
3437 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3438 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3439 struct vmap_area **vas, *va;
ca23e405
TH
3440 struct vm_struct **vms;
3441 int area, area2, last_area, term_area;
253a496d 3442 unsigned long base, start, size, end, last_end, orig_start, orig_end;
ca23e405 3443 bool purged = false;
68ad4a33 3444 enum fit_type type;
ca23e405 3445
ca23e405 3446 /* verify parameters and allocate data structures */
891c49ab 3447 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3448 for (last_area = 0, area = 0; area < nr_vms; area++) {
3449 start = offsets[area];
3450 end = start + sizes[area];
3451
3452 /* is everything aligned properly? */
3453 BUG_ON(!IS_ALIGNED(offsets[area], align));
3454 BUG_ON(!IS_ALIGNED(sizes[area], align));
3455
3456 /* detect the area with the highest address */
3457 if (start > offsets[last_area])
3458 last_area = area;
3459
c568da28 3460 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3461 unsigned long start2 = offsets[area2];
3462 unsigned long end2 = start2 + sizes[area2];
3463
c568da28 3464 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3465 }
3466 }
3467 last_end = offsets[last_area] + sizes[last_area];
3468
3469 if (vmalloc_end - vmalloc_start < last_end) {
3470 WARN_ON(true);
3471 return NULL;
3472 }
3473
4d67d860
TM
3474 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3475 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3476 if (!vas || !vms)
f1db7afd 3477 goto err_free2;
ca23e405
TH
3478
3479 for (area = 0; area < nr_vms; area++) {
68ad4a33 3480 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3481 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3482 if (!vas[area] || !vms[area])
3483 goto err_free;
3484 }
3485retry:
e36176be 3486 spin_lock(&free_vmap_area_lock);
ca23e405
TH
3487
3488 /* start scanning - we scan from the top, begin with the last area */
3489 area = term_area = last_area;
3490 start = offsets[area];
3491 end = start + sizes[area];
3492
68ad4a33
URS
3493 va = pvm_find_va_enclose_addr(vmalloc_end);
3494 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3495
3496 while (true) {
ca23e405
TH
3497 /*
3498 * base might have underflowed, add last_end before
3499 * comparing.
3500 */
68ad4a33
URS
3501 if (base + last_end < vmalloc_start + last_end)
3502 goto overflow;
ca23e405
TH
3503
3504 /*
68ad4a33 3505 * Fitting base has not been found.
ca23e405 3506 */
68ad4a33
URS
3507 if (va == NULL)
3508 goto overflow;
ca23e405 3509
5336e52c 3510 /*
d8cc323d 3511 * If required width exceeds current VA block, move
5336e52c
KS
3512 * base downwards and then recheck.
3513 */
3514 if (base + end > va->va_end) {
3515 base = pvm_determine_end_from_reverse(&va, align) - end;
3516 term_area = area;
3517 continue;
3518 }
3519
ca23e405 3520 /*
68ad4a33 3521 * If this VA does not fit, move base downwards and recheck.
ca23e405 3522 */
5336e52c 3523 if (base + start < va->va_start) {
68ad4a33
URS
3524 va = node_to_va(rb_prev(&va->rb_node));
3525 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3526 term_area = area;
3527 continue;
3528 }
3529
3530 /*
3531 * This area fits, move on to the previous one. If
3532 * the previous one is the terminal one, we're done.
3533 */
3534 area = (area + nr_vms - 1) % nr_vms;
3535 if (area == term_area)
3536 break;
68ad4a33 3537
ca23e405
TH
3538 start = offsets[area];
3539 end = start + sizes[area];
68ad4a33 3540 va = pvm_find_va_enclose_addr(base + end);
ca23e405 3541 }
68ad4a33 3542
ca23e405
TH
3543 /* we've found a fitting base, insert all va's */
3544 for (area = 0; area < nr_vms; area++) {
68ad4a33 3545 int ret;
ca23e405 3546
68ad4a33
URS
3547 start = base + offsets[area];
3548 size = sizes[area];
ca23e405 3549
68ad4a33
URS
3550 va = pvm_find_va_enclose_addr(start);
3551 if (WARN_ON_ONCE(va == NULL))
3552 /* It is a BUG(), but trigger recovery instead. */
3553 goto recovery;
3554
3555 type = classify_va_fit_type(va, start, size);
3556 if (WARN_ON_ONCE(type == NOTHING_FIT))
3557 /* It is a BUG(), but trigger recovery instead. */
3558 goto recovery;
3559
3560 ret = adjust_va_to_fit_type(va, start, size, type);
3561 if (unlikely(ret))
3562 goto recovery;
3563
3564 /* Allocated area. */
3565 va = vas[area];
3566 va->va_start = start;
3567 va->va_end = start + size;
68ad4a33 3568 }
ca23e405 3569
e36176be 3570 spin_unlock(&free_vmap_area_lock);
ca23e405 3571
253a496d
DA
3572 /* populate the kasan shadow space */
3573 for (area = 0; area < nr_vms; area++) {
3574 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3575 goto err_free_shadow;
3576
3577 kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3578 sizes[area]);
3579 }
3580
ca23e405 3581 /* insert all vm's */
e36176be
URS
3582 spin_lock(&vmap_area_lock);
3583 for (area = 0; area < nr_vms; area++) {
3584 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3585
3586 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3645cb4a 3587 pcpu_get_vm_areas);
e36176be
URS
3588 }
3589 spin_unlock(&vmap_area_lock);
ca23e405
TH
3590
3591 kfree(vas);
3592 return vms;
3593
68ad4a33 3594recovery:
e36176be
URS
3595 /*
3596 * Remove previously allocated areas. There is no
3597 * need in removing these areas from the busy tree,
3598 * because they are inserted only on the final step
3599 * and when pcpu_get_vm_areas() is success.
3600 */
68ad4a33 3601 while (area--) {
253a496d
DA
3602 orig_start = vas[area]->va_start;
3603 orig_end = vas[area]->va_end;
96e2db45
URS
3604 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3605 &free_vmap_area_list);
9c801f61
URS
3606 if (va)
3607 kasan_release_vmalloc(orig_start, orig_end,
3608 va->va_start, va->va_end);
68ad4a33
URS
3609 vas[area] = NULL;
3610 }
3611
3612overflow:
e36176be 3613 spin_unlock(&free_vmap_area_lock);
68ad4a33
URS
3614 if (!purged) {
3615 purge_vmap_area_lazy();
3616 purged = true;
3617
3618 /* Before "retry", check if we recover. */
3619 for (area = 0; area < nr_vms; area++) {
3620 if (vas[area])
3621 continue;
3622
3623 vas[area] = kmem_cache_zalloc(
3624 vmap_area_cachep, GFP_KERNEL);
3625 if (!vas[area])
3626 goto err_free;
3627 }
3628
3629 goto retry;
3630 }
3631
ca23e405
TH
3632err_free:
3633 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
3634 if (vas[area])
3635 kmem_cache_free(vmap_area_cachep, vas[area]);
3636
f1db7afd 3637 kfree(vms[area]);
ca23e405 3638 }
f1db7afd 3639err_free2:
ca23e405
TH
3640 kfree(vas);
3641 kfree(vms);
3642 return NULL;
253a496d
DA
3643
3644err_free_shadow:
3645 spin_lock(&free_vmap_area_lock);
3646 /*
3647 * We release all the vmalloc shadows, even the ones for regions that
3648 * hadn't been successfully added. This relies on kasan_release_vmalloc
3649 * being able to tolerate this case.
3650 */
3651 for (area = 0; area < nr_vms; area++) {
3652 orig_start = vas[area]->va_start;
3653 orig_end = vas[area]->va_end;
96e2db45
URS
3654 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3655 &free_vmap_area_list);
9c801f61
URS
3656 if (va)
3657 kasan_release_vmalloc(orig_start, orig_end,
3658 va->va_start, va->va_end);
253a496d
DA
3659 vas[area] = NULL;
3660 kfree(vms[area]);
3661 }
3662 spin_unlock(&free_vmap_area_lock);
3663 kfree(vas);
3664 kfree(vms);
3665 return NULL;
ca23e405
TH
3666}
3667
3668/**
3669 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3670 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3671 * @nr_vms: the number of allocated areas
3672 *
3673 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3674 */
3675void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3676{
3677 int i;
3678
3679 for (i = 0; i < nr_vms; i++)
3680 free_vm_area(vms[i]);
3681 kfree(vms);
3682}
4f8b02b4 3683#endif /* CONFIG_SMP */
a10aa579 3684
5bb1bb35 3685#ifdef CONFIG_PRINTK
98f18083
PM
3686bool vmalloc_dump_obj(void *object)
3687{
3688 struct vm_struct *vm;
3689 void *objp = (void *)PAGE_ALIGN((unsigned long)object);
3690
3691 vm = find_vm_area(objp);
3692 if (!vm)
3693 return false;
bd34dcd4
PM
3694 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
3695 vm->nr_pages, (unsigned long)vm->addr, vm->caller);
98f18083
PM
3696 return true;
3697}
5bb1bb35 3698#endif
98f18083 3699
a10aa579
CL
3700#ifdef CONFIG_PROC_FS
3701static void *s_start(struct seq_file *m, loff_t *pos)
e36176be 3702 __acquires(&vmap_purge_lock)
d4033afd 3703 __acquires(&vmap_area_lock)
a10aa579 3704{
e36176be 3705 mutex_lock(&vmap_purge_lock);
d4033afd 3706 spin_lock(&vmap_area_lock);
e36176be 3707
3f500069 3708 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
3709}
3710
3711static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3712{
3f500069 3713 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
3714}
3715
3716static void s_stop(struct seq_file *m, void *p)
d4033afd 3717 __releases(&vmap_area_lock)
0a7dd4e9 3718 __releases(&vmap_purge_lock)
a10aa579 3719{
d4033afd 3720 spin_unlock(&vmap_area_lock);
0a7dd4e9 3721 mutex_unlock(&vmap_purge_lock);
a10aa579
CL
3722}
3723
a47a126a
ED
3724static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3725{
e5adfffc 3726 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
3727 unsigned int nr, *counters = m->private;
3728
3729 if (!counters)
3730 return;
3731
af12346c
WL
3732 if (v->flags & VM_UNINITIALIZED)
3733 return;
7e5b528b
DV
3734 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3735 smp_rmb();
af12346c 3736
a47a126a
ED
3737 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3738
3739 for (nr = 0; nr < v->nr_pages; nr++)
3740 counters[page_to_nid(v->pages[nr])]++;
3741
3742 for_each_node_state(nr, N_HIGH_MEMORY)
3743 if (counters[nr])
3744 seq_printf(m, " N%u=%u", nr, counters[nr]);
3745 }
3746}
3747
dd3b8353
URS
3748static void show_purge_info(struct seq_file *m)
3749{
dd3b8353
URS
3750 struct vmap_area *va;
3751
96e2db45
URS
3752 spin_lock(&purge_vmap_area_lock);
3753 list_for_each_entry(va, &purge_vmap_area_list, list) {
dd3b8353
URS
3754 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3755 (void *)va->va_start, (void *)va->va_end,
3756 va->va_end - va->va_start);
3757 }
96e2db45 3758 spin_unlock(&purge_vmap_area_lock);
dd3b8353
URS
3759}
3760
a10aa579
CL
3761static int s_show(struct seq_file *m, void *p)
3762{
3f500069 3763 struct vmap_area *va;
d4033afd
JK
3764 struct vm_struct *v;
3765
3f500069 3766 va = list_entry(p, struct vmap_area, list);
3767
c2ce8c14 3768 /*
688fcbfc
PL
3769 * s_show can encounter race with remove_vm_area, !vm on behalf
3770 * of vmap area is being tear down or vm_map_ram allocation.
c2ce8c14 3771 */
688fcbfc 3772 if (!va->vm) {
dd3b8353 3773 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
78c72746 3774 (void *)va->va_start, (void *)va->va_end,
dd3b8353 3775 va->va_end - va->va_start);
78c72746 3776
d4033afd 3777 return 0;
78c72746 3778 }
d4033afd
JK
3779
3780 v = va->vm;
a10aa579 3781
45ec1690 3782 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
3783 v->addr, v->addr + v->size, v->size);
3784
62c70bce
JP
3785 if (v->caller)
3786 seq_printf(m, " %pS", v->caller);
23016969 3787
a10aa579
CL
3788 if (v->nr_pages)
3789 seq_printf(m, " pages=%d", v->nr_pages);
3790
3791 if (v->phys_addr)
199eaa05 3792 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
3793
3794 if (v->flags & VM_IOREMAP)
f4527c90 3795 seq_puts(m, " ioremap");
a10aa579
CL
3796
3797 if (v->flags & VM_ALLOC)
f4527c90 3798 seq_puts(m, " vmalloc");
a10aa579
CL
3799
3800 if (v->flags & VM_MAP)
f4527c90 3801 seq_puts(m, " vmap");
a10aa579
CL
3802
3803 if (v->flags & VM_USERMAP)
f4527c90 3804 seq_puts(m, " user");
a10aa579 3805
fe9041c2
CH
3806 if (v->flags & VM_DMA_COHERENT)
3807 seq_puts(m, " dma-coherent");
3808
244d63ee 3809 if (is_vmalloc_addr(v->pages))
f4527c90 3810 seq_puts(m, " vpages");
a10aa579 3811
a47a126a 3812 show_numa_info(m, v);
a10aa579 3813 seq_putc(m, '\n');
dd3b8353
URS
3814
3815 /*
96e2db45 3816 * As a final step, dump "unpurged" areas.
dd3b8353
URS
3817 */
3818 if (list_is_last(&va->list, &vmap_area_list))
3819 show_purge_info(m);
3820
a10aa579
CL
3821 return 0;
3822}
3823
5f6a6a9c 3824static const struct seq_operations vmalloc_op = {
a10aa579
CL
3825 .start = s_start,
3826 .next = s_next,
3827 .stop = s_stop,
3828 .show = s_show,
3829};
5f6a6a9c 3830
5f6a6a9c
AD
3831static int __init proc_vmalloc_init(void)
3832{
fddda2b7 3833 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 3834 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
3835 &vmalloc_op,
3836 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 3837 else
0825a6f9 3838 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
3839 return 0;
3840}
3841module_init(proc_vmalloc_init);
db3808c1 3842
a10aa579 3843#endif