]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/vmscan.c
mm/migrate.c: make putback_movable_page() static
[mirror_ubuntu-jammy-kernel.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
b1de0d13
MH
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
1da177e4 15#include <linux/mm.h>
5b3cc15a 16#include <linux/sched/mm.h>
1da177e4 17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
64e3d12f 47#include <linux/pagevec.h>
268bb0ce 48#include <linux/prefetch.h>
b1de0d13 49#include <linux/printk.h>
f9fe48be 50#include <linux/dax.h>
eb414681 51#include <linux/psi.h>
1da177e4
LT
52
53#include <asm/tlbflush.h>
54#include <asm/div64.h>
55
56#include <linux/swapops.h>
117aad1e 57#include <linux/balloon_compaction.h>
1da177e4 58
0f8053a5
NP
59#include "internal.h"
60
33906bc5
MG
61#define CREATE_TRACE_POINTS
62#include <trace/events/vmscan.h>
63
1da177e4 64struct scan_control {
22fba335
KM
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
ee814fe2
JW
68 /*
69 * Nodemask of nodes allowed by the caller. If NULL, all nodes
70 * are scanned.
71 */
72 nodemask_t *nodemask;
9e3b2f8c 73
f16015fb
JW
74 /*
75 * The memory cgroup that hit its limit and as a result is the
76 * primary target of this reclaim invocation.
77 */
78 struct mem_cgroup *target_mem_cgroup;
66e1707b 79
7cf111bc
JW
80 /*
81 * Scan pressure balancing between anon and file LRUs
82 */
83 unsigned long anon_cost;
84 unsigned long file_cost;
85
b91ac374
JW
86 /* Can active pages be deactivated as part of reclaim? */
87#define DEACTIVATE_ANON 1
88#define DEACTIVATE_FILE 2
89 unsigned int may_deactivate:2;
90 unsigned int force_deactivate:1;
91 unsigned int skipped_deactivate:1;
92
1276ad68 93 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
94 unsigned int may_writepage:1;
95
96 /* Can mapped pages be reclaimed? */
97 unsigned int may_unmap:1;
98
99 /* Can pages be swapped as part of reclaim? */
100 unsigned int may_swap:1;
101
d6622f63
YX
102 /*
103 * Cgroups are not reclaimed below their configured memory.low,
104 * unless we threaten to OOM. If any cgroups are skipped due to
105 * memory.low and nothing was reclaimed, go back for memory.low.
106 */
107 unsigned int memcg_low_reclaim:1;
108 unsigned int memcg_low_skipped:1;
241994ed 109
ee814fe2
JW
110 unsigned int hibernation_mode:1;
111
112 /* One of the zones is ready for compaction */
113 unsigned int compaction_ready:1;
114
b91ac374
JW
115 /* There is easily reclaimable cold cache in the current node */
116 unsigned int cache_trim_mode:1;
117
53138cea
JW
118 /* The file pages on the current node are dangerously low */
119 unsigned int file_is_tiny:1;
120
bb451fdf
GT
121 /* Allocation order */
122 s8 order;
123
124 /* Scan (total_size >> priority) pages at once */
125 s8 priority;
126
127 /* The highest zone to isolate pages for reclaim from */
128 s8 reclaim_idx;
129
130 /* This context's GFP mask */
131 gfp_t gfp_mask;
132
ee814fe2
JW
133 /* Incremented by the number of inactive pages that were scanned */
134 unsigned long nr_scanned;
135
136 /* Number of pages freed so far during a call to shrink_zones() */
137 unsigned long nr_reclaimed;
d108c772
AR
138
139 struct {
140 unsigned int dirty;
141 unsigned int unqueued_dirty;
142 unsigned int congested;
143 unsigned int writeback;
144 unsigned int immediate;
145 unsigned int file_taken;
146 unsigned int taken;
147 } nr;
e5ca8071
YS
148
149 /* for recording the reclaimed slab by now */
150 struct reclaim_state reclaim_state;
1da177e4
LT
151};
152
1da177e4
LT
153#ifdef ARCH_HAS_PREFETCHW
154#define prefetchw_prev_lru_page(_page, _base, _field) \
155 do { \
156 if ((_page)->lru.prev != _base) { \
157 struct page *prev; \
158 \
159 prev = lru_to_page(&(_page->lru)); \
160 prefetchw(&prev->_field); \
161 } \
162 } while (0)
163#else
164#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165#endif
166
167/*
c843966c 168 * From 0 .. 200. Higher means more swappy.
1da177e4
LT
169 */
170int vm_swappiness = 60;
1da177e4 171
0a432dcb
YS
172static void set_task_reclaim_state(struct task_struct *task,
173 struct reclaim_state *rs)
174{
175 /* Check for an overwrite */
176 WARN_ON_ONCE(rs && task->reclaim_state);
177
178 /* Check for the nulling of an already-nulled member */
179 WARN_ON_ONCE(!rs && !task->reclaim_state);
180
181 task->reclaim_state = rs;
182}
183
1da177e4
LT
184static LIST_HEAD(shrinker_list);
185static DECLARE_RWSEM(shrinker_rwsem);
186
0a432dcb 187#ifdef CONFIG_MEMCG
a2fb1261 188static int shrinker_nr_max;
2bfd3637 189
3c6f17e6 190/* The shrinker_info is expanded in a batch of BITS_PER_LONG */
a2fb1261
YS
191static inline int shrinker_map_size(int nr_items)
192{
193 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
194}
2bfd3637 195
3c6f17e6
YS
196static inline int shrinker_defer_size(int nr_items)
197{
198 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
199}
200
468ab843
YS
201static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
202 int nid)
203{
204 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
205 lockdep_is_held(&shrinker_rwsem));
206}
207
e4262c4f 208static int expand_one_shrinker_info(struct mem_cgroup *memcg,
3c6f17e6
YS
209 int map_size, int defer_size,
210 int old_map_size, int old_defer_size)
2bfd3637 211{
e4262c4f 212 struct shrinker_info *new, *old;
2bfd3637
YS
213 struct mem_cgroup_per_node *pn;
214 int nid;
3c6f17e6 215 int size = map_size + defer_size;
2bfd3637 216
2bfd3637
YS
217 for_each_node(nid) {
218 pn = memcg->nodeinfo[nid];
468ab843 219 old = shrinker_info_protected(memcg, nid);
2bfd3637
YS
220 /* Not yet online memcg */
221 if (!old)
222 return 0;
223
224 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
225 if (!new)
226 return -ENOMEM;
227
3c6f17e6
YS
228 new->nr_deferred = (atomic_long_t *)(new + 1);
229 new->map = (void *)new->nr_deferred + defer_size;
230
231 /* map: set all old bits, clear all new bits */
232 memset(new->map, (int)0xff, old_map_size);
233 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
234 /* nr_deferred: copy old values, clear all new values */
235 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
236 memset((void *)new->nr_deferred + old_defer_size, 0,
237 defer_size - old_defer_size);
2bfd3637 238
e4262c4f 239 rcu_assign_pointer(pn->shrinker_info, new);
72673e86 240 kvfree_rcu(old, rcu);
2bfd3637
YS
241 }
242
243 return 0;
244}
245
e4262c4f 246void free_shrinker_info(struct mem_cgroup *memcg)
2bfd3637
YS
247{
248 struct mem_cgroup_per_node *pn;
e4262c4f 249 struct shrinker_info *info;
2bfd3637
YS
250 int nid;
251
2bfd3637
YS
252 for_each_node(nid) {
253 pn = memcg->nodeinfo[nid];
e4262c4f
YS
254 info = rcu_dereference_protected(pn->shrinker_info, true);
255 kvfree(info);
256 rcu_assign_pointer(pn->shrinker_info, NULL);
2bfd3637
YS
257 }
258}
259
e4262c4f 260int alloc_shrinker_info(struct mem_cgroup *memcg)
2bfd3637 261{
e4262c4f 262 struct shrinker_info *info;
2bfd3637 263 int nid, size, ret = 0;
3c6f17e6 264 int map_size, defer_size = 0;
2bfd3637 265
d27cf2aa 266 down_write(&shrinker_rwsem);
3c6f17e6
YS
267 map_size = shrinker_map_size(shrinker_nr_max);
268 defer_size = shrinker_defer_size(shrinker_nr_max);
269 size = map_size + defer_size;
2bfd3637 270 for_each_node(nid) {
e4262c4f
YS
271 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
272 if (!info) {
273 free_shrinker_info(memcg);
2bfd3637
YS
274 ret = -ENOMEM;
275 break;
276 }
3c6f17e6
YS
277 info->nr_deferred = (atomic_long_t *)(info + 1);
278 info->map = (void *)info->nr_deferred + defer_size;
e4262c4f 279 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
2bfd3637 280 }
d27cf2aa 281 up_write(&shrinker_rwsem);
2bfd3637
YS
282
283 return ret;
284}
285
3c6f17e6
YS
286static inline bool need_expand(int nr_max)
287{
288 return round_up(nr_max, BITS_PER_LONG) >
289 round_up(shrinker_nr_max, BITS_PER_LONG);
290}
291
e4262c4f 292static int expand_shrinker_info(int new_id)
2bfd3637 293{
3c6f17e6 294 int ret = 0;
a2fb1261 295 int new_nr_max = new_id + 1;
3c6f17e6
YS
296 int map_size, defer_size = 0;
297 int old_map_size, old_defer_size = 0;
2bfd3637
YS
298 struct mem_cgroup *memcg;
299
3c6f17e6 300 if (!need_expand(new_nr_max))
a2fb1261 301 goto out;
2bfd3637 302
2bfd3637 303 if (!root_mem_cgroup)
d27cf2aa
YS
304 goto out;
305
306 lockdep_assert_held(&shrinker_rwsem);
2bfd3637 307
3c6f17e6
YS
308 map_size = shrinker_map_size(new_nr_max);
309 defer_size = shrinker_defer_size(new_nr_max);
310 old_map_size = shrinker_map_size(shrinker_nr_max);
311 old_defer_size = shrinker_defer_size(shrinker_nr_max);
312
2bfd3637
YS
313 memcg = mem_cgroup_iter(NULL, NULL, NULL);
314 do {
3c6f17e6
YS
315 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
316 old_map_size, old_defer_size);
2bfd3637
YS
317 if (ret) {
318 mem_cgroup_iter_break(NULL, memcg);
d27cf2aa 319 goto out;
2bfd3637
YS
320 }
321 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
d27cf2aa 322out:
2bfd3637 323 if (!ret)
a2fb1261 324 shrinker_nr_max = new_nr_max;
d27cf2aa 325
2bfd3637
YS
326 return ret;
327}
328
329void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
330{
331 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
e4262c4f 332 struct shrinker_info *info;
2bfd3637
YS
333
334 rcu_read_lock();
e4262c4f 335 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
2bfd3637
YS
336 /* Pairs with smp mb in shrink_slab() */
337 smp_mb__before_atomic();
e4262c4f 338 set_bit(shrinker_id, info->map);
2bfd3637
YS
339 rcu_read_unlock();
340 }
341}
342
b4c2b231 343static DEFINE_IDR(shrinker_idr);
b4c2b231
KT
344
345static int prealloc_memcg_shrinker(struct shrinker *shrinker)
346{
347 int id, ret = -ENOMEM;
348
476b30a0
YS
349 if (mem_cgroup_disabled())
350 return -ENOSYS;
351
b4c2b231
KT
352 down_write(&shrinker_rwsem);
353 /* This may call shrinker, so it must use down_read_trylock() */
41ca668a 354 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
b4c2b231
KT
355 if (id < 0)
356 goto unlock;
357
0a4465d3 358 if (id >= shrinker_nr_max) {
e4262c4f 359 if (expand_shrinker_info(id)) {
0a4465d3
KT
360 idr_remove(&shrinker_idr, id);
361 goto unlock;
362 }
0a4465d3 363 }
b4c2b231
KT
364 shrinker->id = id;
365 ret = 0;
366unlock:
367 up_write(&shrinker_rwsem);
368 return ret;
369}
370
371static void unregister_memcg_shrinker(struct shrinker *shrinker)
372{
373 int id = shrinker->id;
374
375 BUG_ON(id < 0);
376
41ca668a
YS
377 lockdep_assert_held(&shrinker_rwsem);
378
b4c2b231 379 idr_remove(&shrinker_idr, id);
b4c2b231 380}
b4c2b231 381
86750830
YS
382static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
383 struct mem_cgroup *memcg)
384{
385 struct shrinker_info *info;
386
387 info = shrinker_info_protected(memcg, nid);
388 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
389}
390
391static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
392 struct mem_cgroup *memcg)
393{
394 struct shrinker_info *info;
395
396 info = shrinker_info_protected(memcg, nid);
397 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
398}
399
a178015c
YS
400void reparent_shrinker_deferred(struct mem_cgroup *memcg)
401{
402 int i, nid;
403 long nr;
404 struct mem_cgroup *parent;
405 struct shrinker_info *child_info, *parent_info;
406
407 parent = parent_mem_cgroup(memcg);
408 if (!parent)
409 parent = root_mem_cgroup;
410
411 /* Prevent from concurrent shrinker_info expand */
412 down_read(&shrinker_rwsem);
413 for_each_node(nid) {
414 child_info = shrinker_info_protected(memcg, nid);
415 parent_info = shrinker_info_protected(parent, nid);
416 for (i = 0; i < shrinker_nr_max; i++) {
417 nr = atomic_long_read(&child_info->nr_deferred[i]);
418 atomic_long_add(nr, &parent_info->nr_deferred[i]);
419 }
420 }
421 up_read(&shrinker_rwsem);
422}
423
b5ead35e 424static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 425{
b5ead35e 426 return sc->target_mem_cgroup;
89b5fae5 427}
97c9341f
TH
428
429/**
b5ead35e 430 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
97c9341f
TH
431 * @sc: scan_control in question
432 *
433 * The normal page dirty throttling mechanism in balance_dirty_pages() is
434 * completely broken with the legacy memcg and direct stalling in
435 * shrink_page_list() is used for throttling instead, which lacks all the
436 * niceties such as fairness, adaptive pausing, bandwidth proportional
437 * allocation and configurability.
438 *
439 * This function tests whether the vmscan currently in progress can assume
440 * that the normal dirty throttling mechanism is operational.
441 */
b5ead35e 442static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f 443{
b5ead35e 444 if (!cgroup_reclaim(sc))
97c9341f
TH
445 return true;
446#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 447 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
448 return true;
449#endif
450 return false;
451}
91a45470 452#else
0a432dcb
YS
453static int prealloc_memcg_shrinker(struct shrinker *shrinker)
454{
476b30a0 455 return -ENOSYS;
0a432dcb
YS
456}
457
458static void unregister_memcg_shrinker(struct shrinker *shrinker)
459{
460}
461
86750830
YS
462static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
463 struct mem_cgroup *memcg)
464{
465 return 0;
466}
467
468static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
469 struct mem_cgroup *memcg)
470{
471 return 0;
472}
473
b5ead35e 474static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 475{
b5ead35e 476 return false;
89b5fae5 477}
97c9341f 478
b5ead35e 479static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f
TH
480{
481 return true;
482}
91a45470
KH
483#endif
484
86750830
YS
485static long xchg_nr_deferred(struct shrinker *shrinker,
486 struct shrink_control *sc)
487{
488 int nid = sc->nid;
489
490 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
491 nid = 0;
492
493 if (sc->memcg &&
494 (shrinker->flags & SHRINKER_MEMCG_AWARE))
495 return xchg_nr_deferred_memcg(nid, shrinker,
496 sc->memcg);
497
498 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
499}
500
501
502static long add_nr_deferred(long nr, struct shrinker *shrinker,
503 struct shrink_control *sc)
504{
505 int nid = sc->nid;
506
507 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
508 nid = 0;
509
510 if (sc->memcg &&
511 (shrinker->flags & SHRINKER_MEMCG_AWARE))
512 return add_nr_deferred_memcg(nr, nid, shrinker,
513 sc->memcg);
514
515 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
516}
517
5a1c84b4
MG
518/*
519 * This misses isolated pages which are not accounted for to save counters.
520 * As the data only determines if reclaim or compaction continues, it is
521 * not expected that isolated pages will be a dominating factor.
522 */
523unsigned long zone_reclaimable_pages(struct zone *zone)
524{
525 unsigned long nr;
526
527 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
528 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
529 if (get_nr_swap_pages() > 0)
530 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
531 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
532
533 return nr;
534}
535
fd538803
MH
536/**
537 * lruvec_lru_size - Returns the number of pages on the given LRU list.
538 * @lruvec: lru vector
539 * @lru: lru to use
540 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
541 */
2091339d
YZ
542static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
543 int zone_idx)
c9f299d9 544{
de3b0150 545 unsigned long size = 0;
fd538803
MH
546 int zid;
547
de3b0150 548 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
fd538803 549 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
c9f299d9 550
fd538803
MH
551 if (!managed_zone(zone))
552 continue;
553
554 if (!mem_cgroup_disabled())
de3b0150 555 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
fd538803 556 else
de3b0150 557 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
fd538803 558 }
de3b0150 559 return size;
b4536f0c
MH
560}
561
1da177e4 562/*
1d3d4437 563 * Add a shrinker callback to be called from the vm.
1da177e4 564 */
8e04944f 565int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 566{
476b30a0
YS
567 unsigned int size;
568 int err;
569
570 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
571 err = prealloc_memcg_shrinker(shrinker);
572 if (err != -ENOSYS)
573 return err;
1d3d4437 574
476b30a0
YS
575 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
576 }
577
578 size = sizeof(*shrinker->nr_deferred);
1d3d4437
GC
579 if (shrinker->flags & SHRINKER_NUMA_AWARE)
580 size *= nr_node_ids;
581
582 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
583 if (!shrinker->nr_deferred)
584 return -ENOMEM;
b4c2b231 585
8e04944f
TH
586 return 0;
587}
588
589void free_prealloced_shrinker(struct shrinker *shrinker)
590{
41ca668a
YS
591 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
592 down_write(&shrinker_rwsem);
b4c2b231 593 unregister_memcg_shrinker(shrinker);
41ca668a 594 up_write(&shrinker_rwsem);
476b30a0 595 return;
41ca668a 596 }
b4c2b231 597
8e04944f
TH
598 kfree(shrinker->nr_deferred);
599 shrinker->nr_deferred = NULL;
600}
1d3d4437 601
8e04944f
TH
602void register_shrinker_prepared(struct shrinker *shrinker)
603{
8e1f936b
RR
604 down_write(&shrinker_rwsem);
605 list_add_tail(&shrinker->list, &shrinker_list);
41ca668a 606 shrinker->flags |= SHRINKER_REGISTERED;
8e1f936b 607 up_write(&shrinker_rwsem);
8e04944f
TH
608}
609
610int register_shrinker(struct shrinker *shrinker)
611{
612 int err = prealloc_shrinker(shrinker);
613
614 if (err)
615 return err;
616 register_shrinker_prepared(shrinker);
1d3d4437 617 return 0;
1da177e4 618}
8e1f936b 619EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
620
621/*
622 * Remove one
623 */
8e1f936b 624void unregister_shrinker(struct shrinker *shrinker)
1da177e4 625{
41ca668a 626 if (!(shrinker->flags & SHRINKER_REGISTERED))
bb422a73 627 return;
41ca668a 628
1da177e4
LT
629 down_write(&shrinker_rwsem);
630 list_del(&shrinker->list);
41ca668a
YS
631 shrinker->flags &= ~SHRINKER_REGISTERED;
632 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
633 unregister_memcg_shrinker(shrinker);
1da177e4 634 up_write(&shrinker_rwsem);
41ca668a 635
ae393321 636 kfree(shrinker->nr_deferred);
bb422a73 637 shrinker->nr_deferred = NULL;
1da177e4 638}
8e1f936b 639EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
640
641#define SHRINK_BATCH 128
1d3d4437 642
cb731d6c 643static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 644 struct shrinker *shrinker, int priority)
1d3d4437
GC
645{
646 unsigned long freed = 0;
647 unsigned long long delta;
648 long total_scan;
d5bc5fd3 649 long freeable;
1d3d4437
GC
650 long nr;
651 long new_nr;
1d3d4437
GC
652 long batch_size = shrinker->batch ? shrinker->batch
653 : SHRINK_BATCH;
5f33a080 654 long scanned = 0, next_deferred;
1d3d4437 655
d5bc5fd3 656 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
657 if (freeable == 0 || freeable == SHRINK_EMPTY)
658 return freeable;
1d3d4437
GC
659
660 /*
661 * copy the current shrinker scan count into a local variable
662 * and zero it so that other concurrent shrinker invocations
663 * don't also do this scanning work.
664 */
86750830 665 nr = xchg_nr_deferred(shrinker, shrinkctl);
1d3d4437 666
4b85afbd
JW
667 if (shrinker->seeks) {
668 delta = freeable >> priority;
669 delta *= 4;
670 do_div(delta, shrinker->seeks);
671 } else {
672 /*
673 * These objects don't require any IO to create. Trim
674 * them aggressively under memory pressure to keep
675 * them from causing refetches in the IO caches.
676 */
677 delta = freeable / 2;
678 }
172b06c3 679
18bb473e 680 total_scan = nr >> priority;
1d3d4437 681 total_scan += delta;
18bb473e 682 total_scan = min(total_scan, (2 * freeable));
1d3d4437
GC
683
684 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 685 freeable, delta, total_scan, priority);
1d3d4437 686
0b1fb40a
VD
687 /*
688 * Normally, we should not scan less than batch_size objects in one
689 * pass to avoid too frequent shrinker calls, but if the slab has less
690 * than batch_size objects in total and we are really tight on memory,
691 * we will try to reclaim all available objects, otherwise we can end
692 * up failing allocations although there are plenty of reclaimable
693 * objects spread over several slabs with usage less than the
694 * batch_size.
695 *
696 * We detect the "tight on memory" situations by looking at the total
697 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 698 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
699 * scanning at high prio and therefore should try to reclaim as much as
700 * possible.
701 */
702 while (total_scan >= batch_size ||
d5bc5fd3 703 total_scan >= freeable) {
a0b02131 704 unsigned long ret;
0b1fb40a 705 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 706
0b1fb40a 707 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 708 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
709 ret = shrinker->scan_objects(shrinker, shrinkctl);
710 if (ret == SHRINK_STOP)
711 break;
712 freed += ret;
1d3d4437 713
d460acb5
CW
714 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
715 total_scan -= shrinkctl->nr_scanned;
716 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
717
718 cond_resched();
719 }
720
18bb473e
YS
721 /*
722 * The deferred work is increased by any new work (delta) that wasn't
723 * done, decreased by old deferred work that was done now.
724 *
725 * And it is capped to two times of the freeable items.
726 */
727 next_deferred = max_t(long, (nr + delta - scanned), 0);
728 next_deferred = min(next_deferred, (2 * freeable));
729
1d3d4437
GC
730 /*
731 * move the unused scan count back into the shrinker in a
86750830 732 * manner that handles concurrent updates.
1d3d4437 733 */
86750830 734 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
1d3d4437 735
8efb4b59 736 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
1d3d4437 737 return freed;
1495f230
YH
738}
739
0a432dcb 740#ifdef CONFIG_MEMCG
b0dedc49
KT
741static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
742 struct mem_cgroup *memcg, int priority)
743{
e4262c4f 744 struct shrinker_info *info;
b8e57efa
KT
745 unsigned long ret, freed = 0;
746 int i;
b0dedc49 747
0a432dcb 748 if (!mem_cgroup_online(memcg))
b0dedc49
KT
749 return 0;
750
751 if (!down_read_trylock(&shrinker_rwsem))
752 return 0;
753
468ab843 754 info = shrinker_info_protected(memcg, nid);
e4262c4f 755 if (unlikely(!info))
b0dedc49
KT
756 goto unlock;
757
e4262c4f 758 for_each_set_bit(i, info->map, shrinker_nr_max) {
b0dedc49
KT
759 struct shrink_control sc = {
760 .gfp_mask = gfp_mask,
761 .nid = nid,
762 .memcg = memcg,
763 };
764 struct shrinker *shrinker;
765
766 shrinker = idr_find(&shrinker_idr, i);
41ca668a 767 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
7e010df5 768 if (!shrinker)
e4262c4f 769 clear_bit(i, info->map);
b0dedc49
KT
770 continue;
771 }
772
0a432dcb
YS
773 /* Call non-slab shrinkers even though kmem is disabled */
774 if (!memcg_kmem_enabled() &&
775 !(shrinker->flags & SHRINKER_NONSLAB))
776 continue;
777
b0dedc49 778 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6 779 if (ret == SHRINK_EMPTY) {
e4262c4f 780 clear_bit(i, info->map);
f90280d6
KT
781 /*
782 * After the shrinker reported that it had no objects to
783 * free, but before we cleared the corresponding bit in
784 * the memcg shrinker map, a new object might have been
785 * added. To make sure, we have the bit set in this
786 * case, we invoke the shrinker one more time and reset
787 * the bit if it reports that it is not empty anymore.
788 * The memory barrier here pairs with the barrier in
2bfd3637 789 * set_shrinker_bit():
f90280d6
KT
790 *
791 * list_lru_add() shrink_slab_memcg()
792 * list_add_tail() clear_bit()
793 * <MB> <MB>
794 * set_bit() do_shrink_slab()
795 */
796 smp_mb__after_atomic();
797 ret = do_shrink_slab(&sc, shrinker, priority);
798 if (ret == SHRINK_EMPTY)
799 ret = 0;
800 else
2bfd3637 801 set_shrinker_bit(memcg, nid, i);
f90280d6 802 }
b0dedc49
KT
803 freed += ret;
804
805 if (rwsem_is_contended(&shrinker_rwsem)) {
806 freed = freed ? : 1;
807 break;
808 }
809 }
810unlock:
811 up_read(&shrinker_rwsem);
812 return freed;
813}
0a432dcb 814#else /* CONFIG_MEMCG */
b0dedc49
KT
815static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
816 struct mem_cgroup *memcg, int priority)
817{
818 return 0;
819}
0a432dcb 820#endif /* CONFIG_MEMCG */
b0dedc49 821
6b4f7799 822/**
cb731d6c 823 * shrink_slab - shrink slab caches
6b4f7799
JW
824 * @gfp_mask: allocation context
825 * @nid: node whose slab caches to target
cb731d6c 826 * @memcg: memory cgroup whose slab caches to target
9092c71b 827 * @priority: the reclaim priority
1da177e4 828 *
6b4f7799 829 * Call the shrink functions to age shrinkable caches.
1da177e4 830 *
6b4f7799
JW
831 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
832 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 833 *
aeed1d32
VD
834 * @memcg specifies the memory cgroup to target. Unaware shrinkers
835 * are called only if it is the root cgroup.
cb731d6c 836 *
9092c71b
JB
837 * @priority is sc->priority, we take the number of objects and >> by priority
838 * in order to get the scan target.
b15e0905 839 *
6b4f7799 840 * Returns the number of reclaimed slab objects.
1da177e4 841 */
cb731d6c
VD
842static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
843 struct mem_cgroup *memcg,
9092c71b 844 int priority)
1da177e4 845{
b8e57efa 846 unsigned long ret, freed = 0;
1da177e4
LT
847 struct shrinker *shrinker;
848
fa1e512f
YS
849 /*
850 * The root memcg might be allocated even though memcg is disabled
851 * via "cgroup_disable=memory" boot parameter. This could make
852 * mem_cgroup_is_root() return false, then just run memcg slab
853 * shrink, but skip global shrink. This may result in premature
854 * oom.
855 */
856 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 857 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 858
e830c63a 859 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 860 goto out;
1da177e4
LT
861
862 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
863 struct shrink_control sc = {
864 .gfp_mask = gfp_mask,
865 .nid = nid,
cb731d6c 866 .memcg = memcg,
6b4f7799 867 };
ec97097b 868
9b996468
KT
869 ret = do_shrink_slab(&sc, shrinker, priority);
870 if (ret == SHRINK_EMPTY)
871 ret = 0;
872 freed += ret;
e496612c
MK
873 /*
874 * Bail out if someone want to register a new shrinker to
55b65a57 875 * prevent the registration from being stalled for long periods
e496612c
MK
876 * by parallel ongoing shrinking.
877 */
878 if (rwsem_is_contended(&shrinker_rwsem)) {
879 freed = freed ? : 1;
880 break;
881 }
1da177e4 882 }
6b4f7799 883
1da177e4 884 up_read(&shrinker_rwsem);
f06590bd
MK
885out:
886 cond_resched();
24f7c6b9 887 return freed;
1da177e4
LT
888}
889
cb731d6c
VD
890void drop_slab_node(int nid)
891{
892 unsigned long freed;
893
894 do {
895 struct mem_cgroup *memcg = NULL;
896
069c411d
CZ
897 if (fatal_signal_pending(current))
898 return;
899
cb731d6c 900 freed = 0;
aeed1d32 901 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 902 do {
9092c71b 903 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c
VD
904 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
905 } while (freed > 10);
906}
907
908void drop_slab(void)
909{
910 int nid;
911
912 for_each_online_node(nid)
913 drop_slab_node(nid);
914}
915
1da177e4
LT
916static inline int is_page_cache_freeable(struct page *page)
917{
ceddc3a5
JW
918 /*
919 * A freeable page cache page is referenced only by the caller
67891fff
MW
920 * that isolated the page, the page cache and optional buffer
921 * heads at page->private.
ceddc3a5 922 */
3efe62e4 923 int page_cache_pins = thp_nr_pages(page);
67891fff 924 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
1da177e4
LT
925}
926
cb16556d 927static int may_write_to_inode(struct inode *inode)
1da177e4 928{
930d9152 929 if (current->flags & PF_SWAPWRITE)
1da177e4 930 return 1;
703c2708 931 if (!inode_write_congested(inode))
1da177e4 932 return 1;
703c2708 933 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
934 return 1;
935 return 0;
936}
937
938/*
939 * We detected a synchronous write error writing a page out. Probably
940 * -ENOSPC. We need to propagate that into the address_space for a subsequent
941 * fsync(), msync() or close().
942 *
943 * The tricky part is that after writepage we cannot touch the mapping: nothing
944 * prevents it from being freed up. But we have a ref on the page and once
945 * that page is locked, the mapping is pinned.
946 *
947 * We're allowed to run sleeping lock_page() here because we know the caller has
948 * __GFP_FS.
949 */
950static void handle_write_error(struct address_space *mapping,
951 struct page *page, int error)
952{
7eaceacc 953 lock_page(page);
3e9f45bd
GC
954 if (page_mapping(page) == mapping)
955 mapping_set_error(mapping, error);
1da177e4
LT
956 unlock_page(page);
957}
958
04e62a29
CL
959/* possible outcome of pageout() */
960typedef enum {
961 /* failed to write page out, page is locked */
962 PAGE_KEEP,
963 /* move page to the active list, page is locked */
964 PAGE_ACTIVATE,
965 /* page has been sent to the disk successfully, page is unlocked */
966 PAGE_SUCCESS,
967 /* page is clean and locked */
968 PAGE_CLEAN,
969} pageout_t;
970
1da177e4 971/*
1742f19f
AM
972 * pageout is called by shrink_page_list() for each dirty page.
973 * Calls ->writepage().
1da177e4 974 */
cb16556d 975static pageout_t pageout(struct page *page, struct address_space *mapping)
1da177e4
LT
976{
977 /*
978 * If the page is dirty, only perform writeback if that write
979 * will be non-blocking. To prevent this allocation from being
980 * stalled by pagecache activity. But note that there may be
981 * stalls if we need to run get_block(). We could test
982 * PagePrivate for that.
983 *
8174202b 984 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
985 * this page's queue, we can perform writeback even if that
986 * will block.
987 *
988 * If the page is swapcache, write it back even if that would
989 * block, for some throttling. This happens by accident, because
990 * swap_backing_dev_info is bust: it doesn't reflect the
991 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
992 */
993 if (!is_page_cache_freeable(page))
994 return PAGE_KEEP;
995 if (!mapping) {
996 /*
997 * Some data journaling orphaned pages can have
998 * page->mapping == NULL while being dirty with clean buffers.
999 */
266cf658 1000 if (page_has_private(page)) {
1da177e4
LT
1001 if (try_to_free_buffers(page)) {
1002 ClearPageDirty(page);
b1de0d13 1003 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
1004 return PAGE_CLEAN;
1005 }
1006 }
1007 return PAGE_KEEP;
1008 }
1009 if (mapping->a_ops->writepage == NULL)
1010 return PAGE_ACTIVATE;
cb16556d 1011 if (!may_write_to_inode(mapping->host))
1da177e4
LT
1012 return PAGE_KEEP;
1013
1014 if (clear_page_dirty_for_io(page)) {
1015 int res;
1016 struct writeback_control wbc = {
1017 .sync_mode = WB_SYNC_NONE,
1018 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
1019 .range_start = 0,
1020 .range_end = LLONG_MAX,
1da177e4
LT
1021 .for_reclaim = 1,
1022 };
1023
1024 SetPageReclaim(page);
1025 res = mapping->a_ops->writepage(page, &wbc);
1026 if (res < 0)
1027 handle_write_error(mapping, page, res);
994fc28c 1028 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
1029 ClearPageReclaim(page);
1030 return PAGE_ACTIVATE;
1031 }
c661b078 1032
1da177e4
LT
1033 if (!PageWriteback(page)) {
1034 /* synchronous write or broken a_ops? */
1035 ClearPageReclaim(page);
1036 }
3aa23851 1037 trace_mm_vmscan_writepage(page);
c4a25635 1038 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
1039 return PAGE_SUCCESS;
1040 }
1041
1042 return PAGE_CLEAN;
1043}
1044
a649fd92 1045/*
e286781d
NP
1046 * Same as remove_mapping, but if the page is removed from the mapping, it
1047 * gets returned with a refcount of 0.
a649fd92 1048 */
a528910e 1049static int __remove_mapping(struct address_space *mapping, struct page *page,
b910718a 1050 bool reclaimed, struct mem_cgroup *target_memcg)
49d2e9cc 1051{
c4843a75 1052 unsigned long flags;
bd4c82c2 1053 int refcount;
aae466b0 1054 void *shadow = NULL;
c4843a75 1055
28e4d965
NP
1056 BUG_ON(!PageLocked(page));
1057 BUG_ON(mapping != page_mapping(page));
49d2e9cc 1058
b93b0163 1059 xa_lock_irqsave(&mapping->i_pages, flags);
49d2e9cc 1060 /*
0fd0e6b0
NP
1061 * The non racy check for a busy page.
1062 *
1063 * Must be careful with the order of the tests. When someone has
1064 * a ref to the page, it may be possible that they dirty it then
1065 * drop the reference. So if PageDirty is tested before page_count
1066 * here, then the following race may occur:
1067 *
1068 * get_user_pages(&page);
1069 * [user mapping goes away]
1070 * write_to(page);
1071 * !PageDirty(page) [good]
1072 * SetPageDirty(page);
1073 * put_page(page);
1074 * !page_count(page) [good, discard it]
1075 *
1076 * [oops, our write_to data is lost]
1077 *
1078 * Reversing the order of the tests ensures such a situation cannot
1079 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 1080 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
1081 *
1082 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 1083 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 1084 */
906d278d 1085 refcount = 1 + compound_nr(page);
bd4c82c2 1086 if (!page_ref_freeze(page, refcount))
49d2e9cc 1087 goto cannot_free;
1c4c3b99 1088 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
e286781d 1089 if (unlikely(PageDirty(page))) {
bd4c82c2 1090 page_ref_unfreeze(page, refcount);
49d2e9cc 1091 goto cannot_free;
e286781d 1092 }
49d2e9cc
CL
1093
1094 if (PageSwapCache(page)) {
1095 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 1096 mem_cgroup_swapout(page, swap);
aae466b0
JK
1097 if (reclaimed && !mapping_exiting(mapping))
1098 shadow = workingset_eviction(page, target_memcg);
1099 __delete_from_swap_cache(page, swap, shadow);
b93b0163 1100 xa_unlock_irqrestore(&mapping->i_pages, flags);
75f6d6d2 1101 put_swap_page(page, swap);
e286781d 1102 } else {
6072d13c
LT
1103 void (*freepage)(struct page *);
1104
1105 freepage = mapping->a_ops->freepage;
a528910e
JW
1106 /*
1107 * Remember a shadow entry for reclaimed file cache in
1108 * order to detect refaults, thus thrashing, later on.
1109 *
1110 * But don't store shadows in an address space that is
238c3046 1111 * already exiting. This is not just an optimization,
a528910e
JW
1112 * inode reclaim needs to empty out the radix tree or
1113 * the nodes are lost. Don't plant shadows behind its
1114 * back.
f9fe48be
RZ
1115 *
1116 * We also don't store shadows for DAX mappings because the
1117 * only page cache pages found in these are zero pages
1118 * covering holes, and because we don't want to mix DAX
1119 * exceptional entries and shadow exceptional entries in the
b93b0163 1120 * same address_space.
a528910e 1121 */
9de4f22a 1122 if (reclaimed && page_is_file_lru(page) &&
f9fe48be 1123 !mapping_exiting(mapping) && !dax_mapping(mapping))
b910718a 1124 shadow = workingset_eviction(page, target_memcg);
62cccb8c 1125 __delete_from_page_cache(page, shadow);
b93b0163 1126 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c
LT
1127
1128 if (freepage != NULL)
1129 freepage(page);
49d2e9cc
CL
1130 }
1131
49d2e9cc
CL
1132 return 1;
1133
1134cannot_free:
b93b0163 1135 xa_unlock_irqrestore(&mapping->i_pages, flags);
49d2e9cc
CL
1136 return 0;
1137}
1138
e286781d
NP
1139/*
1140 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
1141 * someone else has a ref on the page, abort and return 0. If it was
1142 * successfully detached, return 1. Assumes the caller has a single ref on
1143 * this page.
1144 */
1145int remove_mapping(struct address_space *mapping, struct page *page)
1146{
b910718a 1147 if (__remove_mapping(mapping, page, false, NULL)) {
e286781d
NP
1148 /*
1149 * Unfreezing the refcount with 1 rather than 2 effectively
1150 * drops the pagecache ref for us without requiring another
1151 * atomic operation.
1152 */
fe896d18 1153 page_ref_unfreeze(page, 1);
e286781d
NP
1154 return 1;
1155 }
1156 return 0;
1157}
1158
894bc310
LS
1159/**
1160 * putback_lru_page - put previously isolated page onto appropriate LRU list
1161 * @page: page to be put back to appropriate lru list
1162 *
1163 * Add previously isolated @page to appropriate LRU list.
1164 * Page may still be unevictable for other reasons.
1165 *
1166 * lru_lock must not be held, interrupts must be enabled.
1167 */
894bc310
LS
1168void putback_lru_page(struct page *page)
1169{
9c4e6b1a 1170 lru_cache_add(page);
894bc310
LS
1171 put_page(page); /* drop ref from isolate */
1172}
1173
dfc8d636
JW
1174enum page_references {
1175 PAGEREF_RECLAIM,
1176 PAGEREF_RECLAIM_CLEAN,
64574746 1177 PAGEREF_KEEP,
dfc8d636
JW
1178 PAGEREF_ACTIVATE,
1179};
1180
1181static enum page_references page_check_references(struct page *page,
1182 struct scan_control *sc)
1183{
64574746 1184 int referenced_ptes, referenced_page;
dfc8d636 1185 unsigned long vm_flags;
dfc8d636 1186
c3ac9a8a
JW
1187 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1188 &vm_flags);
64574746 1189 referenced_page = TestClearPageReferenced(page);
dfc8d636 1190
dfc8d636
JW
1191 /*
1192 * Mlock lost the isolation race with us. Let try_to_unmap()
1193 * move the page to the unevictable list.
1194 */
1195 if (vm_flags & VM_LOCKED)
1196 return PAGEREF_RECLAIM;
1197
64574746 1198 if (referenced_ptes) {
64574746
JW
1199 /*
1200 * All mapped pages start out with page table
1201 * references from the instantiating fault, so we need
1202 * to look twice if a mapped file page is used more
1203 * than once.
1204 *
1205 * Mark it and spare it for another trip around the
1206 * inactive list. Another page table reference will
1207 * lead to its activation.
1208 *
1209 * Note: the mark is set for activated pages as well
1210 * so that recently deactivated but used pages are
1211 * quickly recovered.
1212 */
1213 SetPageReferenced(page);
1214
34dbc67a 1215 if (referenced_page || referenced_ptes > 1)
64574746
JW
1216 return PAGEREF_ACTIVATE;
1217
c909e993
KK
1218 /*
1219 * Activate file-backed executable pages after first usage.
1220 */
b518154e 1221 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
c909e993
KK
1222 return PAGEREF_ACTIVATE;
1223
64574746
JW
1224 return PAGEREF_KEEP;
1225 }
dfc8d636
JW
1226
1227 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 1228 if (referenced_page && !PageSwapBacked(page))
64574746
JW
1229 return PAGEREF_RECLAIM_CLEAN;
1230
1231 return PAGEREF_RECLAIM;
dfc8d636
JW
1232}
1233
e2be15f6
MG
1234/* Check if a page is dirty or under writeback */
1235static void page_check_dirty_writeback(struct page *page,
1236 bool *dirty, bool *writeback)
1237{
b4597226
MG
1238 struct address_space *mapping;
1239
e2be15f6
MG
1240 /*
1241 * Anonymous pages are not handled by flushers and must be written
1242 * from reclaim context. Do not stall reclaim based on them
1243 */
9de4f22a 1244 if (!page_is_file_lru(page) ||
802a3a92 1245 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
1246 *dirty = false;
1247 *writeback = false;
1248 return;
1249 }
1250
1251 /* By default assume that the page flags are accurate */
1252 *dirty = PageDirty(page);
1253 *writeback = PageWriteback(page);
b4597226
MG
1254
1255 /* Verify dirty/writeback state if the filesystem supports it */
1256 if (!page_has_private(page))
1257 return;
1258
1259 mapping = page_mapping(page);
1260 if (mapping && mapping->a_ops->is_dirty_writeback)
1261 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
1262}
1263
1da177e4 1264/*
1742f19f 1265 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1266 */
730ec8c0
MS
1267static unsigned int shrink_page_list(struct list_head *page_list,
1268 struct pglist_data *pgdat,
1269 struct scan_control *sc,
730ec8c0
MS
1270 struct reclaim_stat *stat,
1271 bool ignore_references)
1da177e4
LT
1272{
1273 LIST_HEAD(ret_pages);
abe4c3b5 1274 LIST_HEAD(free_pages);
730ec8c0
MS
1275 unsigned int nr_reclaimed = 0;
1276 unsigned int pgactivate = 0;
1da177e4 1277
060f005f 1278 memset(stat, 0, sizeof(*stat));
1da177e4
LT
1279 cond_resched();
1280
1da177e4
LT
1281 while (!list_empty(page_list)) {
1282 struct address_space *mapping;
1283 struct page *page;
8940b34a 1284 enum page_references references = PAGEREF_RECLAIM;
4b793062 1285 bool dirty, writeback, may_enter_fs;
98879b3b 1286 unsigned int nr_pages;
1da177e4
LT
1287
1288 cond_resched();
1289
1290 page = lru_to_page(page_list);
1291 list_del(&page->lru);
1292
529ae9aa 1293 if (!trylock_page(page))
1da177e4
LT
1294 goto keep;
1295
309381fe 1296 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4 1297
d8c6546b 1298 nr_pages = compound_nr(page);
98879b3b
YS
1299
1300 /* Account the number of base pages even though THP */
1301 sc->nr_scanned += nr_pages;
80e43426 1302
39b5f29a 1303 if (unlikely(!page_evictable(page)))
ad6b6704 1304 goto activate_locked;
894bc310 1305
a6dc60f8 1306 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1307 goto keep_locked;
1308
c661b078
AW
1309 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1310 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1311
e2be15f6 1312 /*
894befec 1313 * The number of dirty pages determines if a node is marked
e2be15f6
MG
1314 * reclaim_congested which affects wait_iff_congested. kswapd
1315 * will stall and start writing pages if the tail of the LRU
1316 * is all dirty unqueued pages.
1317 */
1318 page_check_dirty_writeback(page, &dirty, &writeback);
1319 if (dirty || writeback)
060f005f 1320 stat->nr_dirty++;
e2be15f6
MG
1321
1322 if (dirty && !writeback)
060f005f 1323 stat->nr_unqueued_dirty++;
e2be15f6 1324
d04e8acd
MG
1325 /*
1326 * Treat this page as congested if the underlying BDI is or if
1327 * pages are cycling through the LRU so quickly that the
1328 * pages marked for immediate reclaim are making it to the
1329 * end of the LRU a second time.
1330 */
e2be15f6 1331 mapping = page_mapping(page);
1da58ee2 1332 if (((dirty || writeback) && mapping &&
703c2708 1333 inode_write_congested(mapping->host)) ||
d04e8acd 1334 (writeback && PageReclaim(page)))
060f005f 1335 stat->nr_congested++;
e2be15f6 1336
283aba9f
MG
1337 /*
1338 * If a page at the tail of the LRU is under writeback, there
1339 * are three cases to consider.
1340 *
1341 * 1) If reclaim is encountering an excessive number of pages
1342 * under writeback and this page is both under writeback and
1343 * PageReclaim then it indicates that pages are being queued
1344 * for IO but are being recycled through the LRU before the
1345 * IO can complete. Waiting on the page itself risks an
1346 * indefinite stall if it is impossible to writeback the
1347 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1348 * note that the LRU is being scanned too quickly and the
1349 * caller can stall after page list has been processed.
283aba9f 1350 *
97c9341f 1351 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1352 * not marked for immediate reclaim, or the caller does not
1353 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1354 * not to fs). In this case mark the page for immediate
97c9341f 1355 * reclaim and continue scanning.
283aba9f 1356 *
ecf5fc6e
MH
1357 * Require may_enter_fs because we would wait on fs, which
1358 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1359 * enter reclaim, and deadlock if it waits on a page for
1360 * which it is needed to do the write (loop masks off
1361 * __GFP_IO|__GFP_FS for this reason); but more thought
1362 * would probably show more reasons.
1363 *
7fadc820 1364 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1365 * PageReclaim. memcg does not have any dirty pages
1366 * throttling so we could easily OOM just because too many
1367 * pages are in writeback and there is nothing else to
1368 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1369 *
1370 * In cases 1) and 2) we activate the pages to get them out of
1371 * the way while we continue scanning for clean pages on the
1372 * inactive list and refilling from the active list. The
1373 * observation here is that waiting for disk writes is more
1374 * expensive than potentially causing reloads down the line.
1375 * Since they're marked for immediate reclaim, they won't put
1376 * memory pressure on the cache working set any longer than it
1377 * takes to write them to disk.
283aba9f 1378 */
c661b078 1379 if (PageWriteback(page)) {
283aba9f
MG
1380 /* Case 1 above */
1381 if (current_is_kswapd() &&
1382 PageReclaim(page) &&
599d0c95 1383 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
060f005f 1384 stat->nr_immediate++;
c55e8d03 1385 goto activate_locked;
283aba9f
MG
1386
1387 /* Case 2 above */
b5ead35e 1388 } else if (writeback_throttling_sane(sc) ||
ecf5fc6e 1389 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1390 /*
1391 * This is slightly racy - end_page_writeback()
1392 * might have just cleared PageReclaim, then
1393 * setting PageReclaim here end up interpreted
1394 * as PageReadahead - but that does not matter
1395 * enough to care. What we do want is for this
1396 * page to have PageReclaim set next time memcg
1397 * reclaim reaches the tests above, so it will
1398 * then wait_on_page_writeback() to avoid OOM;
1399 * and it's also appropriate in global reclaim.
1400 */
1401 SetPageReclaim(page);
060f005f 1402 stat->nr_writeback++;
c55e8d03 1403 goto activate_locked;
283aba9f
MG
1404
1405 /* Case 3 above */
1406 } else {
7fadc820 1407 unlock_page(page);
283aba9f 1408 wait_on_page_writeback(page);
7fadc820
HD
1409 /* then go back and try same page again */
1410 list_add_tail(&page->lru, page_list);
1411 continue;
e62e384e 1412 }
c661b078 1413 }
1da177e4 1414
8940b34a 1415 if (!ignore_references)
02c6de8d
MK
1416 references = page_check_references(page, sc);
1417
dfc8d636
JW
1418 switch (references) {
1419 case PAGEREF_ACTIVATE:
1da177e4 1420 goto activate_locked;
64574746 1421 case PAGEREF_KEEP:
98879b3b 1422 stat->nr_ref_keep += nr_pages;
64574746 1423 goto keep_locked;
dfc8d636
JW
1424 case PAGEREF_RECLAIM:
1425 case PAGEREF_RECLAIM_CLEAN:
1426 ; /* try to reclaim the page below */
1427 }
1da177e4 1428
1da177e4
LT
1429 /*
1430 * Anonymous process memory has backing store?
1431 * Try to allocate it some swap space here.
802a3a92 1432 * Lazyfree page could be freed directly
1da177e4 1433 */
bd4c82c2
HY
1434 if (PageAnon(page) && PageSwapBacked(page)) {
1435 if (!PageSwapCache(page)) {
1436 if (!(sc->gfp_mask & __GFP_IO))
1437 goto keep_locked;
feb889fb
LT
1438 if (page_maybe_dma_pinned(page))
1439 goto keep_locked;
bd4c82c2
HY
1440 if (PageTransHuge(page)) {
1441 /* cannot split THP, skip it */
1442 if (!can_split_huge_page(page, NULL))
1443 goto activate_locked;
1444 /*
1445 * Split pages without a PMD map right
1446 * away. Chances are some or all of the
1447 * tail pages can be freed without IO.
1448 */
1449 if (!compound_mapcount(page) &&
1450 split_huge_page_to_list(page,
1451 page_list))
1452 goto activate_locked;
1453 }
1454 if (!add_to_swap(page)) {
1455 if (!PageTransHuge(page))
98879b3b 1456 goto activate_locked_split;
bd4c82c2
HY
1457 /* Fallback to swap normal pages */
1458 if (split_huge_page_to_list(page,
1459 page_list))
1460 goto activate_locked;
fe490cc0
HY
1461#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1462 count_vm_event(THP_SWPOUT_FALLBACK);
1463#endif
bd4c82c2 1464 if (!add_to_swap(page))
98879b3b 1465 goto activate_locked_split;
bd4c82c2 1466 }
0f074658 1467
4b793062 1468 may_enter_fs = true;
1da177e4 1469
bd4c82c2
HY
1470 /* Adding to swap updated mapping */
1471 mapping = page_mapping(page);
1472 }
7751b2da
KS
1473 } else if (unlikely(PageTransHuge(page))) {
1474 /* Split file THP */
1475 if (split_huge_page_to_list(page, page_list))
1476 goto keep_locked;
e2be15f6 1477 }
1da177e4 1478
98879b3b
YS
1479 /*
1480 * THP may get split above, need minus tail pages and update
1481 * nr_pages to avoid accounting tail pages twice.
1482 *
1483 * The tail pages that are added into swap cache successfully
1484 * reach here.
1485 */
1486 if ((nr_pages > 1) && !PageTransHuge(page)) {
1487 sc->nr_scanned -= (nr_pages - 1);
1488 nr_pages = 1;
1489 }
1490
1da177e4
LT
1491 /*
1492 * The page is mapped into the page tables of one or more
1493 * processes. Try to unmap it here.
1494 */
802a3a92 1495 if (page_mapped(page)) {
013339df 1496 enum ttu_flags flags = TTU_BATCH_FLUSH;
1f318a9b 1497 bool was_swapbacked = PageSwapBacked(page);
bd4c82c2
HY
1498
1499 if (unlikely(PageTransHuge(page)))
1500 flags |= TTU_SPLIT_HUGE_PMD;
1f318a9b 1501
bd4c82c2 1502 if (!try_to_unmap(page, flags)) {
98879b3b 1503 stat->nr_unmap_fail += nr_pages;
1f318a9b
JK
1504 if (!was_swapbacked && PageSwapBacked(page))
1505 stat->nr_lazyfree_fail += nr_pages;
1da177e4 1506 goto activate_locked;
1da177e4
LT
1507 }
1508 }
1509
1510 if (PageDirty(page)) {
ee72886d 1511 /*
4eda4823
JW
1512 * Only kswapd can writeback filesystem pages
1513 * to avoid risk of stack overflow. But avoid
1514 * injecting inefficient single-page IO into
1515 * flusher writeback as much as possible: only
1516 * write pages when we've encountered many
1517 * dirty pages, and when we've already scanned
1518 * the rest of the LRU for clean pages and see
1519 * the same dirty pages again (PageReclaim).
ee72886d 1520 */
9de4f22a 1521 if (page_is_file_lru(page) &&
4eda4823
JW
1522 (!current_is_kswapd() || !PageReclaim(page) ||
1523 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1524 /*
1525 * Immediately reclaim when written back.
1526 * Similar in principal to deactivate_page()
1527 * except we already have the page isolated
1528 * and know it's dirty
1529 */
c4a25635 1530 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1531 SetPageReclaim(page);
1532
c55e8d03 1533 goto activate_locked;
ee72886d
MG
1534 }
1535
dfc8d636 1536 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1537 goto keep_locked;
4dd4b920 1538 if (!may_enter_fs)
1da177e4 1539 goto keep_locked;
52a8363e 1540 if (!sc->may_writepage)
1da177e4
LT
1541 goto keep_locked;
1542
d950c947
MG
1543 /*
1544 * Page is dirty. Flush the TLB if a writable entry
1545 * potentially exists to avoid CPU writes after IO
1546 * starts and then write it out here.
1547 */
1548 try_to_unmap_flush_dirty();
cb16556d 1549 switch (pageout(page, mapping)) {
1da177e4
LT
1550 case PAGE_KEEP:
1551 goto keep_locked;
1552 case PAGE_ACTIVATE:
1553 goto activate_locked;
1554 case PAGE_SUCCESS:
6c357848 1555 stat->nr_pageout += thp_nr_pages(page);
96f8bf4f 1556
7d3579e8 1557 if (PageWriteback(page))
41ac1999 1558 goto keep;
7d3579e8 1559 if (PageDirty(page))
1da177e4 1560 goto keep;
7d3579e8 1561
1da177e4
LT
1562 /*
1563 * A synchronous write - probably a ramdisk. Go
1564 * ahead and try to reclaim the page.
1565 */
529ae9aa 1566 if (!trylock_page(page))
1da177e4
LT
1567 goto keep;
1568 if (PageDirty(page) || PageWriteback(page))
1569 goto keep_locked;
1570 mapping = page_mapping(page);
01359eb2 1571 fallthrough;
1da177e4
LT
1572 case PAGE_CLEAN:
1573 ; /* try to free the page below */
1574 }
1575 }
1576
1577 /*
1578 * If the page has buffers, try to free the buffer mappings
1579 * associated with this page. If we succeed we try to free
1580 * the page as well.
1581 *
1582 * We do this even if the page is PageDirty().
1583 * try_to_release_page() does not perform I/O, but it is
1584 * possible for a page to have PageDirty set, but it is actually
1585 * clean (all its buffers are clean). This happens if the
1586 * buffers were written out directly, with submit_bh(). ext3
894bc310 1587 * will do this, as well as the blockdev mapping.
1da177e4
LT
1588 * try_to_release_page() will discover that cleanness and will
1589 * drop the buffers and mark the page clean - it can be freed.
1590 *
1591 * Rarely, pages can have buffers and no ->mapping. These are
1592 * the pages which were not successfully invalidated in
d12b8951 1593 * truncate_cleanup_page(). We try to drop those buffers here
1da177e4
LT
1594 * and if that worked, and the page is no longer mapped into
1595 * process address space (page_count == 1) it can be freed.
1596 * Otherwise, leave the page on the LRU so it is swappable.
1597 */
266cf658 1598 if (page_has_private(page)) {
1da177e4
LT
1599 if (!try_to_release_page(page, sc->gfp_mask))
1600 goto activate_locked;
e286781d
NP
1601 if (!mapping && page_count(page) == 1) {
1602 unlock_page(page);
1603 if (put_page_testzero(page))
1604 goto free_it;
1605 else {
1606 /*
1607 * rare race with speculative reference.
1608 * the speculative reference will free
1609 * this page shortly, so we may
1610 * increment nr_reclaimed here (and
1611 * leave it off the LRU).
1612 */
1613 nr_reclaimed++;
1614 continue;
1615 }
1616 }
1da177e4
LT
1617 }
1618
802a3a92
SL
1619 if (PageAnon(page) && !PageSwapBacked(page)) {
1620 /* follow __remove_mapping for reference */
1621 if (!page_ref_freeze(page, 1))
1622 goto keep_locked;
1623 if (PageDirty(page)) {
1624 page_ref_unfreeze(page, 1);
1625 goto keep_locked;
1626 }
1da177e4 1627
802a3a92 1628 count_vm_event(PGLAZYFREED);
2262185c 1629 count_memcg_page_event(page, PGLAZYFREED);
b910718a
JW
1630 } else if (!mapping || !__remove_mapping(mapping, page, true,
1631 sc->target_mem_cgroup))
802a3a92 1632 goto keep_locked;
9a1ea439
HD
1633
1634 unlock_page(page);
e286781d 1635free_it:
98879b3b
YS
1636 /*
1637 * THP may get swapped out in a whole, need account
1638 * all base pages.
1639 */
1640 nr_reclaimed += nr_pages;
abe4c3b5
MG
1641
1642 /*
1643 * Is there need to periodically free_page_list? It would
1644 * appear not as the counts should be low
1645 */
7ae88534 1646 if (unlikely(PageTransHuge(page)))
ff45fc3c 1647 destroy_compound_page(page);
7ae88534 1648 else
bd4c82c2 1649 list_add(&page->lru, &free_pages);
1da177e4
LT
1650 continue;
1651
98879b3b
YS
1652activate_locked_split:
1653 /*
1654 * The tail pages that are failed to add into swap cache
1655 * reach here. Fixup nr_scanned and nr_pages.
1656 */
1657 if (nr_pages > 1) {
1658 sc->nr_scanned -= (nr_pages - 1);
1659 nr_pages = 1;
1660 }
1da177e4 1661activate_locked:
68a22394 1662 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1663 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1664 PageMlocked(page)))
a2c43eed 1665 try_to_free_swap(page);
309381fe 1666 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704 1667 if (!PageMlocked(page)) {
9de4f22a 1668 int type = page_is_file_lru(page);
ad6b6704 1669 SetPageActive(page);
98879b3b 1670 stat->nr_activate[type] += nr_pages;
2262185c 1671 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1672 }
1da177e4
LT
1673keep_locked:
1674 unlock_page(page);
1675keep:
1676 list_add(&page->lru, &ret_pages);
309381fe 1677 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1678 }
abe4c3b5 1679
98879b3b
YS
1680 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1681
747db954 1682 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1683 try_to_unmap_flush();
2d4894b5 1684 free_unref_page_list(&free_pages);
abe4c3b5 1685
1da177e4 1686 list_splice(&ret_pages, page_list);
886cf190 1687 count_vm_events(PGACTIVATE, pgactivate);
060f005f 1688
05ff5137 1689 return nr_reclaimed;
1da177e4
LT
1690}
1691
730ec8c0 1692unsigned int reclaim_clean_pages_from_list(struct zone *zone,
02c6de8d
MK
1693 struct list_head *page_list)
1694{
1695 struct scan_control sc = {
1696 .gfp_mask = GFP_KERNEL,
1697 .priority = DEF_PRIORITY,
1698 .may_unmap = 1,
1699 };
1f318a9b 1700 struct reclaim_stat stat;
730ec8c0 1701 unsigned int nr_reclaimed;
02c6de8d
MK
1702 struct page *page, *next;
1703 LIST_HEAD(clean_pages);
1704
1705 list_for_each_entry_safe(page, next, page_list, lru) {
ae37c7ff
OS
1706 if (!PageHuge(page) && page_is_file_lru(page) &&
1707 !PageDirty(page) && !__PageMovable(page) &&
1708 !PageUnevictable(page)) {
02c6de8d
MK
1709 ClearPageActive(page);
1710 list_move(&page->lru, &clean_pages);
1711 }
1712 }
1713
1f318a9b 1714 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
013339df 1715 &stat, true);
02c6de8d 1716 list_splice(&clean_pages, page_list);
2da9f630
NP
1717 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1718 -(long)nr_reclaimed);
1f318a9b
JK
1719 /*
1720 * Since lazyfree pages are isolated from file LRU from the beginning,
1721 * they will rotate back to anonymous LRU in the end if it failed to
1722 * discard so isolated count will be mismatched.
1723 * Compensate the isolated count for both LRU lists.
1724 */
1725 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1726 stat.nr_lazyfree_fail);
1727 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2da9f630 1728 -(long)stat.nr_lazyfree_fail);
1f318a9b 1729 return nr_reclaimed;
02c6de8d
MK
1730}
1731
5ad333eb
AW
1732/*
1733 * Attempt to remove the specified page from its LRU. Only take this page
1734 * if it is of the appropriate PageActive status. Pages which are being
1735 * freed elsewhere are also ignored.
1736 *
1737 * page: page to consider
1738 * mode: one of the LRU isolation modes defined above
1739 *
c2135f7c 1740 * returns true on success, false on failure.
5ad333eb 1741 */
c2135f7c 1742bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
5ad333eb 1743{
5ad333eb
AW
1744 /* Only take pages on the LRU. */
1745 if (!PageLRU(page))
c2135f7c 1746 return false;
5ad333eb 1747
e46a2879
MK
1748 /* Compaction should not handle unevictable pages but CMA can do so */
1749 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
c2135f7c 1750 return false;
894bc310 1751
c8244935
MG
1752 /*
1753 * To minimise LRU disruption, the caller can indicate that it only
1754 * wants to isolate pages it will be able to operate on without
1755 * blocking - clean pages for the most part.
1756 *
c8244935
MG
1757 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1758 * that it is possible to migrate without blocking
1759 */
1276ad68 1760 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1761 /* All the caller can do on PageWriteback is block */
1762 if (PageWriteback(page))
c2135f7c 1763 return false;
c8244935
MG
1764
1765 if (PageDirty(page)) {
1766 struct address_space *mapping;
69d763fc 1767 bool migrate_dirty;
c8244935 1768
c8244935
MG
1769 /*
1770 * Only pages without mappings or that have a
1771 * ->migratepage callback are possible to migrate
69d763fc
MG
1772 * without blocking. However, we can be racing with
1773 * truncation so it's necessary to lock the page
1774 * to stabilise the mapping as truncation holds
1775 * the page lock until after the page is removed
1776 * from the page cache.
c8244935 1777 */
69d763fc 1778 if (!trylock_page(page))
c2135f7c 1779 return false;
69d763fc 1780
c8244935 1781 mapping = page_mapping(page);
145e1a71 1782 migrate_dirty = !mapping || mapping->a_ops->migratepage;
69d763fc
MG
1783 unlock_page(page);
1784 if (!migrate_dirty)
c2135f7c 1785 return false;
c8244935
MG
1786 }
1787 }
39deaf85 1788
f80c0673 1789 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
c2135f7c 1790 return false;
f80c0673 1791
c2135f7c 1792 return true;
5ad333eb
AW
1793}
1794
7ee36a14
MG
1795/*
1796 * Update LRU sizes after isolating pages. The LRU size updates must
55b65a57 1797 * be complete before mem_cgroup_update_lru_size due to a sanity check.
7ee36a14
MG
1798 */
1799static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1800 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1801{
7ee36a14
MG
1802 int zid;
1803
7ee36a14
MG
1804 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1805 if (!nr_zone_taken[zid])
1806 continue;
1807
a892cb6b 1808 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
b4536f0c
MH
1809 }
1810
7ee36a14
MG
1811}
1812
f4b7e272 1813/**
15b44736
HD
1814 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1815 *
1816 * lruvec->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1817 * shrink the lists perform better by taking out a batch of pages
1818 * and working on them outside the LRU lock.
1819 *
1820 * For pagecache intensive workloads, this function is the hottest
1821 * spot in the kernel (apart from copy_*_user functions).
1822 *
15b44736 1823 * Lru_lock must be held before calling this function.
1da177e4 1824 *
791b48b6 1825 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1826 * @lruvec: The LRU vector to pull pages from.
1da177e4 1827 * @dst: The temp list to put pages on to.
f626012d 1828 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1829 * @sc: The scan_control struct for this reclaim session
3cb99451 1830 * @lru: LRU list id for isolating
1da177e4
LT
1831 *
1832 * returns how many pages were moved onto *@dst.
1833 */
69e05944 1834static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1835 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1836 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 1837 enum lru_list lru)
1da177e4 1838{
75b00af7 1839 struct list_head *src = &lruvec->lists[lru];
69e05944 1840 unsigned long nr_taken = 0;
599d0c95 1841 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1842 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1843 unsigned long skipped = 0;
791b48b6 1844 unsigned long scan, total_scan, nr_pages;
b2e18757 1845 LIST_HEAD(pages_skipped);
a9e7c39f 1846 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1da177e4 1847
98879b3b 1848 total_scan = 0;
791b48b6 1849 scan = 0;
98879b3b 1850 while (scan < nr_to_scan && !list_empty(src)) {
5ad333eb 1851 struct page *page;
5ad333eb 1852
1da177e4
LT
1853 page = lru_to_page(src);
1854 prefetchw_prev_lru_page(page, src, flags);
1855
d8c6546b 1856 nr_pages = compound_nr(page);
98879b3b
YS
1857 total_scan += nr_pages;
1858
b2e18757
MG
1859 if (page_zonenum(page) > sc->reclaim_idx) {
1860 list_move(&page->lru, &pages_skipped);
98879b3b 1861 nr_skipped[page_zonenum(page)] += nr_pages;
b2e18757
MG
1862 continue;
1863 }
1864
791b48b6
MK
1865 /*
1866 * Do not count skipped pages because that makes the function
1867 * return with no isolated pages if the LRU mostly contains
1868 * ineligible pages. This causes the VM to not reclaim any
1869 * pages, triggering a premature OOM.
98879b3b
YS
1870 *
1871 * Account all tail pages of THP. This would not cause
1872 * premature OOM since __isolate_lru_page() returns -EBUSY
1873 * only when the page is being freed somewhere else.
791b48b6 1874 */
98879b3b 1875 scan += nr_pages;
c2135f7c
AS
1876 if (!__isolate_lru_page_prepare(page, mode)) {
1877 /* It is being freed elsewhere */
1878 list_move(&page->lru, src);
1879 continue;
1880 }
1881 /*
1882 * Be careful not to clear PageLRU until after we're
1883 * sure the page is not being freed elsewhere -- the
1884 * page release code relies on it.
1885 */
1886 if (unlikely(!get_page_unless_zero(page))) {
1887 list_move(&page->lru, src);
1888 continue;
1889 }
5ad333eb 1890
c2135f7c
AS
1891 if (!TestClearPageLRU(page)) {
1892 /* Another thread is already isolating this page */
1893 put_page(page);
5ad333eb 1894 list_move(&page->lru, src);
c2135f7c 1895 continue;
5ad333eb 1896 }
c2135f7c
AS
1897
1898 nr_taken += nr_pages;
1899 nr_zone_taken[page_zonenum(page)] += nr_pages;
1900 list_move(&page->lru, dst);
1da177e4
LT
1901 }
1902
b2e18757
MG
1903 /*
1904 * Splice any skipped pages to the start of the LRU list. Note that
1905 * this disrupts the LRU order when reclaiming for lower zones but
1906 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1907 * scanning would soon rescan the same pages to skip and put the
1908 * system at risk of premature OOM.
1909 */
7cc30fcf
MG
1910 if (!list_empty(&pages_skipped)) {
1911 int zid;
1912
3db65812 1913 list_splice(&pages_skipped, src);
7cc30fcf
MG
1914 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1915 if (!nr_skipped[zid])
1916 continue;
1917
1918 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1919 skipped += nr_skipped[zid];
7cc30fcf
MG
1920 }
1921 }
791b48b6 1922 *nr_scanned = total_scan;
1265e3a6 1923 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 1924 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 1925 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1926 return nr_taken;
1927}
1928
62695a84
NP
1929/**
1930 * isolate_lru_page - tries to isolate a page from its LRU list
1931 * @page: page to isolate from its LRU list
1932 *
1933 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1934 * vmstat statistic corresponding to whatever LRU list the page was on.
1935 *
1936 * Returns 0 if the page was removed from an LRU list.
1937 * Returns -EBUSY if the page was not on an LRU list.
1938 *
1939 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1940 * the active list, it will have PageActive set. If it was found on
1941 * the unevictable list, it will have the PageUnevictable bit set. That flag
1942 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1943 *
1944 * The vmstat statistic corresponding to the list on which the page was
1945 * found will be decremented.
1946 *
1947 * Restrictions:
a5d09bed 1948 *
62695a84 1949 * (1) Must be called with an elevated refcount on the page. This is a
01c4776b 1950 * fundamental difference from isolate_lru_pages (which is called
62695a84
NP
1951 * without a stable reference).
1952 * (2) the lru_lock must not be held.
1953 * (3) interrupts must be enabled.
1954 */
1955int isolate_lru_page(struct page *page)
1956{
1957 int ret = -EBUSY;
1958
309381fe 1959 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1960 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1961
d25b5bd8 1962 if (TestClearPageLRU(page)) {
fa9add64 1963 struct lruvec *lruvec;
62695a84 1964
d25b5bd8 1965 get_page(page);
6168d0da 1966 lruvec = lock_page_lruvec_irq(page);
46ae6b2c 1967 del_page_from_lru_list(page, lruvec);
6168d0da 1968 unlock_page_lruvec_irq(lruvec);
d25b5bd8 1969 ret = 0;
62695a84 1970 }
d25b5bd8 1971
62695a84
NP
1972 return ret;
1973}
1974
35cd7815 1975/*
d37dd5dc 1976 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
178821b8 1977 * then get rescheduled. When there are massive number of tasks doing page
d37dd5dc
FW
1978 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1979 * the LRU list will go small and be scanned faster than necessary, leading to
1980 * unnecessary swapping, thrashing and OOM.
35cd7815 1981 */
599d0c95 1982static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1983 struct scan_control *sc)
1984{
1985 unsigned long inactive, isolated;
1986
1987 if (current_is_kswapd())
1988 return 0;
1989
b5ead35e 1990 if (!writeback_throttling_sane(sc))
35cd7815
RR
1991 return 0;
1992
1993 if (file) {
599d0c95
MG
1994 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1995 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1996 } else {
599d0c95
MG
1997 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1998 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1999 }
2000
3cf23841
FW
2001 /*
2002 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2003 * won't get blocked by normal direct-reclaimers, forming a circular
2004 * deadlock.
2005 */
d0164adc 2006 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
2007 inactive >>= 3;
2008
35cd7815
RR
2009 return isolated > inactive;
2010}
2011
a222f341 2012/*
15b44736
HD
2013 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2014 * On return, @list is reused as a list of pages to be freed by the caller.
a222f341
KT
2015 *
2016 * Returns the number of pages moved to the given lruvec.
2017 */
a222f341
KT
2018static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
2019 struct list_head *list)
66635629 2020{
a222f341 2021 int nr_pages, nr_moved = 0;
3f79768f 2022 LIST_HEAD(pages_to_free);
a222f341 2023 struct page *page;
66635629 2024
a222f341
KT
2025 while (!list_empty(list)) {
2026 page = lru_to_page(list);
309381fe 2027 VM_BUG_ON_PAGE(PageLRU(page), page);
3d06afab 2028 list_del(&page->lru);
39b5f29a 2029 if (unlikely(!page_evictable(page))) {
6168d0da 2030 spin_unlock_irq(&lruvec->lru_lock);
66635629 2031 putback_lru_page(page);
6168d0da 2032 spin_lock_irq(&lruvec->lru_lock);
66635629
MG
2033 continue;
2034 }
fa9add64 2035
3d06afab
AS
2036 /*
2037 * The SetPageLRU needs to be kept here for list integrity.
2038 * Otherwise:
2039 * #0 move_pages_to_lru #1 release_pages
2040 * if !put_page_testzero
2041 * if (put_page_testzero())
2042 * !PageLRU //skip lru_lock
2043 * SetPageLRU()
2044 * list_add(&page->lru,)
2045 * list_add(&page->lru,)
2046 */
7a608572 2047 SetPageLRU(page);
a222f341 2048
3d06afab 2049 if (unlikely(put_page_testzero(page))) {
87560179 2050 __clear_page_lru_flags(page);
2bcf8879
HD
2051
2052 if (unlikely(PageCompound(page))) {
6168d0da 2053 spin_unlock_irq(&lruvec->lru_lock);
ff45fc3c 2054 destroy_compound_page(page);
6168d0da 2055 spin_lock_irq(&lruvec->lru_lock);
2bcf8879
HD
2056 } else
2057 list_add(&page->lru, &pages_to_free);
3d06afab
AS
2058
2059 continue;
66635629 2060 }
3d06afab 2061
afca9157
AS
2062 /*
2063 * All pages were isolated from the same lruvec (and isolation
2064 * inhibits memcg migration).
2065 */
2a5e4e34 2066 VM_BUG_ON_PAGE(!lruvec_holds_page_lru_lock(page, lruvec), page);
3a9c9788 2067 add_page_to_lru_list(page, lruvec);
3d06afab 2068 nr_pages = thp_nr_pages(page);
3d06afab
AS
2069 nr_moved += nr_pages;
2070 if (PageActive(page))
2071 workingset_age_nonresident(lruvec, nr_pages);
66635629 2072 }
66635629 2073
3f79768f
HD
2074 /*
2075 * To save our caller's stack, now use input list for pages to free.
2076 */
a222f341
KT
2077 list_splice(&pages_to_free, list);
2078
2079 return nr_moved;
66635629
MG
2080}
2081
399ba0b9
N
2082/*
2083 * If a kernel thread (such as nfsd for loop-back mounts) services
a37b0715 2084 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
399ba0b9
N
2085 * In that case we should only throttle if the backing device it is
2086 * writing to is congested. In other cases it is safe to throttle.
2087 */
2088static int current_may_throttle(void)
2089{
a37b0715 2090 return !(current->flags & PF_LOCAL_THROTTLE) ||
399ba0b9
N
2091 current->backing_dev_info == NULL ||
2092 bdi_write_congested(current->backing_dev_info);
2093}
2094
1da177e4 2095/*
b2e18757 2096 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 2097 * of reclaimed pages
1da177e4 2098 */
66635629 2099static noinline_for_stack unsigned long
1a93be0e 2100shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 2101 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
2102{
2103 LIST_HEAD(page_list);
e247dbce 2104 unsigned long nr_scanned;
730ec8c0 2105 unsigned int nr_reclaimed = 0;
e247dbce 2106 unsigned long nr_taken;
060f005f 2107 struct reclaim_stat stat;
497a6c1b 2108 bool file = is_file_lru(lru);
f46b7912 2109 enum vm_event_item item;
599d0c95 2110 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
db73ee0d 2111 bool stalled = false;
78dc583d 2112
599d0c95 2113 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
2114 if (stalled)
2115 return 0;
2116
2117 /* wait a bit for the reclaimer. */
2118 msleep(100);
2119 stalled = true;
35cd7815
RR
2120
2121 /* We are about to die and free our memory. Return now. */
2122 if (fatal_signal_pending(current))
2123 return SWAP_CLUSTER_MAX;
2124 }
2125
1da177e4 2126 lru_add_drain();
f80c0673 2127
6168d0da 2128 spin_lock_irq(&lruvec->lru_lock);
b35ea17b 2129
5dc35979 2130 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 2131 &nr_scanned, sc, lru);
95d918fc 2132
599d0c95 2133 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
f46b7912 2134 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
b5ead35e 2135 if (!cgroup_reclaim(sc))
f46b7912
KT
2136 __count_vm_events(item, nr_scanned);
2137 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
497a6c1b
JW
2138 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2139
6168d0da 2140 spin_unlock_irq(&lruvec->lru_lock);
b35ea17b 2141
d563c050 2142 if (nr_taken == 0)
66635629 2143 return 0;
5ad333eb 2144
013339df 2145 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
c661b078 2146
6168d0da 2147 spin_lock_irq(&lruvec->lru_lock);
497a6c1b
JW
2148 move_pages_to_lru(lruvec, &page_list);
2149
2150 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
f46b7912 2151 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
b5ead35e 2152 if (!cgroup_reclaim(sc))
f46b7912
KT
2153 __count_vm_events(item, nr_reclaimed);
2154 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
497a6c1b 2155 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
6168d0da 2156 spin_unlock_irq(&lruvec->lru_lock);
3f79768f 2157
75cc3c91 2158 lru_note_cost(lruvec, file, stat.nr_pageout);
747db954 2159 mem_cgroup_uncharge_list(&page_list);
2d4894b5 2160 free_unref_page_list(&page_list);
e11da5b4 2161
1c610d5f
AR
2162 /*
2163 * If dirty pages are scanned that are not queued for IO, it
2164 * implies that flushers are not doing their job. This can
2165 * happen when memory pressure pushes dirty pages to the end of
2166 * the LRU before the dirty limits are breached and the dirty
2167 * data has expired. It can also happen when the proportion of
2168 * dirty pages grows not through writes but through memory
2169 * pressure reclaiming all the clean cache. And in some cases,
2170 * the flushers simply cannot keep up with the allocation
2171 * rate. Nudge the flusher threads in case they are asleep.
2172 */
2173 if (stat.nr_unqueued_dirty == nr_taken)
2174 wakeup_flusher_threads(WB_REASON_VMSCAN);
2175
d108c772
AR
2176 sc->nr.dirty += stat.nr_dirty;
2177 sc->nr.congested += stat.nr_congested;
2178 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2179 sc->nr.writeback += stat.nr_writeback;
2180 sc->nr.immediate += stat.nr_immediate;
2181 sc->nr.taken += nr_taken;
2182 if (file)
2183 sc->nr.file_taken += nr_taken;
8e950282 2184
599d0c95 2185 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2186 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2187 return nr_reclaimed;
1da177e4
LT
2188}
2189
15b44736
HD
2190/*
2191 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2192 *
2193 * We move them the other way if the page is referenced by one or more
2194 * processes.
2195 *
2196 * If the pages are mostly unmapped, the processing is fast and it is
2197 * appropriate to hold lru_lock across the whole operation. But if
2198 * the pages are mapped, the processing is slow (page_referenced()), so
2199 * we should drop lru_lock around each page. It's impossible to balance
2200 * this, so instead we remove the pages from the LRU while processing them.
2201 * It is safe to rely on PG_active against the non-LRU pages in here because
2202 * nobody will play with that bit on a non-LRU page.
2203 *
2204 * The downside is that we have to touch page->_refcount against each page.
2205 * But we had to alter page->flags anyway.
2206 */
f626012d 2207static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2208 struct lruvec *lruvec,
f16015fb 2209 struct scan_control *sc,
9e3b2f8c 2210 enum lru_list lru)
1da177e4 2211{
44c241f1 2212 unsigned long nr_taken;
f626012d 2213 unsigned long nr_scanned;
6fe6b7e3 2214 unsigned long vm_flags;
1da177e4 2215 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2216 LIST_HEAD(l_active);
b69408e8 2217 LIST_HEAD(l_inactive);
1da177e4 2218 struct page *page;
9d998b4f
MH
2219 unsigned nr_deactivate, nr_activate;
2220 unsigned nr_rotated = 0;
3cb99451 2221 int file = is_file_lru(lru);
599d0c95 2222 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2223
2224 lru_add_drain();
f80c0673 2225
6168d0da 2226 spin_lock_irq(&lruvec->lru_lock);
925b7673 2227
5dc35979 2228 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2229 &nr_scanned, sc, lru);
89b5fae5 2230
599d0c95 2231 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1cfb419b 2232
912c0572
SB
2233 if (!cgroup_reclaim(sc))
2234 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2235 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2236
6168d0da 2237 spin_unlock_irq(&lruvec->lru_lock);
1da177e4 2238
1da177e4
LT
2239 while (!list_empty(&l_hold)) {
2240 cond_resched();
2241 page = lru_to_page(&l_hold);
2242 list_del(&page->lru);
7e9cd484 2243
39b5f29a 2244 if (unlikely(!page_evictable(page))) {
894bc310
LS
2245 putback_lru_page(page);
2246 continue;
2247 }
2248
cc715d99
MG
2249 if (unlikely(buffer_heads_over_limit)) {
2250 if (page_has_private(page) && trylock_page(page)) {
2251 if (page_has_private(page))
2252 try_to_release_page(page, 0);
2253 unlock_page(page);
2254 }
2255 }
2256
c3ac9a8a
JW
2257 if (page_referenced(page, 0, sc->target_mem_cgroup,
2258 &vm_flags)) {
8cab4754
WF
2259 /*
2260 * Identify referenced, file-backed active pages and
2261 * give them one more trip around the active list. So
2262 * that executable code get better chances to stay in
2263 * memory under moderate memory pressure. Anon pages
2264 * are not likely to be evicted by use-once streaming
2265 * IO, plus JVM can create lots of anon VM_EXEC pages,
2266 * so we ignore them here.
2267 */
9de4f22a 2268 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
6c357848 2269 nr_rotated += thp_nr_pages(page);
8cab4754
WF
2270 list_add(&page->lru, &l_active);
2271 continue;
2272 }
2273 }
7e9cd484 2274
5205e56e 2275 ClearPageActive(page); /* we are de-activating */
1899ad18 2276 SetPageWorkingset(page);
1da177e4
LT
2277 list_add(&page->lru, &l_inactive);
2278 }
2279
b555749a 2280 /*
8cab4754 2281 * Move pages back to the lru list.
b555749a 2282 */
6168d0da 2283 spin_lock_irq(&lruvec->lru_lock);
556adecb 2284
a222f341
KT
2285 nr_activate = move_pages_to_lru(lruvec, &l_active);
2286 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
f372d89e
KT
2287 /* Keep all free pages in l_active list */
2288 list_splice(&l_inactive, &l_active);
9851ac13
KT
2289
2290 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2291 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2292
599d0c95 2293 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
6168d0da 2294 spin_unlock_irq(&lruvec->lru_lock);
2bcf8879 2295
f372d89e
KT
2296 mem_cgroup_uncharge_list(&l_active);
2297 free_unref_page_list(&l_active);
9d998b4f
MH
2298 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2299 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2300}
2301
1a4e58cc
MK
2302unsigned long reclaim_pages(struct list_head *page_list)
2303{
f661d007 2304 int nid = NUMA_NO_NODE;
730ec8c0 2305 unsigned int nr_reclaimed = 0;
1a4e58cc
MK
2306 LIST_HEAD(node_page_list);
2307 struct reclaim_stat dummy_stat;
2308 struct page *page;
2309 struct scan_control sc = {
2310 .gfp_mask = GFP_KERNEL,
2311 .priority = DEF_PRIORITY,
2312 .may_writepage = 1,
2313 .may_unmap = 1,
2314 .may_swap = 1,
2315 };
2316
2317 while (!list_empty(page_list)) {
2318 page = lru_to_page(page_list);
f661d007 2319 if (nid == NUMA_NO_NODE) {
1a4e58cc
MK
2320 nid = page_to_nid(page);
2321 INIT_LIST_HEAD(&node_page_list);
2322 }
2323
2324 if (nid == page_to_nid(page)) {
2325 ClearPageActive(page);
2326 list_move(&page->lru, &node_page_list);
2327 continue;
2328 }
2329
2330 nr_reclaimed += shrink_page_list(&node_page_list,
2331 NODE_DATA(nid),
013339df 2332 &sc, &dummy_stat, false);
1a4e58cc
MK
2333 while (!list_empty(&node_page_list)) {
2334 page = lru_to_page(&node_page_list);
2335 list_del(&page->lru);
2336 putback_lru_page(page);
2337 }
2338
f661d007 2339 nid = NUMA_NO_NODE;
1a4e58cc
MK
2340 }
2341
2342 if (!list_empty(&node_page_list)) {
2343 nr_reclaimed += shrink_page_list(&node_page_list,
2344 NODE_DATA(nid),
013339df 2345 &sc, &dummy_stat, false);
1a4e58cc
MK
2346 while (!list_empty(&node_page_list)) {
2347 page = lru_to_page(&node_page_list);
2348 list_del(&page->lru);
2349 putback_lru_page(page);
2350 }
2351 }
2352
2353 return nr_reclaimed;
2354}
2355
b91ac374
JW
2356static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2357 struct lruvec *lruvec, struct scan_control *sc)
2358{
2359 if (is_active_lru(lru)) {
2360 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2361 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2362 else
2363 sc->skipped_deactivate = 1;
2364 return 0;
2365 }
2366
2367 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2368}
2369
59dc76b0
RR
2370/*
2371 * The inactive anon list should be small enough that the VM never has
2372 * to do too much work.
14797e23 2373 *
59dc76b0
RR
2374 * The inactive file list should be small enough to leave most memory
2375 * to the established workingset on the scan-resistant active list,
2376 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2377 *
59dc76b0
RR
2378 * Both inactive lists should also be large enough that each inactive
2379 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2380 *
2a2e4885
JW
2381 * If that fails and refaulting is observed, the inactive list grows.
2382 *
59dc76b0 2383 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2384 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2385 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2386 *
59dc76b0
RR
2387 * total target max
2388 * memory ratio inactive
2389 * -------------------------------------
2390 * 10MB 1 5MB
2391 * 100MB 1 50MB
2392 * 1GB 3 250MB
2393 * 10GB 10 0.9GB
2394 * 100GB 31 3GB
2395 * 1TB 101 10GB
2396 * 10TB 320 32GB
56e49d21 2397 */
b91ac374 2398static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
56e49d21 2399{
b91ac374 2400 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2a2e4885
JW
2401 unsigned long inactive, active;
2402 unsigned long inactive_ratio;
59dc76b0 2403 unsigned long gb;
e3790144 2404
b91ac374
JW
2405 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2406 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
f8d1a311 2407
b91ac374 2408 gb = (inactive + active) >> (30 - PAGE_SHIFT);
4002570c 2409 if (gb)
b91ac374
JW
2410 inactive_ratio = int_sqrt(10 * gb);
2411 else
2412 inactive_ratio = 1;
fd538803 2413
59dc76b0 2414 return inactive * inactive_ratio < active;
b39415b2
RR
2415}
2416
9a265114
JW
2417enum scan_balance {
2418 SCAN_EQUAL,
2419 SCAN_FRACT,
2420 SCAN_ANON,
2421 SCAN_FILE,
2422};
2423
4f98a2fe
RR
2424/*
2425 * Determine how aggressively the anon and file LRU lists should be
2426 * scanned. The relative value of each set of LRU lists is determined
2427 * by looking at the fraction of the pages scanned we did rotate back
2428 * onto the active list instead of evict.
2429 *
be7bd59d
WL
2430 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2431 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2432 */
afaf07a6
JW
2433static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2434 unsigned long *nr)
4f98a2fe 2435{
afaf07a6 2436 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
d483a5dd 2437 unsigned long anon_cost, file_cost, total_cost;
33377678 2438 int swappiness = mem_cgroup_swappiness(memcg);
ed017373 2439 u64 fraction[ANON_AND_FILE];
9a265114 2440 u64 denominator = 0; /* gcc */
9a265114 2441 enum scan_balance scan_balance;
4f98a2fe 2442 unsigned long ap, fp;
4111304d 2443 enum lru_list lru;
76a33fc3
SL
2444
2445 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2446 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2447 scan_balance = SCAN_FILE;
76a33fc3
SL
2448 goto out;
2449 }
4f98a2fe 2450
10316b31
JW
2451 /*
2452 * Global reclaim will swap to prevent OOM even with no
2453 * swappiness, but memcg users want to use this knob to
2454 * disable swapping for individual groups completely when
2455 * using the memory controller's swap limit feature would be
2456 * too expensive.
2457 */
b5ead35e 2458 if (cgroup_reclaim(sc) && !swappiness) {
9a265114 2459 scan_balance = SCAN_FILE;
10316b31
JW
2460 goto out;
2461 }
2462
2463 /*
2464 * Do not apply any pressure balancing cleverness when the
2465 * system is close to OOM, scan both anon and file equally
2466 * (unless the swappiness setting disagrees with swapping).
2467 */
02695175 2468 if (!sc->priority && swappiness) {
9a265114 2469 scan_balance = SCAN_EQUAL;
10316b31
JW
2470 goto out;
2471 }
2472
62376251 2473 /*
53138cea 2474 * If the system is almost out of file pages, force-scan anon.
62376251 2475 */
b91ac374 2476 if (sc->file_is_tiny) {
53138cea
JW
2477 scan_balance = SCAN_ANON;
2478 goto out;
62376251
JW
2479 }
2480
7c5bd705 2481 /*
b91ac374
JW
2482 * If there is enough inactive page cache, we do not reclaim
2483 * anything from the anonymous working right now.
7c5bd705 2484 */
b91ac374 2485 if (sc->cache_trim_mode) {
9a265114 2486 scan_balance = SCAN_FILE;
7c5bd705
JW
2487 goto out;
2488 }
2489
9a265114 2490 scan_balance = SCAN_FRACT;
58c37f6e 2491 /*
314b57fb
JW
2492 * Calculate the pressure balance between anon and file pages.
2493 *
2494 * The amount of pressure we put on each LRU is inversely
2495 * proportional to the cost of reclaiming each list, as
2496 * determined by the share of pages that are refaulting, times
2497 * the relative IO cost of bringing back a swapped out
2498 * anonymous page vs reloading a filesystem page (swappiness).
2499 *
d483a5dd
JW
2500 * Although we limit that influence to ensure no list gets
2501 * left behind completely: at least a third of the pressure is
2502 * applied, before swappiness.
2503 *
314b57fb 2504 * With swappiness at 100, anon and file have equal IO cost.
58c37f6e 2505 */
d483a5dd
JW
2506 total_cost = sc->anon_cost + sc->file_cost;
2507 anon_cost = total_cost + sc->anon_cost;
2508 file_cost = total_cost + sc->file_cost;
2509 total_cost = anon_cost + file_cost;
58c37f6e 2510
d483a5dd
JW
2511 ap = swappiness * (total_cost + 1);
2512 ap /= anon_cost + 1;
4f98a2fe 2513
d483a5dd
JW
2514 fp = (200 - swappiness) * (total_cost + 1);
2515 fp /= file_cost + 1;
4f98a2fe 2516
76a33fc3
SL
2517 fraction[0] = ap;
2518 fraction[1] = fp;
a4fe1631 2519 denominator = ap + fp;
76a33fc3 2520out:
688035f7
JW
2521 for_each_evictable_lru(lru) {
2522 int file = is_file_lru(lru);
9783aa99 2523 unsigned long lruvec_size;
688035f7 2524 unsigned long scan;
1bc63fb1 2525 unsigned long protection;
9783aa99
CD
2526
2527 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
22f7496f
YS
2528 protection = mem_cgroup_protection(sc->target_mem_cgroup,
2529 memcg,
1bc63fb1 2530 sc->memcg_low_reclaim);
9783aa99 2531
1bc63fb1 2532 if (protection) {
9783aa99
CD
2533 /*
2534 * Scale a cgroup's reclaim pressure by proportioning
2535 * its current usage to its memory.low or memory.min
2536 * setting.
2537 *
2538 * This is important, as otherwise scanning aggression
2539 * becomes extremely binary -- from nothing as we
2540 * approach the memory protection threshold, to totally
2541 * nominal as we exceed it. This results in requiring
2542 * setting extremely liberal protection thresholds. It
2543 * also means we simply get no protection at all if we
2544 * set it too low, which is not ideal.
1bc63fb1
CD
2545 *
2546 * If there is any protection in place, we reduce scan
2547 * pressure by how much of the total memory used is
2548 * within protection thresholds.
9783aa99 2549 *
9de7ca46
CD
2550 * There is one special case: in the first reclaim pass,
2551 * we skip over all groups that are within their low
2552 * protection. If that fails to reclaim enough pages to
2553 * satisfy the reclaim goal, we come back and override
2554 * the best-effort low protection. However, we still
2555 * ideally want to honor how well-behaved groups are in
2556 * that case instead of simply punishing them all
2557 * equally. As such, we reclaim them based on how much
1bc63fb1
CD
2558 * memory they are using, reducing the scan pressure
2559 * again by how much of the total memory used is under
2560 * hard protection.
9783aa99 2561 */
1bc63fb1
CD
2562 unsigned long cgroup_size = mem_cgroup_size(memcg);
2563
2564 /* Avoid TOCTOU with earlier protection check */
2565 cgroup_size = max(cgroup_size, protection);
2566
2567 scan = lruvec_size - lruvec_size * protection /
2568 cgroup_size;
9783aa99
CD
2569
2570 /*
1bc63fb1 2571 * Minimally target SWAP_CLUSTER_MAX pages to keep
55b65a57 2572 * reclaim moving forwards, avoiding decrementing
9de7ca46 2573 * sc->priority further than desirable.
9783aa99 2574 */
1bc63fb1 2575 scan = max(scan, SWAP_CLUSTER_MAX);
9783aa99
CD
2576 } else {
2577 scan = lruvec_size;
2578 }
2579
2580 scan >>= sc->priority;
6b4f7799 2581
688035f7
JW
2582 /*
2583 * If the cgroup's already been deleted, make sure to
2584 * scrape out the remaining cache.
2585 */
2586 if (!scan && !mem_cgroup_online(memcg))
9783aa99 2587 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
6b4f7799 2588
688035f7
JW
2589 switch (scan_balance) {
2590 case SCAN_EQUAL:
2591 /* Scan lists relative to size */
2592 break;
2593 case SCAN_FRACT:
9a265114 2594 /*
688035f7
JW
2595 * Scan types proportional to swappiness and
2596 * their relative recent reclaim efficiency.
76073c64
GS
2597 * Make sure we don't miss the last page on
2598 * the offlined memory cgroups because of a
2599 * round-off error.
9a265114 2600 */
76073c64
GS
2601 scan = mem_cgroup_online(memcg) ?
2602 div64_u64(scan * fraction[file], denominator) :
2603 DIV64_U64_ROUND_UP(scan * fraction[file],
68600f62 2604 denominator);
688035f7
JW
2605 break;
2606 case SCAN_FILE:
2607 case SCAN_ANON:
2608 /* Scan one type exclusively */
e072bff6 2609 if ((scan_balance == SCAN_FILE) != file)
688035f7 2610 scan = 0;
688035f7
JW
2611 break;
2612 default:
2613 /* Look ma, no brain */
2614 BUG();
9a265114 2615 }
688035f7 2616
688035f7 2617 nr[lru] = scan;
76a33fc3 2618 }
6e08a369 2619}
4f98a2fe 2620
afaf07a6 2621static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
9b4f98cd
JW
2622{
2623 unsigned long nr[NR_LRU_LISTS];
e82e0561 2624 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2625 unsigned long nr_to_scan;
2626 enum lru_list lru;
2627 unsigned long nr_reclaimed = 0;
2628 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2629 struct blk_plug plug;
1a501907 2630 bool scan_adjusted;
9b4f98cd 2631
afaf07a6 2632 get_scan_count(lruvec, sc, nr);
9b4f98cd 2633
e82e0561
MG
2634 /* Record the original scan target for proportional adjustments later */
2635 memcpy(targets, nr, sizeof(nr));
2636
1a501907
MG
2637 /*
2638 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2639 * event that can occur when there is little memory pressure e.g.
2640 * multiple streaming readers/writers. Hence, we do not abort scanning
2641 * when the requested number of pages are reclaimed when scanning at
2642 * DEF_PRIORITY on the assumption that the fact we are direct
2643 * reclaiming implies that kswapd is not keeping up and it is best to
2644 * do a batch of work at once. For memcg reclaim one check is made to
2645 * abort proportional reclaim if either the file or anon lru has already
2646 * dropped to zero at the first pass.
2647 */
b5ead35e 2648 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
1a501907
MG
2649 sc->priority == DEF_PRIORITY);
2650
9b4f98cd
JW
2651 blk_start_plug(&plug);
2652 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2653 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2654 unsigned long nr_anon, nr_file, percentage;
2655 unsigned long nr_scanned;
2656
9b4f98cd
JW
2657 for_each_evictable_lru(lru) {
2658 if (nr[lru]) {
2659 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2660 nr[lru] -= nr_to_scan;
2661
2662 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2663 lruvec, sc);
9b4f98cd
JW
2664 }
2665 }
e82e0561 2666
bd041733
MH
2667 cond_resched();
2668
e82e0561
MG
2669 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2670 continue;
2671
e82e0561
MG
2672 /*
2673 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2674 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2675 * proportionally what was requested by get_scan_count(). We
2676 * stop reclaiming one LRU and reduce the amount scanning
2677 * proportional to the original scan target.
2678 */
2679 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2680 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2681
1a501907
MG
2682 /*
2683 * It's just vindictive to attack the larger once the smaller
2684 * has gone to zero. And given the way we stop scanning the
2685 * smaller below, this makes sure that we only make one nudge
2686 * towards proportionality once we've got nr_to_reclaim.
2687 */
2688 if (!nr_file || !nr_anon)
2689 break;
2690
e82e0561
MG
2691 if (nr_file > nr_anon) {
2692 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2693 targets[LRU_ACTIVE_ANON] + 1;
2694 lru = LRU_BASE;
2695 percentage = nr_anon * 100 / scan_target;
2696 } else {
2697 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2698 targets[LRU_ACTIVE_FILE] + 1;
2699 lru = LRU_FILE;
2700 percentage = nr_file * 100 / scan_target;
2701 }
2702
2703 /* Stop scanning the smaller of the LRU */
2704 nr[lru] = 0;
2705 nr[lru + LRU_ACTIVE] = 0;
2706
2707 /*
2708 * Recalculate the other LRU scan count based on its original
2709 * scan target and the percentage scanning already complete
2710 */
2711 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2712 nr_scanned = targets[lru] - nr[lru];
2713 nr[lru] = targets[lru] * (100 - percentage) / 100;
2714 nr[lru] -= min(nr[lru], nr_scanned);
2715
2716 lru += LRU_ACTIVE;
2717 nr_scanned = targets[lru] - nr[lru];
2718 nr[lru] = targets[lru] * (100 - percentage) / 100;
2719 nr[lru] -= min(nr[lru], nr_scanned);
2720
2721 scan_adjusted = true;
9b4f98cd
JW
2722 }
2723 blk_finish_plug(&plug);
2724 sc->nr_reclaimed += nr_reclaimed;
2725
2726 /*
2727 * Even if we did not try to evict anon pages at all, we want to
2728 * rebalance the anon lru active/inactive ratio.
2729 */
b91ac374 2730 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
9b4f98cd
JW
2731 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2732 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2733}
2734
23b9da55 2735/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2736static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2737{
d84da3f9 2738 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2739 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2740 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2741 return true;
2742
2743 return false;
2744}
2745
3e7d3449 2746/*
23b9da55
MG
2747 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2748 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2749 * true if more pages should be reclaimed such that when the page allocator
df3a45f9 2750 * calls try_to_compact_pages() that it will have enough free pages to succeed.
23b9da55 2751 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2752 */
a9dd0a83 2753static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449 2754 unsigned long nr_reclaimed,
3e7d3449
MG
2755 struct scan_control *sc)
2756{
2757 unsigned long pages_for_compaction;
2758 unsigned long inactive_lru_pages;
a9dd0a83 2759 int z;
3e7d3449
MG
2760
2761 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2762 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2763 return false;
2764
5ee04716
VB
2765 /*
2766 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2767 * number of pages that were scanned. This will return to the caller
2768 * with the risk reclaim/compaction and the resulting allocation attempt
2769 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2770 * allocations through requiring that the full LRU list has been scanned
2771 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2772 * scan, but that approximation was wrong, and there were corner cases
2773 * where always a non-zero amount of pages were scanned.
2774 */
2775 if (!nr_reclaimed)
2776 return false;
3e7d3449 2777
3e7d3449 2778 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2779 for (z = 0; z <= sc->reclaim_idx; z++) {
2780 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2781 if (!managed_zone(zone))
a9dd0a83
MG
2782 continue;
2783
2784 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2785 case COMPACT_SUCCESS:
a9dd0a83
MG
2786 case COMPACT_CONTINUE:
2787 return false;
2788 default:
2789 /* check next zone */
2790 ;
2791 }
3e7d3449 2792 }
1c6c1597
HD
2793
2794 /*
2795 * If we have not reclaimed enough pages for compaction and the
2796 * inactive lists are large enough, continue reclaiming
2797 */
2798 pages_for_compaction = compact_gap(sc->order);
2799 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2800 if (get_nr_swap_pages() > 0)
2801 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2802
5ee04716 2803 return inactive_lru_pages > pages_for_compaction;
3e7d3449
MG
2804}
2805
0f6a5cff 2806static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2807{
0f6a5cff 2808 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
d2af3397 2809 struct mem_cgroup *memcg;
1da177e4 2810
0f6a5cff 2811 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
d2af3397 2812 do {
afaf07a6 2813 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
d2af3397
JW
2814 unsigned long reclaimed;
2815 unsigned long scanned;
5660048c 2816
e3336cab
XP
2817 /*
2818 * This loop can become CPU-bound when target memcgs
2819 * aren't eligible for reclaim - either because they
2820 * don't have any reclaimable pages, or because their
2821 * memory is explicitly protected. Avoid soft lockups.
2822 */
2823 cond_resched();
2824
45c7f7e1
CD
2825 mem_cgroup_calculate_protection(target_memcg, memcg);
2826
2827 if (mem_cgroup_below_min(memcg)) {
d2af3397
JW
2828 /*
2829 * Hard protection.
2830 * If there is no reclaimable memory, OOM.
2831 */
2832 continue;
45c7f7e1 2833 } else if (mem_cgroup_below_low(memcg)) {
d2af3397
JW
2834 /*
2835 * Soft protection.
2836 * Respect the protection only as long as
2837 * there is an unprotected supply
2838 * of reclaimable memory from other cgroups.
2839 */
2840 if (!sc->memcg_low_reclaim) {
2841 sc->memcg_low_skipped = 1;
bf8d5d52 2842 continue;
241994ed 2843 }
d2af3397 2844 memcg_memory_event(memcg, MEMCG_LOW);
d2af3397 2845 }
241994ed 2846
d2af3397
JW
2847 reclaimed = sc->nr_reclaimed;
2848 scanned = sc->nr_scanned;
afaf07a6
JW
2849
2850 shrink_lruvec(lruvec, sc);
70ddf637 2851
d2af3397
JW
2852 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2853 sc->priority);
6b4f7799 2854
d2af3397
JW
2855 /* Record the group's reclaim efficiency */
2856 vmpressure(sc->gfp_mask, memcg, false,
2857 sc->nr_scanned - scanned,
2858 sc->nr_reclaimed - reclaimed);
70ddf637 2859
0f6a5cff
JW
2860 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2861}
2862
6c9e0907 2863static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
0f6a5cff
JW
2864{
2865 struct reclaim_state *reclaim_state = current->reclaim_state;
0f6a5cff 2866 unsigned long nr_reclaimed, nr_scanned;
1b05117d 2867 struct lruvec *target_lruvec;
0f6a5cff 2868 bool reclaimable = false;
b91ac374 2869 unsigned long file;
0f6a5cff 2870
1b05117d
JW
2871 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2872
0f6a5cff
JW
2873again:
2874 memset(&sc->nr, 0, sizeof(sc->nr));
2875
2876 nr_reclaimed = sc->nr_reclaimed;
2877 nr_scanned = sc->nr_scanned;
2878
7cf111bc
JW
2879 /*
2880 * Determine the scan balance between anon and file LRUs.
2881 */
6168d0da 2882 spin_lock_irq(&target_lruvec->lru_lock);
7cf111bc
JW
2883 sc->anon_cost = target_lruvec->anon_cost;
2884 sc->file_cost = target_lruvec->file_cost;
6168d0da 2885 spin_unlock_irq(&target_lruvec->lru_lock);
7cf111bc 2886
b91ac374
JW
2887 /*
2888 * Target desirable inactive:active list ratios for the anon
2889 * and file LRU lists.
2890 */
2891 if (!sc->force_deactivate) {
2892 unsigned long refaults;
2893
170b04b7
JK
2894 refaults = lruvec_page_state(target_lruvec,
2895 WORKINGSET_ACTIVATE_ANON);
2896 if (refaults != target_lruvec->refaults[0] ||
2897 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
b91ac374
JW
2898 sc->may_deactivate |= DEACTIVATE_ANON;
2899 else
2900 sc->may_deactivate &= ~DEACTIVATE_ANON;
2901
2902 /*
2903 * When refaults are being observed, it means a new
2904 * workingset is being established. Deactivate to get
2905 * rid of any stale active pages quickly.
2906 */
2907 refaults = lruvec_page_state(target_lruvec,
170b04b7
JK
2908 WORKINGSET_ACTIVATE_FILE);
2909 if (refaults != target_lruvec->refaults[1] ||
b91ac374
JW
2910 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2911 sc->may_deactivate |= DEACTIVATE_FILE;
2912 else
2913 sc->may_deactivate &= ~DEACTIVATE_FILE;
2914 } else
2915 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2916
2917 /*
2918 * If we have plenty of inactive file pages that aren't
2919 * thrashing, try to reclaim those first before touching
2920 * anonymous pages.
2921 */
2922 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2923 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2924 sc->cache_trim_mode = 1;
2925 else
2926 sc->cache_trim_mode = 0;
2927
53138cea
JW
2928 /*
2929 * Prevent the reclaimer from falling into the cache trap: as
2930 * cache pages start out inactive, every cache fault will tip
2931 * the scan balance towards the file LRU. And as the file LRU
2932 * shrinks, so does the window for rotation from references.
2933 * This means we have a runaway feedback loop where a tiny
2934 * thrashing file LRU becomes infinitely more attractive than
2935 * anon pages. Try to detect this based on file LRU size.
2936 */
2937 if (!cgroup_reclaim(sc)) {
53138cea 2938 unsigned long total_high_wmark = 0;
b91ac374
JW
2939 unsigned long free, anon;
2940 int z;
53138cea
JW
2941
2942 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2943 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2944 node_page_state(pgdat, NR_INACTIVE_FILE);
2945
2946 for (z = 0; z < MAX_NR_ZONES; z++) {
2947 struct zone *zone = &pgdat->node_zones[z];
2948 if (!managed_zone(zone))
2949 continue;
2950
2951 total_high_wmark += high_wmark_pages(zone);
2952 }
2953
b91ac374
JW
2954 /*
2955 * Consider anon: if that's low too, this isn't a
2956 * runaway file reclaim problem, but rather just
2957 * extreme pressure. Reclaim as per usual then.
2958 */
2959 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2960
2961 sc->file_is_tiny =
2962 file + free <= total_high_wmark &&
2963 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2964 anon >> sc->priority;
53138cea
JW
2965 }
2966
0f6a5cff 2967 shrink_node_memcgs(pgdat, sc);
2344d7e4 2968
d2af3397
JW
2969 if (reclaim_state) {
2970 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2971 reclaim_state->reclaimed_slab = 0;
2972 }
d108c772 2973
d2af3397 2974 /* Record the subtree's reclaim efficiency */
1b05117d 2975 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
d2af3397
JW
2976 sc->nr_scanned - nr_scanned,
2977 sc->nr_reclaimed - nr_reclaimed);
d108c772 2978
d2af3397
JW
2979 if (sc->nr_reclaimed - nr_reclaimed)
2980 reclaimable = true;
d108c772 2981
d2af3397
JW
2982 if (current_is_kswapd()) {
2983 /*
2984 * If reclaim is isolating dirty pages under writeback,
2985 * it implies that the long-lived page allocation rate
2986 * is exceeding the page laundering rate. Either the
2987 * global limits are not being effective at throttling
2988 * processes due to the page distribution throughout
2989 * zones or there is heavy usage of a slow backing
2990 * device. The only option is to throttle from reclaim
2991 * context which is not ideal as there is no guarantee
2992 * the dirtying process is throttled in the same way
2993 * balance_dirty_pages() manages.
2994 *
2995 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2996 * count the number of pages under pages flagged for
2997 * immediate reclaim and stall if any are encountered
2998 * in the nr_immediate check below.
2999 */
3000 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3001 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 3002
d2af3397
JW
3003 /* Allow kswapd to start writing pages during reclaim.*/
3004 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3005 set_bit(PGDAT_DIRTY, &pgdat->flags);
e3c1ac58 3006
d108c772 3007 /*
1eba09c1 3008 * If kswapd scans pages marked for immediate
d2af3397
JW
3009 * reclaim and under writeback (nr_immediate), it
3010 * implies that pages are cycling through the LRU
3011 * faster than they are written so also forcibly stall.
d108c772 3012 */
d2af3397
JW
3013 if (sc->nr.immediate)
3014 congestion_wait(BLK_RW_ASYNC, HZ/10);
3015 }
3016
3017 /*
1b05117d
JW
3018 * Tag a node/memcg as congested if all the dirty pages
3019 * scanned were backed by a congested BDI and
3020 * wait_iff_congested will stall.
3021 *
d2af3397
JW
3022 * Legacy memcg will stall in page writeback so avoid forcibly
3023 * stalling in wait_iff_congested().
3024 */
1b05117d
JW
3025 if ((current_is_kswapd() ||
3026 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
d2af3397 3027 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
1b05117d 3028 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
d2af3397
JW
3029
3030 /*
3031 * Stall direct reclaim for IO completions if underlying BDIs
3032 * and node is congested. Allow kswapd to continue until it
3033 * starts encountering unqueued dirty pages or cycling through
3034 * the LRU too quickly.
3035 */
1b05117d
JW
3036 if (!current_is_kswapd() && current_may_throttle() &&
3037 !sc->hibernation_mode &&
3038 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
d2af3397 3039 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
d108c772 3040
d2af3397
JW
3041 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3042 sc))
3043 goto again;
2344d7e4 3044
c73322d0
JW
3045 /*
3046 * Kswapd gives up on balancing particular nodes after too
3047 * many failures to reclaim anything from them and goes to
3048 * sleep. On reclaim progress, reset the failure counter. A
3049 * successful direct reclaim run will revive a dormant kswapd.
3050 */
3051 if (reclaimable)
3052 pgdat->kswapd_failures = 0;
f16015fb
JW
3053}
3054
53853e2d 3055/*
fdd4c614
VB
3056 * Returns true if compaction should go ahead for a costly-order request, or
3057 * the allocation would already succeed without compaction. Return false if we
3058 * should reclaim first.
53853e2d 3059 */
4f588331 3060static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 3061{
31483b6a 3062 unsigned long watermark;
fdd4c614 3063 enum compact_result suitable;
fe4b1b24 3064
fdd4c614
VB
3065 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3066 if (suitable == COMPACT_SUCCESS)
3067 /* Allocation should succeed already. Don't reclaim. */
3068 return true;
3069 if (suitable == COMPACT_SKIPPED)
3070 /* Compaction cannot yet proceed. Do reclaim. */
3071 return false;
fe4b1b24 3072
53853e2d 3073 /*
fdd4c614
VB
3074 * Compaction is already possible, but it takes time to run and there
3075 * are potentially other callers using the pages just freed. So proceed
3076 * with reclaim to make a buffer of free pages available to give
3077 * compaction a reasonable chance of completing and allocating the page.
3078 * Note that we won't actually reclaim the whole buffer in one attempt
3079 * as the target watermark in should_continue_reclaim() is lower. But if
3080 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 3081 */
fdd4c614 3082 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 3083
fdd4c614 3084 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
3085}
3086
1da177e4
LT
3087/*
3088 * This is the direct reclaim path, for page-allocating processes. We only
3089 * try to reclaim pages from zones which will satisfy the caller's allocation
3090 * request.
3091 *
1da177e4
LT
3092 * If a zone is deemed to be full of pinned pages then just give it a light
3093 * scan then give up on it.
3094 */
0a0337e0 3095static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 3096{
dd1a239f 3097 struct zoneref *z;
54a6eb5c 3098 struct zone *zone;
0608f43d
AM
3099 unsigned long nr_soft_reclaimed;
3100 unsigned long nr_soft_scanned;
619d0d76 3101 gfp_t orig_mask;
79dafcdc 3102 pg_data_t *last_pgdat = NULL;
1cfb419b 3103
cc715d99
MG
3104 /*
3105 * If the number of buffer_heads in the machine exceeds the maximum
3106 * allowed level, force direct reclaim to scan the highmem zone as
3107 * highmem pages could be pinning lowmem pages storing buffer_heads
3108 */
619d0d76 3109 orig_mask = sc->gfp_mask;
b2e18757 3110 if (buffer_heads_over_limit) {
cc715d99 3111 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 3112 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 3113 }
cc715d99 3114
d4debc66 3115 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 3116 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
3117 /*
3118 * Take care memory controller reclaiming has small influence
3119 * to global LRU.
3120 */
b5ead35e 3121 if (!cgroup_reclaim(sc)) {
344736f2
VD
3122 if (!cpuset_zone_allowed(zone,
3123 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 3124 continue;
65ec02cb 3125
0b06496a
JW
3126 /*
3127 * If we already have plenty of memory free for
3128 * compaction in this zone, don't free any more.
3129 * Even though compaction is invoked for any
3130 * non-zero order, only frequent costly order
3131 * reclamation is disruptive enough to become a
3132 * noticeable problem, like transparent huge
3133 * page allocations.
3134 */
3135 if (IS_ENABLED(CONFIG_COMPACTION) &&
3136 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 3137 compaction_ready(zone, sc)) {
0b06496a
JW
3138 sc->compaction_ready = true;
3139 continue;
e0887c19 3140 }
0b06496a 3141
79dafcdc
MG
3142 /*
3143 * Shrink each node in the zonelist once. If the
3144 * zonelist is ordered by zone (not the default) then a
3145 * node may be shrunk multiple times but in that case
3146 * the user prefers lower zones being preserved.
3147 */
3148 if (zone->zone_pgdat == last_pgdat)
3149 continue;
3150
0608f43d
AM
3151 /*
3152 * This steals pages from memory cgroups over softlimit
3153 * and returns the number of reclaimed pages and
3154 * scanned pages. This works for global memory pressure
3155 * and balancing, not for a memcg's limit.
3156 */
3157 nr_soft_scanned = 0;
ef8f2327 3158 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
3159 sc->order, sc->gfp_mask,
3160 &nr_soft_scanned);
3161 sc->nr_reclaimed += nr_soft_reclaimed;
3162 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 3163 /* need some check for avoid more shrink_zone() */
1cfb419b 3164 }
408d8544 3165
79dafcdc
MG
3166 /* See comment about same check for global reclaim above */
3167 if (zone->zone_pgdat == last_pgdat)
3168 continue;
3169 last_pgdat = zone->zone_pgdat;
970a39a3 3170 shrink_node(zone->zone_pgdat, sc);
1da177e4 3171 }
e0c23279 3172
619d0d76
WY
3173 /*
3174 * Restore to original mask to avoid the impact on the caller if we
3175 * promoted it to __GFP_HIGHMEM.
3176 */
3177 sc->gfp_mask = orig_mask;
1da177e4 3178}
4f98a2fe 3179
b910718a 3180static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2a2e4885 3181{
b910718a
JW
3182 struct lruvec *target_lruvec;
3183 unsigned long refaults;
2a2e4885 3184
b910718a 3185 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
170b04b7
JK
3186 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3187 target_lruvec->refaults[0] = refaults;
3188 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3189 target_lruvec->refaults[1] = refaults;
2a2e4885
JW
3190}
3191
1da177e4
LT
3192/*
3193 * This is the main entry point to direct page reclaim.
3194 *
3195 * If a full scan of the inactive list fails to free enough memory then we
3196 * are "out of memory" and something needs to be killed.
3197 *
3198 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3199 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
3200 * caller can't do much about. We kick the writeback threads and take explicit
3201 * naps in the hope that some of these pages can be written. But if the
3202 * allocating task holds filesystem locks which prevent writeout this might not
3203 * work, and the allocation attempt will fail.
a41f24ea
NA
3204 *
3205 * returns: 0, if no pages reclaimed
3206 * else, the number of pages reclaimed
1da177e4 3207 */
dac1d27b 3208static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 3209 struct scan_control *sc)
1da177e4 3210{
241994ed 3211 int initial_priority = sc->priority;
2a2e4885
JW
3212 pg_data_t *last_pgdat;
3213 struct zoneref *z;
3214 struct zone *zone;
241994ed 3215retry:
873b4771
KK
3216 delayacct_freepages_start();
3217
b5ead35e 3218 if (!cgroup_reclaim(sc))
7cc30fcf 3219 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 3220
9e3b2f8c 3221 do {
70ddf637
AV
3222 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3223 sc->priority);
66e1707b 3224 sc->nr_scanned = 0;
0a0337e0 3225 shrink_zones(zonelist, sc);
c6a8a8c5 3226
bb21c7ce 3227 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3228 break;
3229
3230 if (sc->compaction_ready)
3231 break;
1da177e4 3232
0e50ce3b
MK
3233 /*
3234 * If we're getting trouble reclaiming, start doing
3235 * writepage even in laptop mode.
3236 */
3237 if (sc->priority < DEF_PRIORITY - 2)
3238 sc->may_writepage = 1;
0b06496a 3239 } while (--sc->priority >= 0);
bb21c7ce 3240
2a2e4885
JW
3241 last_pgdat = NULL;
3242 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3243 sc->nodemask) {
3244 if (zone->zone_pgdat == last_pgdat)
3245 continue;
3246 last_pgdat = zone->zone_pgdat;
1b05117d 3247
2a2e4885 3248 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
1b05117d
JW
3249
3250 if (cgroup_reclaim(sc)) {
3251 struct lruvec *lruvec;
3252
3253 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3254 zone->zone_pgdat);
3255 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3256 }
2a2e4885
JW
3257 }
3258
873b4771
KK
3259 delayacct_freepages_end();
3260
bb21c7ce
KM
3261 if (sc->nr_reclaimed)
3262 return sc->nr_reclaimed;
3263
0cee34fd 3264 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3265 if (sc->compaction_ready)
7335084d
MG
3266 return 1;
3267
b91ac374
JW
3268 /*
3269 * We make inactive:active ratio decisions based on the node's
3270 * composition of memory, but a restrictive reclaim_idx or a
3271 * memory.low cgroup setting can exempt large amounts of
3272 * memory from reclaim. Neither of which are very common, so
3273 * instead of doing costly eligibility calculations of the
3274 * entire cgroup subtree up front, we assume the estimates are
3275 * good, and retry with forcible deactivation if that fails.
3276 */
3277 if (sc->skipped_deactivate) {
3278 sc->priority = initial_priority;
3279 sc->force_deactivate = 1;
3280 sc->skipped_deactivate = 0;
3281 goto retry;
3282 }
3283
241994ed 3284 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3285 if (sc->memcg_low_skipped) {
241994ed 3286 sc->priority = initial_priority;
b91ac374 3287 sc->force_deactivate = 0;
d6622f63
YX
3288 sc->memcg_low_reclaim = 1;
3289 sc->memcg_low_skipped = 0;
241994ed
JW
3290 goto retry;
3291 }
3292
bb21c7ce 3293 return 0;
1da177e4
LT
3294}
3295
c73322d0 3296static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3297{
3298 struct zone *zone;
3299 unsigned long pfmemalloc_reserve = 0;
3300 unsigned long free_pages = 0;
3301 int i;
3302 bool wmark_ok;
3303
c73322d0
JW
3304 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3305 return true;
3306
5515061d
MG
3307 for (i = 0; i <= ZONE_NORMAL; i++) {
3308 zone = &pgdat->node_zones[i];
d450abd8
JW
3309 if (!managed_zone(zone))
3310 continue;
3311
3312 if (!zone_reclaimable_pages(zone))
675becce
MG
3313 continue;
3314
5515061d
MG
3315 pfmemalloc_reserve += min_wmark_pages(zone);
3316 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3317 }
3318
675becce
MG
3319 /* If there are no reserves (unexpected config) then do not throttle */
3320 if (!pfmemalloc_reserve)
3321 return true;
3322
5515061d
MG
3323 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3324
3325 /* kswapd must be awake if processes are being throttled */
3326 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
97a225e6
JK
3327 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3328 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
5644e1fb 3329
5515061d
MG
3330 wake_up_interruptible(&pgdat->kswapd_wait);
3331 }
3332
3333 return wmark_ok;
3334}
3335
3336/*
3337 * Throttle direct reclaimers if backing storage is backed by the network
3338 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3339 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3340 * when the low watermark is reached.
3341 *
3342 * Returns true if a fatal signal was delivered during throttling. If this
3343 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3344 */
50694c28 3345static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3346 nodemask_t *nodemask)
3347{
675becce 3348 struct zoneref *z;
5515061d 3349 struct zone *zone;
675becce 3350 pg_data_t *pgdat = NULL;
5515061d
MG
3351
3352 /*
3353 * Kernel threads should not be throttled as they may be indirectly
3354 * responsible for cleaning pages necessary for reclaim to make forward
3355 * progress. kjournald for example may enter direct reclaim while
3356 * committing a transaction where throttling it could forcing other
3357 * processes to block on log_wait_commit().
3358 */
3359 if (current->flags & PF_KTHREAD)
50694c28
MG
3360 goto out;
3361
3362 /*
3363 * If a fatal signal is pending, this process should not throttle.
3364 * It should return quickly so it can exit and free its memory
3365 */
3366 if (fatal_signal_pending(current))
3367 goto out;
5515061d 3368
675becce
MG
3369 /*
3370 * Check if the pfmemalloc reserves are ok by finding the first node
3371 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3372 * GFP_KERNEL will be required for allocating network buffers when
3373 * swapping over the network so ZONE_HIGHMEM is unusable.
3374 *
3375 * Throttling is based on the first usable node and throttled processes
3376 * wait on a queue until kswapd makes progress and wakes them. There
3377 * is an affinity then between processes waking up and where reclaim
3378 * progress has been made assuming the process wakes on the same node.
3379 * More importantly, processes running on remote nodes will not compete
3380 * for remote pfmemalloc reserves and processes on different nodes
3381 * should make reasonable progress.
3382 */
3383 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3384 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3385 if (zone_idx(zone) > ZONE_NORMAL)
3386 continue;
3387
3388 /* Throttle based on the first usable node */
3389 pgdat = zone->zone_pgdat;
c73322d0 3390 if (allow_direct_reclaim(pgdat))
675becce
MG
3391 goto out;
3392 break;
3393 }
3394
3395 /* If no zone was usable by the allocation flags then do not throttle */
3396 if (!pgdat)
50694c28 3397 goto out;
5515061d 3398
68243e76
MG
3399 /* Account for the throttling */
3400 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3401
5515061d
MG
3402 /*
3403 * If the caller cannot enter the filesystem, it's possible that it
3404 * is due to the caller holding an FS lock or performing a journal
3405 * transaction in the case of a filesystem like ext[3|4]. In this case,
3406 * it is not safe to block on pfmemalloc_wait as kswapd could be
3407 * blocked waiting on the same lock. Instead, throttle for up to a
3408 * second before continuing.
3409 */
3410 if (!(gfp_mask & __GFP_FS)) {
3411 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3412 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
3413
3414 goto check_pending;
5515061d
MG
3415 }
3416
3417 /* Throttle until kswapd wakes the process */
3418 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 3419 allow_direct_reclaim(pgdat));
50694c28
MG
3420
3421check_pending:
3422 if (fatal_signal_pending(current))
3423 return true;
3424
3425out:
3426 return false;
5515061d
MG
3427}
3428
dac1d27b 3429unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3430 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3431{
33906bc5 3432 unsigned long nr_reclaimed;
66e1707b 3433 struct scan_control sc = {
ee814fe2 3434 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3435 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3436 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3437 .order = order,
3438 .nodemask = nodemask,
3439 .priority = DEF_PRIORITY,
66e1707b 3440 .may_writepage = !laptop_mode,
a6dc60f8 3441 .may_unmap = 1,
2e2e4259 3442 .may_swap = 1,
66e1707b
BS
3443 };
3444
bb451fdf
GT
3445 /*
3446 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3447 * Confirm they are large enough for max values.
3448 */
3449 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3450 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3451 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3452
5515061d 3453 /*
50694c28
MG
3454 * Do not enter reclaim if fatal signal was delivered while throttled.
3455 * 1 is returned so that the page allocator does not OOM kill at this
3456 * point.
5515061d 3457 */
f2f43e56 3458 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3459 return 1;
3460
1732d2b0 3461 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3462 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3463
3115cd91 3464 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3465
3466 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 3467 set_task_reclaim_state(current, NULL);
33906bc5
MG
3468
3469 return nr_reclaimed;
66e1707b
BS
3470}
3471
c255a458 3472#ifdef CONFIG_MEMCG
66e1707b 3473
d2e5fb92 3474/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 3475unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3476 gfp_t gfp_mask, bool noswap,
ef8f2327 3477 pg_data_t *pgdat,
0ae5e89c 3478 unsigned long *nr_scanned)
4e416953 3479{
afaf07a6 3480 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4e416953 3481 struct scan_control sc = {
b8f5c566 3482 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3483 .target_mem_cgroup = memcg,
4e416953
BS
3484 .may_writepage = !laptop_mode,
3485 .may_unmap = 1,
b2e18757 3486 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3487 .may_swap = !noswap,
4e416953 3488 };
0ae5e89c 3489
d2e5fb92
MH
3490 WARN_ON_ONCE(!current->reclaim_state);
3491
4e416953
BS
3492 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3493 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3494
9e3b2f8c 3495 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3496 sc.gfp_mask);
bdce6d9e 3497
4e416953
BS
3498 /*
3499 * NOTE: Although we can get the priority field, using it
3500 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3501 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3502 * will pick up pages from other mem cgroup's as well. We hack
3503 * the priority and make it zero.
3504 */
afaf07a6 3505 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
3506
3507 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3508
0ae5e89c 3509 *nr_scanned = sc.nr_scanned;
0308f7cf 3510
4e416953
BS
3511 return sc.nr_reclaimed;
3512}
3513
72835c86 3514unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3515 unsigned long nr_pages,
a7885eb8 3516 gfp_t gfp_mask,
b70a2a21 3517 bool may_swap)
66e1707b 3518{
bdce6d9e 3519 unsigned long nr_reclaimed;
499118e9 3520 unsigned int noreclaim_flag;
66e1707b 3521 struct scan_control sc = {
b70a2a21 3522 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3523 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3524 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3525 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3526 .target_mem_cgroup = memcg,
3527 .priority = DEF_PRIORITY,
3528 .may_writepage = !laptop_mode,
3529 .may_unmap = 1,
b70a2a21 3530 .may_swap = may_swap,
a09ed5e0 3531 };
889976db 3532 /*
fa40d1ee
SB
3533 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3534 * equal pressure on all the nodes. This is based on the assumption that
3535 * the reclaim does not bail out early.
889976db 3536 */
fa40d1ee 3537 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
889976db 3538
fa40d1ee 3539 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3540 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
499118e9 3541 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3542
3115cd91 3543 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3544
499118e9 3545 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e 3546 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 3547 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
3548
3549 return nr_reclaimed;
66e1707b
BS
3550}
3551#endif
3552
1d82de61 3553static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3554 struct scan_control *sc)
f16015fb 3555{
b95a2f2d 3556 struct mem_cgroup *memcg;
b91ac374 3557 struct lruvec *lruvec;
f16015fb 3558
b95a2f2d
JW
3559 if (!total_swap_pages)
3560 return;
3561
b91ac374
JW
3562 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3563 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3564 return;
3565
b95a2f2d
JW
3566 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3567 do {
b91ac374
JW
3568 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3569 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3570 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3571 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3572 } while (memcg);
f16015fb
JW
3573}
3574
97a225e6 3575static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
1c30844d
MG
3576{
3577 int i;
3578 struct zone *zone;
3579
3580 /*
3581 * Check for watermark boosts top-down as the higher zones
3582 * are more likely to be boosted. Both watermarks and boosts
1eba09c1 3583 * should not be checked at the same time as reclaim would
1c30844d
MG
3584 * start prematurely when there is no boosting and a lower
3585 * zone is balanced.
3586 */
97a225e6 3587 for (i = highest_zoneidx; i >= 0; i--) {
1c30844d
MG
3588 zone = pgdat->node_zones + i;
3589 if (!managed_zone(zone))
3590 continue;
3591
3592 if (zone->watermark_boost)
3593 return true;
3594 }
3595
3596 return false;
3597}
3598
e716f2eb
MG
3599/*
3600 * Returns true if there is an eligible zone balanced for the request order
97a225e6 3601 * and highest_zoneidx
e716f2eb 3602 */
97a225e6 3603static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
60cefed4 3604{
e716f2eb
MG
3605 int i;
3606 unsigned long mark = -1;
3607 struct zone *zone;
60cefed4 3608
1c30844d
MG
3609 /*
3610 * Check watermarks bottom-up as lower zones are more likely to
3611 * meet watermarks.
3612 */
97a225e6 3613 for (i = 0; i <= highest_zoneidx; i++) {
e716f2eb 3614 zone = pgdat->node_zones + i;
6256c6b4 3615
e716f2eb
MG
3616 if (!managed_zone(zone))
3617 continue;
3618
3619 mark = high_wmark_pages(zone);
97a225e6 3620 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
e716f2eb
MG
3621 return true;
3622 }
3623
3624 /*
97a225e6 3625 * If a node has no populated zone within highest_zoneidx, it does not
e716f2eb
MG
3626 * need balancing by definition. This can happen if a zone-restricted
3627 * allocation tries to wake a remote kswapd.
3628 */
3629 if (mark == -1)
3630 return true;
3631
3632 return false;
60cefed4
JW
3633}
3634
631b6e08
MG
3635/* Clear pgdat state for congested, dirty or under writeback. */
3636static void clear_pgdat_congested(pg_data_t *pgdat)
3637{
1b05117d
JW
3638 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3639
3640 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
631b6e08
MG
3641 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3642 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3643}
3644
5515061d
MG
3645/*
3646 * Prepare kswapd for sleeping. This verifies that there are no processes
3647 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3648 *
3649 * Returns true if kswapd is ready to sleep
3650 */
97a225e6
JK
3651static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3652 int highest_zoneidx)
f50de2d3 3653{
5515061d 3654 /*
9e5e3661 3655 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3656 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3657 * race between when kswapd checks the watermarks and a process gets
3658 * throttled. There is also a potential race if processes get
3659 * throttled, kswapd wakes, a large process exits thereby balancing the
3660 * zones, which causes kswapd to exit balance_pgdat() before reaching
3661 * the wake up checks. If kswapd is going to sleep, no process should
3662 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3663 * the wake up is premature, processes will wake kswapd and get
3664 * throttled again. The difference from wake ups in balance_pgdat() is
3665 * that here we are under prepare_to_wait().
5515061d 3666 */
9e5e3661
VB
3667 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3668 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3669
c73322d0
JW
3670 /* Hopeless node, leave it to direct reclaim */
3671 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3672 return true;
3673
97a225e6 3674 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
e716f2eb
MG
3675 clear_pgdat_congested(pgdat);
3676 return true;
1d82de61
MG
3677 }
3678
333b0a45 3679 return false;
f50de2d3
MG
3680}
3681
75485363 3682/*
1d82de61
MG
3683 * kswapd shrinks a node of pages that are at or below the highest usable
3684 * zone that is currently unbalanced.
b8e83b94
MG
3685 *
3686 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3687 * reclaim or if the lack of progress was due to pages under writeback.
3688 * This is used to determine if the scanning priority needs to be raised.
75485363 3689 */
1d82de61 3690static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3691 struct scan_control *sc)
75485363 3692{
1d82de61
MG
3693 struct zone *zone;
3694 int z;
75485363 3695
1d82de61
MG
3696 /* Reclaim a number of pages proportional to the number of zones */
3697 sc->nr_to_reclaim = 0;
970a39a3 3698 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3699 zone = pgdat->node_zones + z;
6aa303de 3700 if (!managed_zone(zone))
1d82de61 3701 continue;
7c954f6d 3702
1d82de61
MG
3703 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3704 }
7c954f6d
MG
3705
3706 /*
1d82de61
MG
3707 * Historically care was taken to put equal pressure on all zones but
3708 * now pressure is applied based on node LRU order.
7c954f6d 3709 */
970a39a3 3710 shrink_node(pgdat, sc);
283aba9f 3711
7c954f6d 3712 /*
1d82de61
MG
3713 * Fragmentation may mean that the system cannot be rebalanced for
3714 * high-order allocations. If twice the allocation size has been
3715 * reclaimed then recheck watermarks only at order-0 to prevent
3716 * excessive reclaim. Assume that a process requested a high-order
3717 * can direct reclaim/compact.
7c954f6d 3718 */
9861a62c 3719 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3720 sc->order = 0;
7c954f6d 3721
b8e83b94 3722 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3723}
3724
1da177e4 3725/*
1d82de61
MG
3726 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3727 * that are eligible for use by the caller until at least one zone is
3728 * balanced.
1da177e4 3729 *
1d82de61 3730 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3731 *
3732 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3733 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 3734 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
3735 * or lower is eligible for reclaim until at least one usable zone is
3736 * balanced.
1da177e4 3737 */
97a225e6 3738static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
1da177e4 3739{
1da177e4 3740 int i;
0608f43d
AM
3741 unsigned long nr_soft_reclaimed;
3742 unsigned long nr_soft_scanned;
eb414681 3743 unsigned long pflags;
1c30844d
MG
3744 unsigned long nr_boost_reclaim;
3745 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3746 bool boosted;
1d82de61 3747 struct zone *zone;
179e9639
AM
3748 struct scan_control sc = {
3749 .gfp_mask = GFP_KERNEL,
ee814fe2 3750 .order = order,
a6dc60f8 3751 .may_unmap = 1,
179e9639 3752 };
93781325 3753
1732d2b0 3754 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 3755 psi_memstall_enter(&pflags);
93781325
OS
3756 __fs_reclaim_acquire();
3757
f8891e5e 3758 count_vm_event(PAGEOUTRUN);
1da177e4 3759
1c30844d
MG
3760 /*
3761 * Account for the reclaim boost. Note that the zone boost is left in
3762 * place so that parallel allocations that are near the watermark will
3763 * stall or direct reclaim until kswapd is finished.
3764 */
3765 nr_boost_reclaim = 0;
97a225e6 3766 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
3767 zone = pgdat->node_zones + i;
3768 if (!managed_zone(zone))
3769 continue;
3770
3771 nr_boost_reclaim += zone->watermark_boost;
3772 zone_boosts[i] = zone->watermark_boost;
3773 }
3774 boosted = nr_boost_reclaim;
3775
3776restart:
3777 sc.priority = DEF_PRIORITY;
9e3b2f8c 3778 do {
c73322d0 3779 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 3780 bool raise_priority = true;
1c30844d 3781 bool balanced;
93781325 3782 bool ret;
b8e83b94 3783
97a225e6 3784 sc.reclaim_idx = highest_zoneidx;
1da177e4 3785
86c79f6b 3786 /*
84c7a777
MG
3787 * If the number of buffer_heads exceeds the maximum allowed
3788 * then consider reclaiming from all zones. This has a dual
3789 * purpose -- on 64-bit systems it is expected that
3790 * buffer_heads are stripped during active rotation. On 32-bit
3791 * systems, highmem pages can pin lowmem memory and shrinking
3792 * buffers can relieve lowmem pressure. Reclaim may still not
3793 * go ahead if all eligible zones for the original allocation
3794 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3795 */
3796 if (buffer_heads_over_limit) {
3797 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3798 zone = pgdat->node_zones + i;
6aa303de 3799 if (!managed_zone(zone))
86c79f6b 3800 continue;
cc715d99 3801
970a39a3 3802 sc.reclaim_idx = i;
e1dbeda6 3803 break;
1da177e4 3804 }
1da177e4 3805 }
dafcb73e 3806
86c79f6b 3807 /*
1c30844d
MG
3808 * If the pgdat is imbalanced then ignore boosting and preserve
3809 * the watermarks for a later time and restart. Note that the
3810 * zone watermarks will be still reset at the end of balancing
3811 * on the grounds that the normal reclaim should be enough to
3812 * re-evaluate if boosting is required when kswapd next wakes.
3813 */
97a225e6 3814 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
1c30844d
MG
3815 if (!balanced && nr_boost_reclaim) {
3816 nr_boost_reclaim = 0;
3817 goto restart;
3818 }
3819
3820 /*
3821 * If boosting is not active then only reclaim if there are no
3822 * eligible zones. Note that sc.reclaim_idx is not used as
3823 * buffer_heads_over_limit may have adjusted it.
86c79f6b 3824 */
1c30844d 3825 if (!nr_boost_reclaim && balanced)
e716f2eb 3826 goto out;
e1dbeda6 3827
1c30844d
MG
3828 /* Limit the priority of boosting to avoid reclaim writeback */
3829 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3830 raise_priority = false;
3831
3832 /*
3833 * Do not writeback or swap pages for boosted reclaim. The
3834 * intent is to relieve pressure not issue sub-optimal IO
3835 * from reclaim context. If no pages are reclaimed, the
3836 * reclaim will be aborted.
3837 */
3838 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3839 sc.may_swap = !nr_boost_reclaim;
1c30844d 3840
1d82de61
MG
3841 /*
3842 * Do some background aging of the anon list, to give
3843 * pages a chance to be referenced before reclaiming. All
3844 * pages are rotated regardless of classzone as this is
3845 * about consistent aging.
3846 */
ef8f2327 3847 age_active_anon(pgdat, &sc);
1d82de61 3848
b7ea3c41
MG
3849 /*
3850 * If we're getting trouble reclaiming, start doing writepage
3851 * even in laptop mode.
3852 */
047d72c3 3853 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3854 sc.may_writepage = 1;
3855
1d82de61
MG
3856 /* Call soft limit reclaim before calling shrink_node. */
3857 sc.nr_scanned = 0;
3858 nr_soft_scanned = 0;
ef8f2327 3859 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3860 sc.gfp_mask, &nr_soft_scanned);
3861 sc.nr_reclaimed += nr_soft_reclaimed;
3862
1da177e4 3863 /*
1d82de61
MG
3864 * There should be no need to raise the scanning priority if
3865 * enough pages are already being scanned that that high
3866 * watermark would be met at 100% efficiency.
1da177e4 3867 */
970a39a3 3868 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3869 raise_priority = false;
5515061d
MG
3870
3871 /*
3872 * If the low watermark is met there is no need for processes
3873 * to be throttled on pfmemalloc_wait as they should not be
3874 * able to safely make forward progress. Wake them
3875 */
3876 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3877 allow_direct_reclaim(pgdat))
cfc51155 3878 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3879
b8e83b94 3880 /* Check if kswapd should be suspending */
93781325
OS
3881 __fs_reclaim_release();
3882 ret = try_to_freeze();
3883 __fs_reclaim_acquire();
3884 if (ret || kthread_should_stop())
b8e83b94 3885 break;
8357376d 3886
73ce02e9 3887 /*
b8e83b94
MG
3888 * Raise priority if scanning rate is too low or there was no
3889 * progress in reclaiming pages
73ce02e9 3890 */
c73322d0 3891 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
3892 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3893
3894 /*
3895 * If reclaim made no progress for a boost, stop reclaim as
3896 * IO cannot be queued and it could be an infinite loop in
3897 * extreme circumstances.
3898 */
3899 if (nr_boost_reclaim && !nr_reclaimed)
3900 break;
3901
c73322d0 3902 if (raise_priority || !nr_reclaimed)
b8e83b94 3903 sc.priority--;
1d82de61 3904 } while (sc.priority >= 1);
1da177e4 3905
c73322d0
JW
3906 if (!sc.nr_reclaimed)
3907 pgdat->kswapd_failures++;
3908
b8e83b94 3909out:
1c30844d
MG
3910 /* If reclaim was boosted, account for the reclaim done in this pass */
3911 if (boosted) {
3912 unsigned long flags;
3913
97a225e6 3914 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
3915 if (!zone_boosts[i])
3916 continue;
3917
3918 /* Increments are under the zone lock */
3919 zone = pgdat->node_zones + i;
3920 spin_lock_irqsave(&zone->lock, flags);
3921 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3922 spin_unlock_irqrestore(&zone->lock, flags);
3923 }
3924
3925 /*
3926 * As there is now likely space, wakeup kcompact to defragment
3927 * pageblocks.
3928 */
97a225e6 3929 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
1c30844d
MG
3930 }
3931
2a2e4885 3932 snapshot_refaults(NULL, pgdat);
93781325 3933 __fs_reclaim_release();
eb414681 3934 psi_memstall_leave(&pflags);
1732d2b0 3935 set_task_reclaim_state(current, NULL);
e5ca8071 3936
0abdee2b 3937 /*
1d82de61
MG
3938 * Return the order kswapd stopped reclaiming at as
3939 * prepare_kswapd_sleep() takes it into account. If another caller
3940 * entered the allocator slow path while kswapd was awake, order will
3941 * remain at the higher level.
0abdee2b 3942 */
1d82de61 3943 return sc.order;
1da177e4
LT
3944}
3945
e716f2eb 3946/*
97a225e6
JK
3947 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3948 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3949 * not a valid index then either kswapd runs for first time or kswapd couldn't
3950 * sleep after previous reclaim attempt (node is still unbalanced). In that
3951 * case return the zone index of the previous kswapd reclaim cycle.
e716f2eb 3952 */
97a225e6
JK
3953static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3954 enum zone_type prev_highest_zoneidx)
e716f2eb 3955{
97a225e6 3956 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 3957
97a225e6 3958 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
e716f2eb
MG
3959}
3960
38087d9b 3961static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
97a225e6 3962 unsigned int highest_zoneidx)
f0bc0a60
KM
3963{
3964 long remaining = 0;
3965 DEFINE_WAIT(wait);
3966
3967 if (freezing(current) || kthread_should_stop())
3968 return;
3969
3970 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3971
333b0a45
SG
3972 /*
3973 * Try to sleep for a short interval. Note that kcompactd will only be
3974 * woken if it is possible to sleep for a short interval. This is
3975 * deliberate on the assumption that if reclaim cannot keep an
3976 * eligible zone balanced that it's also unlikely that compaction will
3977 * succeed.
3978 */
97a225e6 3979 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
fd901c95
VB
3980 /*
3981 * Compaction records what page blocks it recently failed to
3982 * isolate pages from and skips them in the future scanning.
3983 * When kswapd is going to sleep, it is reasonable to assume
3984 * that pages and compaction may succeed so reset the cache.
3985 */
3986 reset_isolation_suitable(pgdat);
3987
3988 /*
3989 * We have freed the memory, now we should compact it to make
3990 * allocation of the requested order possible.
3991 */
97a225e6 3992 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
fd901c95 3993
f0bc0a60 3994 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3995
3996 /*
97a225e6 3997 * If woken prematurely then reset kswapd_highest_zoneidx and
38087d9b
MG
3998 * order. The values will either be from a wakeup request or
3999 * the previous request that slept prematurely.
4000 */
4001 if (remaining) {
97a225e6
JK
4002 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4003 kswapd_highest_zoneidx(pgdat,
4004 highest_zoneidx));
5644e1fb
QC
4005
4006 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4007 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
38087d9b
MG
4008 }
4009
f0bc0a60
KM
4010 finish_wait(&pgdat->kswapd_wait, &wait);
4011 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4012 }
4013
4014 /*
4015 * After a short sleep, check if it was a premature sleep. If not, then
4016 * go fully to sleep until explicitly woken up.
4017 */
d9f21d42 4018 if (!remaining &&
97a225e6 4019 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
f0bc0a60
KM
4020 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4021
4022 /*
4023 * vmstat counters are not perfectly accurate and the estimated
4024 * value for counters such as NR_FREE_PAGES can deviate from the
4025 * true value by nr_online_cpus * threshold. To avoid the zone
4026 * watermarks being breached while under pressure, we reduce the
4027 * per-cpu vmstat threshold while kswapd is awake and restore
4028 * them before going back to sleep.
4029 */
4030 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
4031
4032 if (!kthread_should_stop())
4033 schedule();
4034
f0bc0a60
KM
4035 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4036 } else {
4037 if (remaining)
4038 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4039 else
4040 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4041 }
4042 finish_wait(&pgdat->kswapd_wait, &wait);
4043}
4044
1da177e4
LT
4045/*
4046 * The background pageout daemon, started as a kernel thread
4f98a2fe 4047 * from the init process.
1da177e4
LT
4048 *
4049 * This basically trickles out pages so that we have _some_
4050 * free memory available even if there is no other activity
4051 * that frees anything up. This is needed for things like routing
4052 * etc, where we otherwise might have all activity going on in
4053 * asynchronous contexts that cannot page things out.
4054 *
4055 * If there are applications that are active memory-allocators
4056 * (most normal use), this basically shouldn't matter.
4057 */
4058static int kswapd(void *p)
4059{
e716f2eb 4060 unsigned int alloc_order, reclaim_order;
97a225e6 4061 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
1da177e4
LT
4062 pg_data_t *pgdat = (pg_data_t*)p;
4063 struct task_struct *tsk = current;
a70f7302 4064 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 4065
174596a0 4066 if (!cpumask_empty(cpumask))
c5f59f08 4067 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
4068
4069 /*
4070 * Tell the memory management that we're a "memory allocator",
4071 * and that if we need more memory we should get access to it
4072 * regardless (see "__alloc_pages()"). "kswapd" should
4073 * never get caught in the normal page freeing logic.
4074 *
4075 * (Kswapd normally doesn't need memory anyway, but sometimes
4076 * you need a small amount of memory in order to be able to
4077 * page out something else, and this flag essentially protects
4078 * us from recursively trying to free more memory as we're
4079 * trying to free the first piece of memory in the first place).
4080 */
930d9152 4081 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 4082 set_freezable();
1da177e4 4083
5644e1fb 4084 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4085 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 4086 for ( ; ; ) {
6f6313d4 4087 bool ret;
3e1d1d28 4088
5644e1fb 4089 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4090 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4091 highest_zoneidx);
e716f2eb 4092
38087d9b
MG
4093kswapd_try_sleep:
4094 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
97a225e6 4095 highest_zoneidx);
215ddd66 4096
97a225e6 4097 /* Read the new order and highest_zoneidx */
2b47a24c 4098 alloc_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4099 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4100 highest_zoneidx);
5644e1fb 4101 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4102 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 4103
8fe23e05
DR
4104 ret = try_to_freeze();
4105 if (kthread_should_stop())
4106 break;
4107
4108 /*
4109 * We can speed up thawing tasks if we don't call balance_pgdat
4110 * after returning from the refrigerator
4111 */
38087d9b
MG
4112 if (ret)
4113 continue;
4114
4115 /*
4116 * Reclaim begins at the requested order but if a high-order
4117 * reclaim fails then kswapd falls back to reclaiming for
4118 * order-0. If that happens, kswapd will consider sleeping
4119 * for the order it finished reclaiming at (reclaim_order)
4120 * but kcompactd is woken to compact for the original
4121 * request (alloc_order).
4122 */
97a225e6 4123 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
e5146b12 4124 alloc_order);
97a225e6
JK
4125 reclaim_order = balance_pgdat(pgdat, alloc_order,
4126 highest_zoneidx);
38087d9b
MG
4127 if (reclaim_order < alloc_order)
4128 goto kswapd_try_sleep;
1da177e4 4129 }
b0a8cc58 4130
71abdc15 4131 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
71abdc15 4132
1da177e4
LT
4133 return 0;
4134}
4135
4136/*
5ecd9d40
DR
4137 * A zone is low on free memory or too fragmented for high-order memory. If
4138 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4139 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4140 * has failed or is not needed, still wake up kcompactd if only compaction is
4141 * needed.
1da177e4 4142 */
5ecd9d40 4143void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
97a225e6 4144 enum zone_type highest_zoneidx)
1da177e4
LT
4145{
4146 pg_data_t *pgdat;
5644e1fb 4147 enum zone_type curr_idx;
1da177e4 4148
6aa303de 4149 if (!managed_zone(zone))
1da177e4
LT
4150 return;
4151
5ecd9d40 4152 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 4153 return;
5644e1fb 4154
88f5acf8 4155 pgdat = zone->zone_pgdat;
97a225e6 4156 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4157
97a225e6
JK
4158 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4159 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
5644e1fb
QC
4160
4161 if (READ_ONCE(pgdat->kswapd_order) < order)
4162 WRITE_ONCE(pgdat->kswapd_order, order);
dffcac2c 4163
8d0986e2 4164 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 4165 return;
e1a55637 4166
5ecd9d40
DR
4167 /* Hopeless node, leave it to direct reclaim if possible */
4168 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
97a225e6
JK
4169 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4170 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
5ecd9d40
DR
4171 /*
4172 * There may be plenty of free memory available, but it's too
4173 * fragmented for high-order allocations. Wake up kcompactd
4174 * and rely on compaction_suitable() to determine if it's
4175 * needed. If it fails, it will defer subsequent attempts to
4176 * ratelimit its work.
4177 */
4178 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
97a225e6 4179 wakeup_kcompactd(pgdat, order, highest_zoneidx);
e716f2eb 4180 return;
5ecd9d40 4181 }
88f5acf8 4182
97a225e6 4183 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
5ecd9d40 4184 gfp_flags);
8d0986e2 4185 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
4186}
4187
c6f37f12 4188#ifdef CONFIG_HIBERNATION
1da177e4 4189/*
7b51755c 4190 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
4191 * freed pages.
4192 *
4193 * Rather than trying to age LRUs the aim is to preserve the overall
4194 * LRU order by reclaiming preferentially
4195 * inactive > active > active referenced > active mapped
1da177e4 4196 */
7b51755c 4197unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 4198{
d6277db4 4199 struct scan_control sc = {
ee814fe2 4200 .nr_to_reclaim = nr_to_reclaim,
7b51755c 4201 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 4202 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 4203 .priority = DEF_PRIORITY,
d6277db4 4204 .may_writepage = 1,
ee814fe2
JW
4205 .may_unmap = 1,
4206 .may_swap = 1,
7b51755c 4207 .hibernation_mode = 1,
1da177e4 4208 };
a09ed5e0 4209 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 4210 unsigned long nr_reclaimed;
499118e9 4211 unsigned int noreclaim_flag;
1da177e4 4212
d92a8cfc 4213 fs_reclaim_acquire(sc.gfp_mask);
93781325 4214 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 4215 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 4216
3115cd91 4217 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 4218
1732d2b0 4219 set_task_reclaim_state(current, NULL);
499118e9 4220 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4221 fs_reclaim_release(sc.gfp_mask);
d6277db4 4222
7b51755c 4223 return nr_reclaimed;
1da177e4 4224}
c6f37f12 4225#endif /* CONFIG_HIBERNATION */
1da177e4 4226
3218ae14
YG
4227/*
4228 * This kswapd start function will be called by init and node-hot-add.
4229 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4230 */
4231int kswapd_run(int nid)
4232{
4233 pg_data_t *pgdat = NODE_DATA(nid);
4234 int ret = 0;
4235
4236 if (pgdat->kswapd)
4237 return 0;
4238
4239 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4240 if (IS_ERR(pgdat->kswapd)) {
4241 /* failure at boot is fatal */
c6202adf 4242 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
4243 pr_err("Failed to start kswapd on node %d\n", nid);
4244 ret = PTR_ERR(pgdat->kswapd);
d72515b8 4245 pgdat->kswapd = NULL;
3218ae14
YG
4246 }
4247 return ret;
4248}
4249
8fe23e05 4250/*
d8adde17 4251 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 4252 * hold mem_hotplug_begin/end().
8fe23e05
DR
4253 */
4254void kswapd_stop(int nid)
4255{
4256 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4257
d8adde17 4258 if (kswapd) {
8fe23e05 4259 kthread_stop(kswapd);
d8adde17
JL
4260 NODE_DATA(nid)->kswapd = NULL;
4261 }
8fe23e05
DR
4262}
4263
1da177e4
LT
4264static int __init kswapd_init(void)
4265{
6b700b5b 4266 int nid;
69e05944 4267
1da177e4 4268 swap_setup();
48fb2e24 4269 for_each_node_state(nid, N_MEMORY)
3218ae14 4270 kswapd_run(nid);
1da177e4
LT
4271 return 0;
4272}
4273
4274module_init(kswapd_init)
9eeff239
CL
4275
4276#ifdef CONFIG_NUMA
4277/*
a5f5f91d 4278 * Node reclaim mode
9eeff239 4279 *
a5f5f91d 4280 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4281 * the watermarks.
9eeff239 4282 */
a5f5f91d 4283int node_reclaim_mode __read_mostly;
9eeff239 4284
a92f7126 4285/*
a5f5f91d 4286 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4287 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4288 * a zone.
4289 */
a5f5f91d 4290#define NODE_RECLAIM_PRIORITY 4
a92f7126 4291
9614634f 4292/*
a5f5f91d 4293 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4294 * occur.
4295 */
4296int sysctl_min_unmapped_ratio = 1;
4297
0ff38490
CL
4298/*
4299 * If the number of slab pages in a zone grows beyond this percentage then
4300 * slab reclaim needs to occur.
4301 */
4302int sysctl_min_slab_ratio = 5;
4303
11fb9989 4304static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4305{
11fb9989
MG
4306 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4307 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4308 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4309
4310 /*
4311 * It's possible for there to be more file mapped pages than
4312 * accounted for by the pages on the file LRU lists because
4313 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4314 */
4315 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4316}
4317
4318/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4319static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4320{
d031a157
AM
4321 unsigned long nr_pagecache_reclaimable;
4322 unsigned long delta = 0;
90afa5de
MG
4323
4324 /*
95bbc0c7 4325 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4326 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4327 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4328 * a better estimate
4329 */
a5f5f91d
MG
4330 if (node_reclaim_mode & RECLAIM_UNMAP)
4331 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4332 else
a5f5f91d 4333 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4334
4335 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4336 if (!(node_reclaim_mode & RECLAIM_WRITE))
4337 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4338
4339 /* Watch for any possible underflows due to delta */
4340 if (unlikely(delta > nr_pagecache_reclaimable))
4341 delta = nr_pagecache_reclaimable;
4342
4343 return nr_pagecache_reclaimable - delta;
4344}
4345
9eeff239 4346/*
a5f5f91d 4347 * Try to free up some pages from this node through reclaim.
9eeff239 4348 */
a5f5f91d 4349static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4350{
7fb2d46d 4351 /* Minimum pages needed in order to stay on node */
69e05944 4352 const unsigned long nr_pages = 1 << order;
9eeff239 4353 struct task_struct *p = current;
499118e9 4354 unsigned int noreclaim_flag;
179e9639 4355 struct scan_control sc = {
62b726c1 4356 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4357 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4358 .order = order,
a5f5f91d
MG
4359 .priority = NODE_RECLAIM_PRIORITY,
4360 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4361 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4362 .may_swap = 1,
f2f43e56 4363 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4364 };
9eeff239 4365
132bb8cf
YS
4366 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4367 sc.gfp_mask);
4368
9eeff239 4369 cond_resched();
93781325 4370 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4371 /*
95bbc0c7 4372 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4373 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 4374 * and RECLAIM_UNMAP.
d4f7796e 4375 */
499118e9
VB
4376 noreclaim_flag = memalloc_noreclaim_save();
4377 p->flags |= PF_SWAPWRITE;
1732d2b0 4378 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 4379
a5f5f91d 4380 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 4381 /*
894befec 4382 * Free memory by calling shrink node with increasing
0ff38490
CL
4383 * priorities until we have enough memory freed.
4384 */
0ff38490 4385 do {
970a39a3 4386 shrink_node(pgdat, &sc);
9e3b2f8c 4387 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4388 }
c84db23c 4389
1732d2b0 4390 set_task_reclaim_state(p, NULL);
499118e9
VB
4391 current->flags &= ~PF_SWAPWRITE;
4392 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4393 fs_reclaim_release(sc.gfp_mask);
132bb8cf
YS
4394
4395 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4396
a79311c1 4397 return sc.nr_reclaimed >= nr_pages;
9eeff239 4398}
179e9639 4399
a5f5f91d 4400int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4401{
d773ed6b 4402 int ret;
179e9639
AM
4403
4404 /*
a5f5f91d 4405 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4406 * slab pages if we are over the defined limits.
34aa1330 4407 *
9614634f
CL
4408 * A small portion of unmapped file backed pages is needed for
4409 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4410 * thrown out if the node is overallocated. So we do not reclaim
4411 * if less than a specified percentage of the node is used by
9614634f 4412 * unmapped file backed pages.
179e9639 4413 */
a5f5f91d 4414 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
d42f3245
RG
4415 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4416 pgdat->min_slab_pages)
a5f5f91d 4417 return NODE_RECLAIM_FULL;
179e9639
AM
4418
4419 /*
d773ed6b 4420 * Do not scan if the allocation should not be delayed.
179e9639 4421 */
d0164adc 4422 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4423 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4424
4425 /*
a5f5f91d 4426 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4427 * have associated processors. This will favor the local processor
4428 * over remote processors and spread off node memory allocations
4429 * as wide as possible.
4430 */
a5f5f91d
MG
4431 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4432 return NODE_RECLAIM_NOSCAN;
d773ed6b 4433
a5f5f91d
MG
4434 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4435 return NODE_RECLAIM_NOSCAN;
fa5e084e 4436
a5f5f91d
MG
4437 ret = __node_reclaim(pgdat, gfp_mask, order);
4438 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4439
24cf7251
MG
4440 if (!ret)
4441 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4442
d773ed6b 4443 return ret;
179e9639 4444}
9eeff239 4445#endif
894bc310 4446
89e004ea 4447/**
64e3d12f
KHY
4448 * check_move_unevictable_pages - check pages for evictability and move to
4449 * appropriate zone lru list
4450 * @pvec: pagevec with lru pages to check
89e004ea 4451 *
64e3d12f
KHY
4452 * Checks pages for evictability, if an evictable page is in the unevictable
4453 * lru list, moves it to the appropriate evictable lru list. This function
4454 * should be only used for lru pages.
89e004ea 4455 */
64e3d12f 4456void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4457{
6168d0da 4458 struct lruvec *lruvec = NULL;
24513264
HD
4459 int pgscanned = 0;
4460 int pgrescued = 0;
4461 int i;
89e004ea 4462
64e3d12f
KHY
4463 for (i = 0; i < pvec->nr; i++) {
4464 struct page *page = pvec->pages[i];
8d8869ca
HD
4465 int nr_pages;
4466
4467 if (PageTransTail(page))
4468 continue;
4469
4470 nr_pages = thp_nr_pages(page);
4471 pgscanned += nr_pages;
89e004ea 4472
d25b5bd8
AS
4473 /* block memcg migration during page moving between lru */
4474 if (!TestClearPageLRU(page))
4475 continue;
4476
2a5e4e34 4477 lruvec = relock_page_lruvec_irq(page, lruvec);
d25b5bd8 4478 if (page_evictable(page) && PageUnevictable(page)) {
46ae6b2c 4479 del_page_from_lru_list(page, lruvec);
24513264 4480 ClearPageUnevictable(page);
3a9c9788 4481 add_page_to_lru_list(page, lruvec);
8d8869ca 4482 pgrescued += nr_pages;
89e004ea 4483 }
d25b5bd8 4484 SetPageLRU(page);
24513264 4485 }
89e004ea 4486
6168d0da 4487 if (lruvec) {
24513264
HD
4488 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4489 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
6168d0da 4490 unlock_page_lruvec_irq(lruvec);
d25b5bd8
AS
4491 } else if (pgscanned) {
4492 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
89e004ea 4493 }
89e004ea 4494}
64e3d12f 4495EXPORT_SYMBOL_GPL(check_move_unevictable_pages);