]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/vmscan.c
mm: vmscan: move swappiness out of scan_control
[mirror_ubuntu-bionic-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4
LT
16#include <linux/mm.h>
17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
268bb0ce 47#include <linux/prefetch.h>
b1de0d13 48#include <linux/printk.h>
1da177e4
LT
49
50#include <asm/tlbflush.h>
51#include <asm/div64.h>
52
53#include <linux/swapops.h>
117aad1e 54#include <linux/balloon_compaction.h>
1da177e4 55
0f8053a5
NP
56#include "internal.h"
57
33906bc5
MG
58#define CREATE_TRACE_POINTS
59#include <trace/events/vmscan.h>
60
1da177e4 61struct scan_control {
1da177e4
LT
62 /* Incremented by the number of inactive pages that were scanned */
63 unsigned long nr_scanned;
64
a79311c1
RR
65 /* Number of pages freed so far during a call to shrink_zones() */
66 unsigned long nr_reclaimed;
67
0b06496a
JW
68 /* One of the zones is ready for compaction */
69 int compaction_ready;
70
22fba335
KM
71 /* How many pages shrink_list() should reclaim */
72 unsigned long nr_to_reclaim;
73
7b51755c
KM
74 unsigned long hibernation_mode;
75
1da177e4 76 /* This context's GFP mask */
6daa0e28 77 gfp_t gfp_mask;
1da177e4
LT
78
79 int may_writepage;
80
a6dc60f8
JW
81 /* Can mapped pages be reclaimed? */
82 int may_unmap;
f1fd1067 83
2e2e4259
KM
84 /* Can pages be swapped as part of reclaim? */
85 int may_swap;
86
5ad333eb 87 int order;
66e1707b 88
9e3b2f8c
KK
89 /* Scan (total_size >> priority) pages at once */
90 int priority;
91
f16015fb
JW
92 /*
93 * The memory cgroup that hit its limit and as a result is the
94 * primary target of this reclaim invocation.
95 */
96 struct mem_cgroup *target_mem_cgroup;
66e1707b 97
327c0e96
KH
98 /*
99 * Nodemask of nodes allowed by the caller. If NULL, all nodes
100 * are scanned.
101 */
102 nodemask_t *nodemask;
1da177e4
LT
103};
104
1da177e4
LT
105#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
106
107#ifdef ARCH_HAS_PREFETCH
108#define prefetch_prev_lru_page(_page, _base, _field) \
109 do { \
110 if ((_page)->lru.prev != _base) { \
111 struct page *prev; \
112 \
113 prev = lru_to_page(&(_page->lru)); \
114 prefetch(&prev->_field); \
115 } \
116 } while (0)
117#else
118#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
119#endif
120
121#ifdef ARCH_HAS_PREFETCHW
122#define prefetchw_prev_lru_page(_page, _base, _field) \
123 do { \
124 if ((_page)->lru.prev != _base) { \
125 struct page *prev; \
126 \
127 prev = lru_to_page(&(_page->lru)); \
128 prefetchw(&prev->_field); \
129 } \
130 } while (0)
131#else
132#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
133#endif
134
135/*
136 * From 0 .. 100. Higher means more swappy.
137 */
138int vm_swappiness = 60;
b21e0b90 139unsigned long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
140
141static LIST_HEAD(shrinker_list);
142static DECLARE_RWSEM(shrinker_rwsem);
143
c255a458 144#ifdef CONFIG_MEMCG
89b5fae5
JW
145static bool global_reclaim(struct scan_control *sc)
146{
f16015fb 147 return !sc->target_mem_cgroup;
89b5fae5 148}
91a45470 149#else
89b5fae5
JW
150static bool global_reclaim(struct scan_control *sc)
151{
152 return true;
153}
91a45470
KH
154#endif
155
a1c3bfb2 156static unsigned long zone_reclaimable_pages(struct zone *zone)
6e543d57
LD
157{
158 int nr;
159
160 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
161 zone_page_state(zone, NR_INACTIVE_FILE);
162
163 if (get_nr_swap_pages() > 0)
164 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
165 zone_page_state(zone, NR_INACTIVE_ANON);
166
167 return nr;
168}
169
170bool zone_reclaimable(struct zone *zone)
171{
172 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
173}
174
4d7dcca2 175static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 176{
c3c787e8 177 if (!mem_cgroup_disabled())
4d7dcca2 178 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 179
074291fe 180 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
181}
182
1da177e4 183/*
1d3d4437 184 * Add a shrinker callback to be called from the vm.
1da177e4 185 */
1d3d4437 186int register_shrinker(struct shrinker *shrinker)
1da177e4 187{
1d3d4437
GC
188 size_t size = sizeof(*shrinker->nr_deferred);
189
190 /*
191 * If we only have one possible node in the system anyway, save
192 * ourselves the trouble and disable NUMA aware behavior. This way we
193 * will save memory and some small loop time later.
194 */
195 if (nr_node_ids == 1)
196 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
197
198 if (shrinker->flags & SHRINKER_NUMA_AWARE)
199 size *= nr_node_ids;
200
201 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
202 if (!shrinker->nr_deferred)
203 return -ENOMEM;
204
8e1f936b
RR
205 down_write(&shrinker_rwsem);
206 list_add_tail(&shrinker->list, &shrinker_list);
207 up_write(&shrinker_rwsem);
1d3d4437 208 return 0;
1da177e4 209}
8e1f936b 210EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
211
212/*
213 * Remove one
214 */
8e1f936b 215void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
216{
217 down_write(&shrinker_rwsem);
218 list_del(&shrinker->list);
219 up_write(&shrinker_rwsem);
ae393321 220 kfree(shrinker->nr_deferred);
1da177e4 221}
8e1f936b 222EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
223
224#define SHRINK_BATCH 128
1d3d4437
GC
225
226static unsigned long
227shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
228 unsigned long nr_pages_scanned, unsigned long lru_pages)
229{
230 unsigned long freed = 0;
231 unsigned long long delta;
232 long total_scan;
d5bc5fd3 233 long freeable;
1d3d4437
GC
234 long nr;
235 long new_nr;
236 int nid = shrinkctl->nid;
237 long batch_size = shrinker->batch ? shrinker->batch
238 : SHRINK_BATCH;
239
d5bc5fd3
VD
240 freeable = shrinker->count_objects(shrinker, shrinkctl);
241 if (freeable == 0)
1d3d4437
GC
242 return 0;
243
244 /*
245 * copy the current shrinker scan count into a local variable
246 * and zero it so that other concurrent shrinker invocations
247 * don't also do this scanning work.
248 */
249 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
250
251 total_scan = nr;
252 delta = (4 * nr_pages_scanned) / shrinker->seeks;
d5bc5fd3 253 delta *= freeable;
1d3d4437
GC
254 do_div(delta, lru_pages + 1);
255 total_scan += delta;
256 if (total_scan < 0) {
257 printk(KERN_ERR
258 "shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 259 shrinker->scan_objects, total_scan);
d5bc5fd3 260 total_scan = freeable;
1d3d4437
GC
261 }
262
263 /*
264 * We need to avoid excessive windup on filesystem shrinkers
265 * due to large numbers of GFP_NOFS allocations causing the
266 * shrinkers to return -1 all the time. This results in a large
267 * nr being built up so when a shrink that can do some work
268 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 269 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
270 * memory.
271 *
272 * Hence only allow the shrinker to scan the entire cache when
273 * a large delta change is calculated directly.
274 */
d5bc5fd3
VD
275 if (delta < freeable / 4)
276 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
277
278 /*
279 * Avoid risking looping forever due to too large nr value:
280 * never try to free more than twice the estimate number of
281 * freeable entries.
282 */
d5bc5fd3
VD
283 if (total_scan > freeable * 2)
284 total_scan = freeable * 2;
1d3d4437
GC
285
286 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
287 nr_pages_scanned, lru_pages,
d5bc5fd3 288 freeable, delta, total_scan);
1d3d4437 289
0b1fb40a
VD
290 /*
291 * Normally, we should not scan less than batch_size objects in one
292 * pass to avoid too frequent shrinker calls, but if the slab has less
293 * than batch_size objects in total and we are really tight on memory,
294 * we will try to reclaim all available objects, otherwise we can end
295 * up failing allocations although there are plenty of reclaimable
296 * objects spread over several slabs with usage less than the
297 * batch_size.
298 *
299 * We detect the "tight on memory" situations by looking at the total
300 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 301 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
302 * scanning at high prio and therefore should try to reclaim as much as
303 * possible.
304 */
305 while (total_scan >= batch_size ||
d5bc5fd3 306 total_scan >= freeable) {
a0b02131 307 unsigned long ret;
0b1fb40a 308 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 309
0b1fb40a 310 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
311 ret = shrinker->scan_objects(shrinker, shrinkctl);
312 if (ret == SHRINK_STOP)
313 break;
314 freed += ret;
1d3d4437 315
0b1fb40a
VD
316 count_vm_events(SLABS_SCANNED, nr_to_scan);
317 total_scan -= nr_to_scan;
1d3d4437
GC
318
319 cond_resched();
320 }
321
322 /*
323 * move the unused scan count back into the shrinker in a
324 * manner that handles concurrent updates. If we exhausted the
325 * scan, there is no need to do an update.
326 */
327 if (total_scan > 0)
328 new_nr = atomic_long_add_return(total_scan,
329 &shrinker->nr_deferred[nid]);
330 else
331 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
332
df9024a8 333 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 334 return freed;
1495f230
YH
335}
336
1da177e4
LT
337/*
338 * Call the shrink functions to age shrinkable caches
339 *
340 * Here we assume it costs one seek to replace a lru page and that it also
341 * takes a seek to recreate a cache object. With this in mind we age equal
342 * percentages of the lru and ageable caches. This should balance the seeks
343 * generated by these structures.
344 *
183ff22b 345 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
346 * slab to avoid swapping.
347 *
348 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
349 *
350 * `lru_pages' represents the number of on-LRU pages in all the zones which
351 * are eligible for the caller's allocation attempt. It is used for balancing
352 * slab reclaim versus page reclaim.
b15e0905 353 *
354 * Returns the number of slab objects which we shrunk.
1da177e4 355 */
24f7c6b9 356unsigned long shrink_slab(struct shrink_control *shrinkctl,
1495f230 357 unsigned long nr_pages_scanned,
a09ed5e0 358 unsigned long lru_pages)
1da177e4
LT
359{
360 struct shrinker *shrinker;
24f7c6b9 361 unsigned long freed = 0;
1da177e4 362
1495f230
YH
363 if (nr_pages_scanned == 0)
364 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 365
f06590bd 366 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
367 /*
368 * If we would return 0, our callers would understand that we
369 * have nothing else to shrink and give up trying. By returning
370 * 1 we keep it going and assume we'll be able to shrink next
371 * time.
372 */
373 freed = 1;
f06590bd
MK
374 goto out;
375 }
1da177e4
LT
376
377 list_for_each_entry(shrinker, &shrinker_list, list) {
ec97097b
VD
378 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
379 shrinkctl->nid = 0;
1d3d4437 380 freed += shrink_slab_node(shrinkctl, shrinker,
ec97097b
VD
381 nr_pages_scanned, lru_pages);
382 continue;
383 }
384
385 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
386 if (node_online(shrinkctl->nid))
387 freed += shrink_slab_node(shrinkctl, shrinker,
388 nr_pages_scanned, lru_pages);
1da177e4 389
1da177e4 390 }
1da177e4
LT
391 }
392 up_read(&shrinker_rwsem);
f06590bd
MK
393out:
394 cond_resched();
24f7c6b9 395 return freed;
1da177e4
LT
396}
397
1da177e4
LT
398static inline int is_page_cache_freeable(struct page *page)
399{
ceddc3a5
JW
400 /*
401 * A freeable page cache page is referenced only by the caller
402 * that isolated the page, the page cache radix tree and
403 * optional buffer heads at page->private.
404 */
edcf4748 405 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
406}
407
7d3579e8
KM
408static int may_write_to_queue(struct backing_dev_info *bdi,
409 struct scan_control *sc)
1da177e4 410{
930d9152 411 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
412 return 1;
413 if (!bdi_write_congested(bdi))
414 return 1;
415 if (bdi == current->backing_dev_info)
416 return 1;
417 return 0;
418}
419
420/*
421 * We detected a synchronous write error writing a page out. Probably
422 * -ENOSPC. We need to propagate that into the address_space for a subsequent
423 * fsync(), msync() or close().
424 *
425 * The tricky part is that after writepage we cannot touch the mapping: nothing
426 * prevents it from being freed up. But we have a ref on the page and once
427 * that page is locked, the mapping is pinned.
428 *
429 * We're allowed to run sleeping lock_page() here because we know the caller has
430 * __GFP_FS.
431 */
432static void handle_write_error(struct address_space *mapping,
433 struct page *page, int error)
434{
7eaceacc 435 lock_page(page);
3e9f45bd
GC
436 if (page_mapping(page) == mapping)
437 mapping_set_error(mapping, error);
1da177e4
LT
438 unlock_page(page);
439}
440
04e62a29
CL
441/* possible outcome of pageout() */
442typedef enum {
443 /* failed to write page out, page is locked */
444 PAGE_KEEP,
445 /* move page to the active list, page is locked */
446 PAGE_ACTIVATE,
447 /* page has been sent to the disk successfully, page is unlocked */
448 PAGE_SUCCESS,
449 /* page is clean and locked */
450 PAGE_CLEAN,
451} pageout_t;
452
1da177e4 453/*
1742f19f
AM
454 * pageout is called by shrink_page_list() for each dirty page.
455 * Calls ->writepage().
1da177e4 456 */
c661b078 457static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 458 struct scan_control *sc)
1da177e4
LT
459{
460 /*
461 * If the page is dirty, only perform writeback if that write
462 * will be non-blocking. To prevent this allocation from being
463 * stalled by pagecache activity. But note that there may be
464 * stalls if we need to run get_block(). We could test
465 * PagePrivate for that.
466 *
8174202b 467 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
468 * this page's queue, we can perform writeback even if that
469 * will block.
470 *
471 * If the page is swapcache, write it back even if that would
472 * block, for some throttling. This happens by accident, because
473 * swap_backing_dev_info is bust: it doesn't reflect the
474 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
475 */
476 if (!is_page_cache_freeable(page))
477 return PAGE_KEEP;
478 if (!mapping) {
479 /*
480 * Some data journaling orphaned pages can have
481 * page->mapping == NULL while being dirty with clean buffers.
482 */
266cf658 483 if (page_has_private(page)) {
1da177e4
LT
484 if (try_to_free_buffers(page)) {
485 ClearPageDirty(page);
b1de0d13 486 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
487 return PAGE_CLEAN;
488 }
489 }
490 return PAGE_KEEP;
491 }
492 if (mapping->a_ops->writepage == NULL)
493 return PAGE_ACTIVATE;
0e093d99 494 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
495 return PAGE_KEEP;
496
497 if (clear_page_dirty_for_io(page)) {
498 int res;
499 struct writeback_control wbc = {
500 .sync_mode = WB_SYNC_NONE,
501 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
502 .range_start = 0,
503 .range_end = LLONG_MAX,
1da177e4
LT
504 .for_reclaim = 1,
505 };
506
507 SetPageReclaim(page);
508 res = mapping->a_ops->writepage(page, &wbc);
509 if (res < 0)
510 handle_write_error(mapping, page, res);
994fc28c 511 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
512 ClearPageReclaim(page);
513 return PAGE_ACTIVATE;
514 }
c661b078 515
1da177e4
LT
516 if (!PageWriteback(page)) {
517 /* synchronous write or broken a_ops? */
518 ClearPageReclaim(page);
519 }
23b9da55 520 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 521 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
522 return PAGE_SUCCESS;
523 }
524
525 return PAGE_CLEAN;
526}
527
a649fd92 528/*
e286781d
NP
529 * Same as remove_mapping, but if the page is removed from the mapping, it
530 * gets returned with a refcount of 0.
a649fd92 531 */
a528910e
JW
532static int __remove_mapping(struct address_space *mapping, struct page *page,
533 bool reclaimed)
49d2e9cc 534{
28e4d965
NP
535 BUG_ON(!PageLocked(page));
536 BUG_ON(mapping != page_mapping(page));
49d2e9cc 537
19fd6231 538 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 539 /*
0fd0e6b0
NP
540 * The non racy check for a busy page.
541 *
542 * Must be careful with the order of the tests. When someone has
543 * a ref to the page, it may be possible that they dirty it then
544 * drop the reference. So if PageDirty is tested before page_count
545 * here, then the following race may occur:
546 *
547 * get_user_pages(&page);
548 * [user mapping goes away]
549 * write_to(page);
550 * !PageDirty(page) [good]
551 * SetPageDirty(page);
552 * put_page(page);
553 * !page_count(page) [good, discard it]
554 *
555 * [oops, our write_to data is lost]
556 *
557 * Reversing the order of the tests ensures such a situation cannot
558 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
559 * load is not satisfied before that of page->_count.
560 *
561 * Note that if SetPageDirty is always performed via set_page_dirty,
562 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 563 */
e286781d 564 if (!page_freeze_refs(page, 2))
49d2e9cc 565 goto cannot_free;
e286781d
NP
566 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
567 if (unlikely(PageDirty(page))) {
568 page_unfreeze_refs(page, 2);
49d2e9cc 569 goto cannot_free;
e286781d 570 }
49d2e9cc
CL
571
572 if (PageSwapCache(page)) {
573 swp_entry_t swap = { .val = page_private(page) };
574 __delete_from_swap_cache(page);
19fd6231 575 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 576 swapcache_free(swap, page);
e286781d 577 } else {
6072d13c 578 void (*freepage)(struct page *);
a528910e 579 void *shadow = NULL;
6072d13c
LT
580
581 freepage = mapping->a_ops->freepage;
a528910e
JW
582 /*
583 * Remember a shadow entry for reclaimed file cache in
584 * order to detect refaults, thus thrashing, later on.
585 *
586 * But don't store shadows in an address space that is
587 * already exiting. This is not just an optizimation,
588 * inode reclaim needs to empty out the radix tree or
589 * the nodes are lost. Don't plant shadows behind its
590 * back.
591 */
592 if (reclaimed && page_is_file_cache(page) &&
593 !mapping_exiting(mapping))
594 shadow = workingset_eviction(mapping, page);
595 __delete_from_page_cache(page, shadow);
19fd6231 596 spin_unlock_irq(&mapping->tree_lock);
e767e056 597 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
598
599 if (freepage != NULL)
600 freepage(page);
49d2e9cc
CL
601 }
602
49d2e9cc
CL
603 return 1;
604
605cannot_free:
19fd6231 606 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
607 return 0;
608}
609
e286781d
NP
610/*
611 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
612 * someone else has a ref on the page, abort and return 0. If it was
613 * successfully detached, return 1. Assumes the caller has a single ref on
614 * this page.
615 */
616int remove_mapping(struct address_space *mapping, struct page *page)
617{
a528910e 618 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
619 /*
620 * Unfreezing the refcount with 1 rather than 2 effectively
621 * drops the pagecache ref for us without requiring another
622 * atomic operation.
623 */
624 page_unfreeze_refs(page, 1);
625 return 1;
626 }
627 return 0;
628}
629
894bc310
LS
630/**
631 * putback_lru_page - put previously isolated page onto appropriate LRU list
632 * @page: page to be put back to appropriate lru list
633 *
634 * Add previously isolated @page to appropriate LRU list.
635 * Page may still be unevictable for other reasons.
636 *
637 * lru_lock must not be held, interrupts must be enabled.
638 */
894bc310
LS
639void putback_lru_page(struct page *page)
640{
0ec3b74c 641 bool is_unevictable;
bbfd28ee 642 int was_unevictable = PageUnevictable(page);
894bc310 643
309381fe 644 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
645
646redo:
647 ClearPageUnevictable(page);
648
39b5f29a 649 if (page_evictable(page)) {
894bc310
LS
650 /*
651 * For evictable pages, we can use the cache.
652 * In event of a race, worst case is we end up with an
653 * unevictable page on [in]active list.
654 * We know how to handle that.
655 */
0ec3b74c 656 is_unevictable = false;
c53954a0 657 lru_cache_add(page);
894bc310
LS
658 } else {
659 /*
660 * Put unevictable pages directly on zone's unevictable
661 * list.
662 */
0ec3b74c 663 is_unevictable = true;
894bc310 664 add_page_to_unevictable_list(page);
6a7b9548 665 /*
21ee9f39
MK
666 * When racing with an mlock or AS_UNEVICTABLE clearing
667 * (page is unlocked) make sure that if the other thread
668 * does not observe our setting of PG_lru and fails
24513264 669 * isolation/check_move_unevictable_pages,
21ee9f39 670 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
671 * the page back to the evictable list.
672 *
21ee9f39 673 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
674 */
675 smp_mb();
894bc310 676 }
894bc310
LS
677
678 /*
679 * page's status can change while we move it among lru. If an evictable
680 * page is on unevictable list, it never be freed. To avoid that,
681 * check after we added it to the list, again.
682 */
0ec3b74c 683 if (is_unevictable && page_evictable(page)) {
894bc310
LS
684 if (!isolate_lru_page(page)) {
685 put_page(page);
686 goto redo;
687 }
688 /* This means someone else dropped this page from LRU
689 * So, it will be freed or putback to LRU again. There is
690 * nothing to do here.
691 */
692 }
693
0ec3b74c 694 if (was_unevictable && !is_unevictable)
bbfd28ee 695 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 696 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
697 count_vm_event(UNEVICTABLE_PGCULLED);
698
894bc310
LS
699 put_page(page); /* drop ref from isolate */
700}
701
dfc8d636
JW
702enum page_references {
703 PAGEREF_RECLAIM,
704 PAGEREF_RECLAIM_CLEAN,
64574746 705 PAGEREF_KEEP,
dfc8d636
JW
706 PAGEREF_ACTIVATE,
707};
708
709static enum page_references page_check_references(struct page *page,
710 struct scan_control *sc)
711{
64574746 712 int referenced_ptes, referenced_page;
dfc8d636 713 unsigned long vm_flags;
dfc8d636 714
c3ac9a8a
JW
715 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
716 &vm_flags);
64574746 717 referenced_page = TestClearPageReferenced(page);
dfc8d636 718
dfc8d636
JW
719 /*
720 * Mlock lost the isolation race with us. Let try_to_unmap()
721 * move the page to the unevictable list.
722 */
723 if (vm_flags & VM_LOCKED)
724 return PAGEREF_RECLAIM;
725
64574746 726 if (referenced_ptes) {
e4898273 727 if (PageSwapBacked(page))
64574746
JW
728 return PAGEREF_ACTIVATE;
729 /*
730 * All mapped pages start out with page table
731 * references from the instantiating fault, so we need
732 * to look twice if a mapped file page is used more
733 * than once.
734 *
735 * Mark it and spare it for another trip around the
736 * inactive list. Another page table reference will
737 * lead to its activation.
738 *
739 * Note: the mark is set for activated pages as well
740 * so that recently deactivated but used pages are
741 * quickly recovered.
742 */
743 SetPageReferenced(page);
744
34dbc67a 745 if (referenced_page || referenced_ptes > 1)
64574746
JW
746 return PAGEREF_ACTIVATE;
747
c909e993
KK
748 /*
749 * Activate file-backed executable pages after first usage.
750 */
751 if (vm_flags & VM_EXEC)
752 return PAGEREF_ACTIVATE;
753
64574746
JW
754 return PAGEREF_KEEP;
755 }
dfc8d636
JW
756
757 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 758 if (referenced_page && !PageSwapBacked(page))
64574746
JW
759 return PAGEREF_RECLAIM_CLEAN;
760
761 return PAGEREF_RECLAIM;
dfc8d636
JW
762}
763
e2be15f6
MG
764/* Check if a page is dirty or under writeback */
765static void page_check_dirty_writeback(struct page *page,
766 bool *dirty, bool *writeback)
767{
b4597226
MG
768 struct address_space *mapping;
769
e2be15f6
MG
770 /*
771 * Anonymous pages are not handled by flushers and must be written
772 * from reclaim context. Do not stall reclaim based on them
773 */
774 if (!page_is_file_cache(page)) {
775 *dirty = false;
776 *writeback = false;
777 return;
778 }
779
780 /* By default assume that the page flags are accurate */
781 *dirty = PageDirty(page);
782 *writeback = PageWriteback(page);
b4597226
MG
783
784 /* Verify dirty/writeback state if the filesystem supports it */
785 if (!page_has_private(page))
786 return;
787
788 mapping = page_mapping(page);
789 if (mapping && mapping->a_ops->is_dirty_writeback)
790 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
791}
792
1da177e4 793/*
1742f19f 794 * shrink_page_list() returns the number of reclaimed pages
1da177e4 795 */
1742f19f 796static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 797 struct zone *zone,
f84f6e2b 798 struct scan_control *sc,
02c6de8d 799 enum ttu_flags ttu_flags,
8e950282 800 unsigned long *ret_nr_dirty,
d43006d5 801 unsigned long *ret_nr_unqueued_dirty,
8e950282 802 unsigned long *ret_nr_congested,
02c6de8d 803 unsigned long *ret_nr_writeback,
b1a6f21e 804 unsigned long *ret_nr_immediate,
02c6de8d 805 bool force_reclaim)
1da177e4
LT
806{
807 LIST_HEAD(ret_pages);
abe4c3b5 808 LIST_HEAD(free_pages);
1da177e4 809 int pgactivate = 0;
d43006d5 810 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
811 unsigned long nr_dirty = 0;
812 unsigned long nr_congested = 0;
05ff5137 813 unsigned long nr_reclaimed = 0;
92df3a72 814 unsigned long nr_writeback = 0;
b1a6f21e 815 unsigned long nr_immediate = 0;
1da177e4
LT
816
817 cond_resched();
818
69980e31 819 mem_cgroup_uncharge_start();
1da177e4
LT
820 while (!list_empty(page_list)) {
821 struct address_space *mapping;
822 struct page *page;
823 int may_enter_fs;
02c6de8d 824 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 825 bool dirty, writeback;
1da177e4
LT
826
827 cond_resched();
828
829 page = lru_to_page(page_list);
830 list_del(&page->lru);
831
529ae9aa 832 if (!trylock_page(page))
1da177e4
LT
833 goto keep;
834
309381fe
SL
835 VM_BUG_ON_PAGE(PageActive(page), page);
836 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1da177e4
LT
837
838 sc->nr_scanned++;
80e43426 839
39b5f29a 840 if (unlikely(!page_evictable(page)))
b291f000 841 goto cull_mlocked;
894bc310 842
a6dc60f8 843 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
844 goto keep_locked;
845
1da177e4
LT
846 /* Double the slab pressure for mapped and swapcache pages */
847 if (page_mapped(page) || PageSwapCache(page))
848 sc->nr_scanned++;
849
c661b078
AW
850 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
851 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
852
e2be15f6
MG
853 /*
854 * The number of dirty pages determines if a zone is marked
855 * reclaim_congested which affects wait_iff_congested. kswapd
856 * will stall and start writing pages if the tail of the LRU
857 * is all dirty unqueued pages.
858 */
859 page_check_dirty_writeback(page, &dirty, &writeback);
860 if (dirty || writeback)
861 nr_dirty++;
862
863 if (dirty && !writeback)
864 nr_unqueued_dirty++;
865
d04e8acd
MG
866 /*
867 * Treat this page as congested if the underlying BDI is or if
868 * pages are cycling through the LRU so quickly that the
869 * pages marked for immediate reclaim are making it to the
870 * end of the LRU a second time.
871 */
e2be15f6 872 mapping = page_mapping(page);
d04e8acd
MG
873 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
874 (writeback && PageReclaim(page)))
e2be15f6
MG
875 nr_congested++;
876
283aba9f
MG
877 /*
878 * If a page at the tail of the LRU is under writeback, there
879 * are three cases to consider.
880 *
881 * 1) If reclaim is encountering an excessive number of pages
882 * under writeback and this page is both under writeback and
883 * PageReclaim then it indicates that pages are being queued
884 * for IO but are being recycled through the LRU before the
885 * IO can complete. Waiting on the page itself risks an
886 * indefinite stall if it is impossible to writeback the
887 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
888 * note that the LRU is being scanned too quickly and the
889 * caller can stall after page list has been processed.
283aba9f
MG
890 *
891 * 2) Global reclaim encounters a page, memcg encounters a
892 * page that is not marked for immediate reclaim or
893 * the caller does not have __GFP_IO. In this case mark
894 * the page for immediate reclaim and continue scanning.
895 *
896 * __GFP_IO is checked because a loop driver thread might
897 * enter reclaim, and deadlock if it waits on a page for
898 * which it is needed to do the write (loop masks off
899 * __GFP_IO|__GFP_FS for this reason); but more thought
900 * would probably show more reasons.
901 *
902 * Don't require __GFP_FS, since we're not going into the
903 * FS, just waiting on its writeback completion. Worryingly,
904 * ext4 gfs2 and xfs allocate pages with
905 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
906 * may_enter_fs here is liable to OOM on them.
907 *
908 * 3) memcg encounters a page that is not already marked
909 * PageReclaim. memcg does not have any dirty pages
910 * throttling so we could easily OOM just because too many
911 * pages are in writeback and there is nothing else to
912 * reclaim. Wait for the writeback to complete.
913 */
c661b078 914 if (PageWriteback(page)) {
283aba9f
MG
915 /* Case 1 above */
916 if (current_is_kswapd() &&
917 PageReclaim(page) &&
918 zone_is_reclaim_writeback(zone)) {
b1a6f21e
MG
919 nr_immediate++;
920 goto keep_locked;
283aba9f
MG
921
922 /* Case 2 above */
923 } else if (global_reclaim(sc) ||
c3b94f44
HD
924 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
925 /*
926 * This is slightly racy - end_page_writeback()
927 * might have just cleared PageReclaim, then
928 * setting PageReclaim here end up interpreted
929 * as PageReadahead - but that does not matter
930 * enough to care. What we do want is for this
931 * page to have PageReclaim set next time memcg
932 * reclaim reaches the tests above, so it will
933 * then wait_on_page_writeback() to avoid OOM;
934 * and it's also appropriate in global reclaim.
935 */
936 SetPageReclaim(page);
e62e384e 937 nr_writeback++;
283aba9f 938
c3b94f44 939 goto keep_locked;
283aba9f
MG
940
941 /* Case 3 above */
942 } else {
943 wait_on_page_writeback(page);
e62e384e 944 }
c661b078 945 }
1da177e4 946
02c6de8d
MK
947 if (!force_reclaim)
948 references = page_check_references(page, sc);
949
dfc8d636
JW
950 switch (references) {
951 case PAGEREF_ACTIVATE:
1da177e4 952 goto activate_locked;
64574746
JW
953 case PAGEREF_KEEP:
954 goto keep_locked;
dfc8d636
JW
955 case PAGEREF_RECLAIM:
956 case PAGEREF_RECLAIM_CLEAN:
957 ; /* try to reclaim the page below */
958 }
1da177e4 959
1da177e4
LT
960 /*
961 * Anonymous process memory has backing store?
962 * Try to allocate it some swap space here.
963 */
b291f000 964 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
965 if (!(sc->gfp_mask & __GFP_IO))
966 goto keep_locked;
5bc7b8ac 967 if (!add_to_swap(page, page_list))
1da177e4 968 goto activate_locked;
63eb6b93 969 may_enter_fs = 1;
1da177e4 970
e2be15f6
MG
971 /* Adding to swap updated mapping */
972 mapping = page_mapping(page);
973 }
1da177e4
LT
974
975 /*
976 * The page is mapped into the page tables of one or more
977 * processes. Try to unmap it here.
978 */
979 if (page_mapped(page) && mapping) {
02c6de8d 980 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
981 case SWAP_FAIL:
982 goto activate_locked;
983 case SWAP_AGAIN:
984 goto keep_locked;
b291f000
NP
985 case SWAP_MLOCK:
986 goto cull_mlocked;
1da177e4
LT
987 case SWAP_SUCCESS:
988 ; /* try to free the page below */
989 }
990 }
991
992 if (PageDirty(page)) {
ee72886d
MG
993 /*
994 * Only kswapd can writeback filesystem pages to
d43006d5
MG
995 * avoid risk of stack overflow but only writeback
996 * if many dirty pages have been encountered.
ee72886d 997 */
f84f6e2b 998 if (page_is_file_cache(page) &&
9e3b2f8c 999 (!current_is_kswapd() ||
d43006d5 1000 !zone_is_reclaim_dirty(zone))) {
49ea7eb6
MG
1001 /*
1002 * Immediately reclaim when written back.
1003 * Similar in principal to deactivate_page()
1004 * except we already have the page isolated
1005 * and know it's dirty
1006 */
1007 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1008 SetPageReclaim(page);
1009
ee72886d
MG
1010 goto keep_locked;
1011 }
1012
dfc8d636 1013 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1014 goto keep_locked;
4dd4b920 1015 if (!may_enter_fs)
1da177e4 1016 goto keep_locked;
52a8363e 1017 if (!sc->may_writepage)
1da177e4
LT
1018 goto keep_locked;
1019
1020 /* Page is dirty, try to write it out here */
7d3579e8 1021 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1022 case PAGE_KEEP:
1023 goto keep_locked;
1024 case PAGE_ACTIVATE:
1025 goto activate_locked;
1026 case PAGE_SUCCESS:
7d3579e8 1027 if (PageWriteback(page))
41ac1999 1028 goto keep;
7d3579e8 1029 if (PageDirty(page))
1da177e4 1030 goto keep;
7d3579e8 1031
1da177e4
LT
1032 /*
1033 * A synchronous write - probably a ramdisk. Go
1034 * ahead and try to reclaim the page.
1035 */
529ae9aa 1036 if (!trylock_page(page))
1da177e4
LT
1037 goto keep;
1038 if (PageDirty(page) || PageWriteback(page))
1039 goto keep_locked;
1040 mapping = page_mapping(page);
1041 case PAGE_CLEAN:
1042 ; /* try to free the page below */
1043 }
1044 }
1045
1046 /*
1047 * If the page has buffers, try to free the buffer mappings
1048 * associated with this page. If we succeed we try to free
1049 * the page as well.
1050 *
1051 * We do this even if the page is PageDirty().
1052 * try_to_release_page() does not perform I/O, but it is
1053 * possible for a page to have PageDirty set, but it is actually
1054 * clean (all its buffers are clean). This happens if the
1055 * buffers were written out directly, with submit_bh(). ext3
894bc310 1056 * will do this, as well as the blockdev mapping.
1da177e4
LT
1057 * try_to_release_page() will discover that cleanness and will
1058 * drop the buffers and mark the page clean - it can be freed.
1059 *
1060 * Rarely, pages can have buffers and no ->mapping. These are
1061 * the pages which were not successfully invalidated in
1062 * truncate_complete_page(). We try to drop those buffers here
1063 * and if that worked, and the page is no longer mapped into
1064 * process address space (page_count == 1) it can be freed.
1065 * Otherwise, leave the page on the LRU so it is swappable.
1066 */
266cf658 1067 if (page_has_private(page)) {
1da177e4
LT
1068 if (!try_to_release_page(page, sc->gfp_mask))
1069 goto activate_locked;
e286781d
NP
1070 if (!mapping && page_count(page) == 1) {
1071 unlock_page(page);
1072 if (put_page_testzero(page))
1073 goto free_it;
1074 else {
1075 /*
1076 * rare race with speculative reference.
1077 * the speculative reference will free
1078 * this page shortly, so we may
1079 * increment nr_reclaimed here (and
1080 * leave it off the LRU).
1081 */
1082 nr_reclaimed++;
1083 continue;
1084 }
1085 }
1da177e4
LT
1086 }
1087
a528910e 1088 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1089 goto keep_locked;
1da177e4 1090
a978d6f5
NP
1091 /*
1092 * At this point, we have no other references and there is
1093 * no way to pick any more up (removed from LRU, removed
1094 * from pagecache). Can use non-atomic bitops now (and
1095 * we obviously don't have to worry about waking up a process
1096 * waiting on the page lock, because there are no references.
1097 */
1098 __clear_page_locked(page);
e286781d 1099free_it:
05ff5137 1100 nr_reclaimed++;
abe4c3b5
MG
1101
1102 /*
1103 * Is there need to periodically free_page_list? It would
1104 * appear not as the counts should be low
1105 */
1106 list_add(&page->lru, &free_pages);
1da177e4
LT
1107 continue;
1108
b291f000 1109cull_mlocked:
63d6c5ad
HD
1110 if (PageSwapCache(page))
1111 try_to_free_swap(page);
b291f000
NP
1112 unlock_page(page);
1113 putback_lru_page(page);
1114 continue;
1115
1da177e4 1116activate_locked:
68a22394
RR
1117 /* Not a candidate for swapping, so reclaim swap space. */
1118 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1119 try_to_free_swap(page);
309381fe 1120 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1121 SetPageActive(page);
1122 pgactivate++;
1123keep_locked:
1124 unlock_page(page);
1125keep:
1126 list_add(&page->lru, &ret_pages);
309381fe 1127 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1128 }
abe4c3b5 1129
b745bc85 1130 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1131
1da177e4 1132 list_splice(&ret_pages, page_list);
f8891e5e 1133 count_vm_events(PGACTIVATE, pgactivate);
69980e31 1134 mem_cgroup_uncharge_end();
8e950282
MG
1135 *ret_nr_dirty += nr_dirty;
1136 *ret_nr_congested += nr_congested;
d43006d5 1137 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1138 *ret_nr_writeback += nr_writeback;
b1a6f21e 1139 *ret_nr_immediate += nr_immediate;
05ff5137 1140 return nr_reclaimed;
1da177e4
LT
1141}
1142
02c6de8d
MK
1143unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1144 struct list_head *page_list)
1145{
1146 struct scan_control sc = {
1147 .gfp_mask = GFP_KERNEL,
1148 .priority = DEF_PRIORITY,
1149 .may_unmap = 1,
1150 };
8e950282 1151 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1152 struct page *page, *next;
1153 LIST_HEAD(clean_pages);
1154
1155 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e
RA
1156 if (page_is_file_cache(page) && !PageDirty(page) &&
1157 !isolated_balloon_page(page)) {
02c6de8d
MK
1158 ClearPageActive(page);
1159 list_move(&page->lru, &clean_pages);
1160 }
1161 }
1162
1163 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1164 TTU_UNMAP|TTU_IGNORE_ACCESS,
1165 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d 1166 list_splice(&clean_pages, page_list);
83da7510 1167 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1168 return ret;
1169}
1170
5ad333eb
AW
1171/*
1172 * Attempt to remove the specified page from its LRU. Only take this page
1173 * if it is of the appropriate PageActive status. Pages which are being
1174 * freed elsewhere are also ignored.
1175 *
1176 * page: page to consider
1177 * mode: one of the LRU isolation modes defined above
1178 *
1179 * returns 0 on success, -ve errno on failure.
1180 */
f3fd4a61 1181int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1182{
1183 int ret = -EINVAL;
1184
1185 /* Only take pages on the LRU. */
1186 if (!PageLRU(page))
1187 return ret;
1188
e46a2879
MK
1189 /* Compaction should not handle unevictable pages but CMA can do so */
1190 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1191 return ret;
1192
5ad333eb 1193 ret = -EBUSY;
08e552c6 1194
c8244935
MG
1195 /*
1196 * To minimise LRU disruption, the caller can indicate that it only
1197 * wants to isolate pages it will be able to operate on without
1198 * blocking - clean pages for the most part.
1199 *
1200 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1201 * is used by reclaim when it is cannot write to backing storage
1202 *
1203 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1204 * that it is possible to migrate without blocking
1205 */
1206 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1207 /* All the caller can do on PageWriteback is block */
1208 if (PageWriteback(page))
1209 return ret;
1210
1211 if (PageDirty(page)) {
1212 struct address_space *mapping;
1213
1214 /* ISOLATE_CLEAN means only clean pages */
1215 if (mode & ISOLATE_CLEAN)
1216 return ret;
1217
1218 /*
1219 * Only pages without mappings or that have a
1220 * ->migratepage callback are possible to migrate
1221 * without blocking
1222 */
1223 mapping = page_mapping(page);
1224 if (mapping && !mapping->a_ops->migratepage)
1225 return ret;
1226 }
1227 }
39deaf85 1228
f80c0673
MK
1229 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1230 return ret;
1231
5ad333eb
AW
1232 if (likely(get_page_unless_zero(page))) {
1233 /*
1234 * Be careful not to clear PageLRU until after we're
1235 * sure the page is not being freed elsewhere -- the
1236 * page release code relies on it.
1237 */
1238 ClearPageLRU(page);
1239 ret = 0;
1240 }
1241
1242 return ret;
1243}
1244
1da177e4
LT
1245/*
1246 * zone->lru_lock is heavily contended. Some of the functions that
1247 * shrink the lists perform better by taking out a batch of pages
1248 * and working on them outside the LRU lock.
1249 *
1250 * For pagecache intensive workloads, this function is the hottest
1251 * spot in the kernel (apart from copy_*_user functions).
1252 *
1253 * Appropriate locks must be held before calling this function.
1254 *
1255 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1256 * @lruvec: The LRU vector to pull pages from.
1da177e4 1257 * @dst: The temp list to put pages on to.
f626012d 1258 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1259 * @sc: The scan_control struct for this reclaim session
5ad333eb 1260 * @mode: One of the LRU isolation modes
3cb99451 1261 * @lru: LRU list id for isolating
1da177e4
LT
1262 *
1263 * returns how many pages were moved onto *@dst.
1264 */
69e05944 1265static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1266 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1267 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1268 isolate_mode_t mode, enum lru_list lru)
1da177e4 1269{
75b00af7 1270 struct list_head *src = &lruvec->lists[lru];
69e05944 1271 unsigned long nr_taken = 0;
c9b02d97 1272 unsigned long scan;
1da177e4 1273
c9b02d97 1274 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1275 struct page *page;
fa9add64 1276 int nr_pages;
5ad333eb 1277
1da177e4
LT
1278 page = lru_to_page(src);
1279 prefetchw_prev_lru_page(page, src, flags);
1280
309381fe 1281 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1282
f3fd4a61 1283 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1284 case 0:
fa9add64
HD
1285 nr_pages = hpage_nr_pages(page);
1286 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1287 list_move(&page->lru, dst);
fa9add64 1288 nr_taken += nr_pages;
5ad333eb
AW
1289 break;
1290
1291 case -EBUSY:
1292 /* else it is being freed elsewhere */
1293 list_move(&page->lru, src);
1294 continue;
46453a6e 1295
5ad333eb
AW
1296 default:
1297 BUG();
1298 }
1da177e4
LT
1299 }
1300
f626012d 1301 *nr_scanned = scan;
75b00af7
HD
1302 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1303 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1304 return nr_taken;
1305}
1306
62695a84
NP
1307/**
1308 * isolate_lru_page - tries to isolate a page from its LRU list
1309 * @page: page to isolate from its LRU list
1310 *
1311 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1312 * vmstat statistic corresponding to whatever LRU list the page was on.
1313 *
1314 * Returns 0 if the page was removed from an LRU list.
1315 * Returns -EBUSY if the page was not on an LRU list.
1316 *
1317 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1318 * the active list, it will have PageActive set. If it was found on
1319 * the unevictable list, it will have the PageUnevictable bit set. That flag
1320 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1321 *
1322 * The vmstat statistic corresponding to the list on which the page was
1323 * found will be decremented.
1324 *
1325 * Restrictions:
1326 * (1) Must be called with an elevated refcount on the page. This is a
1327 * fundamentnal difference from isolate_lru_pages (which is called
1328 * without a stable reference).
1329 * (2) the lru_lock must not be held.
1330 * (3) interrupts must be enabled.
1331 */
1332int isolate_lru_page(struct page *page)
1333{
1334 int ret = -EBUSY;
1335
309381fe 1336 VM_BUG_ON_PAGE(!page_count(page), page);
0c917313 1337
62695a84
NP
1338 if (PageLRU(page)) {
1339 struct zone *zone = page_zone(page);
fa9add64 1340 struct lruvec *lruvec;
62695a84
NP
1341
1342 spin_lock_irq(&zone->lru_lock);
fa9add64 1343 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1344 if (PageLRU(page)) {
894bc310 1345 int lru = page_lru(page);
0c917313 1346 get_page(page);
62695a84 1347 ClearPageLRU(page);
fa9add64
HD
1348 del_page_from_lru_list(page, lruvec, lru);
1349 ret = 0;
62695a84
NP
1350 }
1351 spin_unlock_irq(&zone->lru_lock);
1352 }
1353 return ret;
1354}
1355
35cd7815 1356/*
d37dd5dc
FW
1357 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1358 * then get resheduled. When there are massive number of tasks doing page
1359 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1360 * the LRU list will go small and be scanned faster than necessary, leading to
1361 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1362 */
1363static int too_many_isolated(struct zone *zone, int file,
1364 struct scan_control *sc)
1365{
1366 unsigned long inactive, isolated;
1367
1368 if (current_is_kswapd())
1369 return 0;
1370
89b5fae5 1371 if (!global_reclaim(sc))
35cd7815
RR
1372 return 0;
1373
1374 if (file) {
1375 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1376 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1377 } else {
1378 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1379 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1380 }
1381
3cf23841
FW
1382 /*
1383 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1384 * won't get blocked by normal direct-reclaimers, forming a circular
1385 * deadlock.
1386 */
1387 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1388 inactive >>= 3;
1389
35cd7815
RR
1390 return isolated > inactive;
1391}
1392
66635629 1393static noinline_for_stack void
75b00af7 1394putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1395{
27ac81d8
KK
1396 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1397 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1398 LIST_HEAD(pages_to_free);
66635629 1399
66635629
MG
1400 /*
1401 * Put back any unfreeable pages.
1402 */
66635629 1403 while (!list_empty(page_list)) {
3f79768f 1404 struct page *page = lru_to_page(page_list);
66635629 1405 int lru;
3f79768f 1406
309381fe 1407 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1408 list_del(&page->lru);
39b5f29a 1409 if (unlikely(!page_evictable(page))) {
66635629
MG
1410 spin_unlock_irq(&zone->lru_lock);
1411 putback_lru_page(page);
1412 spin_lock_irq(&zone->lru_lock);
1413 continue;
1414 }
fa9add64
HD
1415
1416 lruvec = mem_cgroup_page_lruvec(page, zone);
1417
7a608572 1418 SetPageLRU(page);
66635629 1419 lru = page_lru(page);
fa9add64
HD
1420 add_page_to_lru_list(page, lruvec, lru);
1421
66635629
MG
1422 if (is_active_lru(lru)) {
1423 int file = is_file_lru(lru);
9992af10
RR
1424 int numpages = hpage_nr_pages(page);
1425 reclaim_stat->recent_rotated[file] += numpages;
66635629 1426 }
2bcf8879
HD
1427 if (put_page_testzero(page)) {
1428 __ClearPageLRU(page);
1429 __ClearPageActive(page);
fa9add64 1430 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1431
1432 if (unlikely(PageCompound(page))) {
1433 spin_unlock_irq(&zone->lru_lock);
1434 (*get_compound_page_dtor(page))(page);
1435 spin_lock_irq(&zone->lru_lock);
1436 } else
1437 list_add(&page->lru, &pages_to_free);
66635629
MG
1438 }
1439 }
66635629 1440
3f79768f
HD
1441 /*
1442 * To save our caller's stack, now use input list for pages to free.
1443 */
1444 list_splice(&pages_to_free, page_list);
66635629
MG
1445}
1446
399ba0b9
N
1447/*
1448 * If a kernel thread (such as nfsd for loop-back mounts) services
1449 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1450 * In that case we should only throttle if the backing device it is
1451 * writing to is congested. In other cases it is safe to throttle.
1452 */
1453static int current_may_throttle(void)
1454{
1455 return !(current->flags & PF_LESS_THROTTLE) ||
1456 current->backing_dev_info == NULL ||
1457 bdi_write_congested(current->backing_dev_info);
1458}
1459
1da177e4 1460/*
1742f19f
AM
1461 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1462 * of reclaimed pages
1da177e4 1463 */
66635629 1464static noinline_for_stack unsigned long
1a93be0e 1465shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1466 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1467{
1468 LIST_HEAD(page_list);
e247dbce 1469 unsigned long nr_scanned;
05ff5137 1470 unsigned long nr_reclaimed = 0;
e247dbce 1471 unsigned long nr_taken;
8e950282
MG
1472 unsigned long nr_dirty = 0;
1473 unsigned long nr_congested = 0;
e2be15f6 1474 unsigned long nr_unqueued_dirty = 0;
92df3a72 1475 unsigned long nr_writeback = 0;
b1a6f21e 1476 unsigned long nr_immediate = 0;
f3fd4a61 1477 isolate_mode_t isolate_mode = 0;
3cb99451 1478 int file = is_file_lru(lru);
1a93be0e
KK
1479 struct zone *zone = lruvec_zone(lruvec);
1480 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1481
35cd7815 1482 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1483 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1484
1485 /* We are about to die and free our memory. Return now. */
1486 if (fatal_signal_pending(current))
1487 return SWAP_CLUSTER_MAX;
1488 }
1489
1da177e4 1490 lru_add_drain();
f80c0673
MK
1491
1492 if (!sc->may_unmap)
61317289 1493 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1494 if (!sc->may_writepage)
61317289 1495 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1496
1da177e4 1497 spin_lock_irq(&zone->lru_lock);
b35ea17b 1498
5dc35979
KK
1499 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1500 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1501
1502 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1503 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1504
89b5fae5 1505 if (global_reclaim(sc)) {
e247dbce
KM
1506 zone->pages_scanned += nr_scanned;
1507 if (current_is_kswapd())
75b00af7 1508 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1509 else
75b00af7 1510 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1511 }
d563c050 1512 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1513
d563c050 1514 if (nr_taken == 0)
66635629 1515 return 0;
5ad333eb 1516
02c6de8d 1517 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1518 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1519 &nr_writeback, &nr_immediate,
1520 false);
c661b078 1521
3f79768f
HD
1522 spin_lock_irq(&zone->lru_lock);
1523
95d918fc 1524 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1525
904249aa
YH
1526 if (global_reclaim(sc)) {
1527 if (current_is_kswapd())
1528 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1529 nr_reclaimed);
1530 else
1531 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1532 nr_reclaimed);
1533 }
a74609fa 1534
27ac81d8 1535 putback_inactive_pages(lruvec, &page_list);
3f79768f 1536
95d918fc 1537 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1538
1539 spin_unlock_irq(&zone->lru_lock);
1540
b745bc85 1541 free_hot_cold_page_list(&page_list, true);
e11da5b4 1542
92df3a72
MG
1543 /*
1544 * If reclaim is isolating dirty pages under writeback, it implies
1545 * that the long-lived page allocation rate is exceeding the page
1546 * laundering rate. Either the global limits are not being effective
1547 * at throttling processes due to the page distribution throughout
1548 * zones or there is heavy usage of a slow backing device. The
1549 * only option is to throttle from reclaim context which is not ideal
1550 * as there is no guarantee the dirtying process is throttled in the
1551 * same way balance_dirty_pages() manages.
1552 *
8e950282
MG
1553 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1554 * of pages under pages flagged for immediate reclaim and stall if any
1555 * are encountered in the nr_immediate check below.
92df3a72 1556 */
918fc718 1557 if (nr_writeback && nr_writeback == nr_taken)
283aba9f 1558 zone_set_flag(zone, ZONE_WRITEBACK);
92df3a72 1559
d43006d5 1560 /*
b1a6f21e
MG
1561 * memcg will stall in page writeback so only consider forcibly
1562 * stalling for global reclaim
d43006d5 1563 */
b1a6f21e 1564 if (global_reclaim(sc)) {
8e950282
MG
1565 /*
1566 * Tag a zone as congested if all the dirty pages scanned were
1567 * backed by a congested BDI and wait_iff_congested will stall.
1568 */
1569 if (nr_dirty && nr_dirty == nr_congested)
1570 zone_set_flag(zone, ZONE_CONGESTED);
1571
b1a6f21e
MG
1572 /*
1573 * If dirty pages are scanned that are not queued for IO, it
1574 * implies that flushers are not keeping up. In this case, flag
1575 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
b738d764 1576 * pages from reclaim context.
b1a6f21e
MG
1577 */
1578 if (nr_unqueued_dirty == nr_taken)
1579 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1580
1581 /*
b738d764
LT
1582 * If kswapd scans pages marked marked for immediate
1583 * reclaim and under writeback (nr_immediate), it implies
1584 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1585 * they are written so also forcibly stall.
1586 */
b738d764 1587 if (nr_immediate && current_may_throttle())
b1a6f21e 1588 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1589 }
d43006d5 1590
8e950282
MG
1591 /*
1592 * Stall direct reclaim for IO completions if underlying BDIs or zone
1593 * is congested. Allow kswapd to continue until it starts encountering
1594 * unqueued dirty pages or cycling through the LRU too quickly.
1595 */
399ba0b9
N
1596 if (!sc->hibernation_mode && !current_is_kswapd() &&
1597 current_may_throttle())
8e950282
MG
1598 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1599
e11da5b4
MG
1600 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1601 zone_idx(zone),
1602 nr_scanned, nr_reclaimed,
9e3b2f8c 1603 sc->priority,
23b9da55 1604 trace_shrink_flags(file));
05ff5137 1605 return nr_reclaimed;
1da177e4
LT
1606}
1607
1608/*
1609 * This moves pages from the active list to the inactive list.
1610 *
1611 * We move them the other way if the page is referenced by one or more
1612 * processes, from rmap.
1613 *
1614 * If the pages are mostly unmapped, the processing is fast and it is
1615 * appropriate to hold zone->lru_lock across the whole operation. But if
1616 * the pages are mapped, the processing is slow (page_referenced()) so we
1617 * should drop zone->lru_lock around each page. It's impossible to balance
1618 * this, so instead we remove the pages from the LRU while processing them.
1619 * It is safe to rely on PG_active against the non-LRU pages in here because
1620 * nobody will play with that bit on a non-LRU page.
1621 *
1622 * The downside is that we have to touch page->_count against each page.
1623 * But we had to alter page->flags anyway.
1624 */
1cfb419b 1625
fa9add64 1626static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1627 struct list_head *list,
2bcf8879 1628 struct list_head *pages_to_free,
3eb4140f
WF
1629 enum lru_list lru)
1630{
fa9add64 1631 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1632 unsigned long pgmoved = 0;
3eb4140f 1633 struct page *page;
fa9add64 1634 int nr_pages;
3eb4140f 1635
3eb4140f
WF
1636 while (!list_empty(list)) {
1637 page = lru_to_page(list);
fa9add64 1638 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f 1639
309381fe 1640 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1641 SetPageLRU(page);
1642
fa9add64
HD
1643 nr_pages = hpage_nr_pages(page);
1644 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1645 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1646 pgmoved += nr_pages;
3eb4140f 1647
2bcf8879
HD
1648 if (put_page_testzero(page)) {
1649 __ClearPageLRU(page);
1650 __ClearPageActive(page);
fa9add64 1651 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1652
1653 if (unlikely(PageCompound(page))) {
1654 spin_unlock_irq(&zone->lru_lock);
1655 (*get_compound_page_dtor(page))(page);
1656 spin_lock_irq(&zone->lru_lock);
1657 } else
1658 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1659 }
1660 }
1661 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1662 if (!is_active_lru(lru))
1663 __count_vm_events(PGDEACTIVATE, pgmoved);
1664}
1cfb419b 1665
f626012d 1666static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1667 struct lruvec *lruvec,
f16015fb 1668 struct scan_control *sc,
9e3b2f8c 1669 enum lru_list lru)
1da177e4 1670{
44c241f1 1671 unsigned long nr_taken;
f626012d 1672 unsigned long nr_scanned;
6fe6b7e3 1673 unsigned long vm_flags;
1da177e4 1674 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1675 LIST_HEAD(l_active);
b69408e8 1676 LIST_HEAD(l_inactive);
1da177e4 1677 struct page *page;
1a93be0e 1678 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1679 unsigned long nr_rotated = 0;
f3fd4a61 1680 isolate_mode_t isolate_mode = 0;
3cb99451 1681 int file = is_file_lru(lru);
1a93be0e 1682 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1683
1684 lru_add_drain();
f80c0673
MK
1685
1686 if (!sc->may_unmap)
61317289 1687 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1688 if (!sc->may_writepage)
61317289 1689 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1690
1da177e4 1691 spin_lock_irq(&zone->lru_lock);
925b7673 1692
5dc35979
KK
1693 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1694 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1695 if (global_reclaim(sc))
f626012d 1696 zone->pages_scanned += nr_scanned;
89b5fae5 1697
b7c46d15 1698 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1699
f626012d 1700 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1701 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1702 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1703 spin_unlock_irq(&zone->lru_lock);
1704
1da177e4
LT
1705 while (!list_empty(&l_hold)) {
1706 cond_resched();
1707 page = lru_to_page(&l_hold);
1708 list_del(&page->lru);
7e9cd484 1709
39b5f29a 1710 if (unlikely(!page_evictable(page))) {
894bc310
LS
1711 putback_lru_page(page);
1712 continue;
1713 }
1714
cc715d99
MG
1715 if (unlikely(buffer_heads_over_limit)) {
1716 if (page_has_private(page) && trylock_page(page)) {
1717 if (page_has_private(page))
1718 try_to_release_page(page, 0);
1719 unlock_page(page);
1720 }
1721 }
1722
c3ac9a8a
JW
1723 if (page_referenced(page, 0, sc->target_mem_cgroup,
1724 &vm_flags)) {
9992af10 1725 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1726 /*
1727 * Identify referenced, file-backed active pages and
1728 * give them one more trip around the active list. So
1729 * that executable code get better chances to stay in
1730 * memory under moderate memory pressure. Anon pages
1731 * are not likely to be evicted by use-once streaming
1732 * IO, plus JVM can create lots of anon VM_EXEC pages,
1733 * so we ignore them here.
1734 */
41e20983 1735 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1736 list_add(&page->lru, &l_active);
1737 continue;
1738 }
1739 }
7e9cd484 1740
5205e56e 1741 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1742 list_add(&page->lru, &l_inactive);
1743 }
1744
b555749a 1745 /*
8cab4754 1746 * Move pages back to the lru list.
b555749a 1747 */
2a1dc509 1748 spin_lock_irq(&zone->lru_lock);
556adecb 1749 /*
8cab4754
WF
1750 * Count referenced pages from currently used mappings as rotated,
1751 * even though only some of them are actually re-activated. This
1752 * helps balance scan pressure between file and anonymous pages in
1753 * get_scan_ratio.
7e9cd484 1754 */
b7c46d15 1755 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1756
fa9add64
HD
1757 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1758 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1759 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1760 spin_unlock_irq(&zone->lru_lock);
2bcf8879 1761
b745bc85 1762 free_hot_cold_page_list(&l_hold, true);
1da177e4
LT
1763}
1764
74e3f3c3 1765#ifdef CONFIG_SWAP
14797e23 1766static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1767{
1768 unsigned long active, inactive;
1769
1770 active = zone_page_state(zone, NR_ACTIVE_ANON);
1771 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1772
1773 if (inactive * zone->inactive_ratio < active)
1774 return 1;
1775
1776 return 0;
1777}
1778
14797e23
KM
1779/**
1780 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1781 * @lruvec: LRU vector to check
14797e23
KM
1782 *
1783 * Returns true if the zone does not have enough inactive anon pages,
1784 * meaning some active anon pages need to be deactivated.
1785 */
c56d5c7d 1786static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1787{
74e3f3c3
MK
1788 /*
1789 * If we don't have swap space, anonymous page deactivation
1790 * is pointless.
1791 */
1792 if (!total_swap_pages)
1793 return 0;
1794
c3c787e8 1795 if (!mem_cgroup_disabled())
c56d5c7d 1796 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1797
c56d5c7d 1798 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1799}
74e3f3c3 1800#else
c56d5c7d 1801static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1802{
1803 return 0;
1804}
1805#endif
14797e23 1806
56e49d21
RR
1807/**
1808 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1809 * @lruvec: LRU vector to check
56e49d21
RR
1810 *
1811 * When the system is doing streaming IO, memory pressure here
1812 * ensures that active file pages get deactivated, until more
1813 * than half of the file pages are on the inactive list.
1814 *
1815 * Once we get to that situation, protect the system's working
1816 * set from being evicted by disabling active file page aging.
1817 *
1818 * This uses a different ratio than the anonymous pages, because
1819 * the page cache uses a use-once replacement algorithm.
1820 */
c56d5c7d 1821static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1822{
e3790144
JW
1823 unsigned long inactive;
1824 unsigned long active;
1825
1826 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1827 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1828
e3790144 1829 return active > inactive;
56e49d21
RR
1830}
1831
75b00af7 1832static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1833{
75b00af7 1834 if (is_file_lru(lru))
c56d5c7d 1835 return inactive_file_is_low(lruvec);
b39415b2 1836 else
c56d5c7d 1837 return inactive_anon_is_low(lruvec);
b39415b2
RR
1838}
1839
4f98a2fe 1840static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1841 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1842{
b39415b2 1843 if (is_active_lru(lru)) {
75b00af7 1844 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1845 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1846 return 0;
1847 }
1848
1a93be0e 1849 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1850}
1851
9a265114
JW
1852enum scan_balance {
1853 SCAN_EQUAL,
1854 SCAN_FRACT,
1855 SCAN_ANON,
1856 SCAN_FILE,
1857};
1858
4f98a2fe
RR
1859/*
1860 * Determine how aggressively the anon and file LRU lists should be
1861 * scanned. The relative value of each set of LRU lists is determined
1862 * by looking at the fraction of the pages scanned we did rotate back
1863 * onto the active list instead of evict.
1864 *
be7bd59d
WL
1865 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1866 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1867 */
02695175
JW
1868static void get_scan_count(struct lruvec *lruvec, int swappiness,
1869 struct scan_control *sc, unsigned long *nr)
4f98a2fe 1870{
9a265114
JW
1871 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1872 u64 fraction[2];
1873 u64 denominator = 0; /* gcc */
1874 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1875 unsigned long anon_prio, file_prio;
9a265114 1876 enum scan_balance scan_balance;
0bf1457f 1877 unsigned long anon, file;
9a265114 1878 bool force_scan = false;
4f98a2fe 1879 unsigned long ap, fp;
4111304d 1880 enum lru_list lru;
6f04f48d
SS
1881 bool some_scanned;
1882 int pass;
246e87a9 1883
f11c0ca5
JW
1884 /*
1885 * If the zone or memcg is small, nr[l] can be 0. This
1886 * results in no scanning on this priority and a potential
1887 * priority drop. Global direct reclaim can go to the next
1888 * zone and tends to have no problems. Global kswapd is for
1889 * zone balancing and it needs to scan a minimum amount. When
1890 * reclaiming for a memcg, a priority drop can cause high
1891 * latencies, so it's better to scan a minimum amount there as
1892 * well.
1893 */
6e543d57 1894 if (current_is_kswapd() && !zone_reclaimable(zone))
a4d3e9e7 1895 force_scan = true;
89b5fae5 1896 if (!global_reclaim(sc))
a4d3e9e7 1897 force_scan = true;
76a33fc3
SL
1898
1899 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1900 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1901 scan_balance = SCAN_FILE;
76a33fc3
SL
1902 goto out;
1903 }
4f98a2fe 1904
10316b31
JW
1905 /*
1906 * Global reclaim will swap to prevent OOM even with no
1907 * swappiness, but memcg users want to use this knob to
1908 * disable swapping for individual groups completely when
1909 * using the memory controller's swap limit feature would be
1910 * too expensive.
1911 */
02695175 1912 if (!global_reclaim(sc) && !swappiness) {
9a265114 1913 scan_balance = SCAN_FILE;
10316b31
JW
1914 goto out;
1915 }
1916
1917 /*
1918 * Do not apply any pressure balancing cleverness when the
1919 * system is close to OOM, scan both anon and file equally
1920 * (unless the swappiness setting disagrees with swapping).
1921 */
02695175 1922 if (!sc->priority && swappiness) {
9a265114 1923 scan_balance = SCAN_EQUAL;
10316b31
JW
1924 goto out;
1925 }
1926
4d7dcca2
HD
1927 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1928 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1929 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1930 get_lru_size(lruvec, LRU_INACTIVE_FILE);
a4d3e9e7 1931
62376251
JW
1932 /*
1933 * Prevent the reclaimer from falling into the cache trap: as
1934 * cache pages start out inactive, every cache fault will tip
1935 * the scan balance towards the file LRU. And as the file LRU
1936 * shrinks, so does the window for rotation from references.
1937 * This means we have a runaway feedback loop where a tiny
1938 * thrashing file LRU becomes infinitely more attractive than
1939 * anon pages. Try to detect this based on file LRU size.
1940 */
1941 if (global_reclaim(sc)) {
1942 unsigned long free = zone_page_state(zone, NR_FREE_PAGES);
1943
1944 if (unlikely(file + free <= high_wmark_pages(zone))) {
1945 scan_balance = SCAN_ANON;
1946 goto out;
1947 }
1948 }
1949
7c5bd705
JW
1950 /*
1951 * There is enough inactive page cache, do not reclaim
1952 * anything from the anonymous working set right now.
1953 */
1954 if (!inactive_file_is_low(lruvec)) {
9a265114 1955 scan_balance = SCAN_FILE;
7c5bd705
JW
1956 goto out;
1957 }
1958
9a265114
JW
1959 scan_balance = SCAN_FRACT;
1960
58c37f6e
KM
1961 /*
1962 * With swappiness at 100, anonymous and file have the same priority.
1963 * This scanning priority is essentially the inverse of IO cost.
1964 */
02695175 1965 anon_prio = swappiness;
75b00af7 1966 file_prio = 200 - anon_prio;
58c37f6e 1967
4f98a2fe
RR
1968 /*
1969 * OK, so we have swap space and a fair amount of page cache
1970 * pages. We use the recently rotated / recently scanned
1971 * ratios to determine how valuable each cache is.
1972 *
1973 * Because workloads change over time (and to avoid overflow)
1974 * we keep these statistics as a floating average, which ends
1975 * up weighing recent references more than old ones.
1976 *
1977 * anon in [0], file in [1]
1978 */
90126375 1979 spin_lock_irq(&zone->lru_lock);
6e901571 1980 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1981 reclaim_stat->recent_scanned[0] /= 2;
1982 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1983 }
1984
6e901571 1985 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1986 reclaim_stat->recent_scanned[1] /= 2;
1987 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1988 }
1989
4f98a2fe 1990 /*
00d8089c
RR
1991 * The amount of pressure on anon vs file pages is inversely
1992 * proportional to the fraction of recently scanned pages on
1993 * each list that were recently referenced and in active use.
4f98a2fe 1994 */
fe35004f 1995 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1996 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1997
fe35004f 1998 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1999 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 2000 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 2001
76a33fc3
SL
2002 fraction[0] = ap;
2003 fraction[1] = fp;
2004 denominator = ap + fp + 1;
2005out:
6f04f48d
SS
2006 some_scanned = false;
2007 /* Only use force_scan on second pass. */
2008 for (pass = 0; !some_scanned && pass < 2; pass++) {
2009 for_each_evictable_lru(lru) {
2010 int file = is_file_lru(lru);
2011 unsigned long size;
2012 unsigned long scan;
6e08a369 2013
6f04f48d
SS
2014 size = get_lru_size(lruvec, lru);
2015 scan = size >> sc->priority;
9a265114 2016
6f04f48d
SS
2017 if (!scan && pass && force_scan)
2018 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2019
6f04f48d
SS
2020 switch (scan_balance) {
2021 case SCAN_EQUAL:
2022 /* Scan lists relative to size */
2023 break;
2024 case SCAN_FRACT:
2025 /*
2026 * Scan types proportional to swappiness and
2027 * their relative recent reclaim efficiency.
2028 */
2029 scan = div64_u64(scan * fraction[file],
2030 denominator);
2031 break;
2032 case SCAN_FILE:
2033 case SCAN_ANON:
2034 /* Scan one type exclusively */
2035 if ((scan_balance == SCAN_FILE) != file)
2036 scan = 0;
2037 break;
2038 default:
2039 /* Look ma, no brain */
2040 BUG();
2041 }
2042 nr[lru] = scan;
9a265114 2043 /*
6f04f48d
SS
2044 * Skip the second pass and don't force_scan,
2045 * if we found something to scan.
9a265114 2046 */
6f04f48d 2047 some_scanned |= !!scan;
9a265114 2048 }
76a33fc3 2049 }
6e08a369 2050}
4f98a2fe 2051
9b4f98cd
JW
2052/*
2053 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2054 */
02695175
JW
2055static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2056 struct scan_control *sc)
9b4f98cd
JW
2057{
2058 unsigned long nr[NR_LRU_LISTS];
e82e0561 2059 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2060 unsigned long nr_to_scan;
2061 enum lru_list lru;
2062 unsigned long nr_reclaimed = 0;
2063 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2064 struct blk_plug plug;
1a501907 2065 bool scan_adjusted;
9b4f98cd 2066
02695175 2067 get_scan_count(lruvec, swappiness, sc, nr);
9b4f98cd 2068
e82e0561
MG
2069 /* Record the original scan target for proportional adjustments later */
2070 memcpy(targets, nr, sizeof(nr));
2071
1a501907
MG
2072 /*
2073 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2074 * event that can occur when there is little memory pressure e.g.
2075 * multiple streaming readers/writers. Hence, we do not abort scanning
2076 * when the requested number of pages are reclaimed when scanning at
2077 * DEF_PRIORITY on the assumption that the fact we are direct
2078 * reclaiming implies that kswapd is not keeping up and it is best to
2079 * do a batch of work at once. For memcg reclaim one check is made to
2080 * abort proportional reclaim if either the file or anon lru has already
2081 * dropped to zero at the first pass.
2082 */
2083 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2084 sc->priority == DEF_PRIORITY);
2085
9b4f98cd
JW
2086 blk_start_plug(&plug);
2087 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2088 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2089 unsigned long nr_anon, nr_file, percentage;
2090 unsigned long nr_scanned;
2091
9b4f98cd
JW
2092 for_each_evictable_lru(lru) {
2093 if (nr[lru]) {
2094 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2095 nr[lru] -= nr_to_scan;
2096
2097 nr_reclaimed += shrink_list(lru, nr_to_scan,
2098 lruvec, sc);
2099 }
2100 }
e82e0561
MG
2101
2102 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2103 continue;
2104
e82e0561
MG
2105 /*
2106 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2107 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2108 * proportionally what was requested by get_scan_count(). We
2109 * stop reclaiming one LRU and reduce the amount scanning
2110 * proportional to the original scan target.
2111 */
2112 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2113 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2114
1a501907
MG
2115 /*
2116 * It's just vindictive to attack the larger once the smaller
2117 * has gone to zero. And given the way we stop scanning the
2118 * smaller below, this makes sure that we only make one nudge
2119 * towards proportionality once we've got nr_to_reclaim.
2120 */
2121 if (!nr_file || !nr_anon)
2122 break;
2123
e82e0561
MG
2124 if (nr_file > nr_anon) {
2125 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2126 targets[LRU_ACTIVE_ANON] + 1;
2127 lru = LRU_BASE;
2128 percentage = nr_anon * 100 / scan_target;
2129 } else {
2130 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2131 targets[LRU_ACTIVE_FILE] + 1;
2132 lru = LRU_FILE;
2133 percentage = nr_file * 100 / scan_target;
2134 }
2135
2136 /* Stop scanning the smaller of the LRU */
2137 nr[lru] = 0;
2138 nr[lru + LRU_ACTIVE] = 0;
2139
2140 /*
2141 * Recalculate the other LRU scan count based on its original
2142 * scan target and the percentage scanning already complete
2143 */
2144 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2145 nr_scanned = targets[lru] - nr[lru];
2146 nr[lru] = targets[lru] * (100 - percentage) / 100;
2147 nr[lru] -= min(nr[lru], nr_scanned);
2148
2149 lru += LRU_ACTIVE;
2150 nr_scanned = targets[lru] - nr[lru];
2151 nr[lru] = targets[lru] * (100 - percentage) / 100;
2152 nr[lru] -= min(nr[lru], nr_scanned);
2153
2154 scan_adjusted = true;
9b4f98cd
JW
2155 }
2156 blk_finish_plug(&plug);
2157 sc->nr_reclaimed += nr_reclaimed;
2158
2159 /*
2160 * Even if we did not try to evict anon pages at all, we want to
2161 * rebalance the anon lru active/inactive ratio.
2162 */
2163 if (inactive_anon_is_low(lruvec))
2164 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2165 sc, LRU_ACTIVE_ANON);
2166
2167 throttle_vm_writeout(sc->gfp_mask);
2168}
2169
23b9da55 2170/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2171static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2172{
d84da3f9 2173 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2174 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2175 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2176 return true;
2177
2178 return false;
2179}
2180
3e7d3449 2181/*
23b9da55
MG
2182 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2183 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2184 * true if more pages should be reclaimed such that when the page allocator
2185 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2186 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2187 */
9b4f98cd 2188static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2189 unsigned long nr_reclaimed,
2190 unsigned long nr_scanned,
2191 struct scan_control *sc)
2192{
2193 unsigned long pages_for_compaction;
2194 unsigned long inactive_lru_pages;
2195
2196 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2197 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2198 return false;
2199
2876592f
MG
2200 /* Consider stopping depending on scan and reclaim activity */
2201 if (sc->gfp_mask & __GFP_REPEAT) {
2202 /*
2203 * For __GFP_REPEAT allocations, stop reclaiming if the
2204 * full LRU list has been scanned and we are still failing
2205 * to reclaim pages. This full LRU scan is potentially
2206 * expensive but a __GFP_REPEAT caller really wants to succeed
2207 */
2208 if (!nr_reclaimed && !nr_scanned)
2209 return false;
2210 } else {
2211 /*
2212 * For non-__GFP_REPEAT allocations which can presumably
2213 * fail without consequence, stop if we failed to reclaim
2214 * any pages from the last SWAP_CLUSTER_MAX number of
2215 * pages that were scanned. This will return to the
2216 * caller faster at the risk reclaim/compaction and
2217 * the resulting allocation attempt fails
2218 */
2219 if (!nr_reclaimed)
2220 return false;
2221 }
3e7d3449
MG
2222
2223 /*
2224 * If we have not reclaimed enough pages for compaction and the
2225 * inactive lists are large enough, continue reclaiming
2226 */
2227 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2228 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2229 if (get_nr_swap_pages() > 0)
9b4f98cd 2230 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2231 if (sc->nr_reclaimed < pages_for_compaction &&
2232 inactive_lru_pages > pages_for_compaction)
2233 return true;
2234
2235 /* If compaction would go ahead or the allocation would succeed, stop */
9b4f98cd 2236 switch (compaction_suitable(zone, sc->order)) {
3e7d3449
MG
2237 case COMPACT_PARTIAL:
2238 case COMPACT_CONTINUE:
2239 return false;
2240 default:
2241 return true;
2242 }
2243}
2244
2344d7e4 2245static bool shrink_zone(struct zone *zone, struct scan_control *sc)
1da177e4 2246{
f0fdc5e8 2247 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2248 bool reclaimable = false;
1da177e4 2249
9b4f98cd
JW
2250 do {
2251 struct mem_cgroup *root = sc->target_mem_cgroup;
2252 struct mem_cgroup_reclaim_cookie reclaim = {
2253 .zone = zone,
2254 .priority = sc->priority,
2255 };
694fbc0f 2256 struct mem_cgroup *memcg;
3e7d3449 2257
9b4f98cd
JW
2258 nr_reclaimed = sc->nr_reclaimed;
2259 nr_scanned = sc->nr_scanned;
1da177e4 2260
694fbc0f
AM
2261 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2262 do {
9b4f98cd 2263 struct lruvec *lruvec;
02695175 2264 int swappiness;
5660048c 2265
9b4f98cd 2266 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2267 swappiness = mem_cgroup_swappiness(memcg);
f9be23d6 2268
02695175 2269 shrink_lruvec(lruvec, swappiness, sc);
f16015fb 2270
9b4f98cd 2271 /*
a394cb8e
MH
2272 * Direct reclaim and kswapd have to scan all memory
2273 * cgroups to fulfill the overall scan target for the
9b4f98cd 2274 * zone.
a394cb8e
MH
2275 *
2276 * Limit reclaim, on the other hand, only cares about
2277 * nr_to_reclaim pages to be reclaimed and it will
2278 * retry with decreasing priority if one round over the
2279 * whole hierarchy is not sufficient.
9b4f98cd 2280 */
a394cb8e
MH
2281 if (!global_reclaim(sc) &&
2282 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2283 mem_cgroup_iter_break(root, memcg);
2284 break;
2285 }
694fbc0f
AM
2286 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2287 } while (memcg);
70ddf637
AV
2288
2289 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2290 sc->nr_scanned - nr_scanned,
2291 sc->nr_reclaimed - nr_reclaimed);
2292
2344d7e4
JW
2293 if (sc->nr_reclaimed - nr_reclaimed)
2294 reclaimable = true;
2295
9b4f98cd
JW
2296 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2297 sc->nr_scanned - nr_scanned, sc));
2344d7e4
JW
2298
2299 return reclaimable;
f16015fb
JW
2300}
2301
fe4b1b24 2302/* Returns true if compaction should go ahead for a high-order request */
0b06496a 2303static inline bool compaction_ready(struct zone *zone, int order)
fe4b1b24
MG
2304{
2305 unsigned long balance_gap, watermark;
2306 bool watermark_ok;
2307
fe4b1b24
MG
2308 /*
2309 * Compaction takes time to run and there are potentially other
2310 * callers using the pages just freed. Continue reclaiming until
2311 * there is a buffer of free pages available to give compaction
2312 * a reasonable chance of completing and allocating the page
2313 */
4be89a34
JZ
2314 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2315 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
0b06496a 2316 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
fe4b1b24
MG
2317 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2318
2319 /*
2320 * If compaction is deferred, reclaim up to a point where
2321 * compaction will have a chance of success when re-enabled
2322 */
0b06496a 2323 if (compaction_deferred(zone, order))
fe4b1b24
MG
2324 return watermark_ok;
2325
2326 /* If compaction is not ready to start, keep reclaiming */
0b06496a 2327 if (!compaction_suitable(zone, order))
fe4b1b24
MG
2328 return false;
2329
2330 return watermark_ok;
2331}
2332
1da177e4
LT
2333/*
2334 * This is the direct reclaim path, for page-allocating processes. We only
2335 * try to reclaim pages from zones which will satisfy the caller's allocation
2336 * request.
2337 *
41858966
MG
2338 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2339 * Because:
1da177e4
LT
2340 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2341 * allocation or
41858966
MG
2342 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2343 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2344 * zone defense algorithm.
1da177e4 2345 *
1da177e4
LT
2346 * If a zone is deemed to be full of pinned pages then just give it a light
2347 * scan then give up on it.
2344d7e4
JW
2348 *
2349 * Returns true if a zone was reclaimable.
1da177e4 2350 */
2344d7e4 2351static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2352{
dd1a239f 2353 struct zoneref *z;
54a6eb5c 2354 struct zone *zone;
0608f43d
AM
2355 unsigned long nr_soft_reclaimed;
2356 unsigned long nr_soft_scanned;
65ec02cb 2357 unsigned long lru_pages = 0;
65ec02cb 2358 struct reclaim_state *reclaim_state = current->reclaim_state;
619d0d76 2359 gfp_t orig_mask;
3115cd91
VD
2360 struct shrink_control shrink = {
2361 .gfp_mask = sc->gfp_mask,
2362 };
9bbc04ee 2363 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2344d7e4 2364 bool reclaimable = false;
1cfb419b 2365
cc715d99
MG
2366 /*
2367 * If the number of buffer_heads in the machine exceeds the maximum
2368 * allowed level, force direct reclaim to scan the highmem zone as
2369 * highmem pages could be pinning lowmem pages storing buffer_heads
2370 */
619d0d76 2371 orig_mask = sc->gfp_mask;
cc715d99
MG
2372 if (buffer_heads_over_limit)
2373 sc->gfp_mask |= __GFP_HIGHMEM;
2374
3115cd91 2375 nodes_clear(shrink.nodes_to_scan);
65ec02cb 2376
d4debc66
MG
2377 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2378 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2379 if (!populated_zone(zone))
1da177e4 2380 continue;
1cfb419b
KH
2381 /*
2382 * Take care memory controller reclaiming has small influence
2383 * to global LRU.
2384 */
89b5fae5 2385 if (global_reclaim(sc)) {
1cfb419b
KH
2386 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2387 continue;
65ec02cb
VD
2388
2389 lru_pages += zone_reclaimable_pages(zone);
3115cd91 2390 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
65ec02cb 2391
6e543d57
LD
2392 if (sc->priority != DEF_PRIORITY &&
2393 !zone_reclaimable(zone))
1cfb419b 2394 continue; /* Let kswapd poll it */
0b06496a
JW
2395
2396 /*
2397 * If we already have plenty of memory free for
2398 * compaction in this zone, don't free any more.
2399 * Even though compaction is invoked for any
2400 * non-zero order, only frequent costly order
2401 * reclamation is disruptive enough to become a
2402 * noticeable problem, like transparent huge
2403 * page allocations.
2404 */
2405 if (IS_ENABLED(CONFIG_COMPACTION) &&
2406 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2407 zonelist_zone_idx(z) <= requested_highidx &&
2408 compaction_ready(zone, sc->order)) {
2409 sc->compaction_ready = true;
2410 continue;
e0887c19 2411 }
0b06496a 2412
0608f43d
AM
2413 /*
2414 * This steals pages from memory cgroups over softlimit
2415 * and returns the number of reclaimed pages and
2416 * scanned pages. This works for global memory pressure
2417 * and balancing, not for a memcg's limit.
2418 */
2419 nr_soft_scanned = 0;
2420 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2421 sc->order, sc->gfp_mask,
2422 &nr_soft_scanned);
2423 sc->nr_reclaimed += nr_soft_reclaimed;
2424 sc->nr_scanned += nr_soft_scanned;
2344d7e4
JW
2425 if (nr_soft_reclaimed)
2426 reclaimable = true;
ac34a1a3 2427 /* need some check for avoid more shrink_zone() */
1cfb419b 2428 }
408d8544 2429
2344d7e4
JW
2430 if (shrink_zone(zone, sc))
2431 reclaimable = true;
2432
2433 if (global_reclaim(sc) &&
2434 !reclaimable && zone_reclaimable(zone))
2435 reclaimable = true;
1da177e4 2436 }
e0c23279 2437
65ec02cb
VD
2438 /*
2439 * Don't shrink slabs when reclaiming memory from over limit cgroups
2440 * but do shrink slab at least once when aborting reclaim for
2441 * compaction to avoid unevenly scanning file/anon LRU pages over slab
2442 * pages.
2443 */
2444 if (global_reclaim(sc)) {
3115cd91 2445 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
65ec02cb
VD
2446 if (reclaim_state) {
2447 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2448 reclaim_state->reclaimed_slab = 0;
2449 }
2450 }
2451
619d0d76
WY
2452 /*
2453 * Restore to original mask to avoid the impact on the caller if we
2454 * promoted it to __GFP_HIGHMEM.
2455 */
2456 sc->gfp_mask = orig_mask;
d1908362 2457
2344d7e4 2458 return reclaimable;
1da177e4 2459}
4f98a2fe 2460
1da177e4
LT
2461/*
2462 * This is the main entry point to direct page reclaim.
2463 *
2464 * If a full scan of the inactive list fails to free enough memory then we
2465 * are "out of memory" and something needs to be killed.
2466 *
2467 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2468 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2469 * caller can't do much about. We kick the writeback threads and take explicit
2470 * naps in the hope that some of these pages can be written. But if the
2471 * allocating task holds filesystem locks which prevent writeout this might not
2472 * work, and the allocation attempt will fail.
a41f24ea
NA
2473 *
2474 * returns: 0, if no pages reclaimed
2475 * else, the number of pages reclaimed
1da177e4 2476 */
dac1d27b 2477static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2478 struct scan_control *sc)
1da177e4 2479{
69e05944 2480 unsigned long total_scanned = 0;
22fba335 2481 unsigned long writeback_threshold;
2344d7e4 2482 bool zones_reclaimable;
1da177e4 2483
873b4771
KK
2484 delayacct_freepages_start();
2485
89b5fae5 2486 if (global_reclaim(sc))
1cfb419b 2487 count_vm_event(ALLOCSTALL);
1da177e4 2488
9e3b2f8c 2489 do {
70ddf637
AV
2490 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2491 sc->priority);
66e1707b 2492 sc->nr_scanned = 0;
2344d7e4 2493 zones_reclaimable = shrink_zones(zonelist, sc);
c6a8a8c5 2494
66e1707b 2495 total_scanned += sc->nr_scanned;
bb21c7ce 2496 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2497 break;
2498
2499 if (sc->compaction_ready)
2500 break;
1da177e4 2501
0e50ce3b
MK
2502 /*
2503 * If we're getting trouble reclaiming, start doing
2504 * writepage even in laptop mode.
2505 */
2506 if (sc->priority < DEF_PRIORITY - 2)
2507 sc->may_writepage = 1;
2508
1da177e4
LT
2509 /*
2510 * Try to write back as many pages as we just scanned. This
2511 * tends to cause slow streaming writers to write data to the
2512 * disk smoothly, at the dirtying rate, which is nice. But
2513 * that's undesirable in laptop mode, where we *want* lumpy
2514 * writeout. So in laptop mode, write out the whole world.
2515 */
22fba335
KM
2516 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2517 if (total_scanned > writeback_threshold) {
0e175a18
CW
2518 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2519 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2520 sc->may_writepage = 1;
1da177e4 2521 }
0b06496a 2522 } while (--sc->priority >= 0);
bb21c7ce 2523
873b4771
KK
2524 delayacct_freepages_end();
2525
bb21c7ce
KM
2526 if (sc->nr_reclaimed)
2527 return sc->nr_reclaimed;
2528
0cee34fd 2529 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2530 if (sc->compaction_ready)
7335084d
MG
2531 return 1;
2532
2344d7e4
JW
2533 /* Any of the zones still reclaimable? Don't OOM. */
2534 if (zones_reclaimable)
bb21c7ce
KM
2535 return 1;
2536
2537 return 0;
1da177e4
LT
2538}
2539
5515061d
MG
2540static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2541{
2542 struct zone *zone;
2543 unsigned long pfmemalloc_reserve = 0;
2544 unsigned long free_pages = 0;
2545 int i;
2546 bool wmark_ok;
2547
2548 for (i = 0; i <= ZONE_NORMAL; i++) {
2549 zone = &pgdat->node_zones[i];
675becce
MG
2550 if (!populated_zone(zone))
2551 continue;
2552
5515061d
MG
2553 pfmemalloc_reserve += min_wmark_pages(zone);
2554 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2555 }
2556
675becce
MG
2557 /* If there are no reserves (unexpected config) then do not throttle */
2558 if (!pfmemalloc_reserve)
2559 return true;
2560
5515061d
MG
2561 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2562
2563 /* kswapd must be awake if processes are being throttled */
2564 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2565 pgdat->classzone_idx = min(pgdat->classzone_idx,
2566 (enum zone_type)ZONE_NORMAL);
2567 wake_up_interruptible(&pgdat->kswapd_wait);
2568 }
2569
2570 return wmark_ok;
2571}
2572
2573/*
2574 * Throttle direct reclaimers if backing storage is backed by the network
2575 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2576 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2577 * when the low watermark is reached.
2578 *
2579 * Returns true if a fatal signal was delivered during throttling. If this
2580 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2581 */
50694c28 2582static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2583 nodemask_t *nodemask)
2584{
675becce 2585 struct zoneref *z;
5515061d 2586 struct zone *zone;
675becce 2587 pg_data_t *pgdat = NULL;
5515061d
MG
2588
2589 /*
2590 * Kernel threads should not be throttled as they may be indirectly
2591 * responsible for cleaning pages necessary for reclaim to make forward
2592 * progress. kjournald for example may enter direct reclaim while
2593 * committing a transaction where throttling it could forcing other
2594 * processes to block on log_wait_commit().
2595 */
2596 if (current->flags & PF_KTHREAD)
50694c28
MG
2597 goto out;
2598
2599 /*
2600 * If a fatal signal is pending, this process should not throttle.
2601 * It should return quickly so it can exit and free its memory
2602 */
2603 if (fatal_signal_pending(current))
2604 goto out;
5515061d 2605
675becce
MG
2606 /*
2607 * Check if the pfmemalloc reserves are ok by finding the first node
2608 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2609 * GFP_KERNEL will be required for allocating network buffers when
2610 * swapping over the network so ZONE_HIGHMEM is unusable.
2611 *
2612 * Throttling is based on the first usable node and throttled processes
2613 * wait on a queue until kswapd makes progress and wakes them. There
2614 * is an affinity then between processes waking up and where reclaim
2615 * progress has been made assuming the process wakes on the same node.
2616 * More importantly, processes running on remote nodes will not compete
2617 * for remote pfmemalloc reserves and processes on different nodes
2618 * should make reasonable progress.
2619 */
2620 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2621 gfp_mask, nodemask) {
2622 if (zone_idx(zone) > ZONE_NORMAL)
2623 continue;
2624
2625 /* Throttle based on the first usable node */
2626 pgdat = zone->zone_pgdat;
2627 if (pfmemalloc_watermark_ok(pgdat))
2628 goto out;
2629 break;
2630 }
2631
2632 /* If no zone was usable by the allocation flags then do not throttle */
2633 if (!pgdat)
50694c28 2634 goto out;
5515061d 2635
68243e76
MG
2636 /* Account for the throttling */
2637 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2638
5515061d
MG
2639 /*
2640 * If the caller cannot enter the filesystem, it's possible that it
2641 * is due to the caller holding an FS lock or performing a journal
2642 * transaction in the case of a filesystem like ext[3|4]. In this case,
2643 * it is not safe to block on pfmemalloc_wait as kswapd could be
2644 * blocked waiting on the same lock. Instead, throttle for up to a
2645 * second before continuing.
2646 */
2647 if (!(gfp_mask & __GFP_FS)) {
2648 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2649 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2650
2651 goto check_pending;
5515061d
MG
2652 }
2653
2654 /* Throttle until kswapd wakes the process */
2655 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2656 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2657
2658check_pending:
2659 if (fatal_signal_pending(current))
2660 return true;
2661
2662out:
2663 return false;
5515061d
MG
2664}
2665
dac1d27b 2666unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2667 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2668{
33906bc5 2669 unsigned long nr_reclaimed;
66e1707b 2670 struct scan_control sc = {
21caf2fc 2671 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
66e1707b 2672 .may_writepage = !laptop_mode,
22fba335 2673 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2674 .may_unmap = 1,
2e2e4259 2675 .may_swap = 1,
66e1707b 2676 .order = order,
9e3b2f8c 2677 .priority = DEF_PRIORITY,
f16015fb 2678 .target_mem_cgroup = NULL,
327c0e96 2679 .nodemask = nodemask,
66e1707b
BS
2680 };
2681
5515061d 2682 /*
50694c28
MG
2683 * Do not enter reclaim if fatal signal was delivered while throttled.
2684 * 1 is returned so that the page allocator does not OOM kill at this
2685 * point.
5515061d 2686 */
50694c28 2687 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2688 return 1;
2689
33906bc5
MG
2690 trace_mm_vmscan_direct_reclaim_begin(order,
2691 sc.may_writepage,
2692 gfp_mask);
2693
3115cd91 2694 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2695
2696 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2697
2698 return nr_reclaimed;
66e1707b
BS
2699}
2700
c255a458 2701#ifdef CONFIG_MEMCG
66e1707b 2702
72835c86 2703unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2704 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2705 struct zone *zone,
2706 unsigned long *nr_scanned)
4e416953
BS
2707{
2708 struct scan_control sc = {
0ae5e89c 2709 .nr_scanned = 0,
b8f5c566 2710 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2711 .may_writepage = !laptop_mode,
2712 .may_unmap = 1,
2713 .may_swap = !noswap,
4e416953 2714 .order = 0,
9e3b2f8c 2715 .priority = 0,
72835c86 2716 .target_mem_cgroup = memcg,
4e416953 2717 };
f9be23d6 2718 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2719 int swappiness = mem_cgroup_swappiness(memcg);
0ae5e89c 2720
4e416953
BS
2721 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2722 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2723
9e3b2f8c 2724 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2725 sc.may_writepage,
2726 sc.gfp_mask);
2727
4e416953
BS
2728 /*
2729 * NOTE: Although we can get the priority field, using it
2730 * here is not a good idea, since it limits the pages we can scan.
2731 * if we don't reclaim here, the shrink_zone from balance_pgdat
2732 * will pick up pages from other mem cgroup's as well. We hack
2733 * the priority and make it zero.
2734 */
02695175 2735 shrink_lruvec(lruvec, swappiness, &sc);
bdce6d9e
KM
2736
2737 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2738
0ae5e89c 2739 *nr_scanned = sc.nr_scanned;
4e416953
BS
2740 return sc.nr_reclaimed;
2741}
2742
72835c86 2743unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2744 gfp_t gfp_mask,
185efc0f 2745 bool noswap)
66e1707b 2746{
4e416953 2747 struct zonelist *zonelist;
bdce6d9e 2748 unsigned long nr_reclaimed;
889976db 2749 int nid;
66e1707b 2750 struct scan_control sc = {
66e1707b 2751 .may_writepage = !laptop_mode,
a6dc60f8 2752 .may_unmap = 1,
2e2e4259 2753 .may_swap = !noswap,
22fba335 2754 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2755 .order = 0,
9e3b2f8c 2756 .priority = DEF_PRIORITY,
72835c86 2757 .target_mem_cgroup = memcg,
327c0e96 2758 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2759 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2760 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2761 };
66e1707b 2762
889976db
YH
2763 /*
2764 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2765 * take care of from where we get pages. So the node where we start the
2766 * scan does not need to be the current node.
2767 */
72835c86 2768 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2769
2770 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2771
2772 trace_mm_vmscan_memcg_reclaim_begin(0,
2773 sc.may_writepage,
2774 sc.gfp_mask);
2775
3115cd91 2776 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
bdce6d9e
KM
2777
2778 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2779
2780 return nr_reclaimed;
66e1707b
BS
2781}
2782#endif
2783
9e3b2f8c 2784static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2785{
b95a2f2d 2786 struct mem_cgroup *memcg;
f16015fb 2787
b95a2f2d
JW
2788 if (!total_swap_pages)
2789 return;
2790
2791 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2792 do {
c56d5c7d 2793 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2794
c56d5c7d 2795 if (inactive_anon_is_low(lruvec))
1a93be0e 2796 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2797 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2798
2799 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2800 } while (memcg);
f16015fb
JW
2801}
2802
60cefed4
JW
2803static bool zone_balanced(struct zone *zone, int order,
2804 unsigned long balance_gap, int classzone_idx)
2805{
2806 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2807 balance_gap, classzone_idx, 0))
2808 return false;
2809
d84da3f9
KS
2810 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2811 !compaction_suitable(zone, order))
60cefed4
JW
2812 return false;
2813
2814 return true;
2815}
2816
1741c877 2817/*
4ae0a48b
ZC
2818 * pgdat_balanced() is used when checking if a node is balanced.
2819 *
2820 * For order-0, all zones must be balanced!
2821 *
2822 * For high-order allocations only zones that meet watermarks and are in a
2823 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2824 * total of balanced pages must be at least 25% of the zones allowed by
2825 * classzone_idx for the node to be considered balanced. Forcing all zones to
2826 * be balanced for high orders can cause excessive reclaim when there are
2827 * imbalanced zones.
1741c877
MG
2828 * The choice of 25% is due to
2829 * o a 16M DMA zone that is balanced will not balance a zone on any
2830 * reasonable sized machine
2831 * o On all other machines, the top zone must be at least a reasonable
25985edc 2832 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2833 * would need to be at least 256M for it to be balance a whole node.
2834 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2835 * to balance a node on its own. These seemed like reasonable ratios.
2836 */
4ae0a48b 2837static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2838{
b40da049 2839 unsigned long managed_pages = 0;
4ae0a48b 2840 unsigned long balanced_pages = 0;
1741c877
MG
2841 int i;
2842
4ae0a48b
ZC
2843 /* Check the watermark levels */
2844 for (i = 0; i <= classzone_idx; i++) {
2845 struct zone *zone = pgdat->node_zones + i;
1741c877 2846
4ae0a48b
ZC
2847 if (!populated_zone(zone))
2848 continue;
2849
b40da049 2850 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2851
2852 /*
2853 * A special case here:
2854 *
2855 * balance_pgdat() skips over all_unreclaimable after
2856 * DEF_PRIORITY. Effectively, it considers them balanced so
2857 * they must be considered balanced here as well!
2858 */
6e543d57 2859 if (!zone_reclaimable(zone)) {
b40da049 2860 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2861 continue;
2862 }
2863
2864 if (zone_balanced(zone, order, 0, i))
b40da049 2865 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2866 else if (!order)
2867 return false;
2868 }
2869
2870 if (order)
b40da049 2871 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
2872 else
2873 return true;
1741c877
MG
2874}
2875
5515061d
MG
2876/*
2877 * Prepare kswapd for sleeping. This verifies that there are no processes
2878 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2879 *
2880 * Returns true if kswapd is ready to sleep
2881 */
2882static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2883 int classzone_idx)
f50de2d3 2884{
f50de2d3
MG
2885 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2886 if (remaining)
5515061d
MG
2887 return false;
2888
2889 /*
2890 * There is a potential race between when kswapd checks its watermarks
2891 * and a process gets throttled. There is also a potential race if
2892 * processes get throttled, kswapd wakes, a large process exits therby
2893 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2894 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2895 * so wake them now if necessary. If necessary, processes will wake
2896 * kswapd and get throttled again
2897 */
2898 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2899 wake_up(&pgdat->pfmemalloc_wait);
2900 return false;
2901 }
f50de2d3 2902
4ae0a48b 2903 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
2904}
2905
75485363
MG
2906/*
2907 * kswapd shrinks the zone by the number of pages required to reach
2908 * the high watermark.
b8e83b94
MG
2909 *
2910 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
2911 * reclaim or if the lack of progress was due to pages under writeback.
2912 * This is used to determine if the scanning priority needs to be raised.
75485363 2913 */
b8e83b94 2914static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 2915 int classzone_idx,
75485363 2916 struct scan_control *sc,
2ab44f43
MG
2917 unsigned long lru_pages,
2918 unsigned long *nr_attempted)
75485363 2919{
7c954f6d
MG
2920 int testorder = sc->order;
2921 unsigned long balance_gap;
75485363
MG
2922 struct reclaim_state *reclaim_state = current->reclaim_state;
2923 struct shrink_control shrink = {
2924 .gfp_mask = sc->gfp_mask,
2925 };
7c954f6d 2926 bool lowmem_pressure;
75485363
MG
2927
2928 /* Reclaim above the high watermark. */
2929 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
2930
2931 /*
2932 * Kswapd reclaims only single pages with compaction enabled. Trying
2933 * too hard to reclaim until contiguous free pages have become
2934 * available can hurt performance by evicting too much useful data
2935 * from memory. Do not reclaim more than needed for compaction.
2936 */
2937 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2938 compaction_suitable(zone, sc->order) !=
2939 COMPACT_SKIPPED)
2940 testorder = 0;
2941
2942 /*
2943 * We put equal pressure on every zone, unless one zone has way too
2944 * many pages free already. The "too many pages" is defined as the
2945 * high wmark plus a "gap" where the gap is either the low
2946 * watermark or 1% of the zone, whichever is smaller.
2947 */
4be89a34
JZ
2948 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2949 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
7c954f6d
MG
2950
2951 /*
2952 * If there is no low memory pressure or the zone is balanced then no
2953 * reclaim is necessary
2954 */
2955 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2956 if (!lowmem_pressure && zone_balanced(zone, testorder,
2957 balance_gap, classzone_idx))
2958 return true;
2959
75485363 2960 shrink_zone(zone, sc);
0ce3d744
DC
2961 nodes_clear(shrink.nodes_to_scan);
2962 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
75485363
MG
2963
2964 reclaim_state->reclaimed_slab = 0;
6e543d57 2965 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
75485363
MG
2966 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2967
2ab44f43
MG
2968 /* Account for the number of pages attempted to reclaim */
2969 *nr_attempted += sc->nr_to_reclaim;
2970
283aba9f
MG
2971 zone_clear_flag(zone, ZONE_WRITEBACK);
2972
7c954f6d
MG
2973 /*
2974 * If a zone reaches its high watermark, consider it to be no longer
2975 * congested. It's possible there are dirty pages backed by congested
2976 * BDIs but as pressure is relieved, speculatively avoid congestion
2977 * waits.
2978 */
6e543d57 2979 if (zone_reclaimable(zone) &&
7c954f6d
MG
2980 zone_balanced(zone, testorder, 0, classzone_idx)) {
2981 zone_clear_flag(zone, ZONE_CONGESTED);
2982 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2983 }
2984
b8e83b94 2985 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
2986}
2987
1da177e4
LT
2988/*
2989 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2990 * they are all at high_wmark_pages(zone).
1da177e4 2991 *
0abdee2b 2992 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2993 *
2994 * There is special handling here for zones which are full of pinned pages.
2995 * This can happen if the pages are all mlocked, or if they are all used by
2996 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2997 * What we do is to detect the case where all pages in the zone have been
2998 * scanned twice and there has been zero successful reclaim. Mark the zone as
2999 * dead and from now on, only perform a short scan. Basically we're polling
3000 * the zone for when the problem goes away.
3001 *
3002 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
3003 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3004 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3005 * lower zones regardless of the number of free pages in the lower zones. This
3006 * interoperates with the page allocator fallback scheme to ensure that aging
3007 * of pages is balanced across the zones.
1da177e4 3008 */
99504748 3009static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 3010 int *classzone_idx)
1da177e4 3011{
1da177e4 3012 int i;
99504748 3013 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0608f43d
AM
3014 unsigned long nr_soft_reclaimed;
3015 unsigned long nr_soft_scanned;
179e9639
AM
3016 struct scan_control sc = {
3017 .gfp_mask = GFP_KERNEL,
b8e83b94 3018 .priority = DEF_PRIORITY,
a6dc60f8 3019 .may_unmap = 1,
2e2e4259 3020 .may_swap = 1,
b8e83b94 3021 .may_writepage = !laptop_mode,
5ad333eb 3022 .order = order,
f16015fb 3023 .target_mem_cgroup = NULL,
179e9639 3024 };
f8891e5e 3025 count_vm_event(PAGEOUTRUN);
1da177e4 3026
9e3b2f8c 3027 do {
1da177e4 3028 unsigned long lru_pages = 0;
2ab44f43 3029 unsigned long nr_attempted = 0;
b8e83b94 3030 bool raise_priority = true;
2ab44f43 3031 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
3032
3033 sc.nr_reclaimed = 0;
1da177e4 3034
d6277db4
RW
3035 /*
3036 * Scan in the highmem->dma direction for the highest
3037 * zone which needs scanning
3038 */
3039 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3040 struct zone *zone = pgdat->node_zones + i;
1da177e4 3041
d6277db4
RW
3042 if (!populated_zone(zone))
3043 continue;
1da177e4 3044
6e543d57
LD
3045 if (sc.priority != DEF_PRIORITY &&
3046 !zone_reclaimable(zone))
d6277db4 3047 continue;
1da177e4 3048
556adecb
RR
3049 /*
3050 * Do some background aging of the anon list, to give
3051 * pages a chance to be referenced before reclaiming.
3052 */
9e3b2f8c 3053 age_active_anon(zone, &sc);
556adecb 3054
cc715d99
MG
3055 /*
3056 * If the number of buffer_heads in the machine
3057 * exceeds the maximum allowed level and this node
3058 * has a highmem zone, force kswapd to reclaim from
3059 * it to relieve lowmem pressure.
3060 */
3061 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3062 end_zone = i;
3063 break;
3064 }
3065
60cefed4 3066 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 3067 end_zone = i;
e1dbeda6 3068 break;
439423f6 3069 } else {
d43006d5
MG
3070 /*
3071 * If balanced, clear the dirty and congested
3072 * flags
3073 */
439423f6 3074 zone_clear_flag(zone, ZONE_CONGESTED);
d43006d5 3075 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
1da177e4 3076 }
1da177e4 3077 }
dafcb73e 3078
b8e83b94 3079 if (i < 0)
e1dbeda6
AM
3080 goto out;
3081
1da177e4
LT
3082 for (i = 0; i <= end_zone; i++) {
3083 struct zone *zone = pgdat->node_zones + i;
3084
2ab44f43
MG
3085 if (!populated_zone(zone))
3086 continue;
3087
adea02a1 3088 lru_pages += zone_reclaimable_pages(zone);
2ab44f43
MG
3089
3090 /*
3091 * If any zone is currently balanced then kswapd will
3092 * not call compaction as it is expected that the
3093 * necessary pages are already available.
3094 */
3095 if (pgdat_needs_compaction &&
3096 zone_watermark_ok(zone, order,
3097 low_wmark_pages(zone),
3098 *classzone_idx, 0))
3099 pgdat_needs_compaction = false;
1da177e4
LT
3100 }
3101
b7ea3c41
MG
3102 /*
3103 * If we're getting trouble reclaiming, start doing writepage
3104 * even in laptop mode.
3105 */
3106 if (sc.priority < DEF_PRIORITY - 2)
3107 sc.may_writepage = 1;
3108
1da177e4
LT
3109 /*
3110 * Now scan the zone in the dma->highmem direction, stopping
3111 * at the last zone which needs scanning.
3112 *
3113 * We do this because the page allocator works in the opposite
3114 * direction. This prevents the page allocator from allocating
3115 * pages behind kswapd's direction of progress, which would
3116 * cause too much scanning of the lower zones.
3117 */
3118 for (i = 0; i <= end_zone; i++) {
3119 struct zone *zone = pgdat->node_zones + i;
3120
f3fe6512 3121 if (!populated_zone(zone))
1da177e4
LT
3122 continue;
3123
6e543d57
LD
3124 if (sc.priority != DEF_PRIORITY &&
3125 !zone_reclaimable(zone))
1da177e4
LT
3126 continue;
3127
1da177e4 3128 sc.nr_scanned = 0;
4e416953 3129
0608f43d
AM
3130 nr_soft_scanned = 0;
3131 /*
3132 * Call soft limit reclaim before calling shrink_zone.
3133 */
3134 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3135 order, sc.gfp_mask,
3136 &nr_soft_scanned);
3137 sc.nr_reclaimed += nr_soft_reclaimed;
3138
32a4330d 3139 /*
7c954f6d
MG
3140 * There should be no need to raise the scanning
3141 * priority if enough pages are already being scanned
3142 * that that high watermark would be met at 100%
3143 * efficiency.
fe2c2a10 3144 */
7c954f6d
MG
3145 if (kswapd_shrink_zone(zone, end_zone, &sc,
3146 lru_pages, &nr_attempted))
3147 raise_priority = false;
1da177e4 3148 }
5515061d
MG
3149
3150 /*
3151 * If the low watermark is met there is no need for processes
3152 * to be throttled on pfmemalloc_wait as they should not be
3153 * able to safely make forward progress. Wake them
3154 */
3155 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3156 pfmemalloc_watermark_ok(pgdat))
3157 wake_up(&pgdat->pfmemalloc_wait);
3158
1da177e4 3159 /*
b8e83b94
MG
3160 * Fragmentation may mean that the system cannot be rebalanced
3161 * for high-order allocations in all zones. If twice the
3162 * allocation size has been reclaimed and the zones are still
3163 * not balanced then recheck the watermarks at order-0 to
3164 * prevent kswapd reclaiming excessively. Assume that a
3165 * process requested a high-order can direct reclaim/compact.
1da177e4 3166 */
b8e83b94
MG
3167 if (order && sc.nr_reclaimed >= 2UL << order)
3168 order = sc.order = 0;
8357376d 3169
b8e83b94
MG
3170 /* Check if kswapd should be suspending */
3171 if (try_to_freeze() || kthread_should_stop())
3172 break;
8357376d 3173
2ab44f43
MG
3174 /*
3175 * Compact if necessary and kswapd is reclaiming at least the
3176 * high watermark number of pages as requsted
3177 */
3178 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3179 compact_pgdat(pgdat, order);
3180
73ce02e9 3181 /*
b8e83b94
MG
3182 * Raise priority if scanning rate is too low or there was no
3183 * progress in reclaiming pages
73ce02e9 3184 */
b8e83b94
MG
3185 if (raise_priority || !sc.nr_reclaimed)
3186 sc.priority--;
9aa41348 3187 } while (sc.priority >= 1 &&
b8e83b94 3188 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3189
b8e83b94 3190out:
0abdee2b 3191 /*
5515061d 3192 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3193 * makes a decision on the order we were last reclaiming at. However,
3194 * if another caller entered the allocator slow path while kswapd
3195 * was awake, order will remain at the higher level
3196 */
dc83edd9 3197 *classzone_idx = end_zone;
0abdee2b 3198 return order;
1da177e4
LT
3199}
3200
dc83edd9 3201static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3202{
3203 long remaining = 0;
3204 DEFINE_WAIT(wait);
3205
3206 if (freezing(current) || kthread_should_stop())
3207 return;
3208
3209 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3210
3211 /* Try to sleep for a short interval */
5515061d 3212 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3213 remaining = schedule_timeout(HZ/10);
3214 finish_wait(&pgdat->kswapd_wait, &wait);
3215 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3216 }
3217
3218 /*
3219 * After a short sleep, check if it was a premature sleep. If not, then
3220 * go fully to sleep until explicitly woken up.
3221 */
5515061d 3222 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3223 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3224
3225 /*
3226 * vmstat counters are not perfectly accurate and the estimated
3227 * value for counters such as NR_FREE_PAGES can deviate from the
3228 * true value by nr_online_cpus * threshold. To avoid the zone
3229 * watermarks being breached while under pressure, we reduce the
3230 * per-cpu vmstat threshold while kswapd is awake and restore
3231 * them before going back to sleep.
3232 */
3233 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3234
62997027
MG
3235 /*
3236 * Compaction records what page blocks it recently failed to
3237 * isolate pages from and skips them in the future scanning.
3238 * When kswapd is going to sleep, it is reasonable to assume
3239 * that pages and compaction may succeed so reset the cache.
3240 */
3241 reset_isolation_suitable(pgdat);
3242
1c7e7f6c
AK
3243 if (!kthread_should_stop())
3244 schedule();
3245
f0bc0a60
KM
3246 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3247 } else {
3248 if (remaining)
3249 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3250 else
3251 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3252 }
3253 finish_wait(&pgdat->kswapd_wait, &wait);
3254}
3255
1da177e4
LT
3256/*
3257 * The background pageout daemon, started as a kernel thread
4f98a2fe 3258 * from the init process.
1da177e4
LT
3259 *
3260 * This basically trickles out pages so that we have _some_
3261 * free memory available even if there is no other activity
3262 * that frees anything up. This is needed for things like routing
3263 * etc, where we otherwise might have all activity going on in
3264 * asynchronous contexts that cannot page things out.
3265 *
3266 * If there are applications that are active memory-allocators
3267 * (most normal use), this basically shouldn't matter.
3268 */
3269static int kswapd(void *p)
3270{
215ddd66 3271 unsigned long order, new_order;
d2ebd0f6 3272 unsigned balanced_order;
215ddd66 3273 int classzone_idx, new_classzone_idx;
d2ebd0f6 3274 int balanced_classzone_idx;
1da177e4
LT
3275 pg_data_t *pgdat = (pg_data_t*)p;
3276 struct task_struct *tsk = current;
f0bc0a60 3277
1da177e4
LT
3278 struct reclaim_state reclaim_state = {
3279 .reclaimed_slab = 0,
3280 };
a70f7302 3281 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3282
cf40bd16
NP
3283 lockdep_set_current_reclaim_state(GFP_KERNEL);
3284
174596a0 3285 if (!cpumask_empty(cpumask))
c5f59f08 3286 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3287 current->reclaim_state = &reclaim_state;
3288
3289 /*
3290 * Tell the memory management that we're a "memory allocator",
3291 * and that if we need more memory we should get access to it
3292 * regardless (see "__alloc_pages()"). "kswapd" should
3293 * never get caught in the normal page freeing logic.
3294 *
3295 * (Kswapd normally doesn't need memory anyway, but sometimes
3296 * you need a small amount of memory in order to be able to
3297 * page out something else, and this flag essentially protects
3298 * us from recursively trying to free more memory as we're
3299 * trying to free the first piece of memory in the first place).
3300 */
930d9152 3301 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3302 set_freezable();
1da177e4 3303
215ddd66 3304 order = new_order = 0;
d2ebd0f6 3305 balanced_order = 0;
215ddd66 3306 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3307 balanced_classzone_idx = classzone_idx;
1da177e4 3308 for ( ; ; ) {
6f6313d4 3309 bool ret;
3e1d1d28 3310
215ddd66
MG
3311 /*
3312 * If the last balance_pgdat was unsuccessful it's unlikely a
3313 * new request of a similar or harder type will succeed soon
3314 * so consider going to sleep on the basis we reclaimed at
3315 */
d2ebd0f6
AS
3316 if (balanced_classzone_idx >= new_classzone_idx &&
3317 balanced_order == new_order) {
215ddd66
MG
3318 new_order = pgdat->kswapd_max_order;
3319 new_classzone_idx = pgdat->classzone_idx;
3320 pgdat->kswapd_max_order = 0;
3321 pgdat->classzone_idx = pgdat->nr_zones - 1;
3322 }
3323
99504748 3324 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3325 /*
3326 * Don't sleep if someone wants a larger 'order'
99504748 3327 * allocation or has tigher zone constraints
1da177e4
LT
3328 */
3329 order = new_order;
99504748 3330 classzone_idx = new_classzone_idx;
1da177e4 3331 } else {
d2ebd0f6
AS
3332 kswapd_try_to_sleep(pgdat, balanced_order,
3333 balanced_classzone_idx);
1da177e4 3334 order = pgdat->kswapd_max_order;
99504748 3335 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3336 new_order = order;
3337 new_classzone_idx = classzone_idx;
4d40502e 3338 pgdat->kswapd_max_order = 0;
215ddd66 3339 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3340 }
1da177e4 3341
8fe23e05
DR
3342 ret = try_to_freeze();
3343 if (kthread_should_stop())
3344 break;
3345
3346 /*
3347 * We can speed up thawing tasks if we don't call balance_pgdat
3348 * after returning from the refrigerator
3349 */
33906bc5
MG
3350 if (!ret) {
3351 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3352 balanced_classzone_idx = classzone_idx;
3353 balanced_order = balance_pgdat(pgdat, order,
3354 &balanced_classzone_idx);
33906bc5 3355 }
1da177e4 3356 }
b0a8cc58 3357
71abdc15 3358 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3359 current->reclaim_state = NULL;
71abdc15
JW
3360 lockdep_clear_current_reclaim_state();
3361
1da177e4
LT
3362 return 0;
3363}
3364
3365/*
3366 * A zone is low on free memory, so wake its kswapd task to service it.
3367 */
99504748 3368void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3369{
3370 pg_data_t *pgdat;
3371
f3fe6512 3372 if (!populated_zone(zone))
1da177e4
LT
3373 return;
3374
88f5acf8 3375 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 3376 return;
88f5acf8 3377 pgdat = zone->zone_pgdat;
99504748 3378 if (pgdat->kswapd_max_order < order) {
1da177e4 3379 pgdat->kswapd_max_order = order;
99504748
MG
3380 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3381 }
8d0986e2 3382 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3383 return;
892f795d 3384 if (zone_balanced(zone, order, 0, 0))
88f5acf8
MG
3385 return;
3386
3387 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3388 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3389}
3390
c6f37f12 3391#ifdef CONFIG_HIBERNATION
1da177e4 3392/*
7b51755c 3393 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3394 * freed pages.
3395 *
3396 * Rather than trying to age LRUs the aim is to preserve the overall
3397 * LRU order by reclaiming preferentially
3398 * inactive > active > active referenced > active mapped
1da177e4 3399 */
7b51755c 3400unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3401{
d6277db4 3402 struct reclaim_state reclaim_state;
d6277db4 3403 struct scan_control sc = {
7b51755c
KM
3404 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3405 .may_swap = 1,
3406 .may_unmap = 1,
d6277db4 3407 .may_writepage = 1,
7b51755c
KM
3408 .nr_to_reclaim = nr_to_reclaim,
3409 .hibernation_mode = 1,
7b51755c 3410 .order = 0,
9e3b2f8c 3411 .priority = DEF_PRIORITY,
1da177e4 3412 };
a09ed5e0 3413 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3414 struct task_struct *p = current;
3415 unsigned long nr_reclaimed;
1da177e4 3416
7b51755c
KM
3417 p->flags |= PF_MEMALLOC;
3418 lockdep_set_current_reclaim_state(sc.gfp_mask);
3419 reclaim_state.reclaimed_slab = 0;
3420 p->reclaim_state = &reclaim_state;
d6277db4 3421
3115cd91 3422 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3423
7b51755c
KM
3424 p->reclaim_state = NULL;
3425 lockdep_clear_current_reclaim_state();
3426 p->flags &= ~PF_MEMALLOC;
d6277db4 3427
7b51755c 3428 return nr_reclaimed;
1da177e4 3429}
c6f37f12 3430#endif /* CONFIG_HIBERNATION */
1da177e4 3431
1da177e4
LT
3432/* It's optimal to keep kswapds on the same CPUs as their memory, but
3433 not required for correctness. So if the last cpu in a node goes
3434 away, we get changed to run anywhere: as the first one comes back,
3435 restore their cpu bindings. */
fcb35a9b
GKH
3436static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3437 void *hcpu)
1da177e4 3438{
58c0a4a7 3439 int nid;
1da177e4 3440
8bb78442 3441 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3442 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3443 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3444 const struct cpumask *mask;
3445
3446 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3447
3e597945 3448 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3449 /* One of our CPUs online: restore mask */
c5f59f08 3450 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3451 }
3452 }
3453 return NOTIFY_OK;
3454}
1da177e4 3455
3218ae14
YG
3456/*
3457 * This kswapd start function will be called by init and node-hot-add.
3458 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3459 */
3460int kswapd_run(int nid)
3461{
3462 pg_data_t *pgdat = NODE_DATA(nid);
3463 int ret = 0;
3464
3465 if (pgdat->kswapd)
3466 return 0;
3467
3468 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3469 if (IS_ERR(pgdat->kswapd)) {
3470 /* failure at boot is fatal */
3471 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3472 pr_err("Failed to start kswapd on node %d\n", nid);
3473 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3474 pgdat->kswapd = NULL;
3218ae14
YG
3475 }
3476 return ret;
3477}
3478
8fe23e05 3479/*
d8adde17 3480 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3481 * hold mem_hotplug_begin/end().
8fe23e05
DR
3482 */
3483void kswapd_stop(int nid)
3484{
3485 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3486
d8adde17 3487 if (kswapd) {
8fe23e05 3488 kthread_stop(kswapd);
d8adde17
JL
3489 NODE_DATA(nid)->kswapd = NULL;
3490 }
8fe23e05
DR
3491}
3492
1da177e4
LT
3493static int __init kswapd_init(void)
3494{
3218ae14 3495 int nid;
69e05944 3496
1da177e4 3497 swap_setup();
48fb2e24 3498 for_each_node_state(nid, N_MEMORY)
3218ae14 3499 kswapd_run(nid);
1da177e4
LT
3500 hotcpu_notifier(cpu_callback, 0);
3501 return 0;
3502}
3503
3504module_init(kswapd_init)
9eeff239
CL
3505
3506#ifdef CONFIG_NUMA
3507/*
3508 * Zone reclaim mode
3509 *
3510 * If non-zero call zone_reclaim when the number of free pages falls below
3511 * the watermarks.
9eeff239
CL
3512 */
3513int zone_reclaim_mode __read_mostly;
3514
1b2ffb78 3515#define RECLAIM_OFF 0
7d03431c 3516#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3517#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3518#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3519
a92f7126
CL
3520/*
3521 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3522 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3523 * a zone.
3524 */
3525#define ZONE_RECLAIM_PRIORITY 4
3526
9614634f
CL
3527/*
3528 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3529 * occur.
3530 */
3531int sysctl_min_unmapped_ratio = 1;
3532
0ff38490
CL
3533/*
3534 * If the number of slab pages in a zone grows beyond this percentage then
3535 * slab reclaim needs to occur.
3536 */
3537int sysctl_min_slab_ratio = 5;
3538
90afa5de
MG
3539static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3540{
3541 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3542 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3543 zone_page_state(zone, NR_ACTIVE_FILE);
3544
3545 /*
3546 * It's possible for there to be more file mapped pages than
3547 * accounted for by the pages on the file LRU lists because
3548 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3549 */
3550 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3551}
3552
3553/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3554static long zone_pagecache_reclaimable(struct zone *zone)
3555{
3556 long nr_pagecache_reclaimable;
3557 long delta = 0;
3558
3559 /*
3560 * If RECLAIM_SWAP is set, then all file pages are considered
3561 * potentially reclaimable. Otherwise, we have to worry about
3562 * pages like swapcache and zone_unmapped_file_pages() provides
3563 * a better estimate
3564 */
3565 if (zone_reclaim_mode & RECLAIM_SWAP)
3566 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3567 else
3568 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3569
3570 /* If we can't clean pages, remove dirty pages from consideration */
3571 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3572 delta += zone_page_state(zone, NR_FILE_DIRTY);
3573
3574 /* Watch for any possible underflows due to delta */
3575 if (unlikely(delta > nr_pagecache_reclaimable))
3576 delta = nr_pagecache_reclaimable;
3577
3578 return nr_pagecache_reclaimable - delta;
3579}
3580
9eeff239
CL
3581/*
3582 * Try to free up some pages from this zone through reclaim.
3583 */
179e9639 3584static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3585{
7fb2d46d 3586 /* Minimum pages needed in order to stay on node */
69e05944 3587 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3588 struct task_struct *p = current;
3589 struct reclaim_state reclaim_state;
179e9639
AM
3590 struct scan_control sc = {
3591 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3592 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3593 .may_swap = 1,
62b726c1 3594 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3595 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3596 .order = order,
9e3b2f8c 3597 .priority = ZONE_RECLAIM_PRIORITY,
179e9639 3598 };
a09ed5e0
YH
3599 struct shrink_control shrink = {
3600 .gfp_mask = sc.gfp_mask,
3601 };
15748048 3602 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3603
9eeff239 3604 cond_resched();
d4f7796e
CL
3605 /*
3606 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3607 * and we also need to be able to write out pages for RECLAIM_WRITE
3608 * and RECLAIM_SWAP.
3609 */
3610 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3611 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3612 reclaim_state.reclaimed_slab = 0;
3613 p->reclaim_state = &reclaim_state;
c84db23c 3614
90afa5de 3615 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3616 /*
3617 * Free memory by calling shrink zone with increasing
3618 * priorities until we have enough memory freed.
3619 */
0ff38490 3620 do {
9e3b2f8c
KK
3621 shrink_zone(zone, &sc);
3622 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3623 }
c84db23c 3624
15748048
KM
3625 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3626 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3627 /*
7fb2d46d 3628 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3629 * many pages were freed in this zone. So we take the current
3630 * number of slab pages and shake the slab until it is reduced
3631 * by the same nr_pages that we used for reclaiming unmapped
3632 * pages.
2a16e3f4 3633 */
0ce3d744
DC
3634 nodes_clear(shrink.nodes_to_scan);
3635 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
4dc4b3d9
KM
3636 for (;;) {
3637 unsigned long lru_pages = zone_reclaimable_pages(zone);
3638
3639 /* No reclaimable slab or very low memory pressure */
1495f230 3640 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3641 break;
3642
3643 /* Freed enough memory */
3644 nr_slab_pages1 = zone_page_state(zone,
3645 NR_SLAB_RECLAIMABLE);
3646 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3647 break;
3648 }
83e33a47
CL
3649
3650 /*
3651 * Update nr_reclaimed by the number of slab pages we
3652 * reclaimed from this zone.
3653 */
15748048
KM
3654 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3655 if (nr_slab_pages1 < nr_slab_pages0)
3656 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3657 }
3658
9eeff239 3659 p->reclaim_state = NULL;
d4f7796e 3660 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3661 lockdep_clear_current_reclaim_state();
a79311c1 3662 return sc.nr_reclaimed >= nr_pages;
9eeff239 3663}
179e9639
AM
3664
3665int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3666{
179e9639 3667 int node_id;
d773ed6b 3668 int ret;
179e9639
AM
3669
3670 /*
0ff38490
CL
3671 * Zone reclaim reclaims unmapped file backed pages and
3672 * slab pages if we are over the defined limits.
34aa1330 3673 *
9614634f
CL
3674 * A small portion of unmapped file backed pages is needed for
3675 * file I/O otherwise pages read by file I/O will be immediately
3676 * thrown out if the zone is overallocated. So we do not reclaim
3677 * if less than a specified percentage of the zone is used by
3678 * unmapped file backed pages.
179e9639 3679 */
90afa5de
MG
3680 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3681 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3682 return ZONE_RECLAIM_FULL;
179e9639 3683
6e543d57 3684 if (!zone_reclaimable(zone))
fa5e084e 3685 return ZONE_RECLAIM_FULL;
d773ed6b 3686
179e9639 3687 /*
d773ed6b 3688 * Do not scan if the allocation should not be delayed.
179e9639 3689 */
d773ed6b 3690 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3691 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3692
3693 /*
3694 * Only run zone reclaim on the local zone or on zones that do not
3695 * have associated processors. This will favor the local processor
3696 * over remote processors and spread off node memory allocations
3697 * as wide as possible.
3698 */
89fa3024 3699 node_id = zone_to_nid(zone);
37c0708d 3700 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3701 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3702
3703 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3704 return ZONE_RECLAIM_NOSCAN;
3705
d773ed6b
DR
3706 ret = __zone_reclaim(zone, gfp_mask, order);
3707 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3708
24cf7251
MG
3709 if (!ret)
3710 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3711
d773ed6b 3712 return ret;
179e9639 3713}
9eeff239 3714#endif
894bc310 3715
894bc310
LS
3716/*
3717 * page_evictable - test whether a page is evictable
3718 * @page: the page to test
894bc310
LS
3719 *
3720 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3721 * lists vs unevictable list.
894bc310
LS
3722 *
3723 * Reasons page might not be evictable:
ba9ddf49 3724 * (1) page's mapping marked unevictable
b291f000 3725 * (2) page is part of an mlocked VMA
ba9ddf49 3726 *
894bc310 3727 */
39b5f29a 3728int page_evictable(struct page *page)
894bc310 3729{
39b5f29a 3730 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3731}
89e004ea 3732
85046579 3733#ifdef CONFIG_SHMEM
89e004ea 3734/**
24513264
HD
3735 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3736 * @pages: array of pages to check
3737 * @nr_pages: number of pages to check
89e004ea 3738 *
24513264 3739 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3740 *
3741 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3742 */
24513264 3743void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3744{
925b7673 3745 struct lruvec *lruvec;
24513264
HD
3746 struct zone *zone = NULL;
3747 int pgscanned = 0;
3748 int pgrescued = 0;
3749 int i;
89e004ea 3750
24513264
HD
3751 for (i = 0; i < nr_pages; i++) {
3752 struct page *page = pages[i];
3753 struct zone *pagezone;
89e004ea 3754
24513264
HD
3755 pgscanned++;
3756 pagezone = page_zone(page);
3757 if (pagezone != zone) {
3758 if (zone)
3759 spin_unlock_irq(&zone->lru_lock);
3760 zone = pagezone;
3761 spin_lock_irq(&zone->lru_lock);
3762 }
fa9add64 3763 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3764
24513264
HD
3765 if (!PageLRU(page) || !PageUnevictable(page))
3766 continue;
89e004ea 3767
39b5f29a 3768 if (page_evictable(page)) {
24513264
HD
3769 enum lru_list lru = page_lru_base_type(page);
3770
309381fe 3771 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3772 ClearPageUnevictable(page);
fa9add64
HD
3773 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3774 add_page_to_lru_list(page, lruvec, lru);
24513264 3775 pgrescued++;
89e004ea 3776 }
24513264 3777 }
89e004ea 3778
24513264
HD
3779 if (zone) {
3780 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3781 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3782 spin_unlock_irq(&zone->lru_lock);
89e004ea 3783 }
89e004ea 3784}
85046579 3785#endif /* CONFIG_SHMEM */
af936a16 3786
264e56d8 3787static void warn_scan_unevictable_pages(void)
af936a16 3788{
264e56d8 3789 printk_once(KERN_WARNING
25bd91bd 3790 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3791 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3792 "one, please send an email to linux-mm@kvack.org.\n",
3793 current->comm);
af936a16
LS
3794}
3795
3796/*
3797 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3798 * all nodes' unevictable lists for evictable pages
3799 */
3800unsigned long scan_unevictable_pages;
3801
3802int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3803 void __user *buffer,
af936a16
LS
3804 size_t *length, loff_t *ppos)
3805{
264e56d8 3806 warn_scan_unevictable_pages();
8d65af78 3807 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3808 scan_unevictable_pages = 0;
3809 return 0;
3810}
3811
e4455abb 3812#ifdef CONFIG_NUMA
af936a16
LS
3813/*
3814 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3815 * a specified node's per zone unevictable lists for evictable pages.
3816 */
3817
10fbcf4c
KS
3818static ssize_t read_scan_unevictable_node(struct device *dev,
3819 struct device_attribute *attr,
af936a16
LS
3820 char *buf)
3821{
264e56d8 3822 warn_scan_unevictable_pages();
af936a16
LS
3823 return sprintf(buf, "0\n"); /* always zero; should fit... */
3824}
3825
10fbcf4c
KS
3826static ssize_t write_scan_unevictable_node(struct device *dev,
3827 struct device_attribute *attr,
af936a16
LS
3828 const char *buf, size_t count)
3829{
264e56d8 3830 warn_scan_unevictable_pages();
af936a16
LS
3831 return 1;
3832}
3833
3834
10fbcf4c 3835static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3836 read_scan_unevictable_node,
3837 write_scan_unevictable_node);
3838
3839int scan_unevictable_register_node(struct node *node)
3840{
10fbcf4c 3841 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3842}
3843
3844void scan_unevictable_unregister_node(struct node *node)
3845{
10fbcf4c 3846 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3847}
e4455abb 3848#endif