]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/vmscan.c
mm/vmscan.c: calculate reclaimed slab caches in all reclaim paths
[mirror_ubuntu-kernels.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
b1de0d13
MH
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
1da177e4 17#include <linux/mm.h>
5b3cc15a 18#include <linux/sched/mm.h>
1da177e4 19#include <linux/module.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/kernel_stat.h>
22#include <linux/swap.h>
23#include <linux/pagemap.h>
24#include <linux/init.h>
25#include <linux/highmem.h>
70ddf637 26#include <linux/vmpressure.h>
e129b5c2 27#include <linux/vmstat.h>
1da177e4
LT
28#include <linux/file.h>
29#include <linux/writeback.h>
30#include <linux/blkdev.h>
31#include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33#include <linux/mm_inline.h>
1da177e4
LT
34#include <linux/backing-dev.h>
35#include <linux/rmap.h>
36#include <linux/topology.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
3e7d3449 39#include <linux/compaction.h>
1da177e4
LT
40#include <linux/notifier.h>
41#include <linux/rwsem.h>
248a0301 42#include <linux/delay.h>
3218ae14 43#include <linux/kthread.h>
7dfb7103 44#include <linux/freezer.h>
66e1707b 45#include <linux/memcontrol.h>
873b4771 46#include <linux/delayacct.h>
af936a16 47#include <linux/sysctl.h>
929bea7c 48#include <linux/oom.h>
64e3d12f 49#include <linux/pagevec.h>
268bb0ce 50#include <linux/prefetch.h>
b1de0d13 51#include <linux/printk.h>
f9fe48be 52#include <linux/dax.h>
eb414681 53#include <linux/psi.h>
1da177e4
LT
54
55#include <asm/tlbflush.h>
56#include <asm/div64.h>
57
58#include <linux/swapops.h>
117aad1e 59#include <linux/balloon_compaction.h>
1da177e4 60
0f8053a5
NP
61#include "internal.h"
62
33906bc5
MG
63#define CREATE_TRACE_POINTS
64#include <trace/events/vmscan.h>
65
1da177e4 66struct scan_control {
22fba335
KM
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
69
ee814fe2
JW
70 /*
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 * are scanned.
73 */
74 nodemask_t *nodemask;
9e3b2f8c 75
f16015fb
JW
76 /*
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
79 */
80 struct mem_cgroup *target_mem_cgroup;
66e1707b 81
1276ad68 82 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
83 unsigned int may_writepage:1;
84
85 /* Can mapped pages be reclaimed? */
86 unsigned int may_unmap:1;
87
88 /* Can pages be swapped as part of reclaim? */
89 unsigned int may_swap:1;
90
1c30844d
MG
91 /* e.g. boosted watermark reclaim leaves slabs alone */
92 unsigned int may_shrinkslab:1;
93
d6622f63
YX
94 /*
95 * Cgroups are not reclaimed below their configured memory.low,
96 * unless we threaten to OOM. If any cgroups are skipped due to
97 * memory.low and nothing was reclaimed, go back for memory.low.
98 */
99 unsigned int memcg_low_reclaim:1;
100 unsigned int memcg_low_skipped:1;
241994ed 101
ee814fe2
JW
102 unsigned int hibernation_mode:1;
103
104 /* One of the zones is ready for compaction */
105 unsigned int compaction_ready:1;
106
bb451fdf
GT
107 /* Allocation order */
108 s8 order;
109
110 /* Scan (total_size >> priority) pages at once */
111 s8 priority;
112
113 /* The highest zone to isolate pages for reclaim from */
114 s8 reclaim_idx;
115
116 /* This context's GFP mask */
117 gfp_t gfp_mask;
118
ee814fe2
JW
119 /* Incremented by the number of inactive pages that were scanned */
120 unsigned long nr_scanned;
121
122 /* Number of pages freed so far during a call to shrink_zones() */
123 unsigned long nr_reclaimed;
d108c772
AR
124
125 struct {
126 unsigned int dirty;
127 unsigned int unqueued_dirty;
128 unsigned int congested;
129 unsigned int writeback;
130 unsigned int immediate;
131 unsigned int file_taken;
132 unsigned int taken;
133 } nr;
e5ca8071
YS
134
135 /* for recording the reclaimed slab by now */
136 struct reclaim_state reclaim_state;
1da177e4
LT
137};
138
1da177e4
LT
139#ifdef ARCH_HAS_PREFETCH
140#define prefetch_prev_lru_page(_page, _base, _field) \
141 do { \
142 if ((_page)->lru.prev != _base) { \
143 struct page *prev; \
144 \
145 prev = lru_to_page(&(_page->lru)); \
146 prefetch(&prev->_field); \
147 } \
148 } while (0)
149#else
150#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
151#endif
152
153#ifdef ARCH_HAS_PREFETCHW
154#define prefetchw_prev_lru_page(_page, _base, _field) \
155 do { \
156 if ((_page)->lru.prev != _base) { \
157 struct page *prev; \
158 \
159 prev = lru_to_page(&(_page->lru)); \
160 prefetchw(&prev->_field); \
161 } \
162 } while (0)
163#else
164#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165#endif
166
167/*
168 * From 0 .. 100. Higher means more swappy.
169 */
170int vm_swappiness = 60;
d0480be4
WSH
171/*
172 * The total number of pages which are beyond the high watermark within all
173 * zones.
174 */
175unsigned long vm_total_pages;
1da177e4
LT
176
177static LIST_HEAD(shrinker_list);
178static DECLARE_RWSEM(shrinker_rwsem);
179
b4c2b231 180#ifdef CONFIG_MEMCG_KMEM
7e010df5
KT
181
182/*
183 * We allow subsystems to populate their shrinker-related
184 * LRU lists before register_shrinker_prepared() is called
185 * for the shrinker, since we don't want to impose
186 * restrictions on their internal registration order.
187 * In this case shrink_slab_memcg() may find corresponding
188 * bit is set in the shrinkers map.
189 *
190 * This value is used by the function to detect registering
191 * shrinkers and to skip do_shrink_slab() calls for them.
192 */
193#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
194
b4c2b231
KT
195static DEFINE_IDR(shrinker_idr);
196static int shrinker_nr_max;
197
198static int prealloc_memcg_shrinker(struct shrinker *shrinker)
199{
200 int id, ret = -ENOMEM;
201
202 down_write(&shrinker_rwsem);
203 /* This may call shrinker, so it must use down_read_trylock() */
7e010df5 204 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
b4c2b231
KT
205 if (id < 0)
206 goto unlock;
207
0a4465d3
KT
208 if (id >= shrinker_nr_max) {
209 if (memcg_expand_shrinker_maps(id)) {
210 idr_remove(&shrinker_idr, id);
211 goto unlock;
212 }
213
b4c2b231 214 shrinker_nr_max = id + 1;
0a4465d3 215 }
b4c2b231
KT
216 shrinker->id = id;
217 ret = 0;
218unlock:
219 up_write(&shrinker_rwsem);
220 return ret;
221}
222
223static void unregister_memcg_shrinker(struct shrinker *shrinker)
224{
225 int id = shrinker->id;
226
227 BUG_ON(id < 0);
228
229 down_write(&shrinker_rwsem);
230 idr_remove(&shrinker_idr, id);
231 up_write(&shrinker_rwsem);
232}
233#else /* CONFIG_MEMCG_KMEM */
234static int prealloc_memcg_shrinker(struct shrinker *shrinker)
235{
236 return 0;
237}
238
239static void unregister_memcg_shrinker(struct shrinker *shrinker)
240{
241}
242#endif /* CONFIG_MEMCG_KMEM */
243
c255a458 244#ifdef CONFIG_MEMCG
89b5fae5
JW
245static bool global_reclaim(struct scan_control *sc)
246{
f16015fb 247 return !sc->target_mem_cgroup;
89b5fae5 248}
97c9341f
TH
249
250/**
251 * sane_reclaim - is the usual dirty throttling mechanism operational?
252 * @sc: scan_control in question
253 *
254 * The normal page dirty throttling mechanism in balance_dirty_pages() is
255 * completely broken with the legacy memcg and direct stalling in
256 * shrink_page_list() is used for throttling instead, which lacks all the
257 * niceties such as fairness, adaptive pausing, bandwidth proportional
258 * allocation and configurability.
259 *
260 * This function tests whether the vmscan currently in progress can assume
261 * that the normal dirty throttling mechanism is operational.
262 */
263static bool sane_reclaim(struct scan_control *sc)
264{
265 struct mem_cgroup *memcg = sc->target_mem_cgroup;
266
267 if (!memcg)
268 return true;
269#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 270 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
271 return true;
272#endif
273 return false;
274}
e3c1ac58
AR
275
276static void set_memcg_congestion(pg_data_t *pgdat,
277 struct mem_cgroup *memcg,
278 bool congested)
279{
280 struct mem_cgroup_per_node *mn;
281
282 if (!memcg)
283 return;
284
285 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
286 WRITE_ONCE(mn->congested, congested);
287}
288
289static bool memcg_congested(pg_data_t *pgdat,
290 struct mem_cgroup *memcg)
291{
292 struct mem_cgroup_per_node *mn;
293
294 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
295 return READ_ONCE(mn->congested);
296
297}
91a45470 298#else
89b5fae5
JW
299static bool global_reclaim(struct scan_control *sc)
300{
301 return true;
302}
97c9341f
TH
303
304static bool sane_reclaim(struct scan_control *sc)
305{
306 return true;
307}
e3c1ac58
AR
308
309static inline void set_memcg_congestion(struct pglist_data *pgdat,
310 struct mem_cgroup *memcg, bool congested)
311{
312}
313
314static inline bool memcg_congested(struct pglist_data *pgdat,
315 struct mem_cgroup *memcg)
316{
317 return false;
318
319}
91a45470
KH
320#endif
321
5a1c84b4
MG
322/*
323 * This misses isolated pages which are not accounted for to save counters.
324 * As the data only determines if reclaim or compaction continues, it is
325 * not expected that isolated pages will be a dominating factor.
326 */
327unsigned long zone_reclaimable_pages(struct zone *zone)
328{
329 unsigned long nr;
330
331 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
332 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
333 if (get_nr_swap_pages() > 0)
334 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
335 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
336
337 return nr;
338}
339
fd538803
MH
340/**
341 * lruvec_lru_size - Returns the number of pages on the given LRU list.
342 * @lruvec: lru vector
343 * @lru: lru to use
344 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
345 */
346unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 347{
fd538803
MH
348 unsigned long lru_size;
349 int zid;
350
c3c787e8 351 if (!mem_cgroup_disabled())
205b20cc 352 lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
fd538803
MH
353 else
354 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
a3d8e054 355
fd538803
MH
356 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
357 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
358 unsigned long size;
c9f299d9 359
fd538803
MH
360 if (!managed_zone(zone))
361 continue;
362
363 if (!mem_cgroup_disabled())
364 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
365 else
366 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
367 NR_ZONE_LRU_BASE + lru);
368 lru_size -= min(size, lru_size);
369 }
370
371 return lru_size;
b4536f0c 372
b4536f0c
MH
373}
374
1da177e4 375/*
1d3d4437 376 * Add a shrinker callback to be called from the vm.
1da177e4 377 */
8e04944f 378int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 379{
b9726c26 380 unsigned int size = sizeof(*shrinker->nr_deferred);
1d3d4437 381
1d3d4437
GC
382 if (shrinker->flags & SHRINKER_NUMA_AWARE)
383 size *= nr_node_ids;
384
385 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
386 if (!shrinker->nr_deferred)
387 return -ENOMEM;
b4c2b231
KT
388
389 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
390 if (prealloc_memcg_shrinker(shrinker))
391 goto free_deferred;
392 }
393
8e04944f 394 return 0;
b4c2b231
KT
395
396free_deferred:
397 kfree(shrinker->nr_deferred);
398 shrinker->nr_deferred = NULL;
399 return -ENOMEM;
8e04944f
TH
400}
401
402void free_prealloced_shrinker(struct shrinker *shrinker)
403{
b4c2b231
KT
404 if (!shrinker->nr_deferred)
405 return;
406
407 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
408 unregister_memcg_shrinker(shrinker);
409
8e04944f
TH
410 kfree(shrinker->nr_deferred);
411 shrinker->nr_deferred = NULL;
412}
1d3d4437 413
8e04944f
TH
414void register_shrinker_prepared(struct shrinker *shrinker)
415{
8e1f936b
RR
416 down_write(&shrinker_rwsem);
417 list_add_tail(&shrinker->list, &shrinker_list);
7e010df5 418#ifdef CONFIG_MEMCG_KMEM
8df4a44c
KT
419 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
420 idr_replace(&shrinker_idr, shrinker, shrinker->id);
7e010df5 421#endif
8e1f936b 422 up_write(&shrinker_rwsem);
8e04944f
TH
423}
424
425int register_shrinker(struct shrinker *shrinker)
426{
427 int err = prealloc_shrinker(shrinker);
428
429 if (err)
430 return err;
431 register_shrinker_prepared(shrinker);
1d3d4437 432 return 0;
1da177e4 433}
8e1f936b 434EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
435
436/*
437 * Remove one
438 */
8e1f936b 439void unregister_shrinker(struct shrinker *shrinker)
1da177e4 440{
bb422a73
TH
441 if (!shrinker->nr_deferred)
442 return;
b4c2b231
KT
443 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
444 unregister_memcg_shrinker(shrinker);
1da177e4
LT
445 down_write(&shrinker_rwsem);
446 list_del(&shrinker->list);
447 up_write(&shrinker_rwsem);
ae393321 448 kfree(shrinker->nr_deferred);
bb422a73 449 shrinker->nr_deferred = NULL;
1da177e4 450}
8e1f936b 451EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
452
453#define SHRINK_BATCH 128
1d3d4437 454
cb731d6c 455static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 456 struct shrinker *shrinker, int priority)
1d3d4437
GC
457{
458 unsigned long freed = 0;
459 unsigned long long delta;
460 long total_scan;
d5bc5fd3 461 long freeable;
1d3d4437
GC
462 long nr;
463 long new_nr;
464 int nid = shrinkctl->nid;
465 long batch_size = shrinker->batch ? shrinker->batch
466 : SHRINK_BATCH;
5f33a080 467 long scanned = 0, next_deferred;
1d3d4437 468
ac7fb3ad
KT
469 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
470 nid = 0;
471
d5bc5fd3 472 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
473 if (freeable == 0 || freeable == SHRINK_EMPTY)
474 return freeable;
1d3d4437
GC
475
476 /*
477 * copy the current shrinker scan count into a local variable
478 * and zero it so that other concurrent shrinker invocations
479 * don't also do this scanning work.
480 */
481 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
482
483 total_scan = nr;
4b85afbd
JW
484 if (shrinker->seeks) {
485 delta = freeable >> priority;
486 delta *= 4;
487 do_div(delta, shrinker->seeks);
488 } else {
489 /*
490 * These objects don't require any IO to create. Trim
491 * them aggressively under memory pressure to keep
492 * them from causing refetches in the IO caches.
493 */
494 delta = freeable / 2;
495 }
172b06c3 496
1d3d4437
GC
497 total_scan += delta;
498 if (total_scan < 0) {
d75f773c 499 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
a0b02131 500 shrinker->scan_objects, total_scan);
d5bc5fd3 501 total_scan = freeable;
5f33a080
SL
502 next_deferred = nr;
503 } else
504 next_deferred = total_scan;
1d3d4437
GC
505
506 /*
507 * We need to avoid excessive windup on filesystem shrinkers
508 * due to large numbers of GFP_NOFS allocations causing the
509 * shrinkers to return -1 all the time. This results in a large
510 * nr being built up so when a shrink that can do some work
511 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 512 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
513 * memory.
514 *
515 * Hence only allow the shrinker to scan the entire cache when
516 * a large delta change is calculated directly.
517 */
d5bc5fd3
VD
518 if (delta < freeable / 4)
519 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
520
521 /*
522 * Avoid risking looping forever due to too large nr value:
523 * never try to free more than twice the estimate number of
524 * freeable entries.
525 */
d5bc5fd3
VD
526 if (total_scan > freeable * 2)
527 total_scan = freeable * 2;
1d3d4437
GC
528
529 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 530 freeable, delta, total_scan, priority);
1d3d4437 531
0b1fb40a
VD
532 /*
533 * Normally, we should not scan less than batch_size objects in one
534 * pass to avoid too frequent shrinker calls, but if the slab has less
535 * than batch_size objects in total and we are really tight on memory,
536 * we will try to reclaim all available objects, otherwise we can end
537 * up failing allocations although there are plenty of reclaimable
538 * objects spread over several slabs with usage less than the
539 * batch_size.
540 *
541 * We detect the "tight on memory" situations by looking at the total
542 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 543 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
544 * scanning at high prio and therefore should try to reclaim as much as
545 * possible.
546 */
547 while (total_scan >= batch_size ||
d5bc5fd3 548 total_scan >= freeable) {
a0b02131 549 unsigned long ret;
0b1fb40a 550 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 551
0b1fb40a 552 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 553 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
554 ret = shrinker->scan_objects(shrinker, shrinkctl);
555 if (ret == SHRINK_STOP)
556 break;
557 freed += ret;
1d3d4437 558
d460acb5
CW
559 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
560 total_scan -= shrinkctl->nr_scanned;
561 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
562
563 cond_resched();
564 }
565
5f33a080
SL
566 if (next_deferred >= scanned)
567 next_deferred -= scanned;
568 else
569 next_deferred = 0;
1d3d4437
GC
570 /*
571 * move the unused scan count back into the shrinker in a
572 * manner that handles concurrent updates. If we exhausted the
573 * scan, there is no need to do an update.
574 */
5f33a080
SL
575 if (next_deferred > 0)
576 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
577 &shrinker->nr_deferred[nid]);
578 else
579 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
580
df9024a8 581 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 582 return freed;
1495f230
YH
583}
584
b0dedc49
KT
585#ifdef CONFIG_MEMCG_KMEM
586static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
587 struct mem_cgroup *memcg, int priority)
588{
589 struct memcg_shrinker_map *map;
b8e57efa
KT
590 unsigned long ret, freed = 0;
591 int i;
b0dedc49
KT
592
593 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
594 return 0;
595
596 if (!down_read_trylock(&shrinker_rwsem))
597 return 0;
598
599 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
600 true);
601 if (unlikely(!map))
602 goto unlock;
603
604 for_each_set_bit(i, map->map, shrinker_nr_max) {
605 struct shrink_control sc = {
606 .gfp_mask = gfp_mask,
607 .nid = nid,
608 .memcg = memcg,
609 };
610 struct shrinker *shrinker;
611
612 shrinker = idr_find(&shrinker_idr, i);
7e010df5
KT
613 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
614 if (!shrinker)
615 clear_bit(i, map->map);
b0dedc49
KT
616 continue;
617 }
618
b0dedc49 619 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6
KT
620 if (ret == SHRINK_EMPTY) {
621 clear_bit(i, map->map);
622 /*
623 * After the shrinker reported that it had no objects to
624 * free, but before we cleared the corresponding bit in
625 * the memcg shrinker map, a new object might have been
626 * added. To make sure, we have the bit set in this
627 * case, we invoke the shrinker one more time and reset
628 * the bit if it reports that it is not empty anymore.
629 * The memory barrier here pairs with the barrier in
630 * memcg_set_shrinker_bit():
631 *
632 * list_lru_add() shrink_slab_memcg()
633 * list_add_tail() clear_bit()
634 * <MB> <MB>
635 * set_bit() do_shrink_slab()
636 */
637 smp_mb__after_atomic();
638 ret = do_shrink_slab(&sc, shrinker, priority);
639 if (ret == SHRINK_EMPTY)
640 ret = 0;
641 else
642 memcg_set_shrinker_bit(memcg, nid, i);
643 }
b0dedc49
KT
644 freed += ret;
645
646 if (rwsem_is_contended(&shrinker_rwsem)) {
647 freed = freed ? : 1;
648 break;
649 }
650 }
651unlock:
652 up_read(&shrinker_rwsem);
653 return freed;
654}
655#else /* CONFIG_MEMCG_KMEM */
656static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
657 struct mem_cgroup *memcg, int priority)
658{
659 return 0;
660}
661#endif /* CONFIG_MEMCG_KMEM */
662
6b4f7799 663/**
cb731d6c 664 * shrink_slab - shrink slab caches
6b4f7799
JW
665 * @gfp_mask: allocation context
666 * @nid: node whose slab caches to target
cb731d6c 667 * @memcg: memory cgroup whose slab caches to target
9092c71b 668 * @priority: the reclaim priority
1da177e4 669 *
6b4f7799 670 * Call the shrink functions to age shrinkable caches.
1da177e4 671 *
6b4f7799
JW
672 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
673 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 674 *
aeed1d32
VD
675 * @memcg specifies the memory cgroup to target. Unaware shrinkers
676 * are called only if it is the root cgroup.
cb731d6c 677 *
9092c71b
JB
678 * @priority is sc->priority, we take the number of objects and >> by priority
679 * in order to get the scan target.
b15e0905 680 *
6b4f7799 681 * Returns the number of reclaimed slab objects.
1da177e4 682 */
cb731d6c
VD
683static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
684 struct mem_cgroup *memcg,
9092c71b 685 int priority)
1da177e4 686{
b8e57efa 687 unsigned long ret, freed = 0;
1da177e4
LT
688 struct shrinker *shrinker;
689
aeed1d32 690 if (!mem_cgroup_is_root(memcg))
b0dedc49 691 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 692
e830c63a 693 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 694 goto out;
1da177e4
LT
695
696 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
697 struct shrink_control sc = {
698 .gfp_mask = gfp_mask,
699 .nid = nid,
cb731d6c 700 .memcg = memcg,
6b4f7799 701 };
ec97097b 702
9b996468
KT
703 ret = do_shrink_slab(&sc, shrinker, priority);
704 if (ret == SHRINK_EMPTY)
705 ret = 0;
706 freed += ret;
e496612c
MK
707 /*
708 * Bail out if someone want to register a new shrinker to
709 * prevent the regsitration from being stalled for long periods
710 * by parallel ongoing shrinking.
711 */
712 if (rwsem_is_contended(&shrinker_rwsem)) {
713 freed = freed ? : 1;
714 break;
715 }
1da177e4 716 }
6b4f7799 717
1da177e4 718 up_read(&shrinker_rwsem);
f06590bd
MK
719out:
720 cond_resched();
24f7c6b9 721 return freed;
1da177e4
LT
722}
723
cb731d6c
VD
724void drop_slab_node(int nid)
725{
726 unsigned long freed;
727
728 do {
729 struct mem_cgroup *memcg = NULL;
730
731 freed = 0;
aeed1d32 732 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 733 do {
9092c71b 734 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c
VD
735 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
736 } while (freed > 10);
737}
738
739void drop_slab(void)
740{
741 int nid;
742
743 for_each_online_node(nid)
744 drop_slab_node(nid);
745}
746
1da177e4
LT
747static inline int is_page_cache_freeable(struct page *page)
748{
ceddc3a5
JW
749 /*
750 * A freeable page cache page is referenced only by the caller
67891fff
MW
751 * that isolated the page, the page cache and optional buffer
752 * heads at page->private.
ceddc3a5 753 */
67891fff 754 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
bd4c82c2 755 HPAGE_PMD_NR : 1;
67891fff 756 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
1da177e4
LT
757}
758
703c2708 759static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 760{
930d9152 761 if (current->flags & PF_SWAPWRITE)
1da177e4 762 return 1;
703c2708 763 if (!inode_write_congested(inode))
1da177e4 764 return 1;
703c2708 765 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
766 return 1;
767 return 0;
768}
769
770/*
771 * We detected a synchronous write error writing a page out. Probably
772 * -ENOSPC. We need to propagate that into the address_space for a subsequent
773 * fsync(), msync() or close().
774 *
775 * The tricky part is that after writepage we cannot touch the mapping: nothing
776 * prevents it from being freed up. But we have a ref on the page and once
777 * that page is locked, the mapping is pinned.
778 *
779 * We're allowed to run sleeping lock_page() here because we know the caller has
780 * __GFP_FS.
781 */
782static void handle_write_error(struct address_space *mapping,
783 struct page *page, int error)
784{
7eaceacc 785 lock_page(page);
3e9f45bd
GC
786 if (page_mapping(page) == mapping)
787 mapping_set_error(mapping, error);
1da177e4
LT
788 unlock_page(page);
789}
790
04e62a29
CL
791/* possible outcome of pageout() */
792typedef enum {
793 /* failed to write page out, page is locked */
794 PAGE_KEEP,
795 /* move page to the active list, page is locked */
796 PAGE_ACTIVATE,
797 /* page has been sent to the disk successfully, page is unlocked */
798 PAGE_SUCCESS,
799 /* page is clean and locked */
800 PAGE_CLEAN,
801} pageout_t;
802
1da177e4 803/*
1742f19f
AM
804 * pageout is called by shrink_page_list() for each dirty page.
805 * Calls ->writepage().
1da177e4 806 */
c661b078 807static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 808 struct scan_control *sc)
1da177e4
LT
809{
810 /*
811 * If the page is dirty, only perform writeback if that write
812 * will be non-blocking. To prevent this allocation from being
813 * stalled by pagecache activity. But note that there may be
814 * stalls if we need to run get_block(). We could test
815 * PagePrivate for that.
816 *
8174202b 817 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
818 * this page's queue, we can perform writeback even if that
819 * will block.
820 *
821 * If the page is swapcache, write it back even if that would
822 * block, for some throttling. This happens by accident, because
823 * swap_backing_dev_info is bust: it doesn't reflect the
824 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
825 */
826 if (!is_page_cache_freeable(page))
827 return PAGE_KEEP;
828 if (!mapping) {
829 /*
830 * Some data journaling orphaned pages can have
831 * page->mapping == NULL while being dirty with clean buffers.
832 */
266cf658 833 if (page_has_private(page)) {
1da177e4
LT
834 if (try_to_free_buffers(page)) {
835 ClearPageDirty(page);
b1de0d13 836 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
837 return PAGE_CLEAN;
838 }
839 }
840 return PAGE_KEEP;
841 }
842 if (mapping->a_ops->writepage == NULL)
843 return PAGE_ACTIVATE;
703c2708 844 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
845 return PAGE_KEEP;
846
847 if (clear_page_dirty_for_io(page)) {
848 int res;
849 struct writeback_control wbc = {
850 .sync_mode = WB_SYNC_NONE,
851 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
852 .range_start = 0,
853 .range_end = LLONG_MAX,
1da177e4
LT
854 .for_reclaim = 1,
855 };
856
857 SetPageReclaim(page);
858 res = mapping->a_ops->writepage(page, &wbc);
859 if (res < 0)
860 handle_write_error(mapping, page, res);
994fc28c 861 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
862 ClearPageReclaim(page);
863 return PAGE_ACTIVATE;
864 }
c661b078 865
1da177e4
LT
866 if (!PageWriteback(page)) {
867 /* synchronous write or broken a_ops? */
868 ClearPageReclaim(page);
869 }
3aa23851 870 trace_mm_vmscan_writepage(page);
c4a25635 871 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
872 return PAGE_SUCCESS;
873 }
874
875 return PAGE_CLEAN;
876}
877
a649fd92 878/*
e286781d
NP
879 * Same as remove_mapping, but if the page is removed from the mapping, it
880 * gets returned with a refcount of 0.
a649fd92 881 */
a528910e
JW
882static int __remove_mapping(struct address_space *mapping, struct page *page,
883 bool reclaimed)
49d2e9cc 884{
c4843a75 885 unsigned long flags;
bd4c82c2 886 int refcount;
c4843a75 887
28e4d965
NP
888 BUG_ON(!PageLocked(page));
889 BUG_ON(mapping != page_mapping(page));
49d2e9cc 890
b93b0163 891 xa_lock_irqsave(&mapping->i_pages, flags);
49d2e9cc 892 /*
0fd0e6b0
NP
893 * The non racy check for a busy page.
894 *
895 * Must be careful with the order of the tests. When someone has
896 * a ref to the page, it may be possible that they dirty it then
897 * drop the reference. So if PageDirty is tested before page_count
898 * here, then the following race may occur:
899 *
900 * get_user_pages(&page);
901 * [user mapping goes away]
902 * write_to(page);
903 * !PageDirty(page) [good]
904 * SetPageDirty(page);
905 * put_page(page);
906 * !page_count(page) [good, discard it]
907 *
908 * [oops, our write_to data is lost]
909 *
910 * Reversing the order of the tests ensures such a situation cannot
911 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 912 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
913 *
914 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 915 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 916 */
bd4c82c2
HY
917 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
918 refcount = 1 + HPAGE_PMD_NR;
919 else
920 refcount = 2;
921 if (!page_ref_freeze(page, refcount))
49d2e9cc 922 goto cannot_free;
1c4c3b99 923 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
e286781d 924 if (unlikely(PageDirty(page))) {
bd4c82c2 925 page_ref_unfreeze(page, refcount);
49d2e9cc 926 goto cannot_free;
e286781d 927 }
49d2e9cc
CL
928
929 if (PageSwapCache(page)) {
930 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 931 mem_cgroup_swapout(page, swap);
4e17ec25 932 __delete_from_swap_cache(page, swap);
b93b0163 933 xa_unlock_irqrestore(&mapping->i_pages, flags);
75f6d6d2 934 put_swap_page(page, swap);
e286781d 935 } else {
6072d13c 936 void (*freepage)(struct page *);
a528910e 937 void *shadow = NULL;
6072d13c
LT
938
939 freepage = mapping->a_ops->freepage;
a528910e
JW
940 /*
941 * Remember a shadow entry for reclaimed file cache in
942 * order to detect refaults, thus thrashing, later on.
943 *
944 * But don't store shadows in an address space that is
945 * already exiting. This is not just an optizimation,
946 * inode reclaim needs to empty out the radix tree or
947 * the nodes are lost. Don't plant shadows behind its
948 * back.
f9fe48be
RZ
949 *
950 * We also don't store shadows for DAX mappings because the
951 * only page cache pages found in these are zero pages
952 * covering holes, and because we don't want to mix DAX
953 * exceptional entries and shadow exceptional entries in the
b93b0163 954 * same address_space.
a528910e
JW
955 */
956 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 957 !mapping_exiting(mapping) && !dax_mapping(mapping))
a7ca12f9 958 shadow = workingset_eviction(page);
62cccb8c 959 __delete_from_page_cache(page, shadow);
b93b0163 960 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c
LT
961
962 if (freepage != NULL)
963 freepage(page);
49d2e9cc
CL
964 }
965
49d2e9cc
CL
966 return 1;
967
968cannot_free:
b93b0163 969 xa_unlock_irqrestore(&mapping->i_pages, flags);
49d2e9cc
CL
970 return 0;
971}
972
e286781d
NP
973/*
974 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
975 * someone else has a ref on the page, abort and return 0. If it was
976 * successfully detached, return 1. Assumes the caller has a single ref on
977 * this page.
978 */
979int remove_mapping(struct address_space *mapping, struct page *page)
980{
a528910e 981 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
982 /*
983 * Unfreezing the refcount with 1 rather than 2 effectively
984 * drops the pagecache ref for us without requiring another
985 * atomic operation.
986 */
fe896d18 987 page_ref_unfreeze(page, 1);
e286781d
NP
988 return 1;
989 }
990 return 0;
991}
992
894bc310
LS
993/**
994 * putback_lru_page - put previously isolated page onto appropriate LRU list
995 * @page: page to be put back to appropriate lru list
996 *
997 * Add previously isolated @page to appropriate LRU list.
998 * Page may still be unevictable for other reasons.
999 *
1000 * lru_lock must not be held, interrupts must be enabled.
1001 */
894bc310
LS
1002void putback_lru_page(struct page *page)
1003{
9c4e6b1a 1004 lru_cache_add(page);
894bc310
LS
1005 put_page(page); /* drop ref from isolate */
1006}
1007
dfc8d636
JW
1008enum page_references {
1009 PAGEREF_RECLAIM,
1010 PAGEREF_RECLAIM_CLEAN,
64574746 1011 PAGEREF_KEEP,
dfc8d636
JW
1012 PAGEREF_ACTIVATE,
1013};
1014
1015static enum page_references page_check_references(struct page *page,
1016 struct scan_control *sc)
1017{
64574746 1018 int referenced_ptes, referenced_page;
dfc8d636 1019 unsigned long vm_flags;
dfc8d636 1020
c3ac9a8a
JW
1021 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1022 &vm_flags);
64574746 1023 referenced_page = TestClearPageReferenced(page);
dfc8d636 1024
dfc8d636
JW
1025 /*
1026 * Mlock lost the isolation race with us. Let try_to_unmap()
1027 * move the page to the unevictable list.
1028 */
1029 if (vm_flags & VM_LOCKED)
1030 return PAGEREF_RECLAIM;
1031
64574746 1032 if (referenced_ptes) {
e4898273 1033 if (PageSwapBacked(page))
64574746
JW
1034 return PAGEREF_ACTIVATE;
1035 /*
1036 * All mapped pages start out with page table
1037 * references from the instantiating fault, so we need
1038 * to look twice if a mapped file page is used more
1039 * than once.
1040 *
1041 * Mark it and spare it for another trip around the
1042 * inactive list. Another page table reference will
1043 * lead to its activation.
1044 *
1045 * Note: the mark is set for activated pages as well
1046 * so that recently deactivated but used pages are
1047 * quickly recovered.
1048 */
1049 SetPageReferenced(page);
1050
34dbc67a 1051 if (referenced_page || referenced_ptes > 1)
64574746
JW
1052 return PAGEREF_ACTIVATE;
1053
c909e993
KK
1054 /*
1055 * Activate file-backed executable pages after first usage.
1056 */
1057 if (vm_flags & VM_EXEC)
1058 return PAGEREF_ACTIVATE;
1059
64574746
JW
1060 return PAGEREF_KEEP;
1061 }
dfc8d636
JW
1062
1063 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 1064 if (referenced_page && !PageSwapBacked(page))
64574746
JW
1065 return PAGEREF_RECLAIM_CLEAN;
1066
1067 return PAGEREF_RECLAIM;
dfc8d636
JW
1068}
1069
e2be15f6
MG
1070/* Check if a page is dirty or under writeback */
1071static void page_check_dirty_writeback(struct page *page,
1072 bool *dirty, bool *writeback)
1073{
b4597226
MG
1074 struct address_space *mapping;
1075
e2be15f6
MG
1076 /*
1077 * Anonymous pages are not handled by flushers and must be written
1078 * from reclaim context. Do not stall reclaim based on them
1079 */
802a3a92
SL
1080 if (!page_is_file_cache(page) ||
1081 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
1082 *dirty = false;
1083 *writeback = false;
1084 return;
1085 }
1086
1087 /* By default assume that the page flags are accurate */
1088 *dirty = PageDirty(page);
1089 *writeback = PageWriteback(page);
b4597226
MG
1090
1091 /* Verify dirty/writeback state if the filesystem supports it */
1092 if (!page_has_private(page))
1093 return;
1094
1095 mapping = page_mapping(page);
1096 if (mapping && mapping->a_ops->is_dirty_writeback)
1097 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
1098}
1099
1da177e4 1100/*
1742f19f 1101 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1102 */
1742f19f 1103static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 1104 struct pglist_data *pgdat,
f84f6e2b 1105 struct scan_control *sc,
02c6de8d 1106 enum ttu_flags ttu_flags,
3c710c1a 1107 struct reclaim_stat *stat,
02c6de8d 1108 bool force_reclaim)
1da177e4
LT
1109{
1110 LIST_HEAD(ret_pages);
abe4c3b5 1111 LIST_HEAD(free_pages);
3c710c1a 1112 unsigned nr_reclaimed = 0;
886cf190 1113 unsigned pgactivate = 0;
1da177e4 1114
060f005f 1115 memset(stat, 0, sizeof(*stat));
1da177e4
LT
1116 cond_resched();
1117
1da177e4
LT
1118 while (!list_empty(page_list)) {
1119 struct address_space *mapping;
1120 struct page *page;
1121 int may_enter_fs;
02c6de8d 1122 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 1123 bool dirty, writeback;
98879b3b 1124 unsigned int nr_pages;
1da177e4
LT
1125
1126 cond_resched();
1127
1128 page = lru_to_page(page_list);
1129 list_del(&page->lru);
1130
529ae9aa 1131 if (!trylock_page(page))
1da177e4
LT
1132 goto keep;
1133
309381fe 1134 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4 1135
98879b3b
YS
1136 nr_pages = 1 << compound_order(page);
1137
1138 /* Account the number of base pages even though THP */
1139 sc->nr_scanned += nr_pages;
80e43426 1140
39b5f29a 1141 if (unlikely(!page_evictable(page)))
ad6b6704 1142 goto activate_locked;
894bc310 1143
a6dc60f8 1144 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1145 goto keep_locked;
1146
c661b078
AW
1147 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1148 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1149
e2be15f6 1150 /*
894befec 1151 * The number of dirty pages determines if a node is marked
e2be15f6
MG
1152 * reclaim_congested which affects wait_iff_congested. kswapd
1153 * will stall and start writing pages if the tail of the LRU
1154 * is all dirty unqueued pages.
1155 */
1156 page_check_dirty_writeback(page, &dirty, &writeback);
1157 if (dirty || writeback)
060f005f 1158 stat->nr_dirty++;
e2be15f6
MG
1159
1160 if (dirty && !writeback)
060f005f 1161 stat->nr_unqueued_dirty++;
e2be15f6 1162
d04e8acd
MG
1163 /*
1164 * Treat this page as congested if the underlying BDI is or if
1165 * pages are cycling through the LRU so quickly that the
1166 * pages marked for immediate reclaim are making it to the
1167 * end of the LRU a second time.
1168 */
e2be15f6 1169 mapping = page_mapping(page);
1da58ee2 1170 if (((dirty || writeback) && mapping &&
703c2708 1171 inode_write_congested(mapping->host)) ||
d04e8acd 1172 (writeback && PageReclaim(page)))
060f005f 1173 stat->nr_congested++;
e2be15f6 1174
283aba9f
MG
1175 /*
1176 * If a page at the tail of the LRU is under writeback, there
1177 * are three cases to consider.
1178 *
1179 * 1) If reclaim is encountering an excessive number of pages
1180 * under writeback and this page is both under writeback and
1181 * PageReclaim then it indicates that pages are being queued
1182 * for IO but are being recycled through the LRU before the
1183 * IO can complete. Waiting on the page itself risks an
1184 * indefinite stall if it is impossible to writeback the
1185 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1186 * note that the LRU is being scanned too quickly and the
1187 * caller can stall after page list has been processed.
283aba9f 1188 *
97c9341f 1189 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1190 * not marked for immediate reclaim, or the caller does not
1191 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1192 * not to fs). In this case mark the page for immediate
97c9341f 1193 * reclaim and continue scanning.
283aba9f 1194 *
ecf5fc6e
MH
1195 * Require may_enter_fs because we would wait on fs, which
1196 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1197 * enter reclaim, and deadlock if it waits on a page for
1198 * which it is needed to do the write (loop masks off
1199 * __GFP_IO|__GFP_FS for this reason); but more thought
1200 * would probably show more reasons.
1201 *
7fadc820 1202 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1203 * PageReclaim. memcg does not have any dirty pages
1204 * throttling so we could easily OOM just because too many
1205 * pages are in writeback and there is nothing else to
1206 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1207 *
1208 * In cases 1) and 2) we activate the pages to get them out of
1209 * the way while we continue scanning for clean pages on the
1210 * inactive list and refilling from the active list. The
1211 * observation here is that waiting for disk writes is more
1212 * expensive than potentially causing reloads down the line.
1213 * Since they're marked for immediate reclaim, they won't put
1214 * memory pressure on the cache working set any longer than it
1215 * takes to write them to disk.
283aba9f 1216 */
c661b078 1217 if (PageWriteback(page)) {
283aba9f
MG
1218 /* Case 1 above */
1219 if (current_is_kswapd() &&
1220 PageReclaim(page) &&
599d0c95 1221 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
060f005f 1222 stat->nr_immediate++;
c55e8d03 1223 goto activate_locked;
283aba9f
MG
1224
1225 /* Case 2 above */
97c9341f 1226 } else if (sane_reclaim(sc) ||
ecf5fc6e 1227 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1228 /*
1229 * This is slightly racy - end_page_writeback()
1230 * might have just cleared PageReclaim, then
1231 * setting PageReclaim here end up interpreted
1232 * as PageReadahead - but that does not matter
1233 * enough to care. What we do want is for this
1234 * page to have PageReclaim set next time memcg
1235 * reclaim reaches the tests above, so it will
1236 * then wait_on_page_writeback() to avoid OOM;
1237 * and it's also appropriate in global reclaim.
1238 */
1239 SetPageReclaim(page);
060f005f 1240 stat->nr_writeback++;
c55e8d03 1241 goto activate_locked;
283aba9f
MG
1242
1243 /* Case 3 above */
1244 } else {
7fadc820 1245 unlock_page(page);
283aba9f 1246 wait_on_page_writeback(page);
7fadc820
HD
1247 /* then go back and try same page again */
1248 list_add_tail(&page->lru, page_list);
1249 continue;
e62e384e 1250 }
c661b078 1251 }
1da177e4 1252
02c6de8d
MK
1253 if (!force_reclaim)
1254 references = page_check_references(page, sc);
1255
dfc8d636
JW
1256 switch (references) {
1257 case PAGEREF_ACTIVATE:
1da177e4 1258 goto activate_locked;
64574746 1259 case PAGEREF_KEEP:
98879b3b 1260 stat->nr_ref_keep += nr_pages;
64574746 1261 goto keep_locked;
dfc8d636
JW
1262 case PAGEREF_RECLAIM:
1263 case PAGEREF_RECLAIM_CLEAN:
1264 ; /* try to reclaim the page below */
1265 }
1da177e4 1266
1da177e4
LT
1267 /*
1268 * Anonymous process memory has backing store?
1269 * Try to allocate it some swap space here.
802a3a92 1270 * Lazyfree page could be freed directly
1da177e4 1271 */
bd4c82c2
HY
1272 if (PageAnon(page) && PageSwapBacked(page)) {
1273 if (!PageSwapCache(page)) {
1274 if (!(sc->gfp_mask & __GFP_IO))
1275 goto keep_locked;
1276 if (PageTransHuge(page)) {
1277 /* cannot split THP, skip it */
1278 if (!can_split_huge_page(page, NULL))
1279 goto activate_locked;
1280 /*
1281 * Split pages without a PMD map right
1282 * away. Chances are some or all of the
1283 * tail pages can be freed without IO.
1284 */
1285 if (!compound_mapcount(page) &&
1286 split_huge_page_to_list(page,
1287 page_list))
1288 goto activate_locked;
1289 }
1290 if (!add_to_swap(page)) {
1291 if (!PageTransHuge(page))
98879b3b 1292 goto activate_locked_split;
bd4c82c2
HY
1293 /* Fallback to swap normal pages */
1294 if (split_huge_page_to_list(page,
1295 page_list))
1296 goto activate_locked;
fe490cc0
HY
1297#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1298 count_vm_event(THP_SWPOUT_FALLBACK);
1299#endif
bd4c82c2 1300 if (!add_to_swap(page))
98879b3b 1301 goto activate_locked_split;
bd4c82c2 1302 }
0f074658 1303
bd4c82c2 1304 may_enter_fs = 1;
1da177e4 1305
bd4c82c2
HY
1306 /* Adding to swap updated mapping */
1307 mapping = page_mapping(page);
1308 }
7751b2da
KS
1309 } else if (unlikely(PageTransHuge(page))) {
1310 /* Split file THP */
1311 if (split_huge_page_to_list(page, page_list))
1312 goto keep_locked;
e2be15f6 1313 }
1da177e4 1314
98879b3b
YS
1315 /*
1316 * THP may get split above, need minus tail pages and update
1317 * nr_pages to avoid accounting tail pages twice.
1318 *
1319 * The tail pages that are added into swap cache successfully
1320 * reach here.
1321 */
1322 if ((nr_pages > 1) && !PageTransHuge(page)) {
1323 sc->nr_scanned -= (nr_pages - 1);
1324 nr_pages = 1;
1325 }
1326
1da177e4
LT
1327 /*
1328 * The page is mapped into the page tables of one or more
1329 * processes. Try to unmap it here.
1330 */
802a3a92 1331 if (page_mapped(page)) {
bd4c82c2
HY
1332 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1333
1334 if (unlikely(PageTransHuge(page)))
1335 flags |= TTU_SPLIT_HUGE_PMD;
1336 if (!try_to_unmap(page, flags)) {
98879b3b 1337 stat->nr_unmap_fail += nr_pages;
1da177e4 1338 goto activate_locked;
1da177e4
LT
1339 }
1340 }
1341
1342 if (PageDirty(page)) {
ee72886d 1343 /*
4eda4823
JW
1344 * Only kswapd can writeback filesystem pages
1345 * to avoid risk of stack overflow. But avoid
1346 * injecting inefficient single-page IO into
1347 * flusher writeback as much as possible: only
1348 * write pages when we've encountered many
1349 * dirty pages, and when we've already scanned
1350 * the rest of the LRU for clean pages and see
1351 * the same dirty pages again (PageReclaim).
ee72886d 1352 */
f84f6e2b 1353 if (page_is_file_cache(page) &&
4eda4823
JW
1354 (!current_is_kswapd() || !PageReclaim(page) ||
1355 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1356 /*
1357 * Immediately reclaim when written back.
1358 * Similar in principal to deactivate_page()
1359 * except we already have the page isolated
1360 * and know it's dirty
1361 */
c4a25635 1362 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1363 SetPageReclaim(page);
1364
c55e8d03 1365 goto activate_locked;
ee72886d
MG
1366 }
1367
dfc8d636 1368 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1369 goto keep_locked;
4dd4b920 1370 if (!may_enter_fs)
1da177e4 1371 goto keep_locked;
52a8363e 1372 if (!sc->may_writepage)
1da177e4
LT
1373 goto keep_locked;
1374
d950c947
MG
1375 /*
1376 * Page is dirty. Flush the TLB if a writable entry
1377 * potentially exists to avoid CPU writes after IO
1378 * starts and then write it out here.
1379 */
1380 try_to_unmap_flush_dirty();
7d3579e8 1381 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1382 case PAGE_KEEP:
1383 goto keep_locked;
1384 case PAGE_ACTIVATE:
1385 goto activate_locked;
1386 case PAGE_SUCCESS:
7d3579e8 1387 if (PageWriteback(page))
41ac1999 1388 goto keep;
7d3579e8 1389 if (PageDirty(page))
1da177e4 1390 goto keep;
7d3579e8 1391
1da177e4
LT
1392 /*
1393 * A synchronous write - probably a ramdisk. Go
1394 * ahead and try to reclaim the page.
1395 */
529ae9aa 1396 if (!trylock_page(page))
1da177e4
LT
1397 goto keep;
1398 if (PageDirty(page) || PageWriteback(page))
1399 goto keep_locked;
1400 mapping = page_mapping(page);
1401 case PAGE_CLEAN:
1402 ; /* try to free the page below */
1403 }
1404 }
1405
1406 /*
1407 * If the page has buffers, try to free the buffer mappings
1408 * associated with this page. If we succeed we try to free
1409 * the page as well.
1410 *
1411 * We do this even if the page is PageDirty().
1412 * try_to_release_page() does not perform I/O, but it is
1413 * possible for a page to have PageDirty set, but it is actually
1414 * clean (all its buffers are clean). This happens if the
1415 * buffers were written out directly, with submit_bh(). ext3
894bc310 1416 * will do this, as well as the blockdev mapping.
1da177e4
LT
1417 * try_to_release_page() will discover that cleanness and will
1418 * drop the buffers and mark the page clean - it can be freed.
1419 *
1420 * Rarely, pages can have buffers and no ->mapping. These are
1421 * the pages which were not successfully invalidated in
1422 * truncate_complete_page(). We try to drop those buffers here
1423 * and if that worked, and the page is no longer mapped into
1424 * process address space (page_count == 1) it can be freed.
1425 * Otherwise, leave the page on the LRU so it is swappable.
1426 */
266cf658 1427 if (page_has_private(page)) {
1da177e4
LT
1428 if (!try_to_release_page(page, sc->gfp_mask))
1429 goto activate_locked;
e286781d
NP
1430 if (!mapping && page_count(page) == 1) {
1431 unlock_page(page);
1432 if (put_page_testzero(page))
1433 goto free_it;
1434 else {
1435 /*
1436 * rare race with speculative reference.
1437 * the speculative reference will free
1438 * this page shortly, so we may
1439 * increment nr_reclaimed here (and
1440 * leave it off the LRU).
1441 */
1442 nr_reclaimed++;
1443 continue;
1444 }
1445 }
1da177e4
LT
1446 }
1447
802a3a92
SL
1448 if (PageAnon(page) && !PageSwapBacked(page)) {
1449 /* follow __remove_mapping for reference */
1450 if (!page_ref_freeze(page, 1))
1451 goto keep_locked;
1452 if (PageDirty(page)) {
1453 page_ref_unfreeze(page, 1);
1454 goto keep_locked;
1455 }
1da177e4 1456
802a3a92 1457 count_vm_event(PGLAZYFREED);
2262185c 1458 count_memcg_page_event(page, PGLAZYFREED);
802a3a92
SL
1459 } else if (!mapping || !__remove_mapping(mapping, page, true))
1460 goto keep_locked;
9a1ea439
HD
1461
1462 unlock_page(page);
e286781d 1463free_it:
98879b3b
YS
1464 /*
1465 * THP may get swapped out in a whole, need account
1466 * all base pages.
1467 */
1468 nr_reclaimed += nr_pages;
abe4c3b5
MG
1469
1470 /*
1471 * Is there need to periodically free_page_list? It would
1472 * appear not as the counts should be low
1473 */
bd4c82c2
HY
1474 if (unlikely(PageTransHuge(page))) {
1475 mem_cgroup_uncharge(page);
1476 (*get_compound_page_dtor(page))(page);
1477 } else
1478 list_add(&page->lru, &free_pages);
1da177e4
LT
1479 continue;
1480
98879b3b
YS
1481activate_locked_split:
1482 /*
1483 * The tail pages that are failed to add into swap cache
1484 * reach here. Fixup nr_scanned and nr_pages.
1485 */
1486 if (nr_pages > 1) {
1487 sc->nr_scanned -= (nr_pages - 1);
1488 nr_pages = 1;
1489 }
1da177e4 1490activate_locked:
68a22394 1491 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1492 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1493 PageMlocked(page)))
a2c43eed 1494 try_to_free_swap(page);
309381fe 1495 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704 1496 if (!PageMlocked(page)) {
886cf190 1497 int type = page_is_file_cache(page);
ad6b6704 1498 SetPageActive(page);
98879b3b 1499 stat->nr_activate[type] += nr_pages;
2262185c 1500 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1501 }
1da177e4
LT
1502keep_locked:
1503 unlock_page(page);
1504keep:
1505 list_add(&page->lru, &ret_pages);
309381fe 1506 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1507 }
abe4c3b5 1508
98879b3b
YS
1509 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1510
747db954 1511 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1512 try_to_unmap_flush();
2d4894b5 1513 free_unref_page_list(&free_pages);
abe4c3b5 1514
1da177e4 1515 list_splice(&ret_pages, page_list);
886cf190 1516 count_vm_events(PGACTIVATE, pgactivate);
060f005f 1517
05ff5137 1518 return nr_reclaimed;
1da177e4
LT
1519}
1520
02c6de8d
MK
1521unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1522 struct list_head *page_list)
1523{
1524 struct scan_control sc = {
1525 .gfp_mask = GFP_KERNEL,
1526 .priority = DEF_PRIORITY,
1527 .may_unmap = 1,
1528 };
060f005f 1529 struct reclaim_stat dummy_stat;
3c710c1a 1530 unsigned long ret;
02c6de8d
MK
1531 struct page *page, *next;
1532 LIST_HEAD(clean_pages);
1533
1534 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1535 if (page_is_file_cache(page) && !PageDirty(page) &&
a58f2cef 1536 !__PageMovable(page) && !PageUnevictable(page)) {
02c6de8d
MK
1537 ClearPageActive(page);
1538 list_move(&page->lru, &clean_pages);
1539 }
1540 }
1541
599d0c95 1542 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
060f005f 1543 TTU_IGNORE_ACCESS, &dummy_stat, true);
02c6de8d 1544 list_splice(&clean_pages, page_list);
599d0c95 1545 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1546 return ret;
1547}
1548
5ad333eb
AW
1549/*
1550 * Attempt to remove the specified page from its LRU. Only take this page
1551 * if it is of the appropriate PageActive status. Pages which are being
1552 * freed elsewhere are also ignored.
1553 *
1554 * page: page to consider
1555 * mode: one of the LRU isolation modes defined above
1556 *
1557 * returns 0 on success, -ve errno on failure.
1558 */
f3fd4a61 1559int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1560{
1561 int ret = -EINVAL;
1562
1563 /* Only take pages on the LRU. */
1564 if (!PageLRU(page))
1565 return ret;
1566
e46a2879
MK
1567 /* Compaction should not handle unevictable pages but CMA can do so */
1568 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1569 return ret;
1570
5ad333eb 1571 ret = -EBUSY;
08e552c6 1572
c8244935
MG
1573 /*
1574 * To minimise LRU disruption, the caller can indicate that it only
1575 * wants to isolate pages it will be able to operate on without
1576 * blocking - clean pages for the most part.
1577 *
c8244935
MG
1578 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1579 * that it is possible to migrate without blocking
1580 */
1276ad68 1581 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1582 /* All the caller can do on PageWriteback is block */
1583 if (PageWriteback(page))
1584 return ret;
1585
1586 if (PageDirty(page)) {
1587 struct address_space *mapping;
69d763fc 1588 bool migrate_dirty;
c8244935 1589
c8244935
MG
1590 /*
1591 * Only pages without mappings or that have a
1592 * ->migratepage callback are possible to migrate
69d763fc
MG
1593 * without blocking. However, we can be racing with
1594 * truncation so it's necessary to lock the page
1595 * to stabilise the mapping as truncation holds
1596 * the page lock until after the page is removed
1597 * from the page cache.
c8244935 1598 */
69d763fc
MG
1599 if (!trylock_page(page))
1600 return ret;
1601
c8244935 1602 mapping = page_mapping(page);
145e1a71 1603 migrate_dirty = !mapping || mapping->a_ops->migratepage;
69d763fc
MG
1604 unlock_page(page);
1605 if (!migrate_dirty)
c8244935
MG
1606 return ret;
1607 }
1608 }
39deaf85 1609
f80c0673
MK
1610 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1611 return ret;
1612
5ad333eb
AW
1613 if (likely(get_page_unless_zero(page))) {
1614 /*
1615 * Be careful not to clear PageLRU until after we're
1616 * sure the page is not being freed elsewhere -- the
1617 * page release code relies on it.
1618 */
1619 ClearPageLRU(page);
1620 ret = 0;
1621 }
1622
1623 return ret;
1624}
1625
7ee36a14
MG
1626
1627/*
1628 * Update LRU sizes after isolating pages. The LRU size updates must
1629 * be complete before mem_cgroup_update_lru_size due to a santity check.
1630 */
1631static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1632 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1633{
7ee36a14
MG
1634 int zid;
1635
7ee36a14
MG
1636 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1637 if (!nr_zone_taken[zid])
1638 continue;
1639
1640 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1641#ifdef CONFIG_MEMCG
b4536f0c 1642 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1643#endif
b4536f0c
MH
1644 }
1645
7ee36a14
MG
1646}
1647
f4b7e272
AR
1648/**
1649 * pgdat->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1650 * shrink the lists perform better by taking out a batch of pages
1651 * and working on them outside the LRU lock.
1652 *
1653 * For pagecache intensive workloads, this function is the hottest
1654 * spot in the kernel (apart from copy_*_user functions).
1655 *
1656 * Appropriate locks must be held before calling this function.
1657 *
791b48b6 1658 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1659 * @lruvec: The LRU vector to pull pages from.
1da177e4 1660 * @dst: The temp list to put pages on to.
f626012d 1661 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1662 * @sc: The scan_control struct for this reclaim session
5ad333eb 1663 * @mode: One of the LRU isolation modes
3cb99451 1664 * @lru: LRU list id for isolating
1da177e4
LT
1665 *
1666 * returns how many pages were moved onto *@dst.
1667 */
69e05944 1668static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1669 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1670 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 1671 enum lru_list lru)
1da177e4 1672{
75b00af7 1673 struct list_head *src = &lruvec->lists[lru];
69e05944 1674 unsigned long nr_taken = 0;
599d0c95 1675 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1676 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1677 unsigned long skipped = 0;
791b48b6 1678 unsigned long scan, total_scan, nr_pages;
b2e18757 1679 LIST_HEAD(pages_skipped);
a9e7c39f 1680 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1da177e4 1681
98879b3b 1682 total_scan = 0;
791b48b6 1683 scan = 0;
98879b3b 1684 while (scan < nr_to_scan && !list_empty(src)) {
5ad333eb 1685 struct page *page;
5ad333eb 1686
1da177e4
LT
1687 page = lru_to_page(src);
1688 prefetchw_prev_lru_page(page, src, flags);
1689
309381fe 1690 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1691
98879b3b
YS
1692 nr_pages = 1 << compound_order(page);
1693 total_scan += nr_pages;
1694
b2e18757
MG
1695 if (page_zonenum(page) > sc->reclaim_idx) {
1696 list_move(&page->lru, &pages_skipped);
98879b3b 1697 nr_skipped[page_zonenum(page)] += nr_pages;
b2e18757
MG
1698 continue;
1699 }
1700
791b48b6
MK
1701 /*
1702 * Do not count skipped pages because that makes the function
1703 * return with no isolated pages if the LRU mostly contains
1704 * ineligible pages. This causes the VM to not reclaim any
1705 * pages, triggering a premature OOM.
98879b3b
YS
1706 *
1707 * Account all tail pages of THP. This would not cause
1708 * premature OOM since __isolate_lru_page() returns -EBUSY
1709 * only when the page is being freed somewhere else.
791b48b6 1710 */
98879b3b 1711 scan += nr_pages;
f3fd4a61 1712 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1713 case 0:
599d0c95
MG
1714 nr_taken += nr_pages;
1715 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1716 list_move(&page->lru, dst);
5ad333eb
AW
1717 break;
1718
1719 case -EBUSY:
1720 /* else it is being freed elsewhere */
1721 list_move(&page->lru, src);
1722 continue;
46453a6e 1723
5ad333eb
AW
1724 default:
1725 BUG();
1726 }
1da177e4
LT
1727 }
1728
b2e18757
MG
1729 /*
1730 * Splice any skipped pages to the start of the LRU list. Note that
1731 * this disrupts the LRU order when reclaiming for lower zones but
1732 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1733 * scanning would soon rescan the same pages to skip and put the
1734 * system at risk of premature OOM.
1735 */
7cc30fcf
MG
1736 if (!list_empty(&pages_skipped)) {
1737 int zid;
1738
3db65812 1739 list_splice(&pages_skipped, src);
7cc30fcf
MG
1740 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1741 if (!nr_skipped[zid])
1742 continue;
1743
1744 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1745 skipped += nr_skipped[zid];
7cc30fcf
MG
1746 }
1747 }
791b48b6 1748 *nr_scanned = total_scan;
1265e3a6 1749 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 1750 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 1751 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1752 return nr_taken;
1753}
1754
62695a84
NP
1755/**
1756 * isolate_lru_page - tries to isolate a page from its LRU list
1757 * @page: page to isolate from its LRU list
1758 *
1759 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1760 * vmstat statistic corresponding to whatever LRU list the page was on.
1761 *
1762 * Returns 0 if the page was removed from an LRU list.
1763 * Returns -EBUSY if the page was not on an LRU list.
1764 *
1765 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1766 * the active list, it will have PageActive set. If it was found on
1767 * the unevictable list, it will have the PageUnevictable bit set. That flag
1768 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1769 *
1770 * The vmstat statistic corresponding to the list on which the page was
1771 * found will be decremented.
1772 *
1773 * Restrictions:
a5d09bed 1774 *
62695a84
NP
1775 * (1) Must be called with an elevated refcount on the page. This is a
1776 * fundamentnal difference from isolate_lru_pages (which is called
1777 * without a stable reference).
1778 * (2) the lru_lock must not be held.
1779 * (3) interrupts must be enabled.
1780 */
1781int isolate_lru_page(struct page *page)
1782{
1783 int ret = -EBUSY;
1784
309381fe 1785 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1786 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1787
62695a84 1788 if (PageLRU(page)) {
f4b7e272 1789 pg_data_t *pgdat = page_pgdat(page);
fa9add64 1790 struct lruvec *lruvec;
62695a84 1791
f4b7e272
AR
1792 spin_lock_irq(&pgdat->lru_lock);
1793 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0c917313 1794 if (PageLRU(page)) {
894bc310 1795 int lru = page_lru(page);
0c917313 1796 get_page(page);
62695a84 1797 ClearPageLRU(page);
fa9add64
HD
1798 del_page_from_lru_list(page, lruvec, lru);
1799 ret = 0;
62695a84 1800 }
f4b7e272 1801 spin_unlock_irq(&pgdat->lru_lock);
62695a84
NP
1802 }
1803 return ret;
1804}
1805
35cd7815 1806/*
d37dd5dc
FW
1807 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1808 * then get resheduled. When there are massive number of tasks doing page
1809 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1810 * the LRU list will go small and be scanned faster than necessary, leading to
1811 * unnecessary swapping, thrashing and OOM.
35cd7815 1812 */
599d0c95 1813static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1814 struct scan_control *sc)
1815{
1816 unsigned long inactive, isolated;
1817
1818 if (current_is_kswapd())
1819 return 0;
1820
97c9341f 1821 if (!sane_reclaim(sc))
35cd7815
RR
1822 return 0;
1823
1824 if (file) {
599d0c95
MG
1825 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1826 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1827 } else {
599d0c95
MG
1828 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1829 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1830 }
1831
3cf23841
FW
1832 /*
1833 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1834 * won't get blocked by normal direct-reclaimers, forming a circular
1835 * deadlock.
1836 */
d0164adc 1837 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1838 inactive >>= 3;
1839
35cd7815
RR
1840 return isolated > inactive;
1841}
1842
a222f341
KT
1843/*
1844 * This moves pages from @list to corresponding LRU list.
1845 *
1846 * We move them the other way if the page is referenced by one or more
1847 * processes, from rmap.
1848 *
1849 * If the pages are mostly unmapped, the processing is fast and it is
1850 * appropriate to hold zone_lru_lock across the whole operation. But if
1851 * the pages are mapped, the processing is slow (page_referenced()) so we
1852 * should drop zone_lru_lock around each page. It's impossible to balance
1853 * this, so instead we remove the pages from the LRU while processing them.
1854 * It is safe to rely on PG_active against the non-LRU pages in here because
1855 * nobody will play with that bit on a non-LRU page.
1856 *
1857 * The downside is that we have to touch page->_refcount against each page.
1858 * But we had to alter page->flags anyway.
1859 *
1860 * Returns the number of pages moved to the given lruvec.
1861 */
1862
1863static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1864 struct list_head *list)
66635629 1865{
599d0c95 1866 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
a222f341 1867 int nr_pages, nr_moved = 0;
3f79768f 1868 LIST_HEAD(pages_to_free);
a222f341
KT
1869 struct page *page;
1870 enum lru_list lru;
66635629 1871
a222f341
KT
1872 while (!list_empty(list)) {
1873 page = lru_to_page(list);
309381fe 1874 VM_BUG_ON_PAGE(PageLRU(page), page);
39b5f29a 1875 if (unlikely(!page_evictable(page))) {
a222f341 1876 list_del(&page->lru);
599d0c95 1877 spin_unlock_irq(&pgdat->lru_lock);
66635629 1878 putback_lru_page(page);
599d0c95 1879 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1880 continue;
1881 }
599d0c95 1882 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1883
7a608572 1884 SetPageLRU(page);
66635629 1885 lru = page_lru(page);
a222f341
KT
1886
1887 nr_pages = hpage_nr_pages(page);
1888 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1889 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1890
2bcf8879
HD
1891 if (put_page_testzero(page)) {
1892 __ClearPageLRU(page);
1893 __ClearPageActive(page);
fa9add64 1894 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1895
1896 if (unlikely(PageCompound(page))) {
599d0c95 1897 spin_unlock_irq(&pgdat->lru_lock);
747db954 1898 mem_cgroup_uncharge(page);
2bcf8879 1899 (*get_compound_page_dtor(page))(page);
599d0c95 1900 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1901 } else
1902 list_add(&page->lru, &pages_to_free);
a222f341
KT
1903 } else {
1904 nr_moved += nr_pages;
66635629
MG
1905 }
1906 }
66635629 1907
3f79768f
HD
1908 /*
1909 * To save our caller's stack, now use input list for pages to free.
1910 */
a222f341
KT
1911 list_splice(&pages_to_free, list);
1912
1913 return nr_moved;
66635629
MG
1914}
1915
399ba0b9
N
1916/*
1917 * If a kernel thread (such as nfsd for loop-back mounts) services
1918 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1919 * In that case we should only throttle if the backing device it is
1920 * writing to is congested. In other cases it is safe to throttle.
1921 */
1922static int current_may_throttle(void)
1923{
1924 return !(current->flags & PF_LESS_THROTTLE) ||
1925 current->backing_dev_info == NULL ||
1926 bdi_write_congested(current->backing_dev_info);
1927}
1928
1da177e4 1929/*
b2e18757 1930 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1931 * of reclaimed pages
1da177e4 1932 */
66635629 1933static noinline_for_stack unsigned long
1a93be0e 1934shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1935 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1936{
1937 LIST_HEAD(page_list);
e247dbce 1938 unsigned long nr_scanned;
05ff5137 1939 unsigned long nr_reclaimed = 0;
e247dbce 1940 unsigned long nr_taken;
060f005f 1941 struct reclaim_stat stat;
3cb99451 1942 int file = is_file_lru(lru);
f46b7912 1943 enum vm_event_item item;
599d0c95 1944 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1945 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
db73ee0d 1946 bool stalled = false;
78dc583d 1947
599d0c95 1948 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
1949 if (stalled)
1950 return 0;
1951
1952 /* wait a bit for the reclaimer. */
1953 msleep(100);
1954 stalled = true;
35cd7815
RR
1955
1956 /* We are about to die and free our memory. Return now. */
1957 if (fatal_signal_pending(current))
1958 return SWAP_CLUSTER_MAX;
1959 }
1960
1da177e4 1961 lru_add_drain();
f80c0673 1962
599d0c95 1963 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1964
5dc35979 1965 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 1966 &nr_scanned, sc, lru);
95d918fc 1967
599d0c95 1968 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1969 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1970
f46b7912
KT
1971 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1972 if (global_reclaim(sc))
1973 __count_vm_events(item, nr_scanned);
1974 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
599d0c95 1975 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1976
d563c050 1977 if (nr_taken == 0)
66635629 1978 return 0;
5ad333eb 1979
a128ca71 1980 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
3c710c1a 1981 &stat, false);
c661b078 1982
599d0c95 1983 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1984
f46b7912
KT
1985 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1986 if (global_reclaim(sc))
1987 __count_vm_events(item, nr_reclaimed);
1988 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
b17f18af
KT
1989 reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
1990 reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
a74609fa 1991
a222f341 1992 move_pages_to_lru(lruvec, &page_list);
3f79768f 1993
599d0c95 1994 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1995
599d0c95 1996 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1997
747db954 1998 mem_cgroup_uncharge_list(&page_list);
2d4894b5 1999 free_unref_page_list(&page_list);
e11da5b4 2000
1c610d5f
AR
2001 /*
2002 * If dirty pages are scanned that are not queued for IO, it
2003 * implies that flushers are not doing their job. This can
2004 * happen when memory pressure pushes dirty pages to the end of
2005 * the LRU before the dirty limits are breached and the dirty
2006 * data has expired. It can also happen when the proportion of
2007 * dirty pages grows not through writes but through memory
2008 * pressure reclaiming all the clean cache. And in some cases,
2009 * the flushers simply cannot keep up with the allocation
2010 * rate. Nudge the flusher threads in case they are asleep.
2011 */
2012 if (stat.nr_unqueued_dirty == nr_taken)
2013 wakeup_flusher_threads(WB_REASON_VMSCAN);
2014
d108c772
AR
2015 sc->nr.dirty += stat.nr_dirty;
2016 sc->nr.congested += stat.nr_congested;
2017 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2018 sc->nr.writeback += stat.nr_writeback;
2019 sc->nr.immediate += stat.nr_immediate;
2020 sc->nr.taken += nr_taken;
2021 if (file)
2022 sc->nr.file_taken += nr_taken;
8e950282 2023
599d0c95 2024 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2025 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2026 return nr_reclaimed;
1da177e4
LT
2027}
2028
f626012d 2029static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2030 struct lruvec *lruvec,
f16015fb 2031 struct scan_control *sc,
9e3b2f8c 2032 enum lru_list lru)
1da177e4 2033{
44c241f1 2034 unsigned long nr_taken;
f626012d 2035 unsigned long nr_scanned;
6fe6b7e3 2036 unsigned long vm_flags;
1da177e4 2037 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2038 LIST_HEAD(l_active);
b69408e8 2039 LIST_HEAD(l_inactive);
1da177e4 2040 struct page *page;
1a93be0e 2041 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
9d998b4f
MH
2042 unsigned nr_deactivate, nr_activate;
2043 unsigned nr_rotated = 0;
3cb99451 2044 int file = is_file_lru(lru);
599d0c95 2045 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2046
2047 lru_add_drain();
f80c0673 2048
599d0c95 2049 spin_lock_irq(&pgdat->lru_lock);
925b7673 2050
5dc35979 2051 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2052 &nr_scanned, sc, lru);
89b5fae5 2053
599d0c95 2054 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 2055 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 2056
599d0c95 2057 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2058 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2059
599d0c95 2060 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 2061
1da177e4
LT
2062 while (!list_empty(&l_hold)) {
2063 cond_resched();
2064 page = lru_to_page(&l_hold);
2065 list_del(&page->lru);
7e9cd484 2066
39b5f29a 2067 if (unlikely(!page_evictable(page))) {
894bc310
LS
2068 putback_lru_page(page);
2069 continue;
2070 }
2071
cc715d99
MG
2072 if (unlikely(buffer_heads_over_limit)) {
2073 if (page_has_private(page) && trylock_page(page)) {
2074 if (page_has_private(page))
2075 try_to_release_page(page, 0);
2076 unlock_page(page);
2077 }
2078 }
2079
c3ac9a8a
JW
2080 if (page_referenced(page, 0, sc->target_mem_cgroup,
2081 &vm_flags)) {
9992af10 2082 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
2083 /*
2084 * Identify referenced, file-backed active pages and
2085 * give them one more trip around the active list. So
2086 * that executable code get better chances to stay in
2087 * memory under moderate memory pressure. Anon pages
2088 * are not likely to be evicted by use-once streaming
2089 * IO, plus JVM can create lots of anon VM_EXEC pages,
2090 * so we ignore them here.
2091 */
41e20983 2092 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
2093 list_add(&page->lru, &l_active);
2094 continue;
2095 }
2096 }
7e9cd484 2097
5205e56e 2098 ClearPageActive(page); /* we are de-activating */
1899ad18 2099 SetPageWorkingset(page);
1da177e4
LT
2100 list_add(&page->lru, &l_inactive);
2101 }
2102
b555749a 2103 /*
8cab4754 2104 * Move pages back to the lru list.
b555749a 2105 */
599d0c95 2106 spin_lock_irq(&pgdat->lru_lock);
556adecb 2107 /*
8cab4754
WF
2108 * Count referenced pages from currently used mappings as rotated,
2109 * even though only some of them are actually re-activated. This
2110 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 2111 * get_scan_count.
7e9cd484 2112 */
b7c46d15 2113 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 2114
a222f341
KT
2115 nr_activate = move_pages_to_lru(lruvec, &l_active);
2116 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
f372d89e
KT
2117 /* Keep all free pages in l_active list */
2118 list_splice(&l_inactive, &l_active);
9851ac13
KT
2119
2120 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2121 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2122
599d0c95
MG
2123 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2124 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 2125
f372d89e
KT
2126 mem_cgroup_uncharge_list(&l_active);
2127 free_unref_page_list(&l_active);
9d998b4f
MH
2128 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2129 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2130}
2131
59dc76b0
RR
2132/*
2133 * The inactive anon list should be small enough that the VM never has
2134 * to do too much work.
14797e23 2135 *
59dc76b0
RR
2136 * The inactive file list should be small enough to leave most memory
2137 * to the established workingset on the scan-resistant active list,
2138 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2139 *
59dc76b0
RR
2140 * Both inactive lists should also be large enough that each inactive
2141 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2142 *
2a2e4885
JW
2143 * If that fails and refaulting is observed, the inactive list grows.
2144 *
59dc76b0 2145 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2146 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2147 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2148 *
59dc76b0
RR
2149 * total target max
2150 * memory ratio inactive
2151 * -------------------------------------
2152 * 10MB 1 5MB
2153 * 100MB 1 50MB
2154 * 1GB 3 250MB
2155 * 10GB 10 0.9GB
2156 * 100GB 31 3GB
2157 * 1TB 101 10GB
2158 * 10TB 320 32GB
56e49d21 2159 */
f8d1a311 2160static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2c012a4a 2161 struct scan_control *sc, bool trace)
56e49d21 2162{
fd538803 2163 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2a2e4885
JW
2164 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2165 enum lru_list inactive_lru = file * LRU_FILE;
2166 unsigned long inactive, active;
2167 unsigned long inactive_ratio;
2168 unsigned long refaults;
59dc76b0 2169 unsigned long gb;
e3790144 2170
59dc76b0
RR
2171 /*
2172 * If we don't have swap space, anonymous page deactivation
2173 * is pointless.
2174 */
2175 if (!file && !total_swap_pages)
2176 return false;
56e49d21 2177
fd538803
MH
2178 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2179 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
f8d1a311 2180
2a2e4885
JW
2181 /*
2182 * When refaults are being observed, it means a new workingset
2183 * is being established. Disable active list protection to get
2184 * rid of the stale workingset quickly.
2185 */
205b20cc 2186 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2c012a4a 2187 if (file && lruvec->refaults != refaults) {
2a2e4885
JW
2188 inactive_ratio = 0;
2189 } else {
2190 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2191 if (gb)
2192 inactive_ratio = int_sqrt(10 * gb);
2193 else
2194 inactive_ratio = 1;
2195 }
59dc76b0 2196
2c012a4a 2197 if (trace)
2a2e4885
JW
2198 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2199 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2200 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2201 inactive_ratio, file);
fd538803 2202
59dc76b0 2203 return inactive * inactive_ratio < active;
b39415b2
RR
2204}
2205
4f98a2fe 2206static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
3b991208 2207 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 2208{
b39415b2 2209 if (is_active_lru(lru)) {
3b991208 2210 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
1a93be0e 2211 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
2212 return 0;
2213 }
2214
1a93be0e 2215 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
2216}
2217
9a265114
JW
2218enum scan_balance {
2219 SCAN_EQUAL,
2220 SCAN_FRACT,
2221 SCAN_ANON,
2222 SCAN_FILE,
2223};
2224
4f98a2fe
RR
2225/*
2226 * Determine how aggressively the anon and file LRU lists should be
2227 * scanned. The relative value of each set of LRU lists is determined
2228 * by looking at the fraction of the pages scanned we did rotate back
2229 * onto the active list instead of evict.
2230 *
be7bd59d
WL
2231 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2232 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2233 */
33377678 2234static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
2235 struct scan_control *sc, unsigned long *nr,
2236 unsigned long *lru_pages)
4f98a2fe 2237{
33377678 2238 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2239 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2240 u64 fraction[2];
2241 u64 denominator = 0; /* gcc */
599d0c95 2242 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2243 unsigned long anon_prio, file_prio;
9a265114 2244 enum scan_balance scan_balance;
0bf1457f 2245 unsigned long anon, file;
4f98a2fe 2246 unsigned long ap, fp;
4111304d 2247 enum lru_list lru;
76a33fc3
SL
2248
2249 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2250 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2251 scan_balance = SCAN_FILE;
76a33fc3
SL
2252 goto out;
2253 }
4f98a2fe 2254
10316b31
JW
2255 /*
2256 * Global reclaim will swap to prevent OOM even with no
2257 * swappiness, but memcg users want to use this knob to
2258 * disable swapping for individual groups completely when
2259 * using the memory controller's swap limit feature would be
2260 * too expensive.
2261 */
02695175 2262 if (!global_reclaim(sc) && !swappiness) {
9a265114 2263 scan_balance = SCAN_FILE;
10316b31
JW
2264 goto out;
2265 }
2266
2267 /*
2268 * Do not apply any pressure balancing cleverness when the
2269 * system is close to OOM, scan both anon and file equally
2270 * (unless the swappiness setting disagrees with swapping).
2271 */
02695175 2272 if (!sc->priority && swappiness) {
9a265114 2273 scan_balance = SCAN_EQUAL;
10316b31
JW
2274 goto out;
2275 }
2276
62376251
JW
2277 /*
2278 * Prevent the reclaimer from falling into the cache trap: as
2279 * cache pages start out inactive, every cache fault will tip
2280 * the scan balance towards the file LRU. And as the file LRU
2281 * shrinks, so does the window for rotation from references.
2282 * This means we have a runaway feedback loop where a tiny
2283 * thrashing file LRU becomes infinitely more attractive than
2284 * anon pages. Try to detect this based on file LRU size.
2285 */
2286 if (global_reclaim(sc)) {
599d0c95
MG
2287 unsigned long pgdatfile;
2288 unsigned long pgdatfree;
2289 int z;
2290 unsigned long total_high_wmark = 0;
2ab051e1 2291
599d0c95
MG
2292 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2293 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2294 node_page_state(pgdat, NR_INACTIVE_FILE);
2295
2296 for (z = 0; z < MAX_NR_ZONES; z++) {
2297 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2298 if (!managed_zone(zone))
599d0c95
MG
2299 continue;
2300
2301 total_high_wmark += high_wmark_pages(zone);
2302 }
62376251 2303
599d0c95 2304 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
06226226
DR
2305 /*
2306 * Force SCAN_ANON if there are enough inactive
2307 * anonymous pages on the LRU in eligible zones.
2308 * Otherwise, the small LRU gets thrashed.
2309 */
3b991208 2310 if (!inactive_list_is_low(lruvec, false, sc, false) &&
06226226
DR
2311 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2312 >> sc->priority) {
2313 scan_balance = SCAN_ANON;
2314 goto out;
2315 }
62376251
JW
2316 }
2317 }
2318
7c5bd705 2319 /*
316bda0e
VD
2320 * If there is enough inactive page cache, i.e. if the size of the
2321 * inactive list is greater than that of the active list *and* the
2322 * inactive list actually has some pages to scan on this priority, we
2323 * do not reclaim anything from the anonymous working set right now.
2324 * Without the second condition we could end up never scanning an
2325 * lruvec even if it has plenty of old anonymous pages unless the
2326 * system is under heavy pressure.
7c5bd705 2327 */
3b991208 2328 if (!inactive_list_is_low(lruvec, true, sc, false) &&
71ab6cfe 2329 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
9a265114 2330 scan_balance = SCAN_FILE;
7c5bd705
JW
2331 goto out;
2332 }
2333
9a265114
JW
2334 scan_balance = SCAN_FRACT;
2335
58c37f6e
KM
2336 /*
2337 * With swappiness at 100, anonymous and file have the same priority.
2338 * This scanning priority is essentially the inverse of IO cost.
2339 */
02695175 2340 anon_prio = swappiness;
75b00af7 2341 file_prio = 200 - anon_prio;
58c37f6e 2342
4f98a2fe
RR
2343 /*
2344 * OK, so we have swap space and a fair amount of page cache
2345 * pages. We use the recently rotated / recently scanned
2346 * ratios to determine how valuable each cache is.
2347 *
2348 * Because workloads change over time (and to avoid overflow)
2349 * we keep these statistics as a floating average, which ends
2350 * up weighing recent references more than old ones.
2351 *
2352 * anon in [0], file in [1]
2353 */
2ab051e1 2354
fd538803
MH
2355 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2356 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2357 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2358 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2ab051e1 2359
599d0c95 2360 spin_lock_irq(&pgdat->lru_lock);
6e901571 2361 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2362 reclaim_stat->recent_scanned[0] /= 2;
2363 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2364 }
2365
6e901571 2366 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2367 reclaim_stat->recent_scanned[1] /= 2;
2368 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2369 }
2370
4f98a2fe 2371 /*
00d8089c
RR
2372 * The amount of pressure on anon vs file pages is inversely
2373 * proportional to the fraction of recently scanned pages on
2374 * each list that were recently referenced and in active use.
4f98a2fe 2375 */
fe35004f 2376 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2377 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2378
fe35004f 2379 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2380 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2381 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2382
76a33fc3
SL
2383 fraction[0] = ap;
2384 fraction[1] = fp;
2385 denominator = ap + fp + 1;
2386out:
688035f7
JW
2387 *lru_pages = 0;
2388 for_each_evictable_lru(lru) {
2389 int file = is_file_lru(lru);
2390 unsigned long size;
2391 unsigned long scan;
6b4f7799 2392
688035f7
JW
2393 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2394 scan = size >> sc->priority;
2395 /*
2396 * If the cgroup's already been deleted, make sure to
2397 * scrape out the remaining cache.
2398 */
2399 if (!scan && !mem_cgroup_online(memcg))
2400 scan = min(size, SWAP_CLUSTER_MAX);
6b4f7799 2401
688035f7
JW
2402 switch (scan_balance) {
2403 case SCAN_EQUAL:
2404 /* Scan lists relative to size */
2405 break;
2406 case SCAN_FRACT:
9a265114 2407 /*
688035f7
JW
2408 * Scan types proportional to swappiness and
2409 * their relative recent reclaim efficiency.
68600f62
RG
2410 * Make sure we don't miss the last page
2411 * because of a round-off error.
9a265114 2412 */
68600f62
RG
2413 scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2414 denominator);
688035f7
JW
2415 break;
2416 case SCAN_FILE:
2417 case SCAN_ANON:
2418 /* Scan one type exclusively */
2419 if ((scan_balance == SCAN_FILE) != file) {
2420 size = 0;
2421 scan = 0;
2422 }
2423 break;
2424 default:
2425 /* Look ma, no brain */
2426 BUG();
9a265114 2427 }
688035f7
JW
2428
2429 *lru_pages += size;
2430 nr[lru] = scan;
76a33fc3 2431 }
6e08a369 2432}
4f98a2fe 2433
9b4f98cd 2434/*
a9dd0a83 2435 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
9b4f98cd 2436 */
a9dd0a83 2437static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
33377678 2438 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2439{
ef8f2327 2440 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
9b4f98cd 2441 unsigned long nr[NR_LRU_LISTS];
e82e0561 2442 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2443 unsigned long nr_to_scan;
2444 enum lru_list lru;
2445 unsigned long nr_reclaimed = 0;
2446 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2447 struct blk_plug plug;
1a501907 2448 bool scan_adjusted;
9b4f98cd 2449
33377678 2450 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2451
e82e0561
MG
2452 /* Record the original scan target for proportional adjustments later */
2453 memcpy(targets, nr, sizeof(nr));
2454
1a501907
MG
2455 /*
2456 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2457 * event that can occur when there is little memory pressure e.g.
2458 * multiple streaming readers/writers. Hence, we do not abort scanning
2459 * when the requested number of pages are reclaimed when scanning at
2460 * DEF_PRIORITY on the assumption that the fact we are direct
2461 * reclaiming implies that kswapd is not keeping up and it is best to
2462 * do a batch of work at once. For memcg reclaim one check is made to
2463 * abort proportional reclaim if either the file or anon lru has already
2464 * dropped to zero at the first pass.
2465 */
2466 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2467 sc->priority == DEF_PRIORITY);
2468
9b4f98cd
JW
2469 blk_start_plug(&plug);
2470 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2471 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2472 unsigned long nr_anon, nr_file, percentage;
2473 unsigned long nr_scanned;
2474
9b4f98cd
JW
2475 for_each_evictable_lru(lru) {
2476 if (nr[lru]) {
2477 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2478 nr[lru] -= nr_to_scan;
2479
2480 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2481 lruvec, sc);
9b4f98cd
JW
2482 }
2483 }
e82e0561 2484
bd041733
MH
2485 cond_resched();
2486
e82e0561
MG
2487 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2488 continue;
2489
e82e0561
MG
2490 /*
2491 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2492 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2493 * proportionally what was requested by get_scan_count(). We
2494 * stop reclaiming one LRU and reduce the amount scanning
2495 * proportional to the original scan target.
2496 */
2497 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2498 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2499
1a501907
MG
2500 /*
2501 * It's just vindictive to attack the larger once the smaller
2502 * has gone to zero. And given the way we stop scanning the
2503 * smaller below, this makes sure that we only make one nudge
2504 * towards proportionality once we've got nr_to_reclaim.
2505 */
2506 if (!nr_file || !nr_anon)
2507 break;
2508
e82e0561
MG
2509 if (nr_file > nr_anon) {
2510 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2511 targets[LRU_ACTIVE_ANON] + 1;
2512 lru = LRU_BASE;
2513 percentage = nr_anon * 100 / scan_target;
2514 } else {
2515 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2516 targets[LRU_ACTIVE_FILE] + 1;
2517 lru = LRU_FILE;
2518 percentage = nr_file * 100 / scan_target;
2519 }
2520
2521 /* Stop scanning the smaller of the LRU */
2522 nr[lru] = 0;
2523 nr[lru + LRU_ACTIVE] = 0;
2524
2525 /*
2526 * Recalculate the other LRU scan count based on its original
2527 * scan target and the percentage scanning already complete
2528 */
2529 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2530 nr_scanned = targets[lru] - nr[lru];
2531 nr[lru] = targets[lru] * (100 - percentage) / 100;
2532 nr[lru] -= min(nr[lru], nr_scanned);
2533
2534 lru += LRU_ACTIVE;
2535 nr_scanned = targets[lru] - nr[lru];
2536 nr[lru] = targets[lru] * (100 - percentage) / 100;
2537 nr[lru] -= min(nr[lru], nr_scanned);
2538
2539 scan_adjusted = true;
9b4f98cd
JW
2540 }
2541 blk_finish_plug(&plug);
2542 sc->nr_reclaimed += nr_reclaimed;
2543
2544 /*
2545 * Even if we did not try to evict anon pages at all, we want to
2546 * rebalance the anon lru active/inactive ratio.
2547 */
3b991208 2548 if (inactive_list_is_low(lruvec, false, sc, true))
9b4f98cd
JW
2549 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2550 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2551}
2552
23b9da55 2553/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2554static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2555{
d84da3f9 2556 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2557 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2558 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2559 return true;
2560
2561 return false;
2562}
2563
3e7d3449 2564/*
23b9da55
MG
2565 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2566 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2567 * true if more pages should be reclaimed such that when the page allocator
2568 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2569 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2570 */
a9dd0a83 2571static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449
MG
2572 unsigned long nr_reclaimed,
2573 unsigned long nr_scanned,
2574 struct scan_control *sc)
2575{
2576 unsigned long pages_for_compaction;
2577 unsigned long inactive_lru_pages;
a9dd0a83 2578 int z;
3e7d3449
MG
2579
2580 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2581 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2582 return false;
2583
2876592f 2584 /* Consider stopping depending on scan and reclaim activity */
dcda9b04 2585 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2876592f 2586 /*
dcda9b04 2587 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2876592f
MG
2588 * full LRU list has been scanned and we are still failing
2589 * to reclaim pages. This full LRU scan is potentially
dcda9b04 2590 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2876592f
MG
2591 */
2592 if (!nr_reclaimed && !nr_scanned)
2593 return false;
2594 } else {
2595 /*
dcda9b04 2596 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2876592f
MG
2597 * fail without consequence, stop if we failed to reclaim
2598 * any pages from the last SWAP_CLUSTER_MAX number of
2599 * pages that were scanned. This will return to the
2600 * caller faster at the risk reclaim/compaction and
2601 * the resulting allocation attempt fails
2602 */
2603 if (!nr_reclaimed)
2604 return false;
2605 }
3e7d3449
MG
2606
2607 /*
2608 * If we have not reclaimed enough pages for compaction and the
2609 * inactive lists are large enough, continue reclaiming
2610 */
9861a62c 2611 pages_for_compaction = compact_gap(sc->order);
a9dd0a83 2612 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
ec8acf20 2613 if (get_nr_swap_pages() > 0)
a9dd0a83 2614 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3e7d3449
MG
2615 if (sc->nr_reclaimed < pages_for_compaction &&
2616 inactive_lru_pages > pages_for_compaction)
2617 return true;
2618
2619 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2620 for (z = 0; z <= sc->reclaim_idx; z++) {
2621 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2622 if (!managed_zone(zone))
a9dd0a83
MG
2623 continue;
2624
2625 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2626 case COMPACT_SUCCESS:
a9dd0a83
MG
2627 case COMPACT_CONTINUE:
2628 return false;
2629 default:
2630 /* check next zone */
2631 ;
2632 }
3e7d3449 2633 }
a9dd0a83 2634 return true;
3e7d3449
MG
2635}
2636
e3c1ac58
AR
2637static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2638{
2639 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2640 (memcg && memcg_congested(pgdat, memcg));
2641}
2642
970a39a3 2643static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2644{
cb731d6c 2645 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2646 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2647 bool reclaimable = false;
1da177e4 2648
9b4f98cd
JW
2649 do {
2650 struct mem_cgroup *root = sc->target_mem_cgroup;
2651 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 2652 .pgdat = pgdat,
9b4f98cd
JW
2653 .priority = sc->priority,
2654 };
a9dd0a83 2655 unsigned long node_lru_pages = 0;
694fbc0f 2656 struct mem_cgroup *memcg;
3e7d3449 2657
d108c772
AR
2658 memset(&sc->nr, 0, sizeof(sc->nr));
2659
9b4f98cd
JW
2660 nr_reclaimed = sc->nr_reclaimed;
2661 nr_scanned = sc->nr_scanned;
1da177e4 2662
694fbc0f
AM
2663 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2664 do {
6b4f7799 2665 unsigned long lru_pages;
8e8ae645 2666 unsigned long reclaimed;
cb731d6c 2667 unsigned long scanned;
5660048c 2668
bf8d5d52
RG
2669 switch (mem_cgroup_protected(root, memcg)) {
2670 case MEMCG_PROT_MIN:
2671 /*
2672 * Hard protection.
2673 * If there is no reclaimable memory, OOM.
2674 */
2675 continue;
2676 case MEMCG_PROT_LOW:
2677 /*
2678 * Soft protection.
2679 * Respect the protection only as long as
2680 * there is an unprotected supply
2681 * of reclaimable memory from other cgroups.
2682 */
d6622f63
YX
2683 if (!sc->memcg_low_reclaim) {
2684 sc->memcg_low_skipped = 1;
241994ed 2685 continue;
d6622f63 2686 }
e27be240 2687 memcg_memory_event(memcg, MEMCG_LOW);
bf8d5d52
RG
2688 break;
2689 case MEMCG_PROT_NONE:
2690 break;
241994ed
JW
2691 }
2692
8e8ae645 2693 reclaimed = sc->nr_reclaimed;
cb731d6c 2694 scanned = sc->nr_scanned;
a9dd0a83
MG
2695 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2696 node_lru_pages += lru_pages;
f16015fb 2697
1c30844d
MG
2698 if (sc->may_shrinkslab) {
2699 shrink_slab(sc->gfp_mask, pgdat->node_id,
aeed1d32 2700 memcg, sc->priority);
1c30844d 2701 }
cb731d6c 2702
8e8ae645
JW
2703 /* Record the group's reclaim efficiency */
2704 vmpressure(sc->gfp_mask, memcg, false,
2705 sc->nr_scanned - scanned,
2706 sc->nr_reclaimed - reclaimed);
2707
9b4f98cd 2708 /*
2bb0f34f
YS
2709 * Kswapd have to scan all memory cgroups to fulfill
2710 * the overall scan target for the node.
a394cb8e
MH
2711 *
2712 * Limit reclaim, on the other hand, only cares about
2713 * nr_to_reclaim pages to be reclaimed and it will
2714 * retry with decreasing priority if one round over the
2715 * whole hierarchy is not sufficient.
9b4f98cd 2716 */
2bb0f34f 2717 if (!current_is_kswapd() &&
a394cb8e 2718 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2719 mem_cgroup_iter_break(root, memcg);
2720 break;
2721 }
241994ed 2722 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2723
cb731d6c
VD
2724 if (reclaim_state) {
2725 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2726 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2727 }
2728
8e8ae645
JW
2729 /* Record the subtree's reclaim efficiency */
2730 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2731 sc->nr_scanned - nr_scanned,
2732 sc->nr_reclaimed - nr_reclaimed);
2733
2344d7e4
JW
2734 if (sc->nr_reclaimed - nr_reclaimed)
2735 reclaimable = true;
2736
e3c1ac58
AR
2737 if (current_is_kswapd()) {
2738 /*
2739 * If reclaim is isolating dirty pages under writeback,
2740 * it implies that the long-lived page allocation rate
2741 * is exceeding the page laundering rate. Either the
2742 * global limits are not being effective at throttling
2743 * processes due to the page distribution throughout
2744 * zones or there is heavy usage of a slow backing
2745 * device. The only option is to throttle from reclaim
2746 * context which is not ideal as there is no guarantee
2747 * the dirtying process is throttled in the same way
2748 * balance_dirty_pages() manages.
2749 *
2750 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2751 * count the number of pages under pages flagged for
2752 * immediate reclaim and stall if any are encountered
2753 * in the nr_immediate check below.
2754 */
2755 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2756 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 2757
d108c772
AR
2758 /*
2759 * Tag a node as congested if all the dirty pages
2760 * scanned were backed by a congested BDI and
2761 * wait_iff_congested will stall.
2762 */
2763 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2764 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2765
2766 /* Allow kswapd to start writing pages during reclaim.*/
2767 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2768 set_bit(PGDAT_DIRTY, &pgdat->flags);
2769
2770 /*
2771 * If kswapd scans pages marked marked for immediate
2772 * reclaim and under writeback (nr_immediate), it
2773 * implies that pages are cycling through the LRU
2774 * faster than they are written so also forcibly stall.
2775 */
2776 if (sc->nr.immediate)
2777 congestion_wait(BLK_RW_ASYNC, HZ/10);
2778 }
2779
e3c1ac58
AR
2780 /*
2781 * Legacy memcg will stall in page writeback so avoid forcibly
2782 * stalling in wait_iff_congested().
2783 */
2784 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2785 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2786 set_memcg_congestion(pgdat, root, true);
2787
d108c772
AR
2788 /*
2789 * Stall direct reclaim for IO completions if underlying BDIs
2790 * and node is congested. Allow kswapd to continue until it
2791 * starts encountering unqueued dirty pages or cycling through
2792 * the LRU too quickly.
2793 */
2794 if (!sc->hibernation_mode && !current_is_kswapd() &&
e3c1ac58
AR
2795 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2796 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
d108c772 2797
a9dd0a83 2798 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
9b4f98cd 2799 sc->nr_scanned - nr_scanned, sc));
2344d7e4 2800
c73322d0
JW
2801 /*
2802 * Kswapd gives up on balancing particular nodes after too
2803 * many failures to reclaim anything from them and goes to
2804 * sleep. On reclaim progress, reset the failure counter. A
2805 * successful direct reclaim run will revive a dormant kswapd.
2806 */
2807 if (reclaimable)
2808 pgdat->kswapd_failures = 0;
2809
2344d7e4 2810 return reclaimable;
f16015fb
JW
2811}
2812
53853e2d 2813/*
fdd4c614
VB
2814 * Returns true if compaction should go ahead for a costly-order request, or
2815 * the allocation would already succeed without compaction. Return false if we
2816 * should reclaim first.
53853e2d 2817 */
4f588331 2818static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2819{
31483b6a 2820 unsigned long watermark;
fdd4c614 2821 enum compact_result suitable;
fe4b1b24 2822
fdd4c614
VB
2823 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2824 if (suitable == COMPACT_SUCCESS)
2825 /* Allocation should succeed already. Don't reclaim. */
2826 return true;
2827 if (suitable == COMPACT_SKIPPED)
2828 /* Compaction cannot yet proceed. Do reclaim. */
2829 return false;
fe4b1b24 2830
53853e2d 2831 /*
fdd4c614
VB
2832 * Compaction is already possible, but it takes time to run and there
2833 * are potentially other callers using the pages just freed. So proceed
2834 * with reclaim to make a buffer of free pages available to give
2835 * compaction a reasonable chance of completing and allocating the page.
2836 * Note that we won't actually reclaim the whole buffer in one attempt
2837 * as the target watermark in should_continue_reclaim() is lower. But if
2838 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2839 */
fdd4c614 2840 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2841
fdd4c614 2842 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2843}
2844
1da177e4
LT
2845/*
2846 * This is the direct reclaim path, for page-allocating processes. We only
2847 * try to reclaim pages from zones which will satisfy the caller's allocation
2848 * request.
2849 *
1da177e4
LT
2850 * If a zone is deemed to be full of pinned pages then just give it a light
2851 * scan then give up on it.
2852 */
0a0337e0 2853static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2854{
dd1a239f 2855 struct zoneref *z;
54a6eb5c 2856 struct zone *zone;
0608f43d
AM
2857 unsigned long nr_soft_reclaimed;
2858 unsigned long nr_soft_scanned;
619d0d76 2859 gfp_t orig_mask;
79dafcdc 2860 pg_data_t *last_pgdat = NULL;
1cfb419b 2861
cc715d99
MG
2862 /*
2863 * If the number of buffer_heads in the machine exceeds the maximum
2864 * allowed level, force direct reclaim to scan the highmem zone as
2865 * highmem pages could be pinning lowmem pages storing buffer_heads
2866 */
619d0d76 2867 orig_mask = sc->gfp_mask;
b2e18757 2868 if (buffer_heads_over_limit) {
cc715d99 2869 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2870 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2871 }
cc715d99 2872
d4debc66 2873 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2874 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2875 /*
2876 * Take care memory controller reclaiming has small influence
2877 * to global LRU.
2878 */
89b5fae5 2879 if (global_reclaim(sc)) {
344736f2
VD
2880 if (!cpuset_zone_allowed(zone,
2881 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2882 continue;
65ec02cb 2883
0b06496a
JW
2884 /*
2885 * If we already have plenty of memory free for
2886 * compaction in this zone, don't free any more.
2887 * Even though compaction is invoked for any
2888 * non-zero order, only frequent costly order
2889 * reclamation is disruptive enough to become a
2890 * noticeable problem, like transparent huge
2891 * page allocations.
2892 */
2893 if (IS_ENABLED(CONFIG_COMPACTION) &&
2894 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2895 compaction_ready(zone, sc)) {
0b06496a
JW
2896 sc->compaction_ready = true;
2897 continue;
e0887c19 2898 }
0b06496a 2899
79dafcdc
MG
2900 /*
2901 * Shrink each node in the zonelist once. If the
2902 * zonelist is ordered by zone (not the default) then a
2903 * node may be shrunk multiple times but in that case
2904 * the user prefers lower zones being preserved.
2905 */
2906 if (zone->zone_pgdat == last_pgdat)
2907 continue;
2908
0608f43d
AM
2909 /*
2910 * This steals pages from memory cgroups over softlimit
2911 * and returns the number of reclaimed pages and
2912 * scanned pages. This works for global memory pressure
2913 * and balancing, not for a memcg's limit.
2914 */
2915 nr_soft_scanned = 0;
ef8f2327 2916 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2917 sc->order, sc->gfp_mask,
2918 &nr_soft_scanned);
2919 sc->nr_reclaimed += nr_soft_reclaimed;
2920 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2921 /* need some check for avoid more shrink_zone() */
1cfb419b 2922 }
408d8544 2923
79dafcdc
MG
2924 /* See comment about same check for global reclaim above */
2925 if (zone->zone_pgdat == last_pgdat)
2926 continue;
2927 last_pgdat = zone->zone_pgdat;
970a39a3 2928 shrink_node(zone->zone_pgdat, sc);
1da177e4 2929 }
e0c23279 2930
619d0d76
WY
2931 /*
2932 * Restore to original mask to avoid the impact on the caller if we
2933 * promoted it to __GFP_HIGHMEM.
2934 */
2935 sc->gfp_mask = orig_mask;
1da177e4 2936}
4f98a2fe 2937
2a2e4885
JW
2938static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2939{
2940 struct mem_cgroup *memcg;
2941
2942 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2943 do {
2944 unsigned long refaults;
2945 struct lruvec *lruvec;
2946
2a2e4885 2947 lruvec = mem_cgroup_lruvec(pgdat, memcg);
205b20cc 2948 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2a2e4885
JW
2949 lruvec->refaults = refaults;
2950 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2951}
2952
1da177e4
LT
2953/*
2954 * This is the main entry point to direct page reclaim.
2955 *
2956 * If a full scan of the inactive list fails to free enough memory then we
2957 * are "out of memory" and something needs to be killed.
2958 *
2959 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2960 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2961 * caller can't do much about. We kick the writeback threads and take explicit
2962 * naps in the hope that some of these pages can be written. But if the
2963 * allocating task holds filesystem locks which prevent writeout this might not
2964 * work, and the allocation attempt will fail.
a41f24ea
NA
2965 *
2966 * returns: 0, if no pages reclaimed
2967 * else, the number of pages reclaimed
1da177e4 2968 */
dac1d27b 2969static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2970 struct scan_control *sc)
1da177e4 2971{
241994ed 2972 int initial_priority = sc->priority;
2a2e4885
JW
2973 pg_data_t *last_pgdat;
2974 struct zoneref *z;
2975 struct zone *zone;
241994ed 2976retry:
873b4771
KK
2977 delayacct_freepages_start();
2978
89b5fae5 2979 if (global_reclaim(sc))
7cc30fcf 2980 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 2981
9e3b2f8c 2982 do {
70ddf637
AV
2983 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2984 sc->priority);
66e1707b 2985 sc->nr_scanned = 0;
0a0337e0 2986 shrink_zones(zonelist, sc);
c6a8a8c5 2987
bb21c7ce 2988 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2989 break;
2990
2991 if (sc->compaction_ready)
2992 break;
1da177e4 2993
0e50ce3b
MK
2994 /*
2995 * If we're getting trouble reclaiming, start doing
2996 * writepage even in laptop mode.
2997 */
2998 if (sc->priority < DEF_PRIORITY - 2)
2999 sc->may_writepage = 1;
0b06496a 3000 } while (--sc->priority >= 0);
bb21c7ce 3001
2a2e4885
JW
3002 last_pgdat = NULL;
3003 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3004 sc->nodemask) {
3005 if (zone->zone_pgdat == last_pgdat)
3006 continue;
3007 last_pgdat = zone->zone_pgdat;
3008 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
e3c1ac58 3009 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2a2e4885
JW
3010 }
3011
873b4771
KK
3012 delayacct_freepages_end();
3013
bb21c7ce
KM
3014 if (sc->nr_reclaimed)
3015 return sc->nr_reclaimed;
3016
0cee34fd 3017 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3018 if (sc->compaction_ready)
7335084d
MG
3019 return 1;
3020
241994ed 3021 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3022 if (sc->memcg_low_skipped) {
241994ed 3023 sc->priority = initial_priority;
d6622f63
YX
3024 sc->memcg_low_reclaim = 1;
3025 sc->memcg_low_skipped = 0;
241994ed
JW
3026 goto retry;
3027 }
3028
bb21c7ce 3029 return 0;
1da177e4
LT
3030}
3031
c73322d0 3032static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3033{
3034 struct zone *zone;
3035 unsigned long pfmemalloc_reserve = 0;
3036 unsigned long free_pages = 0;
3037 int i;
3038 bool wmark_ok;
3039
c73322d0
JW
3040 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3041 return true;
3042
5515061d
MG
3043 for (i = 0; i <= ZONE_NORMAL; i++) {
3044 zone = &pgdat->node_zones[i];
d450abd8
JW
3045 if (!managed_zone(zone))
3046 continue;
3047
3048 if (!zone_reclaimable_pages(zone))
675becce
MG
3049 continue;
3050
5515061d
MG
3051 pfmemalloc_reserve += min_wmark_pages(zone);
3052 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3053 }
3054
675becce
MG
3055 /* If there are no reserves (unexpected config) then do not throttle */
3056 if (!pfmemalloc_reserve)
3057 return true;
3058
5515061d
MG
3059 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3060
3061 /* kswapd must be awake if processes are being throttled */
3062 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 3063 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
3064 (enum zone_type)ZONE_NORMAL);
3065 wake_up_interruptible(&pgdat->kswapd_wait);
3066 }
3067
3068 return wmark_ok;
3069}
3070
3071/*
3072 * Throttle direct reclaimers if backing storage is backed by the network
3073 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3074 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3075 * when the low watermark is reached.
3076 *
3077 * Returns true if a fatal signal was delivered during throttling. If this
3078 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3079 */
50694c28 3080static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3081 nodemask_t *nodemask)
3082{
675becce 3083 struct zoneref *z;
5515061d 3084 struct zone *zone;
675becce 3085 pg_data_t *pgdat = NULL;
5515061d
MG
3086
3087 /*
3088 * Kernel threads should not be throttled as they may be indirectly
3089 * responsible for cleaning pages necessary for reclaim to make forward
3090 * progress. kjournald for example may enter direct reclaim while
3091 * committing a transaction where throttling it could forcing other
3092 * processes to block on log_wait_commit().
3093 */
3094 if (current->flags & PF_KTHREAD)
50694c28
MG
3095 goto out;
3096
3097 /*
3098 * If a fatal signal is pending, this process should not throttle.
3099 * It should return quickly so it can exit and free its memory
3100 */
3101 if (fatal_signal_pending(current))
3102 goto out;
5515061d 3103
675becce
MG
3104 /*
3105 * Check if the pfmemalloc reserves are ok by finding the first node
3106 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3107 * GFP_KERNEL will be required for allocating network buffers when
3108 * swapping over the network so ZONE_HIGHMEM is unusable.
3109 *
3110 * Throttling is based on the first usable node and throttled processes
3111 * wait on a queue until kswapd makes progress and wakes them. There
3112 * is an affinity then between processes waking up and where reclaim
3113 * progress has been made assuming the process wakes on the same node.
3114 * More importantly, processes running on remote nodes will not compete
3115 * for remote pfmemalloc reserves and processes on different nodes
3116 * should make reasonable progress.
3117 */
3118 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3119 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3120 if (zone_idx(zone) > ZONE_NORMAL)
3121 continue;
3122
3123 /* Throttle based on the first usable node */
3124 pgdat = zone->zone_pgdat;
c73322d0 3125 if (allow_direct_reclaim(pgdat))
675becce
MG
3126 goto out;
3127 break;
3128 }
3129
3130 /* If no zone was usable by the allocation flags then do not throttle */
3131 if (!pgdat)
50694c28 3132 goto out;
5515061d 3133
68243e76
MG
3134 /* Account for the throttling */
3135 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3136
5515061d
MG
3137 /*
3138 * If the caller cannot enter the filesystem, it's possible that it
3139 * is due to the caller holding an FS lock or performing a journal
3140 * transaction in the case of a filesystem like ext[3|4]. In this case,
3141 * it is not safe to block on pfmemalloc_wait as kswapd could be
3142 * blocked waiting on the same lock. Instead, throttle for up to a
3143 * second before continuing.
3144 */
3145 if (!(gfp_mask & __GFP_FS)) {
3146 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3147 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
3148
3149 goto check_pending;
5515061d
MG
3150 }
3151
3152 /* Throttle until kswapd wakes the process */
3153 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 3154 allow_direct_reclaim(pgdat));
50694c28
MG
3155
3156check_pending:
3157 if (fatal_signal_pending(current))
3158 return true;
3159
3160out:
3161 return false;
5515061d
MG
3162}
3163
dac1d27b 3164unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3165 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3166{
33906bc5 3167 unsigned long nr_reclaimed;
66e1707b 3168 struct scan_control sc = {
ee814fe2 3169 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3170 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3171 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3172 .order = order,
3173 .nodemask = nodemask,
3174 .priority = DEF_PRIORITY,
66e1707b 3175 .may_writepage = !laptop_mode,
a6dc60f8 3176 .may_unmap = 1,
2e2e4259 3177 .may_swap = 1,
1c30844d 3178 .may_shrinkslab = 1,
66e1707b
BS
3179 };
3180
bb451fdf
GT
3181 /*
3182 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3183 * Confirm they are large enough for max values.
3184 */
3185 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3186 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3187 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3188
5515061d 3189 /*
50694c28
MG
3190 * Do not enter reclaim if fatal signal was delivered while throttled.
3191 * 1 is returned so that the page allocator does not OOM kill at this
3192 * point.
5515061d 3193 */
f2f43e56 3194 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3195 return 1;
3196
0308f7cf 3197 current->reclaim_state = &sc.reclaim_state;
3481c37f 3198 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3199
3115cd91 3200 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3201
3202 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
0308f7cf 3203 current->reclaim_state = NULL;
33906bc5
MG
3204
3205 return nr_reclaimed;
66e1707b
BS
3206}
3207
c255a458 3208#ifdef CONFIG_MEMCG
66e1707b 3209
a9dd0a83 3210unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3211 gfp_t gfp_mask, bool noswap,
ef8f2327 3212 pg_data_t *pgdat,
0ae5e89c 3213 unsigned long *nr_scanned)
4e416953
BS
3214{
3215 struct scan_control sc = {
b8f5c566 3216 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3217 .target_mem_cgroup = memcg,
4e416953
BS
3218 .may_writepage = !laptop_mode,
3219 .may_unmap = 1,
b2e18757 3220 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3221 .may_swap = !noswap,
1c30844d 3222 .may_shrinkslab = 1,
4e416953 3223 };
6b4f7799 3224 unsigned long lru_pages;
0ae5e89c 3225
0308f7cf 3226 current->reclaim_state = &sc.reclaim_state;
4e416953
BS
3227 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3228 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3229
9e3b2f8c 3230 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3231 sc.gfp_mask);
bdce6d9e 3232
4e416953
BS
3233 /*
3234 * NOTE: Although we can get the priority field, using it
3235 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3236 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3237 * will pick up pages from other mem cgroup's as well. We hack
3238 * the priority and make it zero.
3239 */
ef8f2327 3240 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
bdce6d9e
KM
3241
3242 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3243
0308f7cf 3244 current->reclaim_state = NULL;
0ae5e89c 3245 *nr_scanned = sc.nr_scanned;
0308f7cf 3246
4e416953
BS
3247 return sc.nr_reclaimed;
3248}
3249
72835c86 3250unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3251 unsigned long nr_pages,
a7885eb8 3252 gfp_t gfp_mask,
b70a2a21 3253 bool may_swap)
66e1707b 3254{
4e416953 3255 struct zonelist *zonelist;
bdce6d9e 3256 unsigned long nr_reclaimed;
eb414681 3257 unsigned long pflags;
889976db 3258 int nid;
499118e9 3259 unsigned int noreclaim_flag;
66e1707b 3260 struct scan_control sc = {
b70a2a21 3261 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3262 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3263 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3264 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3265 .target_mem_cgroup = memcg,
3266 .priority = DEF_PRIORITY,
3267 .may_writepage = !laptop_mode,
3268 .may_unmap = 1,
b70a2a21 3269 .may_swap = may_swap,
1c30844d 3270 .may_shrinkslab = 1,
a09ed5e0 3271 };
66e1707b 3272
0308f7cf 3273 current->reclaim_state = &sc.reclaim_state;
889976db
YH
3274 /*
3275 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3276 * take care of from where we get pages. So the node where we start the
3277 * scan does not need to be the current node.
3278 */
72835c86 3279 nid = mem_cgroup_select_victim_node(memcg);
889976db 3280
c9634cf0 3281 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
bdce6d9e 3282
3481c37f 3283 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
bdce6d9e 3284
eb414681 3285 psi_memstall_enter(&pflags);
499118e9 3286 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3287
3115cd91 3288 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3289
499118e9 3290 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3291 psi_memstall_leave(&pflags);
bdce6d9e
KM
3292
3293 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
0308f7cf 3294 current->reclaim_state = NULL;
bdce6d9e
KM
3295
3296 return nr_reclaimed;
66e1707b
BS
3297}
3298#endif
3299
1d82de61 3300static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3301 struct scan_control *sc)
f16015fb 3302{
b95a2f2d 3303 struct mem_cgroup *memcg;
f16015fb 3304
b95a2f2d
JW
3305 if (!total_swap_pages)
3306 return;
3307
3308 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3309 do {
ef8f2327 3310 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
b95a2f2d 3311
3b991208 3312 if (inactive_list_is_low(lruvec, false, sc, true))
1a93be0e 3313 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3314 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3315
3316 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3317 } while (memcg);
f16015fb
JW
3318}
3319
1c30844d
MG
3320static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3321{
3322 int i;
3323 struct zone *zone;
3324
3325 /*
3326 * Check for watermark boosts top-down as the higher zones
3327 * are more likely to be boosted. Both watermarks and boosts
3328 * should not be checked at the time time as reclaim would
3329 * start prematurely when there is no boosting and a lower
3330 * zone is balanced.
3331 */
3332 for (i = classzone_idx; i >= 0; i--) {
3333 zone = pgdat->node_zones + i;
3334 if (!managed_zone(zone))
3335 continue;
3336
3337 if (zone->watermark_boost)
3338 return true;
3339 }
3340
3341 return false;
3342}
3343
e716f2eb
MG
3344/*
3345 * Returns true if there is an eligible zone balanced for the request order
3346 * and classzone_idx
3347 */
3348static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
60cefed4 3349{
e716f2eb
MG
3350 int i;
3351 unsigned long mark = -1;
3352 struct zone *zone;
60cefed4 3353
1c30844d
MG
3354 /*
3355 * Check watermarks bottom-up as lower zones are more likely to
3356 * meet watermarks.
3357 */
e716f2eb
MG
3358 for (i = 0; i <= classzone_idx; i++) {
3359 zone = pgdat->node_zones + i;
6256c6b4 3360
e716f2eb
MG
3361 if (!managed_zone(zone))
3362 continue;
3363
3364 mark = high_wmark_pages(zone);
3365 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3366 return true;
3367 }
3368
3369 /*
3370 * If a node has no populated zone within classzone_idx, it does not
3371 * need balancing by definition. This can happen if a zone-restricted
3372 * allocation tries to wake a remote kswapd.
3373 */
3374 if (mark == -1)
3375 return true;
3376
3377 return false;
60cefed4
JW
3378}
3379
631b6e08
MG
3380/* Clear pgdat state for congested, dirty or under writeback. */
3381static void clear_pgdat_congested(pg_data_t *pgdat)
3382{
3383 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3384 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3385 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3386}
3387
5515061d
MG
3388/*
3389 * Prepare kswapd for sleeping. This verifies that there are no processes
3390 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3391 *
3392 * Returns true if kswapd is ready to sleep
3393 */
d9f21d42 3394static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3395{
5515061d 3396 /*
9e5e3661 3397 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3398 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3399 * race between when kswapd checks the watermarks and a process gets
3400 * throttled. There is also a potential race if processes get
3401 * throttled, kswapd wakes, a large process exits thereby balancing the
3402 * zones, which causes kswapd to exit balance_pgdat() before reaching
3403 * the wake up checks. If kswapd is going to sleep, no process should
3404 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3405 * the wake up is premature, processes will wake kswapd and get
3406 * throttled again. The difference from wake ups in balance_pgdat() is
3407 * that here we are under prepare_to_wait().
5515061d 3408 */
9e5e3661
VB
3409 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3410 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3411
c73322d0
JW
3412 /* Hopeless node, leave it to direct reclaim */
3413 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3414 return true;
3415
e716f2eb
MG
3416 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3417 clear_pgdat_congested(pgdat);
3418 return true;
1d82de61
MG
3419 }
3420
333b0a45 3421 return false;
f50de2d3
MG
3422}
3423
75485363 3424/*
1d82de61
MG
3425 * kswapd shrinks a node of pages that are at or below the highest usable
3426 * zone that is currently unbalanced.
b8e83b94
MG
3427 *
3428 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3429 * reclaim or if the lack of progress was due to pages under writeback.
3430 * This is used to determine if the scanning priority needs to be raised.
75485363 3431 */
1d82de61 3432static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3433 struct scan_control *sc)
75485363 3434{
1d82de61
MG
3435 struct zone *zone;
3436 int z;
75485363 3437
1d82de61
MG
3438 /* Reclaim a number of pages proportional to the number of zones */
3439 sc->nr_to_reclaim = 0;
970a39a3 3440 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3441 zone = pgdat->node_zones + z;
6aa303de 3442 if (!managed_zone(zone))
1d82de61 3443 continue;
7c954f6d 3444
1d82de61
MG
3445 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3446 }
7c954f6d
MG
3447
3448 /*
1d82de61
MG
3449 * Historically care was taken to put equal pressure on all zones but
3450 * now pressure is applied based on node LRU order.
7c954f6d 3451 */
970a39a3 3452 shrink_node(pgdat, sc);
283aba9f 3453
7c954f6d 3454 /*
1d82de61
MG
3455 * Fragmentation may mean that the system cannot be rebalanced for
3456 * high-order allocations. If twice the allocation size has been
3457 * reclaimed then recheck watermarks only at order-0 to prevent
3458 * excessive reclaim. Assume that a process requested a high-order
3459 * can direct reclaim/compact.
7c954f6d 3460 */
9861a62c 3461 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3462 sc->order = 0;
7c954f6d 3463
b8e83b94 3464 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3465}
3466
1da177e4 3467/*
1d82de61
MG
3468 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3469 * that are eligible for use by the caller until at least one zone is
3470 * balanced.
1da177e4 3471 *
1d82de61 3472 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3473 *
3474 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3475 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 3476 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
3477 * or lower is eligible for reclaim until at least one usable zone is
3478 * balanced.
1da177e4 3479 */
accf6242 3480static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3481{
1da177e4 3482 int i;
0608f43d
AM
3483 unsigned long nr_soft_reclaimed;
3484 unsigned long nr_soft_scanned;
eb414681 3485 unsigned long pflags;
1c30844d
MG
3486 unsigned long nr_boost_reclaim;
3487 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3488 bool boosted;
1d82de61 3489 struct zone *zone;
179e9639
AM
3490 struct scan_control sc = {
3491 .gfp_mask = GFP_KERNEL,
ee814fe2 3492 .order = order,
a6dc60f8 3493 .may_unmap = 1,
179e9639 3494 };
93781325 3495
e5ca8071 3496 current->reclaim_state = &sc.reclaim_state;
eb414681 3497 psi_memstall_enter(&pflags);
93781325
OS
3498 __fs_reclaim_acquire();
3499
f8891e5e 3500 count_vm_event(PAGEOUTRUN);
1da177e4 3501
1c30844d
MG
3502 /*
3503 * Account for the reclaim boost. Note that the zone boost is left in
3504 * place so that parallel allocations that are near the watermark will
3505 * stall or direct reclaim until kswapd is finished.
3506 */
3507 nr_boost_reclaim = 0;
3508 for (i = 0; i <= classzone_idx; i++) {
3509 zone = pgdat->node_zones + i;
3510 if (!managed_zone(zone))
3511 continue;
3512
3513 nr_boost_reclaim += zone->watermark_boost;
3514 zone_boosts[i] = zone->watermark_boost;
3515 }
3516 boosted = nr_boost_reclaim;
3517
3518restart:
3519 sc.priority = DEF_PRIORITY;
9e3b2f8c 3520 do {
c73322d0 3521 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 3522 bool raise_priority = true;
1c30844d 3523 bool balanced;
93781325 3524 bool ret;
b8e83b94 3525
84c7a777 3526 sc.reclaim_idx = classzone_idx;
1da177e4 3527
86c79f6b 3528 /*
84c7a777
MG
3529 * If the number of buffer_heads exceeds the maximum allowed
3530 * then consider reclaiming from all zones. This has a dual
3531 * purpose -- on 64-bit systems it is expected that
3532 * buffer_heads are stripped during active rotation. On 32-bit
3533 * systems, highmem pages can pin lowmem memory and shrinking
3534 * buffers can relieve lowmem pressure. Reclaim may still not
3535 * go ahead if all eligible zones for the original allocation
3536 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3537 */
3538 if (buffer_heads_over_limit) {
3539 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3540 zone = pgdat->node_zones + i;
6aa303de 3541 if (!managed_zone(zone))
86c79f6b 3542 continue;
cc715d99 3543
970a39a3 3544 sc.reclaim_idx = i;
e1dbeda6 3545 break;
1da177e4 3546 }
1da177e4 3547 }
dafcb73e 3548
86c79f6b 3549 /*
1c30844d
MG
3550 * If the pgdat is imbalanced then ignore boosting and preserve
3551 * the watermarks for a later time and restart. Note that the
3552 * zone watermarks will be still reset at the end of balancing
3553 * on the grounds that the normal reclaim should be enough to
3554 * re-evaluate if boosting is required when kswapd next wakes.
3555 */
3556 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3557 if (!balanced && nr_boost_reclaim) {
3558 nr_boost_reclaim = 0;
3559 goto restart;
3560 }
3561
3562 /*
3563 * If boosting is not active then only reclaim if there are no
3564 * eligible zones. Note that sc.reclaim_idx is not used as
3565 * buffer_heads_over_limit may have adjusted it.
86c79f6b 3566 */
1c30844d 3567 if (!nr_boost_reclaim && balanced)
e716f2eb 3568 goto out;
e1dbeda6 3569
1c30844d
MG
3570 /* Limit the priority of boosting to avoid reclaim writeback */
3571 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3572 raise_priority = false;
3573
3574 /*
3575 * Do not writeback or swap pages for boosted reclaim. The
3576 * intent is to relieve pressure not issue sub-optimal IO
3577 * from reclaim context. If no pages are reclaimed, the
3578 * reclaim will be aborted.
3579 */
3580 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3581 sc.may_swap = !nr_boost_reclaim;
3582 sc.may_shrinkslab = !nr_boost_reclaim;
3583
1d82de61
MG
3584 /*
3585 * Do some background aging of the anon list, to give
3586 * pages a chance to be referenced before reclaiming. All
3587 * pages are rotated regardless of classzone as this is
3588 * about consistent aging.
3589 */
ef8f2327 3590 age_active_anon(pgdat, &sc);
1d82de61 3591
b7ea3c41
MG
3592 /*
3593 * If we're getting trouble reclaiming, start doing writepage
3594 * even in laptop mode.
3595 */
047d72c3 3596 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3597 sc.may_writepage = 1;
3598
1d82de61
MG
3599 /* Call soft limit reclaim before calling shrink_node. */
3600 sc.nr_scanned = 0;
3601 nr_soft_scanned = 0;
ef8f2327 3602 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3603 sc.gfp_mask, &nr_soft_scanned);
3604 sc.nr_reclaimed += nr_soft_reclaimed;
3605
1da177e4 3606 /*
1d82de61
MG
3607 * There should be no need to raise the scanning priority if
3608 * enough pages are already being scanned that that high
3609 * watermark would be met at 100% efficiency.
1da177e4 3610 */
970a39a3 3611 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3612 raise_priority = false;
5515061d
MG
3613
3614 /*
3615 * If the low watermark is met there is no need for processes
3616 * to be throttled on pfmemalloc_wait as they should not be
3617 * able to safely make forward progress. Wake them
3618 */
3619 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3620 allow_direct_reclaim(pgdat))
cfc51155 3621 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3622
b8e83b94 3623 /* Check if kswapd should be suspending */
93781325
OS
3624 __fs_reclaim_release();
3625 ret = try_to_freeze();
3626 __fs_reclaim_acquire();
3627 if (ret || kthread_should_stop())
b8e83b94 3628 break;
8357376d 3629
73ce02e9 3630 /*
b8e83b94
MG
3631 * Raise priority if scanning rate is too low or there was no
3632 * progress in reclaiming pages
73ce02e9 3633 */
c73322d0 3634 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
3635 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3636
3637 /*
3638 * If reclaim made no progress for a boost, stop reclaim as
3639 * IO cannot be queued and it could be an infinite loop in
3640 * extreme circumstances.
3641 */
3642 if (nr_boost_reclaim && !nr_reclaimed)
3643 break;
3644
c73322d0 3645 if (raise_priority || !nr_reclaimed)
b8e83b94 3646 sc.priority--;
1d82de61 3647 } while (sc.priority >= 1);
1da177e4 3648
c73322d0
JW
3649 if (!sc.nr_reclaimed)
3650 pgdat->kswapd_failures++;
3651
b8e83b94 3652out:
1c30844d
MG
3653 /* If reclaim was boosted, account for the reclaim done in this pass */
3654 if (boosted) {
3655 unsigned long flags;
3656
3657 for (i = 0; i <= classzone_idx; i++) {
3658 if (!zone_boosts[i])
3659 continue;
3660
3661 /* Increments are under the zone lock */
3662 zone = pgdat->node_zones + i;
3663 spin_lock_irqsave(&zone->lock, flags);
3664 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3665 spin_unlock_irqrestore(&zone->lock, flags);
3666 }
3667
3668 /*
3669 * As there is now likely space, wakeup kcompact to defragment
3670 * pageblocks.
3671 */
3672 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3673 }
3674
2a2e4885 3675 snapshot_refaults(NULL, pgdat);
93781325 3676 __fs_reclaim_release();
eb414681 3677 psi_memstall_leave(&pflags);
e5ca8071
YS
3678 current->reclaim_state = NULL;
3679
0abdee2b 3680 /*
1d82de61
MG
3681 * Return the order kswapd stopped reclaiming at as
3682 * prepare_kswapd_sleep() takes it into account. If another caller
3683 * entered the allocator slow path while kswapd was awake, order will
3684 * remain at the higher level.
0abdee2b 3685 */
1d82de61 3686 return sc.order;
1da177e4
LT
3687}
3688
e716f2eb 3689/*
dffcac2c
SB
3690 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3691 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3692 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3693 * after previous reclaim attempt (node is still unbalanced). In that case
3694 * return the zone index of the previous kswapd reclaim cycle.
e716f2eb
MG
3695 */
3696static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
dffcac2c 3697 enum zone_type prev_classzone_idx)
e716f2eb
MG
3698{
3699 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
dffcac2c
SB
3700 return prev_classzone_idx;
3701 return pgdat->kswapd_classzone_idx;
e716f2eb
MG
3702}
3703
38087d9b
MG
3704static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3705 unsigned int classzone_idx)
f0bc0a60
KM
3706{
3707 long remaining = 0;
3708 DEFINE_WAIT(wait);
3709
3710 if (freezing(current) || kthread_should_stop())
3711 return;
3712
3713 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3714
333b0a45
SG
3715 /*
3716 * Try to sleep for a short interval. Note that kcompactd will only be
3717 * woken if it is possible to sleep for a short interval. This is
3718 * deliberate on the assumption that if reclaim cannot keep an
3719 * eligible zone balanced that it's also unlikely that compaction will
3720 * succeed.
3721 */
d9f21d42 3722 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3723 /*
3724 * Compaction records what page blocks it recently failed to
3725 * isolate pages from and skips them in the future scanning.
3726 * When kswapd is going to sleep, it is reasonable to assume
3727 * that pages and compaction may succeed so reset the cache.
3728 */
3729 reset_isolation_suitable(pgdat);
3730
3731 /*
3732 * We have freed the memory, now we should compact it to make
3733 * allocation of the requested order possible.
3734 */
38087d9b 3735 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3736
f0bc0a60 3737 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3738
3739 /*
3740 * If woken prematurely then reset kswapd_classzone_idx and
3741 * order. The values will either be from a wakeup request or
3742 * the previous request that slept prematurely.
3743 */
3744 if (remaining) {
e716f2eb 3745 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b
MG
3746 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3747 }
3748
f0bc0a60
KM
3749 finish_wait(&pgdat->kswapd_wait, &wait);
3750 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3751 }
3752
3753 /*
3754 * After a short sleep, check if it was a premature sleep. If not, then
3755 * go fully to sleep until explicitly woken up.
3756 */
d9f21d42
MG
3757 if (!remaining &&
3758 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3759 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3760
3761 /*
3762 * vmstat counters are not perfectly accurate and the estimated
3763 * value for counters such as NR_FREE_PAGES can deviate from the
3764 * true value by nr_online_cpus * threshold. To avoid the zone
3765 * watermarks being breached while under pressure, we reduce the
3766 * per-cpu vmstat threshold while kswapd is awake and restore
3767 * them before going back to sleep.
3768 */
3769 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3770
3771 if (!kthread_should_stop())
3772 schedule();
3773
f0bc0a60
KM
3774 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3775 } else {
3776 if (remaining)
3777 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3778 else
3779 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3780 }
3781 finish_wait(&pgdat->kswapd_wait, &wait);
3782}
3783
1da177e4
LT
3784/*
3785 * The background pageout daemon, started as a kernel thread
4f98a2fe 3786 * from the init process.
1da177e4
LT
3787 *
3788 * This basically trickles out pages so that we have _some_
3789 * free memory available even if there is no other activity
3790 * that frees anything up. This is needed for things like routing
3791 * etc, where we otherwise might have all activity going on in
3792 * asynchronous contexts that cannot page things out.
3793 *
3794 * If there are applications that are active memory-allocators
3795 * (most normal use), this basically shouldn't matter.
3796 */
3797static int kswapd(void *p)
3798{
e716f2eb
MG
3799 unsigned int alloc_order, reclaim_order;
3800 unsigned int classzone_idx = MAX_NR_ZONES - 1;
1da177e4
LT
3801 pg_data_t *pgdat = (pg_data_t*)p;
3802 struct task_struct *tsk = current;
a70f7302 3803 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3804
174596a0 3805 if (!cpumask_empty(cpumask))
c5f59f08 3806 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3807
3808 /*
3809 * Tell the memory management that we're a "memory allocator",
3810 * and that if we need more memory we should get access to it
3811 * regardless (see "__alloc_pages()"). "kswapd" should
3812 * never get caught in the normal page freeing logic.
3813 *
3814 * (Kswapd normally doesn't need memory anyway, but sometimes
3815 * you need a small amount of memory in order to be able to
3816 * page out something else, and this flag essentially protects
3817 * us from recursively trying to free more memory as we're
3818 * trying to free the first piece of memory in the first place).
3819 */
930d9152 3820 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3821 set_freezable();
1da177e4 3822
e716f2eb
MG
3823 pgdat->kswapd_order = 0;
3824 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3825 for ( ; ; ) {
6f6313d4 3826 bool ret;
3e1d1d28 3827
e716f2eb
MG
3828 alloc_order = reclaim_order = pgdat->kswapd_order;
3829 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3830
38087d9b
MG
3831kswapd_try_sleep:
3832 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3833 classzone_idx);
215ddd66 3834
38087d9b
MG
3835 /* Read the new order and classzone_idx */
3836 alloc_order = reclaim_order = pgdat->kswapd_order;
dffcac2c 3837 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b 3838 pgdat->kswapd_order = 0;
e716f2eb 3839 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3840
8fe23e05
DR
3841 ret = try_to_freeze();
3842 if (kthread_should_stop())
3843 break;
3844
3845 /*
3846 * We can speed up thawing tasks if we don't call balance_pgdat
3847 * after returning from the refrigerator
3848 */
38087d9b
MG
3849 if (ret)
3850 continue;
3851
3852 /*
3853 * Reclaim begins at the requested order but if a high-order
3854 * reclaim fails then kswapd falls back to reclaiming for
3855 * order-0. If that happens, kswapd will consider sleeping
3856 * for the order it finished reclaiming at (reclaim_order)
3857 * but kcompactd is woken to compact for the original
3858 * request (alloc_order).
3859 */
e5146b12
MG
3860 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3861 alloc_order);
38087d9b
MG
3862 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3863 if (reclaim_order < alloc_order)
3864 goto kswapd_try_sleep;
1da177e4 3865 }
b0a8cc58 3866
71abdc15 3867 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
71abdc15 3868
1da177e4
LT
3869 return 0;
3870}
3871
3872/*
5ecd9d40
DR
3873 * A zone is low on free memory or too fragmented for high-order memory. If
3874 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3875 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3876 * has failed or is not needed, still wake up kcompactd if only compaction is
3877 * needed.
1da177e4 3878 */
5ecd9d40
DR
3879void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3880 enum zone_type classzone_idx)
1da177e4
LT
3881{
3882 pg_data_t *pgdat;
3883
6aa303de 3884 if (!managed_zone(zone))
1da177e4
LT
3885 return;
3886
5ecd9d40 3887 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 3888 return;
88f5acf8 3889 pgdat = zone->zone_pgdat;
dffcac2c
SB
3890
3891 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3892 pgdat->kswapd_classzone_idx = classzone_idx;
3893 else
3894 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3895 classzone_idx);
38087d9b 3896 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3897 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3898 return;
e1a55637 3899
5ecd9d40
DR
3900 /* Hopeless node, leave it to direct reclaim if possible */
3901 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
1c30844d
MG
3902 (pgdat_balanced(pgdat, order, classzone_idx) &&
3903 !pgdat_watermark_boosted(pgdat, classzone_idx))) {
5ecd9d40
DR
3904 /*
3905 * There may be plenty of free memory available, but it's too
3906 * fragmented for high-order allocations. Wake up kcompactd
3907 * and rely on compaction_suitable() to determine if it's
3908 * needed. If it fails, it will defer subsequent attempts to
3909 * ratelimit its work.
3910 */
3911 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3912 wakeup_kcompactd(pgdat, order, classzone_idx);
e716f2eb 3913 return;
5ecd9d40 3914 }
88f5acf8 3915
5ecd9d40
DR
3916 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3917 gfp_flags);
8d0986e2 3918 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3919}
3920
c6f37f12 3921#ifdef CONFIG_HIBERNATION
1da177e4 3922/*
7b51755c 3923 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3924 * freed pages.
3925 *
3926 * Rather than trying to age LRUs the aim is to preserve the overall
3927 * LRU order by reclaiming preferentially
3928 * inactive > active > active referenced > active mapped
1da177e4 3929 */
7b51755c 3930unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3931{
d6277db4 3932 struct scan_control sc = {
ee814fe2 3933 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3934 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3935 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3936 .priority = DEF_PRIORITY,
d6277db4 3937 .may_writepage = 1,
ee814fe2
JW
3938 .may_unmap = 1,
3939 .may_swap = 1,
7b51755c 3940 .hibernation_mode = 1,
1da177e4 3941 };
a09ed5e0 3942 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3943 struct task_struct *p = current;
3944 unsigned long nr_reclaimed;
499118e9 3945 unsigned int noreclaim_flag;
1da177e4 3946
d92a8cfc 3947 fs_reclaim_acquire(sc.gfp_mask);
93781325 3948 noreclaim_flag = memalloc_noreclaim_save();
e5ca8071 3949 p->reclaim_state = &sc.reclaim_state;
d6277db4 3950
3115cd91 3951 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3952
7b51755c 3953 p->reclaim_state = NULL;
499118e9 3954 memalloc_noreclaim_restore(noreclaim_flag);
93781325 3955 fs_reclaim_release(sc.gfp_mask);
d6277db4 3956
7b51755c 3957 return nr_reclaimed;
1da177e4 3958}
c6f37f12 3959#endif /* CONFIG_HIBERNATION */
1da177e4 3960
1da177e4
LT
3961/* It's optimal to keep kswapds on the same CPUs as their memory, but
3962 not required for correctness. So if the last cpu in a node goes
3963 away, we get changed to run anywhere: as the first one comes back,
3964 restore their cpu bindings. */
517bbed9 3965static int kswapd_cpu_online(unsigned int cpu)
1da177e4 3966{
58c0a4a7 3967 int nid;
1da177e4 3968
517bbed9
SAS
3969 for_each_node_state(nid, N_MEMORY) {
3970 pg_data_t *pgdat = NODE_DATA(nid);
3971 const struct cpumask *mask;
a70f7302 3972
517bbed9 3973 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3974
517bbed9
SAS
3975 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3976 /* One of our CPUs online: restore mask */
3977 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4 3978 }
517bbed9 3979 return 0;
1da177e4 3980}
1da177e4 3981
3218ae14
YG
3982/*
3983 * This kswapd start function will be called by init and node-hot-add.
3984 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3985 */
3986int kswapd_run(int nid)
3987{
3988 pg_data_t *pgdat = NODE_DATA(nid);
3989 int ret = 0;
3990
3991 if (pgdat->kswapd)
3992 return 0;
3993
3994 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3995 if (IS_ERR(pgdat->kswapd)) {
3996 /* failure at boot is fatal */
c6202adf 3997 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
3998 pr_err("Failed to start kswapd on node %d\n", nid);
3999 ret = PTR_ERR(pgdat->kswapd);
d72515b8 4000 pgdat->kswapd = NULL;
3218ae14
YG
4001 }
4002 return ret;
4003}
4004
8fe23e05 4005/*
d8adde17 4006 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 4007 * hold mem_hotplug_begin/end().
8fe23e05
DR
4008 */
4009void kswapd_stop(int nid)
4010{
4011 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4012
d8adde17 4013 if (kswapd) {
8fe23e05 4014 kthread_stop(kswapd);
d8adde17
JL
4015 NODE_DATA(nid)->kswapd = NULL;
4016 }
8fe23e05
DR
4017}
4018
1da177e4
LT
4019static int __init kswapd_init(void)
4020{
517bbed9 4021 int nid, ret;
69e05944 4022
1da177e4 4023 swap_setup();
48fb2e24 4024 for_each_node_state(nid, N_MEMORY)
3218ae14 4025 kswapd_run(nid);
517bbed9
SAS
4026 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4027 "mm/vmscan:online", kswapd_cpu_online,
4028 NULL);
4029 WARN_ON(ret < 0);
1da177e4
LT
4030 return 0;
4031}
4032
4033module_init(kswapd_init)
9eeff239
CL
4034
4035#ifdef CONFIG_NUMA
4036/*
a5f5f91d 4037 * Node reclaim mode
9eeff239 4038 *
a5f5f91d 4039 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4040 * the watermarks.
9eeff239 4041 */
a5f5f91d 4042int node_reclaim_mode __read_mostly;
9eeff239 4043
1b2ffb78 4044#define RECLAIM_OFF 0
7d03431c 4045#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 4046#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 4047#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 4048
a92f7126 4049/*
a5f5f91d 4050 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4051 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4052 * a zone.
4053 */
a5f5f91d 4054#define NODE_RECLAIM_PRIORITY 4
a92f7126 4055
9614634f 4056/*
a5f5f91d 4057 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4058 * occur.
4059 */
4060int sysctl_min_unmapped_ratio = 1;
4061
0ff38490
CL
4062/*
4063 * If the number of slab pages in a zone grows beyond this percentage then
4064 * slab reclaim needs to occur.
4065 */
4066int sysctl_min_slab_ratio = 5;
4067
11fb9989 4068static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4069{
11fb9989
MG
4070 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4071 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4072 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4073
4074 /*
4075 * It's possible for there to be more file mapped pages than
4076 * accounted for by the pages on the file LRU lists because
4077 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4078 */
4079 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4080}
4081
4082/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4083static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4084{
d031a157
AM
4085 unsigned long nr_pagecache_reclaimable;
4086 unsigned long delta = 0;
90afa5de
MG
4087
4088 /*
95bbc0c7 4089 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4090 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4091 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4092 * a better estimate
4093 */
a5f5f91d
MG
4094 if (node_reclaim_mode & RECLAIM_UNMAP)
4095 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4096 else
a5f5f91d 4097 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4098
4099 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4100 if (!(node_reclaim_mode & RECLAIM_WRITE))
4101 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4102
4103 /* Watch for any possible underflows due to delta */
4104 if (unlikely(delta > nr_pagecache_reclaimable))
4105 delta = nr_pagecache_reclaimable;
4106
4107 return nr_pagecache_reclaimable - delta;
4108}
4109
9eeff239 4110/*
a5f5f91d 4111 * Try to free up some pages from this node through reclaim.
9eeff239 4112 */
a5f5f91d 4113static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4114{
7fb2d46d 4115 /* Minimum pages needed in order to stay on node */
69e05944 4116 const unsigned long nr_pages = 1 << order;
9eeff239 4117 struct task_struct *p = current;
499118e9 4118 unsigned int noreclaim_flag;
179e9639 4119 struct scan_control sc = {
62b726c1 4120 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4121 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4122 .order = order,
a5f5f91d
MG
4123 .priority = NODE_RECLAIM_PRIORITY,
4124 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4125 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4126 .may_swap = 1,
f2f43e56 4127 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4128 };
9eeff239 4129
132bb8cf
YS
4130 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4131 sc.gfp_mask);
4132
9eeff239 4133 cond_resched();
93781325 4134 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4135 /*
95bbc0c7 4136 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4137 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 4138 * and RECLAIM_UNMAP.
d4f7796e 4139 */
499118e9
VB
4140 noreclaim_flag = memalloc_noreclaim_save();
4141 p->flags |= PF_SWAPWRITE;
e5ca8071 4142 p->reclaim_state = &sc.reclaim_state;
c84db23c 4143
a5f5f91d 4144 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 4145 /*
894befec 4146 * Free memory by calling shrink node with increasing
0ff38490
CL
4147 * priorities until we have enough memory freed.
4148 */
0ff38490 4149 do {
970a39a3 4150 shrink_node(pgdat, &sc);
9e3b2f8c 4151 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4152 }
c84db23c 4153
9eeff239 4154 p->reclaim_state = NULL;
499118e9
VB
4155 current->flags &= ~PF_SWAPWRITE;
4156 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4157 fs_reclaim_release(sc.gfp_mask);
132bb8cf
YS
4158
4159 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4160
a79311c1 4161 return sc.nr_reclaimed >= nr_pages;
9eeff239 4162}
179e9639 4163
a5f5f91d 4164int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4165{
d773ed6b 4166 int ret;
179e9639
AM
4167
4168 /*
a5f5f91d 4169 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4170 * slab pages if we are over the defined limits.
34aa1330 4171 *
9614634f
CL
4172 * A small portion of unmapped file backed pages is needed for
4173 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4174 * thrown out if the node is overallocated. So we do not reclaim
4175 * if less than a specified percentage of the node is used by
9614634f 4176 * unmapped file backed pages.
179e9639 4177 */
a5f5f91d 4178 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
385386cf 4179 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
a5f5f91d 4180 return NODE_RECLAIM_FULL;
179e9639
AM
4181
4182 /*
d773ed6b 4183 * Do not scan if the allocation should not be delayed.
179e9639 4184 */
d0164adc 4185 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4186 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4187
4188 /*
a5f5f91d 4189 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4190 * have associated processors. This will favor the local processor
4191 * over remote processors and spread off node memory allocations
4192 * as wide as possible.
4193 */
a5f5f91d
MG
4194 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4195 return NODE_RECLAIM_NOSCAN;
d773ed6b 4196
a5f5f91d
MG
4197 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4198 return NODE_RECLAIM_NOSCAN;
fa5e084e 4199
a5f5f91d
MG
4200 ret = __node_reclaim(pgdat, gfp_mask, order);
4201 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4202
24cf7251
MG
4203 if (!ret)
4204 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4205
d773ed6b 4206 return ret;
179e9639 4207}
9eeff239 4208#endif
894bc310 4209
894bc310
LS
4210/*
4211 * page_evictable - test whether a page is evictable
4212 * @page: the page to test
894bc310
LS
4213 *
4214 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 4215 * lists vs unevictable list.
894bc310
LS
4216 *
4217 * Reasons page might not be evictable:
ba9ddf49 4218 * (1) page's mapping marked unevictable
b291f000 4219 * (2) page is part of an mlocked VMA
ba9ddf49 4220 *
894bc310 4221 */
39b5f29a 4222int page_evictable(struct page *page)
894bc310 4223{
e92bb4dd
HY
4224 int ret;
4225
4226 /* Prevent address_space of inode and swap cache from being freed */
4227 rcu_read_lock();
4228 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4229 rcu_read_unlock();
4230 return ret;
894bc310 4231}
89e004ea
LS
4232
4233/**
64e3d12f
KHY
4234 * check_move_unevictable_pages - check pages for evictability and move to
4235 * appropriate zone lru list
4236 * @pvec: pagevec with lru pages to check
89e004ea 4237 *
64e3d12f
KHY
4238 * Checks pages for evictability, if an evictable page is in the unevictable
4239 * lru list, moves it to the appropriate evictable lru list. This function
4240 * should be only used for lru pages.
89e004ea 4241 */
64e3d12f 4242void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4243{
925b7673 4244 struct lruvec *lruvec;
785b99fe 4245 struct pglist_data *pgdat = NULL;
24513264
HD
4246 int pgscanned = 0;
4247 int pgrescued = 0;
4248 int i;
89e004ea 4249
64e3d12f
KHY
4250 for (i = 0; i < pvec->nr; i++) {
4251 struct page *page = pvec->pages[i];
785b99fe 4252 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 4253
24513264 4254 pgscanned++;
785b99fe
MG
4255 if (pagepgdat != pgdat) {
4256 if (pgdat)
4257 spin_unlock_irq(&pgdat->lru_lock);
4258 pgdat = pagepgdat;
4259 spin_lock_irq(&pgdat->lru_lock);
24513264 4260 }
785b99fe 4261 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 4262
24513264
HD
4263 if (!PageLRU(page) || !PageUnevictable(page))
4264 continue;
89e004ea 4265
39b5f29a 4266 if (page_evictable(page)) {
24513264
HD
4267 enum lru_list lru = page_lru_base_type(page);
4268
309381fe 4269 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 4270 ClearPageUnevictable(page);
fa9add64
HD
4271 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4272 add_page_to_lru_list(page, lruvec, lru);
24513264 4273 pgrescued++;
89e004ea 4274 }
24513264 4275 }
89e004ea 4276
785b99fe 4277 if (pgdat) {
24513264
HD
4278 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4279 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 4280 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 4281 }
89e004ea 4282}
64e3d12f 4283EXPORT_SYMBOL_GPL(check_move_unevictable_pages);