]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmscan.c
mm: memcontrol: rewrite uncharge API
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4
LT
16#include <linux/mm.h>
17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
268bb0ce 47#include <linux/prefetch.h>
b1de0d13 48#include <linux/printk.h>
1da177e4
LT
49
50#include <asm/tlbflush.h>
51#include <asm/div64.h>
52
53#include <linux/swapops.h>
117aad1e 54#include <linux/balloon_compaction.h>
1da177e4 55
0f8053a5
NP
56#include "internal.h"
57
33906bc5
MG
58#define CREATE_TRACE_POINTS
59#include <trace/events/vmscan.h>
60
1da177e4 61struct scan_control {
22fba335
KM
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
64
1da177e4 65 /* This context's GFP mask */
6daa0e28 66 gfp_t gfp_mask;
1da177e4 67
ee814fe2 68 /* Allocation order */
5ad333eb 69 int order;
66e1707b 70
ee814fe2
JW
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
9e3b2f8c 76
f16015fb
JW
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
66e1707b 82
ee814fe2
JW
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 unsigned int may_writepage:1;
87
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
90
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
93
94 unsigned int hibernation_mode:1;
95
96 /* One of the zones is ready for compaction */
97 unsigned int compaction_ready:1;
98
99 /* Incremented by the number of inactive pages that were scanned */
100 unsigned long nr_scanned;
101
102 /* Number of pages freed so far during a call to shrink_zones() */
103 unsigned long nr_reclaimed;
1da177e4
LT
104};
105
1da177e4
LT
106#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
107
108#ifdef ARCH_HAS_PREFETCH
109#define prefetch_prev_lru_page(_page, _base, _field) \
110 do { \
111 if ((_page)->lru.prev != _base) { \
112 struct page *prev; \
113 \
114 prev = lru_to_page(&(_page->lru)); \
115 prefetch(&prev->_field); \
116 } \
117 } while (0)
118#else
119#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
120#endif
121
122#ifdef ARCH_HAS_PREFETCHW
123#define prefetchw_prev_lru_page(_page, _base, _field) \
124 do { \
125 if ((_page)->lru.prev != _base) { \
126 struct page *prev; \
127 \
128 prev = lru_to_page(&(_page->lru)); \
129 prefetchw(&prev->_field); \
130 } \
131 } while (0)
132#else
133#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
134#endif
135
136/*
137 * From 0 .. 100. Higher means more swappy.
138 */
139int vm_swappiness = 60;
d0480be4
WSH
140/*
141 * The total number of pages which are beyond the high watermark within all
142 * zones.
143 */
144unsigned long vm_total_pages;
1da177e4
LT
145
146static LIST_HEAD(shrinker_list);
147static DECLARE_RWSEM(shrinker_rwsem);
148
c255a458 149#ifdef CONFIG_MEMCG
89b5fae5
JW
150static bool global_reclaim(struct scan_control *sc)
151{
f16015fb 152 return !sc->target_mem_cgroup;
89b5fae5 153}
91a45470 154#else
89b5fae5
JW
155static bool global_reclaim(struct scan_control *sc)
156{
157 return true;
158}
91a45470
KH
159#endif
160
a1c3bfb2 161static unsigned long zone_reclaimable_pages(struct zone *zone)
6e543d57
LD
162{
163 int nr;
164
165 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
166 zone_page_state(zone, NR_INACTIVE_FILE);
167
168 if (get_nr_swap_pages() > 0)
169 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
170 zone_page_state(zone, NR_INACTIVE_ANON);
171
172 return nr;
173}
174
175bool zone_reclaimable(struct zone *zone)
176{
0d5d823a
MG
177 return zone_page_state(zone, NR_PAGES_SCANNED) <
178 zone_reclaimable_pages(zone) * 6;
6e543d57
LD
179}
180
4d7dcca2 181static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 182{
c3c787e8 183 if (!mem_cgroup_disabled())
4d7dcca2 184 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 185
074291fe 186 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
187}
188
1da177e4 189/*
1d3d4437 190 * Add a shrinker callback to be called from the vm.
1da177e4 191 */
1d3d4437 192int register_shrinker(struct shrinker *shrinker)
1da177e4 193{
1d3d4437
GC
194 size_t size = sizeof(*shrinker->nr_deferred);
195
196 /*
197 * If we only have one possible node in the system anyway, save
198 * ourselves the trouble and disable NUMA aware behavior. This way we
199 * will save memory and some small loop time later.
200 */
201 if (nr_node_ids == 1)
202 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
203
204 if (shrinker->flags & SHRINKER_NUMA_AWARE)
205 size *= nr_node_ids;
206
207 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
208 if (!shrinker->nr_deferred)
209 return -ENOMEM;
210
8e1f936b
RR
211 down_write(&shrinker_rwsem);
212 list_add_tail(&shrinker->list, &shrinker_list);
213 up_write(&shrinker_rwsem);
1d3d4437 214 return 0;
1da177e4 215}
8e1f936b 216EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
217
218/*
219 * Remove one
220 */
8e1f936b 221void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
222{
223 down_write(&shrinker_rwsem);
224 list_del(&shrinker->list);
225 up_write(&shrinker_rwsem);
ae393321 226 kfree(shrinker->nr_deferred);
1da177e4 227}
8e1f936b 228EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
229
230#define SHRINK_BATCH 128
1d3d4437
GC
231
232static unsigned long
233shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
234 unsigned long nr_pages_scanned, unsigned long lru_pages)
235{
236 unsigned long freed = 0;
237 unsigned long long delta;
238 long total_scan;
d5bc5fd3 239 long freeable;
1d3d4437
GC
240 long nr;
241 long new_nr;
242 int nid = shrinkctl->nid;
243 long batch_size = shrinker->batch ? shrinker->batch
244 : SHRINK_BATCH;
245
d5bc5fd3
VD
246 freeable = shrinker->count_objects(shrinker, shrinkctl);
247 if (freeable == 0)
1d3d4437
GC
248 return 0;
249
250 /*
251 * copy the current shrinker scan count into a local variable
252 * and zero it so that other concurrent shrinker invocations
253 * don't also do this scanning work.
254 */
255 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
256
257 total_scan = nr;
258 delta = (4 * nr_pages_scanned) / shrinker->seeks;
d5bc5fd3 259 delta *= freeable;
1d3d4437
GC
260 do_div(delta, lru_pages + 1);
261 total_scan += delta;
262 if (total_scan < 0) {
263 printk(KERN_ERR
264 "shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 265 shrinker->scan_objects, total_scan);
d5bc5fd3 266 total_scan = freeable;
1d3d4437
GC
267 }
268
269 /*
270 * We need to avoid excessive windup on filesystem shrinkers
271 * due to large numbers of GFP_NOFS allocations causing the
272 * shrinkers to return -1 all the time. This results in a large
273 * nr being built up so when a shrink that can do some work
274 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 275 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
276 * memory.
277 *
278 * Hence only allow the shrinker to scan the entire cache when
279 * a large delta change is calculated directly.
280 */
d5bc5fd3
VD
281 if (delta < freeable / 4)
282 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
283
284 /*
285 * Avoid risking looping forever due to too large nr value:
286 * never try to free more than twice the estimate number of
287 * freeable entries.
288 */
d5bc5fd3
VD
289 if (total_scan > freeable * 2)
290 total_scan = freeable * 2;
1d3d4437
GC
291
292 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
293 nr_pages_scanned, lru_pages,
d5bc5fd3 294 freeable, delta, total_scan);
1d3d4437 295
0b1fb40a
VD
296 /*
297 * Normally, we should not scan less than batch_size objects in one
298 * pass to avoid too frequent shrinker calls, but if the slab has less
299 * than batch_size objects in total and we are really tight on memory,
300 * we will try to reclaim all available objects, otherwise we can end
301 * up failing allocations although there are plenty of reclaimable
302 * objects spread over several slabs with usage less than the
303 * batch_size.
304 *
305 * We detect the "tight on memory" situations by looking at the total
306 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 307 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
308 * scanning at high prio and therefore should try to reclaim as much as
309 * possible.
310 */
311 while (total_scan >= batch_size ||
d5bc5fd3 312 total_scan >= freeable) {
a0b02131 313 unsigned long ret;
0b1fb40a 314 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 315
0b1fb40a 316 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
317 ret = shrinker->scan_objects(shrinker, shrinkctl);
318 if (ret == SHRINK_STOP)
319 break;
320 freed += ret;
1d3d4437 321
0b1fb40a
VD
322 count_vm_events(SLABS_SCANNED, nr_to_scan);
323 total_scan -= nr_to_scan;
1d3d4437
GC
324
325 cond_resched();
326 }
327
328 /*
329 * move the unused scan count back into the shrinker in a
330 * manner that handles concurrent updates. If we exhausted the
331 * scan, there is no need to do an update.
332 */
333 if (total_scan > 0)
334 new_nr = atomic_long_add_return(total_scan,
335 &shrinker->nr_deferred[nid]);
336 else
337 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
338
df9024a8 339 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 340 return freed;
1495f230
YH
341}
342
1da177e4
LT
343/*
344 * Call the shrink functions to age shrinkable caches
345 *
346 * Here we assume it costs one seek to replace a lru page and that it also
347 * takes a seek to recreate a cache object. With this in mind we age equal
348 * percentages of the lru and ageable caches. This should balance the seeks
349 * generated by these structures.
350 *
183ff22b 351 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
352 * slab to avoid swapping.
353 *
354 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
355 *
356 * `lru_pages' represents the number of on-LRU pages in all the zones which
357 * are eligible for the caller's allocation attempt. It is used for balancing
358 * slab reclaim versus page reclaim.
b15e0905 359 *
360 * Returns the number of slab objects which we shrunk.
1da177e4 361 */
24f7c6b9 362unsigned long shrink_slab(struct shrink_control *shrinkctl,
1495f230 363 unsigned long nr_pages_scanned,
a09ed5e0 364 unsigned long lru_pages)
1da177e4
LT
365{
366 struct shrinker *shrinker;
24f7c6b9 367 unsigned long freed = 0;
1da177e4 368
1495f230
YH
369 if (nr_pages_scanned == 0)
370 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 371
f06590bd 372 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
373 /*
374 * If we would return 0, our callers would understand that we
375 * have nothing else to shrink and give up trying. By returning
376 * 1 we keep it going and assume we'll be able to shrink next
377 * time.
378 */
379 freed = 1;
f06590bd
MK
380 goto out;
381 }
1da177e4
LT
382
383 list_for_each_entry(shrinker, &shrinker_list, list) {
ec97097b
VD
384 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
385 shrinkctl->nid = 0;
1d3d4437 386 freed += shrink_slab_node(shrinkctl, shrinker,
ec97097b
VD
387 nr_pages_scanned, lru_pages);
388 continue;
389 }
390
391 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
392 if (node_online(shrinkctl->nid))
393 freed += shrink_slab_node(shrinkctl, shrinker,
394 nr_pages_scanned, lru_pages);
1da177e4 395
1da177e4 396 }
1da177e4
LT
397 }
398 up_read(&shrinker_rwsem);
f06590bd
MK
399out:
400 cond_resched();
24f7c6b9 401 return freed;
1da177e4
LT
402}
403
1da177e4
LT
404static inline int is_page_cache_freeable(struct page *page)
405{
ceddc3a5
JW
406 /*
407 * A freeable page cache page is referenced only by the caller
408 * that isolated the page, the page cache radix tree and
409 * optional buffer heads at page->private.
410 */
edcf4748 411 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
412}
413
7d3579e8
KM
414static int may_write_to_queue(struct backing_dev_info *bdi,
415 struct scan_control *sc)
1da177e4 416{
930d9152 417 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
418 return 1;
419 if (!bdi_write_congested(bdi))
420 return 1;
421 if (bdi == current->backing_dev_info)
422 return 1;
423 return 0;
424}
425
426/*
427 * We detected a synchronous write error writing a page out. Probably
428 * -ENOSPC. We need to propagate that into the address_space for a subsequent
429 * fsync(), msync() or close().
430 *
431 * The tricky part is that after writepage we cannot touch the mapping: nothing
432 * prevents it from being freed up. But we have a ref on the page and once
433 * that page is locked, the mapping is pinned.
434 *
435 * We're allowed to run sleeping lock_page() here because we know the caller has
436 * __GFP_FS.
437 */
438static void handle_write_error(struct address_space *mapping,
439 struct page *page, int error)
440{
7eaceacc 441 lock_page(page);
3e9f45bd
GC
442 if (page_mapping(page) == mapping)
443 mapping_set_error(mapping, error);
1da177e4
LT
444 unlock_page(page);
445}
446
04e62a29
CL
447/* possible outcome of pageout() */
448typedef enum {
449 /* failed to write page out, page is locked */
450 PAGE_KEEP,
451 /* move page to the active list, page is locked */
452 PAGE_ACTIVATE,
453 /* page has been sent to the disk successfully, page is unlocked */
454 PAGE_SUCCESS,
455 /* page is clean and locked */
456 PAGE_CLEAN,
457} pageout_t;
458
1da177e4 459/*
1742f19f
AM
460 * pageout is called by shrink_page_list() for each dirty page.
461 * Calls ->writepage().
1da177e4 462 */
c661b078 463static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 464 struct scan_control *sc)
1da177e4
LT
465{
466 /*
467 * If the page is dirty, only perform writeback if that write
468 * will be non-blocking. To prevent this allocation from being
469 * stalled by pagecache activity. But note that there may be
470 * stalls if we need to run get_block(). We could test
471 * PagePrivate for that.
472 *
8174202b 473 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
474 * this page's queue, we can perform writeback even if that
475 * will block.
476 *
477 * If the page is swapcache, write it back even if that would
478 * block, for some throttling. This happens by accident, because
479 * swap_backing_dev_info is bust: it doesn't reflect the
480 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
481 */
482 if (!is_page_cache_freeable(page))
483 return PAGE_KEEP;
484 if (!mapping) {
485 /*
486 * Some data journaling orphaned pages can have
487 * page->mapping == NULL while being dirty with clean buffers.
488 */
266cf658 489 if (page_has_private(page)) {
1da177e4
LT
490 if (try_to_free_buffers(page)) {
491 ClearPageDirty(page);
b1de0d13 492 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
493 return PAGE_CLEAN;
494 }
495 }
496 return PAGE_KEEP;
497 }
498 if (mapping->a_ops->writepage == NULL)
499 return PAGE_ACTIVATE;
0e093d99 500 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
501 return PAGE_KEEP;
502
503 if (clear_page_dirty_for_io(page)) {
504 int res;
505 struct writeback_control wbc = {
506 .sync_mode = WB_SYNC_NONE,
507 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
508 .range_start = 0,
509 .range_end = LLONG_MAX,
1da177e4
LT
510 .for_reclaim = 1,
511 };
512
513 SetPageReclaim(page);
514 res = mapping->a_ops->writepage(page, &wbc);
515 if (res < 0)
516 handle_write_error(mapping, page, res);
994fc28c 517 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
518 ClearPageReclaim(page);
519 return PAGE_ACTIVATE;
520 }
c661b078 521
1da177e4
LT
522 if (!PageWriteback(page)) {
523 /* synchronous write or broken a_ops? */
524 ClearPageReclaim(page);
525 }
23b9da55 526 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 527 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
528 return PAGE_SUCCESS;
529 }
530
531 return PAGE_CLEAN;
532}
533
a649fd92 534/*
e286781d
NP
535 * Same as remove_mapping, but if the page is removed from the mapping, it
536 * gets returned with a refcount of 0.
a649fd92 537 */
a528910e
JW
538static int __remove_mapping(struct address_space *mapping, struct page *page,
539 bool reclaimed)
49d2e9cc 540{
28e4d965
NP
541 BUG_ON(!PageLocked(page));
542 BUG_ON(mapping != page_mapping(page));
49d2e9cc 543
19fd6231 544 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 545 /*
0fd0e6b0
NP
546 * The non racy check for a busy page.
547 *
548 * Must be careful with the order of the tests. When someone has
549 * a ref to the page, it may be possible that they dirty it then
550 * drop the reference. So if PageDirty is tested before page_count
551 * here, then the following race may occur:
552 *
553 * get_user_pages(&page);
554 * [user mapping goes away]
555 * write_to(page);
556 * !PageDirty(page) [good]
557 * SetPageDirty(page);
558 * put_page(page);
559 * !page_count(page) [good, discard it]
560 *
561 * [oops, our write_to data is lost]
562 *
563 * Reversing the order of the tests ensures such a situation cannot
564 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
565 * load is not satisfied before that of page->_count.
566 *
567 * Note that if SetPageDirty is always performed via set_page_dirty,
568 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 569 */
e286781d 570 if (!page_freeze_refs(page, 2))
49d2e9cc 571 goto cannot_free;
e286781d
NP
572 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
573 if (unlikely(PageDirty(page))) {
574 page_unfreeze_refs(page, 2);
49d2e9cc 575 goto cannot_free;
e286781d 576 }
49d2e9cc
CL
577
578 if (PageSwapCache(page)) {
579 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 580 mem_cgroup_swapout(page, swap);
49d2e9cc 581 __delete_from_swap_cache(page);
19fd6231 582 spin_unlock_irq(&mapping->tree_lock);
0a31bc97 583 swapcache_free(swap);
e286781d 584 } else {
6072d13c 585 void (*freepage)(struct page *);
a528910e 586 void *shadow = NULL;
6072d13c
LT
587
588 freepage = mapping->a_ops->freepage;
a528910e
JW
589 /*
590 * Remember a shadow entry for reclaimed file cache in
591 * order to detect refaults, thus thrashing, later on.
592 *
593 * But don't store shadows in an address space that is
594 * already exiting. This is not just an optizimation,
595 * inode reclaim needs to empty out the radix tree or
596 * the nodes are lost. Don't plant shadows behind its
597 * back.
598 */
599 if (reclaimed && page_is_file_cache(page) &&
600 !mapping_exiting(mapping))
601 shadow = workingset_eviction(mapping, page);
602 __delete_from_page_cache(page, shadow);
19fd6231 603 spin_unlock_irq(&mapping->tree_lock);
6072d13c
LT
604
605 if (freepage != NULL)
606 freepage(page);
49d2e9cc
CL
607 }
608
49d2e9cc
CL
609 return 1;
610
611cannot_free:
19fd6231 612 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
613 return 0;
614}
615
e286781d
NP
616/*
617 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
618 * someone else has a ref on the page, abort and return 0. If it was
619 * successfully detached, return 1. Assumes the caller has a single ref on
620 * this page.
621 */
622int remove_mapping(struct address_space *mapping, struct page *page)
623{
a528910e 624 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
625 /*
626 * Unfreezing the refcount with 1 rather than 2 effectively
627 * drops the pagecache ref for us without requiring another
628 * atomic operation.
629 */
630 page_unfreeze_refs(page, 1);
631 return 1;
632 }
633 return 0;
634}
635
894bc310
LS
636/**
637 * putback_lru_page - put previously isolated page onto appropriate LRU list
638 * @page: page to be put back to appropriate lru list
639 *
640 * Add previously isolated @page to appropriate LRU list.
641 * Page may still be unevictable for other reasons.
642 *
643 * lru_lock must not be held, interrupts must be enabled.
644 */
894bc310
LS
645void putback_lru_page(struct page *page)
646{
0ec3b74c 647 bool is_unevictable;
bbfd28ee 648 int was_unevictable = PageUnevictable(page);
894bc310 649
309381fe 650 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
651
652redo:
653 ClearPageUnevictable(page);
654
39b5f29a 655 if (page_evictable(page)) {
894bc310
LS
656 /*
657 * For evictable pages, we can use the cache.
658 * In event of a race, worst case is we end up with an
659 * unevictable page on [in]active list.
660 * We know how to handle that.
661 */
0ec3b74c 662 is_unevictable = false;
c53954a0 663 lru_cache_add(page);
894bc310
LS
664 } else {
665 /*
666 * Put unevictable pages directly on zone's unevictable
667 * list.
668 */
0ec3b74c 669 is_unevictable = true;
894bc310 670 add_page_to_unevictable_list(page);
6a7b9548 671 /*
21ee9f39
MK
672 * When racing with an mlock or AS_UNEVICTABLE clearing
673 * (page is unlocked) make sure that if the other thread
674 * does not observe our setting of PG_lru and fails
24513264 675 * isolation/check_move_unevictable_pages,
21ee9f39 676 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
677 * the page back to the evictable list.
678 *
21ee9f39 679 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
680 */
681 smp_mb();
894bc310 682 }
894bc310
LS
683
684 /*
685 * page's status can change while we move it among lru. If an evictable
686 * page is on unevictable list, it never be freed. To avoid that,
687 * check after we added it to the list, again.
688 */
0ec3b74c 689 if (is_unevictable && page_evictable(page)) {
894bc310
LS
690 if (!isolate_lru_page(page)) {
691 put_page(page);
692 goto redo;
693 }
694 /* This means someone else dropped this page from LRU
695 * So, it will be freed or putback to LRU again. There is
696 * nothing to do here.
697 */
698 }
699
0ec3b74c 700 if (was_unevictable && !is_unevictable)
bbfd28ee 701 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 702 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
703 count_vm_event(UNEVICTABLE_PGCULLED);
704
894bc310
LS
705 put_page(page); /* drop ref from isolate */
706}
707
dfc8d636
JW
708enum page_references {
709 PAGEREF_RECLAIM,
710 PAGEREF_RECLAIM_CLEAN,
64574746 711 PAGEREF_KEEP,
dfc8d636
JW
712 PAGEREF_ACTIVATE,
713};
714
715static enum page_references page_check_references(struct page *page,
716 struct scan_control *sc)
717{
64574746 718 int referenced_ptes, referenced_page;
dfc8d636 719 unsigned long vm_flags;
dfc8d636 720
c3ac9a8a
JW
721 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
722 &vm_flags);
64574746 723 referenced_page = TestClearPageReferenced(page);
dfc8d636 724
dfc8d636
JW
725 /*
726 * Mlock lost the isolation race with us. Let try_to_unmap()
727 * move the page to the unevictable list.
728 */
729 if (vm_flags & VM_LOCKED)
730 return PAGEREF_RECLAIM;
731
64574746 732 if (referenced_ptes) {
e4898273 733 if (PageSwapBacked(page))
64574746
JW
734 return PAGEREF_ACTIVATE;
735 /*
736 * All mapped pages start out with page table
737 * references from the instantiating fault, so we need
738 * to look twice if a mapped file page is used more
739 * than once.
740 *
741 * Mark it and spare it for another trip around the
742 * inactive list. Another page table reference will
743 * lead to its activation.
744 *
745 * Note: the mark is set for activated pages as well
746 * so that recently deactivated but used pages are
747 * quickly recovered.
748 */
749 SetPageReferenced(page);
750
34dbc67a 751 if (referenced_page || referenced_ptes > 1)
64574746
JW
752 return PAGEREF_ACTIVATE;
753
c909e993
KK
754 /*
755 * Activate file-backed executable pages after first usage.
756 */
757 if (vm_flags & VM_EXEC)
758 return PAGEREF_ACTIVATE;
759
64574746
JW
760 return PAGEREF_KEEP;
761 }
dfc8d636
JW
762
763 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 764 if (referenced_page && !PageSwapBacked(page))
64574746
JW
765 return PAGEREF_RECLAIM_CLEAN;
766
767 return PAGEREF_RECLAIM;
dfc8d636
JW
768}
769
e2be15f6
MG
770/* Check if a page is dirty or under writeback */
771static void page_check_dirty_writeback(struct page *page,
772 bool *dirty, bool *writeback)
773{
b4597226
MG
774 struct address_space *mapping;
775
e2be15f6
MG
776 /*
777 * Anonymous pages are not handled by flushers and must be written
778 * from reclaim context. Do not stall reclaim based on them
779 */
780 if (!page_is_file_cache(page)) {
781 *dirty = false;
782 *writeback = false;
783 return;
784 }
785
786 /* By default assume that the page flags are accurate */
787 *dirty = PageDirty(page);
788 *writeback = PageWriteback(page);
b4597226
MG
789
790 /* Verify dirty/writeback state if the filesystem supports it */
791 if (!page_has_private(page))
792 return;
793
794 mapping = page_mapping(page);
795 if (mapping && mapping->a_ops->is_dirty_writeback)
796 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
797}
798
1da177e4 799/*
1742f19f 800 * shrink_page_list() returns the number of reclaimed pages
1da177e4 801 */
1742f19f 802static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 803 struct zone *zone,
f84f6e2b 804 struct scan_control *sc,
02c6de8d 805 enum ttu_flags ttu_flags,
8e950282 806 unsigned long *ret_nr_dirty,
d43006d5 807 unsigned long *ret_nr_unqueued_dirty,
8e950282 808 unsigned long *ret_nr_congested,
02c6de8d 809 unsigned long *ret_nr_writeback,
b1a6f21e 810 unsigned long *ret_nr_immediate,
02c6de8d 811 bool force_reclaim)
1da177e4
LT
812{
813 LIST_HEAD(ret_pages);
abe4c3b5 814 LIST_HEAD(free_pages);
1da177e4 815 int pgactivate = 0;
d43006d5 816 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
817 unsigned long nr_dirty = 0;
818 unsigned long nr_congested = 0;
05ff5137 819 unsigned long nr_reclaimed = 0;
92df3a72 820 unsigned long nr_writeback = 0;
b1a6f21e 821 unsigned long nr_immediate = 0;
1da177e4
LT
822
823 cond_resched();
824
69980e31 825 mem_cgroup_uncharge_start();
1da177e4
LT
826 while (!list_empty(page_list)) {
827 struct address_space *mapping;
828 struct page *page;
829 int may_enter_fs;
02c6de8d 830 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 831 bool dirty, writeback;
1da177e4
LT
832
833 cond_resched();
834
835 page = lru_to_page(page_list);
836 list_del(&page->lru);
837
529ae9aa 838 if (!trylock_page(page))
1da177e4
LT
839 goto keep;
840
309381fe
SL
841 VM_BUG_ON_PAGE(PageActive(page), page);
842 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1da177e4
LT
843
844 sc->nr_scanned++;
80e43426 845
39b5f29a 846 if (unlikely(!page_evictable(page)))
b291f000 847 goto cull_mlocked;
894bc310 848
a6dc60f8 849 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
850 goto keep_locked;
851
1da177e4
LT
852 /* Double the slab pressure for mapped and swapcache pages */
853 if (page_mapped(page) || PageSwapCache(page))
854 sc->nr_scanned++;
855
c661b078
AW
856 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
857 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
858
e2be15f6
MG
859 /*
860 * The number of dirty pages determines if a zone is marked
861 * reclaim_congested which affects wait_iff_congested. kswapd
862 * will stall and start writing pages if the tail of the LRU
863 * is all dirty unqueued pages.
864 */
865 page_check_dirty_writeback(page, &dirty, &writeback);
866 if (dirty || writeback)
867 nr_dirty++;
868
869 if (dirty && !writeback)
870 nr_unqueued_dirty++;
871
d04e8acd
MG
872 /*
873 * Treat this page as congested if the underlying BDI is or if
874 * pages are cycling through the LRU so quickly that the
875 * pages marked for immediate reclaim are making it to the
876 * end of the LRU a second time.
877 */
e2be15f6 878 mapping = page_mapping(page);
d04e8acd
MG
879 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
880 (writeback && PageReclaim(page)))
e2be15f6
MG
881 nr_congested++;
882
283aba9f
MG
883 /*
884 * If a page at the tail of the LRU is under writeback, there
885 * are three cases to consider.
886 *
887 * 1) If reclaim is encountering an excessive number of pages
888 * under writeback and this page is both under writeback and
889 * PageReclaim then it indicates that pages are being queued
890 * for IO but are being recycled through the LRU before the
891 * IO can complete. Waiting on the page itself risks an
892 * indefinite stall if it is impossible to writeback the
893 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
894 * note that the LRU is being scanned too quickly and the
895 * caller can stall after page list has been processed.
283aba9f
MG
896 *
897 * 2) Global reclaim encounters a page, memcg encounters a
898 * page that is not marked for immediate reclaim or
899 * the caller does not have __GFP_IO. In this case mark
900 * the page for immediate reclaim and continue scanning.
901 *
902 * __GFP_IO is checked because a loop driver thread might
903 * enter reclaim, and deadlock if it waits on a page for
904 * which it is needed to do the write (loop masks off
905 * __GFP_IO|__GFP_FS for this reason); but more thought
906 * would probably show more reasons.
907 *
908 * Don't require __GFP_FS, since we're not going into the
909 * FS, just waiting on its writeback completion. Worryingly,
910 * ext4 gfs2 and xfs allocate pages with
911 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
912 * may_enter_fs here is liable to OOM on them.
913 *
914 * 3) memcg encounters a page that is not already marked
915 * PageReclaim. memcg does not have any dirty pages
916 * throttling so we could easily OOM just because too many
917 * pages are in writeback and there is nothing else to
918 * reclaim. Wait for the writeback to complete.
919 */
c661b078 920 if (PageWriteback(page)) {
283aba9f
MG
921 /* Case 1 above */
922 if (current_is_kswapd() &&
923 PageReclaim(page) &&
924 zone_is_reclaim_writeback(zone)) {
b1a6f21e
MG
925 nr_immediate++;
926 goto keep_locked;
283aba9f
MG
927
928 /* Case 2 above */
929 } else if (global_reclaim(sc) ||
c3b94f44
HD
930 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
931 /*
932 * This is slightly racy - end_page_writeback()
933 * might have just cleared PageReclaim, then
934 * setting PageReclaim here end up interpreted
935 * as PageReadahead - but that does not matter
936 * enough to care. What we do want is for this
937 * page to have PageReclaim set next time memcg
938 * reclaim reaches the tests above, so it will
939 * then wait_on_page_writeback() to avoid OOM;
940 * and it's also appropriate in global reclaim.
941 */
942 SetPageReclaim(page);
e62e384e 943 nr_writeback++;
283aba9f 944
c3b94f44 945 goto keep_locked;
283aba9f
MG
946
947 /* Case 3 above */
948 } else {
949 wait_on_page_writeback(page);
e62e384e 950 }
c661b078 951 }
1da177e4 952
02c6de8d
MK
953 if (!force_reclaim)
954 references = page_check_references(page, sc);
955
dfc8d636
JW
956 switch (references) {
957 case PAGEREF_ACTIVATE:
1da177e4 958 goto activate_locked;
64574746
JW
959 case PAGEREF_KEEP:
960 goto keep_locked;
dfc8d636
JW
961 case PAGEREF_RECLAIM:
962 case PAGEREF_RECLAIM_CLEAN:
963 ; /* try to reclaim the page below */
964 }
1da177e4 965
1da177e4
LT
966 /*
967 * Anonymous process memory has backing store?
968 * Try to allocate it some swap space here.
969 */
b291f000 970 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
971 if (!(sc->gfp_mask & __GFP_IO))
972 goto keep_locked;
5bc7b8ac 973 if (!add_to_swap(page, page_list))
1da177e4 974 goto activate_locked;
63eb6b93 975 may_enter_fs = 1;
1da177e4 976
e2be15f6
MG
977 /* Adding to swap updated mapping */
978 mapping = page_mapping(page);
979 }
1da177e4
LT
980
981 /*
982 * The page is mapped into the page tables of one or more
983 * processes. Try to unmap it here.
984 */
985 if (page_mapped(page) && mapping) {
02c6de8d 986 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
987 case SWAP_FAIL:
988 goto activate_locked;
989 case SWAP_AGAIN:
990 goto keep_locked;
b291f000
NP
991 case SWAP_MLOCK:
992 goto cull_mlocked;
1da177e4
LT
993 case SWAP_SUCCESS:
994 ; /* try to free the page below */
995 }
996 }
997
998 if (PageDirty(page)) {
ee72886d
MG
999 /*
1000 * Only kswapd can writeback filesystem pages to
d43006d5
MG
1001 * avoid risk of stack overflow but only writeback
1002 * if many dirty pages have been encountered.
ee72886d 1003 */
f84f6e2b 1004 if (page_is_file_cache(page) &&
9e3b2f8c 1005 (!current_is_kswapd() ||
d43006d5 1006 !zone_is_reclaim_dirty(zone))) {
49ea7eb6
MG
1007 /*
1008 * Immediately reclaim when written back.
1009 * Similar in principal to deactivate_page()
1010 * except we already have the page isolated
1011 * and know it's dirty
1012 */
1013 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1014 SetPageReclaim(page);
1015
ee72886d
MG
1016 goto keep_locked;
1017 }
1018
dfc8d636 1019 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1020 goto keep_locked;
4dd4b920 1021 if (!may_enter_fs)
1da177e4 1022 goto keep_locked;
52a8363e 1023 if (!sc->may_writepage)
1da177e4
LT
1024 goto keep_locked;
1025
1026 /* Page is dirty, try to write it out here */
7d3579e8 1027 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1028 case PAGE_KEEP:
1029 goto keep_locked;
1030 case PAGE_ACTIVATE:
1031 goto activate_locked;
1032 case PAGE_SUCCESS:
7d3579e8 1033 if (PageWriteback(page))
41ac1999 1034 goto keep;
7d3579e8 1035 if (PageDirty(page))
1da177e4 1036 goto keep;
7d3579e8 1037
1da177e4
LT
1038 /*
1039 * A synchronous write - probably a ramdisk. Go
1040 * ahead and try to reclaim the page.
1041 */
529ae9aa 1042 if (!trylock_page(page))
1da177e4
LT
1043 goto keep;
1044 if (PageDirty(page) || PageWriteback(page))
1045 goto keep_locked;
1046 mapping = page_mapping(page);
1047 case PAGE_CLEAN:
1048 ; /* try to free the page below */
1049 }
1050 }
1051
1052 /*
1053 * If the page has buffers, try to free the buffer mappings
1054 * associated with this page. If we succeed we try to free
1055 * the page as well.
1056 *
1057 * We do this even if the page is PageDirty().
1058 * try_to_release_page() does not perform I/O, but it is
1059 * possible for a page to have PageDirty set, but it is actually
1060 * clean (all its buffers are clean). This happens if the
1061 * buffers were written out directly, with submit_bh(). ext3
894bc310 1062 * will do this, as well as the blockdev mapping.
1da177e4
LT
1063 * try_to_release_page() will discover that cleanness and will
1064 * drop the buffers and mark the page clean - it can be freed.
1065 *
1066 * Rarely, pages can have buffers and no ->mapping. These are
1067 * the pages which were not successfully invalidated in
1068 * truncate_complete_page(). We try to drop those buffers here
1069 * and if that worked, and the page is no longer mapped into
1070 * process address space (page_count == 1) it can be freed.
1071 * Otherwise, leave the page on the LRU so it is swappable.
1072 */
266cf658 1073 if (page_has_private(page)) {
1da177e4
LT
1074 if (!try_to_release_page(page, sc->gfp_mask))
1075 goto activate_locked;
e286781d
NP
1076 if (!mapping && page_count(page) == 1) {
1077 unlock_page(page);
1078 if (put_page_testzero(page))
1079 goto free_it;
1080 else {
1081 /*
1082 * rare race with speculative reference.
1083 * the speculative reference will free
1084 * this page shortly, so we may
1085 * increment nr_reclaimed here (and
1086 * leave it off the LRU).
1087 */
1088 nr_reclaimed++;
1089 continue;
1090 }
1091 }
1da177e4
LT
1092 }
1093
a528910e 1094 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1095 goto keep_locked;
1da177e4 1096
a978d6f5
NP
1097 /*
1098 * At this point, we have no other references and there is
1099 * no way to pick any more up (removed from LRU, removed
1100 * from pagecache). Can use non-atomic bitops now (and
1101 * we obviously don't have to worry about waking up a process
1102 * waiting on the page lock, because there are no references.
1103 */
1104 __clear_page_locked(page);
e286781d 1105free_it:
0a31bc97 1106 mem_cgroup_uncharge(page);
05ff5137 1107 nr_reclaimed++;
abe4c3b5
MG
1108
1109 /*
1110 * Is there need to periodically free_page_list? It would
1111 * appear not as the counts should be low
1112 */
1113 list_add(&page->lru, &free_pages);
1da177e4
LT
1114 continue;
1115
b291f000 1116cull_mlocked:
63d6c5ad
HD
1117 if (PageSwapCache(page))
1118 try_to_free_swap(page);
b291f000
NP
1119 unlock_page(page);
1120 putback_lru_page(page);
1121 continue;
1122
1da177e4 1123activate_locked:
68a22394
RR
1124 /* Not a candidate for swapping, so reclaim swap space. */
1125 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1126 try_to_free_swap(page);
309381fe 1127 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1128 SetPageActive(page);
1129 pgactivate++;
1130keep_locked:
1131 unlock_page(page);
1132keep:
1133 list_add(&page->lru, &ret_pages);
309381fe 1134 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1135 }
0a31bc97 1136 mem_cgroup_uncharge_end();
abe4c3b5 1137
b745bc85 1138 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1139
1da177e4 1140 list_splice(&ret_pages, page_list);
f8891e5e 1141 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1142
8e950282
MG
1143 *ret_nr_dirty += nr_dirty;
1144 *ret_nr_congested += nr_congested;
d43006d5 1145 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1146 *ret_nr_writeback += nr_writeback;
b1a6f21e 1147 *ret_nr_immediate += nr_immediate;
05ff5137 1148 return nr_reclaimed;
1da177e4
LT
1149}
1150
02c6de8d
MK
1151unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1152 struct list_head *page_list)
1153{
1154 struct scan_control sc = {
1155 .gfp_mask = GFP_KERNEL,
1156 .priority = DEF_PRIORITY,
1157 .may_unmap = 1,
1158 };
8e950282 1159 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1160 struct page *page, *next;
1161 LIST_HEAD(clean_pages);
1162
1163 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e
RA
1164 if (page_is_file_cache(page) && !PageDirty(page) &&
1165 !isolated_balloon_page(page)) {
02c6de8d
MK
1166 ClearPageActive(page);
1167 list_move(&page->lru, &clean_pages);
1168 }
1169 }
1170
1171 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1172 TTU_UNMAP|TTU_IGNORE_ACCESS,
1173 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d 1174 list_splice(&clean_pages, page_list);
83da7510 1175 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1176 return ret;
1177}
1178
5ad333eb
AW
1179/*
1180 * Attempt to remove the specified page from its LRU. Only take this page
1181 * if it is of the appropriate PageActive status. Pages which are being
1182 * freed elsewhere are also ignored.
1183 *
1184 * page: page to consider
1185 * mode: one of the LRU isolation modes defined above
1186 *
1187 * returns 0 on success, -ve errno on failure.
1188 */
f3fd4a61 1189int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1190{
1191 int ret = -EINVAL;
1192
1193 /* Only take pages on the LRU. */
1194 if (!PageLRU(page))
1195 return ret;
1196
e46a2879
MK
1197 /* Compaction should not handle unevictable pages but CMA can do so */
1198 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1199 return ret;
1200
5ad333eb 1201 ret = -EBUSY;
08e552c6 1202
c8244935
MG
1203 /*
1204 * To minimise LRU disruption, the caller can indicate that it only
1205 * wants to isolate pages it will be able to operate on without
1206 * blocking - clean pages for the most part.
1207 *
1208 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1209 * is used by reclaim when it is cannot write to backing storage
1210 *
1211 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1212 * that it is possible to migrate without blocking
1213 */
1214 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1215 /* All the caller can do on PageWriteback is block */
1216 if (PageWriteback(page))
1217 return ret;
1218
1219 if (PageDirty(page)) {
1220 struct address_space *mapping;
1221
1222 /* ISOLATE_CLEAN means only clean pages */
1223 if (mode & ISOLATE_CLEAN)
1224 return ret;
1225
1226 /*
1227 * Only pages without mappings or that have a
1228 * ->migratepage callback are possible to migrate
1229 * without blocking
1230 */
1231 mapping = page_mapping(page);
1232 if (mapping && !mapping->a_ops->migratepage)
1233 return ret;
1234 }
1235 }
39deaf85 1236
f80c0673
MK
1237 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1238 return ret;
1239
5ad333eb
AW
1240 if (likely(get_page_unless_zero(page))) {
1241 /*
1242 * Be careful not to clear PageLRU until after we're
1243 * sure the page is not being freed elsewhere -- the
1244 * page release code relies on it.
1245 */
1246 ClearPageLRU(page);
1247 ret = 0;
1248 }
1249
1250 return ret;
1251}
1252
1da177e4
LT
1253/*
1254 * zone->lru_lock is heavily contended. Some of the functions that
1255 * shrink the lists perform better by taking out a batch of pages
1256 * and working on them outside the LRU lock.
1257 *
1258 * For pagecache intensive workloads, this function is the hottest
1259 * spot in the kernel (apart from copy_*_user functions).
1260 *
1261 * Appropriate locks must be held before calling this function.
1262 *
1263 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1264 * @lruvec: The LRU vector to pull pages from.
1da177e4 1265 * @dst: The temp list to put pages on to.
f626012d 1266 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1267 * @sc: The scan_control struct for this reclaim session
5ad333eb 1268 * @mode: One of the LRU isolation modes
3cb99451 1269 * @lru: LRU list id for isolating
1da177e4
LT
1270 *
1271 * returns how many pages were moved onto *@dst.
1272 */
69e05944 1273static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1274 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1275 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1276 isolate_mode_t mode, enum lru_list lru)
1da177e4 1277{
75b00af7 1278 struct list_head *src = &lruvec->lists[lru];
69e05944 1279 unsigned long nr_taken = 0;
c9b02d97 1280 unsigned long scan;
1da177e4 1281
c9b02d97 1282 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1283 struct page *page;
fa9add64 1284 int nr_pages;
5ad333eb 1285
1da177e4
LT
1286 page = lru_to_page(src);
1287 prefetchw_prev_lru_page(page, src, flags);
1288
309381fe 1289 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1290
f3fd4a61 1291 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1292 case 0:
fa9add64
HD
1293 nr_pages = hpage_nr_pages(page);
1294 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1295 list_move(&page->lru, dst);
fa9add64 1296 nr_taken += nr_pages;
5ad333eb
AW
1297 break;
1298
1299 case -EBUSY:
1300 /* else it is being freed elsewhere */
1301 list_move(&page->lru, src);
1302 continue;
46453a6e 1303
5ad333eb
AW
1304 default:
1305 BUG();
1306 }
1da177e4
LT
1307 }
1308
f626012d 1309 *nr_scanned = scan;
75b00af7
HD
1310 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1311 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1312 return nr_taken;
1313}
1314
62695a84
NP
1315/**
1316 * isolate_lru_page - tries to isolate a page from its LRU list
1317 * @page: page to isolate from its LRU list
1318 *
1319 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1320 * vmstat statistic corresponding to whatever LRU list the page was on.
1321 *
1322 * Returns 0 if the page was removed from an LRU list.
1323 * Returns -EBUSY if the page was not on an LRU list.
1324 *
1325 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1326 * the active list, it will have PageActive set. If it was found on
1327 * the unevictable list, it will have the PageUnevictable bit set. That flag
1328 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1329 *
1330 * The vmstat statistic corresponding to the list on which the page was
1331 * found will be decremented.
1332 *
1333 * Restrictions:
1334 * (1) Must be called with an elevated refcount on the page. This is a
1335 * fundamentnal difference from isolate_lru_pages (which is called
1336 * without a stable reference).
1337 * (2) the lru_lock must not be held.
1338 * (3) interrupts must be enabled.
1339 */
1340int isolate_lru_page(struct page *page)
1341{
1342 int ret = -EBUSY;
1343
309381fe 1344 VM_BUG_ON_PAGE(!page_count(page), page);
0c917313 1345
62695a84
NP
1346 if (PageLRU(page)) {
1347 struct zone *zone = page_zone(page);
fa9add64 1348 struct lruvec *lruvec;
62695a84
NP
1349
1350 spin_lock_irq(&zone->lru_lock);
fa9add64 1351 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1352 if (PageLRU(page)) {
894bc310 1353 int lru = page_lru(page);
0c917313 1354 get_page(page);
62695a84 1355 ClearPageLRU(page);
fa9add64
HD
1356 del_page_from_lru_list(page, lruvec, lru);
1357 ret = 0;
62695a84
NP
1358 }
1359 spin_unlock_irq(&zone->lru_lock);
1360 }
1361 return ret;
1362}
1363
35cd7815 1364/*
d37dd5dc
FW
1365 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1366 * then get resheduled. When there are massive number of tasks doing page
1367 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1368 * the LRU list will go small and be scanned faster than necessary, leading to
1369 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1370 */
1371static int too_many_isolated(struct zone *zone, int file,
1372 struct scan_control *sc)
1373{
1374 unsigned long inactive, isolated;
1375
1376 if (current_is_kswapd())
1377 return 0;
1378
89b5fae5 1379 if (!global_reclaim(sc))
35cd7815
RR
1380 return 0;
1381
1382 if (file) {
1383 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1384 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1385 } else {
1386 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1387 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1388 }
1389
3cf23841
FW
1390 /*
1391 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1392 * won't get blocked by normal direct-reclaimers, forming a circular
1393 * deadlock.
1394 */
1395 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1396 inactive >>= 3;
1397
35cd7815
RR
1398 return isolated > inactive;
1399}
1400
66635629 1401static noinline_for_stack void
75b00af7 1402putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1403{
27ac81d8
KK
1404 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1405 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1406 LIST_HEAD(pages_to_free);
66635629 1407
66635629
MG
1408 /*
1409 * Put back any unfreeable pages.
1410 */
66635629 1411 while (!list_empty(page_list)) {
3f79768f 1412 struct page *page = lru_to_page(page_list);
66635629 1413 int lru;
3f79768f 1414
309381fe 1415 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1416 list_del(&page->lru);
39b5f29a 1417 if (unlikely(!page_evictable(page))) {
66635629
MG
1418 spin_unlock_irq(&zone->lru_lock);
1419 putback_lru_page(page);
1420 spin_lock_irq(&zone->lru_lock);
1421 continue;
1422 }
fa9add64
HD
1423
1424 lruvec = mem_cgroup_page_lruvec(page, zone);
1425
7a608572 1426 SetPageLRU(page);
66635629 1427 lru = page_lru(page);
fa9add64
HD
1428 add_page_to_lru_list(page, lruvec, lru);
1429
66635629
MG
1430 if (is_active_lru(lru)) {
1431 int file = is_file_lru(lru);
9992af10
RR
1432 int numpages = hpage_nr_pages(page);
1433 reclaim_stat->recent_rotated[file] += numpages;
66635629 1434 }
2bcf8879
HD
1435 if (put_page_testzero(page)) {
1436 __ClearPageLRU(page);
1437 __ClearPageActive(page);
fa9add64 1438 del_page_from_lru_list(page, lruvec, lru);
2bcf8879 1439
0a31bc97
JW
1440 mem_cgroup_uncharge(page);
1441
2bcf8879
HD
1442 if (unlikely(PageCompound(page))) {
1443 spin_unlock_irq(&zone->lru_lock);
1444 (*get_compound_page_dtor(page))(page);
1445 spin_lock_irq(&zone->lru_lock);
1446 } else
1447 list_add(&page->lru, &pages_to_free);
66635629
MG
1448 }
1449 }
66635629 1450
3f79768f
HD
1451 /*
1452 * To save our caller's stack, now use input list for pages to free.
1453 */
1454 list_splice(&pages_to_free, page_list);
66635629
MG
1455}
1456
399ba0b9
N
1457/*
1458 * If a kernel thread (such as nfsd for loop-back mounts) services
1459 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1460 * In that case we should only throttle if the backing device it is
1461 * writing to is congested. In other cases it is safe to throttle.
1462 */
1463static int current_may_throttle(void)
1464{
1465 return !(current->flags & PF_LESS_THROTTLE) ||
1466 current->backing_dev_info == NULL ||
1467 bdi_write_congested(current->backing_dev_info);
1468}
1469
1da177e4 1470/*
1742f19f
AM
1471 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1472 * of reclaimed pages
1da177e4 1473 */
66635629 1474static noinline_for_stack unsigned long
1a93be0e 1475shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1476 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1477{
1478 LIST_HEAD(page_list);
e247dbce 1479 unsigned long nr_scanned;
05ff5137 1480 unsigned long nr_reclaimed = 0;
e247dbce 1481 unsigned long nr_taken;
8e950282
MG
1482 unsigned long nr_dirty = 0;
1483 unsigned long nr_congested = 0;
e2be15f6 1484 unsigned long nr_unqueued_dirty = 0;
92df3a72 1485 unsigned long nr_writeback = 0;
b1a6f21e 1486 unsigned long nr_immediate = 0;
f3fd4a61 1487 isolate_mode_t isolate_mode = 0;
3cb99451 1488 int file = is_file_lru(lru);
1a93be0e
KK
1489 struct zone *zone = lruvec_zone(lruvec);
1490 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1491
35cd7815 1492 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1493 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1494
1495 /* We are about to die and free our memory. Return now. */
1496 if (fatal_signal_pending(current))
1497 return SWAP_CLUSTER_MAX;
1498 }
1499
1da177e4 1500 lru_add_drain();
f80c0673
MK
1501
1502 if (!sc->may_unmap)
61317289 1503 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1504 if (!sc->may_writepage)
61317289 1505 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1506
1da177e4 1507 spin_lock_irq(&zone->lru_lock);
b35ea17b 1508
5dc35979
KK
1509 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1510 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1511
1512 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1513 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1514
89b5fae5 1515 if (global_reclaim(sc)) {
0d5d823a 1516 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
e247dbce 1517 if (current_is_kswapd())
75b00af7 1518 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1519 else
75b00af7 1520 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1521 }
d563c050 1522 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1523
d563c050 1524 if (nr_taken == 0)
66635629 1525 return 0;
5ad333eb 1526
02c6de8d 1527 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1528 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1529 &nr_writeback, &nr_immediate,
1530 false);
c661b078 1531
3f79768f
HD
1532 spin_lock_irq(&zone->lru_lock);
1533
95d918fc 1534 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1535
904249aa
YH
1536 if (global_reclaim(sc)) {
1537 if (current_is_kswapd())
1538 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1539 nr_reclaimed);
1540 else
1541 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1542 nr_reclaimed);
1543 }
a74609fa 1544
27ac81d8 1545 putback_inactive_pages(lruvec, &page_list);
3f79768f 1546
95d918fc 1547 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1548
1549 spin_unlock_irq(&zone->lru_lock);
1550
b745bc85 1551 free_hot_cold_page_list(&page_list, true);
e11da5b4 1552
92df3a72
MG
1553 /*
1554 * If reclaim is isolating dirty pages under writeback, it implies
1555 * that the long-lived page allocation rate is exceeding the page
1556 * laundering rate. Either the global limits are not being effective
1557 * at throttling processes due to the page distribution throughout
1558 * zones or there is heavy usage of a slow backing device. The
1559 * only option is to throttle from reclaim context which is not ideal
1560 * as there is no guarantee the dirtying process is throttled in the
1561 * same way balance_dirty_pages() manages.
1562 *
8e950282
MG
1563 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1564 * of pages under pages flagged for immediate reclaim and stall if any
1565 * are encountered in the nr_immediate check below.
92df3a72 1566 */
918fc718 1567 if (nr_writeback && nr_writeback == nr_taken)
283aba9f 1568 zone_set_flag(zone, ZONE_WRITEBACK);
92df3a72 1569
d43006d5 1570 /*
b1a6f21e
MG
1571 * memcg will stall in page writeback so only consider forcibly
1572 * stalling for global reclaim
d43006d5 1573 */
b1a6f21e 1574 if (global_reclaim(sc)) {
8e950282
MG
1575 /*
1576 * Tag a zone as congested if all the dirty pages scanned were
1577 * backed by a congested BDI and wait_iff_congested will stall.
1578 */
1579 if (nr_dirty && nr_dirty == nr_congested)
1580 zone_set_flag(zone, ZONE_CONGESTED);
1581
b1a6f21e
MG
1582 /*
1583 * If dirty pages are scanned that are not queued for IO, it
1584 * implies that flushers are not keeping up. In this case, flag
1585 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
b738d764 1586 * pages from reclaim context.
b1a6f21e
MG
1587 */
1588 if (nr_unqueued_dirty == nr_taken)
1589 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1590
1591 /*
b738d764
LT
1592 * If kswapd scans pages marked marked for immediate
1593 * reclaim and under writeback (nr_immediate), it implies
1594 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1595 * they are written so also forcibly stall.
1596 */
b738d764 1597 if (nr_immediate && current_may_throttle())
b1a6f21e 1598 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1599 }
d43006d5 1600
8e950282
MG
1601 /*
1602 * Stall direct reclaim for IO completions if underlying BDIs or zone
1603 * is congested. Allow kswapd to continue until it starts encountering
1604 * unqueued dirty pages or cycling through the LRU too quickly.
1605 */
399ba0b9
N
1606 if (!sc->hibernation_mode && !current_is_kswapd() &&
1607 current_may_throttle())
8e950282
MG
1608 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1609
e11da5b4
MG
1610 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1611 zone_idx(zone),
1612 nr_scanned, nr_reclaimed,
9e3b2f8c 1613 sc->priority,
23b9da55 1614 trace_shrink_flags(file));
05ff5137 1615 return nr_reclaimed;
1da177e4
LT
1616}
1617
1618/*
1619 * This moves pages from the active list to the inactive list.
1620 *
1621 * We move them the other way if the page is referenced by one or more
1622 * processes, from rmap.
1623 *
1624 * If the pages are mostly unmapped, the processing is fast and it is
1625 * appropriate to hold zone->lru_lock across the whole operation. But if
1626 * the pages are mapped, the processing is slow (page_referenced()) so we
1627 * should drop zone->lru_lock around each page. It's impossible to balance
1628 * this, so instead we remove the pages from the LRU while processing them.
1629 * It is safe to rely on PG_active against the non-LRU pages in here because
1630 * nobody will play with that bit on a non-LRU page.
1631 *
1632 * The downside is that we have to touch page->_count against each page.
1633 * But we had to alter page->flags anyway.
1634 */
1cfb419b 1635
fa9add64 1636static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1637 struct list_head *list,
2bcf8879 1638 struct list_head *pages_to_free,
3eb4140f
WF
1639 enum lru_list lru)
1640{
fa9add64 1641 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1642 unsigned long pgmoved = 0;
3eb4140f 1643 struct page *page;
fa9add64 1644 int nr_pages;
3eb4140f 1645
3eb4140f
WF
1646 while (!list_empty(list)) {
1647 page = lru_to_page(list);
fa9add64 1648 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f 1649
309381fe 1650 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1651 SetPageLRU(page);
1652
fa9add64
HD
1653 nr_pages = hpage_nr_pages(page);
1654 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1655 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1656 pgmoved += nr_pages;
3eb4140f 1657
2bcf8879
HD
1658 if (put_page_testzero(page)) {
1659 __ClearPageLRU(page);
1660 __ClearPageActive(page);
fa9add64 1661 del_page_from_lru_list(page, lruvec, lru);
2bcf8879 1662
0a31bc97
JW
1663 mem_cgroup_uncharge(page);
1664
2bcf8879
HD
1665 if (unlikely(PageCompound(page))) {
1666 spin_unlock_irq(&zone->lru_lock);
1667 (*get_compound_page_dtor(page))(page);
1668 spin_lock_irq(&zone->lru_lock);
1669 } else
1670 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1671 }
1672 }
1673 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1674 if (!is_active_lru(lru))
1675 __count_vm_events(PGDEACTIVATE, pgmoved);
1676}
1cfb419b 1677
f626012d 1678static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1679 struct lruvec *lruvec,
f16015fb 1680 struct scan_control *sc,
9e3b2f8c 1681 enum lru_list lru)
1da177e4 1682{
44c241f1 1683 unsigned long nr_taken;
f626012d 1684 unsigned long nr_scanned;
6fe6b7e3 1685 unsigned long vm_flags;
1da177e4 1686 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1687 LIST_HEAD(l_active);
b69408e8 1688 LIST_HEAD(l_inactive);
1da177e4 1689 struct page *page;
1a93be0e 1690 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1691 unsigned long nr_rotated = 0;
f3fd4a61 1692 isolate_mode_t isolate_mode = 0;
3cb99451 1693 int file = is_file_lru(lru);
1a93be0e 1694 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1695
1696 lru_add_drain();
f80c0673
MK
1697
1698 if (!sc->may_unmap)
61317289 1699 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1700 if (!sc->may_writepage)
61317289 1701 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1702
1da177e4 1703 spin_lock_irq(&zone->lru_lock);
925b7673 1704
5dc35979
KK
1705 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1706 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1707 if (global_reclaim(sc))
0d5d823a 1708 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
89b5fae5 1709
b7c46d15 1710 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1711
f626012d 1712 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1713 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1714 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1715 spin_unlock_irq(&zone->lru_lock);
1716
1da177e4
LT
1717 while (!list_empty(&l_hold)) {
1718 cond_resched();
1719 page = lru_to_page(&l_hold);
1720 list_del(&page->lru);
7e9cd484 1721
39b5f29a 1722 if (unlikely(!page_evictable(page))) {
894bc310
LS
1723 putback_lru_page(page);
1724 continue;
1725 }
1726
cc715d99
MG
1727 if (unlikely(buffer_heads_over_limit)) {
1728 if (page_has_private(page) && trylock_page(page)) {
1729 if (page_has_private(page))
1730 try_to_release_page(page, 0);
1731 unlock_page(page);
1732 }
1733 }
1734
c3ac9a8a
JW
1735 if (page_referenced(page, 0, sc->target_mem_cgroup,
1736 &vm_flags)) {
9992af10 1737 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1738 /*
1739 * Identify referenced, file-backed active pages and
1740 * give them one more trip around the active list. So
1741 * that executable code get better chances to stay in
1742 * memory under moderate memory pressure. Anon pages
1743 * are not likely to be evicted by use-once streaming
1744 * IO, plus JVM can create lots of anon VM_EXEC pages,
1745 * so we ignore them here.
1746 */
41e20983 1747 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1748 list_add(&page->lru, &l_active);
1749 continue;
1750 }
1751 }
7e9cd484 1752
5205e56e 1753 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1754 list_add(&page->lru, &l_inactive);
1755 }
1756
b555749a 1757 /*
8cab4754 1758 * Move pages back to the lru list.
b555749a 1759 */
2a1dc509 1760 spin_lock_irq(&zone->lru_lock);
556adecb 1761 /*
8cab4754
WF
1762 * Count referenced pages from currently used mappings as rotated,
1763 * even though only some of them are actually re-activated. This
1764 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 1765 * get_scan_count.
7e9cd484 1766 */
b7c46d15 1767 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1768
fa9add64
HD
1769 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1770 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1771 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1772 spin_unlock_irq(&zone->lru_lock);
2bcf8879 1773
b745bc85 1774 free_hot_cold_page_list(&l_hold, true);
1da177e4
LT
1775}
1776
74e3f3c3 1777#ifdef CONFIG_SWAP
14797e23 1778static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1779{
1780 unsigned long active, inactive;
1781
1782 active = zone_page_state(zone, NR_ACTIVE_ANON);
1783 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1784
1785 if (inactive * zone->inactive_ratio < active)
1786 return 1;
1787
1788 return 0;
1789}
1790
14797e23
KM
1791/**
1792 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1793 * @lruvec: LRU vector to check
14797e23
KM
1794 *
1795 * Returns true if the zone does not have enough inactive anon pages,
1796 * meaning some active anon pages need to be deactivated.
1797 */
c56d5c7d 1798static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1799{
74e3f3c3
MK
1800 /*
1801 * If we don't have swap space, anonymous page deactivation
1802 * is pointless.
1803 */
1804 if (!total_swap_pages)
1805 return 0;
1806
c3c787e8 1807 if (!mem_cgroup_disabled())
c56d5c7d 1808 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1809
c56d5c7d 1810 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1811}
74e3f3c3 1812#else
c56d5c7d 1813static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1814{
1815 return 0;
1816}
1817#endif
14797e23 1818
56e49d21
RR
1819/**
1820 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1821 * @lruvec: LRU vector to check
56e49d21
RR
1822 *
1823 * When the system is doing streaming IO, memory pressure here
1824 * ensures that active file pages get deactivated, until more
1825 * than half of the file pages are on the inactive list.
1826 *
1827 * Once we get to that situation, protect the system's working
1828 * set from being evicted by disabling active file page aging.
1829 *
1830 * This uses a different ratio than the anonymous pages, because
1831 * the page cache uses a use-once replacement algorithm.
1832 */
c56d5c7d 1833static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1834{
e3790144
JW
1835 unsigned long inactive;
1836 unsigned long active;
1837
1838 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1839 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1840
e3790144 1841 return active > inactive;
56e49d21
RR
1842}
1843
75b00af7 1844static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1845{
75b00af7 1846 if (is_file_lru(lru))
c56d5c7d 1847 return inactive_file_is_low(lruvec);
b39415b2 1848 else
c56d5c7d 1849 return inactive_anon_is_low(lruvec);
b39415b2
RR
1850}
1851
4f98a2fe 1852static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1853 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1854{
b39415b2 1855 if (is_active_lru(lru)) {
75b00af7 1856 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1857 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1858 return 0;
1859 }
1860
1a93be0e 1861 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1862}
1863
9a265114
JW
1864enum scan_balance {
1865 SCAN_EQUAL,
1866 SCAN_FRACT,
1867 SCAN_ANON,
1868 SCAN_FILE,
1869};
1870
4f98a2fe
RR
1871/*
1872 * Determine how aggressively the anon and file LRU lists should be
1873 * scanned. The relative value of each set of LRU lists is determined
1874 * by looking at the fraction of the pages scanned we did rotate back
1875 * onto the active list instead of evict.
1876 *
be7bd59d
WL
1877 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1878 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1879 */
02695175
JW
1880static void get_scan_count(struct lruvec *lruvec, int swappiness,
1881 struct scan_control *sc, unsigned long *nr)
4f98a2fe 1882{
9a265114
JW
1883 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1884 u64 fraction[2];
1885 u64 denominator = 0; /* gcc */
1886 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1887 unsigned long anon_prio, file_prio;
9a265114 1888 enum scan_balance scan_balance;
0bf1457f 1889 unsigned long anon, file;
9a265114 1890 bool force_scan = false;
4f98a2fe 1891 unsigned long ap, fp;
4111304d 1892 enum lru_list lru;
6f04f48d
SS
1893 bool some_scanned;
1894 int pass;
246e87a9 1895
f11c0ca5
JW
1896 /*
1897 * If the zone or memcg is small, nr[l] can be 0. This
1898 * results in no scanning on this priority and a potential
1899 * priority drop. Global direct reclaim can go to the next
1900 * zone and tends to have no problems. Global kswapd is for
1901 * zone balancing and it needs to scan a minimum amount. When
1902 * reclaiming for a memcg, a priority drop can cause high
1903 * latencies, so it's better to scan a minimum amount there as
1904 * well.
1905 */
6e543d57 1906 if (current_is_kswapd() && !zone_reclaimable(zone))
a4d3e9e7 1907 force_scan = true;
89b5fae5 1908 if (!global_reclaim(sc))
a4d3e9e7 1909 force_scan = true;
76a33fc3
SL
1910
1911 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1912 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1913 scan_balance = SCAN_FILE;
76a33fc3
SL
1914 goto out;
1915 }
4f98a2fe 1916
10316b31
JW
1917 /*
1918 * Global reclaim will swap to prevent OOM even with no
1919 * swappiness, but memcg users want to use this knob to
1920 * disable swapping for individual groups completely when
1921 * using the memory controller's swap limit feature would be
1922 * too expensive.
1923 */
02695175 1924 if (!global_reclaim(sc) && !swappiness) {
9a265114 1925 scan_balance = SCAN_FILE;
10316b31
JW
1926 goto out;
1927 }
1928
1929 /*
1930 * Do not apply any pressure balancing cleverness when the
1931 * system is close to OOM, scan both anon and file equally
1932 * (unless the swappiness setting disagrees with swapping).
1933 */
02695175 1934 if (!sc->priority && swappiness) {
9a265114 1935 scan_balance = SCAN_EQUAL;
10316b31
JW
1936 goto out;
1937 }
1938
62376251
JW
1939 /*
1940 * Prevent the reclaimer from falling into the cache trap: as
1941 * cache pages start out inactive, every cache fault will tip
1942 * the scan balance towards the file LRU. And as the file LRU
1943 * shrinks, so does the window for rotation from references.
1944 * This means we have a runaway feedback loop where a tiny
1945 * thrashing file LRU becomes infinitely more attractive than
1946 * anon pages. Try to detect this based on file LRU size.
1947 */
1948 if (global_reclaim(sc)) {
2ab051e1
JM
1949 unsigned long zonefile;
1950 unsigned long zonefree;
1951
1952 zonefree = zone_page_state(zone, NR_FREE_PAGES);
1953 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
1954 zone_page_state(zone, NR_INACTIVE_FILE);
62376251 1955
2ab051e1 1956 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
62376251
JW
1957 scan_balance = SCAN_ANON;
1958 goto out;
1959 }
1960 }
1961
7c5bd705
JW
1962 /*
1963 * There is enough inactive page cache, do not reclaim
1964 * anything from the anonymous working set right now.
1965 */
1966 if (!inactive_file_is_low(lruvec)) {
9a265114 1967 scan_balance = SCAN_FILE;
7c5bd705
JW
1968 goto out;
1969 }
1970
9a265114
JW
1971 scan_balance = SCAN_FRACT;
1972
58c37f6e
KM
1973 /*
1974 * With swappiness at 100, anonymous and file have the same priority.
1975 * This scanning priority is essentially the inverse of IO cost.
1976 */
02695175 1977 anon_prio = swappiness;
75b00af7 1978 file_prio = 200 - anon_prio;
58c37f6e 1979
4f98a2fe
RR
1980 /*
1981 * OK, so we have swap space and a fair amount of page cache
1982 * pages. We use the recently rotated / recently scanned
1983 * ratios to determine how valuable each cache is.
1984 *
1985 * Because workloads change over time (and to avoid overflow)
1986 * we keep these statistics as a floating average, which ends
1987 * up weighing recent references more than old ones.
1988 *
1989 * anon in [0], file in [1]
1990 */
2ab051e1
JM
1991
1992 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1993 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1994 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1995 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1996
90126375 1997 spin_lock_irq(&zone->lru_lock);
6e901571 1998 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1999 reclaim_stat->recent_scanned[0] /= 2;
2000 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2001 }
2002
6e901571 2003 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2004 reclaim_stat->recent_scanned[1] /= 2;
2005 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2006 }
2007
4f98a2fe 2008 /*
00d8089c
RR
2009 * The amount of pressure on anon vs file pages is inversely
2010 * proportional to the fraction of recently scanned pages on
2011 * each list that were recently referenced and in active use.
4f98a2fe 2012 */
fe35004f 2013 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2014 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2015
fe35004f 2016 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2017 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 2018 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 2019
76a33fc3
SL
2020 fraction[0] = ap;
2021 fraction[1] = fp;
2022 denominator = ap + fp + 1;
2023out:
6f04f48d
SS
2024 some_scanned = false;
2025 /* Only use force_scan on second pass. */
2026 for (pass = 0; !some_scanned && pass < 2; pass++) {
2027 for_each_evictable_lru(lru) {
2028 int file = is_file_lru(lru);
2029 unsigned long size;
2030 unsigned long scan;
6e08a369 2031
6f04f48d
SS
2032 size = get_lru_size(lruvec, lru);
2033 scan = size >> sc->priority;
9a265114 2034
6f04f48d
SS
2035 if (!scan && pass && force_scan)
2036 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2037
6f04f48d
SS
2038 switch (scan_balance) {
2039 case SCAN_EQUAL:
2040 /* Scan lists relative to size */
2041 break;
2042 case SCAN_FRACT:
2043 /*
2044 * Scan types proportional to swappiness and
2045 * their relative recent reclaim efficiency.
2046 */
2047 scan = div64_u64(scan * fraction[file],
2048 denominator);
2049 break;
2050 case SCAN_FILE:
2051 case SCAN_ANON:
2052 /* Scan one type exclusively */
2053 if ((scan_balance == SCAN_FILE) != file)
2054 scan = 0;
2055 break;
2056 default:
2057 /* Look ma, no brain */
2058 BUG();
2059 }
2060 nr[lru] = scan;
9a265114 2061 /*
6f04f48d
SS
2062 * Skip the second pass and don't force_scan,
2063 * if we found something to scan.
9a265114 2064 */
6f04f48d 2065 some_scanned |= !!scan;
9a265114 2066 }
76a33fc3 2067 }
6e08a369 2068}
4f98a2fe 2069
9b4f98cd
JW
2070/*
2071 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2072 */
02695175
JW
2073static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2074 struct scan_control *sc)
9b4f98cd
JW
2075{
2076 unsigned long nr[NR_LRU_LISTS];
e82e0561 2077 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2078 unsigned long nr_to_scan;
2079 enum lru_list lru;
2080 unsigned long nr_reclaimed = 0;
2081 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2082 struct blk_plug plug;
1a501907 2083 bool scan_adjusted;
9b4f98cd 2084
02695175 2085 get_scan_count(lruvec, swappiness, sc, nr);
9b4f98cd 2086
e82e0561
MG
2087 /* Record the original scan target for proportional adjustments later */
2088 memcpy(targets, nr, sizeof(nr));
2089
1a501907
MG
2090 /*
2091 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2092 * event that can occur when there is little memory pressure e.g.
2093 * multiple streaming readers/writers. Hence, we do not abort scanning
2094 * when the requested number of pages are reclaimed when scanning at
2095 * DEF_PRIORITY on the assumption that the fact we are direct
2096 * reclaiming implies that kswapd is not keeping up and it is best to
2097 * do a batch of work at once. For memcg reclaim one check is made to
2098 * abort proportional reclaim if either the file or anon lru has already
2099 * dropped to zero at the first pass.
2100 */
2101 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2102 sc->priority == DEF_PRIORITY);
2103
9b4f98cd
JW
2104 blk_start_plug(&plug);
2105 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2106 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2107 unsigned long nr_anon, nr_file, percentage;
2108 unsigned long nr_scanned;
2109
9b4f98cd
JW
2110 for_each_evictable_lru(lru) {
2111 if (nr[lru]) {
2112 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2113 nr[lru] -= nr_to_scan;
2114
2115 nr_reclaimed += shrink_list(lru, nr_to_scan,
2116 lruvec, sc);
2117 }
2118 }
e82e0561
MG
2119
2120 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2121 continue;
2122
e82e0561
MG
2123 /*
2124 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2125 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2126 * proportionally what was requested by get_scan_count(). We
2127 * stop reclaiming one LRU and reduce the amount scanning
2128 * proportional to the original scan target.
2129 */
2130 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2131 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2132
1a501907
MG
2133 /*
2134 * It's just vindictive to attack the larger once the smaller
2135 * has gone to zero. And given the way we stop scanning the
2136 * smaller below, this makes sure that we only make one nudge
2137 * towards proportionality once we've got nr_to_reclaim.
2138 */
2139 if (!nr_file || !nr_anon)
2140 break;
2141
e82e0561
MG
2142 if (nr_file > nr_anon) {
2143 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2144 targets[LRU_ACTIVE_ANON] + 1;
2145 lru = LRU_BASE;
2146 percentage = nr_anon * 100 / scan_target;
2147 } else {
2148 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2149 targets[LRU_ACTIVE_FILE] + 1;
2150 lru = LRU_FILE;
2151 percentage = nr_file * 100 / scan_target;
2152 }
2153
2154 /* Stop scanning the smaller of the LRU */
2155 nr[lru] = 0;
2156 nr[lru + LRU_ACTIVE] = 0;
2157
2158 /*
2159 * Recalculate the other LRU scan count based on its original
2160 * scan target and the percentage scanning already complete
2161 */
2162 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2163 nr_scanned = targets[lru] - nr[lru];
2164 nr[lru] = targets[lru] * (100 - percentage) / 100;
2165 nr[lru] -= min(nr[lru], nr_scanned);
2166
2167 lru += LRU_ACTIVE;
2168 nr_scanned = targets[lru] - nr[lru];
2169 nr[lru] = targets[lru] * (100 - percentage) / 100;
2170 nr[lru] -= min(nr[lru], nr_scanned);
2171
2172 scan_adjusted = true;
9b4f98cd
JW
2173 }
2174 blk_finish_plug(&plug);
2175 sc->nr_reclaimed += nr_reclaimed;
2176
2177 /*
2178 * Even if we did not try to evict anon pages at all, we want to
2179 * rebalance the anon lru active/inactive ratio.
2180 */
2181 if (inactive_anon_is_low(lruvec))
2182 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2183 sc, LRU_ACTIVE_ANON);
2184
2185 throttle_vm_writeout(sc->gfp_mask);
2186}
2187
23b9da55 2188/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2189static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2190{
d84da3f9 2191 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2192 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2193 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2194 return true;
2195
2196 return false;
2197}
2198
3e7d3449 2199/*
23b9da55
MG
2200 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2201 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2202 * true if more pages should be reclaimed such that when the page allocator
2203 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2204 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2205 */
9b4f98cd 2206static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2207 unsigned long nr_reclaimed,
2208 unsigned long nr_scanned,
2209 struct scan_control *sc)
2210{
2211 unsigned long pages_for_compaction;
2212 unsigned long inactive_lru_pages;
2213
2214 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2215 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2216 return false;
2217
2876592f
MG
2218 /* Consider stopping depending on scan and reclaim activity */
2219 if (sc->gfp_mask & __GFP_REPEAT) {
2220 /*
2221 * For __GFP_REPEAT allocations, stop reclaiming if the
2222 * full LRU list has been scanned and we are still failing
2223 * to reclaim pages. This full LRU scan is potentially
2224 * expensive but a __GFP_REPEAT caller really wants to succeed
2225 */
2226 if (!nr_reclaimed && !nr_scanned)
2227 return false;
2228 } else {
2229 /*
2230 * For non-__GFP_REPEAT allocations which can presumably
2231 * fail without consequence, stop if we failed to reclaim
2232 * any pages from the last SWAP_CLUSTER_MAX number of
2233 * pages that were scanned. This will return to the
2234 * caller faster at the risk reclaim/compaction and
2235 * the resulting allocation attempt fails
2236 */
2237 if (!nr_reclaimed)
2238 return false;
2239 }
3e7d3449
MG
2240
2241 /*
2242 * If we have not reclaimed enough pages for compaction and the
2243 * inactive lists are large enough, continue reclaiming
2244 */
2245 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2246 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2247 if (get_nr_swap_pages() > 0)
9b4f98cd 2248 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2249 if (sc->nr_reclaimed < pages_for_compaction &&
2250 inactive_lru_pages > pages_for_compaction)
2251 return true;
2252
2253 /* If compaction would go ahead or the allocation would succeed, stop */
9b4f98cd 2254 switch (compaction_suitable(zone, sc->order)) {
3e7d3449
MG
2255 case COMPACT_PARTIAL:
2256 case COMPACT_CONTINUE:
2257 return false;
2258 default:
2259 return true;
2260 }
2261}
2262
2344d7e4 2263static bool shrink_zone(struct zone *zone, struct scan_control *sc)
1da177e4 2264{
f0fdc5e8 2265 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2266 bool reclaimable = false;
1da177e4 2267
9b4f98cd
JW
2268 do {
2269 struct mem_cgroup *root = sc->target_mem_cgroup;
2270 struct mem_cgroup_reclaim_cookie reclaim = {
2271 .zone = zone,
2272 .priority = sc->priority,
2273 };
694fbc0f 2274 struct mem_cgroup *memcg;
3e7d3449 2275
9b4f98cd
JW
2276 nr_reclaimed = sc->nr_reclaimed;
2277 nr_scanned = sc->nr_scanned;
1da177e4 2278
694fbc0f
AM
2279 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2280 do {
9b4f98cd 2281 struct lruvec *lruvec;
02695175 2282 int swappiness;
5660048c 2283
9b4f98cd 2284 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2285 swappiness = mem_cgroup_swappiness(memcg);
f9be23d6 2286
02695175 2287 shrink_lruvec(lruvec, swappiness, sc);
f16015fb 2288
9b4f98cd 2289 /*
a394cb8e
MH
2290 * Direct reclaim and kswapd have to scan all memory
2291 * cgroups to fulfill the overall scan target for the
9b4f98cd 2292 * zone.
a394cb8e
MH
2293 *
2294 * Limit reclaim, on the other hand, only cares about
2295 * nr_to_reclaim pages to be reclaimed and it will
2296 * retry with decreasing priority if one round over the
2297 * whole hierarchy is not sufficient.
9b4f98cd 2298 */
a394cb8e
MH
2299 if (!global_reclaim(sc) &&
2300 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2301 mem_cgroup_iter_break(root, memcg);
2302 break;
2303 }
694fbc0f
AM
2304 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2305 } while (memcg);
70ddf637
AV
2306
2307 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2308 sc->nr_scanned - nr_scanned,
2309 sc->nr_reclaimed - nr_reclaimed);
2310
2344d7e4
JW
2311 if (sc->nr_reclaimed - nr_reclaimed)
2312 reclaimable = true;
2313
9b4f98cd
JW
2314 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2315 sc->nr_scanned - nr_scanned, sc));
2344d7e4
JW
2316
2317 return reclaimable;
f16015fb
JW
2318}
2319
fe4b1b24 2320/* Returns true if compaction should go ahead for a high-order request */
0b06496a 2321static inline bool compaction_ready(struct zone *zone, int order)
fe4b1b24
MG
2322{
2323 unsigned long balance_gap, watermark;
2324 bool watermark_ok;
2325
fe4b1b24
MG
2326 /*
2327 * Compaction takes time to run and there are potentially other
2328 * callers using the pages just freed. Continue reclaiming until
2329 * there is a buffer of free pages available to give compaction
2330 * a reasonable chance of completing and allocating the page
2331 */
4be89a34
JZ
2332 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2333 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
0b06496a 2334 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
fe4b1b24
MG
2335 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2336
2337 /*
2338 * If compaction is deferred, reclaim up to a point where
2339 * compaction will have a chance of success when re-enabled
2340 */
0b06496a 2341 if (compaction_deferred(zone, order))
fe4b1b24
MG
2342 return watermark_ok;
2343
2344 /* If compaction is not ready to start, keep reclaiming */
0b06496a 2345 if (!compaction_suitable(zone, order))
fe4b1b24
MG
2346 return false;
2347
2348 return watermark_ok;
2349}
2350
1da177e4
LT
2351/*
2352 * This is the direct reclaim path, for page-allocating processes. We only
2353 * try to reclaim pages from zones which will satisfy the caller's allocation
2354 * request.
2355 *
41858966
MG
2356 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2357 * Because:
1da177e4
LT
2358 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2359 * allocation or
41858966
MG
2360 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2361 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2362 * zone defense algorithm.
1da177e4 2363 *
1da177e4
LT
2364 * If a zone is deemed to be full of pinned pages then just give it a light
2365 * scan then give up on it.
2344d7e4
JW
2366 *
2367 * Returns true if a zone was reclaimable.
1da177e4 2368 */
2344d7e4 2369static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2370{
dd1a239f 2371 struct zoneref *z;
54a6eb5c 2372 struct zone *zone;
0608f43d
AM
2373 unsigned long nr_soft_reclaimed;
2374 unsigned long nr_soft_scanned;
65ec02cb 2375 unsigned long lru_pages = 0;
65ec02cb 2376 struct reclaim_state *reclaim_state = current->reclaim_state;
619d0d76 2377 gfp_t orig_mask;
3115cd91
VD
2378 struct shrink_control shrink = {
2379 .gfp_mask = sc->gfp_mask,
2380 };
9bbc04ee 2381 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2344d7e4 2382 bool reclaimable = false;
1cfb419b 2383
cc715d99
MG
2384 /*
2385 * If the number of buffer_heads in the machine exceeds the maximum
2386 * allowed level, force direct reclaim to scan the highmem zone as
2387 * highmem pages could be pinning lowmem pages storing buffer_heads
2388 */
619d0d76 2389 orig_mask = sc->gfp_mask;
cc715d99
MG
2390 if (buffer_heads_over_limit)
2391 sc->gfp_mask |= __GFP_HIGHMEM;
2392
3115cd91 2393 nodes_clear(shrink.nodes_to_scan);
65ec02cb 2394
d4debc66
MG
2395 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2396 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2397 if (!populated_zone(zone))
1da177e4 2398 continue;
1cfb419b
KH
2399 /*
2400 * Take care memory controller reclaiming has small influence
2401 * to global LRU.
2402 */
89b5fae5 2403 if (global_reclaim(sc)) {
1cfb419b
KH
2404 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2405 continue;
65ec02cb
VD
2406
2407 lru_pages += zone_reclaimable_pages(zone);
3115cd91 2408 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
65ec02cb 2409
6e543d57
LD
2410 if (sc->priority != DEF_PRIORITY &&
2411 !zone_reclaimable(zone))
1cfb419b 2412 continue; /* Let kswapd poll it */
0b06496a
JW
2413
2414 /*
2415 * If we already have plenty of memory free for
2416 * compaction in this zone, don't free any more.
2417 * Even though compaction is invoked for any
2418 * non-zero order, only frequent costly order
2419 * reclamation is disruptive enough to become a
2420 * noticeable problem, like transparent huge
2421 * page allocations.
2422 */
2423 if (IS_ENABLED(CONFIG_COMPACTION) &&
2424 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2425 zonelist_zone_idx(z) <= requested_highidx &&
2426 compaction_ready(zone, sc->order)) {
2427 sc->compaction_ready = true;
2428 continue;
e0887c19 2429 }
0b06496a 2430
0608f43d
AM
2431 /*
2432 * This steals pages from memory cgroups over softlimit
2433 * and returns the number of reclaimed pages and
2434 * scanned pages. This works for global memory pressure
2435 * and balancing, not for a memcg's limit.
2436 */
2437 nr_soft_scanned = 0;
2438 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2439 sc->order, sc->gfp_mask,
2440 &nr_soft_scanned);
2441 sc->nr_reclaimed += nr_soft_reclaimed;
2442 sc->nr_scanned += nr_soft_scanned;
2344d7e4
JW
2443 if (nr_soft_reclaimed)
2444 reclaimable = true;
ac34a1a3 2445 /* need some check for avoid more shrink_zone() */
1cfb419b 2446 }
408d8544 2447
2344d7e4
JW
2448 if (shrink_zone(zone, sc))
2449 reclaimable = true;
2450
2451 if (global_reclaim(sc) &&
2452 !reclaimable && zone_reclaimable(zone))
2453 reclaimable = true;
1da177e4 2454 }
e0c23279 2455
65ec02cb
VD
2456 /*
2457 * Don't shrink slabs when reclaiming memory from over limit cgroups
2458 * but do shrink slab at least once when aborting reclaim for
2459 * compaction to avoid unevenly scanning file/anon LRU pages over slab
2460 * pages.
2461 */
2462 if (global_reclaim(sc)) {
3115cd91 2463 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
65ec02cb
VD
2464 if (reclaim_state) {
2465 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2466 reclaim_state->reclaimed_slab = 0;
2467 }
2468 }
2469
619d0d76
WY
2470 /*
2471 * Restore to original mask to avoid the impact on the caller if we
2472 * promoted it to __GFP_HIGHMEM.
2473 */
2474 sc->gfp_mask = orig_mask;
d1908362 2475
2344d7e4 2476 return reclaimable;
1da177e4 2477}
4f98a2fe 2478
1da177e4
LT
2479/*
2480 * This is the main entry point to direct page reclaim.
2481 *
2482 * If a full scan of the inactive list fails to free enough memory then we
2483 * are "out of memory" and something needs to be killed.
2484 *
2485 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2486 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2487 * caller can't do much about. We kick the writeback threads and take explicit
2488 * naps in the hope that some of these pages can be written. But if the
2489 * allocating task holds filesystem locks which prevent writeout this might not
2490 * work, and the allocation attempt will fail.
a41f24ea
NA
2491 *
2492 * returns: 0, if no pages reclaimed
2493 * else, the number of pages reclaimed
1da177e4 2494 */
dac1d27b 2495static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2496 struct scan_control *sc)
1da177e4 2497{
69e05944 2498 unsigned long total_scanned = 0;
22fba335 2499 unsigned long writeback_threshold;
2344d7e4 2500 bool zones_reclaimable;
1da177e4 2501
873b4771
KK
2502 delayacct_freepages_start();
2503
89b5fae5 2504 if (global_reclaim(sc))
1cfb419b 2505 count_vm_event(ALLOCSTALL);
1da177e4 2506
9e3b2f8c 2507 do {
70ddf637
AV
2508 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2509 sc->priority);
66e1707b 2510 sc->nr_scanned = 0;
2344d7e4 2511 zones_reclaimable = shrink_zones(zonelist, sc);
c6a8a8c5 2512
66e1707b 2513 total_scanned += sc->nr_scanned;
bb21c7ce 2514 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2515 break;
2516
2517 if (sc->compaction_ready)
2518 break;
1da177e4 2519
0e50ce3b
MK
2520 /*
2521 * If we're getting trouble reclaiming, start doing
2522 * writepage even in laptop mode.
2523 */
2524 if (sc->priority < DEF_PRIORITY - 2)
2525 sc->may_writepage = 1;
2526
1da177e4
LT
2527 /*
2528 * Try to write back as many pages as we just scanned. This
2529 * tends to cause slow streaming writers to write data to the
2530 * disk smoothly, at the dirtying rate, which is nice. But
2531 * that's undesirable in laptop mode, where we *want* lumpy
2532 * writeout. So in laptop mode, write out the whole world.
2533 */
22fba335
KM
2534 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2535 if (total_scanned > writeback_threshold) {
0e175a18
CW
2536 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2537 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2538 sc->may_writepage = 1;
1da177e4 2539 }
0b06496a 2540 } while (--sc->priority >= 0);
bb21c7ce 2541
873b4771
KK
2542 delayacct_freepages_end();
2543
bb21c7ce
KM
2544 if (sc->nr_reclaimed)
2545 return sc->nr_reclaimed;
2546
0cee34fd 2547 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2548 if (sc->compaction_ready)
7335084d
MG
2549 return 1;
2550
2344d7e4
JW
2551 /* Any of the zones still reclaimable? Don't OOM. */
2552 if (zones_reclaimable)
bb21c7ce
KM
2553 return 1;
2554
2555 return 0;
1da177e4
LT
2556}
2557
5515061d
MG
2558static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2559{
2560 struct zone *zone;
2561 unsigned long pfmemalloc_reserve = 0;
2562 unsigned long free_pages = 0;
2563 int i;
2564 bool wmark_ok;
2565
2566 for (i = 0; i <= ZONE_NORMAL; i++) {
2567 zone = &pgdat->node_zones[i];
675becce
MG
2568 if (!populated_zone(zone))
2569 continue;
2570
5515061d
MG
2571 pfmemalloc_reserve += min_wmark_pages(zone);
2572 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2573 }
2574
675becce
MG
2575 /* If there are no reserves (unexpected config) then do not throttle */
2576 if (!pfmemalloc_reserve)
2577 return true;
2578
5515061d
MG
2579 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2580
2581 /* kswapd must be awake if processes are being throttled */
2582 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2583 pgdat->classzone_idx = min(pgdat->classzone_idx,
2584 (enum zone_type)ZONE_NORMAL);
2585 wake_up_interruptible(&pgdat->kswapd_wait);
2586 }
2587
2588 return wmark_ok;
2589}
2590
2591/*
2592 * Throttle direct reclaimers if backing storage is backed by the network
2593 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2594 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2595 * when the low watermark is reached.
2596 *
2597 * Returns true if a fatal signal was delivered during throttling. If this
2598 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2599 */
50694c28 2600static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2601 nodemask_t *nodemask)
2602{
675becce 2603 struct zoneref *z;
5515061d 2604 struct zone *zone;
675becce 2605 pg_data_t *pgdat = NULL;
5515061d
MG
2606
2607 /*
2608 * Kernel threads should not be throttled as they may be indirectly
2609 * responsible for cleaning pages necessary for reclaim to make forward
2610 * progress. kjournald for example may enter direct reclaim while
2611 * committing a transaction where throttling it could forcing other
2612 * processes to block on log_wait_commit().
2613 */
2614 if (current->flags & PF_KTHREAD)
50694c28
MG
2615 goto out;
2616
2617 /*
2618 * If a fatal signal is pending, this process should not throttle.
2619 * It should return quickly so it can exit and free its memory
2620 */
2621 if (fatal_signal_pending(current))
2622 goto out;
5515061d 2623
675becce
MG
2624 /*
2625 * Check if the pfmemalloc reserves are ok by finding the first node
2626 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2627 * GFP_KERNEL will be required for allocating network buffers when
2628 * swapping over the network so ZONE_HIGHMEM is unusable.
2629 *
2630 * Throttling is based on the first usable node and throttled processes
2631 * wait on a queue until kswapd makes progress and wakes them. There
2632 * is an affinity then between processes waking up and where reclaim
2633 * progress has been made assuming the process wakes on the same node.
2634 * More importantly, processes running on remote nodes will not compete
2635 * for remote pfmemalloc reserves and processes on different nodes
2636 * should make reasonable progress.
2637 */
2638 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2639 gfp_mask, nodemask) {
2640 if (zone_idx(zone) > ZONE_NORMAL)
2641 continue;
2642
2643 /* Throttle based on the first usable node */
2644 pgdat = zone->zone_pgdat;
2645 if (pfmemalloc_watermark_ok(pgdat))
2646 goto out;
2647 break;
2648 }
2649
2650 /* If no zone was usable by the allocation flags then do not throttle */
2651 if (!pgdat)
50694c28 2652 goto out;
5515061d 2653
68243e76
MG
2654 /* Account for the throttling */
2655 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2656
5515061d
MG
2657 /*
2658 * If the caller cannot enter the filesystem, it's possible that it
2659 * is due to the caller holding an FS lock or performing a journal
2660 * transaction in the case of a filesystem like ext[3|4]. In this case,
2661 * it is not safe to block on pfmemalloc_wait as kswapd could be
2662 * blocked waiting on the same lock. Instead, throttle for up to a
2663 * second before continuing.
2664 */
2665 if (!(gfp_mask & __GFP_FS)) {
2666 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2667 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2668
2669 goto check_pending;
5515061d
MG
2670 }
2671
2672 /* Throttle until kswapd wakes the process */
2673 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2674 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2675
2676check_pending:
2677 if (fatal_signal_pending(current))
2678 return true;
2679
2680out:
2681 return false;
5515061d
MG
2682}
2683
dac1d27b 2684unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2685 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2686{
33906bc5 2687 unsigned long nr_reclaimed;
66e1707b 2688 struct scan_control sc = {
ee814fe2 2689 .nr_to_reclaim = SWAP_CLUSTER_MAX,
21caf2fc 2690 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
ee814fe2
JW
2691 .order = order,
2692 .nodemask = nodemask,
2693 .priority = DEF_PRIORITY,
66e1707b 2694 .may_writepage = !laptop_mode,
a6dc60f8 2695 .may_unmap = 1,
2e2e4259 2696 .may_swap = 1,
66e1707b
BS
2697 };
2698
5515061d 2699 /*
50694c28
MG
2700 * Do not enter reclaim if fatal signal was delivered while throttled.
2701 * 1 is returned so that the page allocator does not OOM kill at this
2702 * point.
5515061d 2703 */
50694c28 2704 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2705 return 1;
2706
33906bc5
MG
2707 trace_mm_vmscan_direct_reclaim_begin(order,
2708 sc.may_writepage,
2709 gfp_mask);
2710
3115cd91 2711 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2712
2713 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2714
2715 return nr_reclaimed;
66e1707b
BS
2716}
2717
c255a458 2718#ifdef CONFIG_MEMCG
66e1707b 2719
72835c86 2720unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2721 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2722 struct zone *zone,
2723 unsigned long *nr_scanned)
4e416953
BS
2724{
2725 struct scan_control sc = {
b8f5c566 2726 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 2727 .target_mem_cgroup = memcg,
4e416953
BS
2728 .may_writepage = !laptop_mode,
2729 .may_unmap = 1,
2730 .may_swap = !noswap,
4e416953 2731 };
f9be23d6 2732 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2733 int swappiness = mem_cgroup_swappiness(memcg);
0ae5e89c 2734
4e416953
BS
2735 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2736 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2737
9e3b2f8c 2738 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2739 sc.may_writepage,
2740 sc.gfp_mask);
2741
4e416953
BS
2742 /*
2743 * NOTE: Although we can get the priority field, using it
2744 * here is not a good idea, since it limits the pages we can scan.
2745 * if we don't reclaim here, the shrink_zone from balance_pgdat
2746 * will pick up pages from other mem cgroup's as well. We hack
2747 * the priority and make it zero.
2748 */
02695175 2749 shrink_lruvec(lruvec, swappiness, &sc);
bdce6d9e
KM
2750
2751 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2752
0ae5e89c 2753 *nr_scanned = sc.nr_scanned;
4e416953
BS
2754 return sc.nr_reclaimed;
2755}
2756
72835c86 2757unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2758 gfp_t gfp_mask,
185efc0f 2759 bool noswap)
66e1707b 2760{
4e416953 2761 struct zonelist *zonelist;
bdce6d9e 2762 unsigned long nr_reclaimed;
889976db 2763 int nid;
66e1707b 2764 struct scan_control sc = {
22fba335 2765 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a09ed5e0
YH
2766 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2767 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
ee814fe2
JW
2768 .target_mem_cgroup = memcg,
2769 .priority = DEF_PRIORITY,
2770 .may_writepage = !laptop_mode,
2771 .may_unmap = 1,
2772 .may_swap = !noswap,
a09ed5e0 2773 };
66e1707b 2774
889976db
YH
2775 /*
2776 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2777 * take care of from where we get pages. So the node where we start the
2778 * scan does not need to be the current node.
2779 */
72835c86 2780 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2781
2782 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2783
2784 trace_mm_vmscan_memcg_reclaim_begin(0,
2785 sc.may_writepage,
2786 sc.gfp_mask);
2787
3115cd91 2788 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
bdce6d9e
KM
2789
2790 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2791
2792 return nr_reclaimed;
66e1707b
BS
2793}
2794#endif
2795
9e3b2f8c 2796static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2797{
b95a2f2d 2798 struct mem_cgroup *memcg;
f16015fb 2799
b95a2f2d
JW
2800 if (!total_swap_pages)
2801 return;
2802
2803 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2804 do {
c56d5c7d 2805 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2806
c56d5c7d 2807 if (inactive_anon_is_low(lruvec))
1a93be0e 2808 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2809 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2810
2811 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2812 } while (memcg);
f16015fb
JW
2813}
2814
60cefed4
JW
2815static bool zone_balanced(struct zone *zone, int order,
2816 unsigned long balance_gap, int classzone_idx)
2817{
2818 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2819 balance_gap, classzone_idx, 0))
2820 return false;
2821
d84da3f9
KS
2822 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2823 !compaction_suitable(zone, order))
60cefed4
JW
2824 return false;
2825
2826 return true;
2827}
2828
1741c877 2829/*
4ae0a48b
ZC
2830 * pgdat_balanced() is used when checking if a node is balanced.
2831 *
2832 * For order-0, all zones must be balanced!
2833 *
2834 * For high-order allocations only zones that meet watermarks and are in a
2835 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2836 * total of balanced pages must be at least 25% of the zones allowed by
2837 * classzone_idx for the node to be considered balanced. Forcing all zones to
2838 * be balanced for high orders can cause excessive reclaim when there are
2839 * imbalanced zones.
1741c877
MG
2840 * The choice of 25% is due to
2841 * o a 16M DMA zone that is balanced will not balance a zone on any
2842 * reasonable sized machine
2843 * o On all other machines, the top zone must be at least a reasonable
25985edc 2844 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2845 * would need to be at least 256M for it to be balance a whole node.
2846 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2847 * to balance a node on its own. These seemed like reasonable ratios.
2848 */
4ae0a48b 2849static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2850{
b40da049 2851 unsigned long managed_pages = 0;
4ae0a48b 2852 unsigned long balanced_pages = 0;
1741c877
MG
2853 int i;
2854
4ae0a48b
ZC
2855 /* Check the watermark levels */
2856 for (i = 0; i <= classzone_idx; i++) {
2857 struct zone *zone = pgdat->node_zones + i;
1741c877 2858
4ae0a48b
ZC
2859 if (!populated_zone(zone))
2860 continue;
2861
b40da049 2862 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2863
2864 /*
2865 * A special case here:
2866 *
2867 * balance_pgdat() skips over all_unreclaimable after
2868 * DEF_PRIORITY. Effectively, it considers them balanced so
2869 * they must be considered balanced here as well!
2870 */
6e543d57 2871 if (!zone_reclaimable(zone)) {
b40da049 2872 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2873 continue;
2874 }
2875
2876 if (zone_balanced(zone, order, 0, i))
b40da049 2877 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2878 else if (!order)
2879 return false;
2880 }
2881
2882 if (order)
b40da049 2883 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
2884 else
2885 return true;
1741c877
MG
2886}
2887
5515061d
MG
2888/*
2889 * Prepare kswapd for sleeping. This verifies that there are no processes
2890 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2891 *
2892 * Returns true if kswapd is ready to sleep
2893 */
2894static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2895 int classzone_idx)
f50de2d3 2896{
f50de2d3
MG
2897 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2898 if (remaining)
5515061d
MG
2899 return false;
2900
2901 /*
2902 * There is a potential race between when kswapd checks its watermarks
2903 * and a process gets throttled. There is also a potential race if
2904 * processes get throttled, kswapd wakes, a large process exits therby
2905 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2906 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2907 * so wake them now if necessary. If necessary, processes will wake
2908 * kswapd and get throttled again
2909 */
2910 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2911 wake_up(&pgdat->pfmemalloc_wait);
2912 return false;
2913 }
f50de2d3 2914
4ae0a48b 2915 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
2916}
2917
75485363
MG
2918/*
2919 * kswapd shrinks the zone by the number of pages required to reach
2920 * the high watermark.
b8e83b94
MG
2921 *
2922 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
2923 * reclaim or if the lack of progress was due to pages under writeback.
2924 * This is used to determine if the scanning priority needs to be raised.
75485363 2925 */
b8e83b94 2926static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 2927 int classzone_idx,
75485363 2928 struct scan_control *sc,
2ab44f43
MG
2929 unsigned long lru_pages,
2930 unsigned long *nr_attempted)
75485363 2931{
7c954f6d
MG
2932 int testorder = sc->order;
2933 unsigned long balance_gap;
75485363
MG
2934 struct reclaim_state *reclaim_state = current->reclaim_state;
2935 struct shrink_control shrink = {
2936 .gfp_mask = sc->gfp_mask,
2937 };
7c954f6d 2938 bool lowmem_pressure;
75485363
MG
2939
2940 /* Reclaim above the high watermark. */
2941 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
2942
2943 /*
2944 * Kswapd reclaims only single pages with compaction enabled. Trying
2945 * too hard to reclaim until contiguous free pages have become
2946 * available can hurt performance by evicting too much useful data
2947 * from memory. Do not reclaim more than needed for compaction.
2948 */
2949 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2950 compaction_suitable(zone, sc->order) !=
2951 COMPACT_SKIPPED)
2952 testorder = 0;
2953
2954 /*
2955 * We put equal pressure on every zone, unless one zone has way too
2956 * many pages free already. The "too many pages" is defined as the
2957 * high wmark plus a "gap" where the gap is either the low
2958 * watermark or 1% of the zone, whichever is smaller.
2959 */
4be89a34
JZ
2960 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2961 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
7c954f6d
MG
2962
2963 /*
2964 * If there is no low memory pressure or the zone is balanced then no
2965 * reclaim is necessary
2966 */
2967 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2968 if (!lowmem_pressure && zone_balanced(zone, testorder,
2969 balance_gap, classzone_idx))
2970 return true;
2971
75485363 2972 shrink_zone(zone, sc);
0ce3d744
DC
2973 nodes_clear(shrink.nodes_to_scan);
2974 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
75485363
MG
2975
2976 reclaim_state->reclaimed_slab = 0;
6e543d57 2977 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
75485363
MG
2978 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2979
2ab44f43
MG
2980 /* Account for the number of pages attempted to reclaim */
2981 *nr_attempted += sc->nr_to_reclaim;
2982
283aba9f
MG
2983 zone_clear_flag(zone, ZONE_WRITEBACK);
2984
7c954f6d
MG
2985 /*
2986 * If a zone reaches its high watermark, consider it to be no longer
2987 * congested. It's possible there are dirty pages backed by congested
2988 * BDIs but as pressure is relieved, speculatively avoid congestion
2989 * waits.
2990 */
6e543d57 2991 if (zone_reclaimable(zone) &&
7c954f6d
MG
2992 zone_balanced(zone, testorder, 0, classzone_idx)) {
2993 zone_clear_flag(zone, ZONE_CONGESTED);
2994 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2995 }
2996
b8e83b94 2997 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
2998}
2999
1da177e4
LT
3000/*
3001 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 3002 * they are all at high_wmark_pages(zone).
1da177e4 3003 *
0abdee2b 3004 * Returns the final order kswapd was reclaiming at
1da177e4
LT
3005 *
3006 * There is special handling here for zones which are full of pinned pages.
3007 * This can happen if the pages are all mlocked, or if they are all used by
3008 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3009 * What we do is to detect the case where all pages in the zone have been
3010 * scanned twice and there has been zero successful reclaim. Mark the zone as
3011 * dead and from now on, only perform a short scan. Basically we're polling
3012 * the zone for when the problem goes away.
3013 *
3014 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
3015 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3016 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3017 * lower zones regardless of the number of free pages in the lower zones. This
3018 * interoperates with the page allocator fallback scheme to ensure that aging
3019 * of pages is balanced across the zones.
1da177e4 3020 */
99504748 3021static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 3022 int *classzone_idx)
1da177e4 3023{
1da177e4 3024 int i;
99504748 3025 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0608f43d
AM
3026 unsigned long nr_soft_reclaimed;
3027 unsigned long nr_soft_scanned;
179e9639
AM
3028 struct scan_control sc = {
3029 .gfp_mask = GFP_KERNEL,
ee814fe2 3030 .order = order,
b8e83b94 3031 .priority = DEF_PRIORITY,
ee814fe2 3032 .may_writepage = !laptop_mode,
a6dc60f8 3033 .may_unmap = 1,
2e2e4259 3034 .may_swap = 1,
179e9639 3035 };
f8891e5e 3036 count_vm_event(PAGEOUTRUN);
1da177e4 3037
9e3b2f8c 3038 do {
1da177e4 3039 unsigned long lru_pages = 0;
2ab44f43 3040 unsigned long nr_attempted = 0;
b8e83b94 3041 bool raise_priority = true;
2ab44f43 3042 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
3043
3044 sc.nr_reclaimed = 0;
1da177e4 3045
d6277db4
RW
3046 /*
3047 * Scan in the highmem->dma direction for the highest
3048 * zone which needs scanning
3049 */
3050 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3051 struct zone *zone = pgdat->node_zones + i;
1da177e4 3052
d6277db4
RW
3053 if (!populated_zone(zone))
3054 continue;
1da177e4 3055
6e543d57
LD
3056 if (sc.priority != DEF_PRIORITY &&
3057 !zone_reclaimable(zone))
d6277db4 3058 continue;
1da177e4 3059
556adecb
RR
3060 /*
3061 * Do some background aging of the anon list, to give
3062 * pages a chance to be referenced before reclaiming.
3063 */
9e3b2f8c 3064 age_active_anon(zone, &sc);
556adecb 3065
cc715d99
MG
3066 /*
3067 * If the number of buffer_heads in the machine
3068 * exceeds the maximum allowed level and this node
3069 * has a highmem zone, force kswapd to reclaim from
3070 * it to relieve lowmem pressure.
3071 */
3072 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3073 end_zone = i;
3074 break;
3075 }
3076
60cefed4 3077 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 3078 end_zone = i;
e1dbeda6 3079 break;
439423f6 3080 } else {
d43006d5
MG
3081 /*
3082 * If balanced, clear the dirty and congested
3083 * flags
3084 */
439423f6 3085 zone_clear_flag(zone, ZONE_CONGESTED);
d43006d5 3086 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
1da177e4 3087 }
1da177e4 3088 }
dafcb73e 3089
b8e83b94 3090 if (i < 0)
e1dbeda6
AM
3091 goto out;
3092
1da177e4
LT
3093 for (i = 0; i <= end_zone; i++) {
3094 struct zone *zone = pgdat->node_zones + i;
3095
2ab44f43
MG
3096 if (!populated_zone(zone))
3097 continue;
3098
adea02a1 3099 lru_pages += zone_reclaimable_pages(zone);
2ab44f43
MG
3100
3101 /*
3102 * If any zone is currently balanced then kswapd will
3103 * not call compaction as it is expected that the
3104 * necessary pages are already available.
3105 */
3106 if (pgdat_needs_compaction &&
3107 zone_watermark_ok(zone, order,
3108 low_wmark_pages(zone),
3109 *classzone_idx, 0))
3110 pgdat_needs_compaction = false;
1da177e4
LT
3111 }
3112
b7ea3c41
MG
3113 /*
3114 * If we're getting trouble reclaiming, start doing writepage
3115 * even in laptop mode.
3116 */
3117 if (sc.priority < DEF_PRIORITY - 2)
3118 sc.may_writepage = 1;
3119
1da177e4
LT
3120 /*
3121 * Now scan the zone in the dma->highmem direction, stopping
3122 * at the last zone which needs scanning.
3123 *
3124 * We do this because the page allocator works in the opposite
3125 * direction. This prevents the page allocator from allocating
3126 * pages behind kswapd's direction of progress, which would
3127 * cause too much scanning of the lower zones.
3128 */
3129 for (i = 0; i <= end_zone; i++) {
3130 struct zone *zone = pgdat->node_zones + i;
3131
f3fe6512 3132 if (!populated_zone(zone))
1da177e4
LT
3133 continue;
3134
6e543d57
LD
3135 if (sc.priority != DEF_PRIORITY &&
3136 !zone_reclaimable(zone))
1da177e4
LT
3137 continue;
3138
1da177e4 3139 sc.nr_scanned = 0;
4e416953 3140
0608f43d
AM
3141 nr_soft_scanned = 0;
3142 /*
3143 * Call soft limit reclaim before calling shrink_zone.
3144 */
3145 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3146 order, sc.gfp_mask,
3147 &nr_soft_scanned);
3148 sc.nr_reclaimed += nr_soft_reclaimed;
3149
32a4330d 3150 /*
7c954f6d
MG
3151 * There should be no need to raise the scanning
3152 * priority if enough pages are already being scanned
3153 * that that high watermark would be met at 100%
3154 * efficiency.
fe2c2a10 3155 */
7c954f6d
MG
3156 if (kswapd_shrink_zone(zone, end_zone, &sc,
3157 lru_pages, &nr_attempted))
3158 raise_priority = false;
1da177e4 3159 }
5515061d
MG
3160
3161 /*
3162 * If the low watermark is met there is no need for processes
3163 * to be throttled on pfmemalloc_wait as they should not be
3164 * able to safely make forward progress. Wake them
3165 */
3166 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3167 pfmemalloc_watermark_ok(pgdat))
3168 wake_up(&pgdat->pfmemalloc_wait);
3169
1da177e4 3170 /*
b8e83b94
MG
3171 * Fragmentation may mean that the system cannot be rebalanced
3172 * for high-order allocations in all zones. If twice the
3173 * allocation size has been reclaimed and the zones are still
3174 * not balanced then recheck the watermarks at order-0 to
3175 * prevent kswapd reclaiming excessively. Assume that a
3176 * process requested a high-order can direct reclaim/compact.
1da177e4 3177 */
b8e83b94
MG
3178 if (order && sc.nr_reclaimed >= 2UL << order)
3179 order = sc.order = 0;
8357376d 3180
b8e83b94
MG
3181 /* Check if kswapd should be suspending */
3182 if (try_to_freeze() || kthread_should_stop())
3183 break;
8357376d 3184
2ab44f43
MG
3185 /*
3186 * Compact if necessary and kswapd is reclaiming at least the
3187 * high watermark number of pages as requsted
3188 */
3189 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3190 compact_pgdat(pgdat, order);
3191
73ce02e9 3192 /*
b8e83b94
MG
3193 * Raise priority if scanning rate is too low or there was no
3194 * progress in reclaiming pages
73ce02e9 3195 */
b8e83b94
MG
3196 if (raise_priority || !sc.nr_reclaimed)
3197 sc.priority--;
9aa41348 3198 } while (sc.priority >= 1 &&
b8e83b94 3199 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3200
b8e83b94 3201out:
0abdee2b 3202 /*
5515061d 3203 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3204 * makes a decision on the order we were last reclaiming at. However,
3205 * if another caller entered the allocator slow path while kswapd
3206 * was awake, order will remain at the higher level
3207 */
dc83edd9 3208 *classzone_idx = end_zone;
0abdee2b 3209 return order;
1da177e4
LT
3210}
3211
dc83edd9 3212static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3213{
3214 long remaining = 0;
3215 DEFINE_WAIT(wait);
3216
3217 if (freezing(current) || kthread_should_stop())
3218 return;
3219
3220 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3221
3222 /* Try to sleep for a short interval */
5515061d 3223 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3224 remaining = schedule_timeout(HZ/10);
3225 finish_wait(&pgdat->kswapd_wait, &wait);
3226 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3227 }
3228
3229 /*
3230 * After a short sleep, check if it was a premature sleep. If not, then
3231 * go fully to sleep until explicitly woken up.
3232 */
5515061d 3233 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3234 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3235
3236 /*
3237 * vmstat counters are not perfectly accurate and the estimated
3238 * value for counters such as NR_FREE_PAGES can deviate from the
3239 * true value by nr_online_cpus * threshold. To avoid the zone
3240 * watermarks being breached while under pressure, we reduce the
3241 * per-cpu vmstat threshold while kswapd is awake and restore
3242 * them before going back to sleep.
3243 */
3244 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3245
62997027
MG
3246 /*
3247 * Compaction records what page blocks it recently failed to
3248 * isolate pages from and skips them in the future scanning.
3249 * When kswapd is going to sleep, it is reasonable to assume
3250 * that pages and compaction may succeed so reset the cache.
3251 */
3252 reset_isolation_suitable(pgdat);
3253
1c7e7f6c
AK
3254 if (!kthread_should_stop())
3255 schedule();
3256
f0bc0a60
KM
3257 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3258 } else {
3259 if (remaining)
3260 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3261 else
3262 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3263 }
3264 finish_wait(&pgdat->kswapd_wait, &wait);
3265}
3266
1da177e4
LT
3267/*
3268 * The background pageout daemon, started as a kernel thread
4f98a2fe 3269 * from the init process.
1da177e4
LT
3270 *
3271 * This basically trickles out pages so that we have _some_
3272 * free memory available even if there is no other activity
3273 * that frees anything up. This is needed for things like routing
3274 * etc, where we otherwise might have all activity going on in
3275 * asynchronous contexts that cannot page things out.
3276 *
3277 * If there are applications that are active memory-allocators
3278 * (most normal use), this basically shouldn't matter.
3279 */
3280static int kswapd(void *p)
3281{
215ddd66 3282 unsigned long order, new_order;
d2ebd0f6 3283 unsigned balanced_order;
215ddd66 3284 int classzone_idx, new_classzone_idx;
d2ebd0f6 3285 int balanced_classzone_idx;
1da177e4
LT
3286 pg_data_t *pgdat = (pg_data_t*)p;
3287 struct task_struct *tsk = current;
f0bc0a60 3288
1da177e4
LT
3289 struct reclaim_state reclaim_state = {
3290 .reclaimed_slab = 0,
3291 };
a70f7302 3292 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3293
cf40bd16
NP
3294 lockdep_set_current_reclaim_state(GFP_KERNEL);
3295
174596a0 3296 if (!cpumask_empty(cpumask))
c5f59f08 3297 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3298 current->reclaim_state = &reclaim_state;
3299
3300 /*
3301 * Tell the memory management that we're a "memory allocator",
3302 * and that if we need more memory we should get access to it
3303 * regardless (see "__alloc_pages()"). "kswapd" should
3304 * never get caught in the normal page freeing logic.
3305 *
3306 * (Kswapd normally doesn't need memory anyway, but sometimes
3307 * you need a small amount of memory in order to be able to
3308 * page out something else, and this flag essentially protects
3309 * us from recursively trying to free more memory as we're
3310 * trying to free the first piece of memory in the first place).
3311 */
930d9152 3312 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3313 set_freezable();
1da177e4 3314
215ddd66 3315 order = new_order = 0;
d2ebd0f6 3316 balanced_order = 0;
215ddd66 3317 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3318 balanced_classzone_idx = classzone_idx;
1da177e4 3319 for ( ; ; ) {
6f6313d4 3320 bool ret;
3e1d1d28 3321
215ddd66
MG
3322 /*
3323 * If the last balance_pgdat was unsuccessful it's unlikely a
3324 * new request of a similar or harder type will succeed soon
3325 * so consider going to sleep on the basis we reclaimed at
3326 */
d2ebd0f6
AS
3327 if (balanced_classzone_idx >= new_classzone_idx &&
3328 balanced_order == new_order) {
215ddd66
MG
3329 new_order = pgdat->kswapd_max_order;
3330 new_classzone_idx = pgdat->classzone_idx;
3331 pgdat->kswapd_max_order = 0;
3332 pgdat->classzone_idx = pgdat->nr_zones - 1;
3333 }
3334
99504748 3335 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3336 /*
3337 * Don't sleep if someone wants a larger 'order'
99504748 3338 * allocation or has tigher zone constraints
1da177e4
LT
3339 */
3340 order = new_order;
99504748 3341 classzone_idx = new_classzone_idx;
1da177e4 3342 } else {
d2ebd0f6
AS
3343 kswapd_try_to_sleep(pgdat, balanced_order,
3344 balanced_classzone_idx);
1da177e4 3345 order = pgdat->kswapd_max_order;
99504748 3346 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3347 new_order = order;
3348 new_classzone_idx = classzone_idx;
4d40502e 3349 pgdat->kswapd_max_order = 0;
215ddd66 3350 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3351 }
1da177e4 3352
8fe23e05
DR
3353 ret = try_to_freeze();
3354 if (kthread_should_stop())
3355 break;
3356
3357 /*
3358 * We can speed up thawing tasks if we don't call balance_pgdat
3359 * after returning from the refrigerator
3360 */
33906bc5
MG
3361 if (!ret) {
3362 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3363 balanced_classzone_idx = classzone_idx;
3364 balanced_order = balance_pgdat(pgdat, order,
3365 &balanced_classzone_idx);
33906bc5 3366 }
1da177e4 3367 }
b0a8cc58 3368
71abdc15 3369 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3370 current->reclaim_state = NULL;
71abdc15
JW
3371 lockdep_clear_current_reclaim_state();
3372
1da177e4
LT
3373 return 0;
3374}
3375
3376/*
3377 * A zone is low on free memory, so wake its kswapd task to service it.
3378 */
99504748 3379void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3380{
3381 pg_data_t *pgdat;
3382
f3fe6512 3383 if (!populated_zone(zone))
1da177e4
LT
3384 return;
3385
88f5acf8 3386 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 3387 return;
88f5acf8 3388 pgdat = zone->zone_pgdat;
99504748 3389 if (pgdat->kswapd_max_order < order) {
1da177e4 3390 pgdat->kswapd_max_order = order;
99504748
MG
3391 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3392 }
8d0986e2 3393 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3394 return;
892f795d 3395 if (zone_balanced(zone, order, 0, 0))
88f5acf8
MG
3396 return;
3397
3398 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3399 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3400}
3401
c6f37f12 3402#ifdef CONFIG_HIBERNATION
1da177e4 3403/*
7b51755c 3404 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3405 * freed pages.
3406 *
3407 * Rather than trying to age LRUs the aim is to preserve the overall
3408 * LRU order by reclaiming preferentially
3409 * inactive > active > active referenced > active mapped
1da177e4 3410 */
7b51755c 3411unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3412{
d6277db4 3413 struct reclaim_state reclaim_state;
d6277db4 3414 struct scan_control sc = {
ee814fe2 3415 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3416 .gfp_mask = GFP_HIGHUSER_MOVABLE,
ee814fe2 3417 .priority = DEF_PRIORITY,
d6277db4 3418 .may_writepage = 1,
ee814fe2
JW
3419 .may_unmap = 1,
3420 .may_swap = 1,
7b51755c 3421 .hibernation_mode = 1,
1da177e4 3422 };
a09ed5e0 3423 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3424 struct task_struct *p = current;
3425 unsigned long nr_reclaimed;
1da177e4 3426
7b51755c
KM
3427 p->flags |= PF_MEMALLOC;
3428 lockdep_set_current_reclaim_state(sc.gfp_mask);
3429 reclaim_state.reclaimed_slab = 0;
3430 p->reclaim_state = &reclaim_state;
d6277db4 3431
3115cd91 3432 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3433
7b51755c
KM
3434 p->reclaim_state = NULL;
3435 lockdep_clear_current_reclaim_state();
3436 p->flags &= ~PF_MEMALLOC;
d6277db4 3437
7b51755c 3438 return nr_reclaimed;
1da177e4 3439}
c6f37f12 3440#endif /* CONFIG_HIBERNATION */
1da177e4 3441
1da177e4
LT
3442/* It's optimal to keep kswapds on the same CPUs as their memory, but
3443 not required for correctness. So if the last cpu in a node goes
3444 away, we get changed to run anywhere: as the first one comes back,
3445 restore their cpu bindings. */
fcb35a9b
GKH
3446static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3447 void *hcpu)
1da177e4 3448{
58c0a4a7 3449 int nid;
1da177e4 3450
8bb78442 3451 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3452 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3453 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3454 const struct cpumask *mask;
3455
3456 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3457
3e597945 3458 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3459 /* One of our CPUs online: restore mask */
c5f59f08 3460 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3461 }
3462 }
3463 return NOTIFY_OK;
3464}
1da177e4 3465
3218ae14
YG
3466/*
3467 * This kswapd start function will be called by init and node-hot-add.
3468 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3469 */
3470int kswapd_run(int nid)
3471{
3472 pg_data_t *pgdat = NODE_DATA(nid);
3473 int ret = 0;
3474
3475 if (pgdat->kswapd)
3476 return 0;
3477
3478 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3479 if (IS_ERR(pgdat->kswapd)) {
3480 /* failure at boot is fatal */
3481 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3482 pr_err("Failed to start kswapd on node %d\n", nid);
3483 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3484 pgdat->kswapd = NULL;
3218ae14
YG
3485 }
3486 return ret;
3487}
3488
8fe23e05 3489/*
d8adde17 3490 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3491 * hold mem_hotplug_begin/end().
8fe23e05
DR
3492 */
3493void kswapd_stop(int nid)
3494{
3495 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3496
d8adde17 3497 if (kswapd) {
8fe23e05 3498 kthread_stop(kswapd);
d8adde17
JL
3499 NODE_DATA(nid)->kswapd = NULL;
3500 }
8fe23e05
DR
3501}
3502
1da177e4
LT
3503static int __init kswapd_init(void)
3504{
3218ae14 3505 int nid;
69e05944 3506
1da177e4 3507 swap_setup();
48fb2e24 3508 for_each_node_state(nid, N_MEMORY)
3218ae14 3509 kswapd_run(nid);
1da177e4
LT
3510 hotcpu_notifier(cpu_callback, 0);
3511 return 0;
3512}
3513
3514module_init(kswapd_init)
9eeff239
CL
3515
3516#ifdef CONFIG_NUMA
3517/*
3518 * Zone reclaim mode
3519 *
3520 * If non-zero call zone_reclaim when the number of free pages falls below
3521 * the watermarks.
9eeff239
CL
3522 */
3523int zone_reclaim_mode __read_mostly;
3524
1b2ffb78 3525#define RECLAIM_OFF 0
7d03431c 3526#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3527#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3528#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3529
a92f7126
CL
3530/*
3531 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3532 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3533 * a zone.
3534 */
3535#define ZONE_RECLAIM_PRIORITY 4
3536
9614634f
CL
3537/*
3538 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3539 * occur.
3540 */
3541int sysctl_min_unmapped_ratio = 1;
3542
0ff38490
CL
3543/*
3544 * If the number of slab pages in a zone grows beyond this percentage then
3545 * slab reclaim needs to occur.
3546 */
3547int sysctl_min_slab_ratio = 5;
3548
90afa5de
MG
3549static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3550{
3551 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3552 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3553 zone_page_state(zone, NR_ACTIVE_FILE);
3554
3555 /*
3556 * It's possible for there to be more file mapped pages than
3557 * accounted for by the pages on the file LRU lists because
3558 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3559 */
3560 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3561}
3562
3563/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3564static long zone_pagecache_reclaimable(struct zone *zone)
3565{
3566 long nr_pagecache_reclaimable;
3567 long delta = 0;
3568
3569 /*
3570 * If RECLAIM_SWAP is set, then all file pages are considered
3571 * potentially reclaimable. Otherwise, we have to worry about
3572 * pages like swapcache and zone_unmapped_file_pages() provides
3573 * a better estimate
3574 */
3575 if (zone_reclaim_mode & RECLAIM_SWAP)
3576 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3577 else
3578 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3579
3580 /* If we can't clean pages, remove dirty pages from consideration */
3581 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3582 delta += zone_page_state(zone, NR_FILE_DIRTY);
3583
3584 /* Watch for any possible underflows due to delta */
3585 if (unlikely(delta > nr_pagecache_reclaimable))
3586 delta = nr_pagecache_reclaimable;
3587
3588 return nr_pagecache_reclaimable - delta;
3589}
3590
9eeff239
CL
3591/*
3592 * Try to free up some pages from this zone through reclaim.
3593 */
179e9639 3594static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3595{
7fb2d46d 3596 /* Minimum pages needed in order to stay on node */
69e05944 3597 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3598 struct task_struct *p = current;
3599 struct reclaim_state reclaim_state;
179e9639 3600 struct scan_control sc = {
62b726c1 3601 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3602 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3603 .order = order,
9e3b2f8c 3604 .priority = ZONE_RECLAIM_PRIORITY,
ee814fe2
JW
3605 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3606 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3607 .may_swap = 1,
179e9639 3608 };
a09ed5e0
YH
3609 struct shrink_control shrink = {
3610 .gfp_mask = sc.gfp_mask,
3611 };
15748048 3612 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3613
9eeff239 3614 cond_resched();
d4f7796e
CL
3615 /*
3616 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3617 * and we also need to be able to write out pages for RECLAIM_WRITE
3618 * and RECLAIM_SWAP.
3619 */
3620 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3621 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3622 reclaim_state.reclaimed_slab = 0;
3623 p->reclaim_state = &reclaim_state;
c84db23c 3624
90afa5de 3625 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3626 /*
3627 * Free memory by calling shrink zone with increasing
3628 * priorities until we have enough memory freed.
3629 */
0ff38490 3630 do {
9e3b2f8c
KK
3631 shrink_zone(zone, &sc);
3632 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3633 }
c84db23c 3634
15748048
KM
3635 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3636 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3637 /*
7fb2d46d 3638 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3639 * many pages were freed in this zone. So we take the current
3640 * number of slab pages and shake the slab until it is reduced
3641 * by the same nr_pages that we used for reclaiming unmapped
3642 * pages.
2a16e3f4 3643 */
0ce3d744
DC
3644 nodes_clear(shrink.nodes_to_scan);
3645 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
4dc4b3d9
KM
3646 for (;;) {
3647 unsigned long lru_pages = zone_reclaimable_pages(zone);
3648
3649 /* No reclaimable slab or very low memory pressure */
1495f230 3650 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3651 break;
3652
3653 /* Freed enough memory */
3654 nr_slab_pages1 = zone_page_state(zone,
3655 NR_SLAB_RECLAIMABLE);
3656 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3657 break;
3658 }
83e33a47
CL
3659
3660 /*
3661 * Update nr_reclaimed by the number of slab pages we
3662 * reclaimed from this zone.
3663 */
15748048
KM
3664 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3665 if (nr_slab_pages1 < nr_slab_pages0)
3666 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3667 }
3668
9eeff239 3669 p->reclaim_state = NULL;
d4f7796e 3670 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3671 lockdep_clear_current_reclaim_state();
a79311c1 3672 return sc.nr_reclaimed >= nr_pages;
9eeff239 3673}
179e9639
AM
3674
3675int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3676{
179e9639 3677 int node_id;
d773ed6b 3678 int ret;
179e9639
AM
3679
3680 /*
0ff38490
CL
3681 * Zone reclaim reclaims unmapped file backed pages and
3682 * slab pages if we are over the defined limits.
34aa1330 3683 *
9614634f
CL
3684 * A small portion of unmapped file backed pages is needed for
3685 * file I/O otherwise pages read by file I/O will be immediately
3686 * thrown out if the zone is overallocated. So we do not reclaim
3687 * if less than a specified percentage of the zone is used by
3688 * unmapped file backed pages.
179e9639 3689 */
90afa5de
MG
3690 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3691 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3692 return ZONE_RECLAIM_FULL;
179e9639 3693
6e543d57 3694 if (!zone_reclaimable(zone))
fa5e084e 3695 return ZONE_RECLAIM_FULL;
d773ed6b 3696
179e9639 3697 /*
d773ed6b 3698 * Do not scan if the allocation should not be delayed.
179e9639 3699 */
d773ed6b 3700 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3701 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3702
3703 /*
3704 * Only run zone reclaim on the local zone or on zones that do not
3705 * have associated processors. This will favor the local processor
3706 * over remote processors and spread off node memory allocations
3707 * as wide as possible.
3708 */
89fa3024 3709 node_id = zone_to_nid(zone);
37c0708d 3710 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3711 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3712
3713 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3714 return ZONE_RECLAIM_NOSCAN;
3715
d773ed6b
DR
3716 ret = __zone_reclaim(zone, gfp_mask, order);
3717 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3718
24cf7251
MG
3719 if (!ret)
3720 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3721
d773ed6b 3722 return ret;
179e9639 3723}
9eeff239 3724#endif
894bc310 3725
894bc310
LS
3726/*
3727 * page_evictable - test whether a page is evictable
3728 * @page: the page to test
894bc310
LS
3729 *
3730 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3731 * lists vs unevictable list.
894bc310
LS
3732 *
3733 * Reasons page might not be evictable:
ba9ddf49 3734 * (1) page's mapping marked unevictable
b291f000 3735 * (2) page is part of an mlocked VMA
ba9ddf49 3736 *
894bc310 3737 */
39b5f29a 3738int page_evictable(struct page *page)
894bc310 3739{
39b5f29a 3740 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3741}
89e004ea 3742
85046579 3743#ifdef CONFIG_SHMEM
89e004ea 3744/**
24513264
HD
3745 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3746 * @pages: array of pages to check
3747 * @nr_pages: number of pages to check
89e004ea 3748 *
24513264 3749 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3750 *
3751 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3752 */
24513264 3753void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3754{
925b7673 3755 struct lruvec *lruvec;
24513264
HD
3756 struct zone *zone = NULL;
3757 int pgscanned = 0;
3758 int pgrescued = 0;
3759 int i;
89e004ea 3760
24513264
HD
3761 for (i = 0; i < nr_pages; i++) {
3762 struct page *page = pages[i];
3763 struct zone *pagezone;
89e004ea 3764
24513264
HD
3765 pgscanned++;
3766 pagezone = page_zone(page);
3767 if (pagezone != zone) {
3768 if (zone)
3769 spin_unlock_irq(&zone->lru_lock);
3770 zone = pagezone;
3771 spin_lock_irq(&zone->lru_lock);
3772 }
fa9add64 3773 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3774
24513264
HD
3775 if (!PageLRU(page) || !PageUnevictable(page))
3776 continue;
89e004ea 3777
39b5f29a 3778 if (page_evictable(page)) {
24513264
HD
3779 enum lru_list lru = page_lru_base_type(page);
3780
309381fe 3781 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3782 ClearPageUnevictable(page);
fa9add64
HD
3783 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3784 add_page_to_lru_list(page, lruvec, lru);
24513264 3785 pgrescued++;
89e004ea 3786 }
24513264 3787 }
89e004ea 3788
24513264
HD
3789 if (zone) {
3790 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3791 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3792 spin_unlock_irq(&zone->lru_lock);
89e004ea 3793 }
89e004ea 3794}
85046579 3795#endif /* CONFIG_SHMEM */
af936a16 3796
264e56d8 3797static void warn_scan_unevictable_pages(void)
af936a16 3798{
264e56d8 3799 printk_once(KERN_WARNING
25bd91bd 3800 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3801 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3802 "one, please send an email to linux-mm@kvack.org.\n",
3803 current->comm);
af936a16
LS
3804}
3805
3806/*
3807 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3808 * all nodes' unevictable lists for evictable pages
3809 */
3810unsigned long scan_unevictable_pages;
3811
3812int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3813 void __user *buffer,
af936a16
LS
3814 size_t *length, loff_t *ppos)
3815{
264e56d8 3816 warn_scan_unevictable_pages();
8d65af78 3817 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3818 scan_unevictable_pages = 0;
3819 return 0;
3820}
3821
e4455abb 3822#ifdef CONFIG_NUMA
af936a16
LS
3823/*
3824 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3825 * a specified node's per zone unevictable lists for evictable pages.
3826 */
3827
10fbcf4c
KS
3828static ssize_t read_scan_unevictable_node(struct device *dev,
3829 struct device_attribute *attr,
af936a16
LS
3830 char *buf)
3831{
264e56d8 3832 warn_scan_unevictable_pages();
af936a16
LS
3833 return sprintf(buf, "0\n"); /* always zero; should fit... */
3834}
3835
10fbcf4c
KS
3836static ssize_t write_scan_unevictable_node(struct device *dev,
3837 struct device_attribute *attr,
af936a16
LS
3838 const char *buf, size_t count)
3839{
264e56d8 3840 warn_scan_unevictable_pages();
af936a16
LS
3841 return 1;
3842}
3843
3844
10fbcf4c 3845static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3846 read_scan_unevictable_node,
3847 write_scan_unevictable_node);
3848
3849int scan_unevictable_register_node(struct node *node)
3850{
10fbcf4c 3851 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3852}
3853
3854void scan_unevictable_unregister_node(struct node *node)
3855{
10fbcf4c 3856 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3857}
e4455abb 3858#endif