]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/vmscan.c
mm: vmscan: scan dirty pages even in laptop mode
[mirror_ubuntu-artful-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4
LT
16#include <linux/mm.h>
17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
268bb0ce 47#include <linux/prefetch.h>
b1de0d13 48#include <linux/printk.h>
f9fe48be 49#include <linux/dax.h>
1da177e4
LT
50
51#include <asm/tlbflush.h>
52#include <asm/div64.h>
53
54#include <linux/swapops.h>
117aad1e 55#include <linux/balloon_compaction.h>
1da177e4 56
0f8053a5
NP
57#include "internal.h"
58
33906bc5
MG
59#define CREATE_TRACE_POINTS
60#include <trace/events/vmscan.h>
61
1da177e4 62struct scan_control {
22fba335
KM
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
1da177e4 66 /* This context's GFP mask */
6daa0e28 67 gfp_t gfp_mask;
1da177e4 68
ee814fe2 69 /* Allocation order */
5ad333eb 70 int order;
66e1707b 71
ee814fe2
JW
72 /*
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 * are scanned.
75 */
76 nodemask_t *nodemask;
9e3b2f8c 77
f16015fb
JW
78 /*
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
81 */
82 struct mem_cgroup *target_mem_cgroup;
66e1707b 83
ee814fe2
JW
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
86
b2e18757
MG
87 /* The highest zone to isolate pages for reclaim from */
88 enum zone_type reclaim_idx;
89
1276ad68 90 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
91 unsigned int may_writepage:1;
92
93 /* Can mapped pages be reclaimed? */
94 unsigned int may_unmap:1;
95
96 /* Can pages be swapped as part of reclaim? */
97 unsigned int may_swap:1;
98
241994ed
JW
99 /* Can cgroups be reclaimed below their normal consumption range? */
100 unsigned int may_thrash:1;
101
ee814fe2
JW
102 unsigned int hibernation_mode:1;
103
104 /* One of the zones is ready for compaction */
105 unsigned int compaction_ready:1;
106
107 /* Incremented by the number of inactive pages that were scanned */
108 unsigned long nr_scanned;
109
110 /* Number of pages freed so far during a call to shrink_zones() */
111 unsigned long nr_reclaimed;
1da177e4
LT
112};
113
1da177e4
LT
114#ifdef ARCH_HAS_PREFETCH
115#define prefetch_prev_lru_page(_page, _base, _field) \
116 do { \
117 if ((_page)->lru.prev != _base) { \
118 struct page *prev; \
119 \
120 prev = lru_to_page(&(_page->lru)); \
121 prefetch(&prev->_field); \
122 } \
123 } while (0)
124#else
125#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
126#endif
127
128#ifdef ARCH_HAS_PREFETCHW
129#define prefetchw_prev_lru_page(_page, _base, _field) \
130 do { \
131 if ((_page)->lru.prev != _base) { \
132 struct page *prev; \
133 \
134 prev = lru_to_page(&(_page->lru)); \
135 prefetchw(&prev->_field); \
136 } \
137 } while (0)
138#else
139#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
140#endif
141
142/*
143 * From 0 .. 100. Higher means more swappy.
144 */
145int vm_swappiness = 60;
d0480be4
WSH
146/*
147 * The total number of pages which are beyond the high watermark within all
148 * zones.
149 */
150unsigned long vm_total_pages;
1da177e4
LT
151
152static LIST_HEAD(shrinker_list);
153static DECLARE_RWSEM(shrinker_rwsem);
154
c255a458 155#ifdef CONFIG_MEMCG
89b5fae5
JW
156static bool global_reclaim(struct scan_control *sc)
157{
f16015fb 158 return !sc->target_mem_cgroup;
89b5fae5 159}
97c9341f
TH
160
161/**
162 * sane_reclaim - is the usual dirty throttling mechanism operational?
163 * @sc: scan_control in question
164 *
165 * The normal page dirty throttling mechanism in balance_dirty_pages() is
166 * completely broken with the legacy memcg and direct stalling in
167 * shrink_page_list() is used for throttling instead, which lacks all the
168 * niceties such as fairness, adaptive pausing, bandwidth proportional
169 * allocation and configurability.
170 *
171 * This function tests whether the vmscan currently in progress can assume
172 * that the normal dirty throttling mechanism is operational.
173 */
174static bool sane_reclaim(struct scan_control *sc)
175{
176 struct mem_cgroup *memcg = sc->target_mem_cgroup;
177
178 if (!memcg)
179 return true;
180#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 181 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
182 return true;
183#endif
184 return false;
185}
91a45470 186#else
89b5fae5
JW
187static bool global_reclaim(struct scan_control *sc)
188{
189 return true;
190}
97c9341f
TH
191
192static bool sane_reclaim(struct scan_control *sc)
193{
194 return true;
195}
91a45470
KH
196#endif
197
5a1c84b4
MG
198/*
199 * This misses isolated pages which are not accounted for to save counters.
200 * As the data only determines if reclaim or compaction continues, it is
201 * not expected that isolated pages will be a dominating factor.
202 */
203unsigned long zone_reclaimable_pages(struct zone *zone)
204{
205 unsigned long nr;
206
207 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
208 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
209 if (get_nr_swap_pages() > 0)
210 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
211 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
212
213 return nr;
214}
215
599d0c95
MG
216unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
217{
218 unsigned long nr;
219
220 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
221 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
222 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
6e543d57
LD
223
224 if (get_nr_swap_pages() > 0)
599d0c95
MG
225 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
226 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
227 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
6e543d57
LD
228
229 return nr;
230}
231
599d0c95 232bool pgdat_reclaimable(struct pglist_data *pgdat)
6e543d57 233{
599d0c95
MG
234 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
235 pgdat_reclaimable_pages(pgdat) * 6;
6e543d57
LD
236}
237
fd538803
MH
238/**
239 * lruvec_lru_size - Returns the number of pages on the given LRU list.
240 * @lruvec: lru vector
241 * @lru: lru to use
242 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
243 */
244unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 245{
fd538803
MH
246 unsigned long lru_size;
247 int zid;
248
c3c787e8 249 if (!mem_cgroup_disabled())
fd538803
MH
250 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
251 else
252 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
a3d8e054 253
fd538803
MH
254 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
255 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
256 unsigned long size;
c9f299d9 257
fd538803
MH
258 if (!managed_zone(zone))
259 continue;
260
261 if (!mem_cgroup_disabled())
262 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
263 else
264 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
265 NR_ZONE_LRU_BASE + lru);
266 lru_size -= min(size, lru_size);
267 }
268
269 return lru_size;
b4536f0c 270
b4536f0c
MH
271}
272
1da177e4 273/*
1d3d4437 274 * Add a shrinker callback to be called from the vm.
1da177e4 275 */
1d3d4437 276int register_shrinker(struct shrinker *shrinker)
1da177e4 277{
1d3d4437
GC
278 size_t size = sizeof(*shrinker->nr_deferred);
279
1d3d4437
GC
280 if (shrinker->flags & SHRINKER_NUMA_AWARE)
281 size *= nr_node_ids;
282
283 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
284 if (!shrinker->nr_deferred)
285 return -ENOMEM;
286
8e1f936b
RR
287 down_write(&shrinker_rwsem);
288 list_add_tail(&shrinker->list, &shrinker_list);
289 up_write(&shrinker_rwsem);
1d3d4437 290 return 0;
1da177e4 291}
8e1f936b 292EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
293
294/*
295 * Remove one
296 */
8e1f936b 297void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
298{
299 down_write(&shrinker_rwsem);
300 list_del(&shrinker->list);
301 up_write(&shrinker_rwsem);
ae393321 302 kfree(shrinker->nr_deferred);
1da177e4 303}
8e1f936b 304EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
305
306#define SHRINK_BATCH 128
1d3d4437 307
cb731d6c
VD
308static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
309 struct shrinker *shrinker,
310 unsigned long nr_scanned,
311 unsigned long nr_eligible)
1d3d4437
GC
312{
313 unsigned long freed = 0;
314 unsigned long long delta;
315 long total_scan;
d5bc5fd3 316 long freeable;
1d3d4437
GC
317 long nr;
318 long new_nr;
319 int nid = shrinkctl->nid;
320 long batch_size = shrinker->batch ? shrinker->batch
321 : SHRINK_BATCH;
5f33a080 322 long scanned = 0, next_deferred;
1d3d4437 323
d5bc5fd3
VD
324 freeable = shrinker->count_objects(shrinker, shrinkctl);
325 if (freeable == 0)
1d3d4437
GC
326 return 0;
327
328 /*
329 * copy the current shrinker scan count into a local variable
330 * and zero it so that other concurrent shrinker invocations
331 * don't also do this scanning work.
332 */
333 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
334
335 total_scan = nr;
6b4f7799 336 delta = (4 * nr_scanned) / shrinker->seeks;
d5bc5fd3 337 delta *= freeable;
6b4f7799 338 do_div(delta, nr_eligible + 1);
1d3d4437
GC
339 total_scan += delta;
340 if (total_scan < 0) {
8612c663 341 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 342 shrinker->scan_objects, total_scan);
d5bc5fd3 343 total_scan = freeable;
5f33a080
SL
344 next_deferred = nr;
345 } else
346 next_deferred = total_scan;
1d3d4437
GC
347
348 /*
349 * We need to avoid excessive windup on filesystem shrinkers
350 * due to large numbers of GFP_NOFS allocations causing the
351 * shrinkers to return -1 all the time. This results in a large
352 * nr being built up so when a shrink that can do some work
353 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 354 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
355 * memory.
356 *
357 * Hence only allow the shrinker to scan the entire cache when
358 * a large delta change is calculated directly.
359 */
d5bc5fd3
VD
360 if (delta < freeable / 4)
361 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
362
363 /*
364 * Avoid risking looping forever due to too large nr value:
365 * never try to free more than twice the estimate number of
366 * freeable entries.
367 */
d5bc5fd3
VD
368 if (total_scan > freeable * 2)
369 total_scan = freeable * 2;
1d3d4437
GC
370
371 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
6b4f7799
JW
372 nr_scanned, nr_eligible,
373 freeable, delta, total_scan);
1d3d4437 374
0b1fb40a
VD
375 /*
376 * Normally, we should not scan less than batch_size objects in one
377 * pass to avoid too frequent shrinker calls, but if the slab has less
378 * than batch_size objects in total and we are really tight on memory,
379 * we will try to reclaim all available objects, otherwise we can end
380 * up failing allocations although there are plenty of reclaimable
381 * objects spread over several slabs with usage less than the
382 * batch_size.
383 *
384 * We detect the "tight on memory" situations by looking at the total
385 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 386 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
387 * scanning at high prio and therefore should try to reclaim as much as
388 * possible.
389 */
390 while (total_scan >= batch_size ||
d5bc5fd3 391 total_scan >= freeable) {
a0b02131 392 unsigned long ret;
0b1fb40a 393 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 394
0b1fb40a 395 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
396 ret = shrinker->scan_objects(shrinker, shrinkctl);
397 if (ret == SHRINK_STOP)
398 break;
399 freed += ret;
1d3d4437 400
0b1fb40a
VD
401 count_vm_events(SLABS_SCANNED, nr_to_scan);
402 total_scan -= nr_to_scan;
5f33a080 403 scanned += nr_to_scan;
1d3d4437
GC
404
405 cond_resched();
406 }
407
5f33a080
SL
408 if (next_deferred >= scanned)
409 next_deferred -= scanned;
410 else
411 next_deferred = 0;
1d3d4437
GC
412 /*
413 * move the unused scan count back into the shrinker in a
414 * manner that handles concurrent updates. If we exhausted the
415 * scan, there is no need to do an update.
416 */
5f33a080
SL
417 if (next_deferred > 0)
418 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
419 &shrinker->nr_deferred[nid]);
420 else
421 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
422
df9024a8 423 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 424 return freed;
1495f230
YH
425}
426
6b4f7799 427/**
cb731d6c 428 * shrink_slab - shrink slab caches
6b4f7799
JW
429 * @gfp_mask: allocation context
430 * @nid: node whose slab caches to target
cb731d6c 431 * @memcg: memory cgroup whose slab caches to target
6b4f7799
JW
432 * @nr_scanned: pressure numerator
433 * @nr_eligible: pressure denominator
1da177e4 434 *
6b4f7799 435 * Call the shrink functions to age shrinkable caches.
1da177e4 436 *
6b4f7799
JW
437 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
438 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 439 *
cb731d6c
VD
440 * @memcg specifies the memory cgroup to target. If it is not NULL,
441 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
0fc9f58a
VD
442 * objects from the memory cgroup specified. Otherwise, only unaware
443 * shrinkers are called.
cb731d6c 444 *
6b4f7799
JW
445 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
446 * the available objects should be scanned. Page reclaim for example
447 * passes the number of pages scanned and the number of pages on the
448 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
449 * when it encountered mapped pages. The ratio is further biased by
450 * the ->seeks setting of the shrink function, which indicates the
451 * cost to recreate an object relative to that of an LRU page.
b15e0905 452 *
6b4f7799 453 * Returns the number of reclaimed slab objects.
1da177e4 454 */
cb731d6c
VD
455static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
456 struct mem_cgroup *memcg,
457 unsigned long nr_scanned,
458 unsigned long nr_eligible)
1da177e4
LT
459{
460 struct shrinker *shrinker;
24f7c6b9 461 unsigned long freed = 0;
1da177e4 462
0fc9f58a 463 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
cb731d6c
VD
464 return 0;
465
6b4f7799
JW
466 if (nr_scanned == 0)
467 nr_scanned = SWAP_CLUSTER_MAX;
1da177e4 468
f06590bd 469 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
470 /*
471 * If we would return 0, our callers would understand that we
472 * have nothing else to shrink and give up trying. By returning
473 * 1 we keep it going and assume we'll be able to shrink next
474 * time.
475 */
476 freed = 1;
f06590bd
MK
477 goto out;
478 }
1da177e4
LT
479
480 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
481 struct shrink_control sc = {
482 .gfp_mask = gfp_mask,
483 .nid = nid,
cb731d6c 484 .memcg = memcg,
6b4f7799 485 };
ec97097b 486
0fc9f58a
VD
487 /*
488 * If kernel memory accounting is disabled, we ignore
489 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
490 * passing NULL for memcg.
491 */
492 if (memcg_kmem_enabled() &&
493 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
cb731d6c
VD
494 continue;
495
6b4f7799
JW
496 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
497 sc.nid = 0;
1da177e4 498
cb731d6c 499 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
1da177e4 500 }
6b4f7799 501
1da177e4 502 up_read(&shrinker_rwsem);
f06590bd
MK
503out:
504 cond_resched();
24f7c6b9 505 return freed;
1da177e4
LT
506}
507
cb731d6c
VD
508void drop_slab_node(int nid)
509{
510 unsigned long freed;
511
512 do {
513 struct mem_cgroup *memcg = NULL;
514
515 freed = 0;
516 do {
517 freed += shrink_slab(GFP_KERNEL, nid, memcg,
518 1000, 1000);
519 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
520 } while (freed > 10);
521}
522
523void drop_slab(void)
524{
525 int nid;
526
527 for_each_online_node(nid)
528 drop_slab_node(nid);
529}
530
1da177e4
LT
531static inline int is_page_cache_freeable(struct page *page)
532{
ceddc3a5
JW
533 /*
534 * A freeable page cache page is referenced only by the caller
535 * that isolated the page, the page cache radix tree and
536 * optional buffer heads at page->private.
537 */
edcf4748 538 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
539}
540
703c2708 541static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 542{
930d9152 543 if (current->flags & PF_SWAPWRITE)
1da177e4 544 return 1;
703c2708 545 if (!inode_write_congested(inode))
1da177e4 546 return 1;
703c2708 547 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
548 return 1;
549 return 0;
550}
551
552/*
553 * We detected a synchronous write error writing a page out. Probably
554 * -ENOSPC. We need to propagate that into the address_space for a subsequent
555 * fsync(), msync() or close().
556 *
557 * The tricky part is that after writepage we cannot touch the mapping: nothing
558 * prevents it from being freed up. But we have a ref on the page and once
559 * that page is locked, the mapping is pinned.
560 *
561 * We're allowed to run sleeping lock_page() here because we know the caller has
562 * __GFP_FS.
563 */
564static void handle_write_error(struct address_space *mapping,
565 struct page *page, int error)
566{
7eaceacc 567 lock_page(page);
3e9f45bd
GC
568 if (page_mapping(page) == mapping)
569 mapping_set_error(mapping, error);
1da177e4
LT
570 unlock_page(page);
571}
572
04e62a29
CL
573/* possible outcome of pageout() */
574typedef enum {
575 /* failed to write page out, page is locked */
576 PAGE_KEEP,
577 /* move page to the active list, page is locked */
578 PAGE_ACTIVATE,
579 /* page has been sent to the disk successfully, page is unlocked */
580 PAGE_SUCCESS,
581 /* page is clean and locked */
582 PAGE_CLEAN,
583} pageout_t;
584
1da177e4 585/*
1742f19f
AM
586 * pageout is called by shrink_page_list() for each dirty page.
587 * Calls ->writepage().
1da177e4 588 */
c661b078 589static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 590 struct scan_control *sc)
1da177e4
LT
591{
592 /*
593 * If the page is dirty, only perform writeback if that write
594 * will be non-blocking. To prevent this allocation from being
595 * stalled by pagecache activity. But note that there may be
596 * stalls if we need to run get_block(). We could test
597 * PagePrivate for that.
598 *
8174202b 599 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
600 * this page's queue, we can perform writeback even if that
601 * will block.
602 *
603 * If the page is swapcache, write it back even if that would
604 * block, for some throttling. This happens by accident, because
605 * swap_backing_dev_info is bust: it doesn't reflect the
606 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
607 */
608 if (!is_page_cache_freeable(page))
609 return PAGE_KEEP;
610 if (!mapping) {
611 /*
612 * Some data journaling orphaned pages can have
613 * page->mapping == NULL while being dirty with clean buffers.
614 */
266cf658 615 if (page_has_private(page)) {
1da177e4
LT
616 if (try_to_free_buffers(page)) {
617 ClearPageDirty(page);
b1de0d13 618 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
619 return PAGE_CLEAN;
620 }
621 }
622 return PAGE_KEEP;
623 }
624 if (mapping->a_ops->writepage == NULL)
625 return PAGE_ACTIVATE;
703c2708 626 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
627 return PAGE_KEEP;
628
629 if (clear_page_dirty_for_io(page)) {
630 int res;
631 struct writeback_control wbc = {
632 .sync_mode = WB_SYNC_NONE,
633 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
634 .range_start = 0,
635 .range_end = LLONG_MAX,
1da177e4
LT
636 .for_reclaim = 1,
637 };
638
639 SetPageReclaim(page);
640 res = mapping->a_ops->writepage(page, &wbc);
641 if (res < 0)
642 handle_write_error(mapping, page, res);
994fc28c 643 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
644 ClearPageReclaim(page);
645 return PAGE_ACTIVATE;
646 }
c661b078 647
1da177e4
LT
648 if (!PageWriteback(page)) {
649 /* synchronous write or broken a_ops? */
650 ClearPageReclaim(page);
651 }
3aa23851 652 trace_mm_vmscan_writepage(page);
c4a25635 653 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
654 return PAGE_SUCCESS;
655 }
656
657 return PAGE_CLEAN;
658}
659
a649fd92 660/*
e286781d
NP
661 * Same as remove_mapping, but if the page is removed from the mapping, it
662 * gets returned with a refcount of 0.
a649fd92 663 */
a528910e
JW
664static int __remove_mapping(struct address_space *mapping, struct page *page,
665 bool reclaimed)
49d2e9cc 666{
c4843a75 667 unsigned long flags;
c4843a75 668
28e4d965
NP
669 BUG_ON(!PageLocked(page));
670 BUG_ON(mapping != page_mapping(page));
49d2e9cc 671
c4843a75 672 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 673 /*
0fd0e6b0
NP
674 * The non racy check for a busy page.
675 *
676 * Must be careful with the order of the tests. When someone has
677 * a ref to the page, it may be possible that they dirty it then
678 * drop the reference. So if PageDirty is tested before page_count
679 * here, then the following race may occur:
680 *
681 * get_user_pages(&page);
682 * [user mapping goes away]
683 * write_to(page);
684 * !PageDirty(page) [good]
685 * SetPageDirty(page);
686 * put_page(page);
687 * !page_count(page) [good, discard it]
688 *
689 * [oops, our write_to data is lost]
690 *
691 * Reversing the order of the tests ensures such a situation cannot
692 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 693 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
694 *
695 * Note that if SetPageDirty is always performed via set_page_dirty,
696 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 697 */
fe896d18 698 if (!page_ref_freeze(page, 2))
49d2e9cc 699 goto cannot_free;
e286781d
NP
700 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
701 if (unlikely(PageDirty(page))) {
fe896d18 702 page_ref_unfreeze(page, 2);
49d2e9cc 703 goto cannot_free;
e286781d 704 }
49d2e9cc
CL
705
706 if (PageSwapCache(page)) {
707 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 708 mem_cgroup_swapout(page, swap);
49d2e9cc 709 __delete_from_swap_cache(page);
c4843a75 710 spin_unlock_irqrestore(&mapping->tree_lock, flags);
0a31bc97 711 swapcache_free(swap);
e286781d 712 } else {
6072d13c 713 void (*freepage)(struct page *);
a528910e 714 void *shadow = NULL;
6072d13c
LT
715
716 freepage = mapping->a_ops->freepage;
a528910e
JW
717 /*
718 * Remember a shadow entry for reclaimed file cache in
719 * order to detect refaults, thus thrashing, later on.
720 *
721 * But don't store shadows in an address space that is
722 * already exiting. This is not just an optizimation,
723 * inode reclaim needs to empty out the radix tree or
724 * the nodes are lost. Don't plant shadows behind its
725 * back.
f9fe48be
RZ
726 *
727 * We also don't store shadows for DAX mappings because the
728 * only page cache pages found in these are zero pages
729 * covering holes, and because we don't want to mix DAX
730 * exceptional entries and shadow exceptional entries in the
731 * same page_tree.
a528910e
JW
732 */
733 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 734 !mapping_exiting(mapping) && !dax_mapping(mapping))
a528910e 735 shadow = workingset_eviction(mapping, page);
62cccb8c 736 __delete_from_page_cache(page, shadow);
c4843a75 737 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
738
739 if (freepage != NULL)
740 freepage(page);
49d2e9cc
CL
741 }
742
49d2e9cc
CL
743 return 1;
744
745cannot_free:
c4843a75 746 spin_unlock_irqrestore(&mapping->tree_lock, flags);
49d2e9cc
CL
747 return 0;
748}
749
e286781d
NP
750/*
751 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
752 * someone else has a ref on the page, abort and return 0. If it was
753 * successfully detached, return 1. Assumes the caller has a single ref on
754 * this page.
755 */
756int remove_mapping(struct address_space *mapping, struct page *page)
757{
a528910e 758 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
759 /*
760 * Unfreezing the refcount with 1 rather than 2 effectively
761 * drops the pagecache ref for us without requiring another
762 * atomic operation.
763 */
fe896d18 764 page_ref_unfreeze(page, 1);
e286781d
NP
765 return 1;
766 }
767 return 0;
768}
769
894bc310
LS
770/**
771 * putback_lru_page - put previously isolated page onto appropriate LRU list
772 * @page: page to be put back to appropriate lru list
773 *
774 * Add previously isolated @page to appropriate LRU list.
775 * Page may still be unevictable for other reasons.
776 *
777 * lru_lock must not be held, interrupts must be enabled.
778 */
894bc310
LS
779void putback_lru_page(struct page *page)
780{
0ec3b74c 781 bool is_unevictable;
bbfd28ee 782 int was_unevictable = PageUnevictable(page);
894bc310 783
309381fe 784 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
785
786redo:
787 ClearPageUnevictable(page);
788
39b5f29a 789 if (page_evictable(page)) {
894bc310
LS
790 /*
791 * For evictable pages, we can use the cache.
792 * In event of a race, worst case is we end up with an
793 * unevictable page on [in]active list.
794 * We know how to handle that.
795 */
0ec3b74c 796 is_unevictable = false;
c53954a0 797 lru_cache_add(page);
894bc310
LS
798 } else {
799 /*
800 * Put unevictable pages directly on zone's unevictable
801 * list.
802 */
0ec3b74c 803 is_unevictable = true;
894bc310 804 add_page_to_unevictable_list(page);
6a7b9548 805 /*
21ee9f39
MK
806 * When racing with an mlock or AS_UNEVICTABLE clearing
807 * (page is unlocked) make sure that if the other thread
808 * does not observe our setting of PG_lru and fails
24513264 809 * isolation/check_move_unevictable_pages,
21ee9f39 810 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
811 * the page back to the evictable list.
812 *
21ee9f39 813 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
814 */
815 smp_mb();
894bc310 816 }
894bc310
LS
817
818 /*
819 * page's status can change while we move it among lru. If an evictable
820 * page is on unevictable list, it never be freed. To avoid that,
821 * check after we added it to the list, again.
822 */
0ec3b74c 823 if (is_unevictable && page_evictable(page)) {
894bc310
LS
824 if (!isolate_lru_page(page)) {
825 put_page(page);
826 goto redo;
827 }
828 /* This means someone else dropped this page from LRU
829 * So, it will be freed or putback to LRU again. There is
830 * nothing to do here.
831 */
832 }
833
0ec3b74c 834 if (was_unevictable && !is_unevictable)
bbfd28ee 835 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 836 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
837 count_vm_event(UNEVICTABLE_PGCULLED);
838
894bc310
LS
839 put_page(page); /* drop ref from isolate */
840}
841
dfc8d636
JW
842enum page_references {
843 PAGEREF_RECLAIM,
844 PAGEREF_RECLAIM_CLEAN,
64574746 845 PAGEREF_KEEP,
dfc8d636
JW
846 PAGEREF_ACTIVATE,
847};
848
849static enum page_references page_check_references(struct page *page,
850 struct scan_control *sc)
851{
64574746 852 int referenced_ptes, referenced_page;
dfc8d636 853 unsigned long vm_flags;
dfc8d636 854
c3ac9a8a
JW
855 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
856 &vm_flags);
64574746 857 referenced_page = TestClearPageReferenced(page);
dfc8d636 858
dfc8d636
JW
859 /*
860 * Mlock lost the isolation race with us. Let try_to_unmap()
861 * move the page to the unevictable list.
862 */
863 if (vm_flags & VM_LOCKED)
864 return PAGEREF_RECLAIM;
865
64574746 866 if (referenced_ptes) {
e4898273 867 if (PageSwapBacked(page))
64574746
JW
868 return PAGEREF_ACTIVATE;
869 /*
870 * All mapped pages start out with page table
871 * references from the instantiating fault, so we need
872 * to look twice if a mapped file page is used more
873 * than once.
874 *
875 * Mark it and spare it for another trip around the
876 * inactive list. Another page table reference will
877 * lead to its activation.
878 *
879 * Note: the mark is set for activated pages as well
880 * so that recently deactivated but used pages are
881 * quickly recovered.
882 */
883 SetPageReferenced(page);
884
34dbc67a 885 if (referenced_page || referenced_ptes > 1)
64574746
JW
886 return PAGEREF_ACTIVATE;
887
c909e993
KK
888 /*
889 * Activate file-backed executable pages after first usage.
890 */
891 if (vm_flags & VM_EXEC)
892 return PAGEREF_ACTIVATE;
893
64574746
JW
894 return PAGEREF_KEEP;
895 }
dfc8d636
JW
896
897 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 898 if (referenced_page && !PageSwapBacked(page))
64574746
JW
899 return PAGEREF_RECLAIM_CLEAN;
900
901 return PAGEREF_RECLAIM;
dfc8d636
JW
902}
903
e2be15f6
MG
904/* Check if a page is dirty or under writeback */
905static void page_check_dirty_writeback(struct page *page,
906 bool *dirty, bool *writeback)
907{
b4597226
MG
908 struct address_space *mapping;
909
e2be15f6
MG
910 /*
911 * Anonymous pages are not handled by flushers and must be written
912 * from reclaim context. Do not stall reclaim based on them
913 */
914 if (!page_is_file_cache(page)) {
915 *dirty = false;
916 *writeback = false;
917 return;
918 }
919
920 /* By default assume that the page flags are accurate */
921 *dirty = PageDirty(page);
922 *writeback = PageWriteback(page);
b4597226
MG
923
924 /* Verify dirty/writeback state if the filesystem supports it */
925 if (!page_has_private(page))
926 return;
927
928 mapping = page_mapping(page);
929 if (mapping && mapping->a_ops->is_dirty_writeback)
930 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
931}
932
3c710c1a
MH
933struct reclaim_stat {
934 unsigned nr_dirty;
935 unsigned nr_unqueued_dirty;
936 unsigned nr_congested;
937 unsigned nr_writeback;
938 unsigned nr_immediate;
5bccd166
MH
939 unsigned nr_activate;
940 unsigned nr_ref_keep;
941 unsigned nr_unmap_fail;
3c710c1a
MH
942};
943
1da177e4 944/*
1742f19f 945 * shrink_page_list() returns the number of reclaimed pages
1da177e4 946 */
1742f19f 947static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 948 struct pglist_data *pgdat,
f84f6e2b 949 struct scan_control *sc,
02c6de8d 950 enum ttu_flags ttu_flags,
3c710c1a 951 struct reclaim_stat *stat,
02c6de8d 952 bool force_reclaim)
1da177e4
LT
953{
954 LIST_HEAD(ret_pages);
abe4c3b5 955 LIST_HEAD(free_pages);
1da177e4 956 int pgactivate = 0;
3c710c1a
MH
957 unsigned nr_unqueued_dirty = 0;
958 unsigned nr_dirty = 0;
959 unsigned nr_congested = 0;
960 unsigned nr_reclaimed = 0;
961 unsigned nr_writeback = 0;
962 unsigned nr_immediate = 0;
5bccd166
MH
963 unsigned nr_ref_keep = 0;
964 unsigned nr_unmap_fail = 0;
1da177e4
LT
965
966 cond_resched();
967
1da177e4
LT
968 while (!list_empty(page_list)) {
969 struct address_space *mapping;
970 struct page *page;
971 int may_enter_fs;
02c6de8d 972 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 973 bool dirty, writeback;
854e9ed0
MK
974 bool lazyfree = false;
975 int ret = SWAP_SUCCESS;
1da177e4
LT
976
977 cond_resched();
978
979 page = lru_to_page(page_list);
980 list_del(&page->lru);
981
529ae9aa 982 if (!trylock_page(page))
1da177e4
LT
983 goto keep;
984
309381fe 985 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
986
987 sc->nr_scanned++;
80e43426 988
39b5f29a 989 if (unlikely(!page_evictable(page)))
b291f000 990 goto cull_mlocked;
894bc310 991
a6dc60f8 992 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
993 goto keep_locked;
994
1da177e4
LT
995 /* Double the slab pressure for mapped and swapcache pages */
996 if (page_mapped(page) || PageSwapCache(page))
997 sc->nr_scanned++;
998
c661b078
AW
999 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1000 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1001
e2be15f6
MG
1002 /*
1003 * The number of dirty pages determines if a zone is marked
1004 * reclaim_congested which affects wait_iff_congested. kswapd
1005 * will stall and start writing pages if the tail of the LRU
1006 * is all dirty unqueued pages.
1007 */
1008 page_check_dirty_writeback(page, &dirty, &writeback);
1009 if (dirty || writeback)
1010 nr_dirty++;
1011
1012 if (dirty && !writeback)
1013 nr_unqueued_dirty++;
1014
d04e8acd
MG
1015 /*
1016 * Treat this page as congested if the underlying BDI is or if
1017 * pages are cycling through the LRU so quickly that the
1018 * pages marked for immediate reclaim are making it to the
1019 * end of the LRU a second time.
1020 */
e2be15f6 1021 mapping = page_mapping(page);
1da58ee2 1022 if (((dirty || writeback) && mapping &&
703c2708 1023 inode_write_congested(mapping->host)) ||
d04e8acd 1024 (writeback && PageReclaim(page)))
e2be15f6
MG
1025 nr_congested++;
1026
283aba9f
MG
1027 /*
1028 * If a page at the tail of the LRU is under writeback, there
1029 * are three cases to consider.
1030 *
1031 * 1) If reclaim is encountering an excessive number of pages
1032 * under writeback and this page is both under writeback and
1033 * PageReclaim then it indicates that pages are being queued
1034 * for IO but are being recycled through the LRU before the
1035 * IO can complete. Waiting on the page itself risks an
1036 * indefinite stall if it is impossible to writeback the
1037 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1038 * note that the LRU is being scanned too quickly and the
1039 * caller can stall after page list has been processed.
283aba9f 1040 *
97c9341f 1041 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1042 * not marked for immediate reclaim, or the caller does not
1043 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1044 * not to fs). In this case mark the page for immediate
97c9341f 1045 * reclaim and continue scanning.
283aba9f 1046 *
ecf5fc6e
MH
1047 * Require may_enter_fs because we would wait on fs, which
1048 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1049 * enter reclaim, and deadlock if it waits on a page for
1050 * which it is needed to do the write (loop masks off
1051 * __GFP_IO|__GFP_FS for this reason); but more thought
1052 * would probably show more reasons.
1053 *
7fadc820 1054 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1055 * PageReclaim. memcg does not have any dirty pages
1056 * throttling so we could easily OOM just because too many
1057 * pages are in writeback and there is nothing else to
1058 * reclaim. Wait for the writeback to complete.
1059 */
c661b078 1060 if (PageWriteback(page)) {
283aba9f
MG
1061 /* Case 1 above */
1062 if (current_is_kswapd() &&
1063 PageReclaim(page) &&
599d0c95 1064 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
b1a6f21e
MG
1065 nr_immediate++;
1066 goto keep_locked;
283aba9f
MG
1067
1068 /* Case 2 above */
97c9341f 1069 } else if (sane_reclaim(sc) ||
ecf5fc6e 1070 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1071 /*
1072 * This is slightly racy - end_page_writeback()
1073 * might have just cleared PageReclaim, then
1074 * setting PageReclaim here end up interpreted
1075 * as PageReadahead - but that does not matter
1076 * enough to care. What we do want is for this
1077 * page to have PageReclaim set next time memcg
1078 * reclaim reaches the tests above, so it will
1079 * then wait_on_page_writeback() to avoid OOM;
1080 * and it's also appropriate in global reclaim.
1081 */
1082 SetPageReclaim(page);
e62e384e 1083 nr_writeback++;
c3b94f44 1084 goto keep_locked;
283aba9f
MG
1085
1086 /* Case 3 above */
1087 } else {
7fadc820 1088 unlock_page(page);
283aba9f 1089 wait_on_page_writeback(page);
7fadc820
HD
1090 /* then go back and try same page again */
1091 list_add_tail(&page->lru, page_list);
1092 continue;
e62e384e 1093 }
c661b078 1094 }
1da177e4 1095
02c6de8d
MK
1096 if (!force_reclaim)
1097 references = page_check_references(page, sc);
1098
dfc8d636
JW
1099 switch (references) {
1100 case PAGEREF_ACTIVATE:
1da177e4 1101 goto activate_locked;
64574746 1102 case PAGEREF_KEEP:
5bccd166 1103 nr_ref_keep++;
64574746 1104 goto keep_locked;
dfc8d636
JW
1105 case PAGEREF_RECLAIM:
1106 case PAGEREF_RECLAIM_CLEAN:
1107 ; /* try to reclaim the page below */
1108 }
1da177e4 1109
1da177e4
LT
1110 /*
1111 * Anonymous process memory has backing store?
1112 * Try to allocate it some swap space here.
1113 */
b291f000 1114 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
1115 if (!(sc->gfp_mask & __GFP_IO))
1116 goto keep_locked;
5bc7b8ac 1117 if (!add_to_swap(page, page_list))
1da177e4 1118 goto activate_locked;
854e9ed0 1119 lazyfree = true;
63eb6b93 1120 may_enter_fs = 1;
1da177e4 1121
e2be15f6
MG
1122 /* Adding to swap updated mapping */
1123 mapping = page_mapping(page);
7751b2da
KS
1124 } else if (unlikely(PageTransHuge(page))) {
1125 /* Split file THP */
1126 if (split_huge_page_to_list(page, page_list))
1127 goto keep_locked;
e2be15f6 1128 }
1da177e4 1129
7751b2da
KS
1130 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1131
1da177e4
LT
1132 /*
1133 * The page is mapped into the page tables of one or more
1134 * processes. Try to unmap it here.
1135 */
1136 if (page_mapped(page) && mapping) {
854e9ed0
MK
1137 switch (ret = try_to_unmap(page, lazyfree ?
1138 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1139 (ttu_flags | TTU_BATCH_FLUSH))) {
1da177e4 1140 case SWAP_FAIL:
5bccd166 1141 nr_unmap_fail++;
1da177e4
LT
1142 goto activate_locked;
1143 case SWAP_AGAIN:
1144 goto keep_locked;
b291f000
NP
1145 case SWAP_MLOCK:
1146 goto cull_mlocked;
854e9ed0
MK
1147 case SWAP_LZFREE:
1148 goto lazyfree;
1da177e4
LT
1149 case SWAP_SUCCESS:
1150 ; /* try to free the page below */
1151 }
1152 }
1153
1154 if (PageDirty(page)) {
ee72886d
MG
1155 /*
1156 * Only kswapd can writeback filesystem pages to
d43006d5
MG
1157 * avoid risk of stack overflow but only writeback
1158 * if many dirty pages have been encountered.
ee72886d 1159 */
f84f6e2b 1160 if (page_is_file_cache(page) &&
9e3b2f8c 1161 (!current_is_kswapd() ||
599d0c95 1162 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1163 /*
1164 * Immediately reclaim when written back.
1165 * Similar in principal to deactivate_page()
1166 * except we already have the page isolated
1167 * and know it's dirty
1168 */
c4a25635 1169 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1170 SetPageReclaim(page);
1171
ee72886d
MG
1172 goto keep_locked;
1173 }
1174
dfc8d636 1175 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1176 goto keep_locked;
4dd4b920 1177 if (!may_enter_fs)
1da177e4 1178 goto keep_locked;
52a8363e 1179 if (!sc->may_writepage)
1da177e4
LT
1180 goto keep_locked;
1181
d950c947
MG
1182 /*
1183 * Page is dirty. Flush the TLB if a writable entry
1184 * potentially exists to avoid CPU writes after IO
1185 * starts and then write it out here.
1186 */
1187 try_to_unmap_flush_dirty();
7d3579e8 1188 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1189 case PAGE_KEEP:
1190 goto keep_locked;
1191 case PAGE_ACTIVATE:
1192 goto activate_locked;
1193 case PAGE_SUCCESS:
7d3579e8 1194 if (PageWriteback(page))
41ac1999 1195 goto keep;
7d3579e8 1196 if (PageDirty(page))
1da177e4 1197 goto keep;
7d3579e8 1198
1da177e4
LT
1199 /*
1200 * A synchronous write - probably a ramdisk. Go
1201 * ahead and try to reclaim the page.
1202 */
529ae9aa 1203 if (!trylock_page(page))
1da177e4
LT
1204 goto keep;
1205 if (PageDirty(page) || PageWriteback(page))
1206 goto keep_locked;
1207 mapping = page_mapping(page);
1208 case PAGE_CLEAN:
1209 ; /* try to free the page below */
1210 }
1211 }
1212
1213 /*
1214 * If the page has buffers, try to free the buffer mappings
1215 * associated with this page. If we succeed we try to free
1216 * the page as well.
1217 *
1218 * We do this even if the page is PageDirty().
1219 * try_to_release_page() does not perform I/O, but it is
1220 * possible for a page to have PageDirty set, but it is actually
1221 * clean (all its buffers are clean). This happens if the
1222 * buffers were written out directly, with submit_bh(). ext3
894bc310 1223 * will do this, as well as the blockdev mapping.
1da177e4
LT
1224 * try_to_release_page() will discover that cleanness and will
1225 * drop the buffers and mark the page clean - it can be freed.
1226 *
1227 * Rarely, pages can have buffers and no ->mapping. These are
1228 * the pages which were not successfully invalidated in
1229 * truncate_complete_page(). We try to drop those buffers here
1230 * and if that worked, and the page is no longer mapped into
1231 * process address space (page_count == 1) it can be freed.
1232 * Otherwise, leave the page on the LRU so it is swappable.
1233 */
266cf658 1234 if (page_has_private(page)) {
1da177e4
LT
1235 if (!try_to_release_page(page, sc->gfp_mask))
1236 goto activate_locked;
e286781d
NP
1237 if (!mapping && page_count(page) == 1) {
1238 unlock_page(page);
1239 if (put_page_testzero(page))
1240 goto free_it;
1241 else {
1242 /*
1243 * rare race with speculative reference.
1244 * the speculative reference will free
1245 * this page shortly, so we may
1246 * increment nr_reclaimed here (and
1247 * leave it off the LRU).
1248 */
1249 nr_reclaimed++;
1250 continue;
1251 }
1252 }
1da177e4
LT
1253 }
1254
854e9ed0 1255lazyfree:
a528910e 1256 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1257 goto keep_locked;
1da177e4 1258
a978d6f5
NP
1259 /*
1260 * At this point, we have no other references and there is
1261 * no way to pick any more up (removed from LRU, removed
1262 * from pagecache). Can use non-atomic bitops now (and
1263 * we obviously don't have to worry about waking up a process
1264 * waiting on the page lock, because there are no references.
1265 */
48c935ad 1266 __ClearPageLocked(page);
e286781d 1267free_it:
854e9ed0
MK
1268 if (ret == SWAP_LZFREE)
1269 count_vm_event(PGLAZYFREED);
1270
05ff5137 1271 nr_reclaimed++;
abe4c3b5
MG
1272
1273 /*
1274 * Is there need to periodically free_page_list? It would
1275 * appear not as the counts should be low
1276 */
1277 list_add(&page->lru, &free_pages);
1da177e4
LT
1278 continue;
1279
b291f000 1280cull_mlocked:
63d6c5ad
HD
1281 if (PageSwapCache(page))
1282 try_to_free_swap(page);
b291f000 1283 unlock_page(page);
c54839a7 1284 list_add(&page->lru, &ret_pages);
b291f000
NP
1285 continue;
1286
1da177e4 1287activate_locked:
68a22394 1288 /* Not a candidate for swapping, so reclaim swap space. */
5ccc5aba 1289 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
a2c43eed 1290 try_to_free_swap(page);
309381fe 1291 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1292 SetPageActive(page);
1293 pgactivate++;
1294keep_locked:
1295 unlock_page(page);
1296keep:
1297 list_add(&page->lru, &ret_pages);
309381fe 1298 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1299 }
abe4c3b5 1300
747db954 1301 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1302 try_to_unmap_flush();
b745bc85 1303 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1304
1da177e4 1305 list_splice(&ret_pages, page_list);
f8891e5e 1306 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1307
3c710c1a
MH
1308 if (stat) {
1309 stat->nr_dirty = nr_dirty;
1310 stat->nr_congested = nr_congested;
1311 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1312 stat->nr_writeback = nr_writeback;
1313 stat->nr_immediate = nr_immediate;
5bccd166
MH
1314 stat->nr_activate = pgactivate;
1315 stat->nr_ref_keep = nr_ref_keep;
1316 stat->nr_unmap_fail = nr_unmap_fail;
3c710c1a 1317 }
05ff5137 1318 return nr_reclaimed;
1da177e4
LT
1319}
1320
02c6de8d
MK
1321unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1322 struct list_head *page_list)
1323{
1324 struct scan_control sc = {
1325 .gfp_mask = GFP_KERNEL,
1326 .priority = DEF_PRIORITY,
1327 .may_unmap = 1,
1328 };
3c710c1a 1329 unsigned long ret;
02c6de8d
MK
1330 struct page *page, *next;
1331 LIST_HEAD(clean_pages);
1332
1333 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1334 if (page_is_file_cache(page) && !PageDirty(page) &&
b1123ea6 1335 !__PageMovable(page)) {
02c6de8d
MK
1336 ClearPageActive(page);
1337 list_move(&page->lru, &clean_pages);
1338 }
1339 }
1340
599d0c95 1341 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
3c710c1a 1342 TTU_UNMAP|TTU_IGNORE_ACCESS, NULL, true);
02c6de8d 1343 list_splice(&clean_pages, page_list);
599d0c95 1344 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1345 return ret;
1346}
1347
5ad333eb
AW
1348/*
1349 * Attempt to remove the specified page from its LRU. Only take this page
1350 * if it is of the appropriate PageActive status. Pages which are being
1351 * freed elsewhere are also ignored.
1352 *
1353 * page: page to consider
1354 * mode: one of the LRU isolation modes defined above
1355 *
1356 * returns 0 on success, -ve errno on failure.
1357 */
f3fd4a61 1358int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1359{
1360 int ret = -EINVAL;
1361
1362 /* Only take pages on the LRU. */
1363 if (!PageLRU(page))
1364 return ret;
1365
e46a2879
MK
1366 /* Compaction should not handle unevictable pages but CMA can do so */
1367 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1368 return ret;
1369
5ad333eb 1370 ret = -EBUSY;
08e552c6 1371
c8244935
MG
1372 /*
1373 * To minimise LRU disruption, the caller can indicate that it only
1374 * wants to isolate pages it will be able to operate on without
1375 * blocking - clean pages for the most part.
1376 *
c8244935
MG
1377 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1378 * that it is possible to migrate without blocking
1379 */
1276ad68 1380 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1381 /* All the caller can do on PageWriteback is block */
1382 if (PageWriteback(page))
1383 return ret;
1384
1385 if (PageDirty(page)) {
1386 struct address_space *mapping;
1387
c8244935
MG
1388 /*
1389 * Only pages without mappings or that have a
1390 * ->migratepage callback are possible to migrate
1391 * without blocking
1392 */
1393 mapping = page_mapping(page);
1394 if (mapping && !mapping->a_ops->migratepage)
1395 return ret;
1396 }
1397 }
39deaf85 1398
f80c0673
MK
1399 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1400 return ret;
1401
5ad333eb
AW
1402 if (likely(get_page_unless_zero(page))) {
1403 /*
1404 * Be careful not to clear PageLRU until after we're
1405 * sure the page is not being freed elsewhere -- the
1406 * page release code relies on it.
1407 */
1408 ClearPageLRU(page);
1409 ret = 0;
1410 }
1411
1412 return ret;
1413}
1414
7ee36a14
MG
1415
1416/*
1417 * Update LRU sizes after isolating pages. The LRU size updates must
1418 * be complete before mem_cgroup_update_lru_size due to a santity check.
1419 */
1420static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1421 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1422{
7ee36a14
MG
1423 int zid;
1424
7ee36a14
MG
1425 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1426 if (!nr_zone_taken[zid])
1427 continue;
1428
1429 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1430#ifdef CONFIG_MEMCG
b4536f0c 1431 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1432#endif
b4536f0c
MH
1433 }
1434
7ee36a14
MG
1435}
1436
1da177e4 1437/*
a52633d8 1438 * zone_lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1439 * shrink the lists perform better by taking out a batch of pages
1440 * and working on them outside the LRU lock.
1441 *
1442 * For pagecache intensive workloads, this function is the hottest
1443 * spot in the kernel (apart from copy_*_user functions).
1444 *
1445 * Appropriate locks must be held before calling this function.
1446 *
1447 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1448 * @lruvec: The LRU vector to pull pages from.
1da177e4 1449 * @dst: The temp list to put pages on to.
f626012d 1450 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1451 * @sc: The scan_control struct for this reclaim session
5ad333eb 1452 * @mode: One of the LRU isolation modes
3cb99451 1453 * @lru: LRU list id for isolating
1da177e4
LT
1454 *
1455 * returns how many pages were moved onto *@dst.
1456 */
69e05944 1457static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1458 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1459 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1460 isolate_mode_t mode, enum lru_list lru)
1da177e4 1461{
75b00af7 1462 struct list_head *src = &lruvec->lists[lru];
69e05944 1463 unsigned long nr_taken = 0;
599d0c95 1464 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1465 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1265e3a6 1466 unsigned long skipped = 0, total_skipped = 0;
599d0c95 1467 unsigned long scan, nr_pages;
b2e18757 1468 LIST_HEAD(pages_skipped);
1da177e4 1469
0b802f10 1470 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
d7f05528 1471 !list_empty(src);) {
5ad333eb 1472 struct page *page;
5ad333eb 1473
1da177e4
LT
1474 page = lru_to_page(src);
1475 prefetchw_prev_lru_page(page, src, flags);
1476
309381fe 1477 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1478
b2e18757
MG
1479 if (page_zonenum(page) > sc->reclaim_idx) {
1480 list_move(&page->lru, &pages_skipped);
7cc30fcf 1481 nr_skipped[page_zonenum(page)]++;
b2e18757
MG
1482 continue;
1483 }
1484
d7f05528
MG
1485 /*
1486 * Account for scanned and skipped separetly to avoid the pgdat
1487 * being prematurely marked unreclaimable by pgdat_reclaimable.
1488 */
1489 scan++;
1490
f3fd4a61 1491 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1492 case 0:
599d0c95
MG
1493 nr_pages = hpage_nr_pages(page);
1494 nr_taken += nr_pages;
1495 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1496 list_move(&page->lru, dst);
5ad333eb
AW
1497 break;
1498
1499 case -EBUSY:
1500 /* else it is being freed elsewhere */
1501 list_move(&page->lru, src);
1502 continue;
46453a6e 1503
5ad333eb
AW
1504 default:
1505 BUG();
1506 }
1da177e4
LT
1507 }
1508
b2e18757
MG
1509 /*
1510 * Splice any skipped pages to the start of the LRU list. Note that
1511 * this disrupts the LRU order when reclaiming for lower zones but
1512 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1513 * scanning would soon rescan the same pages to skip and put the
1514 * system at risk of premature OOM.
1515 */
7cc30fcf
MG
1516 if (!list_empty(&pages_skipped)) {
1517 int zid;
1518
7cc30fcf
MG
1519 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1520 if (!nr_skipped[zid])
1521 continue;
1522
1523 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1524 skipped += nr_skipped[zid];
7cc30fcf 1525 }
d7f05528
MG
1526
1527 /*
1528 * Account skipped pages as a partial scan as the pgdat may be
1529 * close to unreclaimable. If the LRU list is empty, account
1530 * skipped pages as a full scan.
1531 */
1265e3a6 1532 total_skipped = list_empty(src) ? skipped : skipped >> 2;
d7f05528
MG
1533
1534 list_splice(&pages_skipped, src);
7cc30fcf 1535 }
1265e3a6
MH
1536 *nr_scanned = scan + total_skipped;
1537 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
32b3f297 1538 scan, skipped, nr_taken, mode, lru);
b4536f0c 1539 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1540 return nr_taken;
1541}
1542
62695a84
NP
1543/**
1544 * isolate_lru_page - tries to isolate a page from its LRU list
1545 * @page: page to isolate from its LRU list
1546 *
1547 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1548 * vmstat statistic corresponding to whatever LRU list the page was on.
1549 *
1550 * Returns 0 if the page was removed from an LRU list.
1551 * Returns -EBUSY if the page was not on an LRU list.
1552 *
1553 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1554 * the active list, it will have PageActive set. If it was found on
1555 * the unevictable list, it will have the PageUnevictable bit set. That flag
1556 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1557 *
1558 * The vmstat statistic corresponding to the list on which the page was
1559 * found will be decremented.
1560 *
1561 * Restrictions:
1562 * (1) Must be called with an elevated refcount on the page. This is a
1563 * fundamentnal difference from isolate_lru_pages (which is called
1564 * without a stable reference).
1565 * (2) the lru_lock must not be held.
1566 * (3) interrupts must be enabled.
1567 */
1568int isolate_lru_page(struct page *page)
1569{
1570 int ret = -EBUSY;
1571
309381fe 1572 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1573 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1574
62695a84
NP
1575 if (PageLRU(page)) {
1576 struct zone *zone = page_zone(page);
fa9add64 1577 struct lruvec *lruvec;
62695a84 1578
a52633d8 1579 spin_lock_irq(zone_lru_lock(zone));
599d0c95 1580 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0c917313 1581 if (PageLRU(page)) {
894bc310 1582 int lru = page_lru(page);
0c917313 1583 get_page(page);
62695a84 1584 ClearPageLRU(page);
fa9add64
HD
1585 del_page_from_lru_list(page, lruvec, lru);
1586 ret = 0;
62695a84 1587 }
a52633d8 1588 spin_unlock_irq(zone_lru_lock(zone));
62695a84
NP
1589 }
1590 return ret;
1591}
1592
35cd7815 1593/*
d37dd5dc
FW
1594 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1595 * then get resheduled. When there are massive number of tasks doing page
1596 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1597 * the LRU list will go small and be scanned faster than necessary, leading to
1598 * unnecessary swapping, thrashing and OOM.
35cd7815 1599 */
599d0c95 1600static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1601 struct scan_control *sc)
1602{
1603 unsigned long inactive, isolated;
1604
1605 if (current_is_kswapd())
1606 return 0;
1607
97c9341f 1608 if (!sane_reclaim(sc))
35cd7815
RR
1609 return 0;
1610
1611 if (file) {
599d0c95
MG
1612 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1613 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1614 } else {
599d0c95
MG
1615 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1616 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1617 }
1618
3cf23841
FW
1619 /*
1620 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1621 * won't get blocked by normal direct-reclaimers, forming a circular
1622 * deadlock.
1623 */
d0164adc 1624 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1625 inactive >>= 3;
1626
35cd7815
RR
1627 return isolated > inactive;
1628}
1629
66635629 1630static noinline_for_stack void
75b00af7 1631putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1632{
27ac81d8 1633 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
599d0c95 1634 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3f79768f 1635 LIST_HEAD(pages_to_free);
66635629 1636
66635629
MG
1637 /*
1638 * Put back any unfreeable pages.
1639 */
66635629 1640 while (!list_empty(page_list)) {
3f79768f 1641 struct page *page = lru_to_page(page_list);
66635629 1642 int lru;
3f79768f 1643
309381fe 1644 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1645 list_del(&page->lru);
39b5f29a 1646 if (unlikely(!page_evictable(page))) {
599d0c95 1647 spin_unlock_irq(&pgdat->lru_lock);
66635629 1648 putback_lru_page(page);
599d0c95 1649 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1650 continue;
1651 }
fa9add64 1652
599d0c95 1653 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1654
7a608572 1655 SetPageLRU(page);
66635629 1656 lru = page_lru(page);
fa9add64
HD
1657 add_page_to_lru_list(page, lruvec, lru);
1658
66635629
MG
1659 if (is_active_lru(lru)) {
1660 int file = is_file_lru(lru);
9992af10
RR
1661 int numpages = hpage_nr_pages(page);
1662 reclaim_stat->recent_rotated[file] += numpages;
66635629 1663 }
2bcf8879
HD
1664 if (put_page_testzero(page)) {
1665 __ClearPageLRU(page);
1666 __ClearPageActive(page);
fa9add64 1667 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1668
1669 if (unlikely(PageCompound(page))) {
599d0c95 1670 spin_unlock_irq(&pgdat->lru_lock);
747db954 1671 mem_cgroup_uncharge(page);
2bcf8879 1672 (*get_compound_page_dtor(page))(page);
599d0c95 1673 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1674 } else
1675 list_add(&page->lru, &pages_to_free);
66635629
MG
1676 }
1677 }
66635629 1678
3f79768f
HD
1679 /*
1680 * To save our caller's stack, now use input list for pages to free.
1681 */
1682 list_splice(&pages_to_free, page_list);
66635629
MG
1683}
1684
399ba0b9
N
1685/*
1686 * If a kernel thread (such as nfsd for loop-back mounts) services
1687 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1688 * In that case we should only throttle if the backing device it is
1689 * writing to is congested. In other cases it is safe to throttle.
1690 */
1691static int current_may_throttle(void)
1692{
1693 return !(current->flags & PF_LESS_THROTTLE) ||
1694 current->backing_dev_info == NULL ||
1695 bdi_write_congested(current->backing_dev_info);
1696}
1697
1da177e4 1698/*
b2e18757 1699 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1700 * of reclaimed pages
1da177e4 1701 */
66635629 1702static noinline_for_stack unsigned long
1a93be0e 1703shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1704 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1705{
1706 LIST_HEAD(page_list);
e247dbce 1707 unsigned long nr_scanned;
05ff5137 1708 unsigned long nr_reclaimed = 0;
e247dbce 1709 unsigned long nr_taken;
3c710c1a 1710 struct reclaim_stat stat = {};
f3fd4a61 1711 isolate_mode_t isolate_mode = 0;
3cb99451 1712 int file = is_file_lru(lru);
599d0c95 1713 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1714 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1715
599d0c95 1716 while (unlikely(too_many_isolated(pgdat, file, sc))) {
58355c78 1717 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1718
1719 /* We are about to die and free our memory. Return now. */
1720 if (fatal_signal_pending(current))
1721 return SWAP_CLUSTER_MAX;
1722 }
1723
1da177e4 1724 lru_add_drain();
f80c0673
MK
1725
1726 if (!sc->may_unmap)
61317289 1727 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1728
599d0c95 1729 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1730
5dc35979
KK
1731 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1732 &nr_scanned, sc, isolate_mode, lru);
95d918fc 1733
599d0c95 1734 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1735 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1736
89b5fae5 1737 if (global_reclaim(sc)) {
599d0c95 1738 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
e247dbce 1739 if (current_is_kswapd())
599d0c95 1740 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
e247dbce 1741 else
599d0c95 1742 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
e247dbce 1743 }
599d0c95 1744 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1745
d563c050 1746 if (nr_taken == 0)
66635629 1747 return 0;
5ad333eb 1748
599d0c95 1749 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
3c710c1a 1750 &stat, false);
c661b078 1751
599d0c95 1752 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1753
904249aa
YH
1754 if (global_reclaim(sc)) {
1755 if (current_is_kswapd())
599d0c95 1756 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
904249aa 1757 else
599d0c95 1758 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
904249aa 1759 }
a74609fa 1760
27ac81d8 1761 putback_inactive_pages(lruvec, &page_list);
3f79768f 1762
599d0c95 1763 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1764
599d0c95 1765 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1766
747db954 1767 mem_cgroup_uncharge_list(&page_list);
b745bc85 1768 free_hot_cold_page_list(&page_list, true);
e11da5b4 1769
92df3a72
MG
1770 /*
1771 * If reclaim is isolating dirty pages under writeback, it implies
1772 * that the long-lived page allocation rate is exceeding the page
1773 * laundering rate. Either the global limits are not being effective
1774 * at throttling processes due to the page distribution throughout
1775 * zones or there is heavy usage of a slow backing device. The
1776 * only option is to throttle from reclaim context which is not ideal
1777 * as there is no guarantee the dirtying process is throttled in the
1778 * same way balance_dirty_pages() manages.
1779 *
8e950282
MG
1780 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1781 * of pages under pages flagged for immediate reclaim and stall if any
1782 * are encountered in the nr_immediate check below.
92df3a72 1783 */
3c710c1a 1784 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
599d0c95 1785 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
92df3a72 1786
d43006d5 1787 /*
97c9341f
TH
1788 * Legacy memcg will stall in page writeback so avoid forcibly
1789 * stalling here.
d43006d5 1790 */
97c9341f 1791 if (sane_reclaim(sc)) {
8e950282
MG
1792 /*
1793 * Tag a zone as congested if all the dirty pages scanned were
1794 * backed by a congested BDI and wait_iff_congested will stall.
1795 */
3c710c1a 1796 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
599d0c95 1797 set_bit(PGDAT_CONGESTED, &pgdat->flags);
8e950282 1798
b1a6f21e
MG
1799 /*
1800 * If dirty pages are scanned that are not queued for IO, it
1801 * implies that flushers are not keeping up. In this case, flag
599d0c95 1802 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
57054651 1803 * reclaim context.
b1a6f21e 1804 */
3c710c1a 1805 if (stat.nr_unqueued_dirty == nr_taken)
599d0c95 1806 set_bit(PGDAT_DIRTY, &pgdat->flags);
b1a6f21e
MG
1807
1808 /*
b738d764
LT
1809 * If kswapd scans pages marked marked for immediate
1810 * reclaim and under writeback (nr_immediate), it implies
1811 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1812 * they are written so also forcibly stall.
1813 */
3c710c1a 1814 if (stat.nr_immediate && current_may_throttle())
b1a6f21e 1815 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1816 }
d43006d5 1817
8e950282
MG
1818 /*
1819 * Stall direct reclaim for IO completions if underlying BDIs or zone
1820 * is congested. Allow kswapd to continue until it starts encountering
1821 * unqueued dirty pages or cycling through the LRU too quickly.
1822 */
399ba0b9
N
1823 if (!sc->hibernation_mode && !current_is_kswapd() &&
1824 current_may_throttle())
599d0c95 1825 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
8e950282 1826
599d0c95
MG
1827 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1828 nr_scanned, nr_reclaimed,
5bccd166
MH
1829 stat.nr_dirty, stat.nr_writeback,
1830 stat.nr_congested, stat.nr_immediate,
1831 stat.nr_activate, stat.nr_ref_keep,
1832 stat.nr_unmap_fail,
ba5e9579 1833 sc->priority, file);
05ff5137 1834 return nr_reclaimed;
1da177e4
LT
1835}
1836
1837/*
1838 * This moves pages from the active list to the inactive list.
1839 *
1840 * We move them the other way if the page is referenced by one or more
1841 * processes, from rmap.
1842 *
1843 * If the pages are mostly unmapped, the processing is fast and it is
a52633d8 1844 * appropriate to hold zone_lru_lock across the whole operation. But if
1da177e4 1845 * the pages are mapped, the processing is slow (page_referenced()) so we
a52633d8 1846 * should drop zone_lru_lock around each page. It's impossible to balance
1da177e4
LT
1847 * this, so instead we remove the pages from the LRU while processing them.
1848 * It is safe to rely on PG_active against the non-LRU pages in here because
1849 * nobody will play with that bit on a non-LRU page.
1850 *
0139aa7b 1851 * The downside is that we have to touch page->_refcount against each page.
1da177e4 1852 * But we had to alter page->flags anyway.
9d998b4f
MH
1853 *
1854 * Returns the number of pages moved to the given lru.
1da177e4 1855 */
1cfb419b 1856
9d998b4f 1857static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1858 struct list_head *list,
2bcf8879 1859 struct list_head *pages_to_free,
3eb4140f
WF
1860 enum lru_list lru)
1861{
599d0c95 1862 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3eb4140f 1863 struct page *page;
fa9add64 1864 int nr_pages;
9d998b4f 1865 int nr_moved = 0;
3eb4140f 1866
3eb4140f
WF
1867 while (!list_empty(list)) {
1868 page = lru_to_page(list);
599d0c95 1869 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3eb4140f 1870
309381fe 1871 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1872 SetPageLRU(page);
1873
fa9add64 1874 nr_pages = hpage_nr_pages(page);
599d0c95 1875 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
925b7673 1876 list_move(&page->lru, &lruvec->lists[lru]);
3eb4140f 1877
2bcf8879
HD
1878 if (put_page_testzero(page)) {
1879 __ClearPageLRU(page);
1880 __ClearPageActive(page);
fa9add64 1881 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1882
1883 if (unlikely(PageCompound(page))) {
599d0c95 1884 spin_unlock_irq(&pgdat->lru_lock);
747db954 1885 mem_cgroup_uncharge(page);
2bcf8879 1886 (*get_compound_page_dtor(page))(page);
599d0c95 1887 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1888 } else
1889 list_add(&page->lru, pages_to_free);
9d998b4f
MH
1890 } else {
1891 nr_moved += nr_pages;
3eb4140f
WF
1892 }
1893 }
9d5e6a9f 1894
3eb4140f 1895 if (!is_active_lru(lru))
f0958906 1896 __count_vm_events(PGDEACTIVATE, nr_moved);
9d998b4f
MH
1897
1898 return nr_moved;
3eb4140f 1899}
1cfb419b 1900
f626012d 1901static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1902 struct lruvec *lruvec,
f16015fb 1903 struct scan_control *sc,
9e3b2f8c 1904 enum lru_list lru)
1da177e4 1905{
44c241f1 1906 unsigned long nr_taken;
f626012d 1907 unsigned long nr_scanned;
6fe6b7e3 1908 unsigned long vm_flags;
1da177e4 1909 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1910 LIST_HEAD(l_active);
b69408e8 1911 LIST_HEAD(l_inactive);
1da177e4 1912 struct page *page;
1a93be0e 1913 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
9d998b4f
MH
1914 unsigned nr_deactivate, nr_activate;
1915 unsigned nr_rotated = 0;
f3fd4a61 1916 isolate_mode_t isolate_mode = 0;
3cb99451 1917 int file = is_file_lru(lru);
599d0c95 1918 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
1919
1920 lru_add_drain();
f80c0673
MK
1921
1922 if (!sc->may_unmap)
61317289 1923 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1924
599d0c95 1925 spin_lock_irq(&pgdat->lru_lock);
925b7673 1926
5dc35979
KK
1927 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1928 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1929
599d0c95 1930 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 1931 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1932
9d5e6a9f 1933 if (global_reclaim(sc))
599d0c95
MG
1934 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1935 __count_vm_events(PGREFILL, nr_scanned);
9d5e6a9f 1936
599d0c95 1937 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 1938
1da177e4
LT
1939 while (!list_empty(&l_hold)) {
1940 cond_resched();
1941 page = lru_to_page(&l_hold);
1942 list_del(&page->lru);
7e9cd484 1943
39b5f29a 1944 if (unlikely(!page_evictable(page))) {
894bc310
LS
1945 putback_lru_page(page);
1946 continue;
1947 }
1948
cc715d99
MG
1949 if (unlikely(buffer_heads_over_limit)) {
1950 if (page_has_private(page) && trylock_page(page)) {
1951 if (page_has_private(page))
1952 try_to_release_page(page, 0);
1953 unlock_page(page);
1954 }
1955 }
1956
c3ac9a8a
JW
1957 if (page_referenced(page, 0, sc->target_mem_cgroup,
1958 &vm_flags)) {
9992af10 1959 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1960 /*
1961 * Identify referenced, file-backed active pages and
1962 * give them one more trip around the active list. So
1963 * that executable code get better chances to stay in
1964 * memory under moderate memory pressure. Anon pages
1965 * are not likely to be evicted by use-once streaming
1966 * IO, plus JVM can create lots of anon VM_EXEC pages,
1967 * so we ignore them here.
1968 */
41e20983 1969 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1970 list_add(&page->lru, &l_active);
1971 continue;
1972 }
1973 }
7e9cd484 1974
5205e56e 1975 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1976 list_add(&page->lru, &l_inactive);
1977 }
1978
b555749a 1979 /*
8cab4754 1980 * Move pages back to the lru list.
b555749a 1981 */
599d0c95 1982 spin_lock_irq(&pgdat->lru_lock);
556adecb 1983 /*
8cab4754
WF
1984 * Count referenced pages from currently used mappings as rotated,
1985 * even though only some of them are actually re-activated. This
1986 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 1987 * get_scan_count.
7e9cd484 1988 */
b7c46d15 1989 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1990
9d998b4f
MH
1991 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1992 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
599d0c95
MG
1993 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1994 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 1995
747db954 1996 mem_cgroup_uncharge_list(&l_hold);
b745bc85 1997 free_hot_cold_page_list(&l_hold, true);
9d998b4f
MH
1998 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
1999 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2000}
2001
59dc76b0
RR
2002/*
2003 * The inactive anon list should be small enough that the VM never has
2004 * to do too much work.
14797e23 2005 *
59dc76b0
RR
2006 * The inactive file list should be small enough to leave most memory
2007 * to the established workingset on the scan-resistant active list,
2008 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2009 *
59dc76b0
RR
2010 * Both inactive lists should also be large enough that each inactive
2011 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2012 *
59dc76b0
RR
2013 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2014 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2015 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2016 *
59dc76b0
RR
2017 * total target max
2018 * memory ratio inactive
2019 * -------------------------------------
2020 * 10MB 1 5MB
2021 * 100MB 1 50MB
2022 * 1GB 3 250MB
2023 * 10GB 10 0.9GB
2024 * 100GB 31 3GB
2025 * 1TB 101 10GB
2026 * 10TB 320 32GB
56e49d21 2027 */
f8d1a311 2028static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
dcec0b60 2029 struct scan_control *sc, bool trace)
56e49d21 2030{
59dc76b0 2031 unsigned long inactive_ratio;
fd538803
MH
2032 unsigned long inactive, active;
2033 enum lru_list inactive_lru = file * LRU_FILE;
2034 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
59dc76b0 2035 unsigned long gb;
e3790144 2036
59dc76b0
RR
2037 /*
2038 * If we don't have swap space, anonymous page deactivation
2039 * is pointless.
2040 */
2041 if (!file && !total_swap_pages)
2042 return false;
56e49d21 2043
fd538803
MH
2044 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2045 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
f8d1a311 2046
59dc76b0
RR
2047 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2048 if (gb)
2049 inactive_ratio = int_sqrt(10 * gb);
b39415b2 2050 else
59dc76b0
RR
2051 inactive_ratio = 1;
2052
dcec0b60 2053 if (trace)
fd538803 2054 trace_mm_vmscan_inactive_list_is_low(lruvec_pgdat(lruvec)->node_id,
dcec0b60 2055 sc->reclaim_idx,
fd538803
MH
2056 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2057 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2058 inactive_ratio, file);
2059
59dc76b0 2060 return inactive * inactive_ratio < active;
b39415b2
RR
2061}
2062
4f98a2fe 2063static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 2064 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 2065{
b39415b2 2066 if (is_active_lru(lru)) {
dcec0b60 2067 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
1a93be0e 2068 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
2069 return 0;
2070 }
2071
1a93be0e 2072 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
2073}
2074
9a265114
JW
2075enum scan_balance {
2076 SCAN_EQUAL,
2077 SCAN_FRACT,
2078 SCAN_ANON,
2079 SCAN_FILE,
2080};
2081
4f98a2fe
RR
2082/*
2083 * Determine how aggressively the anon and file LRU lists should be
2084 * scanned. The relative value of each set of LRU lists is determined
2085 * by looking at the fraction of the pages scanned we did rotate back
2086 * onto the active list instead of evict.
2087 *
be7bd59d
WL
2088 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2089 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2090 */
33377678 2091static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
2092 struct scan_control *sc, unsigned long *nr,
2093 unsigned long *lru_pages)
4f98a2fe 2094{
33377678 2095 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2096 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2097 u64 fraction[2];
2098 u64 denominator = 0; /* gcc */
599d0c95 2099 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2100 unsigned long anon_prio, file_prio;
9a265114 2101 enum scan_balance scan_balance;
0bf1457f 2102 unsigned long anon, file;
9a265114 2103 bool force_scan = false;
4f98a2fe 2104 unsigned long ap, fp;
4111304d 2105 enum lru_list lru;
6f04f48d
SS
2106 bool some_scanned;
2107 int pass;
246e87a9 2108
f11c0ca5
JW
2109 /*
2110 * If the zone or memcg is small, nr[l] can be 0. This
2111 * results in no scanning on this priority and a potential
2112 * priority drop. Global direct reclaim can go to the next
2113 * zone and tends to have no problems. Global kswapd is for
2114 * zone balancing and it needs to scan a minimum amount. When
2115 * reclaiming for a memcg, a priority drop can cause high
2116 * latencies, so it's better to scan a minimum amount there as
2117 * well.
2118 */
90cbc250 2119 if (current_is_kswapd()) {
599d0c95 2120 if (!pgdat_reclaimable(pgdat))
90cbc250 2121 force_scan = true;
eb01aaab 2122 if (!mem_cgroup_online(memcg))
90cbc250
VD
2123 force_scan = true;
2124 }
89b5fae5 2125 if (!global_reclaim(sc))
a4d3e9e7 2126 force_scan = true;
76a33fc3
SL
2127
2128 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2129 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2130 scan_balance = SCAN_FILE;
76a33fc3
SL
2131 goto out;
2132 }
4f98a2fe 2133
10316b31
JW
2134 /*
2135 * Global reclaim will swap to prevent OOM even with no
2136 * swappiness, but memcg users want to use this knob to
2137 * disable swapping for individual groups completely when
2138 * using the memory controller's swap limit feature would be
2139 * too expensive.
2140 */
02695175 2141 if (!global_reclaim(sc) && !swappiness) {
9a265114 2142 scan_balance = SCAN_FILE;
10316b31
JW
2143 goto out;
2144 }
2145
2146 /*
2147 * Do not apply any pressure balancing cleverness when the
2148 * system is close to OOM, scan both anon and file equally
2149 * (unless the swappiness setting disagrees with swapping).
2150 */
02695175 2151 if (!sc->priority && swappiness) {
9a265114 2152 scan_balance = SCAN_EQUAL;
10316b31
JW
2153 goto out;
2154 }
2155
62376251
JW
2156 /*
2157 * Prevent the reclaimer from falling into the cache trap: as
2158 * cache pages start out inactive, every cache fault will tip
2159 * the scan balance towards the file LRU. And as the file LRU
2160 * shrinks, so does the window for rotation from references.
2161 * This means we have a runaway feedback loop where a tiny
2162 * thrashing file LRU becomes infinitely more attractive than
2163 * anon pages. Try to detect this based on file LRU size.
2164 */
2165 if (global_reclaim(sc)) {
599d0c95
MG
2166 unsigned long pgdatfile;
2167 unsigned long pgdatfree;
2168 int z;
2169 unsigned long total_high_wmark = 0;
2ab051e1 2170
599d0c95
MG
2171 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2172 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2173 node_page_state(pgdat, NR_INACTIVE_FILE);
2174
2175 for (z = 0; z < MAX_NR_ZONES; z++) {
2176 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2177 if (!managed_zone(zone))
599d0c95
MG
2178 continue;
2179
2180 total_high_wmark += high_wmark_pages(zone);
2181 }
62376251 2182
599d0c95 2183 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
62376251
JW
2184 scan_balance = SCAN_ANON;
2185 goto out;
2186 }
2187 }
2188
7c5bd705 2189 /*
316bda0e
VD
2190 * If there is enough inactive page cache, i.e. if the size of the
2191 * inactive list is greater than that of the active list *and* the
2192 * inactive list actually has some pages to scan on this priority, we
2193 * do not reclaim anything from the anonymous working set right now.
2194 * Without the second condition we could end up never scanning an
2195 * lruvec even if it has plenty of old anonymous pages unless the
2196 * system is under heavy pressure.
7c5bd705 2197 */
dcec0b60 2198 if (!inactive_list_is_low(lruvec, true, sc, false) &&
71ab6cfe 2199 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
9a265114 2200 scan_balance = SCAN_FILE;
7c5bd705
JW
2201 goto out;
2202 }
2203
9a265114
JW
2204 scan_balance = SCAN_FRACT;
2205
58c37f6e
KM
2206 /*
2207 * With swappiness at 100, anonymous and file have the same priority.
2208 * This scanning priority is essentially the inverse of IO cost.
2209 */
02695175 2210 anon_prio = swappiness;
75b00af7 2211 file_prio = 200 - anon_prio;
58c37f6e 2212
4f98a2fe
RR
2213 /*
2214 * OK, so we have swap space and a fair amount of page cache
2215 * pages. We use the recently rotated / recently scanned
2216 * ratios to determine how valuable each cache is.
2217 *
2218 * Because workloads change over time (and to avoid overflow)
2219 * we keep these statistics as a floating average, which ends
2220 * up weighing recent references more than old ones.
2221 *
2222 * anon in [0], file in [1]
2223 */
2ab051e1 2224
fd538803
MH
2225 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2226 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2227 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2228 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2ab051e1 2229
599d0c95 2230 spin_lock_irq(&pgdat->lru_lock);
6e901571 2231 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2232 reclaim_stat->recent_scanned[0] /= 2;
2233 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2234 }
2235
6e901571 2236 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2237 reclaim_stat->recent_scanned[1] /= 2;
2238 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2239 }
2240
4f98a2fe 2241 /*
00d8089c
RR
2242 * The amount of pressure on anon vs file pages is inversely
2243 * proportional to the fraction of recently scanned pages on
2244 * each list that were recently referenced and in active use.
4f98a2fe 2245 */
fe35004f 2246 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2247 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2248
fe35004f 2249 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2250 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2251 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2252
76a33fc3
SL
2253 fraction[0] = ap;
2254 fraction[1] = fp;
2255 denominator = ap + fp + 1;
2256out:
6f04f48d
SS
2257 some_scanned = false;
2258 /* Only use force_scan on second pass. */
2259 for (pass = 0; !some_scanned && pass < 2; pass++) {
6b4f7799 2260 *lru_pages = 0;
6f04f48d
SS
2261 for_each_evictable_lru(lru) {
2262 int file = is_file_lru(lru);
2263 unsigned long size;
2264 unsigned long scan;
6e08a369 2265
71ab6cfe 2266 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
6f04f48d 2267 scan = size >> sc->priority;
9a265114 2268
6f04f48d
SS
2269 if (!scan && pass && force_scan)
2270 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2271
6f04f48d
SS
2272 switch (scan_balance) {
2273 case SCAN_EQUAL:
2274 /* Scan lists relative to size */
2275 break;
2276 case SCAN_FRACT:
2277 /*
2278 * Scan types proportional to swappiness and
2279 * their relative recent reclaim efficiency.
2280 */
2281 scan = div64_u64(scan * fraction[file],
2282 denominator);
2283 break;
2284 case SCAN_FILE:
2285 case SCAN_ANON:
2286 /* Scan one type exclusively */
6b4f7799
JW
2287 if ((scan_balance == SCAN_FILE) != file) {
2288 size = 0;
6f04f48d 2289 scan = 0;
6b4f7799 2290 }
6f04f48d
SS
2291 break;
2292 default:
2293 /* Look ma, no brain */
2294 BUG();
2295 }
6b4f7799
JW
2296
2297 *lru_pages += size;
6f04f48d 2298 nr[lru] = scan;
6b4f7799 2299
9a265114 2300 /*
6f04f48d
SS
2301 * Skip the second pass and don't force_scan,
2302 * if we found something to scan.
9a265114 2303 */
6f04f48d 2304 some_scanned |= !!scan;
9a265114 2305 }
76a33fc3 2306 }
6e08a369 2307}
4f98a2fe 2308
9b4f98cd 2309/*
a9dd0a83 2310 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
9b4f98cd 2311 */
a9dd0a83 2312static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
33377678 2313 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2314{
ef8f2327 2315 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
9b4f98cd 2316 unsigned long nr[NR_LRU_LISTS];
e82e0561 2317 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2318 unsigned long nr_to_scan;
2319 enum lru_list lru;
2320 unsigned long nr_reclaimed = 0;
2321 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2322 struct blk_plug plug;
1a501907 2323 bool scan_adjusted;
9b4f98cd 2324
33377678 2325 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2326
e82e0561
MG
2327 /* Record the original scan target for proportional adjustments later */
2328 memcpy(targets, nr, sizeof(nr));
2329
1a501907
MG
2330 /*
2331 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2332 * event that can occur when there is little memory pressure e.g.
2333 * multiple streaming readers/writers. Hence, we do not abort scanning
2334 * when the requested number of pages are reclaimed when scanning at
2335 * DEF_PRIORITY on the assumption that the fact we are direct
2336 * reclaiming implies that kswapd is not keeping up and it is best to
2337 * do a batch of work at once. For memcg reclaim one check is made to
2338 * abort proportional reclaim if either the file or anon lru has already
2339 * dropped to zero at the first pass.
2340 */
2341 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2342 sc->priority == DEF_PRIORITY);
2343
9b4f98cd
JW
2344 blk_start_plug(&plug);
2345 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2346 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2347 unsigned long nr_anon, nr_file, percentage;
2348 unsigned long nr_scanned;
2349
9b4f98cd
JW
2350 for_each_evictable_lru(lru) {
2351 if (nr[lru]) {
2352 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2353 nr[lru] -= nr_to_scan;
2354
2355 nr_reclaimed += shrink_list(lru, nr_to_scan,
2356 lruvec, sc);
2357 }
2358 }
e82e0561 2359
bd041733
MH
2360 cond_resched();
2361
e82e0561
MG
2362 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2363 continue;
2364
e82e0561
MG
2365 /*
2366 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2367 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2368 * proportionally what was requested by get_scan_count(). We
2369 * stop reclaiming one LRU and reduce the amount scanning
2370 * proportional to the original scan target.
2371 */
2372 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2373 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2374
1a501907
MG
2375 /*
2376 * It's just vindictive to attack the larger once the smaller
2377 * has gone to zero. And given the way we stop scanning the
2378 * smaller below, this makes sure that we only make one nudge
2379 * towards proportionality once we've got nr_to_reclaim.
2380 */
2381 if (!nr_file || !nr_anon)
2382 break;
2383
e82e0561
MG
2384 if (nr_file > nr_anon) {
2385 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2386 targets[LRU_ACTIVE_ANON] + 1;
2387 lru = LRU_BASE;
2388 percentage = nr_anon * 100 / scan_target;
2389 } else {
2390 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2391 targets[LRU_ACTIVE_FILE] + 1;
2392 lru = LRU_FILE;
2393 percentage = nr_file * 100 / scan_target;
2394 }
2395
2396 /* Stop scanning the smaller of the LRU */
2397 nr[lru] = 0;
2398 nr[lru + LRU_ACTIVE] = 0;
2399
2400 /*
2401 * Recalculate the other LRU scan count based on its original
2402 * scan target and the percentage scanning already complete
2403 */
2404 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2405 nr_scanned = targets[lru] - nr[lru];
2406 nr[lru] = targets[lru] * (100 - percentage) / 100;
2407 nr[lru] -= min(nr[lru], nr_scanned);
2408
2409 lru += LRU_ACTIVE;
2410 nr_scanned = targets[lru] - nr[lru];
2411 nr[lru] = targets[lru] * (100 - percentage) / 100;
2412 nr[lru] -= min(nr[lru], nr_scanned);
2413
2414 scan_adjusted = true;
9b4f98cd
JW
2415 }
2416 blk_finish_plug(&plug);
2417 sc->nr_reclaimed += nr_reclaimed;
2418
2419 /*
2420 * Even if we did not try to evict anon pages at all, we want to
2421 * rebalance the anon lru active/inactive ratio.
2422 */
dcec0b60 2423 if (inactive_list_is_low(lruvec, false, sc, true))
9b4f98cd
JW
2424 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2425 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2426}
2427
23b9da55 2428/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2429static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2430{
d84da3f9 2431 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2432 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2433 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2434 return true;
2435
2436 return false;
2437}
2438
3e7d3449 2439/*
23b9da55
MG
2440 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2441 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2442 * true if more pages should be reclaimed such that when the page allocator
2443 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2444 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2445 */
a9dd0a83 2446static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449
MG
2447 unsigned long nr_reclaimed,
2448 unsigned long nr_scanned,
2449 struct scan_control *sc)
2450{
2451 unsigned long pages_for_compaction;
2452 unsigned long inactive_lru_pages;
a9dd0a83 2453 int z;
3e7d3449
MG
2454
2455 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2456 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2457 return false;
2458
2876592f
MG
2459 /* Consider stopping depending on scan and reclaim activity */
2460 if (sc->gfp_mask & __GFP_REPEAT) {
2461 /*
2462 * For __GFP_REPEAT allocations, stop reclaiming if the
2463 * full LRU list has been scanned and we are still failing
2464 * to reclaim pages. This full LRU scan is potentially
2465 * expensive but a __GFP_REPEAT caller really wants to succeed
2466 */
2467 if (!nr_reclaimed && !nr_scanned)
2468 return false;
2469 } else {
2470 /*
2471 * For non-__GFP_REPEAT allocations which can presumably
2472 * fail without consequence, stop if we failed to reclaim
2473 * any pages from the last SWAP_CLUSTER_MAX number of
2474 * pages that were scanned. This will return to the
2475 * caller faster at the risk reclaim/compaction and
2476 * the resulting allocation attempt fails
2477 */
2478 if (!nr_reclaimed)
2479 return false;
2480 }
3e7d3449
MG
2481
2482 /*
2483 * If we have not reclaimed enough pages for compaction and the
2484 * inactive lists are large enough, continue reclaiming
2485 */
9861a62c 2486 pages_for_compaction = compact_gap(sc->order);
a9dd0a83 2487 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
ec8acf20 2488 if (get_nr_swap_pages() > 0)
a9dd0a83 2489 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3e7d3449
MG
2490 if (sc->nr_reclaimed < pages_for_compaction &&
2491 inactive_lru_pages > pages_for_compaction)
2492 return true;
2493
2494 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2495 for (z = 0; z <= sc->reclaim_idx; z++) {
2496 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2497 if (!managed_zone(zone))
a9dd0a83
MG
2498 continue;
2499
2500 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2501 case COMPACT_SUCCESS:
a9dd0a83
MG
2502 case COMPACT_CONTINUE:
2503 return false;
2504 default:
2505 /* check next zone */
2506 ;
2507 }
3e7d3449 2508 }
a9dd0a83 2509 return true;
3e7d3449
MG
2510}
2511
970a39a3 2512static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2513{
cb731d6c 2514 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2515 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2516 bool reclaimable = false;
1da177e4 2517
9b4f98cd
JW
2518 do {
2519 struct mem_cgroup *root = sc->target_mem_cgroup;
2520 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 2521 .pgdat = pgdat,
9b4f98cd
JW
2522 .priority = sc->priority,
2523 };
a9dd0a83 2524 unsigned long node_lru_pages = 0;
694fbc0f 2525 struct mem_cgroup *memcg;
3e7d3449 2526
9b4f98cd
JW
2527 nr_reclaimed = sc->nr_reclaimed;
2528 nr_scanned = sc->nr_scanned;
1da177e4 2529
694fbc0f
AM
2530 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2531 do {
6b4f7799 2532 unsigned long lru_pages;
8e8ae645 2533 unsigned long reclaimed;
cb731d6c 2534 unsigned long scanned;
5660048c 2535
241994ed
JW
2536 if (mem_cgroup_low(root, memcg)) {
2537 if (!sc->may_thrash)
2538 continue;
2539 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2540 }
2541
8e8ae645 2542 reclaimed = sc->nr_reclaimed;
cb731d6c 2543 scanned = sc->nr_scanned;
f9be23d6 2544
a9dd0a83
MG
2545 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2546 node_lru_pages += lru_pages;
f16015fb 2547
b5afba29 2548 if (memcg)
a9dd0a83 2549 shrink_slab(sc->gfp_mask, pgdat->node_id,
cb731d6c
VD
2550 memcg, sc->nr_scanned - scanned,
2551 lru_pages);
2552
8e8ae645
JW
2553 /* Record the group's reclaim efficiency */
2554 vmpressure(sc->gfp_mask, memcg, false,
2555 sc->nr_scanned - scanned,
2556 sc->nr_reclaimed - reclaimed);
2557
9b4f98cd 2558 /*
a394cb8e
MH
2559 * Direct reclaim and kswapd have to scan all memory
2560 * cgroups to fulfill the overall scan target for the
a9dd0a83 2561 * node.
a394cb8e
MH
2562 *
2563 * Limit reclaim, on the other hand, only cares about
2564 * nr_to_reclaim pages to be reclaimed and it will
2565 * retry with decreasing priority if one round over the
2566 * whole hierarchy is not sufficient.
9b4f98cd 2567 */
a394cb8e
MH
2568 if (!global_reclaim(sc) &&
2569 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2570 mem_cgroup_iter_break(root, memcg);
2571 break;
2572 }
241994ed 2573 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2574
6b4f7799
JW
2575 /*
2576 * Shrink the slab caches in the same proportion that
2577 * the eligible LRU pages were scanned.
2578 */
b2e18757 2579 if (global_reclaim(sc))
a9dd0a83 2580 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
cb731d6c 2581 sc->nr_scanned - nr_scanned,
a9dd0a83 2582 node_lru_pages);
cb731d6c
VD
2583
2584 if (reclaim_state) {
2585 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2586 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2587 }
2588
8e8ae645
JW
2589 /* Record the subtree's reclaim efficiency */
2590 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2591 sc->nr_scanned - nr_scanned,
2592 sc->nr_reclaimed - nr_reclaimed);
2593
2344d7e4
JW
2594 if (sc->nr_reclaimed - nr_reclaimed)
2595 reclaimable = true;
2596
a9dd0a83 2597 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
9b4f98cd 2598 sc->nr_scanned - nr_scanned, sc));
2344d7e4
JW
2599
2600 return reclaimable;
f16015fb
JW
2601}
2602
53853e2d 2603/*
fdd4c614
VB
2604 * Returns true if compaction should go ahead for a costly-order request, or
2605 * the allocation would already succeed without compaction. Return false if we
2606 * should reclaim first.
53853e2d 2607 */
4f588331 2608static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2609{
31483b6a 2610 unsigned long watermark;
fdd4c614 2611 enum compact_result suitable;
fe4b1b24 2612
fdd4c614
VB
2613 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2614 if (suitable == COMPACT_SUCCESS)
2615 /* Allocation should succeed already. Don't reclaim. */
2616 return true;
2617 if (suitable == COMPACT_SKIPPED)
2618 /* Compaction cannot yet proceed. Do reclaim. */
2619 return false;
fe4b1b24 2620
53853e2d 2621 /*
fdd4c614
VB
2622 * Compaction is already possible, but it takes time to run and there
2623 * are potentially other callers using the pages just freed. So proceed
2624 * with reclaim to make a buffer of free pages available to give
2625 * compaction a reasonable chance of completing and allocating the page.
2626 * Note that we won't actually reclaim the whole buffer in one attempt
2627 * as the target watermark in should_continue_reclaim() is lower. But if
2628 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2629 */
fdd4c614 2630 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2631
fdd4c614 2632 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2633}
2634
1da177e4
LT
2635/*
2636 * This is the direct reclaim path, for page-allocating processes. We only
2637 * try to reclaim pages from zones which will satisfy the caller's allocation
2638 * request.
2639 *
1da177e4
LT
2640 * If a zone is deemed to be full of pinned pages then just give it a light
2641 * scan then give up on it.
2642 */
0a0337e0 2643static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2644{
dd1a239f 2645 struct zoneref *z;
54a6eb5c 2646 struct zone *zone;
0608f43d
AM
2647 unsigned long nr_soft_reclaimed;
2648 unsigned long nr_soft_scanned;
619d0d76 2649 gfp_t orig_mask;
79dafcdc 2650 pg_data_t *last_pgdat = NULL;
1cfb419b 2651
cc715d99
MG
2652 /*
2653 * If the number of buffer_heads in the machine exceeds the maximum
2654 * allowed level, force direct reclaim to scan the highmem zone as
2655 * highmem pages could be pinning lowmem pages storing buffer_heads
2656 */
619d0d76 2657 orig_mask = sc->gfp_mask;
b2e18757 2658 if (buffer_heads_over_limit) {
cc715d99 2659 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2660 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2661 }
cc715d99 2662
d4debc66 2663 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2664 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2665 /*
2666 * Take care memory controller reclaiming has small influence
2667 * to global LRU.
2668 */
89b5fae5 2669 if (global_reclaim(sc)) {
344736f2
VD
2670 if (!cpuset_zone_allowed(zone,
2671 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2672 continue;
65ec02cb 2673
6e543d57 2674 if (sc->priority != DEF_PRIORITY &&
599d0c95 2675 !pgdat_reclaimable(zone->zone_pgdat))
1cfb419b 2676 continue; /* Let kswapd poll it */
0b06496a
JW
2677
2678 /*
2679 * If we already have plenty of memory free for
2680 * compaction in this zone, don't free any more.
2681 * Even though compaction is invoked for any
2682 * non-zero order, only frequent costly order
2683 * reclamation is disruptive enough to become a
2684 * noticeable problem, like transparent huge
2685 * page allocations.
2686 */
2687 if (IS_ENABLED(CONFIG_COMPACTION) &&
2688 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2689 compaction_ready(zone, sc)) {
0b06496a
JW
2690 sc->compaction_ready = true;
2691 continue;
e0887c19 2692 }
0b06496a 2693
79dafcdc
MG
2694 /*
2695 * Shrink each node in the zonelist once. If the
2696 * zonelist is ordered by zone (not the default) then a
2697 * node may be shrunk multiple times but in that case
2698 * the user prefers lower zones being preserved.
2699 */
2700 if (zone->zone_pgdat == last_pgdat)
2701 continue;
2702
0608f43d
AM
2703 /*
2704 * This steals pages from memory cgroups over softlimit
2705 * and returns the number of reclaimed pages and
2706 * scanned pages. This works for global memory pressure
2707 * and balancing, not for a memcg's limit.
2708 */
2709 nr_soft_scanned = 0;
ef8f2327 2710 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2711 sc->order, sc->gfp_mask,
2712 &nr_soft_scanned);
2713 sc->nr_reclaimed += nr_soft_reclaimed;
2714 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2715 /* need some check for avoid more shrink_zone() */
1cfb419b 2716 }
408d8544 2717
79dafcdc
MG
2718 /* See comment about same check for global reclaim above */
2719 if (zone->zone_pgdat == last_pgdat)
2720 continue;
2721 last_pgdat = zone->zone_pgdat;
970a39a3 2722 shrink_node(zone->zone_pgdat, sc);
1da177e4 2723 }
e0c23279 2724
619d0d76
WY
2725 /*
2726 * Restore to original mask to avoid the impact on the caller if we
2727 * promoted it to __GFP_HIGHMEM.
2728 */
2729 sc->gfp_mask = orig_mask;
1da177e4 2730}
4f98a2fe 2731
1da177e4
LT
2732/*
2733 * This is the main entry point to direct page reclaim.
2734 *
2735 * If a full scan of the inactive list fails to free enough memory then we
2736 * are "out of memory" and something needs to be killed.
2737 *
2738 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2739 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2740 * caller can't do much about. We kick the writeback threads and take explicit
2741 * naps in the hope that some of these pages can be written. But if the
2742 * allocating task holds filesystem locks which prevent writeout this might not
2743 * work, and the allocation attempt will fail.
a41f24ea
NA
2744 *
2745 * returns: 0, if no pages reclaimed
2746 * else, the number of pages reclaimed
1da177e4 2747 */
dac1d27b 2748static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2749 struct scan_control *sc)
1da177e4 2750{
241994ed 2751 int initial_priority = sc->priority;
69e05944 2752 unsigned long total_scanned = 0;
22fba335 2753 unsigned long writeback_threshold;
241994ed 2754retry:
873b4771
KK
2755 delayacct_freepages_start();
2756
89b5fae5 2757 if (global_reclaim(sc))
7cc30fcf 2758 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 2759
9e3b2f8c 2760 do {
70ddf637
AV
2761 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2762 sc->priority);
66e1707b 2763 sc->nr_scanned = 0;
0a0337e0 2764 shrink_zones(zonelist, sc);
c6a8a8c5 2765
66e1707b 2766 total_scanned += sc->nr_scanned;
bb21c7ce 2767 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2768 break;
2769
2770 if (sc->compaction_ready)
2771 break;
1da177e4 2772
0e50ce3b
MK
2773 /*
2774 * If we're getting trouble reclaiming, start doing
2775 * writepage even in laptop mode.
2776 */
2777 if (sc->priority < DEF_PRIORITY - 2)
2778 sc->may_writepage = 1;
2779
1da177e4
LT
2780 /*
2781 * Try to write back as many pages as we just scanned. This
2782 * tends to cause slow streaming writers to write data to the
2783 * disk smoothly, at the dirtying rate, which is nice. But
2784 * that's undesirable in laptop mode, where we *want* lumpy
2785 * writeout. So in laptop mode, write out the whole world.
2786 */
22fba335
KM
2787 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2788 if (total_scanned > writeback_threshold) {
0e175a18
CW
2789 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2790 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2791 sc->may_writepage = 1;
1da177e4 2792 }
0b06496a 2793 } while (--sc->priority >= 0);
bb21c7ce 2794
873b4771
KK
2795 delayacct_freepages_end();
2796
bb21c7ce
KM
2797 if (sc->nr_reclaimed)
2798 return sc->nr_reclaimed;
2799
0cee34fd 2800 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2801 if (sc->compaction_ready)
7335084d
MG
2802 return 1;
2803
241994ed
JW
2804 /* Untapped cgroup reserves? Don't OOM, retry. */
2805 if (!sc->may_thrash) {
2806 sc->priority = initial_priority;
2807 sc->may_thrash = 1;
2808 goto retry;
2809 }
2810
bb21c7ce 2811 return 0;
1da177e4
LT
2812}
2813
5515061d
MG
2814static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2815{
2816 struct zone *zone;
2817 unsigned long pfmemalloc_reserve = 0;
2818 unsigned long free_pages = 0;
2819 int i;
2820 bool wmark_ok;
2821
2822 for (i = 0; i <= ZONE_NORMAL; i++) {
2823 zone = &pgdat->node_zones[i];
6aa303de 2824 if (!managed_zone(zone) ||
599d0c95 2825 pgdat_reclaimable_pages(pgdat) == 0)
675becce
MG
2826 continue;
2827
5515061d
MG
2828 pfmemalloc_reserve += min_wmark_pages(zone);
2829 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2830 }
2831
675becce
MG
2832 /* If there are no reserves (unexpected config) then do not throttle */
2833 if (!pfmemalloc_reserve)
2834 return true;
2835
5515061d
MG
2836 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2837
2838 /* kswapd must be awake if processes are being throttled */
2839 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 2840 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
2841 (enum zone_type)ZONE_NORMAL);
2842 wake_up_interruptible(&pgdat->kswapd_wait);
2843 }
2844
2845 return wmark_ok;
2846}
2847
2848/*
2849 * Throttle direct reclaimers if backing storage is backed by the network
2850 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2851 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2852 * when the low watermark is reached.
2853 *
2854 * Returns true if a fatal signal was delivered during throttling. If this
2855 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2856 */
50694c28 2857static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2858 nodemask_t *nodemask)
2859{
675becce 2860 struct zoneref *z;
5515061d 2861 struct zone *zone;
675becce 2862 pg_data_t *pgdat = NULL;
5515061d
MG
2863
2864 /*
2865 * Kernel threads should not be throttled as they may be indirectly
2866 * responsible for cleaning pages necessary for reclaim to make forward
2867 * progress. kjournald for example may enter direct reclaim while
2868 * committing a transaction where throttling it could forcing other
2869 * processes to block on log_wait_commit().
2870 */
2871 if (current->flags & PF_KTHREAD)
50694c28
MG
2872 goto out;
2873
2874 /*
2875 * If a fatal signal is pending, this process should not throttle.
2876 * It should return quickly so it can exit and free its memory
2877 */
2878 if (fatal_signal_pending(current))
2879 goto out;
5515061d 2880
675becce
MG
2881 /*
2882 * Check if the pfmemalloc reserves are ok by finding the first node
2883 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2884 * GFP_KERNEL will be required for allocating network buffers when
2885 * swapping over the network so ZONE_HIGHMEM is unusable.
2886 *
2887 * Throttling is based on the first usable node and throttled processes
2888 * wait on a queue until kswapd makes progress and wakes them. There
2889 * is an affinity then between processes waking up and where reclaim
2890 * progress has been made assuming the process wakes on the same node.
2891 * More importantly, processes running on remote nodes will not compete
2892 * for remote pfmemalloc reserves and processes on different nodes
2893 * should make reasonable progress.
2894 */
2895 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2896 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2897 if (zone_idx(zone) > ZONE_NORMAL)
2898 continue;
2899
2900 /* Throttle based on the first usable node */
2901 pgdat = zone->zone_pgdat;
2902 if (pfmemalloc_watermark_ok(pgdat))
2903 goto out;
2904 break;
2905 }
2906
2907 /* If no zone was usable by the allocation flags then do not throttle */
2908 if (!pgdat)
50694c28 2909 goto out;
5515061d 2910
68243e76
MG
2911 /* Account for the throttling */
2912 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2913
5515061d
MG
2914 /*
2915 * If the caller cannot enter the filesystem, it's possible that it
2916 * is due to the caller holding an FS lock or performing a journal
2917 * transaction in the case of a filesystem like ext[3|4]. In this case,
2918 * it is not safe to block on pfmemalloc_wait as kswapd could be
2919 * blocked waiting on the same lock. Instead, throttle for up to a
2920 * second before continuing.
2921 */
2922 if (!(gfp_mask & __GFP_FS)) {
2923 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2924 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2925
2926 goto check_pending;
5515061d
MG
2927 }
2928
2929 /* Throttle until kswapd wakes the process */
2930 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2931 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2932
2933check_pending:
2934 if (fatal_signal_pending(current))
2935 return true;
2936
2937out:
2938 return false;
5515061d
MG
2939}
2940
dac1d27b 2941unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2942 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2943{
33906bc5 2944 unsigned long nr_reclaimed;
66e1707b 2945 struct scan_control sc = {
ee814fe2 2946 .nr_to_reclaim = SWAP_CLUSTER_MAX,
21caf2fc 2947 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
b2e18757 2948 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
2949 .order = order,
2950 .nodemask = nodemask,
2951 .priority = DEF_PRIORITY,
66e1707b 2952 .may_writepage = !laptop_mode,
a6dc60f8 2953 .may_unmap = 1,
2e2e4259 2954 .may_swap = 1,
66e1707b
BS
2955 };
2956
5515061d 2957 /*
50694c28
MG
2958 * Do not enter reclaim if fatal signal was delivered while throttled.
2959 * 1 is returned so that the page allocator does not OOM kill at this
2960 * point.
5515061d 2961 */
50694c28 2962 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2963 return 1;
2964
33906bc5
MG
2965 trace_mm_vmscan_direct_reclaim_begin(order,
2966 sc.may_writepage,
e5146b12
MG
2967 gfp_mask,
2968 sc.reclaim_idx);
33906bc5 2969
3115cd91 2970 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2971
2972 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2973
2974 return nr_reclaimed;
66e1707b
BS
2975}
2976
c255a458 2977#ifdef CONFIG_MEMCG
66e1707b 2978
a9dd0a83 2979unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 2980 gfp_t gfp_mask, bool noswap,
ef8f2327 2981 pg_data_t *pgdat,
0ae5e89c 2982 unsigned long *nr_scanned)
4e416953
BS
2983{
2984 struct scan_control sc = {
b8f5c566 2985 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 2986 .target_mem_cgroup = memcg,
4e416953
BS
2987 .may_writepage = !laptop_mode,
2988 .may_unmap = 1,
b2e18757 2989 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 2990 .may_swap = !noswap,
4e416953 2991 };
6b4f7799 2992 unsigned long lru_pages;
0ae5e89c 2993
4e416953
BS
2994 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2995 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2996
9e3b2f8c 2997 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e 2998 sc.may_writepage,
e5146b12
MG
2999 sc.gfp_mask,
3000 sc.reclaim_idx);
bdce6d9e 3001
4e416953
BS
3002 /*
3003 * NOTE: Although we can get the priority field, using it
3004 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3005 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3006 * will pick up pages from other mem cgroup's as well. We hack
3007 * the priority and make it zero.
3008 */
ef8f2327 3009 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
bdce6d9e
KM
3010
3011 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3012
0ae5e89c 3013 *nr_scanned = sc.nr_scanned;
4e416953
BS
3014 return sc.nr_reclaimed;
3015}
3016
72835c86 3017unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3018 unsigned long nr_pages,
a7885eb8 3019 gfp_t gfp_mask,
b70a2a21 3020 bool may_swap)
66e1707b 3021{
4e416953 3022 struct zonelist *zonelist;
bdce6d9e 3023 unsigned long nr_reclaimed;
889976db 3024 int nid;
66e1707b 3025 struct scan_control sc = {
b70a2a21 3026 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
a09ed5e0
YH
3027 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3028 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3029 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3030 .target_mem_cgroup = memcg,
3031 .priority = DEF_PRIORITY,
3032 .may_writepage = !laptop_mode,
3033 .may_unmap = 1,
b70a2a21 3034 .may_swap = may_swap,
a09ed5e0 3035 };
66e1707b 3036
889976db
YH
3037 /*
3038 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3039 * take care of from where we get pages. So the node where we start the
3040 * scan does not need to be the current node.
3041 */
72835c86 3042 nid = mem_cgroup_select_victim_node(memcg);
889976db 3043
c9634cf0 3044 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
bdce6d9e
KM
3045
3046 trace_mm_vmscan_memcg_reclaim_begin(0,
3047 sc.may_writepage,
e5146b12
MG
3048 sc.gfp_mask,
3049 sc.reclaim_idx);
bdce6d9e 3050
89a28483 3051 current->flags |= PF_MEMALLOC;
3115cd91 3052 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
89a28483 3053 current->flags &= ~PF_MEMALLOC;
bdce6d9e
KM
3054
3055 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3056
3057 return nr_reclaimed;
66e1707b
BS
3058}
3059#endif
3060
1d82de61 3061static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3062 struct scan_control *sc)
f16015fb 3063{
b95a2f2d 3064 struct mem_cgroup *memcg;
f16015fb 3065
b95a2f2d
JW
3066 if (!total_swap_pages)
3067 return;
3068
3069 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3070 do {
ef8f2327 3071 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
b95a2f2d 3072
dcec0b60 3073 if (inactive_list_is_low(lruvec, false, sc, true))
1a93be0e 3074 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3075 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3076
3077 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3078 } while (memcg);
f16015fb
JW
3079}
3080
31483b6a 3081static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
60cefed4 3082{
31483b6a 3083 unsigned long mark = high_wmark_pages(zone);
60cefed4 3084
6256c6b4
MG
3085 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3086 return false;
3087
3088 /*
3089 * If any eligible zone is balanced then the node is not considered
3090 * to be congested or dirty
3091 */
3092 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3093 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3094
3095 return true;
60cefed4
JW
3096}
3097
5515061d
MG
3098/*
3099 * Prepare kswapd for sleeping. This verifies that there are no processes
3100 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3101 *
3102 * Returns true if kswapd is ready to sleep
3103 */
d9f21d42 3104static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3105{
1d82de61
MG
3106 int i;
3107
5515061d 3108 /*
9e5e3661
VB
3109 * The throttled processes are normally woken up in balance_pgdat() as
3110 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3111 * race between when kswapd checks the watermarks and a process gets
3112 * throttled. There is also a potential race if processes get
3113 * throttled, kswapd wakes, a large process exits thereby balancing the
3114 * zones, which causes kswapd to exit balance_pgdat() before reaching
3115 * the wake up checks. If kswapd is going to sleep, no process should
3116 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3117 * the wake up is premature, processes will wake kswapd and get
3118 * throttled again. The difference from wake ups in balance_pgdat() is
3119 * that here we are under prepare_to_wait().
5515061d 3120 */
9e5e3661
VB
3121 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3122 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3123
1d82de61
MG
3124 for (i = 0; i <= classzone_idx; i++) {
3125 struct zone *zone = pgdat->node_zones + i;
3126
6aa303de 3127 if (!managed_zone(zone))
1d82de61
MG
3128 continue;
3129
38087d9b
MG
3130 if (!zone_balanced(zone, order, classzone_idx))
3131 return false;
1d82de61
MG
3132 }
3133
38087d9b 3134 return true;
f50de2d3
MG
3135}
3136
75485363 3137/*
1d82de61
MG
3138 * kswapd shrinks a node of pages that are at or below the highest usable
3139 * zone that is currently unbalanced.
b8e83b94
MG
3140 *
3141 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3142 * reclaim or if the lack of progress was due to pages under writeback.
3143 * This is used to determine if the scanning priority needs to be raised.
75485363 3144 */
1d82de61 3145static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3146 struct scan_control *sc)
75485363 3147{
1d82de61
MG
3148 struct zone *zone;
3149 int z;
75485363 3150
1d82de61
MG
3151 /* Reclaim a number of pages proportional to the number of zones */
3152 sc->nr_to_reclaim = 0;
970a39a3 3153 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3154 zone = pgdat->node_zones + z;
6aa303de 3155 if (!managed_zone(zone))
1d82de61 3156 continue;
7c954f6d 3157
1d82de61
MG
3158 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3159 }
7c954f6d
MG
3160
3161 /*
1d82de61
MG
3162 * Historically care was taken to put equal pressure on all zones but
3163 * now pressure is applied based on node LRU order.
7c954f6d 3164 */
970a39a3 3165 shrink_node(pgdat, sc);
283aba9f 3166
7c954f6d 3167 /*
1d82de61
MG
3168 * Fragmentation may mean that the system cannot be rebalanced for
3169 * high-order allocations. If twice the allocation size has been
3170 * reclaimed then recheck watermarks only at order-0 to prevent
3171 * excessive reclaim. Assume that a process requested a high-order
3172 * can direct reclaim/compact.
7c954f6d 3173 */
9861a62c 3174 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3175 sc->order = 0;
7c954f6d 3176
b8e83b94 3177 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3178}
3179
1da177e4 3180/*
1d82de61
MG
3181 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3182 * that are eligible for use by the caller until at least one zone is
3183 * balanced.
1da177e4 3184 *
1d82de61 3185 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3186 *
3187 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3188 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1d82de61
MG
3189 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3190 * or lower is eligible for reclaim until at least one usable zone is
3191 * balanced.
1da177e4 3192 */
accf6242 3193static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3194{
1da177e4 3195 int i;
0608f43d
AM
3196 unsigned long nr_soft_reclaimed;
3197 unsigned long nr_soft_scanned;
1d82de61 3198 struct zone *zone;
179e9639
AM
3199 struct scan_control sc = {
3200 .gfp_mask = GFP_KERNEL,
ee814fe2 3201 .order = order,
b8e83b94 3202 .priority = DEF_PRIORITY,
ee814fe2 3203 .may_writepage = !laptop_mode,
a6dc60f8 3204 .may_unmap = 1,
2e2e4259 3205 .may_swap = 1,
179e9639 3206 };
f8891e5e 3207 count_vm_event(PAGEOUTRUN);
1da177e4 3208
9e3b2f8c 3209 do {
b8e83b94
MG
3210 bool raise_priority = true;
3211
3212 sc.nr_reclaimed = 0;
84c7a777 3213 sc.reclaim_idx = classzone_idx;
1da177e4 3214
86c79f6b 3215 /*
84c7a777
MG
3216 * If the number of buffer_heads exceeds the maximum allowed
3217 * then consider reclaiming from all zones. This has a dual
3218 * purpose -- on 64-bit systems it is expected that
3219 * buffer_heads are stripped during active rotation. On 32-bit
3220 * systems, highmem pages can pin lowmem memory and shrinking
3221 * buffers can relieve lowmem pressure. Reclaim may still not
3222 * go ahead if all eligible zones for the original allocation
3223 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3224 */
3225 if (buffer_heads_over_limit) {
3226 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3227 zone = pgdat->node_zones + i;
6aa303de 3228 if (!managed_zone(zone))
86c79f6b 3229 continue;
cc715d99 3230
970a39a3 3231 sc.reclaim_idx = i;
e1dbeda6 3232 break;
1da177e4 3233 }
1da177e4 3234 }
dafcb73e 3235
86c79f6b
MG
3236 /*
3237 * Only reclaim if there are no eligible zones. Check from
3238 * high to low zone as allocations prefer higher zones.
3239 * Scanning from low to high zone would allow congestion to be
3240 * cleared during a very small window when a small low
3241 * zone was balanced even under extreme pressure when the
84c7a777
MG
3242 * overall node may be congested. Note that sc.reclaim_idx
3243 * is not used as buffer_heads_over_limit may have adjusted
3244 * it.
86c79f6b 3245 */
84c7a777 3246 for (i = classzone_idx; i >= 0; i--) {
86c79f6b 3247 zone = pgdat->node_zones + i;
6aa303de 3248 if (!managed_zone(zone))
86c79f6b
MG
3249 continue;
3250
84c7a777 3251 if (zone_balanced(zone, sc.order, classzone_idx))
86c79f6b
MG
3252 goto out;
3253 }
e1dbeda6 3254
1d82de61
MG
3255 /*
3256 * Do some background aging of the anon list, to give
3257 * pages a chance to be referenced before reclaiming. All
3258 * pages are rotated regardless of classzone as this is
3259 * about consistent aging.
3260 */
ef8f2327 3261 age_active_anon(pgdat, &sc);
1d82de61 3262
b7ea3c41
MG
3263 /*
3264 * If we're getting trouble reclaiming, start doing writepage
3265 * even in laptop mode.
3266 */
1d82de61 3267 if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
b7ea3c41
MG
3268 sc.may_writepage = 1;
3269
1d82de61
MG
3270 /* Call soft limit reclaim before calling shrink_node. */
3271 sc.nr_scanned = 0;
3272 nr_soft_scanned = 0;
ef8f2327 3273 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3274 sc.gfp_mask, &nr_soft_scanned);
3275 sc.nr_reclaimed += nr_soft_reclaimed;
3276
1da177e4 3277 /*
1d82de61
MG
3278 * There should be no need to raise the scanning priority if
3279 * enough pages are already being scanned that that high
3280 * watermark would be met at 100% efficiency.
1da177e4 3281 */
970a39a3 3282 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3283 raise_priority = false;
5515061d
MG
3284
3285 /*
3286 * If the low watermark is met there is no need for processes
3287 * to be throttled on pfmemalloc_wait as they should not be
3288 * able to safely make forward progress. Wake them
3289 */
3290 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3291 pfmemalloc_watermark_ok(pgdat))
cfc51155 3292 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3293
b8e83b94
MG
3294 /* Check if kswapd should be suspending */
3295 if (try_to_freeze() || kthread_should_stop())
3296 break;
8357376d 3297
73ce02e9 3298 /*
b8e83b94
MG
3299 * Raise priority if scanning rate is too low or there was no
3300 * progress in reclaiming pages
73ce02e9 3301 */
b8e83b94
MG
3302 if (raise_priority || !sc.nr_reclaimed)
3303 sc.priority--;
1d82de61 3304 } while (sc.priority >= 1);
1da177e4 3305
b8e83b94 3306out:
0abdee2b 3307 /*
1d82de61
MG
3308 * Return the order kswapd stopped reclaiming at as
3309 * prepare_kswapd_sleep() takes it into account. If another caller
3310 * entered the allocator slow path while kswapd was awake, order will
3311 * remain at the higher level.
0abdee2b 3312 */
1d82de61 3313 return sc.order;
1da177e4
LT
3314}
3315
38087d9b
MG
3316static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3317 unsigned int classzone_idx)
f0bc0a60
KM
3318{
3319 long remaining = 0;
3320 DEFINE_WAIT(wait);
3321
3322 if (freezing(current) || kthread_should_stop())
3323 return;
3324
3325 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3326
3327 /* Try to sleep for a short interval */
d9f21d42 3328 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3329 /*
3330 * Compaction records what page blocks it recently failed to
3331 * isolate pages from and skips them in the future scanning.
3332 * When kswapd is going to sleep, it is reasonable to assume
3333 * that pages and compaction may succeed so reset the cache.
3334 */
3335 reset_isolation_suitable(pgdat);
3336
3337 /*
3338 * We have freed the memory, now we should compact it to make
3339 * allocation of the requested order possible.
3340 */
38087d9b 3341 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3342
f0bc0a60 3343 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3344
3345 /*
3346 * If woken prematurely then reset kswapd_classzone_idx and
3347 * order. The values will either be from a wakeup request or
3348 * the previous request that slept prematurely.
3349 */
3350 if (remaining) {
3351 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3352 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3353 }
3354
f0bc0a60
KM
3355 finish_wait(&pgdat->kswapd_wait, &wait);
3356 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3357 }
3358
3359 /*
3360 * After a short sleep, check if it was a premature sleep. If not, then
3361 * go fully to sleep until explicitly woken up.
3362 */
d9f21d42
MG
3363 if (!remaining &&
3364 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3365 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3366
3367 /*
3368 * vmstat counters are not perfectly accurate and the estimated
3369 * value for counters such as NR_FREE_PAGES can deviate from the
3370 * true value by nr_online_cpus * threshold. To avoid the zone
3371 * watermarks being breached while under pressure, we reduce the
3372 * per-cpu vmstat threshold while kswapd is awake and restore
3373 * them before going back to sleep.
3374 */
3375 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3376
3377 if (!kthread_should_stop())
3378 schedule();
3379
f0bc0a60
KM
3380 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3381 } else {
3382 if (remaining)
3383 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3384 else
3385 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3386 }
3387 finish_wait(&pgdat->kswapd_wait, &wait);
3388}
3389
1da177e4
LT
3390/*
3391 * The background pageout daemon, started as a kernel thread
4f98a2fe 3392 * from the init process.
1da177e4
LT
3393 *
3394 * This basically trickles out pages so that we have _some_
3395 * free memory available even if there is no other activity
3396 * that frees anything up. This is needed for things like routing
3397 * etc, where we otherwise might have all activity going on in
3398 * asynchronous contexts that cannot page things out.
3399 *
3400 * If there are applications that are active memory-allocators
3401 * (most normal use), this basically shouldn't matter.
3402 */
3403static int kswapd(void *p)
3404{
38087d9b 3405 unsigned int alloc_order, reclaim_order, classzone_idx;
1da177e4
LT
3406 pg_data_t *pgdat = (pg_data_t*)p;
3407 struct task_struct *tsk = current;
f0bc0a60 3408
1da177e4
LT
3409 struct reclaim_state reclaim_state = {
3410 .reclaimed_slab = 0,
3411 };
a70f7302 3412 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3413
cf40bd16
NP
3414 lockdep_set_current_reclaim_state(GFP_KERNEL);
3415
174596a0 3416 if (!cpumask_empty(cpumask))
c5f59f08 3417 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3418 current->reclaim_state = &reclaim_state;
3419
3420 /*
3421 * Tell the memory management that we're a "memory allocator",
3422 * and that if we need more memory we should get access to it
3423 * regardless (see "__alloc_pages()"). "kswapd" should
3424 * never get caught in the normal page freeing logic.
3425 *
3426 * (Kswapd normally doesn't need memory anyway, but sometimes
3427 * you need a small amount of memory in order to be able to
3428 * page out something else, and this flag essentially protects
3429 * us from recursively trying to free more memory as we're
3430 * trying to free the first piece of memory in the first place).
3431 */
930d9152 3432 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3433 set_freezable();
1da177e4 3434
38087d9b
MG
3435 pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3436 pgdat->kswapd_classzone_idx = classzone_idx = 0;
1da177e4 3437 for ( ; ; ) {
6f6313d4 3438 bool ret;
3e1d1d28 3439
38087d9b
MG
3440kswapd_try_sleep:
3441 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3442 classzone_idx);
215ddd66 3443
38087d9b
MG
3444 /* Read the new order and classzone_idx */
3445 alloc_order = reclaim_order = pgdat->kswapd_order;
3446 classzone_idx = pgdat->kswapd_classzone_idx;
3447 pgdat->kswapd_order = 0;
3448 pgdat->kswapd_classzone_idx = 0;
1da177e4 3449
8fe23e05
DR
3450 ret = try_to_freeze();
3451 if (kthread_should_stop())
3452 break;
3453
3454 /*
3455 * We can speed up thawing tasks if we don't call balance_pgdat
3456 * after returning from the refrigerator
3457 */
38087d9b
MG
3458 if (ret)
3459 continue;
3460
3461 /*
3462 * Reclaim begins at the requested order but if a high-order
3463 * reclaim fails then kswapd falls back to reclaiming for
3464 * order-0. If that happens, kswapd will consider sleeping
3465 * for the order it finished reclaiming at (reclaim_order)
3466 * but kcompactd is woken to compact for the original
3467 * request (alloc_order).
3468 */
e5146b12
MG
3469 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3470 alloc_order);
38087d9b
MG
3471 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3472 if (reclaim_order < alloc_order)
3473 goto kswapd_try_sleep;
1d82de61 3474
38087d9b
MG
3475 alloc_order = reclaim_order = pgdat->kswapd_order;
3476 classzone_idx = pgdat->kswapd_classzone_idx;
1da177e4 3477 }
b0a8cc58 3478
71abdc15 3479 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3480 current->reclaim_state = NULL;
71abdc15
JW
3481 lockdep_clear_current_reclaim_state();
3482
1da177e4
LT
3483 return 0;
3484}
3485
3486/*
3487 * A zone is low on free memory, so wake its kswapd task to service it.
3488 */
99504748 3489void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3490{
3491 pg_data_t *pgdat;
e1a55637 3492 int z;
1da177e4 3493
6aa303de 3494 if (!managed_zone(zone))
1da177e4
LT
3495 return;
3496
344736f2 3497 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3498 return;
88f5acf8 3499 pgdat = zone->zone_pgdat;
38087d9b
MG
3500 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3501 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3502 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3503 return;
e1a55637
MG
3504
3505 /* Only wake kswapd if all zones are unbalanced */
3506 for (z = 0; z <= classzone_idx; z++) {
3507 zone = pgdat->node_zones + z;
6aa303de 3508 if (!managed_zone(zone))
e1a55637
MG
3509 continue;
3510
3511 if (zone_balanced(zone, order, classzone_idx))
3512 return;
3513 }
88f5acf8
MG
3514
3515 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3516 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3517}
3518
c6f37f12 3519#ifdef CONFIG_HIBERNATION
1da177e4 3520/*
7b51755c 3521 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3522 * freed pages.
3523 *
3524 * Rather than trying to age LRUs the aim is to preserve the overall
3525 * LRU order by reclaiming preferentially
3526 * inactive > active > active referenced > active mapped
1da177e4 3527 */
7b51755c 3528unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3529{
d6277db4 3530 struct reclaim_state reclaim_state;
d6277db4 3531 struct scan_control sc = {
ee814fe2 3532 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3533 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3534 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3535 .priority = DEF_PRIORITY,
d6277db4 3536 .may_writepage = 1,
ee814fe2
JW
3537 .may_unmap = 1,
3538 .may_swap = 1,
7b51755c 3539 .hibernation_mode = 1,
1da177e4 3540 };
a09ed5e0 3541 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3542 struct task_struct *p = current;
3543 unsigned long nr_reclaimed;
1da177e4 3544
7b51755c
KM
3545 p->flags |= PF_MEMALLOC;
3546 lockdep_set_current_reclaim_state(sc.gfp_mask);
3547 reclaim_state.reclaimed_slab = 0;
3548 p->reclaim_state = &reclaim_state;
d6277db4 3549
3115cd91 3550 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3551
7b51755c
KM
3552 p->reclaim_state = NULL;
3553 lockdep_clear_current_reclaim_state();
3554 p->flags &= ~PF_MEMALLOC;
d6277db4 3555
7b51755c 3556 return nr_reclaimed;
1da177e4 3557}
c6f37f12 3558#endif /* CONFIG_HIBERNATION */
1da177e4 3559
1da177e4
LT
3560/* It's optimal to keep kswapds on the same CPUs as their memory, but
3561 not required for correctness. So if the last cpu in a node goes
3562 away, we get changed to run anywhere: as the first one comes back,
3563 restore their cpu bindings. */
517bbed9 3564static int kswapd_cpu_online(unsigned int cpu)
1da177e4 3565{
58c0a4a7 3566 int nid;
1da177e4 3567
517bbed9
SAS
3568 for_each_node_state(nid, N_MEMORY) {
3569 pg_data_t *pgdat = NODE_DATA(nid);
3570 const struct cpumask *mask;
a70f7302 3571
517bbed9 3572 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3573
517bbed9
SAS
3574 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3575 /* One of our CPUs online: restore mask */
3576 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4 3577 }
517bbed9 3578 return 0;
1da177e4 3579}
1da177e4 3580
3218ae14
YG
3581/*
3582 * This kswapd start function will be called by init and node-hot-add.
3583 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3584 */
3585int kswapd_run(int nid)
3586{
3587 pg_data_t *pgdat = NODE_DATA(nid);
3588 int ret = 0;
3589
3590 if (pgdat->kswapd)
3591 return 0;
3592
3593 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3594 if (IS_ERR(pgdat->kswapd)) {
3595 /* failure at boot is fatal */
3596 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3597 pr_err("Failed to start kswapd on node %d\n", nid);
3598 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3599 pgdat->kswapd = NULL;
3218ae14
YG
3600 }
3601 return ret;
3602}
3603
8fe23e05 3604/*
d8adde17 3605 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3606 * hold mem_hotplug_begin/end().
8fe23e05
DR
3607 */
3608void kswapd_stop(int nid)
3609{
3610 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3611
d8adde17 3612 if (kswapd) {
8fe23e05 3613 kthread_stop(kswapd);
d8adde17
JL
3614 NODE_DATA(nid)->kswapd = NULL;
3615 }
8fe23e05
DR
3616}
3617
1da177e4
LT
3618static int __init kswapd_init(void)
3619{
517bbed9 3620 int nid, ret;
69e05944 3621
1da177e4 3622 swap_setup();
48fb2e24 3623 for_each_node_state(nid, N_MEMORY)
3218ae14 3624 kswapd_run(nid);
517bbed9
SAS
3625 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3626 "mm/vmscan:online", kswapd_cpu_online,
3627 NULL);
3628 WARN_ON(ret < 0);
1da177e4
LT
3629 return 0;
3630}
3631
3632module_init(kswapd_init)
9eeff239
CL
3633
3634#ifdef CONFIG_NUMA
3635/*
a5f5f91d 3636 * Node reclaim mode
9eeff239 3637 *
a5f5f91d 3638 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 3639 * the watermarks.
9eeff239 3640 */
a5f5f91d 3641int node_reclaim_mode __read_mostly;
9eeff239 3642
1b2ffb78 3643#define RECLAIM_OFF 0
7d03431c 3644#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3645#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3646#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3647
a92f7126 3648/*
a5f5f91d 3649 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
3650 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3651 * a zone.
3652 */
a5f5f91d 3653#define NODE_RECLAIM_PRIORITY 4
a92f7126 3654
9614634f 3655/*
a5f5f91d 3656 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
3657 * occur.
3658 */
3659int sysctl_min_unmapped_ratio = 1;
3660
0ff38490
CL
3661/*
3662 * If the number of slab pages in a zone grows beyond this percentage then
3663 * slab reclaim needs to occur.
3664 */
3665int sysctl_min_slab_ratio = 5;
3666
11fb9989 3667static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 3668{
11fb9989
MG
3669 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3670 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3671 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
3672
3673 /*
3674 * It's possible for there to be more file mapped pages than
3675 * accounted for by the pages on the file LRU lists because
3676 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3677 */
3678 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3679}
3680
3681/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 3682static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 3683{
d031a157
AM
3684 unsigned long nr_pagecache_reclaimable;
3685 unsigned long delta = 0;
90afa5de
MG
3686
3687 /*
95bbc0c7 3688 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 3689 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 3690 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
3691 * a better estimate
3692 */
a5f5f91d
MG
3693 if (node_reclaim_mode & RECLAIM_UNMAP)
3694 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 3695 else
a5f5f91d 3696 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
3697
3698 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
3699 if (!(node_reclaim_mode & RECLAIM_WRITE))
3700 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
3701
3702 /* Watch for any possible underflows due to delta */
3703 if (unlikely(delta > nr_pagecache_reclaimable))
3704 delta = nr_pagecache_reclaimable;
3705
3706 return nr_pagecache_reclaimable - delta;
3707}
3708
9eeff239 3709/*
a5f5f91d 3710 * Try to free up some pages from this node through reclaim.
9eeff239 3711 */
a5f5f91d 3712static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 3713{
7fb2d46d 3714 /* Minimum pages needed in order to stay on node */
69e05944 3715 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3716 struct task_struct *p = current;
3717 struct reclaim_state reclaim_state;
a5f5f91d 3718 int classzone_idx = gfp_zone(gfp_mask);
179e9639 3719 struct scan_control sc = {
62b726c1 3720 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3721 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3722 .order = order,
a5f5f91d
MG
3723 .priority = NODE_RECLAIM_PRIORITY,
3724 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3725 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 3726 .may_swap = 1,
a5f5f91d 3727 .reclaim_idx = classzone_idx,
179e9639 3728 };
9eeff239 3729
9eeff239 3730 cond_resched();
d4f7796e 3731 /*
95bbc0c7 3732 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 3733 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 3734 * and RECLAIM_UNMAP.
d4f7796e
CL
3735 */
3736 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3737 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3738 reclaim_state.reclaimed_slab = 0;
3739 p->reclaim_state = &reclaim_state;
c84db23c 3740
a5f5f91d 3741 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490
CL
3742 /*
3743 * Free memory by calling shrink zone with increasing
3744 * priorities until we have enough memory freed.
3745 */
0ff38490 3746 do {
970a39a3 3747 shrink_node(pgdat, &sc);
9e3b2f8c 3748 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3749 }
c84db23c 3750
9eeff239 3751 p->reclaim_state = NULL;
d4f7796e 3752 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3753 lockdep_clear_current_reclaim_state();
a79311c1 3754 return sc.nr_reclaimed >= nr_pages;
9eeff239 3755}
179e9639 3756
a5f5f91d 3757int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 3758{
d773ed6b 3759 int ret;
179e9639
AM
3760
3761 /*
a5f5f91d 3762 * Node reclaim reclaims unmapped file backed pages and
0ff38490 3763 * slab pages if we are over the defined limits.
34aa1330 3764 *
9614634f
CL
3765 * A small portion of unmapped file backed pages is needed for
3766 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
3767 * thrown out if the node is overallocated. So we do not reclaim
3768 * if less than a specified percentage of the node is used by
9614634f 3769 * unmapped file backed pages.
179e9639 3770 */
a5f5f91d
MG
3771 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3772 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3773 return NODE_RECLAIM_FULL;
179e9639 3774
a5f5f91d
MG
3775 if (!pgdat_reclaimable(pgdat))
3776 return NODE_RECLAIM_FULL;
d773ed6b 3777
179e9639 3778 /*
d773ed6b 3779 * Do not scan if the allocation should not be delayed.
179e9639 3780 */
d0164adc 3781 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 3782 return NODE_RECLAIM_NOSCAN;
179e9639
AM
3783
3784 /*
a5f5f91d 3785 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
3786 * have associated processors. This will favor the local processor
3787 * over remote processors and spread off node memory allocations
3788 * as wide as possible.
3789 */
a5f5f91d
MG
3790 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3791 return NODE_RECLAIM_NOSCAN;
d773ed6b 3792
a5f5f91d
MG
3793 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3794 return NODE_RECLAIM_NOSCAN;
fa5e084e 3795
a5f5f91d
MG
3796 ret = __node_reclaim(pgdat, gfp_mask, order);
3797 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 3798
24cf7251
MG
3799 if (!ret)
3800 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3801
d773ed6b 3802 return ret;
179e9639 3803}
9eeff239 3804#endif
894bc310 3805
894bc310
LS
3806/*
3807 * page_evictable - test whether a page is evictable
3808 * @page: the page to test
894bc310
LS
3809 *
3810 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3811 * lists vs unevictable list.
894bc310
LS
3812 *
3813 * Reasons page might not be evictable:
ba9ddf49 3814 * (1) page's mapping marked unevictable
b291f000 3815 * (2) page is part of an mlocked VMA
ba9ddf49 3816 *
894bc310 3817 */
39b5f29a 3818int page_evictable(struct page *page)
894bc310 3819{
39b5f29a 3820 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3821}
89e004ea 3822
85046579 3823#ifdef CONFIG_SHMEM
89e004ea 3824/**
24513264
HD
3825 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3826 * @pages: array of pages to check
3827 * @nr_pages: number of pages to check
89e004ea 3828 *
24513264 3829 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3830 *
3831 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3832 */
24513264 3833void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3834{
925b7673 3835 struct lruvec *lruvec;
785b99fe 3836 struct pglist_data *pgdat = NULL;
24513264
HD
3837 int pgscanned = 0;
3838 int pgrescued = 0;
3839 int i;
89e004ea 3840
24513264
HD
3841 for (i = 0; i < nr_pages; i++) {
3842 struct page *page = pages[i];
785b99fe 3843 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 3844
24513264 3845 pgscanned++;
785b99fe
MG
3846 if (pagepgdat != pgdat) {
3847 if (pgdat)
3848 spin_unlock_irq(&pgdat->lru_lock);
3849 pgdat = pagepgdat;
3850 spin_lock_irq(&pgdat->lru_lock);
24513264 3851 }
785b99fe 3852 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 3853
24513264
HD
3854 if (!PageLRU(page) || !PageUnevictable(page))
3855 continue;
89e004ea 3856
39b5f29a 3857 if (page_evictable(page)) {
24513264
HD
3858 enum lru_list lru = page_lru_base_type(page);
3859
309381fe 3860 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3861 ClearPageUnevictable(page);
fa9add64
HD
3862 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3863 add_page_to_lru_list(page, lruvec, lru);
24513264 3864 pgrescued++;
89e004ea 3865 }
24513264 3866 }
89e004ea 3867
785b99fe 3868 if (pgdat) {
24513264
HD
3869 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3870 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 3871 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 3872 }
89e004ea 3873}
85046579 3874#endif /* CONFIG_SHMEM */