]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/vmscan.c
mm, vmalloc: remove VM_VPAGES
[mirror_ubuntu-bionic-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4
LT
16#include <linux/mm.h>
17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
268bb0ce 47#include <linux/prefetch.h>
b1de0d13 48#include <linux/printk.h>
1da177e4
LT
49
50#include <asm/tlbflush.h>
51#include <asm/div64.h>
52
53#include <linux/swapops.h>
117aad1e 54#include <linux/balloon_compaction.h>
1da177e4 55
0f8053a5
NP
56#include "internal.h"
57
33906bc5
MG
58#define CREATE_TRACE_POINTS
59#include <trace/events/vmscan.h>
60
1da177e4 61struct scan_control {
22fba335
KM
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
64
1da177e4 65 /* This context's GFP mask */
6daa0e28 66 gfp_t gfp_mask;
1da177e4 67
ee814fe2 68 /* Allocation order */
5ad333eb 69 int order;
66e1707b 70
ee814fe2
JW
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
9e3b2f8c 76
f16015fb
JW
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
66e1707b 82
ee814fe2
JW
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 unsigned int may_writepage:1;
87
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
90
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
93
241994ed
JW
94 /* Can cgroups be reclaimed below their normal consumption range? */
95 unsigned int may_thrash:1;
96
ee814fe2
JW
97 unsigned int hibernation_mode:1;
98
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready:1;
101
102 /* Incremented by the number of inactive pages that were scanned */
103 unsigned long nr_scanned;
104
105 /* Number of pages freed so far during a call to shrink_zones() */
106 unsigned long nr_reclaimed;
1da177e4
LT
107};
108
1da177e4
LT
109#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
110
111#ifdef ARCH_HAS_PREFETCH
112#define prefetch_prev_lru_page(_page, _base, _field) \
113 do { \
114 if ((_page)->lru.prev != _base) { \
115 struct page *prev; \
116 \
117 prev = lru_to_page(&(_page->lru)); \
118 prefetch(&prev->_field); \
119 } \
120 } while (0)
121#else
122#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
123#endif
124
125#ifdef ARCH_HAS_PREFETCHW
126#define prefetchw_prev_lru_page(_page, _base, _field) \
127 do { \
128 if ((_page)->lru.prev != _base) { \
129 struct page *prev; \
130 \
131 prev = lru_to_page(&(_page->lru)); \
132 prefetchw(&prev->_field); \
133 } \
134 } while (0)
135#else
136#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
137#endif
138
139/*
140 * From 0 .. 100. Higher means more swappy.
141 */
142int vm_swappiness = 60;
d0480be4
WSH
143/*
144 * The total number of pages which are beyond the high watermark within all
145 * zones.
146 */
147unsigned long vm_total_pages;
1da177e4
LT
148
149static LIST_HEAD(shrinker_list);
150static DECLARE_RWSEM(shrinker_rwsem);
151
c255a458 152#ifdef CONFIG_MEMCG
89b5fae5
JW
153static bool global_reclaim(struct scan_control *sc)
154{
f16015fb 155 return !sc->target_mem_cgroup;
89b5fae5 156}
97c9341f
TH
157
158/**
159 * sane_reclaim - is the usual dirty throttling mechanism operational?
160 * @sc: scan_control in question
161 *
162 * The normal page dirty throttling mechanism in balance_dirty_pages() is
163 * completely broken with the legacy memcg and direct stalling in
164 * shrink_page_list() is used for throttling instead, which lacks all the
165 * niceties such as fairness, adaptive pausing, bandwidth proportional
166 * allocation and configurability.
167 *
168 * This function tests whether the vmscan currently in progress can assume
169 * that the normal dirty throttling mechanism is operational.
170 */
171static bool sane_reclaim(struct scan_control *sc)
172{
173 struct mem_cgroup *memcg = sc->target_mem_cgroup;
174
175 if (!memcg)
176 return true;
177#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 178 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
179 return true;
180#endif
181 return false;
182}
91a45470 183#else
89b5fae5
JW
184static bool global_reclaim(struct scan_control *sc)
185{
186 return true;
187}
97c9341f
TH
188
189static bool sane_reclaim(struct scan_control *sc)
190{
191 return true;
192}
91a45470
KH
193#endif
194
a1c3bfb2 195static unsigned long zone_reclaimable_pages(struct zone *zone)
6e543d57 196{
d031a157 197 unsigned long nr;
6e543d57
LD
198
199 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
200 zone_page_state(zone, NR_INACTIVE_FILE);
201
202 if (get_nr_swap_pages() > 0)
203 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
204 zone_page_state(zone, NR_INACTIVE_ANON);
205
206 return nr;
207}
208
209bool zone_reclaimable(struct zone *zone)
210{
0d5d823a
MG
211 return zone_page_state(zone, NR_PAGES_SCANNED) <
212 zone_reclaimable_pages(zone) * 6;
6e543d57
LD
213}
214
4d7dcca2 215static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 216{
c3c787e8 217 if (!mem_cgroup_disabled())
4d7dcca2 218 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 219
074291fe 220 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
221}
222
1da177e4 223/*
1d3d4437 224 * Add a shrinker callback to be called from the vm.
1da177e4 225 */
1d3d4437 226int register_shrinker(struct shrinker *shrinker)
1da177e4 227{
1d3d4437
GC
228 size_t size = sizeof(*shrinker->nr_deferred);
229
230 /*
231 * If we only have one possible node in the system anyway, save
232 * ourselves the trouble and disable NUMA aware behavior. This way we
233 * will save memory and some small loop time later.
234 */
235 if (nr_node_ids == 1)
236 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
237
238 if (shrinker->flags & SHRINKER_NUMA_AWARE)
239 size *= nr_node_ids;
240
241 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
242 if (!shrinker->nr_deferred)
243 return -ENOMEM;
244
8e1f936b
RR
245 down_write(&shrinker_rwsem);
246 list_add_tail(&shrinker->list, &shrinker_list);
247 up_write(&shrinker_rwsem);
1d3d4437 248 return 0;
1da177e4 249}
8e1f936b 250EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
251
252/*
253 * Remove one
254 */
8e1f936b 255void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
256{
257 down_write(&shrinker_rwsem);
258 list_del(&shrinker->list);
259 up_write(&shrinker_rwsem);
ae393321 260 kfree(shrinker->nr_deferred);
1da177e4 261}
8e1f936b 262EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
263
264#define SHRINK_BATCH 128
1d3d4437 265
cb731d6c
VD
266static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
267 struct shrinker *shrinker,
268 unsigned long nr_scanned,
269 unsigned long nr_eligible)
1d3d4437
GC
270{
271 unsigned long freed = 0;
272 unsigned long long delta;
273 long total_scan;
d5bc5fd3 274 long freeable;
1d3d4437
GC
275 long nr;
276 long new_nr;
277 int nid = shrinkctl->nid;
278 long batch_size = shrinker->batch ? shrinker->batch
279 : SHRINK_BATCH;
280
d5bc5fd3
VD
281 freeable = shrinker->count_objects(shrinker, shrinkctl);
282 if (freeable == 0)
1d3d4437
GC
283 return 0;
284
285 /*
286 * copy the current shrinker scan count into a local variable
287 * and zero it so that other concurrent shrinker invocations
288 * don't also do this scanning work.
289 */
290 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
291
292 total_scan = nr;
6b4f7799 293 delta = (4 * nr_scanned) / shrinker->seeks;
d5bc5fd3 294 delta *= freeable;
6b4f7799 295 do_div(delta, nr_eligible + 1);
1d3d4437
GC
296 total_scan += delta;
297 if (total_scan < 0) {
8612c663 298 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 299 shrinker->scan_objects, total_scan);
d5bc5fd3 300 total_scan = freeable;
1d3d4437
GC
301 }
302
303 /*
304 * We need to avoid excessive windup on filesystem shrinkers
305 * due to large numbers of GFP_NOFS allocations causing the
306 * shrinkers to return -1 all the time. This results in a large
307 * nr being built up so when a shrink that can do some work
308 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 309 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
310 * memory.
311 *
312 * Hence only allow the shrinker to scan the entire cache when
313 * a large delta change is calculated directly.
314 */
d5bc5fd3
VD
315 if (delta < freeable / 4)
316 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
317
318 /*
319 * Avoid risking looping forever due to too large nr value:
320 * never try to free more than twice the estimate number of
321 * freeable entries.
322 */
d5bc5fd3
VD
323 if (total_scan > freeable * 2)
324 total_scan = freeable * 2;
1d3d4437
GC
325
326 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
6b4f7799
JW
327 nr_scanned, nr_eligible,
328 freeable, delta, total_scan);
1d3d4437 329
0b1fb40a
VD
330 /*
331 * Normally, we should not scan less than batch_size objects in one
332 * pass to avoid too frequent shrinker calls, but if the slab has less
333 * than batch_size objects in total and we are really tight on memory,
334 * we will try to reclaim all available objects, otherwise we can end
335 * up failing allocations although there are plenty of reclaimable
336 * objects spread over several slabs with usage less than the
337 * batch_size.
338 *
339 * We detect the "tight on memory" situations by looking at the total
340 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 341 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
342 * scanning at high prio and therefore should try to reclaim as much as
343 * possible.
344 */
345 while (total_scan >= batch_size ||
d5bc5fd3 346 total_scan >= freeable) {
a0b02131 347 unsigned long ret;
0b1fb40a 348 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 349
0b1fb40a 350 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
351 ret = shrinker->scan_objects(shrinker, shrinkctl);
352 if (ret == SHRINK_STOP)
353 break;
354 freed += ret;
1d3d4437 355
0b1fb40a
VD
356 count_vm_events(SLABS_SCANNED, nr_to_scan);
357 total_scan -= nr_to_scan;
1d3d4437
GC
358
359 cond_resched();
360 }
361
362 /*
363 * move the unused scan count back into the shrinker in a
364 * manner that handles concurrent updates. If we exhausted the
365 * scan, there is no need to do an update.
366 */
367 if (total_scan > 0)
368 new_nr = atomic_long_add_return(total_scan,
369 &shrinker->nr_deferred[nid]);
370 else
371 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
372
df9024a8 373 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 374 return freed;
1495f230
YH
375}
376
6b4f7799 377/**
cb731d6c 378 * shrink_slab - shrink slab caches
6b4f7799
JW
379 * @gfp_mask: allocation context
380 * @nid: node whose slab caches to target
cb731d6c 381 * @memcg: memory cgroup whose slab caches to target
6b4f7799
JW
382 * @nr_scanned: pressure numerator
383 * @nr_eligible: pressure denominator
1da177e4 384 *
6b4f7799 385 * Call the shrink functions to age shrinkable caches.
1da177e4 386 *
6b4f7799
JW
387 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
388 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 389 *
cb731d6c
VD
390 * @memcg specifies the memory cgroup to target. If it is not NULL,
391 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
392 * objects from the memory cgroup specified. Otherwise all shrinkers
393 * are called, and memcg aware shrinkers are supposed to scan the
394 * global list then.
395 *
6b4f7799
JW
396 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
397 * the available objects should be scanned. Page reclaim for example
398 * passes the number of pages scanned and the number of pages on the
399 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
400 * when it encountered mapped pages. The ratio is further biased by
401 * the ->seeks setting of the shrink function, which indicates the
402 * cost to recreate an object relative to that of an LRU page.
b15e0905 403 *
6b4f7799 404 * Returns the number of reclaimed slab objects.
1da177e4 405 */
cb731d6c
VD
406static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
407 struct mem_cgroup *memcg,
408 unsigned long nr_scanned,
409 unsigned long nr_eligible)
1da177e4
LT
410{
411 struct shrinker *shrinker;
24f7c6b9 412 unsigned long freed = 0;
1da177e4 413
cb731d6c
VD
414 if (memcg && !memcg_kmem_is_active(memcg))
415 return 0;
416
6b4f7799
JW
417 if (nr_scanned == 0)
418 nr_scanned = SWAP_CLUSTER_MAX;
1da177e4 419
f06590bd 420 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
421 /*
422 * If we would return 0, our callers would understand that we
423 * have nothing else to shrink and give up trying. By returning
424 * 1 we keep it going and assume we'll be able to shrink next
425 * time.
426 */
427 freed = 1;
f06590bd
MK
428 goto out;
429 }
1da177e4
LT
430
431 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
432 struct shrink_control sc = {
433 .gfp_mask = gfp_mask,
434 .nid = nid,
cb731d6c 435 .memcg = memcg,
6b4f7799 436 };
ec97097b 437
cb731d6c
VD
438 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
439 continue;
440
6b4f7799
JW
441 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
442 sc.nid = 0;
1da177e4 443
cb731d6c 444 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
1da177e4 445 }
6b4f7799 446
1da177e4 447 up_read(&shrinker_rwsem);
f06590bd
MK
448out:
449 cond_resched();
24f7c6b9 450 return freed;
1da177e4
LT
451}
452
cb731d6c
VD
453void drop_slab_node(int nid)
454{
455 unsigned long freed;
456
457 do {
458 struct mem_cgroup *memcg = NULL;
459
460 freed = 0;
461 do {
462 freed += shrink_slab(GFP_KERNEL, nid, memcg,
463 1000, 1000);
464 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
465 } while (freed > 10);
466}
467
468void drop_slab(void)
469{
470 int nid;
471
472 for_each_online_node(nid)
473 drop_slab_node(nid);
474}
475
1da177e4
LT
476static inline int is_page_cache_freeable(struct page *page)
477{
ceddc3a5
JW
478 /*
479 * A freeable page cache page is referenced only by the caller
480 * that isolated the page, the page cache radix tree and
481 * optional buffer heads at page->private.
482 */
edcf4748 483 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
484}
485
703c2708 486static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 487{
930d9152 488 if (current->flags & PF_SWAPWRITE)
1da177e4 489 return 1;
703c2708 490 if (!inode_write_congested(inode))
1da177e4 491 return 1;
703c2708 492 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
493 return 1;
494 return 0;
495}
496
497/*
498 * We detected a synchronous write error writing a page out. Probably
499 * -ENOSPC. We need to propagate that into the address_space for a subsequent
500 * fsync(), msync() or close().
501 *
502 * The tricky part is that after writepage we cannot touch the mapping: nothing
503 * prevents it from being freed up. But we have a ref on the page and once
504 * that page is locked, the mapping is pinned.
505 *
506 * We're allowed to run sleeping lock_page() here because we know the caller has
507 * __GFP_FS.
508 */
509static void handle_write_error(struct address_space *mapping,
510 struct page *page, int error)
511{
7eaceacc 512 lock_page(page);
3e9f45bd
GC
513 if (page_mapping(page) == mapping)
514 mapping_set_error(mapping, error);
1da177e4
LT
515 unlock_page(page);
516}
517
04e62a29
CL
518/* possible outcome of pageout() */
519typedef enum {
520 /* failed to write page out, page is locked */
521 PAGE_KEEP,
522 /* move page to the active list, page is locked */
523 PAGE_ACTIVATE,
524 /* page has been sent to the disk successfully, page is unlocked */
525 PAGE_SUCCESS,
526 /* page is clean and locked */
527 PAGE_CLEAN,
528} pageout_t;
529
1da177e4 530/*
1742f19f
AM
531 * pageout is called by shrink_page_list() for each dirty page.
532 * Calls ->writepage().
1da177e4 533 */
c661b078 534static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 535 struct scan_control *sc)
1da177e4
LT
536{
537 /*
538 * If the page is dirty, only perform writeback if that write
539 * will be non-blocking. To prevent this allocation from being
540 * stalled by pagecache activity. But note that there may be
541 * stalls if we need to run get_block(). We could test
542 * PagePrivate for that.
543 *
8174202b 544 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
545 * this page's queue, we can perform writeback even if that
546 * will block.
547 *
548 * If the page is swapcache, write it back even if that would
549 * block, for some throttling. This happens by accident, because
550 * swap_backing_dev_info is bust: it doesn't reflect the
551 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
552 */
553 if (!is_page_cache_freeable(page))
554 return PAGE_KEEP;
555 if (!mapping) {
556 /*
557 * Some data journaling orphaned pages can have
558 * page->mapping == NULL while being dirty with clean buffers.
559 */
266cf658 560 if (page_has_private(page)) {
1da177e4
LT
561 if (try_to_free_buffers(page)) {
562 ClearPageDirty(page);
b1de0d13 563 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
564 return PAGE_CLEAN;
565 }
566 }
567 return PAGE_KEEP;
568 }
569 if (mapping->a_ops->writepage == NULL)
570 return PAGE_ACTIVATE;
703c2708 571 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
572 return PAGE_KEEP;
573
574 if (clear_page_dirty_for_io(page)) {
575 int res;
576 struct writeback_control wbc = {
577 .sync_mode = WB_SYNC_NONE,
578 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
579 .range_start = 0,
580 .range_end = LLONG_MAX,
1da177e4
LT
581 .for_reclaim = 1,
582 };
583
584 SetPageReclaim(page);
585 res = mapping->a_ops->writepage(page, &wbc);
586 if (res < 0)
587 handle_write_error(mapping, page, res);
994fc28c 588 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
589 ClearPageReclaim(page);
590 return PAGE_ACTIVATE;
591 }
c661b078 592
1da177e4
LT
593 if (!PageWriteback(page)) {
594 /* synchronous write or broken a_ops? */
595 ClearPageReclaim(page);
596 }
3aa23851 597 trace_mm_vmscan_writepage(page);
e129b5c2 598 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
599 return PAGE_SUCCESS;
600 }
601
602 return PAGE_CLEAN;
603}
604
a649fd92 605/*
e286781d
NP
606 * Same as remove_mapping, but if the page is removed from the mapping, it
607 * gets returned with a refcount of 0.
a649fd92 608 */
a528910e
JW
609static int __remove_mapping(struct address_space *mapping, struct page *page,
610 bool reclaimed)
49d2e9cc 611{
c4843a75
GT
612 unsigned long flags;
613 struct mem_cgroup *memcg;
614
28e4d965
NP
615 BUG_ON(!PageLocked(page));
616 BUG_ON(mapping != page_mapping(page));
49d2e9cc 617
c4843a75
GT
618 memcg = mem_cgroup_begin_page_stat(page);
619 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 620 /*
0fd0e6b0
NP
621 * The non racy check for a busy page.
622 *
623 * Must be careful with the order of the tests. When someone has
624 * a ref to the page, it may be possible that they dirty it then
625 * drop the reference. So if PageDirty is tested before page_count
626 * here, then the following race may occur:
627 *
628 * get_user_pages(&page);
629 * [user mapping goes away]
630 * write_to(page);
631 * !PageDirty(page) [good]
632 * SetPageDirty(page);
633 * put_page(page);
634 * !page_count(page) [good, discard it]
635 *
636 * [oops, our write_to data is lost]
637 *
638 * Reversing the order of the tests ensures such a situation cannot
639 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
640 * load is not satisfied before that of page->_count.
641 *
642 * Note that if SetPageDirty is always performed via set_page_dirty,
643 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 644 */
e286781d 645 if (!page_freeze_refs(page, 2))
49d2e9cc 646 goto cannot_free;
e286781d
NP
647 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
648 if (unlikely(PageDirty(page))) {
649 page_unfreeze_refs(page, 2);
49d2e9cc 650 goto cannot_free;
e286781d 651 }
49d2e9cc
CL
652
653 if (PageSwapCache(page)) {
654 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 655 mem_cgroup_swapout(page, swap);
49d2e9cc 656 __delete_from_swap_cache(page);
c4843a75
GT
657 spin_unlock_irqrestore(&mapping->tree_lock, flags);
658 mem_cgroup_end_page_stat(memcg);
0a31bc97 659 swapcache_free(swap);
e286781d 660 } else {
6072d13c 661 void (*freepage)(struct page *);
a528910e 662 void *shadow = NULL;
6072d13c
LT
663
664 freepage = mapping->a_ops->freepage;
a528910e
JW
665 /*
666 * Remember a shadow entry for reclaimed file cache in
667 * order to detect refaults, thus thrashing, later on.
668 *
669 * But don't store shadows in an address space that is
670 * already exiting. This is not just an optizimation,
671 * inode reclaim needs to empty out the radix tree or
672 * the nodes are lost. Don't plant shadows behind its
673 * back.
674 */
675 if (reclaimed && page_is_file_cache(page) &&
676 !mapping_exiting(mapping))
677 shadow = workingset_eviction(mapping, page);
c4843a75
GT
678 __delete_from_page_cache(page, shadow, memcg);
679 spin_unlock_irqrestore(&mapping->tree_lock, flags);
680 mem_cgroup_end_page_stat(memcg);
6072d13c
LT
681
682 if (freepage != NULL)
683 freepage(page);
49d2e9cc
CL
684 }
685
49d2e9cc
CL
686 return 1;
687
688cannot_free:
c4843a75
GT
689 spin_unlock_irqrestore(&mapping->tree_lock, flags);
690 mem_cgroup_end_page_stat(memcg);
49d2e9cc
CL
691 return 0;
692}
693
e286781d
NP
694/*
695 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
696 * someone else has a ref on the page, abort and return 0. If it was
697 * successfully detached, return 1. Assumes the caller has a single ref on
698 * this page.
699 */
700int remove_mapping(struct address_space *mapping, struct page *page)
701{
a528910e 702 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
703 /*
704 * Unfreezing the refcount with 1 rather than 2 effectively
705 * drops the pagecache ref for us without requiring another
706 * atomic operation.
707 */
708 page_unfreeze_refs(page, 1);
709 return 1;
710 }
711 return 0;
712}
713
894bc310
LS
714/**
715 * putback_lru_page - put previously isolated page onto appropriate LRU list
716 * @page: page to be put back to appropriate lru list
717 *
718 * Add previously isolated @page to appropriate LRU list.
719 * Page may still be unevictable for other reasons.
720 *
721 * lru_lock must not be held, interrupts must be enabled.
722 */
894bc310
LS
723void putback_lru_page(struct page *page)
724{
0ec3b74c 725 bool is_unevictable;
bbfd28ee 726 int was_unevictable = PageUnevictable(page);
894bc310 727
309381fe 728 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
729
730redo:
731 ClearPageUnevictable(page);
732
39b5f29a 733 if (page_evictable(page)) {
894bc310
LS
734 /*
735 * For evictable pages, we can use the cache.
736 * In event of a race, worst case is we end up with an
737 * unevictable page on [in]active list.
738 * We know how to handle that.
739 */
0ec3b74c 740 is_unevictable = false;
c53954a0 741 lru_cache_add(page);
894bc310
LS
742 } else {
743 /*
744 * Put unevictable pages directly on zone's unevictable
745 * list.
746 */
0ec3b74c 747 is_unevictable = true;
894bc310 748 add_page_to_unevictable_list(page);
6a7b9548 749 /*
21ee9f39
MK
750 * When racing with an mlock or AS_UNEVICTABLE clearing
751 * (page is unlocked) make sure that if the other thread
752 * does not observe our setting of PG_lru and fails
24513264 753 * isolation/check_move_unevictable_pages,
21ee9f39 754 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
755 * the page back to the evictable list.
756 *
21ee9f39 757 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
758 */
759 smp_mb();
894bc310 760 }
894bc310
LS
761
762 /*
763 * page's status can change while we move it among lru. If an evictable
764 * page is on unevictable list, it never be freed. To avoid that,
765 * check after we added it to the list, again.
766 */
0ec3b74c 767 if (is_unevictable && page_evictable(page)) {
894bc310
LS
768 if (!isolate_lru_page(page)) {
769 put_page(page);
770 goto redo;
771 }
772 /* This means someone else dropped this page from LRU
773 * So, it will be freed or putback to LRU again. There is
774 * nothing to do here.
775 */
776 }
777
0ec3b74c 778 if (was_unevictable && !is_unevictable)
bbfd28ee 779 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 780 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
781 count_vm_event(UNEVICTABLE_PGCULLED);
782
894bc310
LS
783 put_page(page); /* drop ref from isolate */
784}
785
dfc8d636
JW
786enum page_references {
787 PAGEREF_RECLAIM,
788 PAGEREF_RECLAIM_CLEAN,
64574746 789 PAGEREF_KEEP,
dfc8d636
JW
790 PAGEREF_ACTIVATE,
791};
792
793static enum page_references page_check_references(struct page *page,
794 struct scan_control *sc)
795{
64574746 796 int referenced_ptes, referenced_page;
dfc8d636 797 unsigned long vm_flags;
dfc8d636 798
c3ac9a8a
JW
799 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
800 &vm_flags);
64574746 801 referenced_page = TestClearPageReferenced(page);
dfc8d636 802
dfc8d636
JW
803 /*
804 * Mlock lost the isolation race with us. Let try_to_unmap()
805 * move the page to the unevictable list.
806 */
807 if (vm_flags & VM_LOCKED)
808 return PAGEREF_RECLAIM;
809
64574746 810 if (referenced_ptes) {
e4898273 811 if (PageSwapBacked(page))
64574746
JW
812 return PAGEREF_ACTIVATE;
813 /*
814 * All mapped pages start out with page table
815 * references from the instantiating fault, so we need
816 * to look twice if a mapped file page is used more
817 * than once.
818 *
819 * Mark it and spare it for another trip around the
820 * inactive list. Another page table reference will
821 * lead to its activation.
822 *
823 * Note: the mark is set for activated pages as well
824 * so that recently deactivated but used pages are
825 * quickly recovered.
826 */
827 SetPageReferenced(page);
828
34dbc67a 829 if (referenced_page || referenced_ptes > 1)
64574746
JW
830 return PAGEREF_ACTIVATE;
831
c909e993
KK
832 /*
833 * Activate file-backed executable pages after first usage.
834 */
835 if (vm_flags & VM_EXEC)
836 return PAGEREF_ACTIVATE;
837
64574746
JW
838 return PAGEREF_KEEP;
839 }
dfc8d636
JW
840
841 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 842 if (referenced_page && !PageSwapBacked(page))
64574746
JW
843 return PAGEREF_RECLAIM_CLEAN;
844
845 return PAGEREF_RECLAIM;
dfc8d636
JW
846}
847
e2be15f6
MG
848/* Check if a page is dirty or under writeback */
849static void page_check_dirty_writeback(struct page *page,
850 bool *dirty, bool *writeback)
851{
b4597226
MG
852 struct address_space *mapping;
853
e2be15f6
MG
854 /*
855 * Anonymous pages are not handled by flushers and must be written
856 * from reclaim context. Do not stall reclaim based on them
857 */
858 if (!page_is_file_cache(page)) {
859 *dirty = false;
860 *writeback = false;
861 return;
862 }
863
864 /* By default assume that the page flags are accurate */
865 *dirty = PageDirty(page);
866 *writeback = PageWriteback(page);
b4597226
MG
867
868 /* Verify dirty/writeback state if the filesystem supports it */
869 if (!page_has_private(page))
870 return;
871
872 mapping = page_mapping(page);
873 if (mapping && mapping->a_ops->is_dirty_writeback)
874 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
875}
876
1da177e4 877/*
1742f19f 878 * shrink_page_list() returns the number of reclaimed pages
1da177e4 879 */
1742f19f 880static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 881 struct zone *zone,
f84f6e2b 882 struct scan_control *sc,
02c6de8d 883 enum ttu_flags ttu_flags,
8e950282 884 unsigned long *ret_nr_dirty,
d43006d5 885 unsigned long *ret_nr_unqueued_dirty,
8e950282 886 unsigned long *ret_nr_congested,
02c6de8d 887 unsigned long *ret_nr_writeback,
b1a6f21e 888 unsigned long *ret_nr_immediate,
02c6de8d 889 bool force_reclaim)
1da177e4
LT
890{
891 LIST_HEAD(ret_pages);
abe4c3b5 892 LIST_HEAD(free_pages);
1da177e4 893 int pgactivate = 0;
d43006d5 894 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
895 unsigned long nr_dirty = 0;
896 unsigned long nr_congested = 0;
05ff5137 897 unsigned long nr_reclaimed = 0;
92df3a72 898 unsigned long nr_writeback = 0;
b1a6f21e 899 unsigned long nr_immediate = 0;
1da177e4
LT
900
901 cond_resched();
902
1da177e4
LT
903 while (!list_empty(page_list)) {
904 struct address_space *mapping;
905 struct page *page;
906 int may_enter_fs;
02c6de8d 907 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 908 bool dirty, writeback;
1da177e4
LT
909
910 cond_resched();
911
912 page = lru_to_page(page_list);
913 list_del(&page->lru);
914
529ae9aa 915 if (!trylock_page(page))
1da177e4
LT
916 goto keep;
917
309381fe
SL
918 VM_BUG_ON_PAGE(PageActive(page), page);
919 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1da177e4
LT
920
921 sc->nr_scanned++;
80e43426 922
39b5f29a 923 if (unlikely(!page_evictable(page)))
b291f000 924 goto cull_mlocked;
894bc310 925
a6dc60f8 926 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
927 goto keep_locked;
928
1da177e4
LT
929 /* Double the slab pressure for mapped and swapcache pages */
930 if (page_mapped(page) || PageSwapCache(page))
931 sc->nr_scanned++;
932
c661b078
AW
933 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
934 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
935
e2be15f6
MG
936 /*
937 * The number of dirty pages determines if a zone is marked
938 * reclaim_congested which affects wait_iff_congested. kswapd
939 * will stall and start writing pages if the tail of the LRU
940 * is all dirty unqueued pages.
941 */
942 page_check_dirty_writeback(page, &dirty, &writeback);
943 if (dirty || writeback)
944 nr_dirty++;
945
946 if (dirty && !writeback)
947 nr_unqueued_dirty++;
948
d04e8acd
MG
949 /*
950 * Treat this page as congested if the underlying BDI is or if
951 * pages are cycling through the LRU so quickly that the
952 * pages marked for immediate reclaim are making it to the
953 * end of the LRU a second time.
954 */
e2be15f6 955 mapping = page_mapping(page);
1da58ee2 956 if (((dirty || writeback) && mapping &&
703c2708 957 inode_write_congested(mapping->host)) ||
d04e8acd 958 (writeback && PageReclaim(page)))
e2be15f6
MG
959 nr_congested++;
960
283aba9f
MG
961 /*
962 * If a page at the tail of the LRU is under writeback, there
963 * are three cases to consider.
964 *
965 * 1) If reclaim is encountering an excessive number of pages
966 * under writeback and this page is both under writeback and
967 * PageReclaim then it indicates that pages are being queued
968 * for IO but are being recycled through the LRU before the
969 * IO can complete. Waiting on the page itself risks an
970 * indefinite stall if it is impossible to writeback the
971 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
972 * note that the LRU is being scanned too quickly and the
973 * caller can stall after page list has been processed.
283aba9f 974 *
97c9341f 975 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
976 * not marked for immediate reclaim, or the caller does not
977 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
978 * not to fs). In this case mark the page for immediate
97c9341f 979 * reclaim and continue scanning.
283aba9f 980 *
ecf5fc6e
MH
981 * Require may_enter_fs because we would wait on fs, which
982 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
983 * enter reclaim, and deadlock if it waits on a page for
984 * which it is needed to do the write (loop masks off
985 * __GFP_IO|__GFP_FS for this reason); but more thought
986 * would probably show more reasons.
987 *
7fadc820 988 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
989 * PageReclaim. memcg does not have any dirty pages
990 * throttling so we could easily OOM just because too many
991 * pages are in writeback and there is nothing else to
992 * reclaim. Wait for the writeback to complete.
993 */
c661b078 994 if (PageWriteback(page)) {
283aba9f
MG
995 /* Case 1 above */
996 if (current_is_kswapd() &&
997 PageReclaim(page) &&
57054651 998 test_bit(ZONE_WRITEBACK, &zone->flags)) {
b1a6f21e
MG
999 nr_immediate++;
1000 goto keep_locked;
283aba9f
MG
1001
1002 /* Case 2 above */
97c9341f 1003 } else if (sane_reclaim(sc) ||
ecf5fc6e 1004 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1005 /*
1006 * This is slightly racy - end_page_writeback()
1007 * might have just cleared PageReclaim, then
1008 * setting PageReclaim here end up interpreted
1009 * as PageReadahead - but that does not matter
1010 * enough to care. What we do want is for this
1011 * page to have PageReclaim set next time memcg
1012 * reclaim reaches the tests above, so it will
1013 * then wait_on_page_writeback() to avoid OOM;
1014 * and it's also appropriate in global reclaim.
1015 */
1016 SetPageReclaim(page);
e62e384e 1017 nr_writeback++;
c3b94f44 1018 goto keep_locked;
283aba9f
MG
1019
1020 /* Case 3 above */
1021 } else {
7fadc820 1022 unlock_page(page);
283aba9f 1023 wait_on_page_writeback(page);
7fadc820
HD
1024 /* then go back and try same page again */
1025 list_add_tail(&page->lru, page_list);
1026 continue;
e62e384e 1027 }
c661b078 1028 }
1da177e4 1029
02c6de8d
MK
1030 if (!force_reclaim)
1031 references = page_check_references(page, sc);
1032
dfc8d636
JW
1033 switch (references) {
1034 case PAGEREF_ACTIVATE:
1da177e4 1035 goto activate_locked;
64574746
JW
1036 case PAGEREF_KEEP:
1037 goto keep_locked;
dfc8d636
JW
1038 case PAGEREF_RECLAIM:
1039 case PAGEREF_RECLAIM_CLEAN:
1040 ; /* try to reclaim the page below */
1041 }
1da177e4 1042
1da177e4
LT
1043 /*
1044 * Anonymous process memory has backing store?
1045 * Try to allocate it some swap space here.
1046 */
b291f000 1047 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
1048 if (!(sc->gfp_mask & __GFP_IO))
1049 goto keep_locked;
5bc7b8ac 1050 if (!add_to_swap(page, page_list))
1da177e4 1051 goto activate_locked;
63eb6b93 1052 may_enter_fs = 1;
1da177e4 1053
e2be15f6
MG
1054 /* Adding to swap updated mapping */
1055 mapping = page_mapping(page);
1056 }
1da177e4
LT
1057
1058 /*
1059 * The page is mapped into the page tables of one or more
1060 * processes. Try to unmap it here.
1061 */
1062 if (page_mapped(page) && mapping) {
72b252ae
MG
1063 switch (try_to_unmap(page,
1064 ttu_flags|TTU_BATCH_FLUSH)) {
1da177e4
LT
1065 case SWAP_FAIL:
1066 goto activate_locked;
1067 case SWAP_AGAIN:
1068 goto keep_locked;
b291f000
NP
1069 case SWAP_MLOCK:
1070 goto cull_mlocked;
1da177e4
LT
1071 case SWAP_SUCCESS:
1072 ; /* try to free the page below */
1073 }
1074 }
1075
1076 if (PageDirty(page)) {
ee72886d
MG
1077 /*
1078 * Only kswapd can writeback filesystem pages to
d43006d5
MG
1079 * avoid risk of stack overflow but only writeback
1080 * if many dirty pages have been encountered.
ee72886d 1081 */
f84f6e2b 1082 if (page_is_file_cache(page) &&
9e3b2f8c 1083 (!current_is_kswapd() ||
57054651 1084 !test_bit(ZONE_DIRTY, &zone->flags))) {
49ea7eb6
MG
1085 /*
1086 * Immediately reclaim when written back.
1087 * Similar in principal to deactivate_page()
1088 * except we already have the page isolated
1089 * and know it's dirty
1090 */
1091 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1092 SetPageReclaim(page);
1093
ee72886d
MG
1094 goto keep_locked;
1095 }
1096
dfc8d636 1097 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1098 goto keep_locked;
4dd4b920 1099 if (!may_enter_fs)
1da177e4 1100 goto keep_locked;
52a8363e 1101 if (!sc->may_writepage)
1da177e4
LT
1102 goto keep_locked;
1103
d950c947
MG
1104 /*
1105 * Page is dirty. Flush the TLB if a writable entry
1106 * potentially exists to avoid CPU writes after IO
1107 * starts and then write it out here.
1108 */
1109 try_to_unmap_flush_dirty();
7d3579e8 1110 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1111 case PAGE_KEEP:
1112 goto keep_locked;
1113 case PAGE_ACTIVATE:
1114 goto activate_locked;
1115 case PAGE_SUCCESS:
7d3579e8 1116 if (PageWriteback(page))
41ac1999 1117 goto keep;
7d3579e8 1118 if (PageDirty(page))
1da177e4 1119 goto keep;
7d3579e8 1120
1da177e4
LT
1121 /*
1122 * A synchronous write - probably a ramdisk. Go
1123 * ahead and try to reclaim the page.
1124 */
529ae9aa 1125 if (!trylock_page(page))
1da177e4
LT
1126 goto keep;
1127 if (PageDirty(page) || PageWriteback(page))
1128 goto keep_locked;
1129 mapping = page_mapping(page);
1130 case PAGE_CLEAN:
1131 ; /* try to free the page below */
1132 }
1133 }
1134
1135 /*
1136 * If the page has buffers, try to free the buffer mappings
1137 * associated with this page. If we succeed we try to free
1138 * the page as well.
1139 *
1140 * We do this even if the page is PageDirty().
1141 * try_to_release_page() does not perform I/O, but it is
1142 * possible for a page to have PageDirty set, but it is actually
1143 * clean (all its buffers are clean). This happens if the
1144 * buffers were written out directly, with submit_bh(). ext3
894bc310 1145 * will do this, as well as the blockdev mapping.
1da177e4
LT
1146 * try_to_release_page() will discover that cleanness and will
1147 * drop the buffers and mark the page clean - it can be freed.
1148 *
1149 * Rarely, pages can have buffers and no ->mapping. These are
1150 * the pages which were not successfully invalidated in
1151 * truncate_complete_page(). We try to drop those buffers here
1152 * and if that worked, and the page is no longer mapped into
1153 * process address space (page_count == 1) it can be freed.
1154 * Otherwise, leave the page on the LRU so it is swappable.
1155 */
266cf658 1156 if (page_has_private(page)) {
1da177e4
LT
1157 if (!try_to_release_page(page, sc->gfp_mask))
1158 goto activate_locked;
e286781d
NP
1159 if (!mapping && page_count(page) == 1) {
1160 unlock_page(page);
1161 if (put_page_testzero(page))
1162 goto free_it;
1163 else {
1164 /*
1165 * rare race with speculative reference.
1166 * the speculative reference will free
1167 * this page shortly, so we may
1168 * increment nr_reclaimed here (and
1169 * leave it off the LRU).
1170 */
1171 nr_reclaimed++;
1172 continue;
1173 }
1174 }
1da177e4
LT
1175 }
1176
a528910e 1177 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1178 goto keep_locked;
1da177e4 1179
a978d6f5
NP
1180 /*
1181 * At this point, we have no other references and there is
1182 * no way to pick any more up (removed from LRU, removed
1183 * from pagecache). Can use non-atomic bitops now (and
1184 * we obviously don't have to worry about waking up a process
1185 * waiting on the page lock, because there are no references.
1186 */
1187 __clear_page_locked(page);
e286781d 1188free_it:
05ff5137 1189 nr_reclaimed++;
abe4c3b5
MG
1190
1191 /*
1192 * Is there need to periodically free_page_list? It would
1193 * appear not as the counts should be low
1194 */
1195 list_add(&page->lru, &free_pages);
1da177e4
LT
1196 continue;
1197
b291f000 1198cull_mlocked:
63d6c5ad
HD
1199 if (PageSwapCache(page))
1200 try_to_free_swap(page);
b291f000 1201 unlock_page(page);
c54839a7 1202 list_add(&page->lru, &ret_pages);
b291f000
NP
1203 continue;
1204
1da177e4 1205activate_locked:
68a22394
RR
1206 /* Not a candidate for swapping, so reclaim swap space. */
1207 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1208 try_to_free_swap(page);
309381fe 1209 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1210 SetPageActive(page);
1211 pgactivate++;
1212keep_locked:
1213 unlock_page(page);
1214keep:
1215 list_add(&page->lru, &ret_pages);
309381fe 1216 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1217 }
abe4c3b5 1218
747db954 1219 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1220 try_to_unmap_flush();
b745bc85 1221 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1222
1da177e4 1223 list_splice(&ret_pages, page_list);
f8891e5e 1224 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1225
8e950282
MG
1226 *ret_nr_dirty += nr_dirty;
1227 *ret_nr_congested += nr_congested;
d43006d5 1228 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1229 *ret_nr_writeback += nr_writeback;
b1a6f21e 1230 *ret_nr_immediate += nr_immediate;
05ff5137 1231 return nr_reclaimed;
1da177e4
LT
1232}
1233
02c6de8d
MK
1234unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1235 struct list_head *page_list)
1236{
1237 struct scan_control sc = {
1238 .gfp_mask = GFP_KERNEL,
1239 .priority = DEF_PRIORITY,
1240 .may_unmap = 1,
1241 };
8e950282 1242 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1243 struct page *page, *next;
1244 LIST_HEAD(clean_pages);
1245
1246 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e
RA
1247 if (page_is_file_cache(page) && !PageDirty(page) &&
1248 !isolated_balloon_page(page)) {
02c6de8d
MK
1249 ClearPageActive(page);
1250 list_move(&page->lru, &clean_pages);
1251 }
1252 }
1253
1254 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1255 TTU_UNMAP|TTU_IGNORE_ACCESS,
1256 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d 1257 list_splice(&clean_pages, page_list);
83da7510 1258 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1259 return ret;
1260}
1261
5ad333eb
AW
1262/*
1263 * Attempt to remove the specified page from its LRU. Only take this page
1264 * if it is of the appropriate PageActive status. Pages which are being
1265 * freed elsewhere are also ignored.
1266 *
1267 * page: page to consider
1268 * mode: one of the LRU isolation modes defined above
1269 *
1270 * returns 0 on success, -ve errno on failure.
1271 */
f3fd4a61 1272int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1273{
1274 int ret = -EINVAL;
1275
1276 /* Only take pages on the LRU. */
1277 if (!PageLRU(page))
1278 return ret;
1279
e46a2879
MK
1280 /* Compaction should not handle unevictable pages but CMA can do so */
1281 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1282 return ret;
1283
5ad333eb 1284 ret = -EBUSY;
08e552c6 1285
c8244935
MG
1286 /*
1287 * To minimise LRU disruption, the caller can indicate that it only
1288 * wants to isolate pages it will be able to operate on without
1289 * blocking - clean pages for the most part.
1290 *
1291 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1292 * is used by reclaim when it is cannot write to backing storage
1293 *
1294 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1295 * that it is possible to migrate without blocking
1296 */
1297 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1298 /* All the caller can do on PageWriteback is block */
1299 if (PageWriteback(page))
1300 return ret;
1301
1302 if (PageDirty(page)) {
1303 struct address_space *mapping;
1304
1305 /* ISOLATE_CLEAN means only clean pages */
1306 if (mode & ISOLATE_CLEAN)
1307 return ret;
1308
1309 /*
1310 * Only pages without mappings or that have a
1311 * ->migratepage callback are possible to migrate
1312 * without blocking
1313 */
1314 mapping = page_mapping(page);
1315 if (mapping && !mapping->a_ops->migratepage)
1316 return ret;
1317 }
1318 }
39deaf85 1319
f80c0673
MK
1320 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1321 return ret;
1322
5ad333eb
AW
1323 if (likely(get_page_unless_zero(page))) {
1324 /*
1325 * Be careful not to clear PageLRU until after we're
1326 * sure the page is not being freed elsewhere -- the
1327 * page release code relies on it.
1328 */
1329 ClearPageLRU(page);
1330 ret = 0;
1331 }
1332
1333 return ret;
1334}
1335
1da177e4
LT
1336/*
1337 * zone->lru_lock is heavily contended. Some of the functions that
1338 * shrink the lists perform better by taking out a batch of pages
1339 * and working on them outside the LRU lock.
1340 *
1341 * For pagecache intensive workloads, this function is the hottest
1342 * spot in the kernel (apart from copy_*_user functions).
1343 *
1344 * Appropriate locks must be held before calling this function.
1345 *
1346 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1347 * @lruvec: The LRU vector to pull pages from.
1da177e4 1348 * @dst: The temp list to put pages on to.
f626012d 1349 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1350 * @sc: The scan_control struct for this reclaim session
5ad333eb 1351 * @mode: One of the LRU isolation modes
3cb99451 1352 * @lru: LRU list id for isolating
1da177e4
LT
1353 *
1354 * returns how many pages were moved onto *@dst.
1355 */
69e05944 1356static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1357 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1358 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1359 isolate_mode_t mode, enum lru_list lru)
1da177e4 1360{
75b00af7 1361 struct list_head *src = &lruvec->lists[lru];
69e05944 1362 unsigned long nr_taken = 0;
c9b02d97 1363 unsigned long scan;
1da177e4 1364
0b802f10
VD
1365 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1366 !list_empty(src); scan++) {
5ad333eb 1367 struct page *page;
fa9add64 1368 int nr_pages;
5ad333eb 1369
1da177e4
LT
1370 page = lru_to_page(src);
1371 prefetchw_prev_lru_page(page, src, flags);
1372
309381fe 1373 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1374
f3fd4a61 1375 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1376 case 0:
fa9add64
HD
1377 nr_pages = hpage_nr_pages(page);
1378 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1379 list_move(&page->lru, dst);
fa9add64 1380 nr_taken += nr_pages;
5ad333eb
AW
1381 break;
1382
1383 case -EBUSY:
1384 /* else it is being freed elsewhere */
1385 list_move(&page->lru, src);
1386 continue;
46453a6e 1387
5ad333eb
AW
1388 default:
1389 BUG();
1390 }
1da177e4
LT
1391 }
1392
f626012d 1393 *nr_scanned = scan;
75b00af7
HD
1394 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1395 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1396 return nr_taken;
1397}
1398
62695a84
NP
1399/**
1400 * isolate_lru_page - tries to isolate a page from its LRU list
1401 * @page: page to isolate from its LRU list
1402 *
1403 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1404 * vmstat statistic corresponding to whatever LRU list the page was on.
1405 *
1406 * Returns 0 if the page was removed from an LRU list.
1407 * Returns -EBUSY if the page was not on an LRU list.
1408 *
1409 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1410 * the active list, it will have PageActive set. If it was found on
1411 * the unevictable list, it will have the PageUnevictable bit set. That flag
1412 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1413 *
1414 * The vmstat statistic corresponding to the list on which the page was
1415 * found will be decremented.
1416 *
1417 * Restrictions:
1418 * (1) Must be called with an elevated refcount on the page. This is a
1419 * fundamentnal difference from isolate_lru_pages (which is called
1420 * without a stable reference).
1421 * (2) the lru_lock must not be held.
1422 * (3) interrupts must be enabled.
1423 */
1424int isolate_lru_page(struct page *page)
1425{
1426 int ret = -EBUSY;
1427
309381fe 1428 VM_BUG_ON_PAGE(!page_count(page), page);
0c917313 1429
62695a84
NP
1430 if (PageLRU(page)) {
1431 struct zone *zone = page_zone(page);
fa9add64 1432 struct lruvec *lruvec;
62695a84
NP
1433
1434 spin_lock_irq(&zone->lru_lock);
fa9add64 1435 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1436 if (PageLRU(page)) {
894bc310 1437 int lru = page_lru(page);
0c917313 1438 get_page(page);
62695a84 1439 ClearPageLRU(page);
fa9add64
HD
1440 del_page_from_lru_list(page, lruvec, lru);
1441 ret = 0;
62695a84
NP
1442 }
1443 spin_unlock_irq(&zone->lru_lock);
1444 }
1445 return ret;
1446}
1447
35cd7815 1448/*
d37dd5dc
FW
1449 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1450 * then get resheduled. When there are massive number of tasks doing page
1451 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1452 * the LRU list will go small and be scanned faster than necessary, leading to
1453 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1454 */
1455static int too_many_isolated(struct zone *zone, int file,
1456 struct scan_control *sc)
1457{
1458 unsigned long inactive, isolated;
1459
1460 if (current_is_kswapd())
1461 return 0;
1462
97c9341f 1463 if (!sane_reclaim(sc))
35cd7815
RR
1464 return 0;
1465
1466 if (file) {
1467 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1468 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1469 } else {
1470 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1471 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1472 }
1473
3cf23841
FW
1474 /*
1475 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1476 * won't get blocked by normal direct-reclaimers, forming a circular
1477 * deadlock.
1478 */
d0164adc 1479 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1480 inactive >>= 3;
1481
35cd7815
RR
1482 return isolated > inactive;
1483}
1484
66635629 1485static noinline_for_stack void
75b00af7 1486putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1487{
27ac81d8
KK
1488 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1489 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1490 LIST_HEAD(pages_to_free);
66635629 1491
66635629
MG
1492 /*
1493 * Put back any unfreeable pages.
1494 */
66635629 1495 while (!list_empty(page_list)) {
3f79768f 1496 struct page *page = lru_to_page(page_list);
66635629 1497 int lru;
3f79768f 1498
309381fe 1499 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1500 list_del(&page->lru);
39b5f29a 1501 if (unlikely(!page_evictable(page))) {
66635629
MG
1502 spin_unlock_irq(&zone->lru_lock);
1503 putback_lru_page(page);
1504 spin_lock_irq(&zone->lru_lock);
1505 continue;
1506 }
fa9add64
HD
1507
1508 lruvec = mem_cgroup_page_lruvec(page, zone);
1509
7a608572 1510 SetPageLRU(page);
66635629 1511 lru = page_lru(page);
fa9add64
HD
1512 add_page_to_lru_list(page, lruvec, lru);
1513
66635629
MG
1514 if (is_active_lru(lru)) {
1515 int file = is_file_lru(lru);
9992af10
RR
1516 int numpages = hpage_nr_pages(page);
1517 reclaim_stat->recent_rotated[file] += numpages;
66635629 1518 }
2bcf8879
HD
1519 if (put_page_testzero(page)) {
1520 __ClearPageLRU(page);
1521 __ClearPageActive(page);
fa9add64 1522 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1523
1524 if (unlikely(PageCompound(page))) {
1525 spin_unlock_irq(&zone->lru_lock);
747db954 1526 mem_cgroup_uncharge(page);
2bcf8879
HD
1527 (*get_compound_page_dtor(page))(page);
1528 spin_lock_irq(&zone->lru_lock);
1529 } else
1530 list_add(&page->lru, &pages_to_free);
66635629
MG
1531 }
1532 }
66635629 1533
3f79768f
HD
1534 /*
1535 * To save our caller's stack, now use input list for pages to free.
1536 */
1537 list_splice(&pages_to_free, page_list);
66635629
MG
1538}
1539
399ba0b9
N
1540/*
1541 * If a kernel thread (such as nfsd for loop-back mounts) services
1542 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1543 * In that case we should only throttle if the backing device it is
1544 * writing to is congested. In other cases it is safe to throttle.
1545 */
1546static int current_may_throttle(void)
1547{
1548 return !(current->flags & PF_LESS_THROTTLE) ||
1549 current->backing_dev_info == NULL ||
1550 bdi_write_congested(current->backing_dev_info);
1551}
1552
1da177e4 1553/*
1742f19f
AM
1554 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1555 * of reclaimed pages
1da177e4 1556 */
66635629 1557static noinline_for_stack unsigned long
1a93be0e 1558shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1559 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1560{
1561 LIST_HEAD(page_list);
e247dbce 1562 unsigned long nr_scanned;
05ff5137 1563 unsigned long nr_reclaimed = 0;
e247dbce 1564 unsigned long nr_taken;
8e950282
MG
1565 unsigned long nr_dirty = 0;
1566 unsigned long nr_congested = 0;
e2be15f6 1567 unsigned long nr_unqueued_dirty = 0;
92df3a72 1568 unsigned long nr_writeback = 0;
b1a6f21e 1569 unsigned long nr_immediate = 0;
f3fd4a61 1570 isolate_mode_t isolate_mode = 0;
3cb99451 1571 int file = is_file_lru(lru);
1a93be0e
KK
1572 struct zone *zone = lruvec_zone(lruvec);
1573 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1574
35cd7815 1575 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1576 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1577
1578 /* We are about to die and free our memory. Return now. */
1579 if (fatal_signal_pending(current))
1580 return SWAP_CLUSTER_MAX;
1581 }
1582
1da177e4 1583 lru_add_drain();
f80c0673
MK
1584
1585 if (!sc->may_unmap)
61317289 1586 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1587 if (!sc->may_writepage)
61317289 1588 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1589
1da177e4 1590 spin_lock_irq(&zone->lru_lock);
b35ea17b 1591
5dc35979
KK
1592 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1593 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1594
1595 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1596 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1597
89b5fae5 1598 if (global_reclaim(sc)) {
0d5d823a 1599 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
e247dbce 1600 if (current_is_kswapd())
75b00af7 1601 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1602 else
75b00af7 1603 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1604 }
d563c050 1605 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1606
d563c050 1607 if (nr_taken == 0)
66635629 1608 return 0;
5ad333eb 1609
02c6de8d 1610 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1611 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1612 &nr_writeback, &nr_immediate,
1613 false);
c661b078 1614
3f79768f
HD
1615 spin_lock_irq(&zone->lru_lock);
1616
95d918fc 1617 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1618
904249aa
YH
1619 if (global_reclaim(sc)) {
1620 if (current_is_kswapd())
1621 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1622 nr_reclaimed);
1623 else
1624 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1625 nr_reclaimed);
1626 }
a74609fa 1627
27ac81d8 1628 putback_inactive_pages(lruvec, &page_list);
3f79768f 1629
95d918fc 1630 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1631
1632 spin_unlock_irq(&zone->lru_lock);
1633
747db954 1634 mem_cgroup_uncharge_list(&page_list);
b745bc85 1635 free_hot_cold_page_list(&page_list, true);
e11da5b4 1636
92df3a72
MG
1637 /*
1638 * If reclaim is isolating dirty pages under writeback, it implies
1639 * that the long-lived page allocation rate is exceeding the page
1640 * laundering rate. Either the global limits are not being effective
1641 * at throttling processes due to the page distribution throughout
1642 * zones or there is heavy usage of a slow backing device. The
1643 * only option is to throttle from reclaim context which is not ideal
1644 * as there is no guarantee the dirtying process is throttled in the
1645 * same way balance_dirty_pages() manages.
1646 *
8e950282
MG
1647 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1648 * of pages under pages flagged for immediate reclaim and stall if any
1649 * are encountered in the nr_immediate check below.
92df3a72 1650 */
918fc718 1651 if (nr_writeback && nr_writeback == nr_taken)
57054651 1652 set_bit(ZONE_WRITEBACK, &zone->flags);
92df3a72 1653
d43006d5 1654 /*
97c9341f
TH
1655 * Legacy memcg will stall in page writeback so avoid forcibly
1656 * stalling here.
d43006d5 1657 */
97c9341f 1658 if (sane_reclaim(sc)) {
8e950282
MG
1659 /*
1660 * Tag a zone as congested if all the dirty pages scanned were
1661 * backed by a congested BDI and wait_iff_congested will stall.
1662 */
1663 if (nr_dirty && nr_dirty == nr_congested)
57054651 1664 set_bit(ZONE_CONGESTED, &zone->flags);
8e950282 1665
b1a6f21e
MG
1666 /*
1667 * If dirty pages are scanned that are not queued for IO, it
1668 * implies that flushers are not keeping up. In this case, flag
57054651
JW
1669 * the zone ZONE_DIRTY and kswapd will start writing pages from
1670 * reclaim context.
b1a6f21e
MG
1671 */
1672 if (nr_unqueued_dirty == nr_taken)
57054651 1673 set_bit(ZONE_DIRTY, &zone->flags);
b1a6f21e
MG
1674
1675 /*
b738d764
LT
1676 * If kswapd scans pages marked marked for immediate
1677 * reclaim and under writeback (nr_immediate), it implies
1678 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1679 * they are written so also forcibly stall.
1680 */
b738d764 1681 if (nr_immediate && current_may_throttle())
b1a6f21e 1682 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1683 }
d43006d5 1684
8e950282
MG
1685 /*
1686 * Stall direct reclaim for IO completions if underlying BDIs or zone
1687 * is congested. Allow kswapd to continue until it starts encountering
1688 * unqueued dirty pages or cycling through the LRU too quickly.
1689 */
399ba0b9
N
1690 if (!sc->hibernation_mode && !current_is_kswapd() &&
1691 current_may_throttle())
8e950282
MG
1692 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1693
ba5e9579 1694 trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed,
1695 sc->priority, file);
05ff5137 1696 return nr_reclaimed;
1da177e4
LT
1697}
1698
1699/*
1700 * This moves pages from the active list to the inactive list.
1701 *
1702 * We move them the other way if the page is referenced by one or more
1703 * processes, from rmap.
1704 *
1705 * If the pages are mostly unmapped, the processing is fast and it is
1706 * appropriate to hold zone->lru_lock across the whole operation. But if
1707 * the pages are mapped, the processing is slow (page_referenced()) so we
1708 * should drop zone->lru_lock around each page. It's impossible to balance
1709 * this, so instead we remove the pages from the LRU while processing them.
1710 * It is safe to rely on PG_active against the non-LRU pages in here because
1711 * nobody will play with that bit on a non-LRU page.
1712 *
1713 * The downside is that we have to touch page->_count against each page.
1714 * But we had to alter page->flags anyway.
1715 */
1cfb419b 1716
fa9add64 1717static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1718 struct list_head *list,
2bcf8879 1719 struct list_head *pages_to_free,
3eb4140f
WF
1720 enum lru_list lru)
1721{
fa9add64 1722 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1723 unsigned long pgmoved = 0;
3eb4140f 1724 struct page *page;
fa9add64 1725 int nr_pages;
3eb4140f 1726
3eb4140f
WF
1727 while (!list_empty(list)) {
1728 page = lru_to_page(list);
fa9add64 1729 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f 1730
309381fe 1731 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1732 SetPageLRU(page);
1733
fa9add64
HD
1734 nr_pages = hpage_nr_pages(page);
1735 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1736 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1737 pgmoved += nr_pages;
3eb4140f 1738
2bcf8879
HD
1739 if (put_page_testzero(page)) {
1740 __ClearPageLRU(page);
1741 __ClearPageActive(page);
fa9add64 1742 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1743
1744 if (unlikely(PageCompound(page))) {
1745 spin_unlock_irq(&zone->lru_lock);
747db954 1746 mem_cgroup_uncharge(page);
2bcf8879
HD
1747 (*get_compound_page_dtor(page))(page);
1748 spin_lock_irq(&zone->lru_lock);
1749 } else
1750 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1751 }
1752 }
1753 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1754 if (!is_active_lru(lru))
1755 __count_vm_events(PGDEACTIVATE, pgmoved);
1756}
1cfb419b 1757
f626012d 1758static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1759 struct lruvec *lruvec,
f16015fb 1760 struct scan_control *sc,
9e3b2f8c 1761 enum lru_list lru)
1da177e4 1762{
44c241f1 1763 unsigned long nr_taken;
f626012d 1764 unsigned long nr_scanned;
6fe6b7e3 1765 unsigned long vm_flags;
1da177e4 1766 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1767 LIST_HEAD(l_active);
b69408e8 1768 LIST_HEAD(l_inactive);
1da177e4 1769 struct page *page;
1a93be0e 1770 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1771 unsigned long nr_rotated = 0;
f3fd4a61 1772 isolate_mode_t isolate_mode = 0;
3cb99451 1773 int file = is_file_lru(lru);
1a93be0e 1774 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1775
1776 lru_add_drain();
f80c0673
MK
1777
1778 if (!sc->may_unmap)
61317289 1779 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1780 if (!sc->may_writepage)
61317289 1781 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1782
1da177e4 1783 spin_lock_irq(&zone->lru_lock);
925b7673 1784
5dc35979
KK
1785 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1786 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1787 if (global_reclaim(sc))
0d5d823a 1788 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
89b5fae5 1789
b7c46d15 1790 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1791
f626012d 1792 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1793 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1794 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1795 spin_unlock_irq(&zone->lru_lock);
1796
1da177e4
LT
1797 while (!list_empty(&l_hold)) {
1798 cond_resched();
1799 page = lru_to_page(&l_hold);
1800 list_del(&page->lru);
7e9cd484 1801
39b5f29a 1802 if (unlikely(!page_evictable(page))) {
894bc310
LS
1803 putback_lru_page(page);
1804 continue;
1805 }
1806
cc715d99
MG
1807 if (unlikely(buffer_heads_over_limit)) {
1808 if (page_has_private(page) && trylock_page(page)) {
1809 if (page_has_private(page))
1810 try_to_release_page(page, 0);
1811 unlock_page(page);
1812 }
1813 }
1814
c3ac9a8a
JW
1815 if (page_referenced(page, 0, sc->target_mem_cgroup,
1816 &vm_flags)) {
9992af10 1817 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1818 /*
1819 * Identify referenced, file-backed active pages and
1820 * give them one more trip around the active list. So
1821 * that executable code get better chances to stay in
1822 * memory under moderate memory pressure. Anon pages
1823 * are not likely to be evicted by use-once streaming
1824 * IO, plus JVM can create lots of anon VM_EXEC pages,
1825 * so we ignore them here.
1826 */
41e20983 1827 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1828 list_add(&page->lru, &l_active);
1829 continue;
1830 }
1831 }
7e9cd484 1832
5205e56e 1833 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1834 list_add(&page->lru, &l_inactive);
1835 }
1836
b555749a 1837 /*
8cab4754 1838 * Move pages back to the lru list.
b555749a 1839 */
2a1dc509 1840 spin_lock_irq(&zone->lru_lock);
556adecb 1841 /*
8cab4754
WF
1842 * Count referenced pages from currently used mappings as rotated,
1843 * even though only some of them are actually re-activated. This
1844 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 1845 * get_scan_count.
7e9cd484 1846 */
b7c46d15 1847 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1848
fa9add64
HD
1849 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1850 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1851 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1852 spin_unlock_irq(&zone->lru_lock);
2bcf8879 1853
747db954 1854 mem_cgroup_uncharge_list(&l_hold);
b745bc85 1855 free_hot_cold_page_list(&l_hold, true);
1da177e4
LT
1856}
1857
74e3f3c3 1858#ifdef CONFIG_SWAP
42e2e457 1859static bool inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1860{
1861 unsigned long active, inactive;
1862
1863 active = zone_page_state(zone, NR_ACTIVE_ANON);
1864 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1865
29d06bbb 1866 return inactive * zone->inactive_ratio < active;
f89eb90e
KM
1867}
1868
14797e23
KM
1869/**
1870 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1871 * @lruvec: LRU vector to check
14797e23
KM
1872 *
1873 * Returns true if the zone does not have enough inactive anon pages,
1874 * meaning some active anon pages need to be deactivated.
1875 */
42e2e457 1876static bool inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1877{
74e3f3c3
MK
1878 /*
1879 * If we don't have swap space, anonymous page deactivation
1880 * is pointless.
1881 */
1882 if (!total_swap_pages)
42e2e457 1883 return false;
74e3f3c3 1884
c3c787e8 1885 if (!mem_cgroup_disabled())
c56d5c7d 1886 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1887
c56d5c7d 1888 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1889}
74e3f3c3 1890#else
42e2e457 1891static inline bool inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3 1892{
42e2e457 1893 return false;
74e3f3c3
MK
1894}
1895#endif
14797e23 1896
56e49d21
RR
1897/**
1898 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1899 * @lruvec: LRU vector to check
56e49d21
RR
1900 *
1901 * When the system is doing streaming IO, memory pressure here
1902 * ensures that active file pages get deactivated, until more
1903 * than half of the file pages are on the inactive list.
1904 *
1905 * Once we get to that situation, protect the system's working
1906 * set from being evicted by disabling active file page aging.
1907 *
1908 * This uses a different ratio than the anonymous pages, because
1909 * the page cache uses a use-once replacement algorithm.
1910 */
42e2e457 1911static bool inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1912{
e3790144
JW
1913 unsigned long inactive;
1914 unsigned long active;
1915
1916 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1917 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1918
e3790144 1919 return active > inactive;
56e49d21
RR
1920}
1921
42e2e457 1922static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1923{
75b00af7 1924 if (is_file_lru(lru))
c56d5c7d 1925 return inactive_file_is_low(lruvec);
b39415b2 1926 else
c56d5c7d 1927 return inactive_anon_is_low(lruvec);
b39415b2
RR
1928}
1929
4f98a2fe 1930static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1931 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1932{
b39415b2 1933 if (is_active_lru(lru)) {
75b00af7 1934 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1935 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1936 return 0;
1937 }
1938
1a93be0e 1939 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1940}
1941
9a265114
JW
1942enum scan_balance {
1943 SCAN_EQUAL,
1944 SCAN_FRACT,
1945 SCAN_ANON,
1946 SCAN_FILE,
1947};
1948
4f98a2fe
RR
1949/*
1950 * Determine how aggressively the anon and file LRU lists should be
1951 * scanned. The relative value of each set of LRU lists is determined
1952 * by looking at the fraction of the pages scanned we did rotate back
1953 * onto the active list instead of evict.
1954 *
be7bd59d
WL
1955 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1956 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1957 */
02695175 1958static void get_scan_count(struct lruvec *lruvec, int swappiness,
6b4f7799
JW
1959 struct scan_control *sc, unsigned long *nr,
1960 unsigned long *lru_pages)
4f98a2fe 1961{
9a265114
JW
1962 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1963 u64 fraction[2];
1964 u64 denominator = 0; /* gcc */
1965 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1966 unsigned long anon_prio, file_prio;
9a265114 1967 enum scan_balance scan_balance;
0bf1457f 1968 unsigned long anon, file;
9a265114 1969 bool force_scan = false;
4f98a2fe 1970 unsigned long ap, fp;
4111304d 1971 enum lru_list lru;
6f04f48d
SS
1972 bool some_scanned;
1973 int pass;
246e87a9 1974
f11c0ca5
JW
1975 /*
1976 * If the zone or memcg is small, nr[l] can be 0. This
1977 * results in no scanning on this priority and a potential
1978 * priority drop. Global direct reclaim can go to the next
1979 * zone and tends to have no problems. Global kswapd is for
1980 * zone balancing and it needs to scan a minimum amount. When
1981 * reclaiming for a memcg, a priority drop can cause high
1982 * latencies, so it's better to scan a minimum amount there as
1983 * well.
1984 */
90cbc250
VD
1985 if (current_is_kswapd()) {
1986 if (!zone_reclaimable(zone))
1987 force_scan = true;
1988 if (!mem_cgroup_lruvec_online(lruvec))
1989 force_scan = true;
1990 }
89b5fae5 1991 if (!global_reclaim(sc))
a4d3e9e7 1992 force_scan = true;
76a33fc3
SL
1993
1994 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1995 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1996 scan_balance = SCAN_FILE;
76a33fc3
SL
1997 goto out;
1998 }
4f98a2fe 1999
10316b31
JW
2000 /*
2001 * Global reclaim will swap to prevent OOM even with no
2002 * swappiness, but memcg users want to use this knob to
2003 * disable swapping for individual groups completely when
2004 * using the memory controller's swap limit feature would be
2005 * too expensive.
2006 */
02695175 2007 if (!global_reclaim(sc) && !swappiness) {
9a265114 2008 scan_balance = SCAN_FILE;
10316b31
JW
2009 goto out;
2010 }
2011
2012 /*
2013 * Do not apply any pressure balancing cleverness when the
2014 * system is close to OOM, scan both anon and file equally
2015 * (unless the swappiness setting disagrees with swapping).
2016 */
02695175 2017 if (!sc->priority && swappiness) {
9a265114 2018 scan_balance = SCAN_EQUAL;
10316b31
JW
2019 goto out;
2020 }
2021
62376251
JW
2022 /*
2023 * Prevent the reclaimer from falling into the cache trap: as
2024 * cache pages start out inactive, every cache fault will tip
2025 * the scan balance towards the file LRU. And as the file LRU
2026 * shrinks, so does the window for rotation from references.
2027 * This means we have a runaway feedback loop where a tiny
2028 * thrashing file LRU becomes infinitely more attractive than
2029 * anon pages. Try to detect this based on file LRU size.
2030 */
2031 if (global_reclaim(sc)) {
2ab051e1
JM
2032 unsigned long zonefile;
2033 unsigned long zonefree;
2034
2035 zonefree = zone_page_state(zone, NR_FREE_PAGES);
2036 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2037 zone_page_state(zone, NR_INACTIVE_FILE);
62376251 2038
2ab051e1 2039 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
62376251
JW
2040 scan_balance = SCAN_ANON;
2041 goto out;
2042 }
2043 }
2044
7c5bd705
JW
2045 /*
2046 * There is enough inactive page cache, do not reclaim
2047 * anything from the anonymous working set right now.
2048 */
2049 if (!inactive_file_is_low(lruvec)) {
9a265114 2050 scan_balance = SCAN_FILE;
7c5bd705
JW
2051 goto out;
2052 }
2053
9a265114
JW
2054 scan_balance = SCAN_FRACT;
2055
58c37f6e
KM
2056 /*
2057 * With swappiness at 100, anonymous and file have the same priority.
2058 * This scanning priority is essentially the inverse of IO cost.
2059 */
02695175 2060 anon_prio = swappiness;
75b00af7 2061 file_prio = 200 - anon_prio;
58c37f6e 2062
4f98a2fe
RR
2063 /*
2064 * OK, so we have swap space and a fair amount of page cache
2065 * pages. We use the recently rotated / recently scanned
2066 * ratios to determine how valuable each cache is.
2067 *
2068 * Because workloads change over time (and to avoid overflow)
2069 * we keep these statistics as a floating average, which ends
2070 * up weighing recent references more than old ones.
2071 *
2072 * anon in [0], file in [1]
2073 */
2ab051e1
JM
2074
2075 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2076 get_lru_size(lruvec, LRU_INACTIVE_ANON);
2077 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2078 get_lru_size(lruvec, LRU_INACTIVE_FILE);
2079
90126375 2080 spin_lock_irq(&zone->lru_lock);
6e901571 2081 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2082 reclaim_stat->recent_scanned[0] /= 2;
2083 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2084 }
2085
6e901571 2086 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2087 reclaim_stat->recent_scanned[1] /= 2;
2088 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2089 }
2090
4f98a2fe 2091 /*
00d8089c
RR
2092 * The amount of pressure on anon vs file pages is inversely
2093 * proportional to the fraction of recently scanned pages on
2094 * each list that were recently referenced and in active use.
4f98a2fe 2095 */
fe35004f 2096 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2097 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2098
fe35004f 2099 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2100 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 2101 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 2102
76a33fc3
SL
2103 fraction[0] = ap;
2104 fraction[1] = fp;
2105 denominator = ap + fp + 1;
2106out:
6f04f48d
SS
2107 some_scanned = false;
2108 /* Only use force_scan on second pass. */
2109 for (pass = 0; !some_scanned && pass < 2; pass++) {
6b4f7799 2110 *lru_pages = 0;
6f04f48d
SS
2111 for_each_evictable_lru(lru) {
2112 int file = is_file_lru(lru);
2113 unsigned long size;
2114 unsigned long scan;
6e08a369 2115
6f04f48d
SS
2116 size = get_lru_size(lruvec, lru);
2117 scan = size >> sc->priority;
9a265114 2118
6f04f48d
SS
2119 if (!scan && pass && force_scan)
2120 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2121
6f04f48d
SS
2122 switch (scan_balance) {
2123 case SCAN_EQUAL:
2124 /* Scan lists relative to size */
2125 break;
2126 case SCAN_FRACT:
2127 /*
2128 * Scan types proportional to swappiness and
2129 * their relative recent reclaim efficiency.
2130 */
2131 scan = div64_u64(scan * fraction[file],
2132 denominator);
2133 break;
2134 case SCAN_FILE:
2135 case SCAN_ANON:
2136 /* Scan one type exclusively */
6b4f7799
JW
2137 if ((scan_balance == SCAN_FILE) != file) {
2138 size = 0;
6f04f48d 2139 scan = 0;
6b4f7799 2140 }
6f04f48d
SS
2141 break;
2142 default:
2143 /* Look ma, no brain */
2144 BUG();
2145 }
6b4f7799
JW
2146
2147 *lru_pages += size;
6f04f48d 2148 nr[lru] = scan;
6b4f7799 2149
9a265114 2150 /*
6f04f48d
SS
2151 * Skip the second pass and don't force_scan,
2152 * if we found something to scan.
9a265114 2153 */
6f04f48d 2154 some_scanned |= !!scan;
9a265114 2155 }
76a33fc3 2156 }
6e08a369 2157}
4f98a2fe 2158
72b252ae
MG
2159#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2160static void init_tlb_ubc(void)
2161{
2162 /*
2163 * This deliberately does not clear the cpumask as it's expensive
2164 * and unnecessary. If there happens to be data in there then the
2165 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2166 * then will be cleared.
2167 */
2168 current->tlb_ubc.flush_required = false;
2169}
2170#else
2171static inline void init_tlb_ubc(void)
2172{
2173}
2174#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2175
9b4f98cd
JW
2176/*
2177 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2178 */
02695175 2179static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
6b4f7799 2180 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd
JW
2181{
2182 unsigned long nr[NR_LRU_LISTS];
e82e0561 2183 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2184 unsigned long nr_to_scan;
2185 enum lru_list lru;
2186 unsigned long nr_reclaimed = 0;
2187 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2188 struct blk_plug plug;
1a501907 2189 bool scan_adjusted;
9b4f98cd 2190
6b4f7799 2191 get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
9b4f98cd 2192
e82e0561
MG
2193 /* Record the original scan target for proportional adjustments later */
2194 memcpy(targets, nr, sizeof(nr));
2195
1a501907
MG
2196 /*
2197 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2198 * event that can occur when there is little memory pressure e.g.
2199 * multiple streaming readers/writers. Hence, we do not abort scanning
2200 * when the requested number of pages are reclaimed when scanning at
2201 * DEF_PRIORITY on the assumption that the fact we are direct
2202 * reclaiming implies that kswapd is not keeping up and it is best to
2203 * do a batch of work at once. For memcg reclaim one check is made to
2204 * abort proportional reclaim if either the file or anon lru has already
2205 * dropped to zero at the first pass.
2206 */
2207 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2208 sc->priority == DEF_PRIORITY);
2209
72b252ae
MG
2210 init_tlb_ubc();
2211
9b4f98cd
JW
2212 blk_start_plug(&plug);
2213 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2214 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2215 unsigned long nr_anon, nr_file, percentage;
2216 unsigned long nr_scanned;
2217
9b4f98cd
JW
2218 for_each_evictable_lru(lru) {
2219 if (nr[lru]) {
2220 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2221 nr[lru] -= nr_to_scan;
2222
2223 nr_reclaimed += shrink_list(lru, nr_to_scan,
2224 lruvec, sc);
2225 }
2226 }
e82e0561
MG
2227
2228 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2229 continue;
2230
e82e0561
MG
2231 /*
2232 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2233 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2234 * proportionally what was requested by get_scan_count(). We
2235 * stop reclaiming one LRU and reduce the amount scanning
2236 * proportional to the original scan target.
2237 */
2238 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2239 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2240
1a501907
MG
2241 /*
2242 * It's just vindictive to attack the larger once the smaller
2243 * has gone to zero. And given the way we stop scanning the
2244 * smaller below, this makes sure that we only make one nudge
2245 * towards proportionality once we've got nr_to_reclaim.
2246 */
2247 if (!nr_file || !nr_anon)
2248 break;
2249
e82e0561
MG
2250 if (nr_file > nr_anon) {
2251 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2252 targets[LRU_ACTIVE_ANON] + 1;
2253 lru = LRU_BASE;
2254 percentage = nr_anon * 100 / scan_target;
2255 } else {
2256 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2257 targets[LRU_ACTIVE_FILE] + 1;
2258 lru = LRU_FILE;
2259 percentage = nr_file * 100 / scan_target;
2260 }
2261
2262 /* Stop scanning the smaller of the LRU */
2263 nr[lru] = 0;
2264 nr[lru + LRU_ACTIVE] = 0;
2265
2266 /*
2267 * Recalculate the other LRU scan count based on its original
2268 * scan target and the percentage scanning already complete
2269 */
2270 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2271 nr_scanned = targets[lru] - nr[lru];
2272 nr[lru] = targets[lru] * (100 - percentage) / 100;
2273 nr[lru] -= min(nr[lru], nr_scanned);
2274
2275 lru += LRU_ACTIVE;
2276 nr_scanned = targets[lru] - nr[lru];
2277 nr[lru] = targets[lru] * (100 - percentage) / 100;
2278 nr[lru] -= min(nr[lru], nr_scanned);
2279
2280 scan_adjusted = true;
9b4f98cd
JW
2281 }
2282 blk_finish_plug(&plug);
2283 sc->nr_reclaimed += nr_reclaimed;
2284
2285 /*
2286 * Even if we did not try to evict anon pages at all, we want to
2287 * rebalance the anon lru active/inactive ratio.
2288 */
2289 if (inactive_anon_is_low(lruvec))
2290 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2291 sc, LRU_ACTIVE_ANON);
2292
2293 throttle_vm_writeout(sc->gfp_mask);
2294}
2295
23b9da55 2296/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2297static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2298{
d84da3f9 2299 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2300 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2301 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2302 return true;
2303
2304 return false;
2305}
2306
3e7d3449 2307/*
23b9da55
MG
2308 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2309 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2310 * true if more pages should be reclaimed such that when the page allocator
2311 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2312 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2313 */
9b4f98cd 2314static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2315 unsigned long nr_reclaimed,
2316 unsigned long nr_scanned,
2317 struct scan_control *sc)
2318{
2319 unsigned long pages_for_compaction;
2320 unsigned long inactive_lru_pages;
2321
2322 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2323 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2324 return false;
2325
2876592f
MG
2326 /* Consider stopping depending on scan and reclaim activity */
2327 if (sc->gfp_mask & __GFP_REPEAT) {
2328 /*
2329 * For __GFP_REPEAT allocations, stop reclaiming if the
2330 * full LRU list has been scanned and we are still failing
2331 * to reclaim pages. This full LRU scan is potentially
2332 * expensive but a __GFP_REPEAT caller really wants to succeed
2333 */
2334 if (!nr_reclaimed && !nr_scanned)
2335 return false;
2336 } else {
2337 /*
2338 * For non-__GFP_REPEAT allocations which can presumably
2339 * fail without consequence, stop if we failed to reclaim
2340 * any pages from the last SWAP_CLUSTER_MAX number of
2341 * pages that were scanned. This will return to the
2342 * caller faster at the risk reclaim/compaction and
2343 * the resulting allocation attempt fails
2344 */
2345 if (!nr_reclaimed)
2346 return false;
2347 }
3e7d3449
MG
2348
2349 /*
2350 * If we have not reclaimed enough pages for compaction and the
2351 * inactive lists are large enough, continue reclaiming
2352 */
2353 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2354 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2355 if (get_nr_swap_pages() > 0)
9b4f98cd 2356 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2357 if (sc->nr_reclaimed < pages_for_compaction &&
2358 inactive_lru_pages > pages_for_compaction)
2359 return true;
2360
2361 /* If compaction would go ahead or the allocation would succeed, stop */
ebff3980 2362 switch (compaction_suitable(zone, sc->order, 0, 0)) {
3e7d3449
MG
2363 case COMPACT_PARTIAL:
2364 case COMPACT_CONTINUE:
2365 return false;
2366 default:
2367 return true;
2368 }
2369}
2370
6b4f7799
JW
2371static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2372 bool is_classzone)
1da177e4 2373{
cb731d6c 2374 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2375 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2376 bool reclaimable = false;
1da177e4 2377
9b4f98cd
JW
2378 do {
2379 struct mem_cgroup *root = sc->target_mem_cgroup;
2380 struct mem_cgroup_reclaim_cookie reclaim = {
2381 .zone = zone,
2382 .priority = sc->priority,
2383 };
6b4f7799 2384 unsigned long zone_lru_pages = 0;
694fbc0f 2385 struct mem_cgroup *memcg;
3e7d3449 2386
9b4f98cd
JW
2387 nr_reclaimed = sc->nr_reclaimed;
2388 nr_scanned = sc->nr_scanned;
1da177e4 2389
694fbc0f
AM
2390 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2391 do {
6b4f7799 2392 unsigned long lru_pages;
cb731d6c 2393 unsigned long scanned;
9b4f98cd 2394 struct lruvec *lruvec;
02695175 2395 int swappiness;
5660048c 2396
241994ed
JW
2397 if (mem_cgroup_low(root, memcg)) {
2398 if (!sc->may_thrash)
2399 continue;
2400 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2401 }
2402
9b4f98cd 2403 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2404 swappiness = mem_cgroup_swappiness(memcg);
cb731d6c 2405 scanned = sc->nr_scanned;
f9be23d6 2406
6b4f7799
JW
2407 shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2408 zone_lru_pages += lru_pages;
f16015fb 2409
cb731d6c
VD
2410 if (memcg && is_classzone)
2411 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2412 memcg, sc->nr_scanned - scanned,
2413 lru_pages);
2414
9b4f98cd 2415 /*
a394cb8e
MH
2416 * Direct reclaim and kswapd have to scan all memory
2417 * cgroups to fulfill the overall scan target for the
9b4f98cd 2418 * zone.
a394cb8e
MH
2419 *
2420 * Limit reclaim, on the other hand, only cares about
2421 * nr_to_reclaim pages to be reclaimed and it will
2422 * retry with decreasing priority if one round over the
2423 * whole hierarchy is not sufficient.
9b4f98cd 2424 */
a394cb8e
MH
2425 if (!global_reclaim(sc) &&
2426 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2427 mem_cgroup_iter_break(root, memcg);
2428 break;
2429 }
241994ed 2430 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2431
6b4f7799
JW
2432 /*
2433 * Shrink the slab caches in the same proportion that
2434 * the eligible LRU pages were scanned.
2435 */
cb731d6c
VD
2436 if (global_reclaim(sc) && is_classzone)
2437 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2438 sc->nr_scanned - nr_scanned,
2439 zone_lru_pages);
2440
2441 if (reclaim_state) {
2442 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2443 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2444 }
2445
70ddf637
AV
2446 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2447 sc->nr_scanned - nr_scanned,
2448 sc->nr_reclaimed - nr_reclaimed);
2449
2344d7e4
JW
2450 if (sc->nr_reclaimed - nr_reclaimed)
2451 reclaimable = true;
2452
9b4f98cd
JW
2453 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2454 sc->nr_scanned - nr_scanned, sc));
2344d7e4
JW
2455
2456 return reclaimable;
f16015fb
JW
2457}
2458
53853e2d
VB
2459/*
2460 * Returns true if compaction should go ahead for a high-order request, or
2461 * the high-order allocation would succeed without compaction.
2462 */
0b06496a 2463static inline bool compaction_ready(struct zone *zone, int order)
fe4b1b24
MG
2464{
2465 unsigned long balance_gap, watermark;
2466 bool watermark_ok;
2467
fe4b1b24
MG
2468 /*
2469 * Compaction takes time to run and there are potentially other
2470 * callers using the pages just freed. Continue reclaiming until
2471 * there is a buffer of free pages available to give compaction
2472 * a reasonable chance of completing and allocating the page
2473 */
4be89a34
JZ
2474 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2475 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
0b06496a 2476 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
e2b19197 2477 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0);
fe4b1b24
MG
2478
2479 /*
2480 * If compaction is deferred, reclaim up to a point where
2481 * compaction will have a chance of success when re-enabled
2482 */
0b06496a 2483 if (compaction_deferred(zone, order))
fe4b1b24
MG
2484 return watermark_ok;
2485
53853e2d
VB
2486 /*
2487 * If compaction is not ready to start and allocation is not likely
2488 * to succeed without it, then keep reclaiming.
2489 */
ebff3980 2490 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
fe4b1b24
MG
2491 return false;
2492
2493 return watermark_ok;
2494}
2495
1da177e4
LT
2496/*
2497 * This is the direct reclaim path, for page-allocating processes. We only
2498 * try to reclaim pages from zones which will satisfy the caller's allocation
2499 * request.
2500 *
41858966
MG
2501 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2502 * Because:
1da177e4
LT
2503 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2504 * allocation or
41858966
MG
2505 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2506 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2507 * zone defense algorithm.
1da177e4 2508 *
1da177e4
LT
2509 * If a zone is deemed to be full of pinned pages then just give it a light
2510 * scan then give up on it.
2344d7e4
JW
2511 *
2512 * Returns true if a zone was reclaimable.
1da177e4 2513 */
2344d7e4 2514static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2515{
dd1a239f 2516 struct zoneref *z;
54a6eb5c 2517 struct zone *zone;
0608f43d
AM
2518 unsigned long nr_soft_reclaimed;
2519 unsigned long nr_soft_scanned;
619d0d76 2520 gfp_t orig_mask;
9bbc04ee 2521 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2344d7e4 2522 bool reclaimable = false;
1cfb419b 2523
cc715d99
MG
2524 /*
2525 * If the number of buffer_heads in the machine exceeds the maximum
2526 * allowed level, force direct reclaim to scan the highmem zone as
2527 * highmem pages could be pinning lowmem pages storing buffer_heads
2528 */
619d0d76 2529 orig_mask = sc->gfp_mask;
cc715d99
MG
2530 if (buffer_heads_over_limit)
2531 sc->gfp_mask |= __GFP_HIGHMEM;
2532
d4debc66 2533 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6b4f7799
JW
2534 requested_highidx, sc->nodemask) {
2535 enum zone_type classzone_idx;
2536
f3fe6512 2537 if (!populated_zone(zone))
1da177e4 2538 continue;
6b4f7799
JW
2539
2540 classzone_idx = requested_highidx;
2541 while (!populated_zone(zone->zone_pgdat->node_zones +
2542 classzone_idx))
2543 classzone_idx--;
2544
1cfb419b
KH
2545 /*
2546 * Take care memory controller reclaiming has small influence
2547 * to global LRU.
2548 */
89b5fae5 2549 if (global_reclaim(sc)) {
344736f2
VD
2550 if (!cpuset_zone_allowed(zone,
2551 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2552 continue;
65ec02cb 2553
6e543d57
LD
2554 if (sc->priority != DEF_PRIORITY &&
2555 !zone_reclaimable(zone))
1cfb419b 2556 continue; /* Let kswapd poll it */
0b06496a
JW
2557
2558 /*
2559 * If we already have plenty of memory free for
2560 * compaction in this zone, don't free any more.
2561 * Even though compaction is invoked for any
2562 * non-zero order, only frequent costly order
2563 * reclamation is disruptive enough to become a
2564 * noticeable problem, like transparent huge
2565 * page allocations.
2566 */
2567 if (IS_ENABLED(CONFIG_COMPACTION) &&
2568 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2569 zonelist_zone_idx(z) <= requested_highidx &&
2570 compaction_ready(zone, sc->order)) {
2571 sc->compaction_ready = true;
2572 continue;
e0887c19 2573 }
0b06496a 2574
0608f43d
AM
2575 /*
2576 * This steals pages from memory cgroups over softlimit
2577 * and returns the number of reclaimed pages and
2578 * scanned pages. This works for global memory pressure
2579 * and balancing, not for a memcg's limit.
2580 */
2581 nr_soft_scanned = 0;
2582 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2583 sc->order, sc->gfp_mask,
2584 &nr_soft_scanned);
2585 sc->nr_reclaimed += nr_soft_reclaimed;
2586 sc->nr_scanned += nr_soft_scanned;
2344d7e4
JW
2587 if (nr_soft_reclaimed)
2588 reclaimable = true;
ac34a1a3 2589 /* need some check for avoid more shrink_zone() */
1cfb419b 2590 }
408d8544 2591
6b4f7799 2592 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2344d7e4
JW
2593 reclaimable = true;
2594
2595 if (global_reclaim(sc) &&
2596 !reclaimable && zone_reclaimable(zone))
2597 reclaimable = true;
1da177e4 2598 }
e0c23279 2599
619d0d76
WY
2600 /*
2601 * Restore to original mask to avoid the impact on the caller if we
2602 * promoted it to __GFP_HIGHMEM.
2603 */
2604 sc->gfp_mask = orig_mask;
d1908362 2605
2344d7e4 2606 return reclaimable;
1da177e4 2607}
4f98a2fe 2608
1da177e4
LT
2609/*
2610 * This is the main entry point to direct page reclaim.
2611 *
2612 * If a full scan of the inactive list fails to free enough memory then we
2613 * are "out of memory" and something needs to be killed.
2614 *
2615 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2616 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2617 * caller can't do much about. We kick the writeback threads and take explicit
2618 * naps in the hope that some of these pages can be written. But if the
2619 * allocating task holds filesystem locks which prevent writeout this might not
2620 * work, and the allocation attempt will fail.
a41f24ea
NA
2621 *
2622 * returns: 0, if no pages reclaimed
2623 * else, the number of pages reclaimed
1da177e4 2624 */
dac1d27b 2625static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2626 struct scan_control *sc)
1da177e4 2627{
241994ed 2628 int initial_priority = sc->priority;
69e05944 2629 unsigned long total_scanned = 0;
22fba335 2630 unsigned long writeback_threshold;
2344d7e4 2631 bool zones_reclaimable;
241994ed 2632retry:
873b4771
KK
2633 delayacct_freepages_start();
2634
89b5fae5 2635 if (global_reclaim(sc))
1cfb419b 2636 count_vm_event(ALLOCSTALL);
1da177e4 2637
9e3b2f8c 2638 do {
70ddf637
AV
2639 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2640 sc->priority);
66e1707b 2641 sc->nr_scanned = 0;
2344d7e4 2642 zones_reclaimable = shrink_zones(zonelist, sc);
c6a8a8c5 2643
66e1707b 2644 total_scanned += sc->nr_scanned;
bb21c7ce 2645 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2646 break;
2647
2648 if (sc->compaction_ready)
2649 break;
1da177e4 2650
0e50ce3b
MK
2651 /*
2652 * If we're getting trouble reclaiming, start doing
2653 * writepage even in laptop mode.
2654 */
2655 if (sc->priority < DEF_PRIORITY - 2)
2656 sc->may_writepage = 1;
2657
1da177e4
LT
2658 /*
2659 * Try to write back as many pages as we just scanned. This
2660 * tends to cause slow streaming writers to write data to the
2661 * disk smoothly, at the dirtying rate, which is nice. But
2662 * that's undesirable in laptop mode, where we *want* lumpy
2663 * writeout. So in laptop mode, write out the whole world.
2664 */
22fba335
KM
2665 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2666 if (total_scanned > writeback_threshold) {
0e175a18
CW
2667 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2668 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2669 sc->may_writepage = 1;
1da177e4 2670 }
0b06496a 2671 } while (--sc->priority >= 0);
bb21c7ce 2672
873b4771
KK
2673 delayacct_freepages_end();
2674
bb21c7ce
KM
2675 if (sc->nr_reclaimed)
2676 return sc->nr_reclaimed;
2677
0cee34fd 2678 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2679 if (sc->compaction_ready)
7335084d
MG
2680 return 1;
2681
241994ed
JW
2682 /* Untapped cgroup reserves? Don't OOM, retry. */
2683 if (!sc->may_thrash) {
2684 sc->priority = initial_priority;
2685 sc->may_thrash = 1;
2686 goto retry;
2687 }
2688
2344d7e4
JW
2689 /* Any of the zones still reclaimable? Don't OOM. */
2690 if (zones_reclaimable)
bb21c7ce
KM
2691 return 1;
2692
2693 return 0;
1da177e4
LT
2694}
2695
5515061d
MG
2696static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2697{
2698 struct zone *zone;
2699 unsigned long pfmemalloc_reserve = 0;
2700 unsigned long free_pages = 0;
2701 int i;
2702 bool wmark_ok;
2703
2704 for (i = 0; i <= ZONE_NORMAL; i++) {
2705 zone = &pgdat->node_zones[i];
f012a84a
NA
2706 if (!populated_zone(zone) ||
2707 zone_reclaimable_pages(zone) == 0)
675becce
MG
2708 continue;
2709
5515061d
MG
2710 pfmemalloc_reserve += min_wmark_pages(zone);
2711 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2712 }
2713
675becce
MG
2714 /* If there are no reserves (unexpected config) then do not throttle */
2715 if (!pfmemalloc_reserve)
2716 return true;
2717
5515061d
MG
2718 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2719
2720 /* kswapd must be awake if processes are being throttled */
2721 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2722 pgdat->classzone_idx = min(pgdat->classzone_idx,
2723 (enum zone_type)ZONE_NORMAL);
2724 wake_up_interruptible(&pgdat->kswapd_wait);
2725 }
2726
2727 return wmark_ok;
2728}
2729
2730/*
2731 * Throttle direct reclaimers if backing storage is backed by the network
2732 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2733 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2734 * when the low watermark is reached.
2735 *
2736 * Returns true if a fatal signal was delivered during throttling. If this
2737 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2738 */
50694c28 2739static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2740 nodemask_t *nodemask)
2741{
675becce 2742 struct zoneref *z;
5515061d 2743 struct zone *zone;
675becce 2744 pg_data_t *pgdat = NULL;
5515061d
MG
2745
2746 /*
2747 * Kernel threads should not be throttled as they may be indirectly
2748 * responsible for cleaning pages necessary for reclaim to make forward
2749 * progress. kjournald for example may enter direct reclaim while
2750 * committing a transaction where throttling it could forcing other
2751 * processes to block on log_wait_commit().
2752 */
2753 if (current->flags & PF_KTHREAD)
50694c28
MG
2754 goto out;
2755
2756 /*
2757 * If a fatal signal is pending, this process should not throttle.
2758 * It should return quickly so it can exit and free its memory
2759 */
2760 if (fatal_signal_pending(current))
2761 goto out;
5515061d 2762
675becce
MG
2763 /*
2764 * Check if the pfmemalloc reserves are ok by finding the first node
2765 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2766 * GFP_KERNEL will be required for allocating network buffers when
2767 * swapping over the network so ZONE_HIGHMEM is unusable.
2768 *
2769 * Throttling is based on the first usable node and throttled processes
2770 * wait on a queue until kswapd makes progress and wakes them. There
2771 * is an affinity then between processes waking up and where reclaim
2772 * progress has been made assuming the process wakes on the same node.
2773 * More importantly, processes running on remote nodes will not compete
2774 * for remote pfmemalloc reserves and processes on different nodes
2775 * should make reasonable progress.
2776 */
2777 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2778 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2779 if (zone_idx(zone) > ZONE_NORMAL)
2780 continue;
2781
2782 /* Throttle based on the first usable node */
2783 pgdat = zone->zone_pgdat;
2784 if (pfmemalloc_watermark_ok(pgdat))
2785 goto out;
2786 break;
2787 }
2788
2789 /* If no zone was usable by the allocation flags then do not throttle */
2790 if (!pgdat)
50694c28 2791 goto out;
5515061d 2792
68243e76
MG
2793 /* Account for the throttling */
2794 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2795
5515061d
MG
2796 /*
2797 * If the caller cannot enter the filesystem, it's possible that it
2798 * is due to the caller holding an FS lock or performing a journal
2799 * transaction in the case of a filesystem like ext[3|4]. In this case,
2800 * it is not safe to block on pfmemalloc_wait as kswapd could be
2801 * blocked waiting on the same lock. Instead, throttle for up to a
2802 * second before continuing.
2803 */
2804 if (!(gfp_mask & __GFP_FS)) {
2805 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2806 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2807
2808 goto check_pending;
5515061d
MG
2809 }
2810
2811 /* Throttle until kswapd wakes the process */
2812 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2813 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2814
2815check_pending:
2816 if (fatal_signal_pending(current))
2817 return true;
2818
2819out:
2820 return false;
5515061d
MG
2821}
2822
dac1d27b 2823unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2824 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2825{
33906bc5 2826 unsigned long nr_reclaimed;
66e1707b 2827 struct scan_control sc = {
ee814fe2 2828 .nr_to_reclaim = SWAP_CLUSTER_MAX,
21caf2fc 2829 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
ee814fe2
JW
2830 .order = order,
2831 .nodemask = nodemask,
2832 .priority = DEF_PRIORITY,
66e1707b 2833 .may_writepage = !laptop_mode,
a6dc60f8 2834 .may_unmap = 1,
2e2e4259 2835 .may_swap = 1,
66e1707b
BS
2836 };
2837
5515061d 2838 /*
50694c28
MG
2839 * Do not enter reclaim if fatal signal was delivered while throttled.
2840 * 1 is returned so that the page allocator does not OOM kill at this
2841 * point.
5515061d 2842 */
50694c28 2843 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2844 return 1;
2845
33906bc5
MG
2846 trace_mm_vmscan_direct_reclaim_begin(order,
2847 sc.may_writepage,
2848 gfp_mask);
2849
3115cd91 2850 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2851
2852 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2853
2854 return nr_reclaimed;
66e1707b
BS
2855}
2856
c255a458 2857#ifdef CONFIG_MEMCG
66e1707b 2858
72835c86 2859unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2860 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2861 struct zone *zone,
2862 unsigned long *nr_scanned)
4e416953
BS
2863{
2864 struct scan_control sc = {
b8f5c566 2865 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 2866 .target_mem_cgroup = memcg,
4e416953
BS
2867 .may_writepage = !laptop_mode,
2868 .may_unmap = 1,
2869 .may_swap = !noswap,
4e416953 2870 };
f9be23d6 2871 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2872 int swappiness = mem_cgroup_swappiness(memcg);
6b4f7799 2873 unsigned long lru_pages;
0ae5e89c 2874
4e416953
BS
2875 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2876 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2877
9e3b2f8c 2878 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2879 sc.may_writepage,
2880 sc.gfp_mask);
2881
4e416953
BS
2882 /*
2883 * NOTE: Although we can get the priority field, using it
2884 * here is not a good idea, since it limits the pages we can scan.
2885 * if we don't reclaim here, the shrink_zone from balance_pgdat
2886 * will pick up pages from other mem cgroup's as well. We hack
2887 * the priority and make it zero.
2888 */
6b4f7799 2889 shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
bdce6d9e
KM
2890
2891 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2892
0ae5e89c 2893 *nr_scanned = sc.nr_scanned;
4e416953
BS
2894 return sc.nr_reclaimed;
2895}
2896
72835c86 2897unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 2898 unsigned long nr_pages,
a7885eb8 2899 gfp_t gfp_mask,
b70a2a21 2900 bool may_swap)
66e1707b 2901{
4e416953 2902 struct zonelist *zonelist;
bdce6d9e 2903 unsigned long nr_reclaimed;
889976db 2904 int nid;
66e1707b 2905 struct scan_control sc = {
b70a2a21 2906 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
a09ed5e0
YH
2907 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2908 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
ee814fe2
JW
2909 .target_mem_cgroup = memcg,
2910 .priority = DEF_PRIORITY,
2911 .may_writepage = !laptop_mode,
2912 .may_unmap = 1,
b70a2a21 2913 .may_swap = may_swap,
a09ed5e0 2914 };
66e1707b 2915
889976db
YH
2916 /*
2917 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2918 * take care of from where we get pages. So the node where we start the
2919 * scan does not need to be the current node.
2920 */
72835c86 2921 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2922
2923 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2924
2925 trace_mm_vmscan_memcg_reclaim_begin(0,
2926 sc.may_writepage,
2927 sc.gfp_mask);
2928
3115cd91 2929 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
bdce6d9e
KM
2930
2931 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2932
2933 return nr_reclaimed;
66e1707b
BS
2934}
2935#endif
2936
9e3b2f8c 2937static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2938{
b95a2f2d 2939 struct mem_cgroup *memcg;
f16015fb 2940
b95a2f2d
JW
2941 if (!total_swap_pages)
2942 return;
2943
2944 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2945 do {
c56d5c7d 2946 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2947
c56d5c7d 2948 if (inactive_anon_is_low(lruvec))
1a93be0e 2949 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2950 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2951
2952 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2953 } while (memcg);
f16015fb
JW
2954}
2955
60cefed4
JW
2956static bool zone_balanced(struct zone *zone, int order,
2957 unsigned long balance_gap, int classzone_idx)
2958{
2959 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
e2b19197 2960 balance_gap, classzone_idx))
60cefed4
JW
2961 return false;
2962
ebff3980
VB
2963 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2964 order, 0, classzone_idx) == COMPACT_SKIPPED)
60cefed4
JW
2965 return false;
2966
2967 return true;
2968}
2969
1741c877 2970/*
4ae0a48b
ZC
2971 * pgdat_balanced() is used when checking if a node is balanced.
2972 *
2973 * For order-0, all zones must be balanced!
2974 *
2975 * For high-order allocations only zones that meet watermarks and are in a
2976 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2977 * total of balanced pages must be at least 25% of the zones allowed by
2978 * classzone_idx for the node to be considered balanced. Forcing all zones to
2979 * be balanced for high orders can cause excessive reclaim when there are
2980 * imbalanced zones.
1741c877
MG
2981 * The choice of 25% is due to
2982 * o a 16M DMA zone that is balanced will not balance a zone on any
2983 * reasonable sized machine
2984 * o On all other machines, the top zone must be at least a reasonable
25985edc 2985 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2986 * would need to be at least 256M for it to be balance a whole node.
2987 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2988 * to balance a node on its own. These seemed like reasonable ratios.
2989 */
4ae0a48b 2990static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2991{
b40da049 2992 unsigned long managed_pages = 0;
4ae0a48b 2993 unsigned long balanced_pages = 0;
1741c877
MG
2994 int i;
2995
4ae0a48b
ZC
2996 /* Check the watermark levels */
2997 for (i = 0; i <= classzone_idx; i++) {
2998 struct zone *zone = pgdat->node_zones + i;
1741c877 2999
4ae0a48b
ZC
3000 if (!populated_zone(zone))
3001 continue;
3002
b40da049 3003 managed_pages += zone->managed_pages;
4ae0a48b
ZC
3004
3005 /*
3006 * A special case here:
3007 *
3008 * balance_pgdat() skips over all_unreclaimable after
3009 * DEF_PRIORITY. Effectively, it considers them balanced so
3010 * they must be considered balanced here as well!
3011 */
6e543d57 3012 if (!zone_reclaimable(zone)) {
b40da049 3013 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
3014 continue;
3015 }
3016
3017 if (zone_balanced(zone, order, 0, i))
b40da049 3018 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
3019 else if (!order)
3020 return false;
3021 }
3022
3023 if (order)
b40da049 3024 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
3025 else
3026 return true;
1741c877
MG
3027}
3028
5515061d
MG
3029/*
3030 * Prepare kswapd for sleeping. This verifies that there are no processes
3031 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3032 *
3033 * Returns true if kswapd is ready to sleep
3034 */
3035static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 3036 int classzone_idx)
f50de2d3 3037{
f50de2d3
MG
3038 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3039 if (remaining)
5515061d
MG
3040 return false;
3041
3042 /*
9e5e3661
VB
3043 * The throttled processes are normally woken up in balance_pgdat() as
3044 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3045 * race between when kswapd checks the watermarks and a process gets
3046 * throttled. There is also a potential race if processes get
3047 * throttled, kswapd wakes, a large process exits thereby balancing the
3048 * zones, which causes kswapd to exit balance_pgdat() before reaching
3049 * the wake up checks. If kswapd is going to sleep, no process should
3050 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3051 * the wake up is premature, processes will wake kswapd and get
3052 * throttled again. The difference from wake ups in balance_pgdat() is
3053 * that here we are under prepare_to_wait().
5515061d 3054 */
9e5e3661
VB
3055 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3056 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3057
4ae0a48b 3058 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
3059}
3060
75485363
MG
3061/*
3062 * kswapd shrinks the zone by the number of pages required to reach
3063 * the high watermark.
b8e83b94
MG
3064 *
3065 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3066 * reclaim or if the lack of progress was due to pages under writeback.
3067 * This is used to determine if the scanning priority needs to be raised.
75485363 3068 */
b8e83b94 3069static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 3070 int classzone_idx,
75485363 3071 struct scan_control *sc,
2ab44f43 3072 unsigned long *nr_attempted)
75485363 3073{
7c954f6d
MG
3074 int testorder = sc->order;
3075 unsigned long balance_gap;
7c954f6d 3076 bool lowmem_pressure;
75485363
MG
3077
3078 /* Reclaim above the high watermark. */
3079 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
3080
3081 /*
3082 * Kswapd reclaims only single pages with compaction enabled. Trying
3083 * too hard to reclaim until contiguous free pages have become
3084 * available can hurt performance by evicting too much useful data
3085 * from memory. Do not reclaim more than needed for compaction.
3086 */
3087 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
ebff3980
VB
3088 compaction_suitable(zone, sc->order, 0, classzone_idx)
3089 != COMPACT_SKIPPED)
7c954f6d
MG
3090 testorder = 0;
3091
3092 /*
3093 * We put equal pressure on every zone, unless one zone has way too
3094 * many pages free already. The "too many pages" is defined as the
3095 * high wmark plus a "gap" where the gap is either the low
3096 * watermark or 1% of the zone, whichever is smaller.
3097 */
4be89a34
JZ
3098 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3099 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
7c954f6d
MG
3100
3101 /*
3102 * If there is no low memory pressure or the zone is balanced then no
3103 * reclaim is necessary
3104 */
3105 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3106 if (!lowmem_pressure && zone_balanced(zone, testorder,
3107 balance_gap, classzone_idx))
3108 return true;
3109
6b4f7799 3110 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
75485363 3111
2ab44f43
MG
3112 /* Account for the number of pages attempted to reclaim */
3113 *nr_attempted += sc->nr_to_reclaim;
3114
57054651 3115 clear_bit(ZONE_WRITEBACK, &zone->flags);
283aba9f 3116
7c954f6d
MG
3117 /*
3118 * If a zone reaches its high watermark, consider it to be no longer
3119 * congested. It's possible there are dirty pages backed by congested
3120 * BDIs but as pressure is relieved, speculatively avoid congestion
3121 * waits.
3122 */
6e543d57 3123 if (zone_reclaimable(zone) &&
7c954f6d 3124 zone_balanced(zone, testorder, 0, classzone_idx)) {
57054651
JW
3125 clear_bit(ZONE_CONGESTED, &zone->flags);
3126 clear_bit(ZONE_DIRTY, &zone->flags);
7c954f6d
MG
3127 }
3128
b8e83b94 3129 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3130}
3131
1da177e4
LT
3132/*
3133 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 3134 * they are all at high_wmark_pages(zone).
1da177e4 3135 *
0abdee2b 3136 * Returns the final order kswapd was reclaiming at
1da177e4
LT
3137 *
3138 * There is special handling here for zones which are full of pinned pages.
3139 * This can happen if the pages are all mlocked, or if they are all used by
3140 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3141 * What we do is to detect the case where all pages in the zone have been
3142 * scanned twice and there has been zero successful reclaim. Mark the zone as
3143 * dead and from now on, only perform a short scan. Basically we're polling
3144 * the zone for when the problem goes away.
3145 *
3146 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
3147 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3148 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3149 * lower zones regardless of the number of free pages in the lower zones. This
3150 * interoperates with the page allocator fallback scheme to ensure that aging
3151 * of pages is balanced across the zones.
1da177e4 3152 */
99504748 3153static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 3154 int *classzone_idx)
1da177e4 3155{
1da177e4 3156 int i;
99504748 3157 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0608f43d
AM
3158 unsigned long nr_soft_reclaimed;
3159 unsigned long nr_soft_scanned;
179e9639
AM
3160 struct scan_control sc = {
3161 .gfp_mask = GFP_KERNEL,
ee814fe2 3162 .order = order,
b8e83b94 3163 .priority = DEF_PRIORITY,
ee814fe2 3164 .may_writepage = !laptop_mode,
a6dc60f8 3165 .may_unmap = 1,
2e2e4259 3166 .may_swap = 1,
179e9639 3167 };
f8891e5e 3168 count_vm_event(PAGEOUTRUN);
1da177e4 3169
9e3b2f8c 3170 do {
2ab44f43 3171 unsigned long nr_attempted = 0;
b8e83b94 3172 bool raise_priority = true;
2ab44f43 3173 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
3174
3175 sc.nr_reclaimed = 0;
1da177e4 3176
d6277db4
RW
3177 /*
3178 * Scan in the highmem->dma direction for the highest
3179 * zone which needs scanning
3180 */
3181 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3182 struct zone *zone = pgdat->node_zones + i;
1da177e4 3183
d6277db4
RW
3184 if (!populated_zone(zone))
3185 continue;
1da177e4 3186
6e543d57
LD
3187 if (sc.priority != DEF_PRIORITY &&
3188 !zone_reclaimable(zone))
d6277db4 3189 continue;
1da177e4 3190
556adecb
RR
3191 /*
3192 * Do some background aging of the anon list, to give
3193 * pages a chance to be referenced before reclaiming.
3194 */
9e3b2f8c 3195 age_active_anon(zone, &sc);
556adecb 3196
cc715d99
MG
3197 /*
3198 * If the number of buffer_heads in the machine
3199 * exceeds the maximum allowed level and this node
3200 * has a highmem zone, force kswapd to reclaim from
3201 * it to relieve lowmem pressure.
3202 */
3203 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3204 end_zone = i;
3205 break;
3206 }
3207
60cefed4 3208 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 3209 end_zone = i;
e1dbeda6 3210 break;
439423f6 3211 } else {
d43006d5
MG
3212 /*
3213 * If balanced, clear the dirty and congested
3214 * flags
3215 */
57054651
JW
3216 clear_bit(ZONE_CONGESTED, &zone->flags);
3217 clear_bit(ZONE_DIRTY, &zone->flags);
1da177e4 3218 }
1da177e4 3219 }
dafcb73e 3220
b8e83b94 3221 if (i < 0)
e1dbeda6
AM
3222 goto out;
3223
1da177e4
LT
3224 for (i = 0; i <= end_zone; i++) {
3225 struct zone *zone = pgdat->node_zones + i;
3226
2ab44f43
MG
3227 if (!populated_zone(zone))
3228 continue;
3229
2ab44f43
MG
3230 /*
3231 * If any zone is currently balanced then kswapd will
3232 * not call compaction as it is expected that the
3233 * necessary pages are already available.
3234 */
3235 if (pgdat_needs_compaction &&
3236 zone_watermark_ok(zone, order,
3237 low_wmark_pages(zone),
3238 *classzone_idx, 0))
3239 pgdat_needs_compaction = false;
1da177e4
LT
3240 }
3241
b7ea3c41
MG
3242 /*
3243 * If we're getting trouble reclaiming, start doing writepage
3244 * even in laptop mode.
3245 */
3246 if (sc.priority < DEF_PRIORITY - 2)
3247 sc.may_writepage = 1;
3248
1da177e4
LT
3249 /*
3250 * Now scan the zone in the dma->highmem direction, stopping
3251 * at the last zone which needs scanning.
3252 *
3253 * We do this because the page allocator works in the opposite
3254 * direction. This prevents the page allocator from allocating
3255 * pages behind kswapd's direction of progress, which would
3256 * cause too much scanning of the lower zones.
3257 */
3258 for (i = 0; i <= end_zone; i++) {
3259 struct zone *zone = pgdat->node_zones + i;
3260
f3fe6512 3261 if (!populated_zone(zone))
1da177e4
LT
3262 continue;
3263
6e543d57
LD
3264 if (sc.priority != DEF_PRIORITY &&
3265 !zone_reclaimable(zone))
1da177e4
LT
3266 continue;
3267
1da177e4 3268 sc.nr_scanned = 0;
4e416953 3269
0608f43d
AM
3270 nr_soft_scanned = 0;
3271 /*
3272 * Call soft limit reclaim before calling shrink_zone.
3273 */
3274 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3275 order, sc.gfp_mask,
3276 &nr_soft_scanned);
3277 sc.nr_reclaimed += nr_soft_reclaimed;
3278
32a4330d 3279 /*
7c954f6d
MG
3280 * There should be no need to raise the scanning
3281 * priority if enough pages are already being scanned
3282 * that that high watermark would be met at 100%
3283 * efficiency.
fe2c2a10 3284 */
6b4f7799
JW
3285 if (kswapd_shrink_zone(zone, end_zone,
3286 &sc, &nr_attempted))
7c954f6d 3287 raise_priority = false;
1da177e4 3288 }
5515061d
MG
3289
3290 /*
3291 * If the low watermark is met there is no need for processes
3292 * to be throttled on pfmemalloc_wait as they should not be
3293 * able to safely make forward progress. Wake them
3294 */
3295 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3296 pfmemalloc_watermark_ok(pgdat))
cfc51155 3297 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3298
1da177e4 3299 /*
b8e83b94
MG
3300 * Fragmentation may mean that the system cannot be rebalanced
3301 * for high-order allocations in all zones. If twice the
3302 * allocation size has been reclaimed and the zones are still
3303 * not balanced then recheck the watermarks at order-0 to
3304 * prevent kswapd reclaiming excessively. Assume that a
3305 * process requested a high-order can direct reclaim/compact.
1da177e4 3306 */
b8e83b94
MG
3307 if (order && sc.nr_reclaimed >= 2UL << order)
3308 order = sc.order = 0;
8357376d 3309
b8e83b94
MG
3310 /* Check if kswapd should be suspending */
3311 if (try_to_freeze() || kthread_should_stop())
3312 break;
8357376d 3313
2ab44f43
MG
3314 /*
3315 * Compact if necessary and kswapd is reclaiming at least the
3316 * high watermark number of pages as requsted
3317 */
3318 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3319 compact_pgdat(pgdat, order);
3320
73ce02e9 3321 /*
b8e83b94
MG
3322 * Raise priority if scanning rate is too low or there was no
3323 * progress in reclaiming pages
73ce02e9 3324 */
b8e83b94
MG
3325 if (raise_priority || !sc.nr_reclaimed)
3326 sc.priority--;
9aa41348 3327 } while (sc.priority >= 1 &&
b8e83b94 3328 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3329
b8e83b94 3330out:
0abdee2b 3331 /*
5515061d 3332 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3333 * makes a decision on the order we were last reclaiming at. However,
3334 * if another caller entered the allocator slow path while kswapd
3335 * was awake, order will remain at the higher level
3336 */
dc83edd9 3337 *classzone_idx = end_zone;
0abdee2b 3338 return order;
1da177e4
LT
3339}
3340
dc83edd9 3341static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3342{
3343 long remaining = 0;
3344 DEFINE_WAIT(wait);
3345
3346 if (freezing(current) || kthread_should_stop())
3347 return;
3348
3349 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3350
3351 /* Try to sleep for a short interval */
5515061d 3352 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3353 remaining = schedule_timeout(HZ/10);
3354 finish_wait(&pgdat->kswapd_wait, &wait);
3355 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3356 }
3357
3358 /*
3359 * After a short sleep, check if it was a premature sleep. If not, then
3360 * go fully to sleep until explicitly woken up.
3361 */
5515061d 3362 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3363 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3364
3365 /*
3366 * vmstat counters are not perfectly accurate and the estimated
3367 * value for counters such as NR_FREE_PAGES can deviate from the
3368 * true value by nr_online_cpus * threshold. To avoid the zone
3369 * watermarks being breached while under pressure, we reduce the
3370 * per-cpu vmstat threshold while kswapd is awake and restore
3371 * them before going back to sleep.
3372 */
3373 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3374
62997027
MG
3375 /*
3376 * Compaction records what page blocks it recently failed to
3377 * isolate pages from and skips them in the future scanning.
3378 * When kswapd is going to sleep, it is reasonable to assume
3379 * that pages and compaction may succeed so reset the cache.
3380 */
3381 reset_isolation_suitable(pgdat);
3382
1c7e7f6c
AK
3383 if (!kthread_should_stop())
3384 schedule();
3385
f0bc0a60
KM
3386 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3387 } else {
3388 if (remaining)
3389 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3390 else
3391 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3392 }
3393 finish_wait(&pgdat->kswapd_wait, &wait);
3394}
3395
1da177e4
LT
3396/*
3397 * The background pageout daemon, started as a kernel thread
4f98a2fe 3398 * from the init process.
1da177e4
LT
3399 *
3400 * This basically trickles out pages so that we have _some_
3401 * free memory available even if there is no other activity
3402 * that frees anything up. This is needed for things like routing
3403 * etc, where we otherwise might have all activity going on in
3404 * asynchronous contexts that cannot page things out.
3405 *
3406 * If there are applications that are active memory-allocators
3407 * (most normal use), this basically shouldn't matter.
3408 */
3409static int kswapd(void *p)
3410{
215ddd66 3411 unsigned long order, new_order;
d2ebd0f6 3412 unsigned balanced_order;
215ddd66 3413 int classzone_idx, new_classzone_idx;
d2ebd0f6 3414 int balanced_classzone_idx;
1da177e4
LT
3415 pg_data_t *pgdat = (pg_data_t*)p;
3416 struct task_struct *tsk = current;
f0bc0a60 3417
1da177e4
LT
3418 struct reclaim_state reclaim_state = {
3419 .reclaimed_slab = 0,
3420 };
a70f7302 3421 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3422
cf40bd16
NP
3423 lockdep_set_current_reclaim_state(GFP_KERNEL);
3424
174596a0 3425 if (!cpumask_empty(cpumask))
c5f59f08 3426 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3427 current->reclaim_state = &reclaim_state;
3428
3429 /*
3430 * Tell the memory management that we're a "memory allocator",
3431 * and that if we need more memory we should get access to it
3432 * regardless (see "__alloc_pages()"). "kswapd" should
3433 * never get caught in the normal page freeing logic.
3434 *
3435 * (Kswapd normally doesn't need memory anyway, but sometimes
3436 * you need a small amount of memory in order to be able to
3437 * page out something else, and this flag essentially protects
3438 * us from recursively trying to free more memory as we're
3439 * trying to free the first piece of memory in the first place).
3440 */
930d9152 3441 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3442 set_freezable();
1da177e4 3443
215ddd66 3444 order = new_order = 0;
d2ebd0f6 3445 balanced_order = 0;
215ddd66 3446 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3447 balanced_classzone_idx = classzone_idx;
1da177e4 3448 for ( ; ; ) {
6f6313d4 3449 bool ret;
3e1d1d28 3450
215ddd66
MG
3451 /*
3452 * If the last balance_pgdat was unsuccessful it's unlikely a
3453 * new request of a similar or harder type will succeed soon
3454 * so consider going to sleep on the basis we reclaimed at
3455 */
d2ebd0f6
AS
3456 if (balanced_classzone_idx >= new_classzone_idx &&
3457 balanced_order == new_order) {
215ddd66
MG
3458 new_order = pgdat->kswapd_max_order;
3459 new_classzone_idx = pgdat->classzone_idx;
3460 pgdat->kswapd_max_order = 0;
3461 pgdat->classzone_idx = pgdat->nr_zones - 1;
3462 }
3463
99504748 3464 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3465 /*
3466 * Don't sleep if someone wants a larger 'order'
99504748 3467 * allocation or has tigher zone constraints
1da177e4
LT
3468 */
3469 order = new_order;
99504748 3470 classzone_idx = new_classzone_idx;
1da177e4 3471 } else {
d2ebd0f6
AS
3472 kswapd_try_to_sleep(pgdat, balanced_order,
3473 balanced_classzone_idx);
1da177e4 3474 order = pgdat->kswapd_max_order;
99504748 3475 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3476 new_order = order;
3477 new_classzone_idx = classzone_idx;
4d40502e 3478 pgdat->kswapd_max_order = 0;
215ddd66 3479 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3480 }
1da177e4 3481
8fe23e05
DR
3482 ret = try_to_freeze();
3483 if (kthread_should_stop())
3484 break;
3485
3486 /*
3487 * We can speed up thawing tasks if we don't call balance_pgdat
3488 * after returning from the refrigerator
3489 */
33906bc5
MG
3490 if (!ret) {
3491 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3492 balanced_classzone_idx = classzone_idx;
3493 balanced_order = balance_pgdat(pgdat, order,
3494 &balanced_classzone_idx);
33906bc5 3495 }
1da177e4 3496 }
b0a8cc58 3497
71abdc15 3498 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3499 current->reclaim_state = NULL;
71abdc15
JW
3500 lockdep_clear_current_reclaim_state();
3501
1da177e4
LT
3502 return 0;
3503}
3504
3505/*
3506 * A zone is low on free memory, so wake its kswapd task to service it.
3507 */
99504748 3508void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3509{
3510 pg_data_t *pgdat;
3511
f3fe6512 3512 if (!populated_zone(zone))
1da177e4
LT
3513 return;
3514
344736f2 3515 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3516 return;
88f5acf8 3517 pgdat = zone->zone_pgdat;
99504748 3518 if (pgdat->kswapd_max_order < order) {
1da177e4 3519 pgdat->kswapd_max_order = order;
99504748
MG
3520 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3521 }
8d0986e2 3522 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3523 return;
892f795d 3524 if (zone_balanced(zone, order, 0, 0))
88f5acf8
MG
3525 return;
3526
3527 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3528 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3529}
3530
c6f37f12 3531#ifdef CONFIG_HIBERNATION
1da177e4 3532/*
7b51755c 3533 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3534 * freed pages.
3535 *
3536 * Rather than trying to age LRUs the aim is to preserve the overall
3537 * LRU order by reclaiming preferentially
3538 * inactive > active > active referenced > active mapped
1da177e4 3539 */
7b51755c 3540unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3541{
d6277db4 3542 struct reclaim_state reclaim_state;
d6277db4 3543 struct scan_control sc = {
ee814fe2 3544 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3545 .gfp_mask = GFP_HIGHUSER_MOVABLE,
ee814fe2 3546 .priority = DEF_PRIORITY,
d6277db4 3547 .may_writepage = 1,
ee814fe2
JW
3548 .may_unmap = 1,
3549 .may_swap = 1,
7b51755c 3550 .hibernation_mode = 1,
1da177e4 3551 };
a09ed5e0 3552 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3553 struct task_struct *p = current;
3554 unsigned long nr_reclaimed;
1da177e4 3555
7b51755c
KM
3556 p->flags |= PF_MEMALLOC;
3557 lockdep_set_current_reclaim_state(sc.gfp_mask);
3558 reclaim_state.reclaimed_slab = 0;
3559 p->reclaim_state = &reclaim_state;
d6277db4 3560
3115cd91 3561 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3562
7b51755c
KM
3563 p->reclaim_state = NULL;
3564 lockdep_clear_current_reclaim_state();
3565 p->flags &= ~PF_MEMALLOC;
d6277db4 3566
7b51755c 3567 return nr_reclaimed;
1da177e4 3568}
c6f37f12 3569#endif /* CONFIG_HIBERNATION */
1da177e4 3570
1da177e4
LT
3571/* It's optimal to keep kswapds on the same CPUs as their memory, but
3572 not required for correctness. So if the last cpu in a node goes
3573 away, we get changed to run anywhere: as the first one comes back,
3574 restore their cpu bindings. */
fcb35a9b
GKH
3575static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3576 void *hcpu)
1da177e4 3577{
58c0a4a7 3578 int nid;
1da177e4 3579
8bb78442 3580 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3581 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3582 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3583 const struct cpumask *mask;
3584
3585 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3586
3e597945 3587 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3588 /* One of our CPUs online: restore mask */
c5f59f08 3589 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3590 }
3591 }
3592 return NOTIFY_OK;
3593}
1da177e4 3594
3218ae14
YG
3595/*
3596 * This kswapd start function will be called by init and node-hot-add.
3597 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3598 */
3599int kswapd_run(int nid)
3600{
3601 pg_data_t *pgdat = NODE_DATA(nid);
3602 int ret = 0;
3603
3604 if (pgdat->kswapd)
3605 return 0;
3606
3607 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3608 if (IS_ERR(pgdat->kswapd)) {
3609 /* failure at boot is fatal */
3610 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3611 pr_err("Failed to start kswapd on node %d\n", nid);
3612 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3613 pgdat->kswapd = NULL;
3218ae14
YG
3614 }
3615 return ret;
3616}
3617
8fe23e05 3618/*
d8adde17 3619 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3620 * hold mem_hotplug_begin/end().
8fe23e05
DR
3621 */
3622void kswapd_stop(int nid)
3623{
3624 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3625
d8adde17 3626 if (kswapd) {
8fe23e05 3627 kthread_stop(kswapd);
d8adde17
JL
3628 NODE_DATA(nid)->kswapd = NULL;
3629 }
8fe23e05
DR
3630}
3631
1da177e4
LT
3632static int __init kswapd_init(void)
3633{
3218ae14 3634 int nid;
69e05944 3635
1da177e4 3636 swap_setup();
48fb2e24 3637 for_each_node_state(nid, N_MEMORY)
3218ae14 3638 kswapd_run(nid);
1da177e4
LT
3639 hotcpu_notifier(cpu_callback, 0);
3640 return 0;
3641}
3642
3643module_init(kswapd_init)
9eeff239
CL
3644
3645#ifdef CONFIG_NUMA
3646/*
3647 * Zone reclaim mode
3648 *
3649 * If non-zero call zone_reclaim when the number of free pages falls below
3650 * the watermarks.
9eeff239
CL
3651 */
3652int zone_reclaim_mode __read_mostly;
3653
1b2ffb78 3654#define RECLAIM_OFF 0
7d03431c 3655#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3656#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3657#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3658
a92f7126
CL
3659/*
3660 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3661 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3662 * a zone.
3663 */
3664#define ZONE_RECLAIM_PRIORITY 4
3665
9614634f
CL
3666/*
3667 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3668 * occur.
3669 */
3670int sysctl_min_unmapped_ratio = 1;
3671
0ff38490
CL
3672/*
3673 * If the number of slab pages in a zone grows beyond this percentage then
3674 * slab reclaim needs to occur.
3675 */
3676int sysctl_min_slab_ratio = 5;
3677
90afa5de
MG
3678static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3679{
3680 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3681 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3682 zone_page_state(zone, NR_ACTIVE_FILE);
3683
3684 /*
3685 * It's possible for there to be more file mapped pages than
3686 * accounted for by the pages on the file LRU lists because
3687 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3688 */
3689 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3690}
3691
3692/* Work out how many page cache pages we can reclaim in this reclaim_mode */
d031a157 3693static unsigned long zone_pagecache_reclaimable(struct zone *zone)
90afa5de 3694{
d031a157
AM
3695 unsigned long nr_pagecache_reclaimable;
3696 unsigned long delta = 0;
90afa5de
MG
3697
3698 /*
95bbc0c7 3699 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de
MG
3700 * potentially reclaimable. Otherwise, we have to worry about
3701 * pages like swapcache and zone_unmapped_file_pages() provides
3702 * a better estimate
3703 */
95bbc0c7 3704 if (zone_reclaim_mode & RECLAIM_UNMAP)
90afa5de
MG
3705 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3706 else
3707 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3708
3709 /* If we can't clean pages, remove dirty pages from consideration */
3710 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3711 delta += zone_page_state(zone, NR_FILE_DIRTY);
3712
3713 /* Watch for any possible underflows due to delta */
3714 if (unlikely(delta > nr_pagecache_reclaimable))
3715 delta = nr_pagecache_reclaimable;
3716
3717 return nr_pagecache_reclaimable - delta;
3718}
3719
9eeff239
CL
3720/*
3721 * Try to free up some pages from this zone through reclaim.
3722 */
179e9639 3723static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3724{
7fb2d46d 3725 /* Minimum pages needed in order to stay on node */
69e05944 3726 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3727 struct task_struct *p = current;
3728 struct reclaim_state reclaim_state;
179e9639 3729 struct scan_control sc = {
62b726c1 3730 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3731 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3732 .order = order,
9e3b2f8c 3733 .priority = ZONE_RECLAIM_PRIORITY,
ee814fe2 3734 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
95bbc0c7 3735 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 3736 .may_swap = 1,
179e9639 3737 };
9eeff239 3738
9eeff239 3739 cond_resched();
d4f7796e 3740 /*
95bbc0c7 3741 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 3742 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 3743 * and RECLAIM_UNMAP.
d4f7796e
CL
3744 */
3745 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3746 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3747 reclaim_state.reclaimed_slab = 0;
3748 p->reclaim_state = &reclaim_state;
c84db23c 3749
90afa5de 3750 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3751 /*
3752 * Free memory by calling shrink zone with increasing
3753 * priorities until we have enough memory freed.
3754 */
0ff38490 3755 do {
6b4f7799 3756 shrink_zone(zone, &sc, true);
9e3b2f8c 3757 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3758 }
c84db23c 3759
9eeff239 3760 p->reclaim_state = NULL;
d4f7796e 3761 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3762 lockdep_clear_current_reclaim_state();
a79311c1 3763 return sc.nr_reclaimed >= nr_pages;
9eeff239 3764}
179e9639
AM
3765
3766int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3767{
179e9639 3768 int node_id;
d773ed6b 3769 int ret;
179e9639
AM
3770
3771 /*
0ff38490
CL
3772 * Zone reclaim reclaims unmapped file backed pages and
3773 * slab pages if we are over the defined limits.
34aa1330 3774 *
9614634f
CL
3775 * A small portion of unmapped file backed pages is needed for
3776 * file I/O otherwise pages read by file I/O will be immediately
3777 * thrown out if the zone is overallocated. So we do not reclaim
3778 * if less than a specified percentage of the zone is used by
3779 * unmapped file backed pages.
179e9639 3780 */
90afa5de
MG
3781 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3782 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3783 return ZONE_RECLAIM_FULL;
179e9639 3784
6e543d57 3785 if (!zone_reclaimable(zone))
fa5e084e 3786 return ZONE_RECLAIM_FULL;
d773ed6b 3787
179e9639 3788 /*
d773ed6b 3789 * Do not scan if the allocation should not be delayed.
179e9639 3790 */
d0164adc 3791 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
fa5e084e 3792 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3793
3794 /*
3795 * Only run zone reclaim on the local zone or on zones that do not
3796 * have associated processors. This will favor the local processor
3797 * over remote processors and spread off node memory allocations
3798 * as wide as possible.
3799 */
89fa3024 3800 node_id = zone_to_nid(zone);
37c0708d 3801 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3802 return ZONE_RECLAIM_NOSCAN;
d773ed6b 3803
57054651 3804 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
fa5e084e
MG
3805 return ZONE_RECLAIM_NOSCAN;
3806
d773ed6b 3807 ret = __zone_reclaim(zone, gfp_mask, order);
57054651 3808 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
d773ed6b 3809
24cf7251
MG
3810 if (!ret)
3811 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3812
d773ed6b 3813 return ret;
179e9639 3814}
9eeff239 3815#endif
894bc310 3816
894bc310
LS
3817/*
3818 * page_evictable - test whether a page is evictable
3819 * @page: the page to test
894bc310
LS
3820 *
3821 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3822 * lists vs unevictable list.
894bc310
LS
3823 *
3824 * Reasons page might not be evictable:
ba9ddf49 3825 * (1) page's mapping marked unevictable
b291f000 3826 * (2) page is part of an mlocked VMA
ba9ddf49 3827 *
894bc310 3828 */
39b5f29a 3829int page_evictable(struct page *page)
894bc310 3830{
39b5f29a 3831 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3832}
89e004ea 3833
85046579 3834#ifdef CONFIG_SHMEM
89e004ea 3835/**
24513264
HD
3836 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3837 * @pages: array of pages to check
3838 * @nr_pages: number of pages to check
89e004ea 3839 *
24513264 3840 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3841 *
3842 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3843 */
24513264 3844void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3845{
925b7673 3846 struct lruvec *lruvec;
24513264
HD
3847 struct zone *zone = NULL;
3848 int pgscanned = 0;
3849 int pgrescued = 0;
3850 int i;
89e004ea 3851
24513264
HD
3852 for (i = 0; i < nr_pages; i++) {
3853 struct page *page = pages[i];
3854 struct zone *pagezone;
89e004ea 3855
24513264
HD
3856 pgscanned++;
3857 pagezone = page_zone(page);
3858 if (pagezone != zone) {
3859 if (zone)
3860 spin_unlock_irq(&zone->lru_lock);
3861 zone = pagezone;
3862 spin_lock_irq(&zone->lru_lock);
3863 }
fa9add64 3864 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3865
24513264
HD
3866 if (!PageLRU(page) || !PageUnevictable(page))
3867 continue;
89e004ea 3868
39b5f29a 3869 if (page_evictable(page)) {
24513264
HD
3870 enum lru_list lru = page_lru_base_type(page);
3871
309381fe 3872 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3873 ClearPageUnevictable(page);
fa9add64
HD
3874 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3875 add_page_to_lru_list(page, lruvec, lru);
24513264 3876 pgrescued++;
89e004ea 3877 }
24513264 3878 }
89e004ea 3879
24513264
HD
3880 if (zone) {
3881 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3882 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3883 spin_unlock_irq(&zone->lru_lock);
89e004ea 3884 }
89e004ea 3885}
85046579 3886#endif /* CONFIG_SHMEM */