]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/vmscan.c
ramfs-nommu: use generic lru cache
[mirror_ubuntu-artful-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
1da177e4
LT
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
0f8053a5
NP
49#include "internal.h"
50
1da177e4 51struct scan_control {
1da177e4
LT
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
54
a79311c1
RR
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed;
57
1da177e4 58 /* This context's GFP mask */
6daa0e28 59 gfp_t gfp_mask;
1da177e4
LT
60
61 int may_writepage;
62
a6dc60f8
JW
63 /* Can mapped pages be reclaimed? */
64 int may_unmap;
f1fd1067 65
1da177e4
LT
66 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
67 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
68 * In this context, it doesn't matter that we scan the
69 * whole list at once. */
70 int swap_cluster_max;
d6277db4
RW
71
72 int swappiness;
408d8544
NP
73
74 int all_unreclaimable;
5ad333eb
AW
75
76 int order;
66e1707b
BS
77
78 /* Which cgroup do we reclaim from */
79 struct mem_cgroup *mem_cgroup;
80
81 /* Pluggable isolate pages callback */
82 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
83 unsigned long *scanned, int order, int mode,
84 struct zone *z, struct mem_cgroup *mem_cont,
4f98a2fe 85 int active, int file);
1da177e4
LT
86};
87
1da177e4
LT
88#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
89
90#ifdef ARCH_HAS_PREFETCH
91#define prefetch_prev_lru_page(_page, _base, _field) \
92 do { \
93 if ((_page)->lru.prev != _base) { \
94 struct page *prev; \
95 \
96 prev = lru_to_page(&(_page->lru)); \
97 prefetch(&prev->_field); \
98 } \
99 } while (0)
100#else
101#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
102#endif
103
104#ifdef ARCH_HAS_PREFETCHW
105#define prefetchw_prev_lru_page(_page, _base, _field) \
106 do { \
107 if ((_page)->lru.prev != _base) { \
108 struct page *prev; \
109 \
110 prev = lru_to_page(&(_page->lru)); \
111 prefetchw(&prev->_field); \
112 } \
113 } while (0)
114#else
115#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
116#endif
117
118/*
119 * From 0 .. 100. Higher means more swappy.
120 */
121int vm_swappiness = 60;
bd1e22b8 122long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
123
124static LIST_HEAD(shrinker_list);
125static DECLARE_RWSEM(shrinker_rwsem);
126
00f0b825 127#ifdef CONFIG_CGROUP_MEM_RES_CTLR
e72e2bd6 128#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
91a45470 129#else
e72e2bd6 130#define scanning_global_lru(sc) (1)
91a45470
KH
131#endif
132
6e901571
KM
133static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
134 struct scan_control *sc)
135{
e72e2bd6 136 if (!scanning_global_lru(sc))
3e2f41f1
KM
137 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
138
6e901571
KM
139 return &zone->reclaim_stat;
140}
141
c9f299d9
KM
142static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
143 enum lru_list lru)
144{
e72e2bd6 145 if (!scanning_global_lru(sc))
a3d8e054
KM
146 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
147
c9f299d9
KM
148 return zone_page_state(zone, NR_LRU_BASE + lru);
149}
150
151
1da177e4
LT
152/*
153 * Add a shrinker callback to be called from the vm
154 */
8e1f936b 155void register_shrinker(struct shrinker *shrinker)
1da177e4 156{
8e1f936b
RR
157 shrinker->nr = 0;
158 down_write(&shrinker_rwsem);
159 list_add_tail(&shrinker->list, &shrinker_list);
160 up_write(&shrinker_rwsem);
1da177e4 161}
8e1f936b 162EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
163
164/*
165 * Remove one
166 */
8e1f936b 167void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
168{
169 down_write(&shrinker_rwsem);
170 list_del(&shrinker->list);
171 up_write(&shrinker_rwsem);
1da177e4 172}
8e1f936b 173EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
174
175#define SHRINK_BATCH 128
176/*
177 * Call the shrink functions to age shrinkable caches
178 *
179 * Here we assume it costs one seek to replace a lru page and that it also
180 * takes a seek to recreate a cache object. With this in mind we age equal
181 * percentages of the lru and ageable caches. This should balance the seeks
182 * generated by these structures.
183 *
183ff22b 184 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
185 * slab to avoid swapping.
186 *
187 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
188 *
189 * `lru_pages' represents the number of on-LRU pages in all the zones which
190 * are eligible for the caller's allocation attempt. It is used for balancing
191 * slab reclaim versus page reclaim.
b15e0905 192 *
193 * Returns the number of slab objects which we shrunk.
1da177e4 194 */
69e05944
AM
195unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
196 unsigned long lru_pages)
1da177e4
LT
197{
198 struct shrinker *shrinker;
69e05944 199 unsigned long ret = 0;
1da177e4
LT
200
201 if (scanned == 0)
202 scanned = SWAP_CLUSTER_MAX;
203
204 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 205 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
206
207 list_for_each_entry(shrinker, &shrinker_list, list) {
208 unsigned long long delta;
209 unsigned long total_scan;
8e1f936b 210 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
1da177e4
LT
211
212 delta = (4 * scanned) / shrinker->seeks;
ea164d73 213 delta *= max_pass;
1da177e4
LT
214 do_div(delta, lru_pages + 1);
215 shrinker->nr += delta;
ea164d73 216 if (shrinker->nr < 0) {
88c3bd70
DR
217 printk(KERN_ERR "shrink_slab: %pF negative objects to "
218 "delete nr=%ld\n",
219 shrinker->shrink, shrinker->nr);
ea164d73
AA
220 shrinker->nr = max_pass;
221 }
222
223 /*
224 * Avoid risking looping forever due to too large nr value:
225 * never try to free more than twice the estimate number of
226 * freeable entries.
227 */
228 if (shrinker->nr > max_pass * 2)
229 shrinker->nr = max_pass * 2;
1da177e4
LT
230
231 total_scan = shrinker->nr;
232 shrinker->nr = 0;
233
234 while (total_scan >= SHRINK_BATCH) {
235 long this_scan = SHRINK_BATCH;
236 int shrink_ret;
b15e0905 237 int nr_before;
1da177e4 238
8e1f936b
RR
239 nr_before = (*shrinker->shrink)(0, gfp_mask);
240 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
1da177e4
LT
241 if (shrink_ret == -1)
242 break;
b15e0905 243 if (shrink_ret < nr_before)
244 ret += nr_before - shrink_ret;
f8891e5e 245 count_vm_events(SLABS_SCANNED, this_scan);
1da177e4
LT
246 total_scan -= this_scan;
247
248 cond_resched();
249 }
250
251 shrinker->nr += total_scan;
252 }
253 up_read(&shrinker_rwsem);
b15e0905 254 return ret;
1da177e4
LT
255}
256
257/* Called without lock on whether page is mapped, so answer is unstable */
258static inline int page_mapping_inuse(struct page *page)
259{
260 struct address_space *mapping;
261
262 /* Page is in somebody's page tables. */
263 if (page_mapped(page))
264 return 1;
265
266 /* Be more reluctant to reclaim swapcache than pagecache */
267 if (PageSwapCache(page))
268 return 1;
269
270 mapping = page_mapping(page);
271 if (!mapping)
272 return 0;
273
274 /* File is mmap'd by somebody? */
275 return mapping_mapped(mapping);
276}
277
278static inline int is_page_cache_freeable(struct page *page)
279{
280 return page_count(page) - !!PagePrivate(page) == 2;
281}
282
283static int may_write_to_queue(struct backing_dev_info *bdi)
284{
930d9152 285 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
286 return 1;
287 if (!bdi_write_congested(bdi))
288 return 1;
289 if (bdi == current->backing_dev_info)
290 return 1;
291 return 0;
292}
293
294/*
295 * We detected a synchronous write error writing a page out. Probably
296 * -ENOSPC. We need to propagate that into the address_space for a subsequent
297 * fsync(), msync() or close().
298 *
299 * The tricky part is that after writepage we cannot touch the mapping: nothing
300 * prevents it from being freed up. But we have a ref on the page and once
301 * that page is locked, the mapping is pinned.
302 *
303 * We're allowed to run sleeping lock_page() here because we know the caller has
304 * __GFP_FS.
305 */
306static void handle_write_error(struct address_space *mapping,
307 struct page *page, int error)
308{
309 lock_page(page);
3e9f45bd
GC
310 if (page_mapping(page) == mapping)
311 mapping_set_error(mapping, error);
1da177e4
LT
312 unlock_page(page);
313}
314
c661b078
AW
315/* Request for sync pageout. */
316enum pageout_io {
317 PAGEOUT_IO_ASYNC,
318 PAGEOUT_IO_SYNC,
319};
320
04e62a29
CL
321/* possible outcome of pageout() */
322typedef enum {
323 /* failed to write page out, page is locked */
324 PAGE_KEEP,
325 /* move page to the active list, page is locked */
326 PAGE_ACTIVATE,
327 /* page has been sent to the disk successfully, page is unlocked */
328 PAGE_SUCCESS,
329 /* page is clean and locked */
330 PAGE_CLEAN,
331} pageout_t;
332
1da177e4 333/*
1742f19f
AM
334 * pageout is called by shrink_page_list() for each dirty page.
335 * Calls ->writepage().
1da177e4 336 */
c661b078
AW
337static pageout_t pageout(struct page *page, struct address_space *mapping,
338 enum pageout_io sync_writeback)
1da177e4
LT
339{
340 /*
341 * If the page is dirty, only perform writeback if that write
342 * will be non-blocking. To prevent this allocation from being
343 * stalled by pagecache activity. But note that there may be
344 * stalls if we need to run get_block(). We could test
345 * PagePrivate for that.
346 *
347 * If this process is currently in generic_file_write() against
348 * this page's queue, we can perform writeback even if that
349 * will block.
350 *
351 * If the page is swapcache, write it back even if that would
352 * block, for some throttling. This happens by accident, because
353 * swap_backing_dev_info is bust: it doesn't reflect the
354 * congestion state of the swapdevs. Easy to fix, if needed.
355 * See swapfile.c:page_queue_congested().
356 */
357 if (!is_page_cache_freeable(page))
358 return PAGE_KEEP;
359 if (!mapping) {
360 /*
361 * Some data journaling orphaned pages can have
362 * page->mapping == NULL while being dirty with clean buffers.
363 */
323aca6c 364 if (PagePrivate(page)) {
1da177e4
LT
365 if (try_to_free_buffers(page)) {
366 ClearPageDirty(page);
d40cee24 367 printk("%s: orphaned page\n", __func__);
1da177e4
LT
368 return PAGE_CLEAN;
369 }
370 }
371 return PAGE_KEEP;
372 }
373 if (mapping->a_ops->writepage == NULL)
374 return PAGE_ACTIVATE;
375 if (!may_write_to_queue(mapping->backing_dev_info))
376 return PAGE_KEEP;
377
378 if (clear_page_dirty_for_io(page)) {
379 int res;
380 struct writeback_control wbc = {
381 .sync_mode = WB_SYNC_NONE,
382 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
383 .range_start = 0,
384 .range_end = LLONG_MAX,
1da177e4
LT
385 .nonblocking = 1,
386 .for_reclaim = 1,
387 };
388
389 SetPageReclaim(page);
390 res = mapping->a_ops->writepage(page, &wbc);
391 if (res < 0)
392 handle_write_error(mapping, page, res);
994fc28c 393 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
394 ClearPageReclaim(page);
395 return PAGE_ACTIVATE;
396 }
c661b078
AW
397
398 /*
399 * Wait on writeback if requested to. This happens when
400 * direct reclaiming a large contiguous area and the
401 * first attempt to free a range of pages fails.
402 */
403 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
404 wait_on_page_writeback(page);
405
1da177e4
LT
406 if (!PageWriteback(page)) {
407 /* synchronous write or broken a_ops? */
408 ClearPageReclaim(page);
409 }
e129b5c2 410 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
411 return PAGE_SUCCESS;
412 }
413
414 return PAGE_CLEAN;
415}
416
a649fd92 417/*
e286781d
NP
418 * Same as remove_mapping, but if the page is removed from the mapping, it
419 * gets returned with a refcount of 0.
a649fd92 420 */
e286781d 421static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 422{
28e4d965
NP
423 BUG_ON(!PageLocked(page));
424 BUG_ON(mapping != page_mapping(page));
49d2e9cc 425
19fd6231 426 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 427 /*
0fd0e6b0
NP
428 * The non racy check for a busy page.
429 *
430 * Must be careful with the order of the tests. When someone has
431 * a ref to the page, it may be possible that they dirty it then
432 * drop the reference. So if PageDirty is tested before page_count
433 * here, then the following race may occur:
434 *
435 * get_user_pages(&page);
436 * [user mapping goes away]
437 * write_to(page);
438 * !PageDirty(page) [good]
439 * SetPageDirty(page);
440 * put_page(page);
441 * !page_count(page) [good, discard it]
442 *
443 * [oops, our write_to data is lost]
444 *
445 * Reversing the order of the tests ensures such a situation cannot
446 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
447 * load is not satisfied before that of page->_count.
448 *
449 * Note that if SetPageDirty is always performed via set_page_dirty,
450 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 451 */
e286781d 452 if (!page_freeze_refs(page, 2))
49d2e9cc 453 goto cannot_free;
e286781d
NP
454 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
455 if (unlikely(PageDirty(page))) {
456 page_unfreeze_refs(page, 2);
49d2e9cc 457 goto cannot_free;
e286781d 458 }
49d2e9cc
CL
459
460 if (PageSwapCache(page)) {
461 swp_entry_t swap = { .val = page_private(page) };
462 __delete_from_swap_cache(page);
19fd6231 463 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc 464 swap_free(swap);
e286781d
NP
465 } else {
466 __remove_from_page_cache(page);
19fd6231 467 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
468 }
469
49d2e9cc
CL
470 return 1;
471
472cannot_free:
19fd6231 473 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
474 return 0;
475}
476
e286781d
NP
477/*
478 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
479 * someone else has a ref on the page, abort and return 0. If it was
480 * successfully detached, return 1. Assumes the caller has a single ref on
481 * this page.
482 */
483int remove_mapping(struct address_space *mapping, struct page *page)
484{
485 if (__remove_mapping(mapping, page)) {
486 /*
487 * Unfreezing the refcount with 1 rather than 2 effectively
488 * drops the pagecache ref for us without requiring another
489 * atomic operation.
490 */
491 page_unfreeze_refs(page, 1);
492 return 1;
493 }
494 return 0;
495}
496
894bc310
LS
497/**
498 * putback_lru_page - put previously isolated page onto appropriate LRU list
499 * @page: page to be put back to appropriate lru list
500 *
501 * Add previously isolated @page to appropriate LRU list.
502 * Page may still be unevictable for other reasons.
503 *
504 * lru_lock must not be held, interrupts must be enabled.
505 */
506#ifdef CONFIG_UNEVICTABLE_LRU
507void putback_lru_page(struct page *page)
508{
509 int lru;
510 int active = !!TestClearPageActive(page);
bbfd28ee 511 int was_unevictable = PageUnevictable(page);
894bc310
LS
512
513 VM_BUG_ON(PageLRU(page));
514
515redo:
516 ClearPageUnevictable(page);
517
518 if (page_evictable(page, NULL)) {
519 /*
520 * For evictable pages, we can use the cache.
521 * In event of a race, worst case is we end up with an
522 * unevictable page on [in]active list.
523 * We know how to handle that.
524 */
525 lru = active + page_is_file_cache(page);
526 lru_cache_add_lru(page, lru);
527 } else {
528 /*
529 * Put unevictable pages directly on zone's unevictable
530 * list.
531 */
532 lru = LRU_UNEVICTABLE;
533 add_page_to_unevictable_list(page);
534 }
894bc310
LS
535
536 /*
537 * page's status can change while we move it among lru. If an evictable
538 * page is on unevictable list, it never be freed. To avoid that,
539 * check after we added it to the list, again.
540 */
541 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
542 if (!isolate_lru_page(page)) {
543 put_page(page);
544 goto redo;
545 }
546 /* This means someone else dropped this page from LRU
547 * So, it will be freed or putback to LRU again. There is
548 * nothing to do here.
549 */
550 }
551
bbfd28ee
LS
552 if (was_unevictable && lru != LRU_UNEVICTABLE)
553 count_vm_event(UNEVICTABLE_PGRESCUED);
554 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
555 count_vm_event(UNEVICTABLE_PGCULLED);
556
894bc310
LS
557 put_page(page); /* drop ref from isolate */
558}
559
560#else /* CONFIG_UNEVICTABLE_LRU */
561
562void putback_lru_page(struct page *page)
563{
564 int lru;
565 VM_BUG_ON(PageLRU(page));
566
567 lru = !!TestClearPageActive(page) + page_is_file_cache(page);
568 lru_cache_add_lru(page, lru);
894bc310
LS
569 put_page(page);
570}
571#endif /* CONFIG_UNEVICTABLE_LRU */
572
573
1da177e4 574/*
1742f19f 575 * shrink_page_list() returns the number of reclaimed pages
1da177e4 576 */
1742f19f 577static unsigned long shrink_page_list(struct list_head *page_list,
c661b078
AW
578 struct scan_control *sc,
579 enum pageout_io sync_writeback)
1da177e4
LT
580{
581 LIST_HEAD(ret_pages);
582 struct pagevec freed_pvec;
583 int pgactivate = 0;
05ff5137 584 unsigned long nr_reclaimed = 0;
1da177e4
LT
585
586 cond_resched();
587
588 pagevec_init(&freed_pvec, 1);
589 while (!list_empty(page_list)) {
590 struct address_space *mapping;
591 struct page *page;
592 int may_enter_fs;
593 int referenced;
594
595 cond_resched();
596
597 page = lru_to_page(page_list);
598 list_del(&page->lru);
599
529ae9aa 600 if (!trylock_page(page))
1da177e4
LT
601 goto keep;
602
725d704e 603 VM_BUG_ON(PageActive(page));
1da177e4
LT
604
605 sc->nr_scanned++;
80e43426 606
b291f000
NP
607 if (unlikely(!page_evictable(page, NULL)))
608 goto cull_mlocked;
894bc310 609
a6dc60f8 610 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
611 goto keep_locked;
612
1da177e4
LT
613 /* Double the slab pressure for mapped and swapcache pages */
614 if (page_mapped(page) || PageSwapCache(page))
615 sc->nr_scanned++;
616
c661b078
AW
617 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
618 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
619
620 if (PageWriteback(page)) {
621 /*
622 * Synchronous reclaim is performed in two passes,
623 * first an asynchronous pass over the list to
624 * start parallel writeback, and a second synchronous
625 * pass to wait for the IO to complete. Wait here
626 * for any page for which writeback has already
627 * started.
628 */
629 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
630 wait_on_page_writeback(page);
4dd4b920 631 else
c661b078
AW
632 goto keep_locked;
633 }
1da177e4 634
bed7161a 635 referenced = page_referenced(page, 1, sc->mem_cgroup);
1da177e4 636 /* In active use or really unfreeable? Activate it. */
5ad333eb
AW
637 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
638 referenced && page_mapping_inuse(page))
1da177e4
LT
639 goto activate_locked;
640
1da177e4
LT
641 /*
642 * Anonymous process memory has backing store?
643 * Try to allocate it some swap space here.
644 */
b291f000 645 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
646 if (!(sc->gfp_mask & __GFP_IO))
647 goto keep_locked;
ac47b003 648 if (!add_to_swap(page))
1da177e4 649 goto activate_locked;
63eb6b93 650 may_enter_fs = 1;
b291f000 651 }
1da177e4
LT
652
653 mapping = page_mapping(page);
1da177e4
LT
654
655 /*
656 * The page is mapped into the page tables of one or more
657 * processes. Try to unmap it here.
658 */
659 if (page_mapped(page) && mapping) {
a48d07af 660 switch (try_to_unmap(page, 0)) {
1da177e4
LT
661 case SWAP_FAIL:
662 goto activate_locked;
663 case SWAP_AGAIN:
664 goto keep_locked;
b291f000
NP
665 case SWAP_MLOCK:
666 goto cull_mlocked;
1da177e4
LT
667 case SWAP_SUCCESS:
668 ; /* try to free the page below */
669 }
670 }
671
672 if (PageDirty(page)) {
5ad333eb 673 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
1da177e4 674 goto keep_locked;
4dd4b920 675 if (!may_enter_fs)
1da177e4 676 goto keep_locked;
52a8363e 677 if (!sc->may_writepage)
1da177e4
LT
678 goto keep_locked;
679
680 /* Page is dirty, try to write it out here */
c661b078 681 switch (pageout(page, mapping, sync_writeback)) {
1da177e4
LT
682 case PAGE_KEEP:
683 goto keep_locked;
684 case PAGE_ACTIVATE:
685 goto activate_locked;
686 case PAGE_SUCCESS:
4dd4b920 687 if (PageWriteback(page) || PageDirty(page))
1da177e4
LT
688 goto keep;
689 /*
690 * A synchronous write - probably a ramdisk. Go
691 * ahead and try to reclaim the page.
692 */
529ae9aa 693 if (!trylock_page(page))
1da177e4
LT
694 goto keep;
695 if (PageDirty(page) || PageWriteback(page))
696 goto keep_locked;
697 mapping = page_mapping(page);
698 case PAGE_CLEAN:
699 ; /* try to free the page below */
700 }
701 }
702
703 /*
704 * If the page has buffers, try to free the buffer mappings
705 * associated with this page. If we succeed we try to free
706 * the page as well.
707 *
708 * We do this even if the page is PageDirty().
709 * try_to_release_page() does not perform I/O, but it is
710 * possible for a page to have PageDirty set, but it is actually
711 * clean (all its buffers are clean). This happens if the
712 * buffers were written out directly, with submit_bh(). ext3
894bc310 713 * will do this, as well as the blockdev mapping.
1da177e4
LT
714 * try_to_release_page() will discover that cleanness and will
715 * drop the buffers and mark the page clean - it can be freed.
716 *
717 * Rarely, pages can have buffers and no ->mapping. These are
718 * the pages which were not successfully invalidated in
719 * truncate_complete_page(). We try to drop those buffers here
720 * and if that worked, and the page is no longer mapped into
721 * process address space (page_count == 1) it can be freed.
722 * Otherwise, leave the page on the LRU so it is swappable.
723 */
724 if (PagePrivate(page)) {
725 if (!try_to_release_page(page, sc->gfp_mask))
726 goto activate_locked;
e286781d
NP
727 if (!mapping && page_count(page) == 1) {
728 unlock_page(page);
729 if (put_page_testzero(page))
730 goto free_it;
731 else {
732 /*
733 * rare race with speculative reference.
734 * the speculative reference will free
735 * this page shortly, so we may
736 * increment nr_reclaimed here (and
737 * leave it off the LRU).
738 */
739 nr_reclaimed++;
740 continue;
741 }
742 }
1da177e4
LT
743 }
744
e286781d 745 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 746 goto keep_locked;
1da177e4 747
a978d6f5
NP
748 /*
749 * At this point, we have no other references and there is
750 * no way to pick any more up (removed from LRU, removed
751 * from pagecache). Can use non-atomic bitops now (and
752 * we obviously don't have to worry about waking up a process
753 * waiting on the page lock, because there are no references.
754 */
755 __clear_page_locked(page);
e286781d 756free_it:
05ff5137 757 nr_reclaimed++;
e286781d
NP
758 if (!pagevec_add(&freed_pvec, page)) {
759 __pagevec_free(&freed_pvec);
760 pagevec_reinit(&freed_pvec);
761 }
1da177e4
LT
762 continue;
763
b291f000 764cull_mlocked:
63d6c5ad
HD
765 if (PageSwapCache(page))
766 try_to_free_swap(page);
b291f000
NP
767 unlock_page(page);
768 putback_lru_page(page);
769 continue;
770
1da177e4 771activate_locked:
68a22394
RR
772 /* Not a candidate for swapping, so reclaim swap space. */
773 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 774 try_to_free_swap(page);
894bc310 775 VM_BUG_ON(PageActive(page));
1da177e4
LT
776 SetPageActive(page);
777 pgactivate++;
778keep_locked:
779 unlock_page(page);
780keep:
781 list_add(&page->lru, &ret_pages);
b291f000 782 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4
LT
783 }
784 list_splice(&ret_pages, page_list);
785 if (pagevec_count(&freed_pvec))
e286781d 786 __pagevec_free(&freed_pvec);
f8891e5e 787 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 788 return nr_reclaimed;
1da177e4
LT
789}
790
5ad333eb
AW
791/* LRU Isolation modes. */
792#define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
793#define ISOLATE_ACTIVE 1 /* Isolate active pages. */
794#define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
795
796/*
797 * Attempt to remove the specified page from its LRU. Only take this page
798 * if it is of the appropriate PageActive status. Pages which are being
799 * freed elsewhere are also ignored.
800 *
801 * page: page to consider
802 * mode: one of the LRU isolation modes defined above
803 *
804 * returns 0 on success, -ve errno on failure.
805 */
4f98a2fe 806int __isolate_lru_page(struct page *page, int mode, int file)
5ad333eb
AW
807{
808 int ret = -EINVAL;
809
810 /* Only take pages on the LRU. */
811 if (!PageLRU(page))
812 return ret;
813
814 /*
815 * When checking the active state, we need to be sure we are
816 * dealing with comparible boolean values. Take the logical not
817 * of each.
818 */
819 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
820 return ret;
821
4f98a2fe
RR
822 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
823 return ret;
824
894bc310
LS
825 /*
826 * When this function is being called for lumpy reclaim, we
827 * initially look into all LRU pages, active, inactive and
828 * unevictable; only give shrink_page_list evictable pages.
829 */
830 if (PageUnevictable(page))
831 return ret;
832
5ad333eb 833 ret = -EBUSY;
08e552c6 834
5ad333eb
AW
835 if (likely(get_page_unless_zero(page))) {
836 /*
837 * Be careful not to clear PageLRU until after we're
838 * sure the page is not being freed elsewhere -- the
839 * page release code relies on it.
840 */
841 ClearPageLRU(page);
842 ret = 0;
08e552c6 843 mem_cgroup_del_lru(page);
5ad333eb
AW
844 }
845
846 return ret;
847}
848
1da177e4
LT
849/*
850 * zone->lru_lock is heavily contended. Some of the functions that
851 * shrink the lists perform better by taking out a batch of pages
852 * and working on them outside the LRU lock.
853 *
854 * For pagecache intensive workloads, this function is the hottest
855 * spot in the kernel (apart from copy_*_user functions).
856 *
857 * Appropriate locks must be held before calling this function.
858 *
859 * @nr_to_scan: The number of pages to look through on the list.
860 * @src: The LRU list to pull pages off.
861 * @dst: The temp list to put pages on to.
862 * @scanned: The number of pages that were scanned.
5ad333eb
AW
863 * @order: The caller's attempted allocation order
864 * @mode: One of the LRU isolation modes
4f98a2fe 865 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
866 *
867 * returns how many pages were moved onto *@dst.
868 */
69e05944
AM
869static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
870 struct list_head *src, struct list_head *dst,
4f98a2fe 871 unsigned long *scanned, int order, int mode, int file)
1da177e4 872{
69e05944 873 unsigned long nr_taken = 0;
c9b02d97 874 unsigned long scan;
1da177e4 875
c9b02d97 876 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
877 struct page *page;
878 unsigned long pfn;
879 unsigned long end_pfn;
880 unsigned long page_pfn;
881 int zone_id;
882
1da177e4
LT
883 page = lru_to_page(src);
884 prefetchw_prev_lru_page(page, src, flags);
885
725d704e 886 VM_BUG_ON(!PageLRU(page));
8d438f96 887
4f98a2fe 888 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
889 case 0:
890 list_move(&page->lru, dst);
7c8ee9a8 891 nr_taken++;
5ad333eb
AW
892 break;
893
894 case -EBUSY:
895 /* else it is being freed elsewhere */
896 list_move(&page->lru, src);
897 continue;
46453a6e 898
5ad333eb
AW
899 default:
900 BUG();
901 }
902
903 if (!order)
904 continue;
905
906 /*
907 * Attempt to take all pages in the order aligned region
908 * surrounding the tag page. Only take those pages of
909 * the same active state as that tag page. We may safely
910 * round the target page pfn down to the requested order
911 * as the mem_map is guarenteed valid out to MAX_ORDER,
912 * where that page is in a different zone we will detect
913 * it from its zone id and abort this block scan.
914 */
915 zone_id = page_zone_id(page);
916 page_pfn = page_to_pfn(page);
917 pfn = page_pfn & ~((1 << order) - 1);
918 end_pfn = pfn + (1 << order);
919 for (; pfn < end_pfn; pfn++) {
920 struct page *cursor_page;
921
922 /* The target page is in the block, ignore it. */
923 if (unlikely(pfn == page_pfn))
924 continue;
925
926 /* Avoid holes within the zone. */
927 if (unlikely(!pfn_valid_within(pfn)))
928 break;
929
930 cursor_page = pfn_to_page(pfn);
4f98a2fe 931
5ad333eb
AW
932 /* Check that we have not crossed a zone boundary. */
933 if (unlikely(page_zone_id(cursor_page) != zone_id))
934 continue;
4f98a2fe 935 switch (__isolate_lru_page(cursor_page, mode, file)) {
5ad333eb
AW
936 case 0:
937 list_move(&cursor_page->lru, dst);
938 nr_taken++;
939 scan++;
940 break;
941
942 case -EBUSY:
943 /* else it is being freed elsewhere */
944 list_move(&cursor_page->lru, src);
945 default:
894bc310 946 break; /* ! on LRU or wrong list */
5ad333eb
AW
947 }
948 }
1da177e4
LT
949 }
950
951 *scanned = scan;
952 return nr_taken;
953}
954
66e1707b
BS
955static unsigned long isolate_pages_global(unsigned long nr,
956 struct list_head *dst,
957 unsigned long *scanned, int order,
958 int mode, struct zone *z,
959 struct mem_cgroup *mem_cont,
4f98a2fe 960 int active, int file)
66e1707b 961{
4f98a2fe 962 int lru = LRU_BASE;
66e1707b 963 if (active)
4f98a2fe
RR
964 lru += LRU_ACTIVE;
965 if (file)
966 lru += LRU_FILE;
967 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
968 mode, !!file);
66e1707b
BS
969}
970
5ad333eb
AW
971/*
972 * clear_active_flags() is a helper for shrink_active_list(), clearing
973 * any active bits from the pages in the list.
974 */
4f98a2fe
RR
975static unsigned long clear_active_flags(struct list_head *page_list,
976 unsigned int *count)
5ad333eb
AW
977{
978 int nr_active = 0;
4f98a2fe 979 int lru;
5ad333eb
AW
980 struct page *page;
981
4f98a2fe
RR
982 list_for_each_entry(page, page_list, lru) {
983 lru = page_is_file_cache(page);
5ad333eb 984 if (PageActive(page)) {
4f98a2fe 985 lru += LRU_ACTIVE;
5ad333eb
AW
986 ClearPageActive(page);
987 nr_active++;
988 }
4f98a2fe
RR
989 count[lru]++;
990 }
5ad333eb
AW
991
992 return nr_active;
993}
994
62695a84
NP
995/**
996 * isolate_lru_page - tries to isolate a page from its LRU list
997 * @page: page to isolate from its LRU list
998 *
999 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1000 * vmstat statistic corresponding to whatever LRU list the page was on.
1001 *
1002 * Returns 0 if the page was removed from an LRU list.
1003 * Returns -EBUSY if the page was not on an LRU list.
1004 *
1005 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1006 * the active list, it will have PageActive set. If it was found on
1007 * the unevictable list, it will have the PageUnevictable bit set. That flag
1008 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1009 *
1010 * The vmstat statistic corresponding to the list on which the page was
1011 * found will be decremented.
1012 *
1013 * Restrictions:
1014 * (1) Must be called with an elevated refcount on the page. This is a
1015 * fundamentnal difference from isolate_lru_pages (which is called
1016 * without a stable reference).
1017 * (2) the lru_lock must not be held.
1018 * (3) interrupts must be enabled.
1019 */
1020int isolate_lru_page(struct page *page)
1021{
1022 int ret = -EBUSY;
1023
1024 if (PageLRU(page)) {
1025 struct zone *zone = page_zone(page);
1026
1027 spin_lock_irq(&zone->lru_lock);
1028 if (PageLRU(page) && get_page_unless_zero(page)) {
894bc310 1029 int lru = page_lru(page);
62695a84
NP
1030 ret = 0;
1031 ClearPageLRU(page);
4f98a2fe 1032
4f98a2fe 1033 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1034 }
1035 spin_unlock_irq(&zone->lru_lock);
1036 }
1037 return ret;
1038}
1039
1da177e4 1040/*
1742f19f
AM
1041 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1042 * of reclaimed pages
1da177e4 1043 */
1742f19f 1044static unsigned long shrink_inactive_list(unsigned long max_scan,
33c120ed
RR
1045 struct zone *zone, struct scan_control *sc,
1046 int priority, int file)
1da177e4
LT
1047{
1048 LIST_HEAD(page_list);
1049 struct pagevec pvec;
69e05944 1050 unsigned long nr_scanned = 0;
05ff5137 1051 unsigned long nr_reclaimed = 0;
6e901571 1052 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1da177e4
LT
1053
1054 pagevec_init(&pvec, 1);
1055
1056 lru_add_drain();
1057 spin_lock_irq(&zone->lru_lock);
69e05944 1058 do {
1da177e4 1059 struct page *page;
69e05944
AM
1060 unsigned long nr_taken;
1061 unsigned long nr_scan;
1062 unsigned long nr_freed;
5ad333eb 1063 unsigned long nr_active;
4f98a2fe 1064 unsigned int count[NR_LRU_LISTS] = { 0, };
33c120ed
RR
1065 int mode = ISOLATE_INACTIVE;
1066
1067 /*
1068 * If we need a large contiguous chunk of memory, or have
1069 * trouble getting a small set of contiguous pages, we
1070 * will reclaim both active and inactive pages.
1071 *
1072 * We use the same threshold as pageout congestion_wait below.
1073 */
1074 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1075 mode = ISOLATE_BOTH;
1076 else if (sc->order && priority < DEF_PRIORITY - 2)
1077 mode = ISOLATE_BOTH;
1da177e4 1078
66e1707b 1079 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
4f98a2fe
RR
1080 &page_list, &nr_scan, sc->order, mode,
1081 zone, sc->mem_cgroup, 0, file);
1082 nr_active = clear_active_flags(&page_list, count);
e9187bdc 1083 __count_vm_events(PGDEACTIVATE, nr_active);
5ad333eb 1084
4f98a2fe
RR
1085 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1086 -count[LRU_ACTIVE_FILE]);
1087 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1088 -count[LRU_INACTIVE_FILE]);
1089 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1090 -count[LRU_ACTIVE_ANON]);
1091 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1092 -count[LRU_INACTIVE_ANON]);
1093
e72e2bd6 1094 if (scanning_global_lru(sc))
1cfb419b 1095 zone->pages_scanned += nr_scan;
3e2f41f1
KM
1096
1097 reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1098 reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1099 reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1100 reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1101
1da177e4
LT
1102 spin_unlock_irq(&zone->lru_lock);
1103
69e05944 1104 nr_scanned += nr_scan;
c661b078
AW
1105 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1106
1107 /*
1108 * If we are direct reclaiming for contiguous pages and we do
1109 * not reclaim everything in the list, try again and wait
1110 * for IO to complete. This will stall high-order allocations
1111 * but that should be acceptable to the caller
1112 */
1113 if (nr_freed < nr_taken && !current_is_kswapd() &&
1114 sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1115 congestion_wait(WRITE, HZ/10);
1116
1117 /*
1118 * The attempt at page out may have made some
1119 * of the pages active, mark them inactive again.
1120 */
4f98a2fe 1121 nr_active = clear_active_flags(&page_list, count);
c661b078
AW
1122 count_vm_events(PGDEACTIVATE, nr_active);
1123
1124 nr_freed += shrink_page_list(&page_list, sc,
1125 PAGEOUT_IO_SYNC);
1126 }
1127
05ff5137 1128 nr_reclaimed += nr_freed;
a74609fa
NP
1129 local_irq_disable();
1130 if (current_is_kswapd()) {
f8891e5e
CL
1131 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1132 __count_vm_events(KSWAPD_STEAL, nr_freed);
e72e2bd6 1133 } else if (scanning_global_lru(sc))
f8891e5e 1134 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1cfb419b 1135
918d3f90 1136 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
a74609fa 1137
fb8d14e1
WF
1138 if (nr_taken == 0)
1139 goto done;
1140
a74609fa 1141 spin_lock(&zone->lru_lock);
1da177e4
LT
1142 /*
1143 * Put back any unfreeable pages.
1144 */
1145 while (!list_empty(&page_list)) {
894bc310 1146 int lru;
1da177e4 1147 page = lru_to_page(&page_list);
725d704e 1148 VM_BUG_ON(PageLRU(page));
1da177e4 1149 list_del(&page->lru);
894bc310
LS
1150 if (unlikely(!page_evictable(page, NULL))) {
1151 spin_unlock_irq(&zone->lru_lock);
1152 putback_lru_page(page);
1153 spin_lock_irq(&zone->lru_lock);
1154 continue;
1155 }
1156 SetPageLRU(page);
1157 lru = page_lru(page);
1158 add_page_to_lru_list(zone, page, lru);
3e2f41f1 1159 if (PageActive(page)) {
4f98a2fe 1160 int file = !!page_is_file_cache(page);
6e901571 1161 reclaim_stat->recent_rotated[file]++;
4f98a2fe 1162 }
1da177e4
LT
1163 if (!pagevec_add(&pvec, page)) {
1164 spin_unlock_irq(&zone->lru_lock);
1165 __pagevec_release(&pvec);
1166 spin_lock_irq(&zone->lru_lock);
1167 }
1168 }
69e05944 1169 } while (nr_scanned < max_scan);
fb8d14e1 1170 spin_unlock(&zone->lru_lock);
1da177e4 1171done:
fb8d14e1 1172 local_irq_enable();
1da177e4 1173 pagevec_release(&pvec);
05ff5137 1174 return nr_reclaimed;
1da177e4
LT
1175}
1176
3bb1a852
MB
1177/*
1178 * We are about to scan this zone at a certain priority level. If that priority
1179 * level is smaller (ie: more urgent) than the previous priority, then note
1180 * that priority level within the zone. This is done so that when the next
1181 * process comes in to scan this zone, it will immediately start out at this
1182 * priority level rather than having to build up its own scanning priority.
1183 * Here, this priority affects only the reclaim-mapped threshold.
1184 */
1185static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1186{
1187 if (priority < zone->prev_priority)
1188 zone->prev_priority = priority;
1189}
1190
1da177e4
LT
1191/*
1192 * This moves pages from the active list to the inactive list.
1193 *
1194 * We move them the other way if the page is referenced by one or more
1195 * processes, from rmap.
1196 *
1197 * If the pages are mostly unmapped, the processing is fast and it is
1198 * appropriate to hold zone->lru_lock across the whole operation. But if
1199 * the pages are mapped, the processing is slow (page_referenced()) so we
1200 * should drop zone->lru_lock around each page. It's impossible to balance
1201 * this, so instead we remove the pages from the LRU while processing them.
1202 * It is safe to rely on PG_active against the non-LRU pages in here because
1203 * nobody will play with that bit on a non-LRU page.
1204 *
1205 * The downside is that we have to touch page->_count against each page.
1206 * But we had to alter page->flags anyway.
1207 */
1cfb419b
KH
1208
1209
1742f19f 1210static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1211 struct scan_control *sc, int priority, int file)
1da177e4 1212{
69e05944 1213 unsigned long pgmoved;
1da177e4 1214 int pgdeactivate = 0;
69e05944 1215 unsigned long pgscanned;
1da177e4 1216 LIST_HEAD(l_hold); /* The pages which were snipped off */
b69408e8 1217 LIST_HEAD(l_inactive);
1da177e4
LT
1218 struct page *page;
1219 struct pagevec pvec;
4f98a2fe 1220 enum lru_list lru;
6e901571 1221 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1da177e4
LT
1222
1223 lru_add_drain();
1224 spin_lock_irq(&zone->lru_lock);
66e1707b
BS
1225 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1226 ISOLATE_ACTIVE, zone,
4f98a2fe 1227 sc->mem_cgroup, 1, file);
1cfb419b
KH
1228 /*
1229 * zone->pages_scanned is used for detect zone's oom
1230 * mem_cgroup remembers nr_scan by itself.
1231 */
e72e2bd6 1232 if (scanning_global_lru(sc)) {
1cfb419b 1233 zone->pages_scanned += pgscanned;
4f98a2fe 1234 }
3e2f41f1 1235 reclaim_stat->recent_scanned[!!file] += pgmoved;
1cfb419b 1236
4f98a2fe
RR
1237 if (file)
1238 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1239 else
1240 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1da177e4
LT
1241 spin_unlock_irq(&zone->lru_lock);
1242
556adecb 1243 pgmoved = 0;
1da177e4
LT
1244 while (!list_empty(&l_hold)) {
1245 cond_resched();
1246 page = lru_to_page(&l_hold);
1247 list_del(&page->lru);
7e9cd484 1248
894bc310
LS
1249 if (unlikely(!page_evictable(page, NULL))) {
1250 putback_lru_page(page);
1251 continue;
1252 }
1253
7e9cd484
RR
1254 /* page_referenced clears PageReferenced */
1255 if (page_mapping_inuse(page) &&
1256 page_referenced(page, 0, sc->mem_cgroup))
1257 pgmoved++;
1258
1da177e4
LT
1259 list_add(&page->lru, &l_inactive);
1260 }
1261
b555749a
AM
1262 /*
1263 * Move the pages to the [file or anon] inactive list.
1264 */
1265 pagevec_init(&pvec, 1);
b555749a
AM
1266 lru = LRU_BASE + file * LRU_FILE;
1267
2a1dc509 1268 spin_lock_irq(&zone->lru_lock);
556adecb 1269 /*
7e9cd484
RR
1270 * Count referenced pages from currently used mappings as
1271 * rotated, even though they are moved to the inactive list.
1272 * This helps balance scan pressure between file and anonymous
1273 * pages in get_scan_ratio.
1274 */
3e2f41f1 1275 reclaim_stat->recent_rotated[!!file] += pgmoved;
556adecb 1276
1d885526 1277 pgmoved = 0;
1da177e4
LT
1278 while (!list_empty(&l_inactive)) {
1279 page = lru_to_page(&l_inactive);
1280 prefetchw_prev_lru_page(page, &l_inactive, flags);
725d704e 1281 VM_BUG_ON(PageLRU(page));
8d438f96 1282 SetPageLRU(page);
725d704e 1283 VM_BUG_ON(!PageActive(page));
4c84cacf
NP
1284 ClearPageActive(page);
1285
4f98a2fe 1286 list_move(&page->lru, &zone->lru[lru].list);
08e552c6 1287 mem_cgroup_add_lru_list(page, lru);
1da177e4
LT
1288 pgmoved++;
1289 if (!pagevec_add(&pvec, page)) {
4f98a2fe 1290 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1da177e4
LT
1291 spin_unlock_irq(&zone->lru_lock);
1292 pgdeactivate += pgmoved;
1293 pgmoved = 0;
1294 if (buffer_heads_over_limit)
1295 pagevec_strip(&pvec);
1296 __pagevec_release(&pvec);
1297 spin_lock_irq(&zone->lru_lock);
1298 }
1299 }
4f98a2fe 1300 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1da177e4 1301 pgdeactivate += pgmoved;
f8891e5e
CL
1302 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1303 __count_vm_events(PGDEACTIVATE, pgdeactivate);
1304 spin_unlock_irq(&zone->lru_lock);
2443462b
JW
1305 if (buffer_heads_over_limit)
1306 pagevec_strip(&pvec);
a74609fa 1307 pagevec_release(&pvec);
1da177e4
LT
1308}
1309
14797e23 1310static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1311{
1312 unsigned long active, inactive;
1313
1314 active = zone_page_state(zone, NR_ACTIVE_ANON);
1315 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1316
1317 if (inactive * zone->inactive_ratio < active)
1318 return 1;
1319
1320 return 0;
1321}
1322
14797e23
KM
1323/**
1324 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1325 * @zone: zone to check
1326 * @sc: scan control of this context
1327 *
1328 * Returns true if the zone does not have enough inactive anon pages,
1329 * meaning some active anon pages need to be deactivated.
1330 */
1331static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1332{
1333 int low;
1334
e72e2bd6 1335 if (scanning_global_lru(sc))
14797e23
KM
1336 low = inactive_anon_is_low_global(zone);
1337 else
c772be93 1338 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
14797e23
KM
1339 return low;
1340}
1341
4f98a2fe 1342static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1343 struct zone *zone, struct scan_control *sc, int priority)
1344{
4f98a2fe
RR
1345 int file = is_file_lru(lru);
1346
556adecb
RR
1347 if (lru == LRU_ACTIVE_FILE) {
1348 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1349 return 0;
1350 }
1351
14797e23 1352 if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
4f98a2fe 1353 shrink_active_list(nr_to_scan, zone, sc, priority, file);
b69408e8
CL
1354 return 0;
1355 }
33c120ed 1356 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1357}
1358
1359/*
1360 * Determine how aggressively the anon and file LRU lists should be
1361 * scanned. The relative value of each set of LRU lists is determined
1362 * by looking at the fraction of the pages scanned we did rotate back
1363 * onto the active list instead of evict.
1364 *
1365 * percent[0] specifies how much pressure to put on ram/swap backed
1366 * memory, while percent[1] determines pressure on the file LRUs.
1367 */
1368static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1369 unsigned long *percent)
1370{
1371 unsigned long anon, file, free;
1372 unsigned long anon_prio, file_prio;
1373 unsigned long ap, fp;
6e901571 1374 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
4f98a2fe 1375
4f98a2fe
RR
1376 /* If we have no swap space, do not bother scanning anon pages. */
1377 if (nr_swap_pages <= 0) {
1378 percent[0] = 0;
1379 percent[1] = 100;
1380 return;
1381 }
1382
c9f299d9
KM
1383 anon = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
1384 zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
1385 file = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
1386 zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
b962716b 1387
e72e2bd6 1388 if (scanning_global_lru(sc)) {
eeee9a8c
KM
1389 free = zone_page_state(zone, NR_FREE_PAGES);
1390 /* If we have very few page cache pages,
1391 force-scan anon pages. */
1392 if (unlikely(file + free <= zone->pages_high)) {
1393 percent[0] = 100;
1394 percent[1] = 0;
1395 return;
1396 }
4f98a2fe
RR
1397 }
1398
1399 /*
1400 * OK, so we have swap space and a fair amount of page cache
1401 * pages. We use the recently rotated / recently scanned
1402 * ratios to determine how valuable each cache is.
1403 *
1404 * Because workloads change over time (and to avoid overflow)
1405 * we keep these statistics as a floating average, which ends
1406 * up weighing recent references more than old ones.
1407 *
1408 * anon in [0], file in [1]
1409 */
6e901571 1410 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
4f98a2fe 1411 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1412 reclaim_stat->recent_scanned[0] /= 2;
1413 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1414 spin_unlock_irq(&zone->lru_lock);
1415 }
1416
6e901571 1417 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
4f98a2fe 1418 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1419 reclaim_stat->recent_scanned[1] /= 2;
1420 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1421 spin_unlock_irq(&zone->lru_lock);
1422 }
1423
1424 /*
1425 * With swappiness at 100, anonymous and file have the same priority.
1426 * This scanning priority is essentially the inverse of IO cost.
1427 */
1428 anon_prio = sc->swappiness;
1429 file_prio = 200 - sc->swappiness;
1430
1431 /*
00d8089c
RR
1432 * The amount of pressure on anon vs file pages is inversely
1433 * proportional to the fraction of recently scanned pages on
1434 * each list that were recently referenced and in active use.
4f98a2fe 1435 */
6e901571
KM
1436 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1437 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1438
6e901571
KM
1439 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1440 fp /= reclaim_stat->recent_rotated[1] + 1;
4f98a2fe
RR
1441
1442 /* Normalize to percentages */
1443 percent[0] = 100 * ap / (ap + fp + 1);
1444 percent[1] = 100 - percent[0];
b69408e8
CL
1445}
1446
4f98a2fe 1447
1da177e4
LT
1448/*
1449 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1450 */
a79311c1 1451static void shrink_zone(int priority, struct zone *zone,
05ff5137 1452 struct scan_control *sc)
1da177e4 1453{
b69408e8 1454 unsigned long nr[NR_LRU_LISTS];
8695949a 1455 unsigned long nr_to_scan;
4f98a2fe 1456 unsigned long percent[2]; /* anon @ 0; file @ 1 */
b69408e8 1457 enum lru_list l;
01dbe5c9
KM
1458 unsigned long nr_reclaimed = sc->nr_reclaimed;
1459 unsigned long swap_cluster_max = sc->swap_cluster_max;
1da177e4 1460
4f98a2fe
RR
1461 get_scan_ratio(zone, sc, percent);
1462
894bc310 1463 for_each_evictable_lru(l) {
9439c1c9
KM
1464 int file = is_file_lru(l);
1465 int scan;
e0f79b8f 1466
f272b7bc 1467 scan = zone_nr_pages(zone, sc, l);
9439c1c9
KM
1468 if (priority) {
1469 scan >>= priority;
1470 scan = (scan * percent[file]) / 100;
1471 }
e72e2bd6 1472 if (scanning_global_lru(sc)) {
e0f79b8f 1473 zone->lru[l].nr_scan += scan;
b69408e8 1474 nr[l] = zone->lru[l].nr_scan;
01dbe5c9 1475 if (nr[l] >= swap_cluster_max)
b69408e8
CL
1476 zone->lru[l].nr_scan = 0;
1477 else
1478 nr[l] = 0;
9439c1c9
KM
1479 } else
1480 nr[l] = scan;
1cfb419b 1481 }
1da177e4 1482
556adecb
RR
1483 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1484 nr[LRU_INACTIVE_FILE]) {
894bc310 1485 for_each_evictable_lru(l) {
b69408e8 1486 if (nr[l]) {
01dbe5c9 1487 nr_to_scan = min(nr[l], swap_cluster_max);
b69408e8 1488 nr[l] -= nr_to_scan;
1da177e4 1489
01dbe5c9
KM
1490 nr_reclaimed += shrink_list(l, nr_to_scan,
1491 zone, sc, priority);
b69408e8 1492 }
1da177e4 1493 }
a79311c1
RR
1494 /*
1495 * On large memory systems, scan >> priority can become
1496 * really large. This is fine for the starting priority;
1497 * we want to put equal scanning pressure on each zone.
1498 * However, if the VM has a harder time of freeing pages,
1499 * with multiple processes reclaiming pages, the total
1500 * freeing target can get unreasonably large.
1501 */
01dbe5c9 1502 if (nr_reclaimed > swap_cluster_max &&
a79311c1
RR
1503 priority < DEF_PRIORITY && !current_is_kswapd())
1504 break;
1da177e4
LT
1505 }
1506
01dbe5c9
KM
1507 sc->nr_reclaimed = nr_reclaimed;
1508
556adecb
RR
1509 /*
1510 * Even if we did not try to evict anon pages at all, we want to
1511 * rebalance the anon lru active/inactive ratio.
1512 */
14797e23 1513 if (inactive_anon_is_low(zone, sc))
556adecb
RR
1514 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1515
232ea4d6 1516 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1517}
1518
1519/*
1520 * This is the direct reclaim path, for page-allocating processes. We only
1521 * try to reclaim pages from zones which will satisfy the caller's allocation
1522 * request.
1523 *
1524 * We reclaim from a zone even if that zone is over pages_high. Because:
1525 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1526 * allocation or
1527 * b) The zones may be over pages_high but they must go *over* pages_high to
1528 * satisfy the `incremental min' zone defense algorithm.
1529 *
1da177e4
LT
1530 * If a zone is deemed to be full of pinned pages then just give it a light
1531 * scan then give up on it.
1532 */
a79311c1 1533static void shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 1534 struct scan_control *sc)
1da177e4 1535{
54a6eb5c 1536 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
dd1a239f 1537 struct zoneref *z;
54a6eb5c 1538 struct zone *zone;
1cfb419b 1539
408d8544 1540 sc->all_unreclaimable = 1;
54a6eb5c 1541 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
f3fe6512 1542 if (!populated_zone(zone))
1da177e4 1543 continue;
1cfb419b
KH
1544 /*
1545 * Take care memory controller reclaiming has small influence
1546 * to global LRU.
1547 */
e72e2bd6 1548 if (scanning_global_lru(sc)) {
1cfb419b
KH
1549 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1550 continue;
1551 note_zone_scanning_priority(zone, priority);
1da177e4 1552
1cfb419b
KH
1553 if (zone_is_all_unreclaimable(zone) &&
1554 priority != DEF_PRIORITY)
1555 continue; /* Let kswapd poll it */
1556 sc->all_unreclaimable = 0;
1557 } else {
1558 /*
1559 * Ignore cpuset limitation here. We just want to reduce
1560 * # of used pages by us regardless of memory shortage.
1561 */
1562 sc->all_unreclaimable = 0;
1563 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1564 priority);
1565 }
408d8544 1566
a79311c1 1567 shrink_zone(priority, zone, sc);
1da177e4
LT
1568 }
1569}
4f98a2fe 1570
1da177e4
LT
1571/*
1572 * This is the main entry point to direct page reclaim.
1573 *
1574 * If a full scan of the inactive list fails to free enough memory then we
1575 * are "out of memory" and something needs to be killed.
1576 *
1577 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1578 * high - the zone may be full of dirty or under-writeback pages, which this
1579 * caller can't do much about. We kick pdflush and take explicit naps in the
1580 * hope that some of these pages can be written. But if the allocating task
1581 * holds filesystem locks which prevent writeout this might not work, and the
1582 * allocation attempt will fail.
a41f24ea
NA
1583 *
1584 * returns: 0, if no pages reclaimed
1585 * else, the number of pages reclaimed
1da177e4 1586 */
dac1d27b 1587static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
dd1a239f 1588 struct scan_control *sc)
1da177e4
LT
1589{
1590 int priority;
c700be3d 1591 unsigned long ret = 0;
69e05944 1592 unsigned long total_scanned = 0;
1da177e4 1593 struct reclaim_state *reclaim_state = current->reclaim_state;
1da177e4 1594 unsigned long lru_pages = 0;
dd1a239f 1595 struct zoneref *z;
54a6eb5c 1596 struct zone *zone;
dd1a239f 1597 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1da177e4 1598
873b4771
KK
1599 delayacct_freepages_start();
1600
e72e2bd6 1601 if (scanning_global_lru(sc))
1cfb419b
KH
1602 count_vm_event(ALLOCSTALL);
1603 /*
1604 * mem_cgroup will not do shrink_slab.
1605 */
e72e2bd6 1606 if (scanning_global_lru(sc)) {
54a6eb5c 1607 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1da177e4 1608
1cfb419b
KH
1609 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1610 continue;
1da177e4 1611
4f98a2fe 1612 lru_pages += zone_lru_pages(zone);
1cfb419b 1613 }
1da177e4
LT
1614 }
1615
1616 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 1617 sc->nr_scanned = 0;
f7b7fd8f
RR
1618 if (!priority)
1619 disable_swap_token();
a79311c1 1620 shrink_zones(priority, zonelist, sc);
66e1707b
BS
1621 /*
1622 * Don't shrink slabs when reclaiming memory from
1623 * over limit cgroups
1624 */
e72e2bd6 1625 if (scanning_global_lru(sc)) {
dd1a239f 1626 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
91a45470 1627 if (reclaim_state) {
a79311c1 1628 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
1629 reclaim_state->reclaimed_slab = 0;
1630 }
1da177e4 1631 }
66e1707b 1632 total_scanned += sc->nr_scanned;
a79311c1
RR
1633 if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1634 ret = sc->nr_reclaimed;
1da177e4
LT
1635 goto out;
1636 }
1637
1638 /*
1639 * Try to write back as many pages as we just scanned. This
1640 * tends to cause slow streaming writers to write data to the
1641 * disk smoothly, at the dirtying rate, which is nice. But
1642 * that's undesirable in laptop mode, where we *want* lumpy
1643 * writeout. So in laptop mode, write out the whole world.
1644 */
66e1707b
BS
1645 if (total_scanned > sc->swap_cluster_max +
1646 sc->swap_cluster_max / 2) {
687a21ce 1647 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
66e1707b 1648 sc->may_writepage = 1;
1da177e4
LT
1649 }
1650
1651 /* Take a nap, wait for some writeback to complete */
4dd4b920 1652 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
3fcfab16 1653 congestion_wait(WRITE, HZ/10);
1da177e4 1654 }
87547ee9 1655 /* top priority shrink_zones still had more to do? don't OOM, then */
e72e2bd6 1656 if (!sc->all_unreclaimable && scanning_global_lru(sc))
a79311c1 1657 ret = sc->nr_reclaimed;
1da177e4 1658out:
3bb1a852
MB
1659 /*
1660 * Now that we've scanned all the zones at this priority level, note
1661 * that level within the zone so that the next thread which performs
1662 * scanning of this zone will immediately start out at this priority
1663 * level. This affects only the decision whether or not to bring
1664 * mapped pages onto the inactive list.
1665 */
1666 if (priority < 0)
1667 priority = 0;
1da177e4 1668
e72e2bd6 1669 if (scanning_global_lru(sc)) {
54a6eb5c 1670 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1cfb419b
KH
1671
1672 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1673 continue;
1674
1675 zone->prev_priority = priority;
1676 }
1677 } else
1678 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1da177e4 1679
873b4771
KK
1680 delayacct_freepages_end();
1681
1da177e4
LT
1682 return ret;
1683}
1684
dac1d27b
MG
1685unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1686 gfp_t gfp_mask)
66e1707b
BS
1687{
1688 struct scan_control sc = {
1689 .gfp_mask = gfp_mask,
1690 .may_writepage = !laptop_mode,
1691 .swap_cluster_max = SWAP_CLUSTER_MAX,
a6dc60f8 1692 .may_unmap = 1,
66e1707b
BS
1693 .swappiness = vm_swappiness,
1694 .order = order,
1695 .mem_cgroup = NULL,
1696 .isolate_pages = isolate_pages_global,
1697 };
1698
dd1a239f 1699 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1700}
1701
00f0b825 1702#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 1703
e1a1cd59 1704unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
a7885eb8
KM
1705 gfp_t gfp_mask,
1706 bool noswap,
1707 unsigned int swappiness)
66e1707b
BS
1708{
1709 struct scan_control sc = {
66e1707b 1710 .may_writepage = !laptop_mode,
a6dc60f8 1711 .may_unmap = 1,
66e1707b 1712 .swap_cluster_max = SWAP_CLUSTER_MAX,
a7885eb8 1713 .swappiness = swappiness,
66e1707b
BS
1714 .order = 0,
1715 .mem_cgroup = mem_cont,
1716 .isolate_pages = mem_cgroup_isolate_pages,
1717 };
dac1d27b 1718 struct zonelist *zonelist;
66e1707b 1719
8c7c6e34 1720 if (noswap)
a6dc60f8 1721 sc.may_unmap = 0;
8c7c6e34 1722
dd1a239f
MG
1723 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1724 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1725 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1726 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1727}
1728#endif
1729
1da177e4
LT
1730/*
1731 * For kswapd, balance_pgdat() will work across all this node's zones until
1732 * they are all at pages_high.
1733 *
1da177e4
LT
1734 * Returns the number of pages which were actually freed.
1735 *
1736 * There is special handling here for zones which are full of pinned pages.
1737 * This can happen if the pages are all mlocked, or if they are all used by
1738 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1739 * What we do is to detect the case where all pages in the zone have been
1740 * scanned twice and there has been zero successful reclaim. Mark the zone as
1741 * dead and from now on, only perform a short scan. Basically we're polling
1742 * the zone for when the problem goes away.
1743 *
1744 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1745 * zones which have free_pages > pages_high, but once a zone is found to have
1746 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1747 * of the number of free pages in the lower zones. This interoperates with
1748 * the page allocator fallback scheme to ensure that aging of pages is balanced
1749 * across the zones.
1750 */
d6277db4 1751static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1da177e4 1752{
1da177e4
LT
1753 int all_zones_ok;
1754 int priority;
1755 int i;
69e05944 1756 unsigned long total_scanned;
1da177e4 1757 struct reclaim_state *reclaim_state = current->reclaim_state;
179e9639
AM
1758 struct scan_control sc = {
1759 .gfp_mask = GFP_KERNEL,
a6dc60f8 1760 .may_unmap = 1,
d6277db4
RW
1761 .swap_cluster_max = SWAP_CLUSTER_MAX,
1762 .swappiness = vm_swappiness,
5ad333eb 1763 .order = order,
66e1707b
BS
1764 .mem_cgroup = NULL,
1765 .isolate_pages = isolate_pages_global,
179e9639 1766 };
3bb1a852
MB
1767 /*
1768 * temp_priority is used to remember the scanning priority at which
1769 * this zone was successfully refilled to free_pages == pages_high.
1770 */
1771 int temp_priority[MAX_NR_ZONES];
1da177e4
LT
1772
1773loop_again:
1774 total_scanned = 0;
a79311c1 1775 sc.nr_reclaimed = 0;
c0bbbc73 1776 sc.may_writepage = !laptop_mode;
f8891e5e 1777 count_vm_event(PAGEOUTRUN);
1da177e4 1778
3bb1a852
MB
1779 for (i = 0; i < pgdat->nr_zones; i++)
1780 temp_priority[i] = DEF_PRIORITY;
1da177e4
LT
1781
1782 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1783 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1784 unsigned long lru_pages = 0;
1785
f7b7fd8f
RR
1786 /* The swap token gets in the way of swapout... */
1787 if (!priority)
1788 disable_swap_token();
1789
1da177e4
LT
1790 all_zones_ok = 1;
1791
d6277db4
RW
1792 /*
1793 * Scan in the highmem->dma direction for the highest
1794 * zone which needs scanning
1795 */
1796 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1797 struct zone *zone = pgdat->node_zones + i;
1da177e4 1798
d6277db4
RW
1799 if (!populated_zone(zone))
1800 continue;
1da177e4 1801
e815af95
DR
1802 if (zone_is_all_unreclaimable(zone) &&
1803 priority != DEF_PRIORITY)
d6277db4 1804 continue;
1da177e4 1805
556adecb
RR
1806 /*
1807 * Do some background aging of the anon list, to give
1808 * pages a chance to be referenced before reclaiming.
1809 */
14797e23 1810 if (inactive_anon_is_low(zone, &sc))
556adecb
RR
1811 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1812 &sc, priority, 0);
1813
d6277db4
RW
1814 if (!zone_watermark_ok(zone, order, zone->pages_high,
1815 0, 0)) {
1816 end_zone = i;
e1dbeda6 1817 break;
1da177e4 1818 }
1da177e4 1819 }
e1dbeda6
AM
1820 if (i < 0)
1821 goto out;
1822
1da177e4
LT
1823 for (i = 0; i <= end_zone; i++) {
1824 struct zone *zone = pgdat->node_zones + i;
1825
4f98a2fe 1826 lru_pages += zone_lru_pages(zone);
1da177e4
LT
1827 }
1828
1829 /*
1830 * Now scan the zone in the dma->highmem direction, stopping
1831 * at the last zone which needs scanning.
1832 *
1833 * We do this because the page allocator works in the opposite
1834 * direction. This prevents the page allocator from allocating
1835 * pages behind kswapd's direction of progress, which would
1836 * cause too much scanning of the lower zones.
1837 */
1838 for (i = 0; i <= end_zone; i++) {
1839 struct zone *zone = pgdat->node_zones + i;
b15e0905 1840 int nr_slab;
1da177e4 1841
f3fe6512 1842 if (!populated_zone(zone))
1da177e4
LT
1843 continue;
1844
e815af95
DR
1845 if (zone_is_all_unreclaimable(zone) &&
1846 priority != DEF_PRIORITY)
1da177e4
LT
1847 continue;
1848
d6277db4
RW
1849 if (!zone_watermark_ok(zone, order, zone->pages_high,
1850 end_zone, 0))
1851 all_zones_ok = 0;
3bb1a852 1852 temp_priority[i] = priority;
1da177e4 1853 sc.nr_scanned = 0;
3bb1a852 1854 note_zone_scanning_priority(zone, priority);
32a4330d
RR
1855 /*
1856 * We put equal pressure on every zone, unless one
1857 * zone has way too many pages free already.
1858 */
1859 if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1860 end_zone, 0))
a79311c1 1861 shrink_zone(priority, zone, &sc);
1da177e4 1862 reclaim_state->reclaimed_slab = 0;
b15e0905 1863 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1864 lru_pages);
a79311c1 1865 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4 1866 total_scanned += sc.nr_scanned;
e815af95 1867 if (zone_is_all_unreclaimable(zone))
1da177e4 1868 continue;
b15e0905 1869 if (nr_slab == 0 && zone->pages_scanned >=
4f98a2fe 1870 (zone_lru_pages(zone) * 6))
e815af95
DR
1871 zone_set_flag(zone,
1872 ZONE_ALL_UNRECLAIMABLE);
1da177e4
LT
1873 /*
1874 * If we've done a decent amount of scanning and
1875 * the reclaim ratio is low, start doing writepage
1876 * even in laptop mode
1877 */
1878 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 1879 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4
LT
1880 sc.may_writepage = 1;
1881 }
1da177e4
LT
1882 if (all_zones_ok)
1883 break; /* kswapd: all done */
1884 /*
1885 * OK, kswapd is getting into trouble. Take a nap, then take
1886 * another pass across the zones.
1887 */
4dd4b920 1888 if (total_scanned && priority < DEF_PRIORITY - 2)
3fcfab16 1889 congestion_wait(WRITE, HZ/10);
1da177e4
LT
1890
1891 /*
1892 * We do this so kswapd doesn't build up large priorities for
1893 * example when it is freeing in parallel with allocators. It
1894 * matches the direct reclaim path behaviour in terms of impact
1895 * on zone->*_priority.
1896 */
a79311c1 1897 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
1898 break;
1899 }
1900out:
3bb1a852
MB
1901 /*
1902 * Note within each zone the priority level at which this zone was
1903 * brought into a happy state. So that the next thread which scans this
1904 * zone will start out at that priority level.
1905 */
1da177e4
LT
1906 for (i = 0; i < pgdat->nr_zones; i++) {
1907 struct zone *zone = pgdat->node_zones + i;
1908
3bb1a852 1909 zone->prev_priority = temp_priority[i];
1da177e4
LT
1910 }
1911 if (!all_zones_ok) {
1912 cond_resched();
8357376d
RW
1913
1914 try_to_freeze();
1915
73ce02e9
KM
1916 /*
1917 * Fragmentation may mean that the system cannot be
1918 * rebalanced for high-order allocations in all zones.
1919 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1920 * it means the zones have been fully scanned and are still
1921 * not balanced. For high-order allocations, there is
1922 * little point trying all over again as kswapd may
1923 * infinite loop.
1924 *
1925 * Instead, recheck all watermarks at order-0 as they
1926 * are the most important. If watermarks are ok, kswapd will go
1927 * back to sleep. High-order users can still perform direct
1928 * reclaim if they wish.
1929 */
1930 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
1931 order = sc.order = 0;
1932
1da177e4
LT
1933 goto loop_again;
1934 }
1935
a79311c1 1936 return sc.nr_reclaimed;
1da177e4
LT
1937}
1938
1939/*
1940 * The background pageout daemon, started as a kernel thread
4f98a2fe 1941 * from the init process.
1da177e4
LT
1942 *
1943 * This basically trickles out pages so that we have _some_
1944 * free memory available even if there is no other activity
1945 * that frees anything up. This is needed for things like routing
1946 * etc, where we otherwise might have all activity going on in
1947 * asynchronous contexts that cannot page things out.
1948 *
1949 * If there are applications that are active memory-allocators
1950 * (most normal use), this basically shouldn't matter.
1951 */
1952static int kswapd(void *p)
1953{
1954 unsigned long order;
1955 pg_data_t *pgdat = (pg_data_t*)p;
1956 struct task_struct *tsk = current;
1957 DEFINE_WAIT(wait);
1958 struct reclaim_state reclaim_state = {
1959 .reclaimed_slab = 0,
1960 };
c5f59f08 1961 node_to_cpumask_ptr(cpumask, pgdat->node_id);
1da177e4 1962
cf40bd16
NP
1963 lockdep_set_current_reclaim_state(GFP_KERNEL);
1964
174596a0 1965 if (!cpumask_empty(cpumask))
c5f59f08 1966 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
1967 current->reclaim_state = &reclaim_state;
1968
1969 /*
1970 * Tell the memory management that we're a "memory allocator",
1971 * and that if we need more memory we should get access to it
1972 * regardless (see "__alloc_pages()"). "kswapd" should
1973 * never get caught in the normal page freeing logic.
1974 *
1975 * (Kswapd normally doesn't need memory anyway, but sometimes
1976 * you need a small amount of memory in order to be able to
1977 * page out something else, and this flag essentially protects
1978 * us from recursively trying to free more memory as we're
1979 * trying to free the first piece of memory in the first place).
1980 */
930d9152 1981 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 1982 set_freezable();
1da177e4
LT
1983
1984 order = 0;
1985 for ( ; ; ) {
1986 unsigned long new_order;
3e1d1d28 1987
1da177e4
LT
1988 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1989 new_order = pgdat->kswapd_max_order;
1990 pgdat->kswapd_max_order = 0;
1991 if (order < new_order) {
1992 /*
1993 * Don't sleep if someone wants a larger 'order'
1994 * allocation
1995 */
1996 order = new_order;
1997 } else {
b1296cc4
RW
1998 if (!freezing(current))
1999 schedule();
2000
1da177e4
LT
2001 order = pgdat->kswapd_max_order;
2002 }
2003 finish_wait(&pgdat->kswapd_wait, &wait);
2004
b1296cc4
RW
2005 if (!try_to_freeze()) {
2006 /* We can speed up thawing tasks if we don't call
2007 * balance_pgdat after returning from the refrigerator
2008 */
2009 balance_pgdat(pgdat, order);
2010 }
1da177e4
LT
2011 }
2012 return 0;
2013}
2014
2015/*
2016 * A zone is low on free memory, so wake its kswapd task to service it.
2017 */
2018void wakeup_kswapd(struct zone *zone, int order)
2019{
2020 pg_data_t *pgdat;
2021
f3fe6512 2022 if (!populated_zone(zone))
1da177e4
LT
2023 return;
2024
2025 pgdat = zone->zone_pgdat;
7fb1d9fc 2026 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1da177e4
LT
2027 return;
2028 if (pgdat->kswapd_max_order < order)
2029 pgdat->kswapd_max_order = order;
02a0e53d 2030 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2031 return;
8d0986e2 2032 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2033 return;
8d0986e2 2034 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2035}
2036
4f98a2fe
RR
2037unsigned long global_lru_pages(void)
2038{
2039 return global_page_state(NR_ACTIVE_ANON)
2040 + global_page_state(NR_ACTIVE_FILE)
2041 + global_page_state(NR_INACTIVE_ANON)
2042 + global_page_state(NR_INACTIVE_FILE);
2043}
2044
1da177e4
LT
2045#ifdef CONFIG_PM
2046/*
d6277db4 2047 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
d979677c 2048 * from LRU lists system-wide, for given pass and priority.
d6277db4
RW
2049 *
2050 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2051 */
d979677c 2052static void shrink_all_zones(unsigned long nr_pages, int prio,
e07aa05b 2053 int pass, struct scan_control *sc)
d6277db4
RW
2054{
2055 struct zone *zone;
d979677c 2056 unsigned long nr_reclaimed = 0;
d6277db4 2057
ee99c71c 2058 for_each_populated_zone(zone) {
0cb57258 2059 enum lru_list l;
d6277db4 2060
e815af95 2061 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
d6277db4
RW
2062 continue;
2063
894bc310 2064 for_each_evictable_lru(l) {
0cb57258
JW
2065 enum zone_stat_item ls = NR_LRU_BASE + l;
2066 unsigned long lru_pages = zone_page_state(zone, ls);
2067
894bc310 2068 /* For pass = 0, we don't shrink the active list */
0cb57258
JW
2069 if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2070 l == LRU_ACTIVE_FILE))
b69408e8
CL
2071 continue;
2072
0cb57258 2073 zone->lru[l].nr_scan += (lru_pages >> prio) + 1;
b69408e8 2074 if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
0cb57258
JW
2075 unsigned long nr_to_scan;
2076
b69408e8 2077 zone->lru[l].nr_scan = 0;
0cb57258 2078 nr_to_scan = min(nr_pages, lru_pages);
d979677c 2079 nr_reclaimed += shrink_list(l, nr_to_scan, zone,
b69408e8 2080 sc, prio);
d979677c
MK
2081 if (nr_reclaimed >= nr_pages) {
2082 sc->nr_reclaimed = nr_reclaimed;
2083 return;
2084 }
d6277db4
RW
2085 }
2086 }
d6277db4 2087 }
d979677c 2088 sc->nr_reclaimed = nr_reclaimed;
d6277db4
RW
2089}
2090
2091/*
2092 * Try to free `nr_pages' of memory, system-wide, and return the number of
2093 * freed pages.
2094 *
2095 * Rather than trying to age LRUs the aim is to preserve the overall
2096 * LRU order by reclaiming preferentially
2097 * inactive > active > active referenced > active mapped
1da177e4 2098 */
69e05944 2099unsigned long shrink_all_memory(unsigned long nr_pages)
1da177e4 2100{
d6277db4 2101 unsigned long lru_pages, nr_slab;
d6277db4
RW
2102 int pass;
2103 struct reclaim_state reclaim_state;
d6277db4
RW
2104 struct scan_control sc = {
2105 .gfp_mask = GFP_KERNEL,
a6dc60f8 2106 .may_unmap = 0,
d6277db4 2107 .may_writepage = 1,
66e1707b 2108 .isolate_pages = isolate_pages_global,
1da177e4
LT
2109 };
2110
2111 current->reclaim_state = &reclaim_state;
69e05944 2112
4f98a2fe 2113 lru_pages = global_lru_pages();
972d1a7b 2114 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
d6277db4
RW
2115 /* If slab caches are huge, it's better to hit them first */
2116 while (nr_slab >= lru_pages) {
2117 reclaim_state.reclaimed_slab = 0;
2118 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2119 if (!reclaim_state.reclaimed_slab)
1da177e4 2120 break;
d6277db4 2121
d979677c
MK
2122 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2123 if (sc.nr_reclaimed >= nr_pages)
d6277db4
RW
2124 goto out;
2125
2126 nr_slab -= reclaim_state.reclaimed_slab;
1da177e4 2127 }
d6277db4
RW
2128
2129 /*
2130 * We try to shrink LRUs in 5 passes:
2131 * 0 = Reclaim from inactive_list only
2132 * 1 = Reclaim from active list but don't reclaim mapped
2133 * 2 = 2nd pass of type 1
2134 * 3 = Reclaim mapped (normal reclaim)
2135 * 4 = 2nd pass of type 3
2136 */
2137 for (pass = 0; pass < 5; pass++) {
2138 int prio;
2139
d6277db4 2140 /* Force reclaiming mapped pages in the passes #3 and #4 */
3049103d 2141 if (pass > 2)
a6dc60f8 2142 sc.may_unmap = 1;
d6277db4
RW
2143
2144 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
d979677c 2145 unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
d6277db4 2146
d6277db4 2147 sc.nr_scanned = 0;
9786bf84 2148 sc.swap_cluster_max = nr_to_scan;
d979677c
MK
2149 shrink_all_zones(nr_to_scan, prio, pass, &sc);
2150 if (sc.nr_reclaimed >= nr_pages)
d6277db4
RW
2151 goto out;
2152
2153 reclaim_state.reclaimed_slab = 0;
76395d37 2154 shrink_slab(sc.nr_scanned, sc.gfp_mask,
4f98a2fe 2155 global_lru_pages());
d979677c
MK
2156 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2157 if (sc.nr_reclaimed >= nr_pages)
d6277db4
RW
2158 goto out;
2159
2160 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
3fcfab16 2161 congestion_wait(WRITE, HZ / 10);
d6277db4 2162 }
248a0301 2163 }
d6277db4
RW
2164
2165 /*
d979677c
MK
2166 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2167 * something in slab caches
d6277db4 2168 */
d979677c 2169 if (!sc.nr_reclaimed) {
d6277db4
RW
2170 do {
2171 reclaim_state.reclaimed_slab = 0;
4f98a2fe 2172 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
d979677c
MK
2173 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2174 } while (sc.nr_reclaimed < nr_pages &&
2175 reclaim_state.reclaimed_slab > 0);
76395d37 2176 }
d6277db4 2177
d979677c 2178
d6277db4 2179out:
1da177e4 2180 current->reclaim_state = NULL;
d6277db4 2181
d979677c 2182 return sc.nr_reclaimed;
1da177e4
LT
2183}
2184#endif
2185
1da177e4
LT
2186/* It's optimal to keep kswapds on the same CPUs as their memory, but
2187 not required for correctness. So if the last cpu in a node goes
2188 away, we get changed to run anywhere: as the first one comes back,
2189 restore their cpu bindings. */
9c7b216d 2190static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2191 unsigned long action, void *hcpu)
1da177e4 2192{
58c0a4a7 2193 int nid;
1da177e4 2194
8bb78442 2195 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2196 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08
MT
2197 pg_data_t *pgdat = NODE_DATA(nid);
2198 node_to_cpumask_ptr(mask, pgdat->node_id);
2199
3e597945 2200 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2201 /* One of our CPUs online: restore mask */
c5f59f08 2202 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2203 }
2204 }
2205 return NOTIFY_OK;
2206}
1da177e4 2207
3218ae14
YG
2208/*
2209 * This kswapd start function will be called by init and node-hot-add.
2210 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2211 */
2212int kswapd_run(int nid)
2213{
2214 pg_data_t *pgdat = NODE_DATA(nid);
2215 int ret = 0;
2216
2217 if (pgdat->kswapd)
2218 return 0;
2219
2220 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2221 if (IS_ERR(pgdat->kswapd)) {
2222 /* failure at boot is fatal */
2223 BUG_ON(system_state == SYSTEM_BOOTING);
2224 printk("Failed to start kswapd on node %d\n",nid);
2225 ret = -1;
2226 }
2227 return ret;
2228}
2229
1da177e4
LT
2230static int __init kswapd_init(void)
2231{
3218ae14 2232 int nid;
69e05944 2233
1da177e4 2234 swap_setup();
9422ffba 2235 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 2236 kswapd_run(nid);
1da177e4
LT
2237 hotcpu_notifier(cpu_callback, 0);
2238 return 0;
2239}
2240
2241module_init(kswapd_init)
9eeff239
CL
2242
2243#ifdef CONFIG_NUMA
2244/*
2245 * Zone reclaim mode
2246 *
2247 * If non-zero call zone_reclaim when the number of free pages falls below
2248 * the watermarks.
9eeff239
CL
2249 */
2250int zone_reclaim_mode __read_mostly;
2251
1b2ffb78 2252#define RECLAIM_OFF 0
7d03431c 2253#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
2254#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2255#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2256
a92f7126
CL
2257/*
2258 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2259 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2260 * a zone.
2261 */
2262#define ZONE_RECLAIM_PRIORITY 4
2263
9614634f
CL
2264/*
2265 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2266 * occur.
2267 */
2268int sysctl_min_unmapped_ratio = 1;
2269
0ff38490
CL
2270/*
2271 * If the number of slab pages in a zone grows beyond this percentage then
2272 * slab reclaim needs to occur.
2273 */
2274int sysctl_min_slab_ratio = 5;
2275
9eeff239
CL
2276/*
2277 * Try to free up some pages from this zone through reclaim.
2278 */
179e9639 2279static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 2280{
7fb2d46d 2281 /* Minimum pages needed in order to stay on node */
69e05944 2282 const unsigned long nr_pages = 1 << order;
9eeff239
CL
2283 struct task_struct *p = current;
2284 struct reclaim_state reclaim_state;
8695949a 2285 int priority;
179e9639
AM
2286 struct scan_control sc = {
2287 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 2288 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
69e05944
AM
2289 .swap_cluster_max = max_t(unsigned long, nr_pages,
2290 SWAP_CLUSTER_MAX),
179e9639 2291 .gfp_mask = gfp_mask,
d6277db4 2292 .swappiness = vm_swappiness,
bd2f6199 2293 .order = order,
66e1707b 2294 .isolate_pages = isolate_pages_global,
179e9639 2295 };
83e33a47 2296 unsigned long slab_reclaimable;
9eeff239
CL
2297
2298 disable_swap_token();
9eeff239 2299 cond_resched();
d4f7796e
CL
2300 /*
2301 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2302 * and we also need to be able to write out pages for RECLAIM_WRITE
2303 * and RECLAIM_SWAP.
2304 */
2305 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
9eeff239
CL
2306 reclaim_state.reclaimed_slab = 0;
2307 p->reclaim_state = &reclaim_state;
c84db23c 2308
0ff38490
CL
2309 if (zone_page_state(zone, NR_FILE_PAGES) -
2310 zone_page_state(zone, NR_FILE_MAPPED) >
2311 zone->min_unmapped_pages) {
2312 /*
2313 * Free memory by calling shrink zone with increasing
2314 * priorities until we have enough memory freed.
2315 */
2316 priority = ZONE_RECLAIM_PRIORITY;
2317 do {
3bb1a852 2318 note_zone_scanning_priority(zone, priority);
a79311c1 2319 shrink_zone(priority, zone, &sc);
0ff38490 2320 priority--;
a79311c1 2321 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 2322 }
c84db23c 2323
83e33a47
CL
2324 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2325 if (slab_reclaimable > zone->min_slab_pages) {
2a16e3f4 2326 /*
7fb2d46d 2327 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
2328 * many pages were freed in this zone. So we take the current
2329 * number of slab pages and shake the slab until it is reduced
2330 * by the same nr_pages that we used for reclaiming unmapped
2331 * pages.
2a16e3f4 2332 *
0ff38490
CL
2333 * Note that shrink_slab will free memory on all zones and may
2334 * take a long time.
2a16e3f4 2335 */
0ff38490 2336 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
83e33a47
CL
2337 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2338 slab_reclaimable - nr_pages)
0ff38490 2339 ;
83e33a47
CL
2340
2341 /*
2342 * Update nr_reclaimed by the number of slab pages we
2343 * reclaimed from this zone.
2344 */
a79311c1 2345 sc.nr_reclaimed += slab_reclaimable -
83e33a47 2346 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2a16e3f4
CL
2347 }
2348
9eeff239 2349 p->reclaim_state = NULL;
d4f7796e 2350 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
a79311c1 2351 return sc.nr_reclaimed >= nr_pages;
9eeff239 2352}
179e9639
AM
2353
2354int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2355{
179e9639 2356 int node_id;
d773ed6b 2357 int ret;
179e9639
AM
2358
2359 /*
0ff38490
CL
2360 * Zone reclaim reclaims unmapped file backed pages and
2361 * slab pages if we are over the defined limits.
34aa1330 2362 *
9614634f
CL
2363 * A small portion of unmapped file backed pages is needed for
2364 * file I/O otherwise pages read by file I/O will be immediately
2365 * thrown out if the zone is overallocated. So we do not reclaim
2366 * if less than a specified percentage of the zone is used by
2367 * unmapped file backed pages.
179e9639 2368 */
34aa1330 2369 if (zone_page_state(zone, NR_FILE_PAGES) -
0ff38490
CL
2370 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2371 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2372 <= zone->min_slab_pages)
9614634f 2373 return 0;
179e9639 2374
d773ed6b
DR
2375 if (zone_is_all_unreclaimable(zone))
2376 return 0;
2377
179e9639 2378 /*
d773ed6b 2379 * Do not scan if the allocation should not be delayed.
179e9639 2380 */
d773ed6b 2381 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
179e9639
AM
2382 return 0;
2383
2384 /*
2385 * Only run zone reclaim on the local zone or on zones that do not
2386 * have associated processors. This will favor the local processor
2387 * over remote processors and spread off node memory allocations
2388 * as wide as possible.
2389 */
89fa3024 2390 node_id = zone_to_nid(zone);
37c0708d 2391 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
179e9639 2392 return 0;
d773ed6b
DR
2393
2394 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2395 return 0;
2396 ret = __zone_reclaim(zone, gfp_mask, order);
2397 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2398
2399 return ret;
179e9639 2400}
9eeff239 2401#endif
894bc310
LS
2402
2403#ifdef CONFIG_UNEVICTABLE_LRU
2404/*
2405 * page_evictable - test whether a page is evictable
2406 * @page: the page to test
2407 * @vma: the VMA in which the page is or will be mapped, may be NULL
2408 *
2409 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
2410 * lists vs unevictable list. The vma argument is !NULL when called from the
2411 * fault path to determine how to instantate a new page.
894bc310
LS
2412 *
2413 * Reasons page might not be evictable:
ba9ddf49 2414 * (1) page's mapping marked unevictable
b291f000 2415 * (2) page is part of an mlocked VMA
ba9ddf49 2416 *
894bc310
LS
2417 */
2418int page_evictable(struct page *page, struct vm_area_struct *vma)
2419{
2420
ba9ddf49
LS
2421 if (mapping_unevictable(page_mapping(page)))
2422 return 0;
2423
b291f000
NP
2424 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2425 return 0;
894bc310
LS
2426
2427 return 1;
2428}
89e004ea
LS
2429
2430/**
2431 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2432 * @page: page to check evictability and move to appropriate lru list
2433 * @zone: zone page is in
2434 *
2435 * Checks a page for evictability and moves the page to the appropriate
2436 * zone lru list.
2437 *
2438 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2439 * have PageUnevictable set.
2440 */
2441static void check_move_unevictable_page(struct page *page, struct zone *zone)
2442{
2443 VM_BUG_ON(PageActive(page));
2444
2445retry:
2446 ClearPageUnevictable(page);
2447 if (page_evictable(page, NULL)) {
2448 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
af936a16 2449
89e004ea
LS
2450 __dec_zone_state(zone, NR_UNEVICTABLE);
2451 list_move(&page->lru, &zone->lru[l].list);
08e552c6 2452 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
89e004ea
LS
2453 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2454 __count_vm_event(UNEVICTABLE_PGRESCUED);
2455 } else {
2456 /*
2457 * rotate unevictable list
2458 */
2459 SetPageUnevictable(page);
2460 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
08e552c6 2461 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
89e004ea
LS
2462 if (page_evictable(page, NULL))
2463 goto retry;
2464 }
2465}
2466
2467/**
2468 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2469 * @mapping: struct address_space to scan for evictable pages
2470 *
2471 * Scan all pages in mapping. Check unevictable pages for
2472 * evictability and move them to the appropriate zone lru list.
2473 */
2474void scan_mapping_unevictable_pages(struct address_space *mapping)
2475{
2476 pgoff_t next = 0;
2477 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2478 PAGE_CACHE_SHIFT;
2479 struct zone *zone;
2480 struct pagevec pvec;
2481
2482 if (mapping->nrpages == 0)
2483 return;
2484
2485 pagevec_init(&pvec, 0);
2486 while (next < end &&
2487 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2488 int i;
2489 int pg_scanned = 0;
2490
2491 zone = NULL;
2492
2493 for (i = 0; i < pagevec_count(&pvec); i++) {
2494 struct page *page = pvec.pages[i];
2495 pgoff_t page_index = page->index;
2496 struct zone *pagezone = page_zone(page);
2497
2498 pg_scanned++;
2499 if (page_index > next)
2500 next = page_index;
2501 next++;
2502
2503 if (pagezone != zone) {
2504 if (zone)
2505 spin_unlock_irq(&zone->lru_lock);
2506 zone = pagezone;
2507 spin_lock_irq(&zone->lru_lock);
2508 }
2509
2510 if (PageLRU(page) && PageUnevictable(page))
2511 check_move_unevictable_page(page, zone);
2512 }
2513 if (zone)
2514 spin_unlock_irq(&zone->lru_lock);
2515 pagevec_release(&pvec);
2516
2517 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2518 }
2519
2520}
af936a16
LS
2521
2522/**
2523 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2524 * @zone - zone of which to scan the unevictable list
2525 *
2526 * Scan @zone's unevictable LRU lists to check for pages that have become
2527 * evictable. Move those that have to @zone's inactive list where they
2528 * become candidates for reclaim, unless shrink_inactive_zone() decides
2529 * to reactivate them. Pages that are still unevictable are rotated
2530 * back onto @zone's unevictable list.
2531 */
2532#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
14b90b22 2533static void scan_zone_unevictable_pages(struct zone *zone)
af936a16
LS
2534{
2535 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2536 unsigned long scan;
2537 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2538
2539 while (nr_to_scan > 0) {
2540 unsigned long batch_size = min(nr_to_scan,
2541 SCAN_UNEVICTABLE_BATCH_SIZE);
2542
2543 spin_lock_irq(&zone->lru_lock);
2544 for (scan = 0; scan < batch_size; scan++) {
2545 struct page *page = lru_to_page(l_unevictable);
2546
2547 if (!trylock_page(page))
2548 continue;
2549
2550 prefetchw_prev_lru_page(page, l_unevictable, flags);
2551
2552 if (likely(PageLRU(page) && PageUnevictable(page)))
2553 check_move_unevictable_page(page, zone);
2554
2555 unlock_page(page);
2556 }
2557 spin_unlock_irq(&zone->lru_lock);
2558
2559 nr_to_scan -= batch_size;
2560 }
2561}
2562
2563
2564/**
2565 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2566 *
2567 * A really big hammer: scan all zones' unevictable LRU lists to check for
2568 * pages that have become evictable. Move those back to the zones'
2569 * inactive list where they become candidates for reclaim.
2570 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2571 * and we add swap to the system. As such, it runs in the context of a task
2572 * that has possibly/probably made some previously unevictable pages
2573 * evictable.
2574 */
ff30153b 2575static void scan_all_zones_unevictable_pages(void)
af936a16
LS
2576{
2577 struct zone *zone;
2578
2579 for_each_zone(zone) {
2580 scan_zone_unevictable_pages(zone);
2581 }
2582}
2583
2584/*
2585 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2586 * all nodes' unevictable lists for evictable pages
2587 */
2588unsigned long scan_unevictable_pages;
2589
2590int scan_unevictable_handler(struct ctl_table *table, int write,
2591 struct file *file, void __user *buffer,
2592 size_t *length, loff_t *ppos)
2593{
2594 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2595
2596 if (write && *(unsigned long *)table->data)
2597 scan_all_zones_unevictable_pages();
2598
2599 scan_unevictable_pages = 0;
2600 return 0;
2601}
2602
2603/*
2604 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2605 * a specified node's per zone unevictable lists for evictable pages.
2606 */
2607
2608static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2609 struct sysdev_attribute *attr,
2610 char *buf)
2611{
2612 return sprintf(buf, "0\n"); /* always zero; should fit... */
2613}
2614
2615static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2616 struct sysdev_attribute *attr,
2617 const char *buf, size_t count)
2618{
2619 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2620 struct zone *zone;
2621 unsigned long res;
2622 unsigned long req = strict_strtoul(buf, 10, &res);
2623
2624 if (!req)
2625 return 1; /* zero is no-op */
2626
2627 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2628 if (!populated_zone(zone))
2629 continue;
2630 scan_zone_unevictable_pages(zone);
2631 }
2632 return 1;
2633}
2634
2635
2636static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2637 read_scan_unevictable_node,
2638 write_scan_unevictable_node);
2639
2640int scan_unevictable_register_node(struct node *node)
2641{
2642 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2643}
2644
2645void scan_unevictable_unregister_node(struct node *node)
2646{
2647 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2648}
2649
894bc310 2650#endif