]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/vmscan.c
include/linux/mm_inline.h: fold __update_lru_size() into its sole caller
[mirror_ubuntu-kernels.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
b1de0d13
MH
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
1da177e4 15#include <linux/mm.h>
5b3cc15a 16#include <linux/sched/mm.h>
1da177e4 17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
64e3d12f 47#include <linux/pagevec.h>
268bb0ce 48#include <linux/prefetch.h>
b1de0d13 49#include <linux/printk.h>
f9fe48be 50#include <linux/dax.h>
eb414681 51#include <linux/psi.h>
1da177e4
LT
52
53#include <asm/tlbflush.h>
54#include <asm/div64.h>
55
56#include <linux/swapops.h>
117aad1e 57#include <linux/balloon_compaction.h>
1da177e4 58
0f8053a5
NP
59#include "internal.h"
60
33906bc5
MG
61#define CREATE_TRACE_POINTS
62#include <trace/events/vmscan.h>
63
1da177e4 64struct scan_control {
22fba335
KM
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
ee814fe2
JW
68 /*
69 * Nodemask of nodes allowed by the caller. If NULL, all nodes
70 * are scanned.
71 */
72 nodemask_t *nodemask;
9e3b2f8c 73
f16015fb
JW
74 /*
75 * The memory cgroup that hit its limit and as a result is the
76 * primary target of this reclaim invocation.
77 */
78 struct mem_cgroup *target_mem_cgroup;
66e1707b 79
7cf111bc
JW
80 /*
81 * Scan pressure balancing between anon and file LRUs
82 */
83 unsigned long anon_cost;
84 unsigned long file_cost;
85
b91ac374
JW
86 /* Can active pages be deactivated as part of reclaim? */
87#define DEACTIVATE_ANON 1
88#define DEACTIVATE_FILE 2
89 unsigned int may_deactivate:2;
90 unsigned int force_deactivate:1;
91 unsigned int skipped_deactivate:1;
92
1276ad68 93 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
94 unsigned int may_writepage:1;
95
96 /* Can mapped pages be reclaimed? */
97 unsigned int may_unmap:1;
98
99 /* Can pages be swapped as part of reclaim? */
100 unsigned int may_swap:1;
101
d6622f63
YX
102 /*
103 * Cgroups are not reclaimed below their configured memory.low,
104 * unless we threaten to OOM. If any cgroups are skipped due to
105 * memory.low and nothing was reclaimed, go back for memory.low.
106 */
107 unsigned int memcg_low_reclaim:1;
108 unsigned int memcg_low_skipped:1;
241994ed 109
ee814fe2
JW
110 unsigned int hibernation_mode:1;
111
112 /* One of the zones is ready for compaction */
113 unsigned int compaction_ready:1;
114
b91ac374
JW
115 /* There is easily reclaimable cold cache in the current node */
116 unsigned int cache_trim_mode:1;
117
53138cea
JW
118 /* The file pages on the current node are dangerously low */
119 unsigned int file_is_tiny:1;
120
bb451fdf
GT
121 /* Allocation order */
122 s8 order;
123
124 /* Scan (total_size >> priority) pages at once */
125 s8 priority;
126
127 /* The highest zone to isolate pages for reclaim from */
128 s8 reclaim_idx;
129
130 /* This context's GFP mask */
131 gfp_t gfp_mask;
132
ee814fe2
JW
133 /* Incremented by the number of inactive pages that were scanned */
134 unsigned long nr_scanned;
135
136 /* Number of pages freed so far during a call to shrink_zones() */
137 unsigned long nr_reclaimed;
d108c772
AR
138
139 struct {
140 unsigned int dirty;
141 unsigned int unqueued_dirty;
142 unsigned int congested;
143 unsigned int writeback;
144 unsigned int immediate;
145 unsigned int file_taken;
146 unsigned int taken;
147 } nr;
e5ca8071
YS
148
149 /* for recording the reclaimed slab by now */
150 struct reclaim_state reclaim_state;
1da177e4
LT
151};
152
1da177e4
LT
153#ifdef ARCH_HAS_PREFETCHW
154#define prefetchw_prev_lru_page(_page, _base, _field) \
155 do { \
156 if ((_page)->lru.prev != _base) { \
157 struct page *prev; \
158 \
159 prev = lru_to_page(&(_page->lru)); \
160 prefetchw(&prev->_field); \
161 } \
162 } while (0)
163#else
164#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165#endif
166
167/*
c843966c 168 * From 0 .. 200. Higher means more swappy.
1da177e4
LT
169 */
170int vm_swappiness = 60;
1da177e4 171
0a432dcb
YS
172static void set_task_reclaim_state(struct task_struct *task,
173 struct reclaim_state *rs)
174{
175 /* Check for an overwrite */
176 WARN_ON_ONCE(rs && task->reclaim_state);
177
178 /* Check for the nulling of an already-nulled member */
179 WARN_ON_ONCE(!rs && !task->reclaim_state);
180
181 task->reclaim_state = rs;
182}
183
1da177e4
LT
184static LIST_HEAD(shrinker_list);
185static DECLARE_RWSEM(shrinker_rwsem);
186
0a432dcb 187#ifdef CONFIG_MEMCG
7e010df5
KT
188/*
189 * We allow subsystems to populate their shrinker-related
190 * LRU lists before register_shrinker_prepared() is called
191 * for the shrinker, since we don't want to impose
192 * restrictions on their internal registration order.
193 * In this case shrink_slab_memcg() may find corresponding
194 * bit is set in the shrinkers map.
195 *
196 * This value is used by the function to detect registering
197 * shrinkers and to skip do_shrink_slab() calls for them.
198 */
199#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
200
b4c2b231
KT
201static DEFINE_IDR(shrinker_idr);
202static int shrinker_nr_max;
203
204static int prealloc_memcg_shrinker(struct shrinker *shrinker)
205{
206 int id, ret = -ENOMEM;
207
208 down_write(&shrinker_rwsem);
209 /* This may call shrinker, so it must use down_read_trylock() */
7e010df5 210 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
b4c2b231
KT
211 if (id < 0)
212 goto unlock;
213
0a4465d3
KT
214 if (id >= shrinker_nr_max) {
215 if (memcg_expand_shrinker_maps(id)) {
216 idr_remove(&shrinker_idr, id);
217 goto unlock;
218 }
219
b4c2b231 220 shrinker_nr_max = id + 1;
0a4465d3 221 }
b4c2b231
KT
222 shrinker->id = id;
223 ret = 0;
224unlock:
225 up_write(&shrinker_rwsem);
226 return ret;
227}
228
229static void unregister_memcg_shrinker(struct shrinker *shrinker)
230{
231 int id = shrinker->id;
232
233 BUG_ON(id < 0);
234
235 down_write(&shrinker_rwsem);
236 idr_remove(&shrinker_idr, id);
237 up_write(&shrinker_rwsem);
238}
b4c2b231 239
b5ead35e 240static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 241{
b5ead35e 242 return sc->target_mem_cgroup;
89b5fae5 243}
97c9341f
TH
244
245/**
b5ead35e 246 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
97c9341f
TH
247 * @sc: scan_control in question
248 *
249 * The normal page dirty throttling mechanism in balance_dirty_pages() is
250 * completely broken with the legacy memcg and direct stalling in
251 * shrink_page_list() is used for throttling instead, which lacks all the
252 * niceties such as fairness, adaptive pausing, bandwidth proportional
253 * allocation and configurability.
254 *
255 * This function tests whether the vmscan currently in progress can assume
256 * that the normal dirty throttling mechanism is operational.
257 */
b5ead35e 258static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f 259{
b5ead35e 260 if (!cgroup_reclaim(sc))
97c9341f
TH
261 return true;
262#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 263 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
264 return true;
265#endif
266 return false;
267}
91a45470 268#else
0a432dcb
YS
269static int prealloc_memcg_shrinker(struct shrinker *shrinker)
270{
271 return 0;
272}
273
274static void unregister_memcg_shrinker(struct shrinker *shrinker)
275{
276}
277
b5ead35e 278static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 279{
b5ead35e 280 return false;
89b5fae5 281}
97c9341f 282
b5ead35e 283static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f
TH
284{
285 return true;
286}
91a45470
KH
287#endif
288
5a1c84b4
MG
289/*
290 * This misses isolated pages which are not accounted for to save counters.
291 * As the data only determines if reclaim or compaction continues, it is
292 * not expected that isolated pages will be a dominating factor.
293 */
294unsigned long zone_reclaimable_pages(struct zone *zone)
295{
296 unsigned long nr;
297
298 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
299 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
300 if (get_nr_swap_pages() > 0)
301 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
302 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
303
304 return nr;
305}
306
fd538803
MH
307/**
308 * lruvec_lru_size - Returns the number of pages on the given LRU list.
309 * @lruvec: lru vector
310 * @lru: lru to use
311 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
312 */
313unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 314{
de3b0150 315 unsigned long size = 0;
fd538803
MH
316 int zid;
317
de3b0150 318 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
fd538803 319 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
c9f299d9 320
fd538803
MH
321 if (!managed_zone(zone))
322 continue;
323
324 if (!mem_cgroup_disabled())
de3b0150 325 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
fd538803 326 else
de3b0150 327 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
fd538803 328 }
de3b0150 329 return size;
b4536f0c
MH
330}
331
1da177e4 332/*
1d3d4437 333 * Add a shrinker callback to be called from the vm.
1da177e4 334 */
8e04944f 335int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 336{
b9726c26 337 unsigned int size = sizeof(*shrinker->nr_deferred);
1d3d4437 338
1d3d4437
GC
339 if (shrinker->flags & SHRINKER_NUMA_AWARE)
340 size *= nr_node_ids;
341
342 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
343 if (!shrinker->nr_deferred)
344 return -ENOMEM;
b4c2b231
KT
345
346 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
347 if (prealloc_memcg_shrinker(shrinker))
348 goto free_deferred;
349 }
350
8e04944f 351 return 0;
b4c2b231
KT
352
353free_deferred:
354 kfree(shrinker->nr_deferred);
355 shrinker->nr_deferred = NULL;
356 return -ENOMEM;
8e04944f
TH
357}
358
359void free_prealloced_shrinker(struct shrinker *shrinker)
360{
b4c2b231
KT
361 if (!shrinker->nr_deferred)
362 return;
363
364 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
365 unregister_memcg_shrinker(shrinker);
366
8e04944f
TH
367 kfree(shrinker->nr_deferred);
368 shrinker->nr_deferred = NULL;
369}
1d3d4437 370
8e04944f
TH
371void register_shrinker_prepared(struct shrinker *shrinker)
372{
8e1f936b
RR
373 down_write(&shrinker_rwsem);
374 list_add_tail(&shrinker->list, &shrinker_list);
42a9a53b 375#ifdef CONFIG_MEMCG
8df4a44c
KT
376 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
377 idr_replace(&shrinker_idr, shrinker, shrinker->id);
7e010df5 378#endif
8e1f936b 379 up_write(&shrinker_rwsem);
8e04944f
TH
380}
381
382int register_shrinker(struct shrinker *shrinker)
383{
384 int err = prealloc_shrinker(shrinker);
385
386 if (err)
387 return err;
388 register_shrinker_prepared(shrinker);
1d3d4437 389 return 0;
1da177e4 390}
8e1f936b 391EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
392
393/*
394 * Remove one
395 */
8e1f936b 396void unregister_shrinker(struct shrinker *shrinker)
1da177e4 397{
bb422a73
TH
398 if (!shrinker->nr_deferred)
399 return;
b4c2b231
KT
400 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
401 unregister_memcg_shrinker(shrinker);
1da177e4
LT
402 down_write(&shrinker_rwsem);
403 list_del(&shrinker->list);
404 up_write(&shrinker_rwsem);
ae393321 405 kfree(shrinker->nr_deferred);
bb422a73 406 shrinker->nr_deferred = NULL;
1da177e4 407}
8e1f936b 408EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
409
410#define SHRINK_BATCH 128
1d3d4437 411
cb731d6c 412static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 413 struct shrinker *shrinker, int priority)
1d3d4437
GC
414{
415 unsigned long freed = 0;
416 unsigned long long delta;
417 long total_scan;
d5bc5fd3 418 long freeable;
1d3d4437
GC
419 long nr;
420 long new_nr;
421 int nid = shrinkctl->nid;
422 long batch_size = shrinker->batch ? shrinker->batch
423 : SHRINK_BATCH;
5f33a080 424 long scanned = 0, next_deferred;
1d3d4437 425
ac7fb3ad
KT
426 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
427 nid = 0;
428
d5bc5fd3 429 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
430 if (freeable == 0 || freeable == SHRINK_EMPTY)
431 return freeable;
1d3d4437
GC
432
433 /*
434 * copy the current shrinker scan count into a local variable
435 * and zero it so that other concurrent shrinker invocations
436 * don't also do this scanning work.
437 */
438 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
439
440 total_scan = nr;
4b85afbd
JW
441 if (shrinker->seeks) {
442 delta = freeable >> priority;
443 delta *= 4;
444 do_div(delta, shrinker->seeks);
445 } else {
446 /*
447 * These objects don't require any IO to create. Trim
448 * them aggressively under memory pressure to keep
449 * them from causing refetches in the IO caches.
450 */
451 delta = freeable / 2;
452 }
172b06c3 453
1d3d4437
GC
454 total_scan += delta;
455 if (total_scan < 0) {
d75f773c 456 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
a0b02131 457 shrinker->scan_objects, total_scan);
d5bc5fd3 458 total_scan = freeable;
5f33a080
SL
459 next_deferred = nr;
460 } else
461 next_deferred = total_scan;
1d3d4437
GC
462
463 /*
464 * We need to avoid excessive windup on filesystem shrinkers
465 * due to large numbers of GFP_NOFS allocations causing the
466 * shrinkers to return -1 all the time. This results in a large
467 * nr being built up so when a shrink that can do some work
468 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 469 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
470 * memory.
471 *
472 * Hence only allow the shrinker to scan the entire cache when
473 * a large delta change is calculated directly.
474 */
d5bc5fd3
VD
475 if (delta < freeable / 4)
476 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
477
478 /*
479 * Avoid risking looping forever due to too large nr value:
480 * never try to free more than twice the estimate number of
481 * freeable entries.
482 */
d5bc5fd3
VD
483 if (total_scan > freeable * 2)
484 total_scan = freeable * 2;
1d3d4437
GC
485
486 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 487 freeable, delta, total_scan, priority);
1d3d4437 488
0b1fb40a
VD
489 /*
490 * Normally, we should not scan less than batch_size objects in one
491 * pass to avoid too frequent shrinker calls, but if the slab has less
492 * than batch_size objects in total and we are really tight on memory,
493 * we will try to reclaim all available objects, otherwise we can end
494 * up failing allocations although there are plenty of reclaimable
495 * objects spread over several slabs with usage less than the
496 * batch_size.
497 *
498 * We detect the "tight on memory" situations by looking at the total
499 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 500 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
501 * scanning at high prio and therefore should try to reclaim as much as
502 * possible.
503 */
504 while (total_scan >= batch_size ||
d5bc5fd3 505 total_scan >= freeable) {
a0b02131 506 unsigned long ret;
0b1fb40a 507 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 508
0b1fb40a 509 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 510 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
511 ret = shrinker->scan_objects(shrinker, shrinkctl);
512 if (ret == SHRINK_STOP)
513 break;
514 freed += ret;
1d3d4437 515
d460acb5
CW
516 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
517 total_scan -= shrinkctl->nr_scanned;
518 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
519
520 cond_resched();
521 }
522
5f33a080
SL
523 if (next_deferred >= scanned)
524 next_deferred -= scanned;
525 else
526 next_deferred = 0;
1d3d4437
GC
527 /*
528 * move the unused scan count back into the shrinker in a
529 * manner that handles concurrent updates. If we exhausted the
530 * scan, there is no need to do an update.
531 */
5f33a080
SL
532 if (next_deferred > 0)
533 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
534 &shrinker->nr_deferred[nid]);
535 else
536 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
537
df9024a8 538 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 539 return freed;
1495f230
YH
540}
541
0a432dcb 542#ifdef CONFIG_MEMCG
b0dedc49
KT
543static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
544 struct mem_cgroup *memcg, int priority)
545{
546 struct memcg_shrinker_map *map;
b8e57efa
KT
547 unsigned long ret, freed = 0;
548 int i;
b0dedc49 549
0a432dcb 550 if (!mem_cgroup_online(memcg))
b0dedc49
KT
551 return 0;
552
553 if (!down_read_trylock(&shrinker_rwsem))
554 return 0;
555
556 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
557 true);
558 if (unlikely(!map))
559 goto unlock;
560
561 for_each_set_bit(i, map->map, shrinker_nr_max) {
562 struct shrink_control sc = {
563 .gfp_mask = gfp_mask,
564 .nid = nid,
565 .memcg = memcg,
566 };
567 struct shrinker *shrinker;
568
569 shrinker = idr_find(&shrinker_idr, i);
7e010df5
KT
570 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
571 if (!shrinker)
572 clear_bit(i, map->map);
b0dedc49
KT
573 continue;
574 }
575
0a432dcb
YS
576 /* Call non-slab shrinkers even though kmem is disabled */
577 if (!memcg_kmem_enabled() &&
578 !(shrinker->flags & SHRINKER_NONSLAB))
579 continue;
580
b0dedc49 581 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6
KT
582 if (ret == SHRINK_EMPTY) {
583 clear_bit(i, map->map);
584 /*
585 * After the shrinker reported that it had no objects to
586 * free, but before we cleared the corresponding bit in
587 * the memcg shrinker map, a new object might have been
588 * added. To make sure, we have the bit set in this
589 * case, we invoke the shrinker one more time and reset
590 * the bit if it reports that it is not empty anymore.
591 * The memory barrier here pairs with the barrier in
592 * memcg_set_shrinker_bit():
593 *
594 * list_lru_add() shrink_slab_memcg()
595 * list_add_tail() clear_bit()
596 * <MB> <MB>
597 * set_bit() do_shrink_slab()
598 */
599 smp_mb__after_atomic();
600 ret = do_shrink_slab(&sc, shrinker, priority);
601 if (ret == SHRINK_EMPTY)
602 ret = 0;
603 else
604 memcg_set_shrinker_bit(memcg, nid, i);
605 }
b0dedc49
KT
606 freed += ret;
607
608 if (rwsem_is_contended(&shrinker_rwsem)) {
609 freed = freed ? : 1;
610 break;
611 }
612 }
613unlock:
614 up_read(&shrinker_rwsem);
615 return freed;
616}
0a432dcb 617#else /* CONFIG_MEMCG */
b0dedc49
KT
618static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
619 struct mem_cgroup *memcg, int priority)
620{
621 return 0;
622}
0a432dcb 623#endif /* CONFIG_MEMCG */
b0dedc49 624
6b4f7799 625/**
cb731d6c 626 * shrink_slab - shrink slab caches
6b4f7799
JW
627 * @gfp_mask: allocation context
628 * @nid: node whose slab caches to target
cb731d6c 629 * @memcg: memory cgroup whose slab caches to target
9092c71b 630 * @priority: the reclaim priority
1da177e4 631 *
6b4f7799 632 * Call the shrink functions to age shrinkable caches.
1da177e4 633 *
6b4f7799
JW
634 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
635 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 636 *
aeed1d32
VD
637 * @memcg specifies the memory cgroup to target. Unaware shrinkers
638 * are called only if it is the root cgroup.
cb731d6c 639 *
9092c71b
JB
640 * @priority is sc->priority, we take the number of objects and >> by priority
641 * in order to get the scan target.
b15e0905 642 *
6b4f7799 643 * Returns the number of reclaimed slab objects.
1da177e4 644 */
cb731d6c
VD
645static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
646 struct mem_cgroup *memcg,
9092c71b 647 int priority)
1da177e4 648{
b8e57efa 649 unsigned long ret, freed = 0;
1da177e4
LT
650 struct shrinker *shrinker;
651
fa1e512f
YS
652 /*
653 * The root memcg might be allocated even though memcg is disabled
654 * via "cgroup_disable=memory" boot parameter. This could make
655 * mem_cgroup_is_root() return false, then just run memcg slab
656 * shrink, but skip global shrink. This may result in premature
657 * oom.
658 */
659 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 660 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 661
e830c63a 662 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 663 goto out;
1da177e4
LT
664
665 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
666 struct shrink_control sc = {
667 .gfp_mask = gfp_mask,
668 .nid = nid,
cb731d6c 669 .memcg = memcg,
6b4f7799 670 };
ec97097b 671
9b996468
KT
672 ret = do_shrink_slab(&sc, shrinker, priority);
673 if (ret == SHRINK_EMPTY)
674 ret = 0;
675 freed += ret;
e496612c
MK
676 /*
677 * Bail out if someone want to register a new shrinker to
55b65a57 678 * prevent the registration from being stalled for long periods
e496612c
MK
679 * by parallel ongoing shrinking.
680 */
681 if (rwsem_is_contended(&shrinker_rwsem)) {
682 freed = freed ? : 1;
683 break;
684 }
1da177e4 685 }
6b4f7799 686
1da177e4 687 up_read(&shrinker_rwsem);
f06590bd
MK
688out:
689 cond_resched();
24f7c6b9 690 return freed;
1da177e4
LT
691}
692
cb731d6c
VD
693void drop_slab_node(int nid)
694{
695 unsigned long freed;
696
697 do {
698 struct mem_cgroup *memcg = NULL;
699
069c411d
CZ
700 if (fatal_signal_pending(current))
701 return;
702
cb731d6c 703 freed = 0;
aeed1d32 704 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 705 do {
9092c71b 706 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c
VD
707 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
708 } while (freed > 10);
709}
710
711void drop_slab(void)
712{
713 int nid;
714
715 for_each_online_node(nid)
716 drop_slab_node(nid);
717}
718
1da177e4
LT
719static inline int is_page_cache_freeable(struct page *page)
720{
ceddc3a5
JW
721 /*
722 * A freeable page cache page is referenced only by the caller
67891fff
MW
723 * that isolated the page, the page cache and optional buffer
724 * heads at page->private.
ceddc3a5 725 */
3efe62e4 726 int page_cache_pins = thp_nr_pages(page);
67891fff 727 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
1da177e4
LT
728}
729
cb16556d 730static int may_write_to_inode(struct inode *inode)
1da177e4 731{
930d9152 732 if (current->flags & PF_SWAPWRITE)
1da177e4 733 return 1;
703c2708 734 if (!inode_write_congested(inode))
1da177e4 735 return 1;
703c2708 736 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
737 return 1;
738 return 0;
739}
740
741/*
742 * We detected a synchronous write error writing a page out. Probably
743 * -ENOSPC. We need to propagate that into the address_space for a subsequent
744 * fsync(), msync() or close().
745 *
746 * The tricky part is that after writepage we cannot touch the mapping: nothing
747 * prevents it from being freed up. But we have a ref on the page and once
748 * that page is locked, the mapping is pinned.
749 *
750 * We're allowed to run sleeping lock_page() here because we know the caller has
751 * __GFP_FS.
752 */
753static void handle_write_error(struct address_space *mapping,
754 struct page *page, int error)
755{
7eaceacc 756 lock_page(page);
3e9f45bd
GC
757 if (page_mapping(page) == mapping)
758 mapping_set_error(mapping, error);
1da177e4
LT
759 unlock_page(page);
760}
761
04e62a29
CL
762/* possible outcome of pageout() */
763typedef enum {
764 /* failed to write page out, page is locked */
765 PAGE_KEEP,
766 /* move page to the active list, page is locked */
767 PAGE_ACTIVATE,
768 /* page has been sent to the disk successfully, page is unlocked */
769 PAGE_SUCCESS,
770 /* page is clean and locked */
771 PAGE_CLEAN,
772} pageout_t;
773
1da177e4 774/*
1742f19f
AM
775 * pageout is called by shrink_page_list() for each dirty page.
776 * Calls ->writepage().
1da177e4 777 */
cb16556d 778static pageout_t pageout(struct page *page, struct address_space *mapping)
1da177e4
LT
779{
780 /*
781 * If the page is dirty, only perform writeback if that write
782 * will be non-blocking. To prevent this allocation from being
783 * stalled by pagecache activity. But note that there may be
784 * stalls if we need to run get_block(). We could test
785 * PagePrivate for that.
786 *
8174202b 787 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
788 * this page's queue, we can perform writeback even if that
789 * will block.
790 *
791 * If the page is swapcache, write it back even if that would
792 * block, for some throttling. This happens by accident, because
793 * swap_backing_dev_info is bust: it doesn't reflect the
794 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
795 */
796 if (!is_page_cache_freeable(page))
797 return PAGE_KEEP;
798 if (!mapping) {
799 /*
800 * Some data journaling orphaned pages can have
801 * page->mapping == NULL while being dirty with clean buffers.
802 */
266cf658 803 if (page_has_private(page)) {
1da177e4
LT
804 if (try_to_free_buffers(page)) {
805 ClearPageDirty(page);
b1de0d13 806 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
807 return PAGE_CLEAN;
808 }
809 }
810 return PAGE_KEEP;
811 }
812 if (mapping->a_ops->writepage == NULL)
813 return PAGE_ACTIVATE;
cb16556d 814 if (!may_write_to_inode(mapping->host))
1da177e4
LT
815 return PAGE_KEEP;
816
817 if (clear_page_dirty_for_io(page)) {
818 int res;
819 struct writeback_control wbc = {
820 .sync_mode = WB_SYNC_NONE,
821 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
822 .range_start = 0,
823 .range_end = LLONG_MAX,
1da177e4
LT
824 .for_reclaim = 1,
825 };
826
827 SetPageReclaim(page);
828 res = mapping->a_ops->writepage(page, &wbc);
829 if (res < 0)
830 handle_write_error(mapping, page, res);
994fc28c 831 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
832 ClearPageReclaim(page);
833 return PAGE_ACTIVATE;
834 }
c661b078 835
1da177e4
LT
836 if (!PageWriteback(page)) {
837 /* synchronous write or broken a_ops? */
838 ClearPageReclaim(page);
839 }
3aa23851 840 trace_mm_vmscan_writepage(page);
c4a25635 841 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
842 return PAGE_SUCCESS;
843 }
844
845 return PAGE_CLEAN;
846}
847
a649fd92 848/*
e286781d
NP
849 * Same as remove_mapping, but if the page is removed from the mapping, it
850 * gets returned with a refcount of 0.
a649fd92 851 */
a528910e 852static int __remove_mapping(struct address_space *mapping, struct page *page,
b910718a 853 bool reclaimed, struct mem_cgroup *target_memcg)
49d2e9cc 854{
c4843a75 855 unsigned long flags;
bd4c82c2 856 int refcount;
aae466b0 857 void *shadow = NULL;
c4843a75 858
28e4d965
NP
859 BUG_ON(!PageLocked(page));
860 BUG_ON(mapping != page_mapping(page));
49d2e9cc 861
b93b0163 862 xa_lock_irqsave(&mapping->i_pages, flags);
49d2e9cc 863 /*
0fd0e6b0
NP
864 * The non racy check for a busy page.
865 *
866 * Must be careful with the order of the tests. When someone has
867 * a ref to the page, it may be possible that they dirty it then
868 * drop the reference. So if PageDirty is tested before page_count
869 * here, then the following race may occur:
870 *
871 * get_user_pages(&page);
872 * [user mapping goes away]
873 * write_to(page);
874 * !PageDirty(page) [good]
875 * SetPageDirty(page);
876 * put_page(page);
877 * !page_count(page) [good, discard it]
878 *
879 * [oops, our write_to data is lost]
880 *
881 * Reversing the order of the tests ensures such a situation cannot
882 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 883 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
884 *
885 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 886 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 887 */
906d278d 888 refcount = 1 + compound_nr(page);
bd4c82c2 889 if (!page_ref_freeze(page, refcount))
49d2e9cc 890 goto cannot_free;
1c4c3b99 891 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
e286781d 892 if (unlikely(PageDirty(page))) {
bd4c82c2 893 page_ref_unfreeze(page, refcount);
49d2e9cc 894 goto cannot_free;
e286781d 895 }
49d2e9cc
CL
896
897 if (PageSwapCache(page)) {
898 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 899 mem_cgroup_swapout(page, swap);
aae466b0
JK
900 if (reclaimed && !mapping_exiting(mapping))
901 shadow = workingset_eviction(page, target_memcg);
902 __delete_from_swap_cache(page, swap, shadow);
b93b0163 903 xa_unlock_irqrestore(&mapping->i_pages, flags);
75f6d6d2 904 put_swap_page(page, swap);
e286781d 905 } else {
6072d13c
LT
906 void (*freepage)(struct page *);
907
908 freepage = mapping->a_ops->freepage;
a528910e
JW
909 /*
910 * Remember a shadow entry for reclaimed file cache in
911 * order to detect refaults, thus thrashing, later on.
912 *
913 * But don't store shadows in an address space that is
238c3046 914 * already exiting. This is not just an optimization,
a528910e
JW
915 * inode reclaim needs to empty out the radix tree or
916 * the nodes are lost. Don't plant shadows behind its
917 * back.
f9fe48be
RZ
918 *
919 * We also don't store shadows for DAX mappings because the
920 * only page cache pages found in these are zero pages
921 * covering holes, and because we don't want to mix DAX
922 * exceptional entries and shadow exceptional entries in the
b93b0163 923 * same address_space.
a528910e 924 */
9de4f22a 925 if (reclaimed && page_is_file_lru(page) &&
f9fe48be 926 !mapping_exiting(mapping) && !dax_mapping(mapping))
b910718a 927 shadow = workingset_eviction(page, target_memcg);
62cccb8c 928 __delete_from_page_cache(page, shadow);
b93b0163 929 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c
LT
930
931 if (freepage != NULL)
932 freepage(page);
49d2e9cc
CL
933 }
934
49d2e9cc
CL
935 return 1;
936
937cannot_free:
b93b0163 938 xa_unlock_irqrestore(&mapping->i_pages, flags);
49d2e9cc
CL
939 return 0;
940}
941
e286781d
NP
942/*
943 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
944 * someone else has a ref on the page, abort and return 0. If it was
945 * successfully detached, return 1. Assumes the caller has a single ref on
946 * this page.
947 */
948int remove_mapping(struct address_space *mapping, struct page *page)
949{
b910718a 950 if (__remove_mapping(mapping, page, false, NULL)) {
e286781d
NP
951 /*
952 * Unfreezing the refcount with 1 rather than 2 effectively
953 * drops the pagecache ref for us without requiring another
954 * atomic operation.
955 */
fe896d18 956 page_ref_unfreeze(page, 1);
e286781d
NP
957 return 1;
958 }
959 return 0;
960}
961
894bc310
LS
962/**
963 * putback_lru_page - put previously isolated page onto appropriate LRU list
964 * @page: page to be put back to appropriate lru list
965 *
966 * Add previously isolated @page to appropriate LRU list.
967 * Page may still be unevictable for other reasons.
968 *
969 * lru_lock must not be held, interrupts must be enabled.
970 */
894bc310
LS
971void putback_lru_page(struct page *page)
972{
9c4e6b1a 973 lru_cache_add(page);
894bc310
LS
974 put_page(page); /* drop ref from isolate */
975}
976
dfc8d636
JW
977enum page_references {
978 PAGEREF_RECLAIM,
979 PAGEREF_RECLAIM_CLEAN,
64574746 980 PAGEREF_KEEP,
dfc8d636
JW
981 PAGEREF_ACTIVATE,
982};
983
984static enum page_references page_check_references(struct page *page,
985 struct scan_control *sc)
986{
64574746 987 int referenced_ptes, referenced_page;
dfc8d636 988 unsigned long vm_flags;
dfc8d636 989
c3ac9a8a
JW
990 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
991 &vm_flags);
64574746 992 referenced_page = TestClearPageReferenced(page);
dfc8d636 993
dfc8d636
JW
994 /*
995 * Mlock lost the isolation race with us. Let try_to_unmap()
996 * move the page to the unevictable list.
997 */
998 if (vm_flags & VM_LOCKED)
999 return PAGEREF_RECLAIM;
1000
64574746 1001 if (referenced_ptes) {
64574746
JW
1002 /*
1003 * All mapped pages start out with page table
1004 * references from the instantiating fault, so we need
1005 * to look twice if a mapped file page is used more
1006 * than once.
1007 *
1008 * Mark it and spare it for another trip around the
1009 * inactive list. Another page table reference will
1010 * lead to its activation.
1011 *
1012 * Note: the mark is set for activated pages as well
1013 * so that recently deactivated but used pages are
1014 * quickly recovered.
1015 */
1016 SetPageReferenced(page);
1017
34dbc67a 1018 if (referenced_page || referenced_ptes > 1)
64574746
JW
1019 return PAGEREF_ACTIVATE;
1020
c909e993
KK
1021 /*
1022 * Activate file-backed executable pages after first usage.
1023 */
b518154e 1024 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
c909e993
KK
1025 return PAGEREF_ACTIVATE;
1026
64574746
JW
1027 return PAGEREF_KEEP;
1028 }
dfc8d636
JW
1029
1030 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 1031 if (referenced_page && !PageSwapBacked(page))
64574746
JW
1032 return PAGEREF_RECLAIM_CLEAN;
1033
1034 return PAGEREF_RECLAIM;
dfc8d636
JW
1035}
1036
e2be15f6
MG
1037/* Check if a page is dirty or under writeback */
1038static void page_check_dirty_writeback(struct page *page,
1039 bool *dirty, bool *writeback)
1040{
b4597226
MG
1041 struct address_space *mapping;
1042
e2be15f6
MG
1043 /*
1044 * Anonymous pages are not handled by flushers and must be written
1045 * from reclaim context. Do not stall reclaim based on them
1046 */
9de4f22a 1047 if (!page_is_file_lru(page) ||
802a3a92 1048 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
1049 *dirty = false;
1050 *writeback = false;
1051 return;
1052 }
1053
1054 /* By default assume that the page flags are accurate */
1055 *dirty = PageDirty(page);
1056 *writeback = PageWriteback(page);
b4597226
MG
1057
1058 /* Verify dirty/writeback state if the filesystem supports it */
1059 if (!page_has_private(page))
1060 return;
1061
1062 mapping = page_mapping(page);
1063 if (mapping && mapping->a_ops->is_dirty_writeback)
1064 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
1065}
1066
1da177e4 1067/*
1742f19f 1068 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1069 */
730ec8c0
MS
1070static unsigned int shrink_page_list(struct list_head *page_list,
1071 struct pglist_data *pgdat,
1072 struct scan_control *sc,
730ec8c0
MS
1073 struct reclaim_stat *stat,
1074 bool ignore_references)
1da177e4
LT
1075{
1076 LIST_HEAD(ret_pages);
abe4c3b5 1077 LIST_HEAD(free_pages);
730ec8c0
MS
1078 unsigned int nr_reclaimed = 0;
1079 unsigned int pgactivate = 0;
1da177e4 1080
060f005f 1081 memset(stat, 0, sizeof(*stat));
1da177e4
LT
1082 cond_resched();
1083
1da177e4
LT
1084 while (!list_empty(page_list)) {
1085 struct address_space *mapping;
1086 struct page *page;
8940b34a 1087 enum page_references references = PAGEREF_RECLAIM;
4b793062 1088 bool dirty, writeback, may_enter_fs;
98879b3b 1089 unsigned int nr_pages;
1da177e4
LT
1090
1091 cond_resched();
1092
1093 page = lru_to_page(page_list);
1094 list_del(&page->lru);
1095
529ae9aa 1096 if (!trylock_page(page))
1da177e4
LT
1097 goto keep;
1098
309381fe 1099 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4 1100
d8c6546b 1101 nr_pages = compound_nr(page);
98879b3b
YS
1102
1103 /* Account the number of base pages even though THP */
1104 sc->nr_scanned += nr_pages;
80e43426 1105
39b5f29a 1106 if (unlikely(!page_evictable(page)))
ad6b6704 1107 goto activate_locked;
894bc310 1108
a6dc60f8 1109 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1110 goto keep_locked;
1111
c661b078
AW
1112 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1113 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1114
e2be15f6 1115 /*
894befec 1116 * The number of dirty pages determines if a node is marked
e2be15f6
MG
1117 * reclaim_congested which affects wait_iff_congested. kswapd
1118 * will stall and start writing pages if the tail of the LRU
1119 * is all dirty unqueued pages.
1120 */
1121 page_check_dirty_writeback(page, &dirty, &writeback);
1122 if (dirty || writeback)
060f005f 1123 stat->nr_dirty++;
e2be15f6
MG
1124
1125 if (dirty && !writeback)
060f005f 1126 stat->nr_unqueued_dirty++;
e2be15f6 1127
d04e8acd
MG
1128 /*
1129 * Treat this page as congested if the underlying BDI is or if
1130 * pages are cycling through the LRU so quickly that the
1131 * pages marked for immediate reclaim are making it to the
1132 * end of the LRU a second time.
1133 */
e2be15f6 1134 mapping = page_mapping(page);
1da58ee2 1135 if (((dirty || writeback) && mapping &&
703c2708 1136 inode_write_congested(mapping->host)) ||
d04e8acd 1137 (writeback && PageReclaim(page)))
060f005f 1138 stat->nr_congested++;
e2be15f6 1139
283aba9f
MG
1140 /*
1141 * If a page at the tail of the LRU is under writeback, there
1142 * are three cases to consider.
1143 *
1144 * 1) If reclaim is encountering an excessive number of pages
1145 * under writeback and this page is both under writeback and
1146 * PageReclaim then it indicates that pages are being queued
1147 * for IO but are being recycled through the LRU before the
1148 * IO can complete. Waiting on the page itself risks an
1149 * indefinite stall if it is impossible to writeback the
1150 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1151 * note that the LRU is being scanned too quickly and the
1152 * caller can stall after page list has been processed.
283aba9f 1153 *
97c9341f 1154 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1155 * not marked for immediate reclaim, or the caller does not
1156 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1157 * not to fs). In this case mark the page for immediate
97c9341f 1158 * reclaim and continue scanning.
283aba9f 1159 *
ecf5fc6e
MH
1160 * Require may_enter_fs because we would wait on fs, which
1161 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1162 * enter reclaim, and deadlock if it waits on a page for
1163 * which it is needed to do the write (loop masks off
1164 * __GFP_IO|__GFP_FS for this reason); but more thought
1165 * would probably show more reasons.
1166 *
7fadc820 1167 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1168 * PageReclaim. memcg does not have any dirty pages
1169 * throttling so we could easily OOM just because too many
1170 * pages are in writeback and there is nothing else to
1171 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1172 *
1173 * In cases 1) and 2) we activate the pages to get them out of
1174 * the way while we continue scanning for clean pages on the
1175 * inactive list and refilling from the active list. The
1176 * observation here is that waiting for disk writes is more
1177 * expensive than potentially causing reloads down the line.
1178 * Since they're marked for immediate reclaim, they won't put
1179 * memory pressure on the cache working set any longer than it
1180 * takes to write them to disk.
283aba9f 1181 */
c661b078 1182 if (PageWriteback(page)) {
283aba9f
MG
1183 /* Case 1 above */
1184 if (current_is_kswapd() &&
1185 PageReclaim(page) &&
599d0c95 1186 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
060f005f 1187 stat->nr_immediate++;
c55e8d03 1188 goto activate_locked;
283aba9f
MG
1189
1190 /* Case 2 above */
b5ead35e 1191 } else if (writeback_throttling_sane(sc) ||
ecf5fc6e 1192 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1193 /*
1194 * This is slightly racy - end_page_writeback()
1195 * might have just cleared PageReclaim, then
1196 * setting PageReclaim here end up interpreted
1197 * as PageReadahead - but that does not matter
1198 * enough to care. What we do want is for this
1199 * page to have PageReclaim set next time memcg
1200 * reclaim reaches the tests above, so it will
1201 * then wait_on_page_writeback() to avoid OOM;
1202 * and it's also appropriate in global reclaim.
1203 */
1204 SetPageReclaim(page);
060f005f 1205 stat->nr_writeback++;
c55e8d03 1206 goto activate_locked;
283aba9f
MG
1207
1208 /* Case 3 above */
1209 } else {
7fadc820 1210 unlock_page(page);
283aba9f 1211 wait_on_page_writeback(page);
7fadc820
HD
1212 /* then go back and try same page again */
1213 list_add_tail(&page->lru, page_list);
1214 continue;
e62e384e 1215 }
c661b078 1216 }
1da177e4 1217
8940b34a 1218 if (!ignore_references)
02c6de8d
MK
1219 references = page_check_references(page, sc);
1220
dfc8d636
JW
1221 switch (references) {
1222 case PAGEREF_ACTIVATE:
1da177e4 1223 goto activate_locked;
64574746 1224 case PAGEREF_KEEP:
98879b3b 1225 stat->nr_ref_keep += nr_pages;
64574746 1226 goto keep_locked;
dfc8d636
JW
1227 case PAGEREF_RECLAIM:
1228 case PAGEREF_RECLAIM_CLEAN:
1229 ; /* try to reclaim the page below */
1230 }
1da177e4 1231
1da177e4
LT
1232 /*
1233 * Anonymous process memory has backing store?
1234 * Try to allocate it some swap space here.
802a3a92 1235 * Lazyfree page could be freed directly
1da177e4 1236 */
bd4c82c2
HY
1237 if (PageAnon(page) && PageSwapBacked(page)) {
1238 if (!PageSwapCache(page)) {
1239 if (!(sc->gfp_mask & __GFP_IO))
1240 goto keep_locked;
feb889fb
LT
1241 if (page_maybe_dma_pinned(page))
1242 goto keep_locked;
bd4c82c2
HY
1243 if (PageTransHuge(page)) {
1244 /* cannot split THP, skip it */
1245 if (!can_split_huge_page(page, NULL))
1246 goto activate_locked;
1247 /*
1248 * Split pages without a PMD map right
1249 * away. Chances are some or all of the
1250 * tail pages can be freed without IO.
1251 */
1252 if (!compound_mapcount(page) &&
1253 split_huge_page_to_list(page,
1254 page_list))
1255 goto activate_locked;
1256 }
1257 if (!add_to_swap(page)) {
1258 if (!PageTransHuge(page))
98879b3b 1259 goto activate_locked_split;
bd4c82c2
HY
1260 /* Fallback to swap normal pages */
1261 if (split_huge_page_to_list(page,
1262 page_list))
1263 goto activate_locked;
fe490cc0
HY
1264#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1265 count_vm_event(THP_SWPOUT_FALLBACK);
1266#endif
bd4c82c2 1267 if (!add_to_swap(page))
98879b3b 1268 goto activate_locked_split;
bd4c82c2 1269 }
0f074658 1270
4b793062 1271 may_enter_fs = true;
1da177e4 1272
bd4c82c2
HY
1273 /* Adding to swap updated mapping */
1274 mapping = page_mapping(page);
1275 }
7751b2da
KS
1276 } else if (unlikely(PageTransHuge(page))) {
1277 /* Split file THP */
1278 if (split_huge_page_to_list(page, page_list))
1279 goto keep_locked;
e2be15f6 1280 }
1da177e4 1281
98879b3b
YS
1282 /*
1283 * THP may get split above, need minus tail pages and update
1284 * nr_pages to avoid accounting tail pages twice.
1285 *
1286 * The tail pages that are added into swap cache successfully
1287 * reach here.
1288 */
1289 if ((nr_pages > 1) && !PageTransHuge(page)) {
1290 sc->nr_scanned -= (nr_pages - 1);
1291 nr_pages = 1;
1292 }
1293
1da177e4
LT
1294 /*
1295 * The page is mapped into the page tables of one or more
1296 * processes. Try to unmap it here.
1297 */
802a3a92 1298 if (page_mapped(page)) {
013339df 1299 enum ttu_flags flags = TTU_BATCH_FLUSH;
1f318a9b 1300 bool was_swapbacked = PageSwapBacked(page);
bd4c82c2
HY
1301
1302 if (unlikely(PageTransHuge(page)))
1303 flags |= TTU_SPLIT_HUGE_PMD;
1f318a9b 1304
bd4c82c2 1305 if (!try_to_unmap(page, flags)) {
98879b3b 1306 stat->nr_unmap_fail += nr_pages;
1f318a9b
JK
1307 if (!was_swapbacked && PageSwapBacked(page))
1308 stat->nr_lazyfree_fail += nr_pages;
1da177e4 1309 goto activate_locked;
1da177e4
LT
1310 }
1311 }
1312
1313 if (PageDirty(page)) {
ee72886d 1314 /*
4eda4823
JW
1315 * Only kswapd can writeback filesystem pages
1316 * to avoid risk of stack overflow. But avoid
1317 * injecting inefficient single-page IO into
1318 * flusher writeback as much as possible: only
1319 * write pages when we've encountered many
1320 * dirty pages, and when we've already scanned
1321 * the rest of the LRU for clean pages and see
1322 * the same dirty pages again (PageReclaim).
ee72886d 1323 */
9de4f22a 1324 if (page_is_file_lru(page) &&
4eda4823
JW
1325 (!current_is_kswapd() || !PageReclaim(page) ||
1326 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1327 /*
1328 * Immediately reclaim when written back.
1329 * Similar in principal to deactivate_page()
1330 * except we already have the page isolated
1331 * and know it's dirty
1332 */
c4a25635 1333 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1334 SetPageReclaim(page);
1335
c55e8d03 1336 goto activate_locked;
ee72886d
MG
1337 }
1338
dfc8d636 1339 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1340 goto keep_locked;
4dd4b920 1341 if (!may_enter_fs)
1da177e4 1342 goto keep_locked;
52a8363e 1343 if (!sc->may_writepage)
1da177e4
LT
1344 goto keep_locked;
1345
d950c947
MG
1346 /*
1347 * Page is dirty. Flush the TLB if a writable entry
1348 * potentially exists to avoid CPU writes after IO
1349 * starts and then write it out here.
1350 */
1351 try_to_unmap_flush_dirty();
cb16556d 1352 switch (pageout(page, mapping)) {
1da177e4
LT
1353 case PAGE_KEEP:
1354 goto keep_locked;
1355 case PAGE_ACTIVATE:
1356 goto activate_locked;
1357 case PAGE_SUCCESS:
6c357848 1358 stat->nr_pageout += thp_nr_pages(page);
96f8bf4f 1359
7d3579e8 1360 if (PageWriteback(page))
41ac1999 1361 goto keep;
7d3579e8 1362 if (PageDirty(page))
1da177e4 1363 goto keep;
7d3579e8 1364
1da177e4
LT
1365 /*
1366 * A synchronous write - probably a ramdisk. Go
1367 * ahead and try to reclaim the page.
1368 */
529ae9aa 1369 if (!trylock_page(page))
1da177e4
LT
1370 goto keep;
1371 if (PageDirty(page) || PageWriteback(page))
1372 goto keep_locked;
1373 mapping = page_mapping(page);
01359eb2 1374 fallthrough;
1da177e4
LT
1375 case PAGE_CLEAN:
1376 ; /* try to free the page below */
1377 }
1378 }
1379
1380 /*
1381 * If the page has buffers, try to free the buffer mappings
1382 * associated with this page. If we succeed we try to free
1383 * the page as well.
1384 *
1385 * We do this even if the page is PageDirty().
1386 * try_to_release_page() does not perform I/O, but it is
1387 * possible for a page to have PageDirty set, but it is actually
1388 * clean (all its buffers are clean). This happens if the
1389 * buffers were written out directly, with submit_bh(). ext3
894bc310 1390 * will do this, as well as the blockdev mapping.
1da177e4
LT
1391 * try_to_release_page() will discover that cleanness and will
1392 * drop the buffers and mark the page clean - it can be freed.
1393 *
1394 * Rarely, pages can have buffers and no ->mapping. These are
1395 * the pages which were not successfully invalidated in
d12b8951 1396 * truncate_cleanup_page(). We try to drop those buffers here
1da177e4
LT
1397 * and if that worked, and the page is no longer mapped into
1398 * process address space (page_count == 1) it can be freed.
1399 * Otherwise, leave the page on the LRU so it is swappable.
1400 */
266cf658 1401 if (page_has_private(page)) {
1da177e4
LT
1402 if (!try_to_release_page(page, sc->gfp_mask))
1403 goto activate_locked;
e286781d
NP
1404 if (!mapping && page_count(page) == 1) {
1405 unlock_page(page);
1406 if (put_page_testzero(page))
1407 goto free_it;
1408 else {
1409 /*
1410 * rare race with speculative reference.
1411 * the speculative reference will free
1412 * this page shortly, so we may
1413 * increment nr_reclaimed here (and
1414 * leave it off the LRU).
1415 */
1416 nr_reclaimed++;
1417 continue;
1418 }
1419 }
1da177e4
LT
1420 }
1421
802a3a92
SL
1422 if (PageAnon(page) && !PageSwapBacked(page)) {
1423 /* follow __remove_mapping for reference */
1424 if (!page_ref_freeze(page, 1))
1425 goto keep_locked;
1426 if (PageDirty(page)) {
1427 page_ref_unfreeze(page, 1);
1428 goto keep_locked;
1429 }
1da177e4 1430
802a3a92 1431 count_vm_event(PGLAZYFREED);
2262185c 1432 count_memcg_page_event(page, PGLAZYFREED);
b910718a
JW
1433 } else if (!mapping || !__remove_mapping(mapping, page, true,
1434 sc->target_mem_cgroup))
802a3a92 1435 goto keep_locked;
9a1ea439
HD
1436
1437 unlock_page(page);
e286781d 1438free_it:
98879b3b
YS
1439 /*
1440 * THP may get swapped out in a whole, need account
1441 * all base pages.
1442 */
1443 nr_reclaimed += nr_pages;
abe4c3b5
MG
1444
1445 /*
1446 * Is there need to periodically free_page_list? It would
1447 * appear not as the counts should be low
1448 */
7ae88534 1449 if (unlikely(PageTransHuge(page)))
ff45fc3c 1450 destroy_compound_page(page);
7ae88534 1451 else
bd4c82c2 1452 list_add(&page->lru, &free_pages);
1da177e4
LT
1453 continue;
1454
98879b3b
YS
1455activate_locked_split:
1456 /*
1457 * The tail pages that are failed to add into swap cache
1458 * reach here. Fixup nr_scanned and nr_pages.
1459 */
1460 if (nr_pages > 1) {
1461 sc->nr_scanned -= (nr_pages - 1);
1462 nr_pages = 1;
1463 }
1da177e4 1464activate_locked:
68a22394 1465 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1466 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1467 PageMlocked(page)))
a2c43eed 1468 try_to_free_swap(page);
309381fe 1469 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704 1470 if (!PageMlocked(page)) {
9de4f22a 1471 int type = page_is_file_lru(page);
ad6b6704 1472 SetPageActive(page);
98879b3b 1473 stat->nr_activate[type] += nr_pages;
2262185c 1474 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1475 }
1da177e4
LT
1476keep_locked:
1477 unlock_page(page);
1478keep:
1479 list_add(&page->lru, &ret_pages);
309381fe 1480 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1481 }
abe4c3b5 1482
98879b3b
YS
1483 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1484
747db954 1485 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1486 try_to_unmap_flush();
2d4894b5 1487 free_unref_page_list(&free_pages);
abe4c3b5 1488
1da177e4 1489 list_splice(&ret_pages, page_list);
886cf190 1490 count_vm_events(PGACTIVATE, pgactivate);
060f005f 1491
05ff5137 1492 return nr_reclaimed;
1da177e4
LT
1493}
1494
730ec8c0 1495unsigned int reclaim_clean_pages_from_list(struct zone *zone,
02c6de8d
MK
1496 struct list_head *page_list)
1497{
1498 struct scan_control sc = {
1499 .gfp_mask = GFP_KERNEL,
1500 .priority = DEF_PRIORITY,
1501 .may_unmap = 1,
1502 };
1f318a9b 1503 struct reclaim_stat stat;
730ec8c0 1504 unsigned int nr_reclaimed;
02c6de8d
MK
1505 struct page *page, *next;
1506 LIST_HEAD(clean_pages);
1507
1508 list_for_each_entry_safe(page, next, page_list, lru) {
9de4f22a 1509 if (page_is_file_lru(page) && !PageDirty(page) &&
a58f2cef 1510 !__PageMovable(page) && !PageUnevictable(page)) {
02c6de8d
MK
1511 ClearPageActive(page);
1512 list_move(&page->lru, &clean_pages);
1513 }
1514 }
1515
1f318a9b 1516 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
013339df 1517 &stat, true);
02c6de8d 1518 list_splice(&clean_pages, page_list);
2da9f630
NP
1519 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1520 -(long)nr_reclaimed);
1f318a9b
JK
1521 /*
1522 * Since lazyfree pages are isolated from file LRU from the beginning,
1523 * they will rotate back to anonymous LRU in the end if it failed to
1524 * discard so isolated count will be mismatched.
1525 * Compensate the isolated count for both LRU lists.
1526 */
1527 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1528 stat.nr_lazyfree_fail);
1529 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2da9f630 1530 -(long)stat.nr_lazyfree_fail);
1f318a9b 1531 return nr_reclaimed;
02c6de8d
MK
1532}
1533
5ad333eb
AW
1534/*
1535 * Attempt to remove the specified page from its LRU. Only take this page
1536 * if it is of the appropriate PageActive status. Pages which are being
1537 * freed elsewhere are also ignored.
1538 *
1539 * page: page to consider
1540 * mode: one of the LRU isolation modes defined above
1541 *
c2135f7c 1542 * returns true on success, false on failure.
5ad333eb 1543 */
c2135f7c 1544bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
5ad333eb 1545{
5ad333eb
AW
1546 /* Only take pages on the LRU. */
1547 if (!PageLRU(page))
c2135f7c 1548 return false;
5ad333eb 1549
e46a2879
MK
1550 /* Compaction should not handle unevictable pages but CMA can do so */
1551 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
c2135f7c 1552 return false;
894bc310 1553
c8244935
MG
1554 /*
1555 * To minimise LRU disruption, the caller can indicate that it only
1556 * wants to isolate pages it will be able to operate on without
1557 * blocking - clean pages for the most part.
1558 *
c8244935
MG
1559 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1560 * that it is possible to migrate without blocking
1561 */
1276ad68 1562 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1563 /* All the caller can do on PageWriteback is block */
1564 if (PageWriteback(page))
c2135f7c 1565 return false;
c8244935
MG
1566
1567 if (PageDirty(page)) {
1568 struct address_space *mapping;
69d763fc 1569 bool migrate_dirty;
c8244935 1570
c8244935
MG
1571 /*
1572 * Only pages without mappings or that have a
1573 * ->migratepage callback are possible to migrate
69d763fc
MG
1574 * without blocking. However, we can be racing with
1575 * truncation so it's necessary to lock the page
1576 * to stabilise the mapping as truncation holds
1577 * the page lock until after the page is removed
1578 * from the page cache.
c8244935 1579 */
69d763fc 1580 if (!trylock_page(page))
c2135f7c 1581 return false;
69d763fc 1582
c8244935 1583 mapping = page_mapping(page);
145e1a71 1584 migrate_dirty = !mapping || mapping->a_ops->migratepage;
69d763fc
MG
1585 unlock_page(page);
1586 if (!migrate_dirty)
c2135f7c 1587 return false;
c8244935
MG
1588 }
1589 }
39deaf85 1590
f80c0673 1591 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
c2135f7c 1592 return false;
f80c0673 1593
c2135f7c 1594 return true;
5ad333eb
AW
1595}
1596
7ee36a14
MG
1597/*
1598 * Update LRU sizes after isolating pages. The LRU size updates must
55b65a57 1599 * be complete before mem_cgroup_update_lru_size due to a sanity check.
7ee36a14
MG
1600 */
1601static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1602 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1603{
7ee36a14
MG
1604 int zid;
1605
7ee36a14
MG
1606 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1607 if (!nr_zone_taken[zid])
1608 continue;
1609
a892cb6b 1610 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
b4536f0c
MH
1611 }
1612
7ee36a14
MG
1613}
1614
f4b7e272 1615/**
15b44736
HD
1616 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1617 *
1618 * lruvec->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1619 * shrink the lists perform better by taking out a batch of pages
1620 * and working on them outside the LRU lock.
1621 *
1622 * For pagecache intensive workloads, this function is the hottest
1623 * spot in the kernel (apart from copy_*_user functions).
1624 *
15b44736 1625 * Lru_lock must be held before calling this function.
1da177e4 1626 *
791b48b6 1627 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1628 * @lruvec: The LRU vector to pull pages from.
1da177e4 1629 * @dst: The temp list to put pages on to.
f626012d 1630 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1631 * @sc: The scan_control struct for this reclaim session
3cb99451 1632 * @lru: LRU list id for isolating
1da177e4
LT
1633 *
1634 * returns how many pages were moved onto *@dst.
1635 */
69e05944 1636static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1637 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1638 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 1639 enum lru_list lru)
1da177e4 1640{
75b00af7 1641 struct list_head *src = &lruvec->lists[lru];
69e05944 1642 unsigned long nr_taken = 0;
599d0c95 1643 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1644 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1645 unsigned long skipped = 0;
791b48b6 1646 unsigned long scan, total_scan, nr_pages;
b2e18757 1647 LIST_HEAD(pages_skipped);
a9e7c39f 1648 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1da177e4 1649
98879b3b 1650 total_scan = 0;
791b48b6 1651 scan = 0;
98879b3b 1652 while (scan < nr_to_scan && !list_empty(src)) {
5ad333eb 1653 struct page *page;
5ad333eb 1654
1da177e4
LT
1655 page = lru_to_page(src);
1656 prefetchw_prev_lru_page(page, src, flags);
1657
d8c6546b 1658 nr_pages = compound_nr(page);
98879b3b
YS
1659 total_scan += nr_pages;
1660
b2e18757
MG
1661 if (page_zonenum(page) > sc->reclaim_idx) {
1662 list_move(&page->lru, &pages_skipped);
98879b3b 1663 nr_skipped[page_zonenum(page)] += nr_pages;
b2e18757
MG
1664 continue;
1665 }
1666
791b48b6
MK
1667 /*
1668 * Do not count skipped pages because that makes the function
1669 * return with no isolated pages if the LRU mostly contains
1670 * ineligible pages. This causes the VM to not reclaim any
1671 * pages, triggering a premature OOM.
98879b3b
YS
1672 *
1673 * Account all tail pages of THP. This would not cause
1674 * premature OOM since __isolate_lru_page() returns -EBUSY
1675 * only when the page is being freed somewhere else.
791b48b6 1676 */
98879b3b 1677 scan += nr_pages;
c2135f7c
AS
1678 if (!__isolate_lru_page_prepare(page, mode)) {
1679 /* It is being freed elsewhere */
1680 list_move(&page->lru, src);
1681 continue;
1682 }
1683 /*
1684 * Be careful not to clear PageLRU until after we're
1685 * sure the page is not being freed elsewhere -- the
1686 * page release code relies on it.
1687 */
1688 if (unlikely(!get_page_unless_zero(page))) {
1689 list_move(&page->lru, src);
1690 continue;
1691 }
5ad333eb 1692
c2135f7c
AS
1693 if (!TestClearPageLRU(page)) {
1694 /* Another thread is already isolating this page */
1695 put_page(page);
5ad333eb 1696 list_move(&page->lru, src);
c2135f7c 1697 continue;
5ad333eb 1698 }
c2135f7c
AS
1699
1700 nr_taken += nr_pages;
1701 nr_zone_taken[page_zonenum(page)] += nr_pages;
1702 list_move(&page->lru, dst);
1da177e4
LT
1703 }
1704
b2e18757
MG
1705 /*
1706 * Splice any skipped pages to the start of the LRU list. Note that
1707 * this disrupts the LRU order when reclaiming for lower zones but
1708 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1709 * scanning would soon rescan the same pages to skip and put the
1710 * system at risk of premature OOM.
1711 */
7cc30fcf
MG
1712 if (!list_empty(&pages_skipped)) {
1713 int zid;
1714
3db65812 1715 list_splice(&pages_skipped, src);
7cc30fcf
MG
1716 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1717 if (!nr_skipped[zid])
1718 continue;
1719
1720 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1721 skipped += nr_skipped[zid];
7cc30fcf
MG
1722 }
1723 }
791b48b6 1724 *nr_scanned = total_scan;
1265e3a6 1725 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 1726 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 1727 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1728 return nr_taken;
1729}
1730
62695a84
NP
1731/**
1732 * isolate_lru_page - tries to isolate a page from its LRU list
1733 * @page: page to isolate from its LRU list
1734 *
1735 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1736 * vmstat statistic corresponding to whatever LRU list the page was on.
1737 *
1738 * Returns 0 if the page was removed from an LRU list.
1739 * Returns -EBUSY if the page was not on an LRU list.
1740 *
1741 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1742 * the active list, it will have PageActive set. If it was found on
1743 * the unevictable list, it will have the PageUnevictable bit set. That flag
1744 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1745 *
1746 * The vmstat statistic corresponding to the list on which the page was
1747 * found will be decremented.
1748 *
1749 * Restrictions:
a5d09bed 1750 *
62695a84 1751 * (1) Must be called with an elevated refcount on the page. This is a
01c4776b 1752 * fundamental difference from isolate_lru_pages (which is called
62695a84
NP
1753 * without a stable reference).
1754 * (2) the lru_lock must not be held.
1755 * (3) interrupts must be enabled.
1756 */
1757int isolate_lru_page(struct page *page)
1758{
1759 int ret = -EBUSY;
1760
309381fe 1761 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1762 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1763
d25b5bd8 1764 if (TestClearPageLRU(page)) {
fa9add64 1765 struct lruvec *lruvec;
62695a84 1766
d25b5bd8 1767 get_page(page);
6168d0da 1768 lruvec = lock_page_lruvec_irq(page);
46ae6b2c 1769 del_page_from_lru_list(page, lruvec);
6168d0da 1770 unlock_page_lruvec_irq(lruvec);
d25b5bd8 1771 ret = 0;
62695a84 1772 }
d25b5bd8 1773
62695a84
NP
1774 return ret;
1775}
1776
35cd7815 1777/*
d37dd5dc 1778 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
178821b8 1779 * then get rescheduled. When there are massive number of tasks doing page
d37dd5dc
FW
1780 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1781 * the LRU list will go small and be scanned faster than necessary, leading to
1782 * unnecessary swapping, thrashing and OOM.
35cd7815 1783 */
599d0c95 1784static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1785 struct scan_control *sc)
1786{
1787 unsigned long inactive, isolated;
1788
1789 if (current_is_kswapd())
1790 return 0;
1791
b5ead35e 1792 if (!writeback_throttling_sane(sc))
35cd7815
RR
1793 return 0;
1794
1795 if (file) {
599d0c95
MG
1796 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1797 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1798 } else {
599d0c95
MG
1799 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1800 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1801 }
1802
3cf23841
FW
1803 /*
1804 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1805 * won't get blocked by normal direct-reclaimers, forming a circular
1806 * deadlock.
1807 */
d0164adc 1808 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1809 inactive >>= 3;
1810
35cd7815
RR
1811 return isolated > inactive;
1812}
1813
a222f341 1814/*
15b44736
HD
1815 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
1816 * On return, @list is reused as a list of pages to be freed by the caller.
a222f341
KT
1817 *
1818 * Returns the number of pages moved to the given lruvec.
1819 */
a222f341
KT
1820static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1821 struct list_head *list)
66635629 1822{
a222f341 1823 int nr_pages, nr_moved = 0;
3f79768f 1824 LIST_HEAD(pages_to_free);
a222f341 1825 struct page *page;
66635629 1826
a222f341
KT
1827 while (!list_empty(list)) {
1828 page = lru_to_page(list);
309381fe 1829 VM_BUG_ON_PAGE(PageLRU(page), page);
3d06afab 1830 list_del(&page->lru);
39b5f29a 1831 if (unlikely(!page_evictable(page))) {
6168d0da 1832 spin_unlock_irq(&lruvec->lru_lock);
66635629 1833 putback_lru_page(page);
6168d0da 1834 spin_lock_irq(&lruvec->lru_lock);
66635629
MG
1835 continue;
1836 }
fa9add64 1837
3d06afab
AS
1838 /*
1839 * The SetPageLRU needs to be kept here for list integrity.
1840 * Otherwise:
1841 * #0 move_pages_to_lru #1 release_pages
1842 * if !put_page_testzero
1843 * if (put_page_testzero())
1844 * !PageLRU //skip lru_lock
1845 * SetPageLRU()
1846 * list_add(&page->lru,)
1847 * list_add(&page->lru,)
1848 */
7a608572 1849 SetPageLRU(page);
a222f341 1850
3d06afab 1851 if (unlikely(put_page_testzero(page))) {
87560179 1852 __clear_page_lru_flags(page);
2bcf8879
HD
1853
1854 if (unlikely(PageCompound(page))) {
6168d0da 1855 spin_unlock_irq(&lruvec->lru_lock);
ff45fc3c 1856 destroy_compound_page(page);
6168d0da 1857 spin_lock_irq(&lruvec->lru_lock);
2bcf8879
HD
1858 } else
1859 list_add(&page->lru, &pages_to_free);
3d06afab
AS
1860
1861 continue;
66635629 1862 }
3d06afab 1863
afca9157
AS
1864 /*
1865 * All pages were isolated from the same lruvec (and isolation
1866 * inhibits memcg migration).
1867 */
2a5e4e34 1868 VM_BUG_ON_PAGE(!lruvec_holds_page_lru_lock(page, lruvec), page);
3a9c9788 1869 add_page_to_lru_list(page, lruvec);
3d06afab 1870 nr_pages = thp_nr_pages(page);
3d06afab
AS
1871 nr_moved += nr_pages;
1872 if (PageActive(page))
1873 workingset_age_nonresident(lruvec, nr_pages);
66635629 1874 }
66635629 1875
3f79768f
HD
1876 /*
1877 * To save our caller's stack, now use input list for pages to free.
1878 */
a222f341
KT
1879 list_splice(&pages_to_free, list);
1880
1881 return nr_moved;
66635629
MG
1882}
1883
399ba0b9
N
1884/*
1885 * If a kernel thread (such as nfsd for loop-back mounts) services
a37b0715 1886 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
399ba0b9
N
1887 * In that case we should only throttle if the backing device it is
1888 * writing to is congested. In other cases it is safe to throttle.
1889 */
1890static int current_may_throttle(void)
1891{
a37b0715 1892 return !(current->flags & PF_LOCAL_THROTTLE) ||
399ba0b9
N
1893 current->backing_dev_info == NULL ||
1894 bdi_write_congested(current->backing_dev_info);
1895}
1896
1da177e4 1897/*
b2e18757 1898 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1899 * of reclaimed pages
1da177e4 1900 */
66635629 1901static noinline_for_stack unsigned long
1a93be0e 1902shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1903 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1904{
1905 LIST_HEAD(page_list);
e247dbce 1906 unsigned long nr_scanned;
730ec8c0 1907 unsigned int nr_reclaimed = 0;
e247dbce 1908 unsigned long nr_taken;
060f005f 1909 struct reclaim_stat stat;
497a6c1b 1910 bool file = is_file_lru(lru);
f46b7912 1911 enum vm_event_item item;
599d0c95 1912 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
db73ee0d 1913 bool stalled = false;
78dc583d 1914
599d0c95 1915 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
1916 if (stalled)
1917 return 0;
1918
1919 /* wait a bit for the reclaimer. */
1920 msleep(100);
1921 stalled = true;
35cd7815
RR
1922
1923 /* We are about to die and free our memory. Return now. */
1924 if (fatal_signal_pending(current))
1925 return SWAP_CLUSTER_MAX;
1926 }
1927
1da177e4 1928 lru_add_drain();
f80c0673 1929
6168d0da 1930 spin_lock_irq(&lruvec->lru_lock);
b35ea17b 1931
5dc35979 1932 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 1933 &nr_scanned, sc, lru);
95d918fc 1934
599d0c95 1935 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
f46b7912 1936 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
b5ead35e 1937 if (!cgroup_reclaim(sc))
f46b7912
KT
1938 __count_vm_events(item, nr_scanned);
1939 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
497a6c1b
JW
1940 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
1941
6168d0da 1942 spin_unlock_irq(&lruvec->lru_lock);
b35ea17b 1943
d563c050 1944 if (nr_taken == 0)
66635629 1945 return 0;
5ad333eb 1946
013339df 1947 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
c661b078 1948
6168d0da 1949 spin_lock_irq(&lruvec->lru_lock);
497a6c1b
JW
1950 move_pages_to_lru(lruvec, &page_list);
1951
1952 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
f46b7912 1953 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
b5ead35e 1954 if (!cgroup_reclaim(sc))
f46b7912
KT
1955 __count_vm_events(item, nr_reclaimed);
1956 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
497a6c1b 1957 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
6168d0da 1958 spin_unlock_irq(&lruvec->lru_lock);
3f79768f 1959
75cc3c91 1960 lru_note_cost(lruvec, file, stat.nr_pageout);
747db954 1961 mem_cgroup_uncharge_list(&page_list);
2d4894b5 1962 free_unref_page_list(&page_list);
e11da5b4 1963
1c610d5f
AR
1964 /*
1965 * If dirty pages are scanned that are not queued for IO, it
1966 * implies that flushers are not doing their job. This can
1967 * happen when memory pressure pushes dirty pages to the end of
1968 * the LRU before the dirty limits are breached and the dirty
1969 * data has expired. It can also happen when the proportion of
1970 * dirty pages grows not through writes but through memory
1971 * pressure reclaiming all the clean cache. And in some cases,
1972 * the flushers simply cannot keep up with the allocation
1973 * rate. Nudge the flusher threads in case they are asleep.
1974 */
1975 if (stat.nr_unqueued_dirty == nr_taken)
1976 wakeup_flusher_threads(WB_REASON_VMSCAN);
1977
d108c772
AR
1978 sc->nr.dirty += stat.nr_dirty;
1979 sc->nr.congested += stat.nr_congested;
1980 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1981 sc->nr.writeback += stat.nr_writeback;
1982 sc->nr.immediate += stat.nr_immediate;
1983 sc->nr.taken += nr_taken;
1984 if (file)
1985 sc->nr.file_taken += nr_taken;
8e950282 1986
599d0c95 1987 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 1988 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 1989 return nr_reclaimed;
1da177e4
LT
1990}
1991
15b44736
HD
1992/*
1993 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
1994 *
1995 * We move them the other way if the page is referenced by one or more
1996 * processes.
1997 *
1998 * If the pages are mostly unmapped, the processing is fast and it is
1999 * appropriate to hold lru_lock across the whole operation. But if
2000 * the pages are mapped, the processing is slow (page_referenced()), so
2001 * we should drop lru_lock around each page. It's impossible to balance
2002 * this, so instead we remove the pages from the LRU while processing them.
2003 * It is safe to rely on PG_active against the non-LRU pages in here because
2004 * nobody will play with that bit on a non-LRU page.
2005 *
2006 * The downside is that we have to touch page->_refcount against each page.
2007 * But we had to alter page->flags anyway.
2008 */
f626012d 2009static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2010 struct lruvec *lruvec,
f16015fb 2011 struct scan_control *sc,
9e3b2f8c 2012 enum lru_list lru)
1da177e4 2013{
44c241f1 2014 unsigned long nr_taken;
f626012d 2015 unsigned long nr_scanned;
6fe6b7e3 2016 unsigned long vm_flags;
1da177e4 2017 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2018 LIST_HEAD(l_active);
b69408e8 2019 LIST_HEAD(l_inactive);
1da177e4 2020 struct page *page;
9d998b4f
MH
2021 unsigned nr_deactivate, nr_activate;
2022 unsigned nr_rotated = 0;
3cb99451 2023 int file = is_file_lru(lru);
599d0c95 2024 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2025
2026 lru_add_drain();
f80c0673 2027
6168d0da 2028 spin_lock_irq(&lruvec->lru_lock);
925b7673 2029
5dc35979 2030 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2031 &nr_scanned, sc, lru);
89b5fae5 2032
599d0c95 2033 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1cfb419b 2034
912c0572
SB
2035 if (!cgroup_reclaim(sc))
2036 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2037 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2038
6168d0da 2039 spin_unlock_irq(&lruvec->lru_lock);
1da177e4 2040
1da177e4
LT
2041 while (!list_empty(&l_hold)) {
2042 cond_resched();
2043 page = lru_to_page(&l_hold);
2044 list_del(&page->lru);
7e9cd484 2045
39b5f29a 2046 if (unlikely(!page_evictable(page))) {
894bc310
LS
2047 putback_lru_page(page);
2048 continue;
2049 }
2050
cc715d99
MG
2051 if (unlikely(buffer_heads_over_limit)) {
2052 if (page_has_private(page) && trylock_page(page)) {
2053 if (page_has_private(page))
2054 try_to_release_page(page, 0);
2055 unlock_page(page);
2056 }
2057 }
2058
c3ac9a8a
JW
2059 if (page_referenced(page, 0, sc->target_mem_cgroup,
2060 &vm_flags)) {
8cab4754
WF
2061 /*
2062 * Identify referenced, file-backed active pages and
2063 * give them one more trip around the active list. So
2064 * that executable code get better chances to stay in
2065 * memory under moderate memory pressure. Anon pages
2066 * are not likely to be evicted by use-once streaming
2067 * IO, plus JVM can create lots of anon VM_EXEC pages,
2068 * so we ignore them here.
2069 */
9de4f22a 2070 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
6c357848 2071 nr_rotated += thp_nr_pages(page);
8cab4754
WF
2072 list_add(&page->lru, &l_active);
2073 continue;
2074 }
2075 }
7e9cd484 2076
5205e56e 2077 ClearPageActive(page); /* we are de-activating */
1899ad18 2078 SetPageWorkingset(page);
1da177e4
LT
2079 list_add(&page->lru, &l_inactive);
2080 }
2081
b555749a 2082 /*
8cab4754 2083 * Move pages back to the lru list.
b555749a 2084 */
6168d0da 2085 spin_lock_irq(&lruvec->lru_lock);
556adecb 2086
a222f341
KT
2087 nr_activate = move_pages_to_lru(lruvec, &l_active);
2088 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
f372d89e
KT
2089 /* Keep all free pages in l_active list */
2090 list_splice(&l_inactive, &l_active);
9851ac13
KT
2091
2092 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2093 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2094
599d0c95 2095 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
6168d0da 2096 spin_unlock_irq(&lruvec->lru_lock);
2bcf8879 2097
f372d89e
KT
2098 mem_cgroup_uncharge_list(&l_active);
2099 free_unref_page_list(&l_active);
9d998b4f
MH
2100 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2101 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2102}
2103
1a4e58cc
MK
2104unsigned long reclaim_pages(struct list_head *page_list)
2105{
f661d007 2106 int nid = NUMA_NO_NODE;
730ec8c0 2107 unsigned int nr_reclaimed = 0;
1a4e58cc
MK
2108 LIST_HEAD(node_page_list);
2109 struct reclaim_stat dummy_stat;
2110 struct page *page;
2111 struct scan_control sc = {
2112 .gfp_mask = GFP_KERNEL,
2113 .priority = DEF_PRIORITY,
2114 .may_writepage = 1,
2115 .may_unmap = 1,
2116 .may_swap = 1,
2117 };
2118
2119 while (!list_empty(page_list)) {
2120 page = lru_to_page(page_list);
f661d007 2121 if (nid == NUMA_NO_NODE) {
1a4e58cc
MK
2122 nid = page_to_nid(page);
2123 INIT_LIST_HEAD(&node_page_list);
2124 }
2125
2126 if (nid == page_to_nid(page)) {
2127 ClearPageActive(page);
2128 list_move(&page->lru, &node_page_list);
2129 continue;
2130 }
2131
2132 nr_reclaimed += shrink_page_list(&node_page_list,
2133 NODE_DATA(nid),
013339df 2134 &sc, &dummy_stat, false);
1a4e58cc
MK
2135 while (!list_empty(&node_page_list)) {
2136 page = lru_to_page(&node_page_list);
2137 list_del(&page->lru);
2138 putback_lru_page(page);
2139 }
2140
f661d007 2141 nid = NUMA_NO_NODE;
1a4e58cc
MK
2142 }
2143
2144 if (!list_empty(&node_page_list)) {
2145 nr_reclaimed += shrink_page_list(&node_page_list,
2146 NODE_DATA(nid),
013339df 2147 &sc, &dummy_stat, false);
1a4e58cc
MK
2148 while (!list_empty(&node_page_list)) {
2149 page = lru_to_page(&node_page_list);
2150 list_del(&page->lru);
2151 putback_lru_page(page);
2152 }
2153 }
2154
2155 return nr_reclaimed;
2156}
2157
b91ac374
JW
2158static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2159 struct lruvec *lruvec, struct scan_control *sc)
2160{
2161 if (is_active_lru(lru)) {
2162 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2163 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2164 else
2165 sc->skipped_deactivate = 1;
2166 return 0;
2167 }
2168
2169 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2170}
2171
59dc76b0
RR
2172/*
2173 * The inactive anon list should be small enough that the VM never has
2174 * to do too much work.
14797e23 2175 *
59dc76b0
RR
2176 * The inactive file list should be small enough to leave most memory
2177 * to the established workingset on the scan-resistant active list,
2178 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2179 *
59dc76b0
RR
2180 * Both inactive lists should also be large enough that each inactive
2181 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2182 *
2a2e4885
JW
2183 * If that fails and refaulting is observed, the inactive list grows.
2184 *
59dc76b0 2185 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2186 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2187 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2188 *
59dc76b0
RR
2189 * total target max
2190 * memory ratio inactive
2191 * -------------------------------------
2192 * 10MB 1 5MB
2193 * 100MB 1 50MB
2194 * 1GB 3 250MB
2195 * 10GB 10 0.9GB
2196 * 100GB 31 3GB
2197 * 1TB 101 10GB
2198 * 10TB 320 32GB
56e49d21 2199 */
b91ac374 2200static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
56e49d21 2201{
b91ac374 2202 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2a2e4885
JW
2203 unsigned long inactive, active;
2204 unsigned long inactive_ratio;
59dc76b0 2205 unsigned long gb;
e3790144 2206
b91ac374
JW
2207 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2208 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
f8d1a311 2209
b91ac374 2210 gb = (inactive + active) >> (30 - PAGE_SHIFT);
4002570c 2211 if (gb)
b91ac374
JW
2212 inactive_ratio = int_sqrt(10 * gb);
2213 else
2214 inactive_ratio = 1;
fd538803 2215
59dc76b0 2216 return inactive * inactive_ratio < active;
b39415b2
RR
2217}
2218
9a265114
JW
2219enum scan_balance {
2220 SCAN_EQUAL,
2221 SCAN_FRACT,
2222 SCAN_ANON,
2223 SCAN_FILE,
2224};
2225
4f98a2fe
RR
2226/*
2227 * Determine how aggressively the anon and file LRU lists should be
2228 * scanned. The relative value of each set of LRU lists is determined
2229 * by looking at the fraction of the pages scanned we did rotate back
2230 * onto the active list instead of evict.
2231 *
be7bd59d
WL
2232 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2233 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2234 */
afaf07a6
JW
2235static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2236 unsigned long *nr)
4f98a2fe 2237{
afaf07a6 2238 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
d483a5dd 2239 unsigned long anon_cost, file_cost, total_cost;
33377678 2240 int swappiness = mem_cgroup_swappiness(memcg);
ed017373 2241 u64 fraction[ANON_AND_FILE];
9a265114 2242 u64 denominator = 0; /* gcc */
9a265114 2243 enum scan_balance scan_balance;
4f98a2fe 2244 unsigned long ap, fp;
4111304d 2245 enum lru_list lru;
76a33fc3
SL
2246
2247 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2248 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2249 scan_balance = SCAN_FILE;
76a33fc3
SL
2250 goto out;
2251 }
4f98a2fe 2252
10316b31
JW
2253 /*
2254 * Global reclaim will swap to prevent OOM even with no
2255 * swappiness, but memcg users want to use this knob to
2256 * disable swapping for individual groups completely when
2257 * using the memory controller's swap limit feature would be
2258 * too expensive.
2259 */
b5ead35e 2260 if (cgroup_reclaim(sc) && !swappiness) {
9a265114 2261 scan_balance = SCAN_FILE;
10316b31
JW
2262 goto out;
2263 }
2264
2265 /*
2266 * Do not apply any pressure balancing cleverness when the
2267 * system is close to OOM, scan both anon and file equally
2268 * (unless the swappiness setting disagrees with swapping).
2269 */
02695175 2270 if (!sc->priority && swappiness) {
9a265114 2271 scan_balance = SCAN_EQUAL;
10316b31
JW
2272 goto out;
2273 }
2274
62376251 2275 /*
53138cea 2276 * If the system is almost out of file pages, force-scan anon.
62376251 2277 */
b91ac374 2278 if (sc->file_is_tiny) {
53138cea
JW
2279 scan_balance = SCAN_ANON;
2280 goto out;
62376251
JW
2281 }
2282
7c5bd705 2283 /*
b91ac374
JW
2284 * If there is enough inactive page cache, we do not reclaim
2285 * anything from the anonymous working right now.
7c5bd705 2286 */
b91ac374 2287 if (sc->cache_trim_mode) {
9a265114 2288 scan_balance = SCAN_FILE;
7c5bd705
JW
2289 goto out;
2290 }
2291
9a265114 2292 scan_balance = SCAN_FRACT;
58c37f6e 2293 /*
314b57fb
JW
2294 * Calculate the pressure balance between anon and file pages.
2295 *
2296 * The amount of pressure we put on each LRU is inversely
2297 * proportional to the cost of reclaiming each list, as
2298 * determined by the share of pages that are refaulting, times
2299 * the relative IO cost of bringing back a swapped out
2300 * anonymous page vs reloading a filesystem page (swappiness).
2301 *
d483a5dd
JW
2302 * Although we limit that influence to ensure no list gets
2303 * left behind completely: at least a third of the pressure is
2304 * applied, before swappiness.
2305 *
314b57fb 2306 * With swappiness at 100, anon and file have equal IO cost.
58c37f6e 2307 */
d483a5dd
JW
2308 total_cost = sc->anon_cost + sc->file_cost;
2309 anon_cost = total_cost + sc->anon_cost;
2310 file_cost = total_cost + sc->file_cost;
2311 total_cost = anon_cost + file_cost;
58c37f6e 2312
d483a5dd
JW
2313 ap = swappiness * (total_cost + 1);
2314 ap /= anon_cost + 1;
4f98a2fe 2315
d483a5dd
JW
2316 fp = (200 - swappiness) * (total_cost + 1);
2317 fp /= file_cost + 1;
4f98a2fe 2318
76a33fc3
SL
2319 fraction[0] = ap;
2320 fraction[1] = fp;
a4fe1631 2321 denominator = ap + fp;
76a33fc3 2322out:
688035f7
JW
2323 for_each_evictable_lru(lru) {
2324 int file = is_file_lru(lru);
9783aa99 2325 unsigned long lruvec_size;
688035f7 2326 unsigned long scan;
1bc63fb1 2327 unsigned long protection;
9783aa99
CD
2328
2329 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
22f7496f
YS
2330 protection = mem_cgroup_protection(sc->target_mem_cgroup,
2331 memcg,
1bc63fb1 2332 sc->memcg_low_reclaim);
9783aa99 2333
1bc63fb1 2334 if (protection) {
9783aa99
CD
2335 /*
2336 * Scale a cgroup's reclaim pressure by proportioning
2337 * its current usage to its memory.low or memory.min
2338 * setting.
2339 *
2340 * This is important, as otherwise scanning aggression
2341 * becomes extremely binary -- from nothing as we
2342 * approach the memory protection threshold, to totally
2343 * nominal as we exceed it. This results in requiring
2344 * setting extremely liberal protection thresholds. It
2345 * also means we simply get no protection at all if we
2346 * set it too low, which is not ideal.
1bc63fb1
CD
2347 *
2348 * If there is any protection in place, we reduce scan
2349 * pressure by how much of the total memory used is
2350 * within protection thresholds.
9783aa99 2351 *
9de7ca46
CD
2352 * There is one special case: in the first reclaim pass,
2353 * we skip over all groups that are within their low
2354 * protection. If that fails to reclaim enough pages to
2355 * satisfy the reclaim goal, we come back and override
2356 * the best-effort low protection. However, we still
2357 * ideally want to honor how well-behaved groups are in
2358 * that case instead of simply punishing them all
2359 * equally. As such, we reclaim them based on how much
1bc63fb1
CD
2360 * memory they are using, reducing the scan pressure
2361 * again by how much of the total memory used is under
2362 * hard protection.
9783aa99 2363 */
1bc63fb1
CD
2364 unsigned long cgroup_size = mem_cgroup_size(memcg);
2365
2366 /* Avoid TOCTOU with earlier protection check */
2367 cgroup_size = max(cgroup_size, protection);
2368
2369 scan = lruvec_size - lruvec_size * protection /
2370 cgroup_size;
9783aa99
CD
2371
2372 /*
1bc63fb1 2373 * Minimally target SWAP_CLUSTER_MAX pages to keep
55b65a57 2374 * reclaim moving forwards, avoiding decrementing
9de7ca46 2375 * sc->priority further than desirable.
9783aa99 2376 */
1bc63fb1 2377 scan = max(scan, SWAP_CLUSTER_MAX);
9783aa99
CD
2378 } else {
2379 scan = lruvec_size;
2380 }
2381
2382 scan >>= sc->priority;
6b4f7799 2383
688035f7
JW
2384 /*
2385 * If the cgroup's already been deleted, make sure to
2386 * scrape out the remaining cache.
2387 */
2388 if (!scan && !mem_cgroup_online(memcg))
9783aa99 2389 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
6b4f7799 2390
688035f7
JW
2391 switch (scan_balance) {
2392 case SCAN_EQUAL:
2393 /* Scan lists relative to size */
2394 break;
2395 case SCAN_FRACT:
9a265114 2396 /*
688035f7
JW
2397 * Scan types proportional to swappiness and
2398 * their relative recent reclaim efficiency.
76073c64
GS
2399 * Make sure we don't miss the last page on
2400 * the offlined memory cgroups because of a
2401 * round-off error.
9a265114 2402 */
76073c64
GS
2403 scan = mem_cgroup_online(memcg) ?
2404 div64_u64(scan * fraction[file], denominator) :
2405 DIV64_U64_ROUND_UP(scan * fraction[file],
68600f62 2406 denominator);
688035f7
JW
2407 break;
2408 case SCAN_FILE:
2409 case SCAN_ANON:
2410 /* Scan one type exclusively */
e072bff6 2411 if ((scan_balance == SCAN_FILE) != file)
688035f7 2412 scan = 0;
688035f7
JW
2413 break;
2414 default:
2415 /* Look ma, no brain */
2416 BUG();
9a265114 2417 }
688035f7 2418
688035f7 2419 nr[lru] = scan;
76a33fc3 2420 }
6e08a369 2421}
4f98a2fe 2422
afaf07a6 2423static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
9b4f98cd
JW
2424{
2425 unsigned long nr[NR_LRU_LISTS];
e82e0561 2426 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2427 unsigned long nr_to_scan;
2428 enum lru_list lru;
2429 unsigned long nr_reclaimed = 0;
2430 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2431 struct blk_plug plug;
1a501907 2432 bool scan_adjusted;
9b4f98cd 2433
afaf07a6 2434 get_scan_count(lruvec, sc, nr);
9b4f98cd 2435
e82e0561
MG
2436 /* Record the original scan target for proportional adjustments later */
2437 memcpy(targets, nr, sizeof(nr));
2438
1a501907
MG
2439 /*
2440 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2441 * event that can occur when there is little memory pressure e.g.
2442 * multiple streaming readers/writers. Hence, we do not abort scanning
2443 * when the requested number of pages are reclaimed when scanning at
2444 * DEF_PRIORITY on the assumption that the fact we are direct
2445 * reclaiming implies that kswapd is not keeping up and it is best to
2446 * do a batch of work at once. For memcg reclaim one check is made to
2447 * abort proportional reclaim if either the file or anon lru has already
2448 * dropped to zero at the first pass.
2449 */
b5ead35e 2450 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
1a501907
MG
2451 sc->priority == DEF_PRIORITY);
2452
9b4f98cd
JW
2453 blk_start_plug(&plug);
2454 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2455 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2456 unsigned long nr_anon, nr_file, percentage;
2457 unsigned long nr_scanned;
2458
9b4f98cd
JW
2459 for_each_evictable_lru(lru) {
2460 if (nr[lru]) {
2461 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2462 nr[lru] -= nr_to_scan;
2463
2464 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2465 lruvec, sc);
9b4f98cd
JW
2466 }
2467 }
e82e0561 2468
bd041733
MH
2469 cond_resched();
2470
e82e0561
MG
2471 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2472 continue;
2473
e82e0561
MG
2474 /*
2475 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2476 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2477 * proportionally what was requested by get_scan_count(). We
2478 * stop reclaiming one LRU and reduce the amount scanning
2479 * proportional to the original scan target.
2480 */
2481 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2482 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2483
1a501907
MG
2484 /*
2485 * It's just vindictive to attack the larger once the smaller
2486 * has gone to zero. And given the way we stop scanning the
2487 * smaller below, this makes sure that we only make one nudge
2488 * towards proportionality once we've got nr_to_reclaim.
2489 */
2490 if (!nr_file || !nr_anon)
2491 break;
2492
e82e0561
MG
2493 if (nr_file > nr_anon) {
2494 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2495 targets[LRU_ACTIVE_ANON] + 1;
2496 lru = LRU_BASE;
2497 percentage = nr_anon * 100 / scan_target;
2498 } else {
2499 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2500 targets[LRU_ACTIVE_FILE] + 1;
2501 lru = LRU_FILE;
2502 percentage = nr_file * 100 / scan_target;
2503 }
2504
2505 /* Stop scanning the smaller of the LRU */
2506 nr[lru] = 0;
2507 nr[lru + LRU_ACTIVE] = 0;
2508
2509 /*
2510 * Recalculate the other LRU scan count based on its original
2511 * scan target and the percentage scanning already complete
2512 */
2513 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2514 nr_scanned = targets[lru] - nr[lru];
2515 nr[lru] = targets[lru] * (100 - percentage) / 100;
2516 nr[lru] -= min(nr[lru], nr_scanned);
2517
2518 lru += LRU_ACTIVE;
2519 nr_scanned = targets[lru] - nr[lru];
2520 nr[lru] = targets[lru] * (100 - percentage) / 100;
2521 nr[lru] -= min(nr[lru], nr_scanned);
2522
2523 scan_adjusted = true;
9b4f98cd
JW
2524 }
2525 blk_finish_plug(&plug);
2526 sc->nr_reclaimed += nr_reclaimed;
2527
2528 /*
2529 * Even if we did not try to evict anon pages at all, we want to
2530 * rebalance the anon lru active/inactive ratio.
2531 */
b91ac374 2532 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
9b4f98cd
JW
2533 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2534 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2535}
2536
23b9da55 2537/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2538static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2539{
d84da3f9 2540 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2541 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2542 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2543 return true;
2544
2545 return false;
2546}
2547
3e7d3449 2548/*
23b9da55
MG
2549 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2550 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2551 * true if more pages should be reclaimed such that when the page allocator
df3a45f9 2552 * calls try_to_compact_pages() that it will have enough free pages to succeed.
23b9da55 2553 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2554 */
a9dd0a83 2555static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449 2556 unsigned long nr_reclaimed,
3e7d3449
MG
2557 struct scan_control *sc)
2558{
2559 unsigned long pages_for_compaction;
2560 unsigned long inactive_lru_pages;
a9dd0a83 2561 int z;
3e7d3449
MG
2562
2563 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2564 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2565 return false;
2566
5ee04716
VB
2567 /*
2568 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2569 * number of pages that were scanned. This will return to the caller
2570 * with the risk reclaim/compaction and the resulting allocation attempt
2571 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2572 * allocations through requiring that the full LRU list has been scanned
2573 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2574 * scan, but that approximation was wrong, and there were corner cases
2575 * where always a non-zero amount of pages were scanned.
2576 */
2577 if (!nr_reclaimed)
2578 return false;
3e7d3449 2579
3e7d3449 2580 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2581 for (z = 0; z <= sc->reclaim_idx; z++) {
2582 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2583 if (!managed_zone(zone))
a9dd0a83
MG
2584 continue;
2585
2586 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2587 case COMPACT_SUCCESS:
a9dd0a83
MG
2588 case COMPACT_CONTINUE:
2589 return false;
2590 default:
2591 /* check next zone */
2592 ;
2593 }
3e7d3449 2594 }
1c6c1597
HD
2595
2596 /*
2597 * If we have not reclaimed enough pages for compaction and the
2598 * inactive lists are large enough, continue reclaiming
2599 */
2600 pages_for_compaction = compact_gap(sc->order);
2601 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2602 if (get_nr_swap_pages() > 0)
2603 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2604
5ee04716 2605 return inactive_lru_pages > pages_for_compaction;
3e7d3449
MG
2606}
2607
0f6a5cff 2608static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2609{
0f6a5cff 2610 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
d2af3397 2611 struct mem_cgroup *memcg;
1da177e4 2612
0f6a5cff 2613 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
d2af3397 2614 do {
afaf07a6 2615 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
d2af3397
JW
2616 unsigned long reclaimed;
2617 unsigned long scanned;
5660048c 2618
e3336cab
XP
2619 /*
2620 * This loop can become CPU-bound when target memcgs
2621 * aren't eligible for reclaim - either because they
2622 * don't have any reclaimable pages, or because their
2623 * memory is explicitly protected. Avoid soft lockups.
2624 */
2625 cond_resched();
2626
45c7f7e1
CD
2627 mem_cgroup_calculate_protection(target_memcg, memcg);
2628
2629 if (mem_cgroup_below_min(memcg)) {
d2af3397
JW
2630 /*
2631 * Hard protection.
2632 * If there is no reclaimable memory, OOM.
2633 */
2634 continue;
45c7f7e1 2635 } else if (mem_cgroup_below_low(memcg)) {
d2af3397
JW
2636 /*
2637 * Soft protection.
2638 * Respect the protection only as long as
2639 * there is an unprotected supply
2640 * of reclaimable memory from other cgroups.
2641 */
2642 if (!sc->memcg_low_reclaim) {
2643 sc->memcg_low_skipped = 1;
bf8d5d52 2644 continue;
241994ed 2645 }
d2af3397 2646 memcg_memory_event(memcg, MEMCG_LOW);
d2af3397 2647 }
241994ed 2648
d2af3397
JW
2649 reclaimed = sc->nr_reclaimed;
2650 scanned = sc->nr_scanned;
afaf07a6
JW
2651
2652 shrink_lruvec(lruvec, sc);
70ddf637 2653
d2af3397
JW
2654 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2655 sc->priority);
6b4f7799 2656
d2af3397
JW
2657 /* Record the group's reclaim efficiency */
2658 vmpressure(sc->gfp_mask, memcg, false,
2659 sc->nr_scanned - scanned,
2660 sc->nr_reclaimed - reclaimed);
70ddf637 2661
0f6a5cff
JW
2662 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2663}
2664
6c9e0907 2665static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
0f6a5cff
JW
2666{
2667 struct reclaim_state *reclaim_state = current->reclaim_state;
0f6a5cff 2668 unsigned long nr_reclaimed, nr_scanned;
1b05117d 2669 struct lruvec *target_lruvec;
0f6a5cff 2670 bool reclaimable = false;
b91ac374 2671 unsigned long file;
0f6a5cff 2672
1b05117d
JW
2673 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2674
0f6a5cff
JW
2675again:
2676 memset(&sc->nr, 0, sizeof(sc->nr));
2677
2678 nr_reclaimed = sc->nr_reclaimed;
2679 nr_scanned = sc->nr_scanned;
2680
7cf111bc
JW
2681 /*
2682 * Determine the scan balance between anon and file LRUs.
2683 */
6168d0da 2684 spin_lock_irq(&target_lruvec->lru_lock);
7cf111bc
JW
2685 sc->anon_cost = target_lruvec->anon_cost;
2686 sc->file_cost = target_lruvec->file_cost;
6168d0da 2687 spin_unlock_irq(&target_lruvec->lru_lock);
7cf111bc 2688
b91ac374
JW
2689 /*
2690 * Target desirable inactive:active list ratios for the anon
2691 * and file LRU lists.
2692 */
2693 if (!sc->force_deactivate) {
2694 unsigned long refaults;
2695
170b04b7
JK
2696 refaults = lruvec_page_state(target_lruvec,
2697 WORKINGSET_ACTIVATE_ANON);
2698 if (refaults != target_lruvec->refaults[0] ||
2699 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
b91ac374
JW
2700 sc->may_deactivate |= DEACTIVATE_ANON;
2701 else
2702 sc->may_deactivate &= ~DEACTIVATE_ANON;
2703
2704 /*
2705 * When refaults are being observed, it means a new
2706 * workingset is being established. Deactivate to get
2707 * rid of any stale active pages quickly.
2708 */
2709 refaults = lruvec_page_state(target_lruvec,
170b04b7
JK
2710 WORKINGSET_ACTIVATE_FILE);
2711 if (refaults != target_lruvec->refaults[1] ||
b91ac374
JW
2712 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2713 sc->may_deactivate |= DEACTIVATE_FILE;
2714 else
2715 sc->may_deactivate &= ~DEACTIVATE_FILE;
2716 } else
2717 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2718
2719 /*
2720 * If we have plenty of inactive file pages that aren't
2721 * thrashing, try to reclaim those first before touching
2722 * anonymous pages.
2723 */
2724 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2725 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2726 sc->cache_trim_mode = 1;
2727 else
2728 sc->cache_trim_mode = 0;
2729
53138cea
JW
2730 /*
2731 * Prevent the reclaimer from falling into the cache trap: as
2732 * cache pages start out inactive, every cache fault will tip
2733 * the scan balance towards the file LRU. And as the file LRU
2734 * shrinks, so does the window for rotation from references.
2735 * This means we have a runaway feedback loop where a tiny
2736 * thrashing file LRU becomes infinitely more attractive than
2737 * anon pages. Try to detect this based on file LRU size.
2738 */
2739 if (!cgroup_reclaim(sc)) {
53138cea 2740 unsigned long total_high_wmark = 0;
b91ac374
JW
2741 unsigned long free, anon;
2742 int z;
53138cea
JW
2743
2744 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2745 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2746 node_page_state(pgdat, NR_INACTIVE_FILE);
2747
2748 for (z = 0; z < MAX_NR_ZONES; z++) {
2749 struct zone *zone = &pgdat->node_zones[z];
2750 if (!managed_zone(zone))
2751 continue;
2752
2753 total_high_wmark += high_wmark_pages(zone);
2754 }
2755
b91ac374
JW
2756 /*
2757 * Consider anon: if that's low too, this isn't a
2758 * runaway file reclaim problem, but rather just
2759 * extreme pressure. Reclaim as per usual then.
2760 */
2761 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2762
2763 sc->file_is_tiny =
2764 file + free <= total_high_wmark &&
2765 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2766 anon >> sc->priority;
53138cea
JW
2767 }
2768
0f6a5cff 2769 shrink_node_memcgs(pgdat, sc);
2344d7e4 2770
d2af3397
JW
2771 if (reclaim_state) {
2772 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2773 reclaim_state->reclaimed_slab = 0;
2774 }
d108c772 2775
d2af3397 2776 /* Record the subtree's reclaim efficiency */
1b05117d 2777 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
d2af3397
JW
2778 sc->nr_scanned - nr_scanned,
2779 sc->nr_reclaimed - nr_reclaimed);
d108c772 2780
d2af3397
JW
2781 if (sc->nr_reclaimed - nr_reclaimed)
2782 reclaimable = true;
d108c772 2783
d2af3397
JW
2784 if (current_is_kswapd()) {
2785 /*
2786 * If reclaim is isolating dirty pages under writeback,
2787 * it implies that the long-lived page allocation rate
2788 * is exceeding the page laundering rate. Either the
2789 * global limits are not being effective at throttling
2790 * processes due to the page distribution throughout
2791 * zones or there is heavy usage of a slow backing
2792 * device. The only option is to throttle from reclaim
2793 * context which is not ideal as there is no guarantee
2794 * the dirtying process is throttled in the same way
2795 * balance_dirty_pages() manages.
2796 *
2797 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2798 * count the number of pages under pages flagged for
2799 * immediate reclaim and stall if any are encountered
2800 * in the nr_immediate check below.
2801 */
2802 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2803 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 2804
d2af3397
JW
2805 /* Allow kswapd to start writing pages during reclaim.*/
2806 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2807 set_bit(PGDAT_DIRTY, &pgdat->flags);
e3c1ac58 2808
d108c772 2809 /*
1eba09c1 2810 * If kswapd scans pages marked for immediate
d2af3397
JW
2811 * reclaim and under writeback (nr_immediate), it
2812 * implies that pages are cycling through the LRU
2813 * faster than they are written so also forcibly stall.
d108c772 2814 */
d2af3397
JW
2815 if (sc->nr.immediate)
2816 congestion_wait(BLK_RW_ASYNC, HZ/10);
2817 }
2818
2819 /*
1b05117d
JW
2820 * Tag a node/memcg as congested if all the dirty pages
2821 * scanned were backed by a congested BDI and
2822 * wait_iff_congested will stall.
2823 *
d2af3397
JW
2824 * Legacy memcg will stall in page writeback so avoid forcibly
2825 * stalling in wait_iff_congested().
2826 */
1b05117d
JW
2827 if ((current_is_kswapd() ||
2828 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
d2af3397 2829 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
1b05117d 2830 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
d2af3397
JW
2831
2832 /*
2833 * Stall direct reclaim for IO completions if underlying BDIs
2834 * and node is congested. Allow kswapd to continue until it
2835 * starts encountering unqueued dirty pages or cycling through
2836 * the LRU too quickly.
2837 */
1b05117d
JW
2838 if (!current_is_kswapd() && current_may_throttle() &&
2839 !sc->hibernation_mode &&
2840 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
d2af3397 2841 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
d108c772 2842
d2af3397
JW
2843 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2844 sc))
2845 goto again;
2344d7e4 2846
c73322d0
JW
2847 /*
2848 * Kswapd gives up on balancing particular nodes after too
2849 * many failures to reclaim anything from them and goes to
2850 * sleep. On reclaim progress, reset the failure counter. A
2851 * successful direct reclaim run will revive a dormant kswapd.
2852 */
2853 if (reclaimable)
2854 pgdat->kswapd_failures = 0;
f16015fb
JW
2855}
2856
53853e2d 2857/*
fdd4c614
VB
2858 * Returns true if compaction should go ahead for a costly-order request, or
2859 * the allocation would already succeed without compaction. Return false if we
2860 * should reclaim first.
53853e2d 2861 */
4f588331 2862static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2863{
31483b6a 2864 unsigned long watermark;
fdd4c614 2865 enum compact_result suitable;
fe4b1b24 2866
fdd4c614
VB
2867 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2868 if (suitable == COMPACT_SUCCESS)
2869 /* Allocation should succeed already. Don't reclaim. */
2870 return true;
2871 if (suitable == COMPACT_SKIPPED)
2872 /* Compaction cannot yet proceed. Do reclaim. */
2873 return false;
fe4b1b24 2874
53853e2d 2875 /*
fdd4c614
VB
2876 * Compaction is already possible, but it takes time to run and there
2877 * are potentially other callers using the pages just freed. So proceed
2878 * with reclaim to make a buffer of free pages available to give
2879 * compaction a reasonable chance of completing and allocating the page.
2880 * Note that we won't actually reclaim the whole buffer in one attempt
2881 * as the target watermark in should_continue_reclaim() is lower. But if
2882 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2883 */
fdd4c614 2884 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2885
fdd4c614 2886 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2887}
2888
1da177e4
LT
2889/*
2890 * This is the direct reclaim path, for page-allocating processes. We only
2891 * try to reclaim pages from zones which will satisfy the caller's allocation
2892 * request.
2893 *
1da177e4
LT
2894 * If a zone is deemed to be full of pinned pages then just give it a light
2895 * scan then give up on it.
2896 */
0a0337e0 2897static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2898{
dd1a239f 2899 struct zoneref *z;
54a6eb5c 2900 struct zone *zone;
0608f43d
AM
2901 unsigned long nr_soft_reclaimed;
2902 unsigned long nr_soft_scanned;
619d0d76 2903 gfp_t orig_mask;
79dafcdc 2904 pg_data_t *last_pgdat = NULL;
1cfb419b 2905
cc715d99
MG
2906 /*
2907 * If the number of buffer_heads in the machine exceeds the maximum
2908 * allowed level, force direct reclaim to scan the highmem zone as
2909 * highmem pages could be pinning lowmem pages storing buffer_heads
2910 */
619d0d76 2911 orig_mask = sc->gfp_mask;
b2e18757 2912 if (buffer_heads_over_limit) {
cc715d99 2913 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2914 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2915 }
cc715d99 2916
d4debc66 2917 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2918 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2919 /*
2920 * Take care memory controller reclaiming has small influence
2921 * to global LRU.
2922 */
b5ead35e 2923 if (!cgroup_reclaim(sc)) {
344736f2
VD
2924 if (!cpuset_zone_allowed(zone,
2925 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2926 continue;
65ec02cb 2927
0b06496a
JW
2928 /*
2929 * If we already have plenty of memory free for
2930 * compaction in this zone, don't free any more.
2931 * Even though compaction is invoked for any
2932 * non-zero order, only frequent costly order
2933 * reclamation is disruptive enough to become a
2934 * noticeable problem, like transparent huge
2935 * page allocations.
2936 */
2937 if (IS_ENABLED(CONFIG_COMPACTION) &&
2938 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2939 compaction_ready(zone, sc)) {
0b06496a
JW
2940 sc->compaction_ready = true;
2941 continue;
e0887c19 2942 }
0b06496a 2943
79dafcdc
MG
2944 /*
2945 * Shrink each node in the zonelist once. If the
2946 * zonelist is ordered by zone (not the default) then a
2947 * node may be shrunk multiple times but in that case
2948 * the user prefers lower zones being preserved.
2949 */
2950 if (zone->zone_pgdat == last_pgdat)
2951 continue;
2952
0608f43d
AM
2953 /*
2954 * This steals pages from memory cgroups over softlimit
2955 * and returns the number of reclaimed pages and
2956 * scanned pages. This works for global memory pressure
2957 * and balancing, not for a memcg's limit.
2958 */
2959 nr_soft_scanned = 0;
ef8f2327 2960 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2961 sc->order, sc->gfp_mask,
2962 &nr_soft_scanned);
2963 sc->nr_reclaimed += nr_soft_reclaimed;
2964 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2965 /* need some check for avoid more shrink_zone() */
1cfb419b 2966 }
408d8544 2967
79dafcdc
MG
2968 /* See comment about same check for global reclaim above */
2969 if (zone->zone_pgdat == last_pgdat)
2970 continue;
2971 last_pgdat = zone->zone_pgdat;
970a39a3 2972 shrink_node(zone->zone_pgdat, sc);
1da177e4 2973 }
e0c23279 2974
619d0d76
WY
2975 /*
2976 * Restore to original mask to avoid the impact on the caller if we
2977 * promoted it to __GFP_HIGHMEM.
2978 */
2979 sc->gfp_mask = orig_mask;
1da177e4 2980}
4f98a2fe 2981
b910718a 2982static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2a2e4885 2983{
b910718a
JW
2984 struct lruvec *target_lruvec;
2985 unsigned long refaults;
2a2e4885 2986
b910718a 2987 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
170b04b7
JK
2988 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
2989 target_lruvec->refaults[0] = refaults;
2990 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
2991 target_lruvec->refaults[1] = refaults;
2a2e4885
JW
2992}
2993
1da177e4
LT
2994/*
2995 * This is the main entry point to direct page reclaim.
2996 *
2997 * If a full scan of the inactive list fails to free enough memory then we
2998 * are "out of memory" and something needs to be killed.
2999 *
3000 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3001 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
3002 * caller can't do much about. We kick the writeback threads and take explicit
3003 * naps in the hope that some of these pages can be written. But if the
3004 * allocating task holds filesystem locks which prevent writeout this might not
3005 * work, and the allocation attempt will fail.
a41f24ea
NA
3006 *
3007 * returns: 0, if no pages reclaimed
3008 * else, the number of pages reclaimed
1da177e4 3009 */
dac1d27b 3010static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 3011 struct scan_control *sc)
1da177e4 3012{
241994ed 3013 int initial_priority = sc->priority;
2a2e4885
JW
3014 pg_data_t *last_pgdat;
3015 struct zoneref *z;
3016 struct zone *zone;
241994ed 3017retry:
873b4771
KK
3018 delayacct_freepages_start();
3019
b5ead35e 3020 if (!cgroup_reclaim(sc))
7cc30fcf 3021 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 3022
9e3b2f8c 3023 do {
70ddf637
AV
3024 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3025 sc->priority);
66e1707b 3026 sc->nr_scanned = 0;
0a0337e0 3027 shrink_zones(zonelist, sc);
c6a8a8c5 3028
bb21c7ce 3029 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3030 break;
3031
3032 if (sc->compaction_ready)
3033 break;
1da177e4 3034
0e50ce3b
MK
3035 /*
3036 * If we're getting trouble reclaiming, start doing
3037 * writepage even in laptop mode.
3038 */
3039 if (sc->priority < DEF_PRIORITY - 2)
3040 sc->may_writepage = 1;
0b06496a 3041 } while (--sc->priority >= 0);
bb21c7ce 3042
2a2e4885
JW
3043 last_pgdat = NULL;
3044 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3045 sc->nodemask) {
3046 if (zone->zone_pgdat == last_pgdat)
3047 continue;
3048 last_pgdat = zone->zone_pgdat;
1b05117d 3049
2a2e4885 3050 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
1b05117d
JW
3051
3052 if (cgroup_reclaim(sc)) {
3053 struct lruvec *lruvec;
3054
3055 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3056 zone->zone_pgdat);
3057 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3058 }
2a2e4885
JW
3059 }
3060
873b4771
KK
3061 delayacct_freepages_end();
3062
bb21c7ce
KM
3063 if (sc->nr_reclaimed)
3064 return sc->nr_reclaimed;
3065
0cee34fd 3066 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3067 if (sc->compaction_ready)
7335084d
MG
3068 return 1;
3069
b91ac374
JW
3070 /*
3071 * We make inactive:active ratio decisions based on the node's
3072 * composition of memory, but a restrictive reclaim_idx or a
3073 * memory.low cgroup setting can exempt large amounts of
3074 * memory from reclaim. Neither of which are very common, so
3075 * instead of doing costly eligibility calculations of the
3076 * entire cgroup subtree up front, we assume the estimates are
3077 * good, and retry with forcible deactivation if that fails.
3078 */
3079 if (sc->skipped_deactivate) {
3080 sc->priority = initial_priority;
3081 sc->force_deactivate = 1;
3082 sc->skipped_deactivate = 0;
3083 goto retry;
3084 }
3085
241994ed 3086 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3087 if (sc->memcg_low_skipped) {
241994ed 3088 sc->priority = initial_priority;
b91ac374 3089 sc->force_deactivate = 0;
d6622f63
YX
3090 sc->memcg_low_reclaim = 1;
3091 sc->memcg_low_skipped = 0;
241994ed
JW
3092 goto retry;
3093 }
3094
bb21c7ce 3095 return 0;
1da177e4
LT
3096}
3097
c73322d0 3098static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3099{
3100 struct zone *zone;
3101 unsigned long pfmemalloc_reserve = 0;
3102 unsigned long free_pages = 0;
3103 int i;
3104 bool wmark_ok;
3105
c73322d0
JW
3106 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3107 return true;
3108
5515061d
MG
3109 for (i = 0; i <= ZONE_NORMAL; i++) {
3110 zone = &pgdat->node_zones[i];
d450abd8
JW
3111 if (!managed_zone(zone))
3112 continue;
3113
3114 if (!zone_reclaimable_pages(zone))
675becce
MG
3115 continue;
3116
5515061d
MG
3117 pfmemalloc_reserve += min_wmark_pages(zone);
3118 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3119 }
3120
675becce
MG
3121 /* If there are no reserves (unexpected config) then do not throttle */
3122 if (!pfmemalloc_reserve)
3123 return true;
3124
5515061d
MG
3125 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3126
3127 /* kswapd must be awake if processes are being throttled */
3128 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
97a225e6
JK
3129 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3130 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
5644e1fb 3131
5515061d
MG
3132 wake_up_interruptible(&pgdat->kswapd_wait);
3133 }
3134
3135 return wmark_ok;
3136}
3137
3138/*
3139 * Throttle direct reclaimers if backing storage is backed by the network
3140 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3141 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3142 * when the low watermark is reached.
3143 *
3144 * Returns true if a fatal signal was delivered during throttling. If this
3145 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3146 */
50694c28 3147static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3148 nodemask_t *nodemask)
3149{
675becce 3150 struct zoneref *z;
5515061d 3151 struct zone *zone;
675becce 3152 pg_data_t *pgdat = NULL;
5515061d
MG
3153
3154 /*
3155 * Kernel threads should not be throttled as they may be indirectly
3156 * responsible for cleaning pages necessary for reclaim to make forward
3157 * progress. kjournald for example may enter direct reclaim while
3158 * committing a transaction where throttling it could forcing other
3159 * processes to block on log_wait_commit().
3160 */
3161 if (current->flags & PF_KTHREAD)
50694c28
MG
3162 goto out;
3163
3164 /*
3165 * If a fatal signal is pending, this process should not throttle.
3166 * It should return quickly so it can exit and free its memory
3167 */
3168 if (fatal_signal_pending(current))
3169 goto out;
5515061d 3170
675becce
MG
3171 /*
3172 * Check if the pfmemalloc reserves are ok by finding the first node
3173 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3174 * GFP_KERNEL will be required for allocating network buffers when
3175 * swapping over the network so ZONE_HIGHMEM is unusable.
3176 *
3177 * Throttling is based on the first usable node and throttled processes
3178 * wait on a queue until kswapd makes progress and wakes them. There
3179 * is an affinity then between processes waking up and where reclaim
3180 * progress has been made assuming the process wakes on the same node.
3181 * More importantly, processes running on remote nodes will not compete
3182 * for remote pfmemalloc reserves and processes on different nodes
3183 * should make reasonable progress.
3184 */
3185 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3186 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3187 if (zone_idx(zone) > ZONE_NORMAL)
3188 continue;
3189
3190 /* Throttle based on the first usable node */
3191 pgdat = zone->zone_pgdat;
c73322d0 3192 if (allow_direct_reclaim(pgdat))
675becce
MG
3193 goto out;
3194 break;
3195 }
3196
3197 /* If no zone was usable by the allocation flags then do not throttle */
3198 if (!pgdat)
50694c28 3199 goto out;
5515061d 3200
68243e76
MG
3201 /* Account for the throttling */
3202 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3203
5515061d
MG
3204 /*
3205 * If the caller cannot enter the filesystem, it's possible that it
3206 * is due to the caller holding an FS lock or performing a journal
3207 * transaction in the case of a filesystem like ext[3|4]. In this case,
3208 * it is not safe to block on pfmemalloc_wait as kswapd could be
3209 * blocked waiting on the same lock. Instead, throttle for up to a
3210 * second before continuing.
3211 */
3212 if (!(gfp_mask & __GFP_FS)) {
3213 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3214 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
3215
3216 goto check_pending;
5515061d
MG
3217 }
3218
3219 /* Throttle until kswapd wakes the process */
3220 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 3221 allow_direct_reclaim(pgdat));
50694c28
MG
3222
3223check_pending:
3224 if (fatal_signal_pending(current))
3225 return true;
3226
3227out:
3228 return false;
5515061d
MG
3229}
3230
dac1d27b 3231unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3232 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3233{
33906bc5 3234 unsigned long nr_reclaimed;
66e1707b 3235 struct scan_control sc = {
ee814fe2 3236 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3237 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3238 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3239 .order = order,
3240 .nodemask = nodemask,
3241 .priority = DEF_PRIORITY,
66e1707b 3242 .may_writepage = !laptop_mode,
a6dc60f8 3243 .may_unmap = 1,
2e2e4259 3244 .may_swap = 1,
66e1707b
BS
3245 };
3246
bb451fdf
GT
3247 /*
3248 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3249 * Confirm they are large enough for max values.
3250 */
3251 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3252 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3253 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3254
5515061d 3255 /*
50694c28
MG
3256 * Do not enter reclaim if fatal signal was delivered while throttled.
3257 * 1 is returned so that the page allocator does not OOM kill at this
3258 * point.
5515061d 3259 */
f2f43e56 3260 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3261 return 1;
3262
1732d2b0 3263 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3264 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3265
3115cd91 3266 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3267
3268 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 3269 set_task_reclaim_state(current, NULL);
33906bc5
MG
3270
3271 return nr_reclaimed;
66e1707b
BS
3272}
3273
c255a458 3274#ifdef CONFIG_MEMCG
66e1707b 3275
d2e5fb92 3276/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 3277unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3278 gfp_t gfp_mask, bool noswap,
ef8f2327 3279 pg_data_t *pgdat,
0ae5e89c 3280 unsigned long *nr_scanned)
4e416953 3281{
afaf07a6 3282 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4e416953 3283 struct scan_control sc = {
b8f5c566 3284 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3285 .target_mem_cgroup = memcg,
4e416953
BS
3286 .may_writepage = !laptop_mode,
3287 .may_unmap = 1,
b2e18757 3288 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3289 .may_swap = !noswap,
4e416953 3290 };
0ae5e89c 3291
d2e5fb92
MH
3292 WARN_ON_ONCE(!current->reclaim_state);
3293
4e416953
BS
3294 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3295 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3296
9e3b2f8c 3297 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3298 sc.gfp_mask);
bdce6d9e 3299
4e416953
BS
3300 /*
3301 * NOTE: Although we can get the priority field, using it
3302 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3303 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3304 * will pick up pages from other mem cgroup's as well. We hack
3305 * the priority and make it zero.
3306 */
afaf07a6 3307 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
3308
3309 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3310
0ae5e89c 3311 *nr_scanned = sc.nr_scanned;
0308f7cf 3312
4e416953
BS
3313 return sc.nr_reclaimed;
3314}
3315
72835c86 3316unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3317 unsigned long nr_pages,
a7885eb8 3318 gfp_t gfp_mask,
b70a2a21 3319 bool may_swap)
66e1707b 3320{
bdce6d9e 3321 unsigned long nr_reclaimed;
499118e9 3322 unsigned int noreclaim_flag;
66e1707b 3323 struct scan_control sc = {
b70a2a21 3324 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3325 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3326 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3327 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3328 .target_mem_cgroup = memcg,
3329 .priority = DEF_PRIORITY,
3330 .may_writepage = !laptop_mode,
3331 .may_unmap = 1,
b70a2a21 3332 .may_swap = may_swap,
a09ed5e0 3333 };
889976db 3334 /*
fa40d1ee
SB
3335 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3336 * equal pressure on all the nodes. This is based on the assumption that
3337 * the reclaim does not bail out early.
889976db 3338 */
fa40d1ee 3339 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
889976db 3340
fa40d1ee 3341 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3342 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
499118e9 3343 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3344
3115cd91 3345 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3346
499118e9 3347 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e 3348 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 3349 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
3350
3351 return nr_reclaimed;
66e1707b
BS
3352}
3353#endif
3354
1d82de61 3355static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3356 struct scan_control *sc)
f16015fb 3357{
b95a2f2d 3358 struct mem_cgroup *memcg;
b91ac374 3359 struct lruvec *lruvec;
f16015fb 3360
b95a2f2d
JW
3361 if (!total_swap_pages)
3362 return;
3363
b91ac374
JW
3364 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3365 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3366 return;
3367
b95a2f2d
JW
3368 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3369 do {
b91ac374
JW
3370 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3371 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3372 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3373 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3374 } while (memcg);
f16015fb
JW
3375}
3376
97a225e6 3377static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
1c30844d
MG
3378{
3379 int i;
3380 struct zone *zone;
3381
3382 /*
3383 * Check for watermark boosts top-down as the higher zones
3384 * are more likely to be boosted. Both watermarks and boosts
1eba09c1 3385 * should not be checked at the same time as reclaim would
1c30844d
MG
3386 * start prematurely when there is no boosting and a lower
3387 * zone is balanced.
3388 */
97a225e6 3389 for (i = highest_zoneidx; i >= 0; i--) {
1c30844d
MG
3390 zone = pgdat->node_zones + i;
3391 if (!managed_zone(zone))
3392 continue;
3393
3394 if (zone->watermark_boost)
3395 return true;
3396 }
3397
3398 return false;
3399}
3400
e716f2eb
MG
3401/*
3402 * Returns true if there is an eligible zone balanced for the request order
97a225e6 3403 * and highest_zoneidx
e716f2eb 3404 */
97a225e6 3405static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
60cefed4 3406{
e716f2eb
MG
3407 int i;
3408 unsigned long mark = -1;
3409 struct zone *zone;
60cefed4 3410
1c30844d
MG
3411 /*
3412 * Check watermarks bottom-up as lower zones are more likely to
3413 * meet watermarks.
3414 */
97a225e6 3415 for (i = 0; i <= highest_zoneidx; i++) {
e716f2eb 3416 zone = pgdat->node_zones + i;
6256c6b4 3417
e716f2eb
MG
3418 if (!managed_zone(zone))
3419 continue;
3420
3421 mark = high_wmark_pages(zone);
97a225e6 3422 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
e716f2eb
MG
3423 return true;
3424 }
3425
3426 /*
97a225e6 3427 * If a node has no populated zone within highest_zoneidx, it does not
e716f2eb
MG
3428 * need balancing by definition. This can happen if a zone-restricted
3429 * allocation tries to wake a remote kswapd.
3430 */
3431 if (mark == -1)
3432 return true;
3433
3434 return false;
60cefed4
JW
3435}
3436
631b6e08
MG
3437/* Clear pgdat state for congested, dirty or under writeback. */
3438static void clear_pgdat_congested(pg_data_t *pgdat)
3439{
1b05117d
JW
3440 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3441
3442 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
631b6e08
MG
3443 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3444 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3445}
3446
5515061d
MG
3447/*
3448 * Prepare kswapd for sleeping. This verifies that there are no processes
3449 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3450 *
3451 * Returns true if kswapd is ready to sleep
3452 */
97a225e6
JK
3453static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3454 int highest_zoneidx)
f50de2d3 3455{
5515061d 3456 /*
9e5e3661 3457 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3458 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3459 * race between when kswapd checks the watermarks and a process gets
3460 * throttled. There is also a potential race if processes get
3461 * throttled, kswapd wakes, a large process exits thereby balancing the
3462 * zones, which causes kswapd to exit balance_pgdat() before reaching
3463 * the wake up checks. If kswapd is going to sleep, no process should
3464 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3465 * the wake up is premature, processes will wake kswapd and get
3466 * throttled again. The difference from wake ups in balance_pgdat() is
3467 * that here we are under prepare_to_wait().
5515061d 3468 */
9e5e3661
VB
3469 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3470 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3471
c73322d0
JW
3472 /* Hopeless node, leave it to direct reclaim */
3473 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3474 return true;
3475
97a225e6 3476 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
e716f2eb
MG
3477 clear_pgdat_congested(pgdat);
3478 return true;
1d82de61
MG
3479 }
3480
333b0a45 3481 return false;
f50de2d3
MG
3482}
3483
75485363 3484/*
1d82de61
MG
3485 * kswapd shrinks a node of pages that are at or below the highest usable
3486 * zone that is currently unbalanced.
b8e83b94
MG
3487 *
3488 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3489 * reclaim or if the lack of progress was due to pages under writeback.
3490 * This is used to determine if the scanning priority needs to be raised.
75485363 3491 */
1d82de61 3492static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3493 struct scan_control *sc)
75485363 3494{
1d82de61
MG
3495 struct zone *zone;
3496 int z;
75485363 3497
1d82de61
MG
3498 /* Reclaim a number of pages proportional to the number of zones */
3499 sc->nr_to_reclaim = 0;
970a39a3 3500 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3501 zone = pgdat->node_zones + z;
6aa303de 3502 if (!managed_zone(zone))
1d82de61 3503 continue;
7c954f6d 3504
1d82de61
MG
3505 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3506 }
7c954f6d
MG
3507
3508 /*
1d82de61
MG
3509 * Historically care was taken to put equal pressure on all zones but
3510 * now pressure is applied based on node LRU order.
7c954f6d 3511 */
970a39a3 3512 shrink_node(pgdat, sc);
283aba9f 3513
7c954f6d 3514 /*
1d82de61
MG
3515 * Fragmentation may mean that the system cannot be rebalanced for
3516 * high-order allocations. If twice the allocation size has been
3517 * reclaimed then recheck watermarks only at order-0 to prevent
3518 * excessive reclaim. Assume that a process requested a high-order
3519 * can direct reclaim/compact.
7c954f6d 3520 */
9861a62c 3521 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3522 sc->order = 0;
7c954f6d 3523
b8e83b94 3524 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3525}
3526
1da177e4 3527/*
1d82de61
MG
3528 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3529 * that are eligible for use by the caller until at least one zone is
3530 * balanced.
1da177e4 3531 *
1d82de61 3532 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3533 *
3534 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3535 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 3536 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
3537 * or lower is eligible for reclaim until at least one usable zone is
3538 * balanced.
1da177e4 3539 */
97a225e6 3540static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
1da177e4 3541{
1da177e4 3542 int i;
0608f43d
AM
3543 unsigned long nr_soft_reclaimed;
3544 unsigned long nr_soft_scanned;
eb414681 3545 unsigned long pflags;
1c30844d
MG
3546 unsigned long nr_boost_reclaim;
3547 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3548 bool boosted;
1d82de61 3549 struct zone *zone;
179e9639
AM
3550 struct scan_control sc = {
3551 .gfp_mask = GFP_KERNEL,
ee814fe2 3552 .order = order,
a6dc60f8 3553 .may_unmap = 1,
179e9639 3554 };
93781325 3555
1732d2b0 3556 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 3557 psi_memstall_enter(&pflags);
93781325
OS
3558 __fs_reclaim_acquire();
3559
f8891e5e 3560 count_vm_event(PAGEOUTRUN);
1da177e4 3561
1c30844d
MG
3562 /*
3563 * Account for the reclaim boost. Note that the zone boost is left in
3564 * place so that parallel allocations that are near the watermark will
3565 * stall or direct reclaim until kswapd is finished.
3566 */
3567 nr_boost_reclaim = 0;
97a225e6 3568 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
3569 zone = pgdat->node_zones + i;
3570 if (!managed_zone(zone))
3571 continue;
3572
3573 nr_boost_reclaim += zone->watermark_boost;
3574 zone_boosts[i] = zone->watermark_boost;
3575 }
3576 boosted = nr_boost_reclaim;
3577
3578restart:
3579 sc.priority = DEF_PRIORITY;
9e3b2f8c 3580 do {
c73322d0 3581 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 3582 bool raise_priority = true;
1c30844d 3583 bool balanced;
93781325 3584 bool ret;
b8e83b94 3585
97a225e6 3586 sc.reclaim_idx = highest_zoneidx;
1da177e4 3587
86c79f6b 3588 /*
84c7a777
MG
3589 * If the number of buffer_heads exceeds the maximum allowed
3590 * then consider reclaiming from all zones. This has a dual
3591 * purpose -- on 64-bit systems it is expected that
3592 * buffer_heads are stripped during active rotation. On 32-bit
3593 * systems, highmem pages can pin lowmem memory and shrinking
3594 * buffers can relieve lowmem pressure. Reclaim may still not
3595 * go ahead if all eligible zones for the original allocation
3596 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3597 */
3598 if (buffer_heads_over_limit) {
3599 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3600 zone = pgdat->node_zones + i;
6aa303de 3601 if (!managed_zone(zone))
86c79f6b 3602 continue;
cc715d99 3603
970a39a3 3604 sc.reclaim_idx = i;
e1dbeda6 3605 break;
1da177e4 3606 }
1da177e4 3607 }
dafcb73e 3608
86c79f6b 3609 /*
1c30844d
MG
3610 * If the pgdat is imbalanced then ignore boosting and preserve
3611 * the watermarks for a later time and restart. Note that the
3612 * zone watermarks will be still reset at the end of balancing
3613 * on the grounds that the normal reclaim should be enough to
3614 * re-evaluate if boosting is required when kswapd next wakes.
3615 */
97a225e6 3616 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
1c30844d
MG
3617 if (!balanced && nr_boost_reclaim) {
3618 nr_boost_reclaim = 0;
3619 goto restart;
3620 }
3621
3622 /*
3623 * If boosting is not active then only reclaim if there are no
3624 * eligible zones. Note that sc.reclaim_idx is not used as
3625 * buffer_heads_over_limit may have adjusted it.
86c79f6b 3626 */
1c30844d 3627 if (!nr_boost_reclaim && balanced)
e716f2eb 3628 goto out;
e1dbeda6 3629
1c30844d
MG
3630 /* Limit the priority of boosting to avoid reclaim writeback */
3631 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3632 raise_priority = false;
3633
3634 /*
3635 * Do not writeback or swap pages for boosted reclaim. The
3636 * intent is to relieve pressure not issue sub-optimal IO
3637 * from reclaim context. If no pages are reclaimed, the
3638 * reclaim will be aborted.
3639 */
3640 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3641 sc.may_swap = !nr_boost_reclaim;
1c30844d 3642
1d82de61
MG
3643 /*
3644 * Do some background aging of the anon list, to give
3645 * pages a chance to be referenced before reclaiming. All
3646 * pages are rotated regardless of classzone as this is
3647 * about consistent aging.
3648 */
ef8f2327 3649 age_active_anon(pgdat, &sc);
1d82de61 3650
b7ea3c41
MG
3651 /*
3652 * If we're getting trouble reclaiming, start doing writepage
3653 * even in laptop mode.
3654 */
047d72c3 3655 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3656 sc.may_writepage = 1;
3657
1d82de61
MG
3658 /* Call soft limit reclaim before calling shrink_node. */
3659 sc.nr_scanned = 0;
3660 nr_soft_scanned = 0;
ef8f2327 3661 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3662 sc.gfp_mask, &nr_soft_scanned);
3663 sc.nr_reclaimed += nr_soft_reclaimed;
3664
1da177e4 3665 /*
1d82de61
MG
3666 * There should be no need to raise the scanning priority if
3667 * enough pages are already being scanned that that high
3668 * watermark would be met at 100% efficiency.
1da177e4 3669 */
970a39a3 3670 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3671 raise_priority = false;
5515061d
MG
3672
3673 /*
3674 * If the low watermark is met there is no need for processes
3675 * to be throttled on pfmemalloc_wait as they should not be
3676 * able to safely make forward progress. Wake them
3677 */
3678 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3679 allow_direct_reclaim(pgdat))
cfc51155 3680 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3681
b8e83b94 3682 /* Check if kswapd should be suspending */
93781325
OS
3683 __fs_reclaim_release();
3684 ret = try_to_freeze();
3685 __fs_reclaim_acquire();
3686 if (ret || kthread_should_stop())
b8e83b94 3687 break;
8357376d 3688
73ce02e9 3689 /*
b8e83b94
MG
3690 * Raise priority if scanning rate is too low or there was no
3691 * progress in reclaiming pages
73ce02e9 3692 */
c73322d0 3693 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
3694 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3695
3696 /*
3697 * If reclaim made no progress for a boost, stop reclaim as
3698 * IO cannot be queued and it could be an infinite loop in
3699 * extreme circumstances.
3700 */
3701 if (nr_boost_reclaim && !nr_reclaimed)
3702 break;
3703
c73322d0 3704 if (raise_priority || !nr_reclaimed)
b8e83b94 3705 sc.priority--;
1d82de61 3706 } while (sc.priority >= 1);
1da177e4 3707
c73322d0
JW
3708 if (!sc.nr_reclaimed)
3709 pgdat->kswapd_failures++;
3710
b8e83b94 3711out:
1c30844d
MG
3712 /* If reclaim was boosted, account for the reclaim done in this pass */
3713 if (boosted) {
3714 unsigned long flags;
3715
97a225e6 3716 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
3717 if (!zone_boosts[i])
3718 continue;
3719
3720 /* Increments are under the zone lock */
3721 zone = pgdat->node_zones + i;
3722 spin_lock_irqsave(&zone->lock, flags);
3723 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3724 spin_unlock_irqrestore(&zone->lock, flags);
3725 }
3726
3727 /*
3728 * As there is now likely space, wakeup kcompact to defragment
3729 * pageblocks.
3730 */
97a225e6 3731 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
1c30844d
MG
3732 }
3733
2a2e4885 3734 snapshot_refaults(NULL, pgdat);
93781325 3735 __fs_reclaim_release();
eb414681 3736 psi_memstall_leave(&pflags);
1732d2b0 3737 set_task_reclaim_state(current, NULL);
e5ca8071 3738
0abdee2b 3739 /*
1d82de61
MG
3740 * Return the order kswapd stopped reclaiming at as
3741 * prepare_kswapd_sleep() takes it into account. If another caller
3742 * entered the allocator slow path while kswapd was awake, order will
3743 * remain at the higher level.
0abdee2b 3744 */
1d82de61 3745 return sc.order;
1da177e4
LT
3746}
3747
e716f2eb 3748/*
97a225e6
JK
3749 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3750 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3751 * not a valid index then either kswapd runs for first time or kswapd couldn't
3752 * sleep after previous reclaim attempt (node is still unbalanced). In that
3753 * case return the zone index of the previous kswapd reclaim cycle.
e716f2eb 3754 */
97a225e6
JK
3755static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3756 enum zone_type prev_highest_zoneidx)
e716f2eb 3757{
97a225e6 3758 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 3759
97a225e6 3760 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
e716f2eb
MG
3761}
3762
38087d9b 3763static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
97a225e6 3764 unsigned int highest_zoneidx)
f0bc0a60
KM
3765{
3766 long remaining = 0;
3767 DEFINE_WAIT(wait);
3768
3769 if (freezing(current) || kthread_should_stop())
3770 return;
3771
3772 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3773
333b0a45
SG
3774 /*
3775 * Try to sleep for a short interval. Note that kcompactd will only be
3776 * woken if it is possible to sleep for a short interval. This is
3777 * deliberate on the assumption that if reclaim cannot keep an
3778 * eligible zone balanced that it's also unlikely that compaction will
3779 * succeed.
3780 */
97a225e6 3781 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
fd901c95
VB
3782 /*
3783 * Compaction records what page blocks it recently failed to
3784 * isolate pages from and skips them in the future scanning.
3785 * When kswapd is going to sleep, it is reasonable to assume
3786 * that pages and compaction may succeed so reset the cache.
3787 */
3788 reset_isolation_suitable(pgdat);
3789
3790 /*
3791 * We have freed the memory, now we should compact it to make
3792 * allocation of the requested order possible.
3793 */
97a225e6 3794 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
fd901c95 3795
f0bc0a60 3796 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3797
3798 /*
97a225e6 3799 * If woken prematurely then reset kswapd_highest_zoneidx and
38087d9b
MG
3800 * order. The values will either be from a wakeup request or
3801 * the previous request that slept prematurely.
3802 */
3803 if (remaining) {
97a225e6
JK
3804 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3805 kswapd_highest_zoneidx(pgdat,
3806 highest_zoneidx));
5644e1fb
QC
3807
3808 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3809 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
38087d9b
MG
3810 }
3811
f0bc0a60
KM
3812 finish_wait(&pgdat->kswapd_wait, &wait);
3813 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3814 }
3815
3816 /*
3817 * After a short sleep, check if it was a premature sleep. If not, then
3818 * go fully to sleep until explicitly woken up.
3819 */
d9f21d42 3820 if (!remaining &&
97a225e6 3821 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
f0bc0a60
KM
3822 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3823
3824 /*
3825 * vmstat counters are not perfectly accurate and the estimated
3826 * value for counters such as NR_FREE_PAGES can deviate from the
3827 * true value by nr_online_cpus * threshold. To avoid the zone
3828 * watermarks being breached while under pressure, we reduce the
3829 * per-cpu vmstat threshold while kswapd is awake and restore
3830 * them before going back to sleep.
3831 */
3832 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3833
3834 if (!kthread_should_stop())
3835 schedule();
3836
f0bc0a60
KM
3837 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3838 } else {
3839 if (remaining)
3840 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3841 else
3842 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3843 }
3844 finish_wait(&pgdat->kswapd_wait, &wait);
3845}
3846
1da177e4
LT
3847/*
3848 * The background pageout daemon, started as a kernel thread
4f98a2fe 3849 * from the init process.
1da177e4
LT
3850 *
3851 * This basically trickles out pages so that we have _some_
3852 * free memory available even if there is no other activity
3853 * that frees anything up. This is needed for things like routing
3854 * etc, where we otherwise might have all activity going on in
3855 * asynchronous contexts that cannot page things out.
3856 *
3857 * If there are applications that are active memory-allocators
3858 * (most normal use), this basically shouldn't matter.
3859 */
3860static int kswapd(void *p)
3861{
e716f2eb 3862 unsigned int alloc_order, reclaim_order;
97a225e6 3863 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
1da177e4
LT
3864 pg_data_t *pgdat = (pg_data_t*)p;
3865 struct task_struct *tsk = current;
a70f7302 3866 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3867
174596a0 3868 if (!cpumask_empty(cpumask))
c5f59f08 3869 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3870
3871 /*
3872 * Tell the memory management that we're a "memory allocator",
3873 * and that if we need more memory we should get access to it
3874 * regardless (see "__alloc_pages()"). "kswapd" should
3875 * never get caught in the normal page freeing logic.
3876 *
3877 * (Kswapd normally doesn't need memory anyway, but sometimes
3878 * you need a small amount of memory in order to be able to
3879 * page out something else, and this flag essentially protects
3880 * us from recursively trying to free more memory as we're
3881 * trying to free the first piece of memory in the first place).
3882 */
930d9152 3883 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3884 set_freezable();
1da177e4 3885
5644e1fb 3886 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 3887 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 3888 for ( ; ; ) {
6f6313d4 3889 bool ret;
3e1d1d28 3890
5644e1fb 3891 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
3892 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3893 highest_zoneidx);
e716f2eb 3894
38087d9b
MG
3895kswapd_try_sleep:
3896 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
97a225e6 3897 highest_zoneidx);
215ddd66 3898
97a225e6 3899 /* Read the new order and highest_zoneidx */
2b47a24c 3900 alloc_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
3901 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3902 highest_zoneidx);
5644e1fb 3903 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 3904 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 3905
8fe23e05
DR
3906 ret = try_to_freeze();
3907 if (kthread_should_stop())
3908 break;
3909
3910 /*
3911 * We can speed up thawing tasks if we don't call balance_pgdat
3912 * after returning from the refrigerator
3913 */
38087d9b
MG
3914 if (ret)
3915 continue;
3916
3917 /*
3918 * Reclaim begins at the requested order but if a high-order
3919 * reclaim fails then kswapd falls back to reclaiming for
3920 * order-0. If that happens, kswapd will consider sleeping
3921 * for the order it finished reclaiming at (reclaim_order)
3922 * but kcompactd is woken to compact for the original
3923 * request (alloc_order).
3924 */
97a225e6 3925 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
e5146b12 3926 alloc_order);
97a225e6
JK
3927 reclaim_order = balance_pgdat(pgdat, alloc_order,
3928 highest_zoneidx);
38087d9b
MG
3929 if (reclaim_order < alloc_order)
3930 goto kswapd_try_sleep;
1da177e4 3931 }
b0a8cc58 3932
71abdc15 3933 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
71abdc15 3934
1da177e4
LT
3935 return 0;
3936}
3937
3938/*
5ecd9d40
DR
3939 * A zone is low on free memory or too fragmented for high-order memory. If
3940 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3941 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3942 * has failed or is not needed, still wake up kcompactd if only compaction is
3943 * needed.
1da177e4 3944 */
5ecd9d40 3945void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
97a225e6 3946 enum zone_type highest_zoneidx)
1da177e4
LT
3947{
3948 pg_data_t *pgdat;
5644e1fb 3949 enum zone_type curr_idx;
1da177e4 3950
6aa303de 3951 if (!managed_zone(zone))
1da177e4
LT
3952 return;
3953
5ecd9d40 3954 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 3955 return;
5644e1fb 3956
88f5acf8 3957 pgdat = zone->zone_pgdat;
97a225e6 3958 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 3959
97a225e6
JK
3960 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
3961 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
5644e1fb
QC
3962
3963 if (READ_ONCE(pgdat->kswapd_order) < order)
3964 WRITE_ONCE(pgdat->kswapd_order, order);
dffcac2c 3965
8d0986e2 3966 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3967 return;
e1a55637 3968
5ecd9d40
DR
3969 /* Hopeless node, leave it to direct reclaim if possible */
3970 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
97a225e6
JK
3971 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
3972 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
5ecd9d40
DR
3973 /*
3974 * There may be plenty of free memory available, but it's too
3975 * fragmented for high-order allocations. Wake up kcompactd
3976 * and rely on compaction_suitable() to determine if it's
3977 * needed. If it fails, it will defer subsequent attempts to
3978 * ratelimit its work.
3979 */
3980 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
97a225e6 3981 wakeup_kcompactd(pgdat, order, highest_zoneidx);
e716f2eb 3982 return;
5ecd9d40 3983 }
88f5acf8 3984
97a225e6 3985 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
5ecd9d40 3986 gfp_flags);
8d0986e2 3987 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3988}
3989
c6f37f12 3990#ifdef CONFIG_HIBERNATION
1da177e4 3991/*
7b51755c 3992 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3993 * freed pages.
3994 *
3995 * Rather than trying to age LRUs the aim is to preserve the overall
3996 * LRU order by reclaiming preferentially
3997 * inactive > active > active referenced > active mapped
1da177e4 3998 */
7b51755c 3999unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 4000{
d6277db4 4001 struct scan_control sc = {
ee814fe2 4002 .nr_to_reclaim = nr_to_reclaim,
7b51755c 4003 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 4004 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 4005 .priority = DEF_PRIORITY,
d6277db4 4006 .may_writepage = 1,
ee814fe2
JW
4007 .may_unmap = 1,
4008 .may_swap = 1,
7b51755c 4009 .hibernation_mode = 1,
1da177e4 4010 };
a09ed5e0 4011 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 4012 unsigned long nr_reclaimed;
499118e9 4013 unsigned int noreclaim_flag;
1da177e4 4014
d92a8cfc 4015 fs_reclaim_acquire(sc.gfp_mask);
93781325 4016 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 4017 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 4018
3115cd91 4019 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 4020
1732d2b0 4021 set_task_reclaim_state(current, NULL);
499118e9 4022 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4023 fs_reclaim_release(sc.gfp_mask);
d6277db4 4024
7b51755c 4025 return nr_reclaimed;
1da177e4 4026}
c6f37f12 4027#endif /* CONFIG_HIBERNATION */
1da177e4 4028
3218ae14
YG
4029/*
4030 * This kswapd start function will be called by init and node-hot-add.
4031 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4032 */
4033int kswapd_run(int nid)
4034{
4035 pg_data_t *pgdat = NODE_DATA(nid);
4036 int ret = 0;
4037
4038 if (pgdat->kswapd)
4039 return 0;
4040
4041 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4042 if (IS_ERR(pgdat->kswapd)) {
4043 /* failure at boot is fatal */
c6202adf 4044 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
4045 pr_err("Failed to start kswapd on node %d\n", nid);
4046 ret = PTR_ERR(pgdat->kswapd);
d72515b8 4047 pgdat->kswapd = NULL;
3218ae14
YG
4048 }
4049 return ret;
4050}
4051
8fe23e05 4052/*
d8adde17 4053 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 4054 * hold mem_hotplug_begin/end().
8fe23e05
DR
4055 */
4056void kswapd_stop(int nid)
4057{
4058 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4059
d8adde17 4060 if (kswapd) {
8fe23e05 4061 kthread_stop(kswapd);
d8adde17
JL
4062 NODE_DATA(nid)->kswapd = NULL;
4063 }
8fe23e05
DR
4064}
4065
1da177e4
LT
4066static int __init kswapd_init(void)
4067{
6b700b5b 4068 int nid;
69e05944 4069
1da177e4 4070 swap_setup();
48fb2e24 4071 for_each_node_state(nid, N_MEMORY)
3218ae14 4072 kswapd_run(nid);
1da177e4
LT
4073 return 0;
4074}
4075
4076module_init(kswapd_init)
9eeff239
CL
4077
4078#ifdef CONFIG_NUMA
4079/*
a5f5f91d 4080 * Node reclaim mode
9eeff239 4081 *
a5f5f91d 4082 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4083 * the watermarks.
9eeff239 4084 */
a5f5f91d 4085int node_reclaim_mode __read_mostly;
9eeff239 4086
648b5cf3
AS
4087#define RECLAIM_WRITE (1<<0) /* Writeout pages during reclaim */
4088#define RECLAIM_UNMAP (1<<1) /* Unmap pages during reclaim */
1b2ffb78 4089
a92f7126 4090/*
a5f5f91d 4091 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4092 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4093 * a zone.
4094 */
a5f5f91d 4095#define NODE_RECLAIM_PRIORITY 4
a92f7126 4096
9614634f 4097/*
a5f5f91d 4098 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4099 * occur.
4100 */
4101int sysctl_min_unmapped_ratio = 1;
4102
0ff38490
CL
4103/*
4104 * If the number of slab pages in a zone grows beyond this percentage then
4105 * slab reclaim needs to occur.
4106 */
4107int sysctl_min_slab_ratio = 5;
4108
11fb9989 4109static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4110{
11fb9989
MG
4111 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4112 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4113 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4114
4115 /*
4116 * It's possible for there to be more file mapped pages than
4117 * accounted for by the pages on the file LRU lists because
4118 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4119 */
4120 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4121}
4122
4123/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4124static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4125{
d031a157
AM
4126 unsigned long nr_pagecache_reclaimable;
4127 unsigned long delta = 0;
90afa5de
MG
4128
4129 /*
95bbc0c7 4130 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4131 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4132 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4133 * a better estimate
4134 */
a5f5f91d
MG
4135 if (node_reclaim_mode & RECLAIM_UNMAP)
4136 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4137 else
a5f5f91d 4138 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4139
4140 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4141 if (!(node_reclaim_mode & RECLAIM_WRITE))
4142 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4143
4144 /* Watch for any possible underflows due to delta */
4145 if (unlikely(delta > nr_pagecache_reclaimable))
4146 delta = nr_pagecache_reclaimable;
4147
4148 return nr_pagecache_reclaimable - delta;
4149}
4150
9eeff239 4151/*
a5f5f91d 4152 * Try to free up some pages from this node through reclaim.
9eeff239 4153 */
a5f5f91d 4154static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4155{
7fb2d46d 4156 /* Minimum pages needed in order to stay on node */
69e05944 4157 const unsigned long nr_pages = 1 << order;
9eeff239 4158 struct task_struct *p = current;
499118e9 4159 unsigned int noreclaim_flag;
179e9639 4160 struct scan_control sc = {
62b726c1 4161 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4162 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4163 .order = order,
a5f5f91d
MG
4164 .priority = NODE_RECLAIM_PRIORITY,
4165 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4166 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4167 .may_swap = 1,
f2f43e56 4168 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4169 };
9eeff239 4170
132bb8cf
YS
4171 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4172 sc.gfp_mask);
4173
9eeff239 4174 cond_resched();
93781325 4175 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4176 /*
95bbc0c7 4177 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4178 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 4179 * and RECLAIM_UNMAP.
d4f7796e 4180 */
499118e9
VB
4181 noreclaim_flag = memalloc_noreclaim_save();
4182 p->flags |= PF_SWAPWRITE;
1732d2b0 4183 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 4184
a5f5f91d 4185 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 4186 /*
894befec 4187 * Free memory by calling shrink node with increasing
0ff38490
CL
4188 * priorities until we have enough memory freed.
4189 */
0ff38490 4190 do {
970a39a3 4191 shrink_node(pgdat, &sc);
9e3b2f8c 4192 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4193 }
c84db23c 4194
1732d2b0 4195 set_task_reclaim_state(p, NULL);
499118e9
VB
4196 current->flags &= ~PF_SWAPWRITE;
4197 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4198 fs_reclaim_release(sc.gfp_mask);
132bb8cf
YS
4199
4200 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4201
a79311c1 4202 return sc.nr_reclaimed >= nr_pages;
9eeff239 4203}
179e9639 4204
a5f5f91d 4205int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4206{
d773ed6b 4207 int ret;
179e9639
AM
4208
4209 /*
a5f5f91d 4210 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4211 * slab pages if we are over the defined limits.
34aa1330 4212 *
9614634f
CL
4213 * A small portion of unmapped file backed pages is needed for
4214 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4215 * thrown out if the node is overallocated. So we do not reclaim
4216 * if less than a specified percentage of the node is used by
9614634f 4217 * unmapped file backed pages.
179e9639 4218 */
a5f5f91d 4219 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
d42f3245
RG
4220 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4221 pgdat->min_slab_pages)
a5f5f91d 4222 return NODE_RECLAIM_FULL;
179e9639
AM
4223
4224 /*
d773ed6b 4225 * Do not scan if the allocation should not be delayed.
179e9639 4226 */
d0164adc 4227 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4228 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4229
4230 /*
a5f5f91d 4231 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4232 * have associated processors. This will favor the local processor
4233 * over remote processors and spread off node memory allocations
4234 * as wide as possible.
4235 */
a5f5f91d
MG
4236 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4237 return NODE_RECLAIM_NOSCAN;
d773ed6b 4238
a5f5f91d
MG
4239 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4240 return NODE_RECLAIM_NOSCAN;
fa5e084e 4241
a5f5f91d
MG
4242 ret = __node_reclaim(pgdat, gfp_mask, order);
4243 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4244
24cf7251
MG
4245 if (!ret)
4246 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4247
d773ed6b 4248 return ret;
179e9639 4249}
9eeff239 4250#endif
894bc310 4251
89e004ea 4252/**
64e3d12f
KHY
4253 * check_move_unevictable_pages - check pages for evictability and move to
4254 * appropriate zone lru list
4255 * @pvec: pagevec with lru pages to check
89e004ea 4256 *
64e3d12f
KHY
4257 * Checks pages for evictability, if an evictable page is in the unevictable
4258 * lru list, moves it to the appropriate evictable lru list. This function
4259 * should be only used for lru pages.
89e004ea 4260 */
64e3d12f 4261void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4262{
6168d0da 4263 struct lruvec *lruvec = NULL;
24513264
HD
4264 int pgscanned = 0;
4265 int pgrescued = 0;
4266 int i;
89e004ea 4267
64e3d12f
KHY
4268 for (i = 0; i < pvec->nr; i++) {
4269 struct page *page = pvec->pages[i];
8d8869ca
HD
4270 int nr_pages;
4271
4272 if (PageTransTail(page))
4273 continue;
4274
4275 nr_pages = thp_nr_pages(page);
4276 pgscanned += nr_pages;
89e004ea 4277
d25b5bd8
AS
4278 /* block memcg migration during page moving between lru */
4279 if (!TestClearPageLRU(page))
4280 continue;
4281
2a5e4e34 4282 lruvec = relock_page_lruvec_irq(page, lruvec);
d25b5bd8 4283 if (page_evictable(page) && PageUnevictable(page)) {
46ae6b2c 4284 del_page_from_lru_list(page, lruvec);
24513264 4285 ClearPageUnevictable(page);
3a9c9788 4286 add_page_to_lru_list(page, lruvec);
8d8869ca 4287 pgrescued += nr_pages;
89e004ea 4288 }
d25b5bd8 4289 SetPageLRU(page);
24513264 4290 }
89e004ea 4291
6168d0da 4292 if (lruvec) {
24513264
HD
4293 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4294 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
6168d0da 4295 unlock_page_lruvec_irq(lruvec);
d25b5bd8
AS
4296 } else if (pgscanned) {
4297 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
89e004ea 4298 }
89e004ea 4299}
64e3d12f 4300EXPORT_SYMBOL_GPL(check_move_unevictable_pages);