]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmscan.c
mm/memcg: use vm_swappiness from target memory cgroup
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
1da177e4
LT
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
3e7d3449 34#include <linux/compaction.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
929bea7c 43#include <linux/oom.h>
268bb0ce 44#include <linux/prefetch.h>
1da177e4
LT
45
46#include <asm/tlbflush.h>
47#include <asm/div64.h>
48
49#include <linux/swapops.h>
50
0f8053a5
NP
51#include "internal.h"
52
33906bc5
MG
53#define CREATE_TRACE_POINTS
54#include <trace/events/vmscan.h>
55
1da177e4 56struct scan_control {
1da177e4
LT
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
59
a79311c1
RR
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
62
22fba335
KM
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
7b51755c
KM
66 unsigned long hibernation_mode;
67
1da177e4 68 /* This context's GFP mask */
6daa0e28 69 gfp_t gfp_mask;
1da177e4
LT
70
71 int may_writepage;
72
a6dc60f8
JW
73 /* Can mapped pages be reclaimed? */
74 int may_unmap;
f1fd1067 75
2e2e4259
KM
76 /* Can pages be swapped as part of reclaim? */
77 int may_swap;
78
5ad333eb 79 int order;
66e1707b 80
f16015fb
JW
81 /*
82 * The memory cgroup that hit its limit and as a result is the
83 * primary target of this reclaim invocation.
84 */
85 struct mem_cgroup *target_mem_cgroup;
66e1707b 86
327c0e96
KH
87 /*
88 * Nodemask of nodes allowed by the caller. If NULL, all nodes
89 * are scanned.
90 */
91 nodemask_t *nodemask;
1da177e4
LT
92};
93
f16015fb
JW
94struct mem_cgroup_zone {
95 struct mem_cgroup *mem_cgroup;
96 struct zone *zone;
97};
98
1da177e4
LT
99#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100
101#ifdef ARCH_HAS_PREFETCH
102#define prefetch_prev_lru_page(_page, _base, _field) \
103 do { \
104 if ((_page)->lru.prev != _base) { \
105 struct page *prev; \
106 \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetch(&prev->_field); \
109 } \
110 } while (0)
111#else
112#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113#endif
114
115#ifdef ARCH_HAS_PREFETCHW
116#define prefetchw_prev_lru_page(_page, _base, _field) \
117 do { \
118 if ((_page)->lru.prev != _base) { \
119 struct page *prev; \
120 \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetchw(&prev->_field); \
123 } \
124 } while (0)
125#else
126#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127#endif
128
129/*
130 * From 0 .. 100. Higher means more swappy.
131 */
132int vm_swappiness = 60;
bd1e22b8 133long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
134
135static LIST_HEAD(shrinker_list);
136static DECLARE_RWSEM(shrinker_rwsem);
137
00f0b825 138#ifdef CONFIG_CGROUP_MEM_RES_CTLR
89b5fae5
JW
139static bool global_reclaim(struct scan_control *sc)
140{
f16015fb 141 return !sc->target_mem_cgroup;
89b5fae5 142}
91a45470 143#else
89b5fae5
JW
144static bool global_reclaim(struct scan_control *sc)
145{
146 return true;
147}
91a45470
KH
148#endif
149
f16015fb 150static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
6e901571 151{
89abfab1 152 return &mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup)->reclaim_stat;
6e901571
KM
153}
154
f16015fb
JW
155static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
156 enum lru_list lru)
c9f299d9 157{
c3c787e8 158 if (!mem_cgroup_disabled())
f16015fb
JW
159 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
160 zone_to_nid(mz->zone),
161 zone_idx(mz->zone),
162 BIT(lru));
a3d8e054 163
f16015fb 164 return zone_page_state(mz->zone, NR_LRU_BASE + lru);
c9f299d9
KM
165}
166
167
1da177e4
LT
168/*
169 * Add a shrinker callback to be called from the vm
170 */
8e1f936b 171void register_shrinker(struct shrinker *shrinker)
1da177e4 172{
83aeeada 173 atomic_long_set(&shrinker->nr_in_batch, 0);
8e1f936b
RR
174 down_write(&shrinker_rwsem);
175 list_add_tail(&shrinker->list, &shrinker_list);
176 up_write(&shrinker_rwsem);
1da177e4 177}
8e1f936b 178EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
179
180/*
181 * Remove one
182 */
8e1f936b 183void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
184{
185 down_write(&shrinker_rwsem);
186 list_del(&shrinker->list);
187 up_write(&shrinker_rwsem);
1da177e4 188}
8e1f936b 189EXPORT_SYMBOL(unregister_shrinker);
1da177e4 190
1495f230
YH
191static inline int do_shrinker_shrink(struct shrinker *shrinker,
192 struct shrink_control *sc,
193 unsigned long nr_to_scan)
194{
195 sc->nr_to_scan = nr_to_scan;
196 return (*shrinker->shrink)(shrinker, sc);
197}
198
1da177e4
LT
199#define SHRINK_BATCH 128
200/*
201 * Call the shrink functions to age shrinkable caches
202 *
203 * Here we assume it costs one seek to replace a lru page and that it also
204 * takes a seek to recreate a cache object. With this in mind we age equal
205 * percentages of the lru and ageable caches. This should balance the seeks
206 * generated by these structures.
207 *
183ff22b 208 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
209 * slab to avoid swapping.
210 *
211 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
212 *
213 * `lru_pages' represents the number of on-LRU pages in all the zones which
214 * are eligible for the caller's allocation attempt. It is used for balancing
215 * slab reclaim versus page reclaim.
b15e0905 216 *
217 * Returns the number of slab objects which we shrunk.
1da177e4 218 */
a09ed5e0 219unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 220 unsigned long nr_pages_scanned,
a09ed5e0 221 unsigned long lru_pages)
1da177e4
LT
222{
223 struct shrinker *shrinker;
69e05944 224 unsigned long ret = 0;
1da177e4 225
1495f230
YH
226 if (nr_pages_scanned == 0)
227 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 228
f06590bd
MK
229 if (!down_read_trylock(&shrinker_rwsem)) {
230 /* Assume we'll be able to shrink next time */
231 ret = 1;
232 goto out;
233 }
1da177e4
LT
234
235 list_for_each_entry(shrinker, &shrinker_list, list) {
236 unsigned long long delta;
635697c6
KK
237 long total_scan;
238 long max_pass;
09576073 239 int shrink_ret = 0;
acf92b48
DC
240 long nr;
241 long new_nr;
e9299f50
DC
242 long batch_size = shrinker->batch ? shrinker->batch
243 : SHRINK_BATCH;
1da177e4 244
635697c6
KK
245 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
246 if (max_pass <= 0)
247 continue;
248
acf92b48
DC
249 /*
250 * copy the current shrinker scan count into a local variable
251 * and zero it so that other concurrent shrinker invocations
252 * don't also do this scanning work.
253 */
83aeeada 254 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
acf92b48
DC
255
256 total_scan = nr;
1495f230 257 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 258 delta *= max_pass;
1da177e4 259 do_div(delta, lru_pages + 1);
acf92b48
DC
260 total_scan += delta;
261 if (total_scan < 0) {
88c3bd70
DR
262 printk(KERN_ERR "shrink_slab: %pF negative objects to "
263 "delete nr=%ld\n",
acf92b48
DC
264 shrinker->shrink, total_scan);
265 total_scan = max_pass;
ea164d73
AA
266 }
267
3567b59a
DC
268 /*
269 * We need to avoid excessive windup on filesystem shrinkers
270 * due to large numbers of GFP_NOFS allocations causing the
271 * shrinkers to return -1 all the time. This results in a large
272 * nr being built up so when a shrink that can do some work
273 * comes along it empties the entire cache due to nr >>>
274 * max_pass. This is bad for sustaining a working set in
275 * memory.
276 *
277 * Hence only allow the shrinker to scan the entire cache when
278 * a large delta change is calculated directly.
279 */
280 if (delta < max_pass / 4)
281 total_scan = min(total_scan, max_pass / 2);
282
ea164d73
AA
283 /*
284 * Avoid risking looping forever due to too large nr value:
285 * never try to free more than twice the estimate number of
286 * freeable entries.
287 */
acf92b48
DC
288 if (total_scan > max_pass * 2)
289 total_scan = max_pass * 2;
1da177e4 290
acf92b48 291 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
292 nr_pages_scanned, lru_pages,
293 max_pass, delta, total_scan);
294
e9299f50 295 while (total_scan >= batch_size) {
b15e0905 296 int nr_before;
1da177e4 297
1495f230
YH
298 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
299 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 300 batch_size);
1da177e4
LT
301 if (shrink_ret == -1)
302 break;
b15e0905 303 if (shrink_ret < nr_before)
304 ret += nr_before - shrink_ret;
e9299f50
DC
305 count_vm_events(SLABS_SCANNED, batch_size);
306 total_scan -= batch_size;
1da177e4
LT
307
308 cond_resched();
309 }
310
acf92b48
DC
311 /*
312 * move the unused scan count back into the shrinker in a
313 * manner that handles concurrent updates. If we exhausted the
314 * scan, there is no need to do an update.
315 */
83aeeada
KK
316 if (total_scan > 0)
317 new_nr = atomic_long_add_return(total_scan,
318 &shrinker->nr_in_batch);
319 else
320 new_nr = atomic_long_read(&shrinker->nr_in_batch);
acf92b48
DC
321
322 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
323 }
324 up_read(&shrinker_rwsem);
f06590bd
MK
325out:
326 cond_resched();
b15e0905 327 return ret;
1da177e4
LT
328}
329
1da177e4
LT
330static inline int is_page_cache_freeable(struct page *page)
331{
ceddc3a5
JW
332 /*
333 * A freeable page cache page is referenced only by the caller
334 * that isolated the page, the page cache radix tree and
335 * optional buffer heads at page->private.
336 */
edcf4748 337 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
338}
339
7d3579e8
KM
340static int may_write_to_queue(struct backing_dev_info *bdi,
341 struct scan_control *sc)
1da177e4 342{
930d9152 343 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
344 return 1;
345 if (!bdi_write_congested(bdi))
346 return 1;
347 if (bdi == current->backing_dev_info)
348 return 1;
349 return 0;
350}
351
352/*
353 * We detected a synchronous write error writing a page out. Probably
354 * -ENOSPC. We need to propagate that into the address_space for a subsequent
355 * fsync(), msync() or close().
356 *
357 * The tricky part is that after writepage we cannot touch the mapping: nothing
358 * prevents it from being freed up. But we have a ref on the page and once
359 * that page is locked, the mapping is pinned.
360 *
361 * We're allowed to run sleeping lock_page() here because we know the caller has
362 * __GFP_FS.
363 */
364static void handle_write_error(struct address_space *mapping,
365 struct page *page, int error)
366{
7eaceacc 367 lock_page(page);
3e9f45bd
GC
368 if (page_mapping(page) == mapping)
369 mapping_set_error(mapping, error);
1da177e4
LT
370 unlock_page(page);
371}
372
04e62a29
CL
373/* possible outcome of pageout() */
374typedef enum {
375 /* failed to write page out, page is locked */
376 PAGE_KEEP,
377 /* move page to the active list, page is locked */
378 PAGE_ACTIVATE,
379 /* page has been sent to the disk successfully, page is unlocked */
380 PAGE_SUCCESS,
381 /* page is clean and locked */
382 PAGE_CLEAN,
383} pageout_t;
384
1da177e4 385/*
1742f19f
AM
386 * pageout is called by shrink_page_list() for each dirty page.
387 * Calls ->writepage().
1da177e4 388 */
c661b078 389static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 390 struct scan_control *sc)
1da177e4
LT
391{
392 /*
393 * If the page is dirty, only perform writeback if that write
394 * will be non-blocking. To prevent this allocation from being
395 * stalled by pagecache activity. But note that there may be
396 * stalls if we need to run get_block(). We could test
397 * PagePrivate for that.
398 *
6aceb53b 399 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
400 * this page's queue, we can perform writeback even if that
401 * will block.
402 *
403 * If the page is swapcache, write it back even if that would
404 * block, for some throttling. This happens by accident, because
405 * swap_backing_dev_info is bust: it doesn't reflect the
406 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
407 */
408 if (!is_page_cache_freeable(page))
409 return PAGE_KEEP;
410 if (!mapping) {
411 /*
412 * Some data journaling orphaned pages can have
413 * page->mapping == NULL while being dirty with clean buffers.
414 */
266cf658 415 if (page_has_private(page)) {
1da177e4
LT
416 if (try_to_free_buffers(page)) {
417 ClearPageDirty(page);
d40cee24 418 printk("%s: orphaned page\n", __func__);
1da177e4
LT
419 return PAGE_CLEAN;
420 }
421 }
422 return PAGE_KEEP;
423 }
424 if (mapping->a_ops->writepage == NULL)
425 return PAGE_ACTIVATE;
0e093d99 426 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
427 return PAGE_KEEP;
428
429 if (clear_page_dirty_for_io(page)) {
430 int res;
431 struct writeback_control wbc = {
432 .sync_mode = WB_SYNC_NONE,
433 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
434 .range_start = 0,
435 .range_end = LLONG_MAX,
1da177e4
LT
436 .for_reclaim = 1,
437 };
438
439 SetPageReclaim(page);
440 res = mapping->a_ops->writepage(page, &wbc);
441 if (res < 0)
442 handle_write_error(mapping, page, res);
994fc28c 443 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
444 ClearPageReclaim(page);
445 return PAGE_ACTIVATE;
446 }
c661b078 447
1da177e4
LT
448 if (!PageWriteback(page)) {
449 /* synchronous write or broken a_ops? */
450 ClearPageReclaim(page);
451 }
23b9da55 452 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 453 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
454 return PAGE_SUCCESS;
455 }
456
457 return PAGE_CLEAN;
458}
459
a649fd92 460/*
e286781d
NP
461 * Same as remove_mapping, but if the page is removed from the mapping, it
462 * gets returned with a refcount of 0.
a649fd92 463 */
e286781d 464static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 465{
28e4d965
NP
466 BUG_ON(!PageLocked(page));
467 BUG_ON(mapping != page_mapping(page));
49d2e9cc 468
19fd6231 469 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 470 /*
0fd0e6b0
NP
471 * The non racy check for a busy page.
472 *
473 * Must be careful with the order of the tests. When someone has
474 * a ref to the page, it may be possible that they dirty it then
475 * drop the reference. So if PageDirty is tested before page_count
476 * here, then the following race may occur:
477 *
478 * get_user_pages(&page);
479 * [user mapping goes away]
480 * write_to(page);
481 * !PageDirty(page) [good]
482 * SetPageDirty(page);
483 * put_page(page);
484 * !page_count(page) [good, discard it]
485 *
486 * [oops, our write_to data is lost]
487 *
488 * Reversing the order of the tests ensures such a situation cannot
489 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
490 * load is not satisfied before that of page->_count.
491 *
492 * Note that if SetPageDirty is always performed via set_page_dirty,
493 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 494 */
e286781d 495 if (!page_freeze_refs(page, 2))
49d2e9cc 496 goto cannot_free;
e286781d
NP
497 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
498 if (unlikely(PageDirty(page))) {
499 page_unfreeze_refs(page, 2);
49d2e9cc 500 goto cannot_free;
e286781d 501 }
49d2e9cc
CL
502
503 if (PageSwapCache(page)) {
504 swp_entry_t swap = { .val = page_private(page) };
505 __delete_from_swap_cache(page);
19fd6231 506 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 507 swapcache_free(swap, page);
e286781d 508 } else {
6072d13c
LT
509 void (*freepage)(struct page *);
510
511 freepage = mapping->a_ops->freepage;
512
e64a782f 513 __delete_from_page_cache(page);
19fd6231 514 spin_unlock_irq(&mapping->tree_lock);
e767e056 515 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
516
517 if (freepage != NULL)
518 freepage(page);
49d2e9cc
CL
519 }
520
49d2e9cc
CL
521 return 1;
522
523cannot_free:
19fd6231 524 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
525 return 0;
526}
527
e286781d
NP
528/*
529 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
530 * someone else has a ref on the page, abort and return 0. If it was
531 * successfully detached, return 1. Assumes the caller has a single ref on
532 * this page.
533 */
534int remove_mapping(struct address_space *mapping, struct page *page)
535{
536 if (__remove_mapping(mapping, page)) {
537 /*
538 * Unfreezing the refcount with 1 rather than 2 effectively
539 * drops the pagecache ref for us without requiring another
540 * atomic operation.
541 */
542 page_unfreeze_refs(page, 1);
543 return 1;
544 }
545 return 0;
546}
547
894bc310
LS
548/**
549 * putback_lru_page - put previously isolated page onto appropriate LRU list
550 * @page: page to be put back to appropriate lru list
551 *
552 * Add previously isolated @page to appropriate LRU list.
553 * Page may still be unevictable for other reasons.
554 *
555 * lru_lock must not be held, interrupts must be enabled.
556 */
894bc310
LS
557void putback_lru_page(struct page *page)
558{
559 int lru;
560 int active = !!TestClearPageActive(page);
bbfd28ee 561 int was_unevictable = PageUnevictable(page);
894bc310
LS
562
563 VM_BUG_ON(PageLRU(page));
564
565redo:
566 ClearPageUnevictable(page);
567
568 if (page_evictable(page, NULL)) {
569 /*
570 * For evictable pages, we can use the cache.
571 * In event of a race, worst case is we end up with an
572 * unevictable page on [in]active list.
573 * We know how to handle that.
574 */
401a8e1c 575 lru = active + page_lru_base_type(page);
894bc310
LS
576 lru_cache_add_lru(page, lru);
577 } else {
578 /*
579 * Put unevictable pages directly on zone's unevictable
580 * list.
581 */
582 lru = LRU_UNEVICTABLE;
583 add_page_to_unevictable_list(page);
6a7b9548 584 /*
21ee9f39
MK
585 * When racing with an mlock or AS_UNEVICTABLE clearing
586 * (page is unlocked) make sure that if the other thread
587 * does not observe our setting of PG_lru and fails
24513264 588 * isolation/check_move_unevictable_pages,
21ee9f39 589 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
590 * the page back to the evictable list.
591 *
21ee9f39 592 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
593 */
594 smp_mb();
894bc310 595 }
894bc310
LS
596
597 /*
598 * page's status can change while we move it among lru. If an evictable
599 * page is on unevictable list, it never be freed. To avoid that,
600 * check after we added it to the list, again.
601 */
602 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
603 if (!isolate_lru_page(page)) {
604 put_page(page);
605 goto redo;
606 }
607 /* This means someone else dropped this page from LRU
608 * So, it will be freed or putback to LRU again. There is
609 * nothing to do here.
610 */
611 }
612
bbfd28ee
LS
613 if (was_unevictable && lru != LRU_UNEVICTABLE)
614 count_vm_event(UNEVICTABLE_PGRESCUED);
615 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
616 count_vm_event(UNEVICTABLE_PGCULLED);
617
894bc310
LS
618 put_page(page); /* drop ref from isolate */
619}
620
dfc8d636
JW
621enum page_references {
622 PAGEREF_RECLAIM,
623 PAGEREF_RECLAIM_CLEAN,
64574746 624 PAGEREF_KEEP,
dfc8d636
JW
625 PAGEREF_ACTIVATE,
626};
627
628static enum page_references page_check_references(struct page *page,
f16015fb 629 struct mem_cgroup_zone *mz,
dfc8d636
JW
630 struct scan_control *sc)
631{
64574746 632 int referenced_ptes, referenced_page;
dfc8d636 633 unsigned long vm_flags;
dfc8d636 634
c3ac9a8a
JW
635 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
636 &vm_flags);
64574746 637 referenced_page = TestClearPageReferenced(page);
dfc8d636 638
dfc8d636
JW
639 /*
640 * Mlock lost the isolation race with us. Let try_to_unmap()
641 * move the page to the unevictable list.
642 */
643 if (vm_flags & VM_LOCKED)
644 return PAGEREF_RECLAIM;
645
64574746 646 if (referenced_ptes) {
e4898273 647 if (PageSwapBacked(page))
64574746
JW
648 return PAGEREF_ACTIVATE;
649 /*
650 * All mapped pages start out with page table
651 * references from the instantiating fault, so we need
652 * to look twice if a mapped file page is used more
653 * than once.
654 *
655 * Mark it and spare it for another trip around the
656 * inactive list. Another page table reference will
657 * lead to its activation.
658 *
659 * Note: the mark is set for activated pages as well
660 * so that recently deactivated but used pages are
661 * quickly recovered.
662 */
663 SetPageReferenced(page);
664
34dbc67a 665 if (referenced_page || referenced_ptes > 1)
64574746
JW
666 return PAGEREF_ACTIVATE;
667
c909e993
KK
668 /*
669 * Activate file-backed executable pages after first usage.
670 */
671 if (vm_flags & VM_EXEC)
672 return PAGEREF_ACTIVATE;
673
64574746
JW
674 return PAGEREF_KEEP;
675 }
dfc8d636
JW
676
677 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 678 if (referenced_page && !PageSwapBacked(page))
64574746
JW
679 return PAGEREF_RECLAIM_CLEAN;
680
681 return PAGEREF_RECLAIM;
dfc8d636
JW
682}
683
1da177e4 684/*
1742f19f 685 * shrink_page_list() returns the number of reclaimed pages
1da177e4 686 */
1742f19f 687static unsigned long shrink_page_list(struct list_head *page_list,
f16015fb 688 struct mem_cgroup_zone *mz,
f84f6e2b 689 struct scan_control *sc,
92df3a72
MG
690 int priority,
691 unsigned long *ret_nr_dirty,
692 unsigned long *ret_nr_writeback)
1da177e4
LT
693{
694 LIST_HEAD(ret_pages);
abe4c3b5 695 LIST_HEAD(free_pages);
1da177e4 696 int pgactivate = 0;
0e093d99
MG
697 unsigned long nr_dirty = 0;
698 unsigned long nr_congested = 0;
05ff5137 699 unsigned long nr_reclaimed = 0;
92df3a72 700 unsigned long nr_writeback = 0;
1da177e4
LT
701
702 cond_resched();
703
1da177e4 704 while (!list_empty(page_list)) {
dfc8d636 705 enum page_references references;
1da177e4
LT
706 struct address_space *mapping;
707 struct page *page;
708 int may_enter_fs;
1da177e4
LT
709
710 cond_resched();
711
712 page = lru_to_page(page_list);
713 list_del(&page->lru);
714
529ae9aa 715 if (!trylock_page(page))
1da177e4
LT
716 goto keep;
717
725d704e 718 VM_BUG_ON(PageActive(page));
f16015fb 719 VM_BUG_ON(page_zone(page) != mz->zone);
1da177e4
LT
720
721 sc->nr_scanned++;
80e43426 722
b291f000
NP
723 if (unlikely(!page_evictable(page, NULL)))
724 goto cull_mlocked;
894bc310 725
a6dc60f8 726 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
727 goto keep_locked;
728
1da177e4
LT
729 /* Double the slab pressure for mapped and swapcache pages */
730 if (page_mapped(page) || PageSwapCache(page))
731 sc->nr_scanned++;
732
c661b078
AW
733 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
734 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
735
736 if (PageWriteback(page)) {
92df3a72 737 nr_writeback++;
41ac1999
MG
738 unlock_page(page);
739 goto keep;
c661b078 740 }
1da177e4 741
f16015fb 742 references = page_check_references(page, mz, sc);
dfc8d636
JW
743 switch (references) {
744 case PAGEREF_ACTIVATE:
1da177e4 745 goto activate_locked;
64574746
JW
746 case PAGEREF_KEEP:
747 goto keep_locked;
dfc8d636
JW
748 case PAGEREF_RECLAIM:
749 case PAGEREF_RECLAIM_CLEAN:
750 ; /* try to reclaim the page below */
751 }
1da177e4 752
1da177e4
LT
753 /*
754 * Anonymous process memory has backing store?
755 * Try to allocate it some swap space here.
756 */
b291f000 757 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
758 if (!(sc->gfp_mask & __GFP_IO))
759 goto keep_locked;
ac47b003 760 if (!add_to_swap(page))
1da177e4 761 goto activate_locked;
63eb6b93 762 may_enter_fs = 1;
b291f000 763 }
1da177e4
LT
764
765 mapping = page_mapping(page);
1da177e4
LT
766
767 /*
768 * The page is mapped into the page tables of one or more
769 * processes. Try to unmap it here.
770 */
771 if (page_mapped(page) && mapping) {
14fa31b8 772 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
773 case SWAP_FAIL:
774 goto activate_locked;
775 case SWAP_AGAIN:
776 goto keep_locked;
b291f000
NP
777 case SWAP_MLOCK:
778 goto cull_mlocked;
1da177e4
LT
779 case SWAP_SUCCESS:
780 ; /* try to free the page below */
781 }
782 }
783
784 if (PageDirty(page)) {
0e093d99
MG
785 nr_dirty++;
786
ee72886d
MG
787 /*
788 * Only kswapd can writeback filesystem pages to
f84f6e2b
MG
789 * avoid risk of stack overflow but do not writeback
790 * unless under significant pressure.
ee72886d 791 */
f84f6e2b
MG
792 if (page_is_file_cache(page) &&
793 (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
49ea7eb6
MG
794 /*
795 * Immediately reclaim when written back.
796 * Similar in principal to deactivate_page()
797 * except we already have the page isolated
798 * and know it's dirty
799 */
800 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
801 SetPageReclaim(page);
802
ee72886d
MG
803 goto keep_locked;
804 }
805
dfc8d636 806 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 807 goto keep_locked;
4dd4b920 808 if (!may_enter_fs)
1da177e4 809 goto keep_locked;
52a8363e 810 if (!sc->may_writepage)
1da177e4
LT
811 goto keep_locked;
812
813 /* Page is dirty, try to write it out here */
7d3579e8 814 switch (pageout(page, mapping, sc)) {
1da177e4 815 case PAGE_KEEP:
0e093d99 816 nr_congested++;
1da177e4
LT
817 goto keep_locked;
818 case PAGE_ACTIVATE:
819 goto activate_locked;
820 case PAGE_SUCCESS:
7d3579e8 821 if (PageWriteback(page))
41ac1999 822 goto keep;
7d3579e8 823 if (PageDirty(page))
1da177e4 824 goto keep;
7d3579e8 825
1da177e4
LT
826 /*
827 * A synchronous write - probably a ramdisk. Go
828 * ahead and try to reclaim the page.
829 */
529ae9aa 830 if (!trylock_page(page))
1da177e4
LT
831 goto keep;
832 if (PageDirty(page) || PageWriteback(page))
833 goto keep_locked;
834 mapping = page_mapping(page);
835 case PAGE_CLEAN:
836 ; /* try to free the page below */
837 }
838 }
839
840 /*
841 * If the page has buffers, try to free the buffer mappings
842 * associated with this page. If we succeed we try to free
843 * the page as well.
844 *
845 * We do this even if the page is PageDirty().
846 * try_to_release_page() does not perform I/O, but it is
847 * possible for a page to have PageDirty set, but it is actually
848 * clean (all its buffers are clean). This happens if the
849 * buffers were written out directly, with submit_bh(). ext3
894bc310 850 * will do this, as well as the blockdev mapping.
1da177e4
LT
851 * try_to_release_page() will discover that cleanness and will
852 * drop the buffers and mark the page clean - it can be freed.
853 *
854 * Rarely, pages can have buffers and no ->mapping. These are
855 * the pages which were not successfully invalidated in
856 * truncate_complete_page(). We try to drop those buffers here
857 * and if that worked, and the page is no longer mapped into
858 * process address space (page_count == 1) it can be freed.
859 * Otherwise, leave the page on the LRU so it is swappable.
860 */
266cf658 861 if (page_has_private(page)) {
1da177e4
LT
862 if (!try_to_release_page(page, sc->gfp_mask))
863 goto activate_locked;
e286781d
NP
864 if (!mapping && page_count(page) == 1) {
865 unlock_page(page);
866 if (put_page_testzero(page))
867 goto free_it;
868 else {
869 /*
870 * rare race with speculative reference.
871 * the speculative reference will free
872 * this page shortly, so we may
873 * increment nr_reclaimed here (and
874 * leave it off the LRU).
875 */
876 nr_reclaimed++;
877 continue;
878 }
879 }
1da177e4
LT
880 }
881
e286781d 882 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 883 goto keep_locked;
1da177e4 884
a978d6f5
NP
885 /*
886 * At this point, we have no other references and there is
887 * no way to pick any more up (removed from LRU, removed
888 * from pagecache). Can use non-atomic bitops now (and
889 * we obviously don't have to worry about waking up a process
890 * waiting on the page lock, because there are no references.
891 */
892 __clear_page_locked(page);
e286781d 893free_it:
05ff5137 894 nr_reclaimed++;
abe4c3b5
MG
895
896 /*
897 * Is there need to periodically free_page_list? It would
898 * appear not as the counts should be low
899 */
900 list_add(&page->lru, &free_pages);
1da177e4
LT
901 continue;
902
b291f000 903cull_mlocked:
63d6c5ad
HD
904 if (PageSwapCache(page))
905 try_to_free_swap(page);
b291f000
NP
906 unlock_page(page);
907 putback_lru_page(page);
908 continue;
909
1da177e4 910activate_locked:
68a22394
RR
911 /* Not a candidate for swapping, so reclaim swap space. */
912 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 913 try_to_free_swap(page);
894bc310 914 VM_BUG_ON(PageActive(page));
1da177e4
LT
915 SetPageActive(page);
916 pgactivate++;
917keep_locked:
918 unlock_page(page);
919keep:
920 list_add(&page->lru, &ret_pages);
b291f000 921 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 922 }
abe4c3b5 923
0e093d99
MG
924 /*
925 * Tag a zone as congested if all the dirty pages encountered were
926 * backed by a congested BDI. In this case, reclaimers should just
927 * back off and wait for congestion to clear because further reclaim
928 * will encounter the same problem
929 */
89b5fae5 930 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
f16015fb 931 zone_set_flag(mz->zone, ZONE_CONGESTED);
0e093d99 932
cc59850e 933 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 934
1da177e4 935 list_splice(&ret_pages, page_list);
f8891e5e 936 count_vm_events(PGACTIVATE, pgactivate);
92df3a72
MG
937 *ret_nr_dirty += nr_dirty;
938 *ret_nr_writeback += nr_writeback;
05ff5137 939 return nr_reclaimed;
1da177e4
LT
940}
941
5ad333eb
AW
942/*
943 * Attempt to remove the specified page from its LRU. Only take this page
944 * if it is of the appropriate PageActive status. Pages which are being
945 * freed elsewhere are also ignored.
946 *
947 * page: page to consider
948 * mode: one of the LRU isolation modes defined above
949 *
950 * returns 0 on success, -ve errno on failure.
951 */
f3fd4a61 952int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
953{
954 int ret = -EINVAL;
955
956 /* Only take pages on the LRU. */
957 if (!PageLRU(page))
958 return ret;
959
c53919ad 960 /* Do not give back unevictable pages for compaction */
894bc310
LS
961 if (PageUnevictable(page))
962 return ret;
963
5ad333eb 964 ret = -EBUSY;
08e552c6 965
c8244935
MG
966 /*
967 * To minimise LRU disruption, the caller can indicate that it only
968 * wants to isolate pages it will be able to operate on without
969 * blocking - clean pages for the most part.
970 *
971 * ISOLATE_CLEAN means that only clean pages should be isolated. This
972 * is used by reclaim when it is cannot write to backing storage
973 *
974 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
975 * that it is possible to migrate without blocking
976 */
977 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
978 /* All the caller can do on PageWriteback is block */
979 if (PageWriteback(page))
980 return ret;
981
982 if (PageDirty(page)) {
983 struct address_space *mapping;
984
985 /* ISOLATE_CLEAN means only clean pages */
986 if (mode & ISOLATE_CLEAN)
987 return ret;
988
989 /*
990 * Only pages without mappings or that have a
991 * ->migratepage callback are possible to migrate
992 * without blocking
993 */
994 mapping = page_mapping(page);
995 if (mapping && !mapping->a_ops->migratepage)
996 return ret;
997 }
998 }
39deaf85 999
f80c0673
MK
1000 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1001 return ret;
1002
5ad333eb
AW
1003 if (likely(get_page_unless_zero(page))) {
1004 /*
1005 * Be careful not to clear PageLRU until after we're
1006 * sure the page is not being freed elsewhere -- the
1007 * page release code relies on it.
1008 */
1009 ClearPageLRU(page);
1010 ret = 0;
1011 }
1012
1013 return ret;
1014}
1015
1da177e4
LT
1016/*
1017 * zone->lru_lock is heavily contended. Some of the functions that
1018 * shrink the lists perform better by taking out a batch of pages
1019 * and working on them outside the LRU lock.
1020 *
1021 * For pagecache intensive workloads, this function is the hottest
1022 * spot in the kernel (apart from copy_*_user functions).
1023 *
1024 * Appropriate locks must be held before calling this function.
1025 *
1026 * @nr_to_scan: The number of pages to look through on the list.
f626012d 1027 * @mz: The mem_cgroup_zone to pull pages from.
1da177e4 1028 * @dst: The temp list to put pages on to.
f626012d 1029 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1030 * @sc: The scan_control struct for this reclaim session
5ad333eb 1031 * @mode: One of the LRU isolation modes
3cb99451 1032 * @lru: LRU list id for isolating
1da177e4
LT
1033 *
1034 * returns how many pages were moved onto *@dst.
1035 */
69e05944 1036static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
f626012d 1037 struct mem_cgroup_zone *mz, struct list_head *dst,
fe2c2a10 1038 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1039 isolate_mode_t mode, enum lru_list lru)
1da177e4 1040{
f626012d
HD
1041 struct lruvec *lruvec;
1042 struct list_head *src;
69e05944 1043 unsigned long nr_taken = 0;
c9b02d97 1044 unsigned long scan;
3cb99451 1045 int file = is_file_lru(lru);
f626012d
HD
1046
1047 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
f626012d 1048 src = &lruvec->lists[lru];
1da177e4 1049
c9b02d97 1050 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1051 struct page *page;
5ad333eb 1052
1da177e4
LT
1053 page = lru_to_page(src);
1054 prefetchw_prev_lru_page(page, src, flags);
1055
725d704e 1056 VM_BUG_ON(!PageLRU(page));
8d438f96 1057
f3fd4a61 1058 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1059 case 0:
bbf808ed 1060 mem_cgroup_lru_del_list(page, lru);
5ad333eb 1061 list_move(&page->lru, dst);
2c888cfb 1062 nr_taken += hpage_nr_pages(page);
5ad333eb
AW
1063 break;
1064
1065 case -EBUSY:
1066 /* else it is being freed elsewhere */
1067 list_move(&page->lru, src);
1068 continue;
46453a6e 1069
5ad333eb
AW
1070 default:
1071 BUG();
1072 }
1da177e4
LT
1073 }
1074
f626012d 1075 *nr_scanned = scan;
a8a94d15 1076
fe2c2a10 1077 trace_mm_vmscan_lru_isolate(sc->order,
a8a94d15
MG
1078 nr_to_scan, scan,
1079 nr_taken,
ea4d349f 1080 mode, file);
1da177e4
LT
1081 return nr_taken;
1082}
1083
62695a84
NP
1084/**
1085 * isolate_lru_page - tries to isolate a page from its LRU list
1086 * @page: page to isolate from its LRU list
1087 *
1088 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1089 * vmstat statistic corresponding to whatever LRU list the page was on.
1090 *
1091 * Returns 0 if the page was removed from an LRU list.
1092 * Returns -EBUSY if the page was not on an LRU list.
1093 *
1094 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1095 * the active list, it will have PageActive set. If it was found on
1096 * the unevictable list, it will have the PageUnevictable bit set. That flag
1097 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1098 *
1099 * The vmstat statistic corresponding to the list on which the page was
1100 * found will be decremented.
1101 *
1102 * Restrictions:
1103 * (1) Must be called with an elevated refcount on the page. This is a
1104 * fundamentnal difference from isolate_lru_pages (which is called
1105 * without a stable reference).
1106 * (2) the lru_lock must not be held.
1107 * (3) interrupts must be enabled.
1108 */
1109int isolate_lru_page(struct page *page)
1110{
1111 int ret = -EBUSY;
1112
0c917313
KK
1113 VM_BUG_ON(!page_count(page));
1114
62695a84
NP
1115 if (PageLRU(page)) {
1116 struct zone *zone = page_zone(page);
1117
1118 spin_lock_irq(&zone->lru_lock);
0c917313 1119 if (PageLRU(page)) {
894bc310 1120 int lru = page_lru(page);
62695a84 1121 ret = 0;
0c917313 1122 get_page(page);
62695a84 1123 ClearPageLRU(page);
4f98a2fe 1124
4f98a2fe 1125 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1126 }
1127 spin_unlock_irq(&zone->lru_lock);
1128 }
1129 return ret;
1130}
1131
35cd7815
RR
1132/*
1133 * Are there way too many processes in the direct reclaim path already?
1134 */
1135static int too_many_isolated(struct zone *zone, int file,
1136 struct scan_control *sc)
1137{
1138 unsigned long inactive, isolated;
1139
1140 if (current_is_kswapd())
1141 return 0;
1142
89b5fae5 1143 if (!global_reclaim(sc))
35cd7815
RR
1144 return 0;
1145
1146 if (file) {
1147 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1148 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1149 } else {
1150 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1151 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1152 }
1153
1154 return isolated > inactive;
1155}
1156
66635629 1157static noinline_for_stack void
3f79768f
HD
1158putback_inactive_pages(struct mem_cgroup_zone *mz,
1159 struct list_head *page_list)
66635629 1160{
f16015fb 1161 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
3f79768f
HD
1162 struct zone *zone = mz->zone;
1163 LIST_HEAD(pages_to_free);
66635629 1164
66635629
MG
1165 /*
1166 * Put back any unfreeable pages.
1167 */
66635629 1168 while (!list_empty(page_list)) {
3f79768f 1169 struct page *page = lru_to_page(page_list);
66635629 1170 int lru;
3f79768f 1171
66635629
MG
1172 VM_BUG_ON(PageLRU(page));
1173 list_del(&page->lru);
1174 if (unlikely(!page_evictable(page, NULL))) {
1175 spin_unlock_irq(&zone->lru_lock);
1176 putback_lru_page(page);
1177 spin_lock_irq(&zone->lru_lock);
1178 continue;
1179 }
7a608572 1180 SetPageLRU(page);
66635629 1181 lru = page_lru(page);
7a608572 1182 add_page_to_lru_list(zone, page, lru);
66635629
MG
1183 if (is_active_lru(lru)) {
1184 int file = is_file_lru(lru);
9992af10
RR
1185 int numpages = hpage_nr_pages(page);
1186 reclaim_stat->recent_rotated[file] += numpages;
66635629 1187 }
2bcf8879
HD
1188 if (put_page_testzero(page)) {
1189 __ClearPageLRU(page);
1190 __ClearPageActive(page);
1191 del_page_from_lru_list(zone, page, lru);
1192
1193 if (unlikely(PageCompound(page))) {
1194 spin_unlock_irq(&zone->lru_lock);
1195 (*get_compound_page_dtor(page))(page);
1196 spin_lock_irq(&zone->lru_lock);
1197 } else
1198 list_add(&page->lru, &pages_to_free);
66635629
MG
1199 }
1200 }
66635629 1201
3f79768f
HD
1202 /*
1203 * To save our caller's stack, now use input list for pages to free.
1204 */
1205 list_splice(&pages_to_free, page_list);
66635629
MG
1206}
1207
f16015fb
JW
1208static noinline_for_stack void
1209update_isolated_counts(struct mem_cgroup_zone *mz,
3f79768f 1210 struct list_head *page_list,
f16015fb 1211 unsigned long *nr_anon,
3f79768f 1212 unsigned long *nr_file)
1489fa14 1213{
f16015fb 1214 struct zone *zone = mz->zone;
1489fa14 1215 unsigned int count[NR_LRU_LISTS] = { 0, };
3f79768f
HD
1216 unsigned long nr_active = 0;
1217 struct page *page;
1218 int lru;
1219
1220 /*
1221 * Count pages and clear active flags
1222 */
1223 list_for_each_entry(page, page_list, lru) {
1224 int numpages = hpage_nr_pages(page);
1225 lru = page_lru_base_type(page);
1226 if (PageActive(page)) {
1227 lru += LRU_ACTIVE;
1228 ClearPageActive(page);
1229 nr_active += numpages;
1230 }
1231 count[lru] += numpages;
1232 }
1489fa14 1233
d563c050 1234 preempt_disable();
1489fa14
MG
1235 __count_vm_events(PGDEACTIVATE, nr_active);
1236
1237 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1238 -count[LRU_ACTIVE_FILE]);
1239 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1240 -count[LRU_INACTIVE_FILE]);
1241 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1242 -count[LRU_ACTIVE_ANON]);
1243 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1244 -count[LRU_INACTIVE_ANON]);
1245
1246 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1247 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1489fa14 1248
d563c050
HD
1249 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1250 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1251 preempt_enable();
1489fa14
MG
1252}
1253
1da177e4 1254/*
1742f19f
AM
1255 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1256 * of reclaimed pages
1da177e4 1257 */
66635629 1258static noinline_for_stack unsigned long
f16015fb 1259shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
3cb99451 1260 struct scan_control *sc, int priority, enum lru_list lru)
1da177e4
LT
1261{
1262 LIST_HEAD(page_list);
e247dbce 1263 unsigned long nr_scanned;
05ff5137 1264 unsigned long nr_reclaimed = 0;
e247dbce 1265 unsigned long nr_taken;
e247dbce
KM
1266 unsigned long nr_anon;
1267 unsigned long nr_file;
92df3a72
MG
1268 unsigned long nr_dirty = 0;
1269 unsigned long nr_writeback = 0;
f3fd4a61 1270 isolate_mode_t isolate_mode = 0;
3cb99451 1271 int file = is_file_lru(lru);
f16015fb 1272 struct zone *zone = mz->zone;
d563c050 1273 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
78dc583d 1274
35cd7815 1275 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1276 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1277
1278 /* We are about to die and free our memory. Return now. */
1279 if (fatal_signal_pending(current))
1280 return SWAP_CLUSTER_MAX;
1281 }
1282
1da177e4 1283 lru_add_drain();
f80c0673
MK
1284
1285 if (!sc->may_unmap)
61317289 1286 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1287 if (!sc->may_writepage)
61317289 1288 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1289
1da177e4 1290 spin_lock_irq(&zone->lru_lock);
b35ea17b 1291
fe2c2a10 1292 nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
3cb99451 1293 sc, isolate_mode, lru);
89b5fae5 1294 if (global_reclaim(sc)) {
e247dbce
KM
1295 zone->pages_scanned += nr_scanned;
1296 if (current_is_kswapd())
1297 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1298 nr_scanned);
1299 else
1300 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1301 nr_scanned);
e247dbce 1302 }
d563c050 1303 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1304
d563c050 1305 if (nr_taken == 0)
66635629 1306 return 0;
5ad333eb 1307
3f79768f
HD
1308 update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1309
f16015fb 1310 nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
92df3a72 1311 &nr_dirty, &nr_writeback);
c661b078 1312
3f79768f
HD
1313 spin_lock_irq(&zone->lru_lock);
1314
d563c050
HD
1315 reclaim_stat->recent_scanned[0] += nr_anon;
1316 reclaim_stat->recent_scanned[1] += nr_file;
1317
904249aa
YH
1318 if (global_reclaim(sc)) {
1319 if (current_is_kswapd())
1320 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1321 nr_reclaimed);
1322 else
1323 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1324 nr_reclaimed);
1325 }
a74609fa 1326
3f79768f
HD
1327 putback_inactive_pages(mz, &page_list);
1328
1329 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1330 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1331
1332 spin_unlock_irq(&zone->lru_lock);
1333
1334 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1335
92df3a72
MG
1336 /*
1337 * If reclaim is isolating dirty pages under writeback, it implies
1338 * that the long-lived page allocation rate is exceeding the page
1339 * laundering rate. Either the global limits are not being effective
1340 * at throttling processes due to the page distribution throughout
1341 * zones or there is heavy usage of a slow backing device. The
1342 * only option is to throttle from reclaim context which is not ideal
1343 * as there is no guarantee the dirtying process is throttled in the
1344 * same way balance_dirty_pages() manages.
1345 *
1346 * This scales the number of dirty pages that must be under writeback
1347 * before throttling depending on priority. It is a simple backoff
1348 * function that has the most effect in the range DEF_PRIORITY to
1349 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1350 * in trouble and reclaim is considered to be in trouble.
1351 *
1352 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1353 * DEF_PRIORITY-1 50% must be PageWriteback
1354 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1355 * ...
1356 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1357 * isolated page is PageWriteback
1358 */
1359 if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1360 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1361
e11da5b4
MG
1362 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1363 zone_idx(zone),
1364 nr_scanned, nr_reclaimed,
1365 priority,
23b9da55 1366 trace_shrink_flags(file));
05ff5137 1367 return nr_reclaimed;
1da177e4
LT
1368}
1369
1370/*
1371 * This moves pages from the active list to the inactive list.
1372 *
1373 * We move them the other way if the page is referenced by one or more
1374 * processes, from rmap.
1375 *
1376 * If the pages are mostly unmapped, the processing is fast and it is
1377 * appropriate to hold zone->lru_lock across the whole operation. But if
1378 * the pages are mapped, the processing is slow (page_referenced()) so we
1379 * should drop zone->lru_lock around each page. It's impossible to balance
1380 * this, so instead we remove the pages from the LRU while processing them.
1381 * It is safe to rely on PG_active against the non-LRU pages in here because
1382 * nobody will play with that bit on a non-LRU page.
1383 *
1384 * The downside is that we have to touch page->_count against each page.
1385 * But we had to alter page->flags anyway.
1386 */
1cfb419b 1387
3eb4140f
WF
1388static void move_active_pages_to_lru(struct zone *zone,
1389 struct list_head *list,
2bcf8879 1390 struct list_head *pages_to_free,
3eb4140f
WF
1391 enum lru_list lru)
1392{
1393 unsigned long pgmoved = 0;
3eb4140f
WF
1394 struct page *page;
1395
3eb4140f 1396 while (!list_empty(list)) {
925b7673
JW
1397 struct lruvec *lruvec;
1398
3eb4140f 1399 page = lru_to_page(list);
3eb4140f
WF
1400
1401 VM_BUG_ON(PageLRU(page));
1402 SetPageLRU(page);
1403
925b7673
JW
1404 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1405 list_move(&page->lru, &lruvec->lists[lru]);
2c888cfb 1406 pgmoved += hpage_nr_pages(page);
3eb4140f 1407
2bcf8879
HD
1408 if (put_page_testzero(page)) {
1409 __ClearPageLRU(page);
1410 __ClearPageActive(page);
1411 del_page_from_lru_list(zone, page, lru);
1412
1413 if (unlikely(PageCompound(page))) {
1414 spin_unlock_irq(&zone->lru_lock);
1415 (*get_compound_page_dtor(page))(page);
1416 spin_lock_irq(&zone->lru_lock);
1417 } else
1418 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1419 }
1420 }
1421 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1422 if (!is_active_lru(lru))
1423 __count_vm_events(PGDEACTIVATE, pgmoved);
1424}
1cfb419b 1425
f626012d 1426static void shrink_active_list(unsigned long nr_to_scan,
f16015fb
JW
1427 struct mem_cgroup_zone *mz,
1428 struct scan_control *sc,
3cb99451 1429 int priority, enum lru_list lru)
1da177e4 1430{
44c241f1 1431 unsigned long nr_taken;
f626012d 1432 unsigned long nr_scanned;
6fe6b7e3 1433 unsigned long vm_flags;
1da177e4 1434 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1435 LIST_HEAD(l_active);
b69408e8 1436 LIST_HEAD(l_inactive);
1da177e4 1437 struct page *page;
f16015fb 1438 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
44c241f1 1439 unsigned long nr_rotated = 0;
f3fd4a61 1440 isolate_mode_t isolate_mode = 0;
3cb99451 1441 int file = is_file_lru(lru);
f16015fb 1442 struct zone *zone = mz->zone;
1da177e4
LT
1443
1444 lru_add_drain();
f80c0673
MK
1445
1446 if (!sc->may_unmap)
61317289 1447 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1448 if (!sc->may_writepage)
61317289 1449 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1450
1da177e4 1451 spin_lock_irq(&zone->lru_lock);
925b7673 1452
fe2c2a10 1453 nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
3cb99451 1454 isolate_mode, lru);
89b5fae5 1455 if (global_reclaim(sc))
f626012d 1456 zone->pages_scanned += nr_scanned;
89b5fae5 1457
b7c46d15 1458 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1459
f626012d 1460 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1461 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1462 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1463 spin_unlock_irq(&zone->lru_lock);
1464
1da177e4
LT
1465 while (!list_empty(&l_hold)) {
1466 cond_resched();
1467 page = lru_to_page(&l_hold);
1468 list_del(&page->lru);
7e9cd484 1469
894bc310
LS
1470 if (unlikely(!page_evictable(page, NULL))) {
1471 putback_lru_page(page);
1472 continue;
1473 }
1474
cc715d99
MG
1475 if (unlikely(buffer_heads_over_limit)) {
1476 if (page_has_private(page) && trylock_page(page)) {
1477 if (page_has_private(page))
1478 try_to_release_page(page, 0);
1479 unlock_page(page);
1480 }
1481 }
1482
c3ac9a8a
JW
1483 if (page_referenced(page, 0, sc->target_mem_cgroup,
1484 &vm_flags)) {
9992af10 1485 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1486 /*
1487 * Identify referenced, file-backed active pages and
1488 * give them one more trip around the active list. So
1489 * that executable code get better chances to stay in
1490 * memory under moderate memory pressure. Anon pages
1491 * are not likely to be evicted by use-once streaming
1492 * IO, plus JVM can create lots of anon VM_EXEC pages,
1493 * so we ignore them here.
1494 */
41e20983 1495 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1496 list_add(&page->lru, &l_active);
1497 continue;
1498 }
1499 }
7e9cd484 1500
5205e56e 1501 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1502 list_add(&page->lru, &l_inactive);
1503 }
1504
b555749a 1505 /*
8cab4754 1506 * Move pages back to the lru list.
b555749a 1507 */
2a1dc509 1508 spin_lock_irq(&zone->lru_lock);
556adecb 1509 /*
8cab4754
WF
1510 * Count referenced pages from currently used mappings as rotated,
1511 * even though only some of them are actually re-activated. This
1512 * helps balance scan pressure between file and anonymous pages in
1513 * get_scan_ratio.
7e9cd484 1514 */
b7c46d15 1515 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1516
3cb99451
KK
1517 move_active_pages_to_lru(zone, &l_active, &l_hold, lru);
1518 move_active_pages_to_lru(zone, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1519 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1520 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1521
1522 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1523}
1524
74e3f3c3 1525#ifdef CONFIG_SWAP
14797e23 1526static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1527{
1528 unsigned long active, inactive;
1529
1530 active = zone_page_state(zone, NR_ACTIVE_ANON);
1531 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1532
1533 if (inactive * zone->inactive_ratio < active)
1534 return 1;
1535
1536 return 0;
1537}
1538
14797e23
KM
1539/**
1540 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1541 * @zone: zone to check
1542 * @sc: scan control of this context
1543 *
1544 * Returns true if the zone does not have enough inactive anon pages,
1545 * meaning some active anon pages need to be deactivated.
1546 */
f16015fb 1547static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
14797e23 1548{
74e3f3c3
MK
1549 /*
1550 * If we don't have swap space, anonymous page deactivation
1551 * is pointless.
1552 */
1553 if (!total_swap_pages)
1554 return 0;
1555
c3c787e8 1556 if (!mem_cgroup_disabled())
f16015fb
JW
1557 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1558 mz->zone);
1559
1560 return inactive_anon_is_low_global(mz->zone);
14797e23 1561}
74e3f3c3 1562#else
f16015fb 1563static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
74e3f3c3
MK
1564{
1565 return 0;
1566}
1567#endif
14797e23 1568
56e49d21
RR
1569static int inactive_file_is_low_global(struct zone *zone)
1570{
1571 unsigned long active, inactive;
1572
1573 active = zone_page_state(zone, NR_ACTIVE_FILE);
1574 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1575
1576 return (active > inactive);
1577}
1578
1579/**
1580 * inactive_file_is_low - check if file pages need to be deactivated
f16015fb 1581 * @mz: memory cgroup and zone to check
56e49d21
RR
1582 *
1583 * When the system is doing streaming IO, memory pressure here
1584 * ensures that active file pages get deactivated, until more
1585 * than half of the file pages are on the inactive list.
1586 *
1587 * Once we get to that situation, protect the system's working
1588 * set from being evicted by disabling active file page aging.
1589 *
1590 * This uses a different ratio than the anonymous pages, because
1591 * the page cache uses a use-once replacement algorithm.
1592 */
f16015fb 1593static int inactive_file_is_low(struct mem_cgroup_zone *mz)
56e49d21 1594{
c3c787e8 1595 if (!mem_cgroup_disabled())
f16015fb
JW
1596 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1597 mz->zone);
56e49d21 1598
f16015fb 1599 return inactive_file_is_low_global(mz->zone);
56e49d21
RR
1600}
1601
f16015fb 1602static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
b39415b2
RR
1603{
1604 if (file)
f16015fb 1605 return inactive_file_is_low(mz);
b39415b2 1606 else
f16015fb 1607 return inactive_anon_is_low(mz);
b39415b2
RR
1608}
1609
4f98a2fe 1610static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
f16015fb
JW
1611 struct mem_cgroup_zone *mz,
1612 struct scan_control *sc, int priority)
b69408e8 1613{
4f98a2fe
RR
1614 int file = is_file_lru(lru);
1615
b39415b2 1616 if (is_active_lru(lru)) {
f16015fb 1617 if (inactive_list_is_low(mz, file))
3cb99451 1618 shrink_active_list(nr_to_scan, mz, sc, priority, lru);
556adecb
RR
1619 return 0;
1620 }
1621
3cb99451 1622 return shrink_inactive_list(nr_to_scan, mz, sc, priority, lru);
4f98a2fe
RR
1623}
1624
3d58ab5c 1625static int vmscan_swappiness(struct scan_control *sc)
1f4c025b 1626{
89b5fae5 1627 if (global_reclaim(sc))
1f4c025b 1628 return vm_swappiness;
3d58ab5c 1629 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1f4c025b
KH
1630}
1631
4f98a2fe
RR
1632/*
1633 * Determine how aggressively the anon and file LRU lists should be
1634 * scanned. The relative value of each set of LRU lists is determined
1635 * by looking at the fraction of the pages scanned we did rotate back
1636 * onto the active list instead of evict.
1637 *
76a33fc3 1638 * nr[0] = anon pages to scan; nr[1] = file pages to scan
4f98a2fe 1639 */
f16015fb
JW
1640static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1641 unsigned long *nr, int priority)
4f98a2fe
RR
1642{
1643 unsigned long anon, file, free;
1644 unsigned long anon_prio, file_prio;
1645 unsigned long ap, fp;
f16015fb 1646 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
76a33fc3 1647 u64 fraction[2], denominator;
4111304d 1648 enum lru_list lru;
76a33fc3 1649 int noswap = 0;
a4d3e9e7 1650 bool force_scan = false;
246e87a9 1651
f11c0ca5
JW
1652 /*
1653 * If the zone or memcg is small, nr[l] can be 0. This
1654 * results in no scanning on this priority and a potential
1655 * priority drop. Global direct reclaim can go to the next
1656 * zone and tends to have no problems. Global kswapd is for
1657 * zone balancing and it needs to scan a minimum amount. When
1658 * reclaiming for a memcg, a priority drop can cause high
1659 * latencies, so it's better to scan a minimum amount there as
1660 * well.
1661 */
b95a2f2d 1662 if (current_is_kswapd() && mz->zone->all_unreclaimable)
a4d3e9e7 1663 force_scan = true;
89b5fae5 1664 if (!global_reclaim(sc))
a4d3e9e7 1665 force_scan = true;
76a33fc3
SL
1666
1667 /* If we have no swap space, do not bother scanning anon pages. */
1668 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1669 noswap = 1;
1670 fraction[0] = 0;
1671 fraction[1] = 1;
1672 denominator = 1;
1673 goto out;
1674 }
4f98a2fe 1675
f16015fb
JW
1676 anon = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1677 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1678 file = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1679 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
a4d3e9e7 1680
89b5fae5 1681 if (global_reclaim(sc)) {
f16015fb 1682 free = zone_page_state(mz->zone, NR_FREE_PAGES);
eeee9a8c
KM
1683 /* If we have very few page cache pages,
1684 force-scan anon pages. */
f16015fb 1685 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
76a33fc3
SL
1686 fraction[0] = 1;
1687 fraction[1] = 0;
1688 denominator = 1;
1689 goto out;
eeee9a8c 1690 }
4f98a2fe
RR
1691 }
1692
58c37f6e
KM
1693 /*
1694 * With swappiness at 100, anonymous and file have the same priority.
1695 * This scanning priority is essentially the inverse of IO cost.
1696 */
3d58ab5c
KK
1697 anon_prio = vmscan_swappiness(sc);
1698 file_prio = 200 - vmscan_swappiness(sc);
58c37f6e 1699
4f98a2fe
RR
1700 /*
1701 * OK, so we have swap space and a fair amount of page cache
1702 * pages. We use the recently rotated / recently scanned
1703 * ratios to determine how valuable each cache is.
1704 *
1705 * Because workloads change over time (and to avoid overflow)
1706 * we keep these statistics as a floating average, which ends
1707 * up weighing recent references more than old ones.
1708 *
1709 * anon in [0], file in [1]
1710 */
f16015fb 1711 spin_lock_irq(&mz->zone->lru_lock);
6e901571 1712 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1713 reclaim_stat->recent_scanned[0] /= 2;
1714 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1715 }
1716
6e901571 1717 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1718 reclaim_stat->recent_scanned[1] /= 2;
1719 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1720 }
1721
4f98a2fe 1722 /*
00d8089c
RR
1723 * The amount of pressure on anon vs file pages is inversely
1724 * proportional to the fraction of recently scanned pages on
1725 * each list that were recently referenced and in active use.
4f98a2fe 1726 */
fe35004f 1727 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1728 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1729
fe35004f 1730 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1731 fp /= reclaim_stat->recent_rotated[1] + 1;
f16015fb 1732 spin_unlock_irq(&mz->zone->lru_lock);
4f98a2fe 1733
76a33fc3
SL
1734 fraction[0] = ap;
1735 fraction[1] = fp;
1736 denominator = ap + fp + 1;
1737out:
4111304d
HD
1738 for_each_evictable_lru(lru) {
1739 int file = is_file_lru(lru);
76a33fc3 1740 unsigned long scan;
6e08a369 1741
4111304d 1742 scan = zone_nr_lru_pages(mz, lru);
3d58ab5c 1743 if (priority || noswap || !vmscan_swappiness(sc)) {
76a33fc3 1744 scan >>= priority;
f11c0ca5
JW
1745 if (!scan && force_scan)
1746 scan = SWAP_CLUSTER_MAX;
76a33fc3
SL
1747 scan = div64_u64(scan * fraction[file], denominator);
1748 }
4111304d 1749 nr[lru] = scan;
76a33fc3 1750 }
6e08a369 1751}
4f98a2fe 1752
23b9da55
MG
1753/* Use reclaim/compaction for costly allocs or under memory pressure */
1754static bool in_reclaim_compaction(int priority, struct scan_control *sc)
1755{
1756 if (COMPACTION_BUILD && sc->order &&
1757 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1758 priority < DEF_PRIORITY - 2))
1759 return true;
1760
1761 return false;
1762}
1763
3e7d3449 1764/*
23b9da55
MG
1765 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1766 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1767 * true if more pages should be reclaimed such that when the page allocator
1768 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1769 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 1770 */
f16015fb 1771static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
3e7d3449
MG
1772 unsigned long nr_reclaimed,
1773 unsigned long nr_scanned,
23b9da55 1774 int priority,
3e7d3449
MG
1775 struct scan_control *sc)
1776{
1777 unsigned long pages_for_compaction;
1778 unsigned long inactive_lru_pages;
1779
1780 /* If not in reclaim/compaction mode, stop */
23b9da55 1781 if (!in_reclaim_compaction(priority, sc))
3e7d3449
MG
1782 return false;
1783
2876592f
MG
1784 /* Consider stopping depending on scan and reclaim activity */
1785 if (sc->gfp_mask & __GFP_REPEAT) {
1786 /*
1787 * For __GFP_REPEAT allocations, stop reclaiming if the
1788 * full LRU list has been scanned and we are still failing
1789 * to reclaim pages. This full LRU scan is potentially
1790 * expensive but a __GFP_REPEAT caller really wants to succeed
1791 */
1792 if (!nr_reclaimed && !nr_scanned)
1793 return false;
1794 } else {
1795 /*
1796 * For non-__GFP_REPEAT allocations which can presumably
1797 * fail without consequence, stop if we failed to reclaim
1798 * any pages from the last SWAP_CLUSTER_MAX number of
1799 * pages that were scanned. This will return to the
1800 * caller faster at the risk reclaim/compaction and
1801 * the resulting allocation attempt fails
1802 */
1803 if (!nr_reclaimed)
1804 return false;
1805 }
3e7d3449
MG
1806
1807 /*
1808 * If we have not reclaimed enough pages for compaction and the
1809 * inactive lists are large enough, continue reclaiming
1810 */
1811 pages_for_compaction = (2UL << sc->order);
f16015fb 1812 inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
86cfd3a4 1813 if (nr_swap_pages > 0)
f16015fb 1814 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
3e7d3449
MG
1815 if (sc->nr_reclaimed < pages_for_compaction &&
1816 inactive_lru_pages > pages_for_compaction)
1817 return true;
1818
1819 /* If compaction would go ahead or the allocation would succeed, stop */
f16015fb 1820 switch (compaction_suitable(mz->zone, sc->order)) {
3e7d3449
MG
1821 case COMPACT_PARTIAL:
1822 case COMPACT_CONTINUE:
1823 return false;
1824 default:
1825 return true;
1826 }
1827}
1828
1da177e4
LT
1829/*
1830 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1831 */
f16015fb
JW
1832static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
1833 struct scan_control *sc)
1da177e4 1834{
b69408e8 1835 unsigned long nr[NR_LRU_LISTS];
8695949a 1836 unsigned long nr_to_scan;
4111304d 1837 enum lru_list lru;
f0fdc5e8 1838 unsigned long nr_reclaimed, nr_scanned;
22fba335 1839 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
3da367c3 1840 struct blk_plug plug;
e0f79b8f 1841
3e7d3449
MG
1842restart:
1843 nr_reclaimed = 0;
f0fdc5e8 1844 nr_scanned = sc->nr_scanned;
f16015fb 1845 get_scan_count(mz, sc, nr, priority);
1da177e4 1846
3da367c3 1847 blk_start_plug(&plug);
556adecb
RR
1848 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1849 nr[LRU_INACTIVE_FILE]) {
4111304d
HD
1850 for_each_evictable_lru(lru) {
1851 if (nr[lru]) {
ece74b2e 1852 nr_to_scan = min_t(unsigned long,
4111304d
HD
1853 nr[lru], SWAP_CLUSTER_MAX);
1854 nr[lru] -= nr_to_scan;
1da177e4 1855
4111304d 1856 nr_reclaimed += shrink_list(lru, nr_to_scan,
f16015fb 1857 mz, sc, priority);
b69408e8 1858 }
1da177e4 1859 }
a79311c1
RR
1860 /*
1861 * On large memory systems, scan >> priority can become
1862 * really large. This is fine for the starting priority;
1863 * we want to put equal scanning pressure on each zone.
1864 * However, if the VM has a harder time of freeing pages,
1865 * with multiple processes reclaiming pages, the total
1866 * freeing target can get unreasonably large.
1867 */
41c93088 1868 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
a79311c1 1869 break;
1da177e4 1870 }
3da367c3 1871 blk_finish_plug(&plug);
3e7d3449 1872 sc->nr_reclaimed += nr_reclaimed;
01dbe5c9 1873
556adecb
RR
1874 /*
1875 * Even if we did not try to evict anon pages at all, we want to
1876 * rebalance the anon lru active/inactive ratio.
1877 */
f16015fb 1878 if (inactive_anon_is_low(mz))
3cb99451
KK
1879 shrink_active_list(SWAP_CLUSTER_MAX, mz,
1880 sc, priority, LRU_ACTIVE_ANON);
556adecb 1881
3e7d3449 1882 /* reclaim/compaction might need reclaim to continue */
f16015fb 1883 if (should_continue_reclaim(mz, nr_reclaimed,
23b9da55
MG
1884 sc->nr_scanned - nr_scanned,
1885 priority, sc))
3e7d3449
MG
1886 goto restart;
1887
232ea4d6 1888 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1889}
1890
f16015fb
JW
1891static void shrink_zone(int priority, struct zone *zone,
1892 struct scan_control *sc)
1893{
5660048c
JW
1894 struct mem_cgroup *root = sc->target_mem_cgroup;
1895 struct mem_cgroup_reclaim_cookie reclaim = {
f16015fb 1896 .zone = zone,
5660048c 1897 .priority = priority,
f16015fb 1898 };
5660048c
JW
1899 struct mem_cgroup *memcg;
1900
5660048c
JW
1901 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1902 do {
1903 struct mem_cgroup_zone mz = {
1904 .mem_cgroup = memcg,
1905 .zone = zone,
1906 };
f16015fb 1907
5660048c
JW
1908 shrink_mem_cgroup_zone(priority, &mz, sc);
1909 /*
1910 * Limit reclaim has historically picked one memcg and
1911 * scanned it with decreasing priority levels until
1912 * nr_to_reclaim had been reclaimed. This priority
1913 * cycle is thus over after a single memcg.
b95a2f2d
JW
1914 *
1915 * Direct reclaim and kswapd, on the other hand, have
1916 * to scan all memory cgroups to fulfill the overall
1917 * scan target for the zone.
5660048c
JW
1918 */
1919 if (!global_reclaim(sc)) {
1920 mem_cgroup_iter_break(root, memcg);
1921 break;
1922 }
1923 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1924 } while (memcg);
f16015fb
JW
1925}
1926
fe4b1b24
MG
1927/* Returns true if compaction should go ahead for a high-order request */
1928static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1929{
1930 unsigned long balance_gap, watermark;
1931 bool watermark_ok;
1932
1933 /* Do not consider compaction for orders reclaim is meant to satisfy */
1934 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1935 return false;
1936
1937 /*
1938 * Compaction takes time to run and there are potentially other
1939 * callers using the pages just freed. Continue reclaiming until
1940 * there is a buffer of free pages available to give compaction
1941 * a reasonable chance of completing and allocating the page
1942 */
1943 balance_gap = min(low_wmark_pages(zone),
1944 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1945 KSWAPD_ZONE_BALANCE_GAP_RATIO);
1946 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1947 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1948
1949 /*
1950 * If compaction is deferred, reclaim up to a point where
1951 * compaction will have a chance of success when re-enabled
1952 */
aff62249 1953 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
1954 return watermark_ok;
1955
1956 /* If compaction is not ready to start, keep reclaiming */
1957 if (!compaction_suitable(zone, sc->order))
1958 return false;
1959
1960 return watermark_ok;
1961}
1962
1da177e4
LT
1963/*
1964 * This is the direct reclaim path, for page-allocating processes. We only
1965 * try to reclaim pages from zones which will satisfy the caller's allocation
1966 * request.
1967 *
41858966
MG
1968 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1969 * Because:
1da177e4
LT
1970 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1971 * allocation or
41858966
MG
1972 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1973 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1974 * zone defense algorithm.
1da177e4 1975 *
1da177e4
LT
1976 * If a zone is deemed to be full of pinned pages then just give it a light
1977 * scan then give up on it.
e0c23279
MG
1978 *
1979 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 1980 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
1981 * the caller that it should consider retrying the allocation instead of
1982 * further reclaim.
1da177e4 1983 */
e0c23279 1984static bool shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 1985 struct scan_control *sc)
1da177e4 1986{
dd1a239f 1987 struct zoneref *z;
54a6eb5c 1988 struct zone *zone;
d149e3b2
YH
1989 unsigned long nr_soft_reclaimed;
1990 unsigned long nr_soft_scanned;
0cee34fd 1991 bool aborted_reclaim = false;
1cfb419b 1992
cc715d99
MG
1993 /*
1994 * If the number of buffer_heads in the machine exceeds the maximum
1995 * allowed level, force direct reclaim to scan the highmem zone as
1996 * highmem pages could be pinning lowmem pages storing buffer_heads
1997 */
1998 if (buffer_heads_over_limit)
1999 sc->gfp_mask |= __GFP_HIGHMEM;
2000
d4debc66
MG
2001 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2002 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2003 if (!populated_zone(zone))
1da177e4 2004 continue;
1cfb419b
KH
2005 /*
2006 * Take care memory controller reclaiming has small influence
2007 * to global LRU.
2008 */
89b5fae5 2009 if (global_reclaim(sc)) {
1cfb419b
KH
2010 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2011 continue;
93e4a89a 2012 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1cfb419b 2013 continue; /* Let kswapd poll it */
e0887c19
RR
2014 if (COMPACTION_BUILD) {
2015 /*
e0c23279
MG
2016 * If we already have plenty of memory free for
2017 * compaction in this zone, don't free any more.
2018 * Even though compaction is invoked for any
2019 * non-zero order, only frequent costly order
2020 * reclamation is disruptive enough to become a
c7cfa37b
CA
2021 * noticeable problem, like transparent huge
2022 * page allocations.
e0887c19 2023 */
fe4b1b24 2024 if (compaction_ready(zone, sc)) {
0cee34fd 2025 aborted_reclaim = true;
e0887c19 2026 continue;
e0c23279 2027 }
e0887c19 2028 }
ac34a1a3
KH
2029 /*
2030 * This steals pages from memory cgroups over softlimit
2031 * and returns the number of reclaimed pages and
2032 * scanned pages. This works for global memory pressure
2033 * and balancing, not for a memcg's limit.
2034 */
2035 nr_soft_scanned = 0;
2036 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2037 sc->order, sc->gfp_mask,
2038 &nr_soft_scanned);
2039 sc->nr_reclaimed += nr_soft_reclaimed;
2040 sc->nr_scanned += nr_soft_scanned;
2041 /* need some check for avoid more shrink_zone() */
1cfb419b 2042 }
408d8544 2043
a79311c1 2044 shrink_zone(priority, zone, sc);
1da177e4 2045 }
e0c23279 2046
0cee34fd 2047 return aborted_reclaim;
d1908362
MK
2048}
2049
2050static bool zone_reclaimable(struct zone *zone)
2051{
2052 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2053}
2054
929bea7c 2055/* All zones in zonelist are unreclaimable? */
d1908362
MK
2056static bool all_unreclaimable(struct zonelist *zonelist,
2057 struct scan_control *sc)
2058{
2059 struct zoneref *z;
2060 struct zone *zone;
d1908362
MK
2061
2062 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2063 gfp_zone(sc->gfp_mask), sc->nodemask) {
2064 if (!populated_zone(zone))
2065 continue;
2066 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2067 continue;
929bea7c
KM
2068 if (!zone->all_unreclaimable)
2069 return false;
d1908362
MK
2070 }
2071
929bea7c 2072 return true;
1da177e4 2073}
4f98a2fe 2074
1da177e4
LT
2075/*
2076 * This is the main entry point to direct page reclaim.
2077 *
2078 * If a full scan of the inactive list fails to free enough memory then we
2079 * are "out of memory" and something needs to be killed.
2080 *
2081 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2082 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2083 * caller can't do much about. We kick the writeback threads and take explicit
2084 * naps in the hope that some of these pages can be written. But if the
2085 * allocating task holds filesystem locks which prevent writeout this might not
2086 * work, and the allocation attempt will fail.
a41f24ea
NA
2087 *
2088 * returns: 0, if no pages reclaimed
2089 * else, the number of pages reclaimed
1da177e4 2090 */
dac1d27b 2091static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2092 struct scan_control *sc,
2093 struct shrink_control *shrink)
1da177e4
LT
2094{
2095 int priority;
69e05944 2096 unsigned long total_scanned = 0;
1da177e4 2097 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2098 struct zoneref *z;
54a6eb5c 2099 struct zone *zone;
22fba335 2100 unsigned long writeback_threshold;
0cee34fd 2101 bool aborted_reclaim;
1da177e4 2102
873b4771
KK
2103 delayacct_freepages_start();
2104
89b5fae5 2105 if (global_reclaim(sc))
1cfb419b 2106 count_vm_event(ALLOCSTALL);
1da177e4
LT
2107
2108 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 2109 sc->nr_scanned = 0;
0cee34fd 2110 aborted_reclaim = shrink_zones(priority, zonelist, sc);
e0c23279 2111
66e1707b
BS
2112 /*
2113 * Don't shrink slabs when reclaiming memory from
2114 * over limit cgroups
2115 */
89b5fae5 2116 if (global_reclaim(sc)) {
c6a8a8c5 2117 unsigned long lru_pages = 0;
d4debc66
MG
2118 for_each_zone_zonelist(zone, z, zonelist,
2119 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2120 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2121 continue;
2122
2123 lru_pages += zone_reclaimable_pages(zone);
2124 }
2125
1495f230 2126 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2127 if (reclaim_state) {
a79311c1 2128 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2129 reclaim_state->reclaimed_slab = 0;
2130 }
1da177e4 2131 }
66e1707b 2132 total_scanned += sc->nr_scanned;
bb21c7ce 2133 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2134 goto out;
1da177e4
LT
2135
2136 /*
2137 * Try to write back as many pages as we just scanned. This
2138 * tends to cause slow streaming writers to write data to the
2139 * disk smoothly, at the dirtying rate, which is nice. But
2140 * that's undesirable in laptop mode, where we *want* lumpy
2141 * writeout. So in laptop mode, write out the whole world.
2142 */
22fba335
KM
2143 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2144 if (total_scanned > writeback_threshold) {
0e175a18
CW
2145 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2146 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2147 sc->may_writepage = 1;
1da177e4
LT
2148 }
2149
2150 /* Take a nap, wait for some writeback to complete */
7b51755c 2151 if (!sc->hibernation_mode && sc->nr_scanned &&
0e093d99
MG
2152 priority < DEF_PRIORITY - 2) {
2153 struct zone *preferred_zone;
2154
2155 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2156 &cpuset_current_mems_allowed,
2157 &preferred_zone);
0e093d99
MG
2158 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2159 }
1da177e4 2160 }
bb21c7ce 2161
1da177e4 2162out:
873b4771
KK
2163 delayacct_freepages_end();
2164
bb21c7ce
KM
2165 if (sc->nr_reclaimed)
2166 return sc->nr_reclaimed;
2167
929bea7c
KM
2168 /*
2169 * As hibernation is going on, kswapd is freezed so that it can't mark
2170 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2171 * check.
2172 */
2173 if (oom_killer_disabled)
2174 return 0;
2175
0cee34fd
MG
2176 /* Aborted reclaim to try compaction? don't OOM, then */
2177 if (aborted_reclaim)
7335084d
MG
2178 return 1;
2179
bb21c7ce 2180 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2181 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2182 return 1;
2183
2184 return 0;
1da177e4
LT
2185}
2186
dac1d27b 2187unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2188 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2189{
33906bc5 2190 unsigned long nr_reclaimed;
66e1707b
BS
2191 struct scan_control sc = {
2192 .gfp_mask = gfp_mask,
2193 .may_writepage = !laptop_mode,
22fba335 2194 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2195 .may_unmap = 1,
2e2e4259 2196 .may_swap = 1,
66e1707b 2197 .order = order,
f16015fb 2198 .target_mem_cgroup = NULL,
327c0e96 2199 .nodemask = nodemask,
66e1707b 2200 };
a09ed5e0
YH
2201 struct shrink_control shrink = {
2202 .gfp_mask = sc.gfp_mask,
2203 };
66e1707b 2204
33906bc5
MG
2205 trace_mm_vmscan_direct_reclaim_begin(order,
2206 sc.may_writepage,
2207 gfp_mask);
2208
a09ed5e0 2209 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2210
2211 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2212
2213 return nr_reclaimed;
66e1707b
BS
2214}
2215
00f0b825 2216#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 2217
72835c86 2218unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2219 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2220 struct zone *zone,
2221 unsigned long *nr_scanned)
4e416953
BS
2222{
2223 struct scan_control sc = {
0ae5e89c 2224 .nr_scanned = 0,
b8f5c566 2225 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2226 .may_writepage = !laptop_mode,
2227 .may_unmap = 1,
2228 .may_swap = !noswap,
4e416953 2229 .order = 0,
72835c86 2230 .target_mem_cgroup = memcg,
4e416953 2231 };
5660048c 2232 struct mem_cgroup_zone mz = {
72835c86 2233 .mem_cgroup = memcg,
5660048c
JW
2234 .zone = zone,
2235 };
0ae5e89c 2236
4e416953
BS
2237 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2238 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e
KM
2239
2240 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2241 sc.may_writepage,
2242 sc.gfp_mask);
2243
4e416953
BS
2244 /*
2245 * NOTE: Although we can get the priority field, using it
2246 * here is not a good idea, since it limits the pages we can scan.
2247 * if we don't reclaim here, the shrink_zone from balance_pgdat
2248 * will pick up pages from other mem cgroup's as well. We hack
2249 * the priority and make it zero.
2250 */
5660048c 2251 shrink_mem_cgroup_zone(0, &mz, &sc);
bdce6d9e
KM
2252
2253 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2254
0ae5e89c 2255 *nr_scanned = sc.nr_scanned;
4e416953
BS
2256 return sc.nr_reclaimed;
2257}
2258
72835c86 2259unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2260 gfp_t gfp_mask,
185efc0f 2261 bool noswap)
66e1707b 2262{
4e416953 2263 struct zonelist *zonelist;
bdce6d9e 2264 unsigned long nr_reclaimed;
889976db 2265 int nid;
66e1707b 2266 struct scan_control sc = {
66e1707b 2267 .may_writepage = !laptop_mode,
a6dc60f8 2268 .may_unmap = 1,
2e2e4259 2269 .may_swap = !noswap,
22fba335 2270 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2271 .order = 0,
72835c86 2272 .target_mem_cgroup = memcg,
327c0e96 2273 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2274 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2275 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2276 };
2277 struct shrink_control shrink = {
2278 .gfp_mask = sc.gfp_mask,
66e1707b 2279 };
66e1707b 2280
889976db
YH
2281 /*
2282 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2283 * take care of from where we get pages. So the node where we start the
2284 * scan does not need to be the current node.
2285 */
72835c86 2286 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2287
2288 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2289
2290 trace_mm_vmscan_memcg_reclaim_begin(0,
2291 sc.may_writepage,
2292 sc.gfp_mask);
2293
a09ed5e0 2294 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2295
2296 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2297
2298 return nr_reclaimed;
66e1707b
BS
2299}
2300#endif
2301
f16015fb
JW
2302static void age_active_anon(struct zone *zone, struct scan_control *sc,
2303 int priority)
2304{
b95a2f2d 2305 struct mem_cgroup *memcg;
f16015fb 2306
b95a2f2d
JW
2307 if (!total_swap_pages)
2308 return;
2309
2310 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2311 do {
2312 struct mem_cgroup_zone mz = {
2313 .mem_cgroup = memcg,
2314 .zone = zone,
2315 };
2316
2317 if (inactive_anon_is_low(&mz))
2318 shrink_active_list(SWAP_CLUSTER_MAX, &mz,
3cb99451 2319 sc, priority, LRU_ACTIVE_ANON);
b95a2f2d
JW
2320
2321 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2322 } while (memcg);
f16015fb
JW
2323}
2324
1741c877
MG
2325/*
2326 * pgdat_balanced is used when checking if a node is balanced for high-order
2327 * allocations. Only zones that meet watermarks and are in a zone allowed
2328 * by the callers classzone_idx are added to balanced_pages. The total of
2329 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2330 * for the node to be considered balanced. Forcing all zones to be balanced
2331 * for high orders can cause excessive reclaim when there are imbalanced zones.
2332 * The choice of 25% is due to
2333 * o a 16M DMA zone that is balanced will not balance a zone on any
2334 * reasonable sized machine
2335 * o On all other machines, the top zone must be at least a reasonable
25985edc 2336 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2337 * would need to be at least 256M for it to be balance a whole node.
2338 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2339 * to balance a node on its own. These seemed like reasonable ratios.
2340 */
2341static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2342 int classzone_idx)
2343{
2344 unsigned long present_pages = 0;
2345 int i;
2346
2347 for (i = 0; i <= classzone_idx; i++)
2348 present_pages += pgdat->node_zones[i].present_pages;
2349
4746efde
SL
2350 /* A special case here: if zone has no page, we think it's balanced */
2351 return balanced_pages >= (present_pages >> 2);
1741c877
MG
2352}
2353
f50de2d3 2354/* is kswapd sleeping prematurely? */
dc83edd9
MG
2355static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2356 int classzone_idx)
f50de2d3 2357{
bb3ab596 2358 int i;
1741c877
MG
2359 unsigned long balanced = 0;
2360 bool all_zones_ok = true;
f50de2d3
MG
2361
2362 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2363 if (remaining)
dc83edd9 2364 return true;
f50de2d3 2365
0abdee2b 2366 /* Check the watermark levels */
08951e54 2367 for (i = 0; i <= classzone_idx; i++) {
bb3ab596
KM
2368 struct zone *zone = pgdat->node_zones + i;
2369
2370 if (!populated_zone(zone))
2371 continue;
2372
355b09c4
MG
2373 /*
2374 * balance_pgdat() skips over all_unreclaimable after
2375 * DEF_PRIORITY. Effectively, it considers them balanced so
2376 * they must be considered balanced here as well if kswapd
2377 * is to sleep
2378 */
2379 if (zone->all_unreclaimable) {
2380 balanced += zone->present_pages;
de3fab39 2381 continue;
355b09c4 2382 }
de3fab39 2383
88f5acf8 2384 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
da175d06 2385 i, 0))
1741c877
MG
2386 all_zones_ok = false;
2387 else
2388 balanced += zone->present_pages;
bb3ab596 2389 }
f50de2d3 2390
1741c877
MG
2391 /*
2392 * For high-order requests, the balanced zones must contain at least
2393 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2394 * must be balanced
2395 */
2396 if (order)
afc7e326 2397 return !pgdat_balanced(pgdat, balanced, classzone_idx);
1741c877
MG
2398 else
2399 return !all_zones_ok;
f50de2d3
MG
2400}
2401
1da177e4
LT
2402/*
2403 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2404 * they are all at high_wmark_pages(zone).
1da177e4 2405 *
0abdee2b 2406 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2407 *
2408 * There is special handling here for zones which are full of pinned pages.
2409 * This can happen if the pages are all mlocked, or if they are all used by
2410 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2411 * What we do is to detect the case where all pages in the zone have been
2412 * scanned twice and there has been zero successful reclaim. Mark the zone as
2413 * dead and from now on, only perform a short scan. Basically we're polling
2414 * the zone for when the problem goes away.
2415 *
2416 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2417 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2418 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2419 * lower zones regardless of the number of free pages in the lower zones. This
2420 * interoperates with the page allocator fallback scheme to ensure that aging
2421 * of pages is balanced across the zones.
1da177e4 2422 */
99504748 2423static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2424 int *classzone_idx)
1da177e4 2425{
1da177e4 2426 int all_zones_ok;
1741c877 2427 unsigned long balanced;
1da177e4
LT
2428 int priority;
2429 int i;
99504748 2430 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
69e05944 2431 unsigned long total_scanned;
1da177e4 2432 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2433 unsigned long nr_soft_reclaimed;
2434 unsigned long nr_soft_scanned;
179e9639
AM
2435 struct scan_control sc = {
2436 .gfp_mask = GFP_KERNEL,
a6dc60f8 2437 .may_unmap = 1,
2e2e4259 2438 .may_swap = 1,
22fba335
KM
2439 /*
2440 * kswapd doesn't want to be bailed out while reclaim. because
2441 * we want to put equal scanning pressure on each zone.
2442 */
2443 .nr_to_reclaim = ULONG_MAX,
5ad333eb 2444 .order = order,
f16015fb 2445 .target_mem_cgroup = NULL,
179e9639 2446 };
a09ed5e0
YH
2447 struct shrink_control shrink = {
2448 .gfp_mask = sc.gfp_mask,
2449 };
1da177e4
LT
2450loop_again:
2451 total_scanned = 0;
a79311c1 2452 sc.nr_reclaimed = 0;
c0bbbc73 2453 sc.may_writepage = !laptop_mode;
f8891e5e 2454 count_vm_event(PAGEOUTRUN);
1da177e4 2455
1da177e4 2456 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1da177e4 2457 unsigned long lru_pages = 0;
bb3ab596 2458 int has_under_min_watermark_zone = 0;
1da177e4
LT
2459
2460 all_zones_ok = 1;
1741c877 2461 balanced = 0;
1da177e4 2462
d6277db4
RW
2463 /*
2464 * Scan in the highmem->dma direction for the highest
2465 * zone which needs scanning
2466 */
2467 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2468 struct zone *zone = pgdat->node_zones + i;
1da177e4 2469
d6277db4
RW
2470 if (!populated_zone(zone))
2471 continue;
1da177e4 2472
93e4a89a 2473 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
d6277db4 2474 continue;
1da177e4 2475
556adecb
RR
2476 /*
2477 * Do some background aging of the anon list, to give
2478 * pages a chance to be referenced before reclaiming.
2479 */
f16015fb 2480 age_active_anon(zone, &sc, priority);
556adecb 2481
cc715d99
MG
2482 /*
2483 * If the number of buffer_heads in the machine
2484 * exceeds the maximum allowed level and this node
2485 * has a highmem zone, force kswapd to reclaim from
2486 * it to relieve lowmem pressure.
2487 */
2488 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2489 end_zone = i;
2490 break;
2491 }
2492
88f5acf8 2493 if (!zone_watermark_ok_safe(zone, order,
41858966 2494 high_wmark_pages(zone), 0, 0)) {
d6277db4 2495 end_zone = i;
e1dbeda6 2496 break;
439423f6
SL
2497 } else {
2498 /* If balanced, clear the congested flag */
2499 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2500 }
1da177e4 2501 }
e1dbeda6
AM
2502 if (i < 0)
2503 goto out;
2504
1da177e4
LT
2505 for (i = 0; i <= end_zone; i++) {
2506 struct zone *zone = pgdat->node_zones + i;
2507
adea02a1 2508 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2509 }
2510
2511 /*
2512 * Now scan the zone in the dma->highmem direction, stopping
2513 * at the last zone which needs scanning.
2514 *
2515 * We do this because the page allocator works in the opposite
2516 * direction. This prevents the page allocator from allocating
2517 * pages behind kswapd's direction of progress, which would
2518 * cause too much scanning of the lower zones.
2519 */
2520 for (i = 0; i <= end_zone; i++) {
2521 struct zone *zone = pgdat->node_zones + i;
fe2c2a10 2522 int nr_slab, testorder;
8afdcece 2523 unsigned long balance_gap;
1da177e4 2524
f3fe6512 2525 if (!populated_zone(zone))
1da177e4
LT
2526 continue;
2527
93e4a89a 2528 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1da177e4
LT
2529 continue;
2530
1da177e4 2531 sc.nr_scanned = 0;
4e416953 2532
0ae5e89c 2533 nr_soft_scanned = 0;
4e416953
BS
2534 /*
2535 * Call soft limit reclaim before calling shrink_zone.
4e416953 2536 */
0ae5e89c
YH
2537 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2538 order, sc.gfp_mask,
2539 &nr_soft_scanned);
2540 sc.nr_reclaimed += nr_soft_reclaimed;
2541 total_scanned += nr_soft_scanned;
00918b6a 2542
32a4330d 2543 /*
8afdcece
MG
2544 * We put equal pressure on every zone, unless
2545 * one zone has way too many pages free
2546 * already. The "too many pages" is defined
2547 * as the high wmark plus a "gap" where the
2548 * gap is either the low watermark or 1%
2549 * of the zone, whichever is smaller.
32a4330d 2550 */
8afdcece
MG
2551 balance_gap = min(low_wmark_pages(zone),
2552 (zone->present_pages +
2553 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2554 KSWAPD_ZONE_BALANCE_GAP_RATIO);
fe2c2a10
RR
2555 /*
2556 * Kswapd reclaims only single pages with compaction
2557 * enabled. Trying too hard to reclaim until contiguous
2558 * free pages have become available can hurt performance
2559 * by evicting too much useful data from memory.
2560 * Do not reclaim more than needed for compaction.
2561 */
2562 testorder = order;
2563 if (COMPACTION_BUILD && order &&
2564 compaction_suitable(zone, order) !=
2565 COMPACT_SKIPPED)
2566 testorder = 0;
2567
cc715d99 2568 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
643ac9fc 2569 !zone_watermark_ok_safe(zone, testorder,
8afdcece 2570 high_wmark_pages(zone) + balance_gap,
d7868dae 2571 end_zone, 0)) {
a79311c1 2572 shrink_zone(priority, zone, &sc);
5a03b051 2573
d7868dae
MG
2574 reclaim_state->reclaimed_slab = 0;
2575 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2576 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2577 total_scanned += sc.nr_scanned;
2578
2579 if (nr_slab == 0 && !zone_reclaimable(zone))
2580 zone->all_unreclaimable = 1;
2581 }
2582
1da177e4
LT
2583 /*
2584 * If we've done a decent amount of scanning and
2585 * the reclaim ratio is low, start doing writepage
2586 * even in laptop mode
2587 */
2588 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2589 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2590 sc.may_writepage = 1;
bb3ab596 2591
215ddd66
MG
2592 if (zone->all_unreclaimable) {
2593 if (end_zone && end_zone == i)
2594 end_zone--;
d7868dae 2595 continue;
215ddd66 2596 }
d7868dae 2597
fe2c2a10 2598 if (!zone_watermark_ok_safe(zone, testorder,
45973d74
MK
2599 high_wmark_pages(zone), end_zone, 0)) {
2600 all_zones_ok = 0;
2601 /*
2602 * We are still under min water mark. This
2603 * means that we have a GFP_ATOMIC allocation
2604 * failure risk. Hurry up!
2605 */
88f5acf8 2606 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2607 min_wmark_pages(zone), end_zone, 0))
2608 has_under_min_watermark_zone = 1;
0e093d99
MG
2609 } else {
2610 /*
2611 * If a zone reaches its high watermark,
2612 * consider it to be no longer congested. It's
2613 * possible there are dirty pages backed by
2614 * congested BDIs but as pressure is relieved,
2615 * spectulatively avoid congestion waits
2616 */
2617 zone_clear_flag(zone, ZONE_CONGESTED);
dc83edd9 2618 if (i <= *classzone_idx)
1741c877 2619 balanced += zone->present_pages;
45973d74 2620 }
bb3ab596 2621
1da177e4 2622 }
dc83edd9 2623 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
1da177e4
LT
2624 break; /* kswapd: all done */
2625 /*
2626 * OK, kswapd is getting into trouble. Take a nap, then take
2627 * another pass across the zones.
2628 */
bb3ab596
KM
2629 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2630 if (has_under_min_watermark_zone)
2631 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2632 else
2633 congestion_wait(BLK_RW_ASYNC, HZ/10);
2634 }
1da177e4
LT
2635
2636 /*
2637 * We do this so kswapd doesn't build up large priorities for
2638 * example when it is freeing in parallel with allocators. It
2639 * matches the direct reclaim path behaviour in terms of impact
2640 * on zone->*_priority.
2641 */
a79311c1 2642 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2643 break;
2644 }
2645out:
99504748
MG
2646
2647 /*
2648 * order-0: All zones must meet high watermark for a balanced node
1741c877
MG
2649 * high-order: Balanced zones must make up at least 25% of the node
2650 * for the node to be balanced
99504748 2651 */
dc83edd9 2652 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
1da177e4 2653 cond_resched();
8357376d
RW
2654
2655 try_to_freeze();
2656
73ce02e9
KM
2657 /*
2658 * Fragmentation may mean that the system cannot be
2659 * rebalanced for high-order allocations in all zones.
2660 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2661 * it means the zones have been fully scanned and are still
2662 * not balanced. For high-order allocations, there is
2663 * little point trying all over again as kswapd may
2664 * infinite loop.
2665 *
2666 * Instead, recheck all watermarks at order-0 as they
2667 * are the most important. If watermarks are ok, kswapd will go
2668 * back to sleep. High-order users can still perform direct
2669 * reclaim if they wish.
2670 */
2671 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2672 order = sc.order = 0;
2673
1da177e4
LT
2674 goto loop_again;
2675 }
2676
99504748
MG
2677 /*
2678 * If kswapd was reclaiming at a higher order, it has the option of
2679 * sleeping without all zones being balanced. Before it does, it must
2680 * ensure that the watermarks for order-0 on *all* zones are met and
2681 * that the congestion flags are cleared. The congestion flag must
2682 * be cleared as kswapd is the only mechanism that clears the flag
2683 * and it is potentially going to sleep here.
2684 */
2685 if (order) {
7be62de9
RR
2686 int zones_need_compaction = 1;
2687
99504748
MG
2688 for (i = 0; i <= end_zone; i++) {
2689 struct zone *zone = pgdat->node_zones + i;
2690
2691 if (!populated_zone(zone))
2692 continue;
2693
2694 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2695 continue;
2696
fe2c2a10 2697 /* Would compaction fail due to lack of free memory? */
496b919b
RR
2698 if (COMPACTION_BUILD &&
2699 compaction_suitable(zone, order) == COMPACT_SKIPPED)
fe2c2a10
RR
2700 goto loop_again;
2701
99504748
MG
2702 /* Confirm the zone is balanced for order-0 */
2703 if (!zone_watermark_ok(zone, 0,
2704 high_wmark_pages(zone), 0, 0)) {
2705 order = sc.order = 0;
2706 goto loop_again;
2707 }
2708
7be62de9
RR
2709 /* Check if the memory needs to be defragmented. */
2710 if (zone_watermark_ok(zone, order,
2711 low_wmark_pages(zone), *classzone_idx, 0))
2712 zones_need_compaction = 0;
2713
99504748
MG
2714 /* If balanced, clear the congested flag */
2715 zone_clear_flag(zone, ZONE_CONGESTED);
2716 }
7be62de9
RR
2717
2718 if (zones_need_compaction)
2719 compact_pgdat(pgdat, order);
99504748
MG
2720 }
2721
0abdee2b
MG
2722 /*
2723 * Return the order we were reclaiming at so sleeping_prematurely()
2724 * makes a decision on the order we were last reclaiming at. However,
2725 * if another caller entered the allocator slow path while kswapd
2726 * was awake, order will remain at the higher level
2727 */
dc83edd9 2728 *classzone_idx = end_zone;
0abdee2b 2729 return order;
1da177e4
LT
2730}
2731
dc83edd9 2732static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
2733{
2734 long remaining = 0;
2735 DEFINE_WAIT(wait);
2736
2737 if (freezing(current) || kthread_should_stop())
2738 return;
2739
2740 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2741
2742 /* Try to sleep for a short interval */
dc83edd9 2743 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2744 remaining = schedule_timeout(HZ/10);
2745 finish_wait(&pgdat->kswapd_wait, &wait);
2746 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2747 }
2748
2749 /*
2750 * After a short sleep, check if it was a premature sleep. If not, then
2751 * go fully to sleep until explicitly woken up.
2752 */
dc83edd9 2753 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2754 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2755
2756 /*
2757 * vmstat counters are not perfectly accurate and the estimated
2758 * value for counters such as NR_FREE_PAGES can deviate from the
2759 * true value by nr_online_cpus * threshold. To avoid the zone
2760 * watermarks being breached while under pressure, we reduce the
2761 * per-cpu vmstat threshold while kswapd is awake and restore
2762 * them before going back to sleep.
2763 */
2764 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2765 schedule();
2766 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2767 } else {
2768 if (remaining)
2769 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2770 else
2771 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2772 }
2773 finish_wait(&pgdat->kswapd_wait, &wait);
2774}
2775
1da177e4
LT
2776/*
2777 * The background pageout daemon, started as a kernel thread
4f98a2fe 2778 * from the init process.
1da177e4
LT
2779 *
2780 * This basically trickles out pages so that we have _some_
2781 * free memory available even if there is no other activity
2782 * that frees anything up. This is needed for things like routing
2783 * etc, where we otherwise might have all activity going on in
2784 * asynchronous contexts that cannot page things out.
2785 *
2786 * If there are applications that are active memory-allocators
2787 * (most normal use), this basically shouldn't matter.
2788 */
2789static int kswapd(void *p)
2790{
215ddd66 2791 unsigned long order, new_order;
d2ebd0f6 2792 unsigned balanced_order;
215ddd66 2793 int classzone_idx, new_classzone_idx;
d2ebd0f6 2794 int balanced_classzone_idx;
1da177e4
LT
2795 pg_data_t *pgdat = (pg_data_t*)p;
2796 struct task_struct *tsk = current;
f0bc0a60 2797
1da177e4
LT
2798 struct reclaim_state reclaim_state = {
2799 .reclaimed_slab = 0,
2800 };
a70f7302 2801 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2802
cf40bd16
NP
2803 lockdep_set_current_reclaim_state(GFP_KERNEL);
2804
174596a0 2805 if (!cpumask_empty(cpumask))
c5f59f08 2806 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2807 current->reclaim_state = &reclaim_state;
2808
2809 /*
2810 * Tell the memory management that we're a "memory allocator",
2811 * and that if we need more memory we should get access to it
2812 * regardless (see "__alloc_pages()"). "kswapd" should
2813 * never get caught in the normal page freeing logic.
2814 *
2815 * (Kswapd normally doesn't need memory anyway, but sometimes
2816 * you need a small amount of memory in order to be able to
2817 * page out something else, and this flag essentially protects
2818 * us from recursively trying to free more memory as we're
2819 * trying to free the first piece of memory in the first place).
2820 */
930d9152 2821 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2822 set_freezable();
1da177e4 2823
215ddd66 2824 order = new_order = 0;
d2ebd0f6 2825 balanced_order = 0;
215ddd66 2826 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 2827 balanced_classzone_idx = classzone_idx;
1da177e4 2828 for ( ; ; ) {
8fe23e05 2829 int ret;
3e1d1d28 2830
215ddd66
MG
2831 /*
2832 * If the last balance_pgdat was unsuccessful it's unlikely a
2833 * new request of a similar or harder type will succeed soon
2834 * so consider going to sleep on the basis we reclaimed at
2835 */
d2ebd0f6
AS
2836 if (balanced_classzone_idx >= new_classzone_idx &&
2837 balanced_order == new_order) {
215ddd66
MG
2838 new_order = pgdat->kswapd_max_order;
2839 new_classzone_idx = pgdat->classzone_idx;
2840 pgdat->kswapd_max_order = 0;
2841 pgdat->classzone_idx = pgdat->nr_zones - 1;
2842 }
2843
99504748 2844 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
2845 /*
2846 * Don't sleep if someone wants a larger 'order'
99504748 2847 * allocation or has tigher zone constraints
1da177e4
LT
2848 */
2849 order = new_order;
99504748 2850 classzone_idx = new_classzone_idx;
1da177e4 2851 } else {
d2ebd0f6
AS
2852 kswapd_try_to_sleep(pgdat, balanced_order,
2853 balanced_classzone_idx);
1da177e4 2854 order = pgdat->kswapd_max_order;
99504748 2855 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
2856 new_order = order;
2857 new_classzone_idx = classzone_idx;
4d40502e 2858 pgdat->kswapd_max_order = 0;
215ddd66 2859 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 2860 }
1da177e4 2861
8fe23e05
DR
2862 ret = try_to_freeze();
2863 if (kthread_should_stop())
2864 break;
2865
2866 /*
2867 * We can speed up thawing tasks if we don't call balance_pgdat
2868 * after returning from the refrigerator
2869 */
33906bc5
MG
2870 if (!ret) {
2871 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
2872 balanced_classzone_idx = classzone_idx;
2873 balanced_order = balance_pgdat(pgdat, order,
2874 &balanced_classzone_idx);
33906bc5 2875 }
1da177e4
LT
2876 }
2877 return 0;
2878}
2879
2880/*
2881 * A zone is low on free memory, so wake its kswapd task to service it.
2882 */
99504748 2883void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
2884{
2885 pg_data_t *pgdat;
2886
f3fe6512 2887 if (!populated_zone(zone))
1da177e4
LT
2888 return;
2889
88f5acf8 2890 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2891 return;
88f5acf8 2892 pgdat = zone->zone_pgdat;
99504748 2893 if (pgdat->kswapd_max_order < order) {
1da177e4 2894 pgdat->kswapd_max_order = order;
99504748
MG
2895 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2896 }
8d0986e2 2897 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2898 return;
88f5acf8
MG
2899 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2900 return;
2901
2902 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 2903 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2904}
2905
adea02a1
WF
2906/*
2907 * The reclaimable count would be mostly accurate.
2908 * The less reclaimable pages may be
2909 * - mlocked pages, which will be moved to unevictable list when encountered
2910 * - mapped pages, which may require several travels to be reclaimed
2911 * - dirty pages, which is not "instantly" reclaimable
2912 */
2913unsigned long global_reclaimable_pages(void)
4f98a2fe 2914{
adea02a1
WF
2915 int nr;
2916
2917 nr = global_page_state(NR_ACTIVE_FILE) +
2918 global_page_state(NR_INACTIVE_FILE);
2919
2920 if (nr_swap_pages > 0)
2921 nr += global_page_state(NR_ACTIVE_ANON) +
2922 global_page_state(NR_INACTIVE_ANON);
2923
2924 return nr;
2925}
2926
2927unsigned long zone_reclaimable_pages(struct zone *zone)
2928{
2929 int nr;
2930
2931 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2932 zone_page_state(zone, NR_INACTIVE_FILE);
2933
2934 if (nr_swap_pages > 0)
2935 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2936 zone_page_state(zone, NR_INACTIVE_ANON);
2937
2938 return nr;
4f98a2fe
RR
2939}
2940
c6f37f12 2941#ifdef CONFIG_HIBERNATION
1da177e4 2942/*
7b51755c 2943 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2944 * freed pages.
2945 *
2946 * Rather than trying to age LRUs the aim is to preserve the overall
2947 * LRU order by reclaiming preferentially
2948 * inactive > active > active referenced > active mapped
1da177e4 2949 */
7b51755c 2950unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2951{
d6277db4 2952 struct reclaim_state reclaim_state;
d6277db4 2953 struct scan_control sc = {
7b51755c
KM
2954 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2955 .may_swap = 1,
2956 .may_unmap = 1,
d6277db4 2957 .may_writepage = 1,
7b51755c
KM
2958 .nr_to_reclaim = nr_to_reclaim,
2959 .hibernation_mode = 1,
7b51755c 2960 .order = 0,
1da177e4 2961 };
a09ed5e0
YH
2962 struct shrink_control shrink = {
2963 .gfp_mask = sc.gfp_mask,
2964 };
2965 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
2966 struct task_struct *p = current;
2967 unsigned long nr_reclaimed;
1da177e4 2968
7b51755c
KM
2969 p->flags |= PF_MEMALLOC;
2970 lockdep_set_current_reclaim_state(sc.gfp_mask);
2971 reclaim_state.reclaimed_slab = 0;
2972 p->reclaim_state = &reclaim_state;
d6277db4 2973
a09ed5e0 2974 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 2975
7b51755c
KM
2976 p->reclaim_state = NULL;
2977 lockdep_clear_current_reclaim_state();
2978 p->flags &= ~PF_MEMALLOC;
d6277db4 2979
7b51755c 2980 return nr_reclaimed;
1da177e4 2981}
c6f37f12 2982#endif /* CONFIG_HIBERNATION */
1da177e4 2983
1da177e4
LT
2984/* It's optimal to keep kswapds on the same CPUs as their memory, but
2985 not required for correctness. So if the last cpu in a node goes
2986 away, we get changed to run anywhere: as the first one comes back,
2987 restore their cpu bindings. */
9c7b216d 2988static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2989 unsigned long action, void *hcpu)
1da177e4 2990{
58c0a4a7 2991 int nid;
1da177e4 2992
8bb78442 2993 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2994 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2995 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2996 const struct cpumask *mask;
2997
2998 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 2999
3e597945 3000 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3001 /* One of our CPUs online: restore mask */
c5f59f08 3002 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3003 }
3004 }
3005 return NOTIFY_OK;
3006}
1da177e4 3007
3218ae14
YG
3008/*
3009 * This kswapd start function will be called by init and node-hot-add.
3010 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3011 */
3012int kswapd_run(int nid)
3013{
3014 pg_data_t *pgdat = NODE_DATA(nid);
3015 int ret = 0;
3016
3017 if (pgdat->kswapd)
3018 return 0;
3019
3020 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3021 if (IS_ERR(pgdat->kswapd)) {
3022 /* failure at boot is fatal */
3023 BUG_ON(system_state == SYSTEM_BOOTING);
3024 printk("Failed to start kswapd on node %d\n",nid);
3025 ret = -1;
3026 }
3027 return ret;
3028}
3029
8fe23e05
DR
3030/*
3031 * Called by memory hotplug when all memory in a node is offlined.
3032 */
3033void kswapd_stop(int nid)
3034{
3035 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3036
3037 if (kswapd)
3038 kthread_stop(kswapd);
3039}
3040
1da177e4
LT
3041static int __init kswapd_init(void)
3042{
3218ae14 3043 int nid;
69e05944 3044
1da177e4 3045 swap_setup();
9422ffba 3046 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 3047 kswapd_run(nid);
1da177e4
LT
3048 hotcpu_notifier(cpu_callback, 0);
3049 return 0;
3050}
3051
3052module_init(kswapd_init)
9eeff239
CL
3053
3054#ifdef CONFIG_NUMA
3055/*
3056 * Zone reclaim mode
3057 *
3058 * If non-zero call zone_reclaim when the number of free pages falls below
3059 * the watermarks.
9eeff239
CL
3060 */
3061int zone_reclaim_mode __read_mostly;
3062
1b2ffb78 3063#define RECLAIM_OFF 0
7d03431c 3064#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3065#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3066#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3067
a92f7126
CL
3068/*
3069 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3070 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3071 * a zone.
3072 */
3073#define ZONE_RECLAIM_PRIORITY 4
3074
9614634f
CL
3075/*
3076 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3077 * occur.
3078 */
3079int sysctl_min_unmapped_ratio = 1;
3080
0ff38490
CL
3081/*
3082 * If the number of slab pages in a zone grows beyond this percentage then
3083 * slab reclaim needs to occur.
3084 */
3085int sysctl_min_slab_ratio = 5;
3086
90afa5de
MG
3087static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3088{
3089 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3090 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3091 zone_page_state(zone, NR_ACTIVE_FILE);
3092
3093 /*
3094 * It's possible for there to be more file mapped pages than
3095 * accounted for by the pages on the file LRU lists because
3096 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3097 */
3098 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3099}
3100
3101/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3102static long zone_pagecache_reclaimable(struct zone *zone)
3103{
3104 long nr_pagecache_reclaimable;
3105 long delta = 0;
3106
3107 /*
3108 * If RECLAIM_SWAP is set, then all file pages are considered
3109 * potentially reclaimable. Otherwise, we have to worry about
3110 * pages like swapcache and zone_unmapped_file_pages() provides
3111 * a better estimate
3112 */
3113 if (zone_reclaim_mode & RECLAIM_SWAP)
3114 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3115 else
3116 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3117
3118 /* If we can't clean pages, remove dirty pages from consideration */
3119 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3120 delta += zone_page_state(zone, NR_FILE_DIRTY);
3121
3122 /* Watch for any possible underflows due to delta */
3123 if (unlikely(delta > nr_pagecache_reclaimable))
3124 delta = nr_pagecache_reclaimable;
3125
3126 return nr_pagecache_reclaimable - delta;
3127}
3128
9eeff239
CL
3129/*
3130 * Try to free up some pages from this zone through reclaim.
3131 */
179e9639 3132static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3133{
7fb2d46d 3134 /* Minimum pages needed in order to stay on node */
69e05944 3135 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3136 struct task_struct *p = current;
3137 struct reclaim_state reclaim_state;
8695949a 3138 int priority;
179e9639
AM
3139 struct scan_control sc = {
3140 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3141 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3142 .may_swap = 1,
22fba335
KM
3143 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3144 SWAP_CLUSTER_MAX),
179e9639 3145 .gfp_mask = gfp_mask,
bd2f6199 3146 .order = order,
179e9639 3147 };
a09ed5e0
YH
3148 struct shrink_control shrink = {
3149 .gfp_mask = sc.gfp_mask,
3150 };
15748048 3151 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3152
9eeff239 3153 cond_resched();
d4f7796e
CL
3154 /*
3155 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3156 * and we also need to be able to write out pages for RECLAIM_WRITE
3157 * and RECLAIM_SWAP.
3158 */
3159 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3160 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3161 reclaim_state.reclaimed_slab = 0;
3162 p->reclaim_state = &reclaim_state;
c84db23c 3163
90afa5de 3164 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3165 /*
3166 * Free memory by calling shrink zone with increasing
3167 * priorities until we have enough memory freed.
3168 */
3169 priority = ZONE_RECLAIM_PRIORITY;
3170 do {
a79311c1 3171 shrink_zone(priority, zone, &sc);
0ff38490 3172 priority--;
a79311c1 3173 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 3174 }
c84db23c 3175
15748048
KM
3176 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3177 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3178 /*
7fb2d46d 3179 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3180 * many pages were freed in this zone. So we take the current
3181 * number of slab pages and shake the slab until it is reduced
3182 * by the same nr_pages that we used for reclaiming unmapped
3183 * pages.
2a16e3f4 3184 *
0ff38490
CL
3185 * Note that shrink_slab will free memory on all zones and may
3186 * take a long time.
2a16e3f4 3187 */
4dc4b3d9
KM
3188 for (;;) {
3189 unsigned long lru_pages = zone_reclaimable_pages(zone);
3190
3191 /* No reclaimable slab or very low memory pressure */
1495f230 3192 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3193 break;
3194
3195 /* Freed enough memory */
3196 nr_slab_pages1 = zone_page_state(zone,
3197 NR_SLAB_RECLAIMABLE);
3198 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3199 break;
3200 }
83e33a47
CL
3201
3202 /*
3203 * Update nr_reclaimed by the number of slab pages we
3204 * reclaimed from this zone.
3205 */
15748048
KM
3206 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3207 if (nr_slab_pages1 < nr_slab_pages0)
3208 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3209 }
3210
9eeff239 3211 p->reclaim_state = NULL;
d4f7796e 3212 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3213 lockdep_clear_current_reclaim_state();
a79311c1 3214 return sc.nr_reclaimed >= nr_pages;
9eeff239 3215}
179e9639
AM
3216
3217int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3218{
179e9639 3219 int node_id;
d773ed6b 3220 int ret;
179e9639
AM
3221
3222 /*
0ff38490
CL
3223 * Zone reclaim reclaims unmapped file backed pages and
3224 * slab pages if we are over the defined limits.
34aa1330 3225 *
9614634f
CL
3226 * A small portion of unmapped file backed pages is needed for
3227 * file I/O otherwise pages read by file I/O will be immediately
3228 * thrown out if the zone is overallocated. So we do not reclaim
3229 * if less than a specified percentage of the zone is used by
3230 * unmapped file backed pages.
179e9639 3231 */
90afa5de
MG
3232 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3233 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3234 return ZONE_RECLAIM_FULL;
179e9639 3235
93e4a89a 3236 if (zone->all_unreclaimable)
fa5e084e 3237 return ZONE_RECLAIM_FULL;
d773ed6b 3238
179e9639 3239 /*
d773ed6b 3240 * Do not scan if the allocation should not be delayed.
179e9639 3241 */
d773ed6b 3242 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3243 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3244
3245 /*
3246 * Only run zone reclaim on the local zone or on zones that do not
3247 * have associated processors. This will favor the local processor
3248 * over remote processors and spread off node memory allocations
3249 * as wide as possible.
3250 */
89fa3024 3251 node_id = zone_to_nid(zone);
37c0708d 3252 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3253 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3254
3255 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3256 return ZONE_RECLAIM_NOSCAN;
3257
d773ed6b
DR
3258 ret = __zone_reclaim(zone, gfp_mask, order);
3259 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3260
24cf7251
MG
3261 if (!ret)
3262 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3263
d773ed6b 3264 return ret;
179e9639 3265}
9eeff239 3266#endif
894bc310 3267
894bc310
LS
3268/*
3269 * page_evictable - test whether a page is evictable
3270 * @page: the page to test
3271 * @vma: the VMA in which the page is or will be mapped, may be NULL
3272 *
3273 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
3274 * lists vs unevictable list. The vma argument is !NULL when called from the
3275 * fault path to determine how to instantate a new page.
894bc310
LS
3276 *
3277 * Reasons page might not be evictable:
ba9ddf49 3278 * (1) page's mapping marked unevictable
b291f000 3279 * (2) page is part of an mlocked VMA
ba9ddf49 3280 *
894bc310
LS
3281 */
3282int page_evictable(struct page *page, struct vm_area_struct *vma)
3283{
3284
ba9ddf49
LS
3285 if (mapping_unevictable(page_mapping(page)))
3286 return 0;
3287
096a7cf4 3288 if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
b291f000 3289 return 0;
894bc310
LS
3290
3291 return 1;
3292}
89e004ea 3293
85046579 3294#ifdef CONFIG_SHMEM
89e004ea 3295/**
24513264
HD
3296 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3297 * @pages: array of pages to check
3298 * @nr_pages: number of pages to check
89e004ea 3299 *
24513264 3300 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3301 *
3302 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3303 */
24513264 3304void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3305{
925b7673 3306 struct lruvec *lruvec;
24513264
HD
3307 struct zone *zone = NULL;
3308 int pgscanned = 0;
3309 int pgrescued = 0;
3310 int i;
89e004ea 3311
24513264
HD
3312 for (i = 0; i < nr_pages; i++) {
3313 struct page *page = pages[i];
3314 struct zone *pagezone;
89e004ea 3315
24513264
HD
3316 pgscanned++;
3317 pagezone = page_zone(page);
3318 if (pagezone != zone) {
3319 if (zone)
3320 spin_unlock_irq(&zone->lru_lock);
3321 zone = pagezone;
3322 spin_lock_irq(&zone->lru_lock);
3323 }
89e004ea 3324
24513264
HD
3325 if (!PageLRU(page) || !PageUnevictable(page))
3326 continue;
89e004ea 3327
24513264
HD
3328 if (page_evictable(page, NULL)) {
3329 enum lru_list lru = page_lru_base_type(page);
3330
3331 VM_BUG_ON(PageActive(page));
3332 ClearPageUnevictable(page);
3333 __dec_zone_state(zone, NR_UNEVICTABLE);
3334 lruvec = mem_cgroup_lru_move_lists(zone, page,
3335 LRU_UNEVICTABLE, lru);
3336 list_move(&page->lru, &lruvec->lists[lru]);
3337 __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3338 pgrescued++;
89e004ea 3339 }
24513264 3340 }
89e004ea 3341
24513264
HD
3342 if (zone) {
3343 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3344 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3345 spin_unlock_irq(&zone->lru_lock);
89e004ea 3346 }
89e004ea 3347}
85046579 3348#endif /* CONFIG_SHMEM */
af936a16 3349
264e56d8 3350static void warn_scan_unevictable_pages(void)
af936a16 3351{
264e56d8 3352 printk_once(KERN_WARNING
25bd91bd 3353 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3354 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3355 "one, please send an email to linux-mm@kvack.org.\n",
3356 current->comm);
af936a16
LS
3357}
3358
3359/*
3360 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3361 * all nodes' unevictable lists for evictable pages
3362 */
3363unsigned long scan_unevictable_pages;
3364
3365int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3366 void __user *buffer,
af936a16
LS
3367 size_t *length, loff_t *ppos)
3368{
264e56d8 3369 warn_scan_unevictable_pages();
8d65af78 3370 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3371 scan_unevictable_pages = 0;
3372 return 0;
3373}
3374
e4455abb 3375#ifdef CONFIG_NUMA
af936a16
LS
3376/*
3377 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3378 * a specified node's per zone unevictable lists for evictable pages.
3379 */
3380
10fbcf4c
KS
3381static ssize_t read_scan_unevictable_node(struct device *dev,
3382 struct device_attribute *attr,
af936a16
LS
3383 char *buf)
3384{
264e56d8 3385 warn_scan_unevictable_pages();
af936a16
LS
3386 return sprintf(buf, "0\n"); /* always zero; should fit... */
3387}
3388
10fbcf4c
KS
3389static ssize_t write_scan_unevictable_node(struct device *dev,
3390 struct device_attribute *attr,
af936a16
LS
3391 const char *buf, size_t count)
3392{
264e56d8 3393 warn_scan_unevictable_pages();
af936a16
LS
3394 return 1;
3395}
3396
3397
10fbcf4c 3398static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3399 read_scan_unevictable_node,
3400 write_scan_unevictable_node);
3401
3402int scan_unevictable_register_node(struct node *node)
3403{
10fbcf4c 3404 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3405}
3406
3407void scan_unevictable_unregister_node(struct node *node)
3408{
10fbcf4c 3409 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3410}
e4455abb 3411#endif