]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmscan.c
[PATCH] More page migration: do not inc/dec rss counters
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/file.h>
23#include <linux/writeback.h>
24#include <linux/blkdev.h>
25#include <linux/buffer_head.h> /* for try_to_release_page(),
26 buffer_heads_over_limit */
27#include <linux/mm_inline.h>
28#include <linux/pagevec.h>
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
34#include <linux/notifier.h>
35#include <linux/rwsem.h>
248a0301 36#include <linux/delay.h>
1da177e4
LT
37
38#include <asm/tlbflush.h>
39#include <asm/div64.h>
40
41#include <linux/swapops.h>
42
0f8053a5
NP
43#include "internal.h"
44
1da177e4 45struct scan_control {
1da177e4
LT
46 /* Incremented by the number of inactive pages that were scanned */
47 unsigned long nr_scanned;
48
1da177e4
LT
49 unsigned long nr_mapped; /* From page_state */
50
1da177e4 51 /* This context's GFP mask */
6daa0e28 52 gfp_t gfp_mask;
1da177e4
LT
53
54 int may_writepage;
55
f1fd1067
CL
56 /* Can pages be swapped as part of reclaim? */
57 int may_swap;
58
1da177e4
LT
59 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
60 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
61 * In this context, it doesn't matter that we scan the
62 * whole list at once. */
63 int swap_cluster_max;
d6277db4
RW
64
65 int swappiness;
1da177e4
LT
66};
67
68/*
69 * The list of shrinker callbacks used by to apply pressure to
70 * ageable caches.
71 */
72struct shrinker {
73 shrinker_t shrinker;
74 struct list_head list;
75 int seeks; /* seeks to recreate an obj */
76 long nr; /* objs pending delete */
77};
78
79#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
80
81#ifdef ARCH_HAS_PREFETCH
82#define prefetch_prev_lru_page(_page, _base, _field) \
83 do { \
84 if ((_page)->lru.prev != _base) { \
85 struct page *prev; \
86 \
87 prev = lru_to_page(&(_page->lru)); \
88 prefetch(&prev->_field); \
89 } \
90 } while (0)
91#else
92#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
93#endif
94
95#ifdef ARCH_HAS_PREFETCHW
96#define prefetchw_prev_lru_page(_page, _base, _field) \
97 do { \
98 if ((_page)->lru.prev != _base) { \
99 struct page *prev; \
100 \
101 prev = lru_to_page(&(_page->lru)); \
102 prefetchw(&prev->_field); \
103 } \
104 } while (0)
105#else
106#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
107#endif
108
109/*
110 * From 0 .. 100. Higher means more swappy.
111 */
112int vm_swappiness = 60;
113static long total_memory;
114
115static LIST_HEAD(shrinker_list);
116static DECLARE_RWSEM(shrinker_rwsem);
117
118/*
119 * Add a shrinker callback to be called from the vm
120 */
121struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
122{
123 struct shrinker *shrinker;
124
125 shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
126 if (shrinker) {
127 shrinker->shrinker = theshrinker;
128 shrinker->seeks = seeks;
129 shrinker->nr = 0;
130 down_write(&shrinker_rwsem);
131 list_add_tail(&shrinker->list, &shrinker_list);
132 up_write(&shrinker_rwsem);
133 }
134 return shrinker;
135}
136EXPORT_SYMBOL(set_shrinker);
137
138/*
139 * Remove one
140 */
141void remove_shrinker(struct shrinker *shrinker)
142{
143 down_write(&shrinker_rwsem);
144 list_del(&shrinker->list);
145 up_write(&shrinker_rwsem);
146 kfree(shrinker);
147}
148EXPORT_SYMBOL(remove_shrinker);
149
150#define SHRINK_BATCH 128
151/*
152 * Call the shrink functions to age shrinkable caches
153 *
154 * Here we assume it costs one seek to replace a lru page and that it also
155 * takes a seek to recreate a cache object. With this in mind we age equal
156 * percentages of the lru and ageable caches. This should balance the seeks
157 * generated by these structures.
158 *
159 * If the vm encounted mapped pages on the LRU it increase the pressure on
160 * slab to avoid swapping.
161 *
162 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
163 *
164 * `lru_pages' represents the number of on-LRU pages in all the zones which
165 * are eligible for the caller's allocation attempt. It is used for balancing
166 * slab reclaim versus page reclaim.
b15e0905 167 *
168 * Returns the number of slab objects which we shrunk.
1da177e4 169 */
69e05944
AM
170unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
171 unsigned long lru_pages)
1da177e4
LT
172{
173 struct shrinker *shrinker;
69e05944 174 unsigned long ret = 0;
1da177e4
LT
175
176 if (scanned == 0)
177 scanned = SWAP_CLUSTER_MAX;
178
179 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 180 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
181
182 list_for_each_entry(shrinker, &shrinker_list, list) {
183 unsigned long long delta;
184 unsigned long total_scan;
ea164d73 185 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
1da177e4
LT
186
187 delta = (4 * scanned) / shrinker->seeks;
ea164d73 188 delta *= max_pass;
1da177e4
LT
189 do_div(delta, lru_pages + 1);
190 shrinker->nr += delta;
ea164d73
AA
191 if (shrinker->nr < 0) {
192 printk(KERN_ERR "%s: nr=%ld\n",
193 __FUNCTION__, shrinker->nr);
194 shrinker->nr = max_pass;
195 }
196
197 /*
198 * Avoid risking looping forever due to too large nr value:
199 * never try to free more than twice the estimate number of
200 * freeable entries.
201 */
202 if (shrinker->nr > max_pass * 2)
203 shrinker->nr = max_pass * 2;
1da177e4
LT
204
205 total_scan = shrinker->nr;
206 shrinker->nr = 0;
207
208 while (total_scan >= SHRINK_BATCH) {
209 long this_scan = SHRINK_BATCH;
210 int shrink_ret;
b15e0905 211 int nr_before;
1da177e4 212
b15e0905 213 nr_before = (*shrinker->shrinker)(0, gfp_mask);
1da177e4
LT
214 shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
215 if (shrink_ret == -1)
216 break;
b15e0905 217 if (shrink_ret < nr_before)
218 ret += nr_before - shrink_ret;
1da177e4
LT
219 mod_page_state(slabs_scanned, this_scan);
220 total_scan -= this_scan;
221
222 cond_resched();
223 }
224
225 shrinker->nr += total_scan;
226 }
227 up_read(&shrinker_rwsem);
b15e0905 228 return ret;
1da177e4
LT
229}
230
231/* Called without lock on whether page is mapped, so answer is unstable */
232static inline int page_mapping_inuse(struct page *page)
233{
234 struct address_space *mapping;
235
236 /* Page is in somebody's page tables. */
237 if (page_mapped(page))
238 return 1;
239
240 /* Be more reluctant to reclaim swapcache than pagecache */
241 if (PageSwapCache(page))
242 return 1;
243
244 mapping = page_mapping(page);
245 if (!mapping)
246 return 0;
247
248 /* File is mmap'd by somebody? */
249 return mapping_mapped(mapping);
250}
251
252static inline int is_page_cache_freeable(struct page *page)
253{
254 return page_count(page) - !!PagePrivate(page) == 2;
255}
256
257static int may_write_to_queue(struct backing_dev_info *bdi)
258{
930d9152 259 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
260 return 1;
261 if (!bdi_write_congested(bdi))
262 return 1;
263 if (bdi == current->backing_dev_info)
264 return 1;
265 return 0;
266}
267
268/*
269 * We detected a synchronous write error writing a page out. Probably
270 * -ENOSPC. We need to propagate that into the address_space for a subsequent
271 * fsync(), msync() or close().
272 *
273 * The tricky part is that after writepage we cannot touch the mapping: nothing
274 * prevents it from being freed up. But we have a ref on the page and once
275 * that page is locked, the mapping is pinned.
276 *
277 * We're allowed to run sleeping lock_page() here because we know the caller has
278 * __GFP_FS.
279 */
280static void handle_write_error(struct address_space *mapping,
281 struct page *page, int error)
282{
283 lock_page(page);
284 if (page_mapping(page) == mapping) {
285 if (error == -ENOSPC)
286 set_bit(AS_ENOSPC, &mapping->flags);
287 else
288 set_bit(AS_EIO, &mapping->flags);
289 }
290 unlock_page(page);
291}
292
293/*
1742f19f
AM
294 * pageout is called by shrink_page_list() for each dirty page.
295 * Calls ->writepage().
1da177e4 296 */
b20a3503 297pageout_t pageout(struct page *page, struct address_space *mapping)
1da177e4
LT
298{
299 /*
300 * If the page is dirty, only perform writeback if that write
301 * will be non-blocking. To prevent this allocation from being
302 * stalled by pagecache activity. But note that there may be
303 * stalls if we need to run get_block(). We could test
304 * PagePrivate for that.
305 *
306 * If this process is currently in generic_file_write() against
307 * this page's queue, we can perform writeback even if that
308 * will block.
309 *
310 * If the page is swapcache, write it back even if that would
311 * block, for some throttling. This happens by accident, because
312 * swap_backing_dev_info is bust: it doesn't reflect the
313 * congestion state of the swapdevs. Easy to fix, if needed.
314 * See swapfile.c:page_queue_congested().
315 */
316 if (!is_page_cache_freeable(page))
317 return PAGE_KEEP;
318 if (!mapping) {
319 /*
320 * Some data journaling orphaned pages can have
321 * page->mapping == NULL while being dirty with clean buffers.
322 */
323aca6c 323 if (PagePrivate(page)) {
1da177e4
LT
324 if (try_to_free_buffers(page)) {
325 ClearPageDirty(page);
326 printk("%s: orphaned page\n", __FUNCTION__);
327 return PAGE_CLEAN;
328 }
329 }
330 return PAGE_KEEP;
331 }
332 if (mapping->a_ops->writepage == NULL)
333 return PAGE_ACTIVATE;
334 if (!may_write_to_queue(mapping->backing_dev_info))
335 return PAGE_KEEP;
336
337 if (clear_page_dirty_for_io(page)) {
338 int res;
339 struct writeback_control wbc = {
340 .sync_mode = WB_SYNC_NONE,
341 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
342 .range_start = 0,
343 .range_end = LLONG_MAX,
1da177e4
LT
344 .nonblocking = 1,
345 .for_reclaim = 1,
346 };
347
348 SetPageReclaim(page);
349 res = mapping->a_ops->writepage(page, &wbc);
350 if (res < 0)
351 handle_write_error(mapping, page, res);
994fc28c 352 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
353 ClearPageReclaim(page);
354 return PAGE_ACTIVATE;
355 }
356 if (!PageWriteback(page)) {
357 /* synchronous write or broken a_ops? */
358 ClearPageReclaim(page);
359 }
360
361 return PAGE_SUCCESS;
362 }
363
364 return PAGE_CLEAN;
365}
366
b20a3503 367int remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc
CL
368{
369 if (!mapping)
370 return 0; /* truncate got there first */
371
372 write_lock_irq(&mapping->tree_lock);
373
374 /*
375 * The non-racy check for busy page. It is critical to check
376 * PageDirty _after_ making sure that the page is freeable and
377 * not in use by anybody. (pagecache + us == 2)
378 */
379 if (unlikely(page_count(page) != 2))
380 goto cannot_free;
381 smp_rmb();
382 if (unlikely(PageDirty(page)))
383 goto cannot_free;
384
385 if (PageSwapCache(page)) {
386 swp_entry_t swap = { .val = page_private(page) };
387 __delete_from_swap_cache(page);
388 write_unlock_irq(&mapping->tree_lock);
389 swap_free(swap);
390 __put_page(page); /* The pagecache ref */
391 return 1;
392 }
393
394 __remove_from_page_cache(page);
395 write_unlock_irq(&mapping->tree_lock);
396 __put_page(page);
397 return 1;
398
399cannot_free:
400 write_unlock_irq(&mapping->tree_lock);
401 return 0;
402}
403
1da177e4 404/*
1742f19f 405 * shrink_page_list() returns the number of reclaimed pages
1da177e4 406 */
1742f19f
AM
407static unsigned long shrink_page_list(struct list_head *page_list,
408 struct scan_control *sc)
1da177e4
LT
409{
410 LIST_HEAD(ret_pages);
411 struct pagevec freed_pvec;
412 int pgactivate = 0;
05ff5137 413 unsigned long nr_reclaimed = 0;
1da177e4
LT
414
415 cond_resched();
416
417 pagevec_init(&freed_pvec, 1);
418 while (!list_empty(page_list)) {
419 struct address_space *mapping;
420 struct page *page;
421 int may_enter_fs;
422 int referenced;
423
424 cond_resched();
425
426 page = lru_to_page(page_list);
427 list_del(&page->lru);
428
429 if (TestSetPageLocked(page))
430 goto keep;
431
432 BUG_ON(PageActive(page));
433
434 sc->nr_scanned++;
80e43426
CL
435
436 if (!sc->may_swap && page_mapped(page))
437 goto keep_locked;
438
1da177e4
LT
439 /* Double the slab pressure for mapped and swapcache pages */
440 if (page_mapped(page) || PageSwapCache(page))
441 sc->nr_scanned++;
442
443 if (PageWriteback(page))
444 goto keep_locked;
445
f7b7fd8f 446 referenced = page_referenced(page, 1);
1da177e4
LT
447 /* In active use or really unfreeable? Activate it. */
448 if (referenced && page_mapping_inuse(page))
449 goto activate_locked;
450
451#ifdef CONFIG_SWAP
452 /*
453 * Anonymous process memory has backing store?
454 * Try to allocate it some swap space here.
455 */
6e5ef1a9 456 if (PageAnon(page) && !PageSwapCache(page))
1480a540 457 if (!add_to_swap(page, GFP_ATOMIC))
1da177e4 458 goto activate_locked;
1da177e4
LT
459#endif /* CONFIG_SWAP */
460
461 mapping = page_mapping(page);
462 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
463 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
464
465 /*
466 * The page is mapped into the page tables of one or more
467 * processes. Try to unmap it here.
468 */
469 if (page_mapped(page) && mapping) {
a48d07af 470 switch (try_to_unmap(page, 0)) {
1da177e4
LT
471 case SWAP_FAIL:
472 goto activate_locked;
473 case SWAP_AGAIN:
474 goto keep_locked;
475 case SWAP_SUCCESS:
476 ; /* try to free the page below */
477 }
478 }
479
480 if (PageDirty(page)) {
481 if (referenced)
482 goto keep_locked;
483 if (!may_enter_fs)
484 goto keep_locked;
52a8363e 485 if (!sc->may_writepage)
1da177e4
LT
486 goto keep_locked;
487
488 /* Page is dirty, try to write it out here */
489 switch(pageout(page, mapping)) {
490 case PAGE_KEEP:
491 goto keep_locked;
492 case PAGE_ACTIVATE:
493 goto activate_locked;
494 case PAGE_SUCCESS:
495 if (PageWriteback(page) || PageDirty(page))
496 goto keep;
497 /*
498 * A synchronous write - probably a ramdisk. Go
499 * ahead and try to reclaim the page.
500 */
501 if (TestSetPageLocked(page))
502 goto keep;
503 if (PageDirty(page) || PageWriteback(page))
504 goto keep_locked;
505 mapping = page_mapping(page);
506 case PAGE_CLEAN:
507 ; /* try to free the page below */
508 }
509 }
510
511 /*
512 * If the page has buffers, try to free the buffer mappings
513 * associated with this page. If we succeed we try to free
514 * the page as well.
515 *
516 * We do this even if the page is PageDirty().
517 * try_to_release_page() does not perform I/O, but it is
518 * possible for a page to have PageDirty set, but it is actually
519 * clean (all its buffers are clean). This happens if the
520 * buffers were written out directly, with submit_bh(). ext3
521 * will do this, as well as the blockdev mapping.
522 * try_to_release_page() will discover that cleanness and will
523 * drop the buffers and mark the page clean - it can be freed.
524 *
525 * Rarely, pages can have buffers and no ->mapping. These are
526 * the pages which were not successfully invalidated in
527 * truncate_complete_page(). We try to drop those buffers here
528 * and if that worked, and the page is no longer mapped into
529 * process address space (page_count == 1) it can be freed.
530 * Otherwise, leave the page on the LRU so it is swappable.
531 */
532 if (PagePrivate(page)) {
533 if (!try_to_release_page(page, sc->gfp_mask))
534 goto activate_locked;
535 if (!mapping && page_count(page) == 1)
536 goto free_it;
537 }
538
49d2e9cc
CL
539 if (!remove_mapping(mapping, page))
540 goto keep_locked;
1da177e4
LT
541
542free_it:
543 unlock_page(page);
05ff5137 544 nr_reclaimed++;
1da177e4
LT
545 if (!pagevec_add(&freed_pvec, page))
546 __pagevec_release_nonlru(&freed_pvec);
547 continue;
548
549activate_locked:
550 SetPageActive(page);
551 pgactivate++;
552keep_locked:
553 unlock_page(page);
554keep:
555 list_add(&page->lru, &ret_pages);
556 BUG_ON(PageLRU(page));
557 }
558 list_splice(&ret_pages, page_list);
559 if (pagevec_count(&freed_pvec))
560 __pagevec_release_nonlru(&freed_pvec);
561 mod_page_state(pgactivate, pgactivate);
05ff5137 562 return nr_reclaimed;
1da177e4
LT
563}
564
565/*
566 * zone->lru_lock is heavily contended. Some of the functions that
567 * shrink the lists perform better by taking out a batch of pages
568 * and working on them outside the LRU lock.
569 *
570 * For pagecache intensive workloads, this function is the hottest
571 * spot in the kernel (apart from copy_*_user functions).
572 *
573 * Appropriate locks must be held before calling this function.
574 *
575 * @nr_to_scan: The number of pages to look through on the list.
576 * @src: The LRU list to pull pages off.
577 * @dst: The temp list to put pages on to.
578 * @scanned: The number of pages that were scanned.
579 *
580 * returns how many pages were moved onto *@dst.
581 */
69e05944
AM
582static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
583 struct list_head *src, struct list_head *dst,
584 unsigned long *scanned)
1da177e4 585{
69e05944 586 unsigned long nr_taken = 0;
1da177e4 587 struct page *page;
c9b02d97 588 unsigned long scan;
1da177e4 589
c9b02d97 590 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
7c8ee9a8 591 struct list_head *target;
1da177e4
LT
592 page = lru_to_page(src);
593 prefetchw_prev_lru_page(page, src, flags);
594
8d438f96
NP
595 BUG_ON(!PageLRU(page));
596
053837fc 597 list_del(&page->lru);
7c8ee9a8
NP
598 target = src;
599 if (likely(get_page_unless_zero(page))) {
053837fc 600 /*
7c8ee9a8
NP
601 * Be careful not to clear PageLRU until after we're
602 * sure the page is not being freed elsewhere -- the
603 * page release code relies on it.
053837fc 604 */
7c8ee9a8
NP
605 ClearPageLRU(page);
606 target = dst;
607 nr_taken++;
608 } /* else it is being freed elsewhere */
46453a6e 609
7c8ee9a8 610 list_add(&page->lru, target);
1da177e4
LT
611 }
612
613 *scanned = scan;
614 return nr_taken;
615}
616
617/*
1742f19f
AM
618 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
619 * of reclaimed pages
1da177e4 620 */
1742f19f
AM
621static unsigned long shrink_inactive_list(unsigned long max_scan,
622 struct zone *zone, struct scan_control *sc)
1da177e4
LT
623{
624 LIST_HEAD(page_list);
625 struct pagevec pvec;
69e05944 626 unsigned long nr_scanned = 0;
05ff5137 627 unsigned long nr_reclaimed = 0;
1da177e4
LT
628
629 pagevec_init(&pvec, 1);
630
631 lru_add_drain();
632 spin_lock_irq(&zone->lru_lock);
69e05944 633 do {
1da177e4 634 struct page *page;
69e05944
AM
635 unsigned long nr_taken;
636 unsigned long nr_scan;
637 unsigned long nr_freed;
1da177e4
LT
638
639 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
640 &zone->inactive_list,
641 &page_list, &nr_scan);
642 zone->nr_inactive -= nr_taken;
643 zone->pages_scanned += nr_scan;
644 spin_unlock_irq(&zone->lru_lock);
645
69e05944 646 nr_scanned += nr_scan;
1742f19f 647 nr_freed = shrink_page_list(&page_list, sc);
05ff5137 648 nr_reclaimed += nr_freed;
a74609fa
NP
649 local_irq_disable();
650 if (current_is_kswapd()) {
651 __mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
652 __mod_page_state(kswapd_steal, nr_freed);
653 } else
654 __mod_page_state_zone(zone, pgscan_direct, nr_scan);
655 __mod_page_state_zone(zone, pgsteal, nr_freed);
656
fb8d14e1
WF
657 if (nr_taken == 0)
658 goto done;
659
a74609fa 660 spin_lock(&zone->lru_lock);
1da177e4
LT
661 /*
662 * Put back any unfreeable pages.
663 */
664 while (!list_empty(&page_list)) {
665 page = lru_to_page(&page_list);
8d438f96
NP
666 BUG_ON(PageLRU(page));
667 SetPageLRU(page);
1da177e4
LT
668 list_del(&page->lru);
669 if (PageActive(page))
670 add_page_to_active_list(zone, page);
671 else
672 add_page_to_inactive_list(zone, page);
673 if (!pagevec_add(&pvec, page)) {
674 spin_unlock_irq(&zone->lru_lock);
675 __pagevec_release(&pvec);
676 spin_lock_irq(&zone->lru_lock);
677 }
678 }
69e05944 679 } while (nr_scanned < max_scan);
fb8d14e1 680 spin_unlock(&zone->lru_lock);
1da177e4 681done:
fb8d14e1 682 local_irq_enable();
1da177e4 683 pagevec_release(&pvec);
05ff5137 684 return nr_reclaimed;
1da177e4
LT
685}
686
687/*
688 * This moves pages from the active list to the inactive list.
689 *
690 * We move them the other way if the page is referenced by one or more
691 * processes, from rmap.
692 *
693 * If the pages are mostly unmapped, the processing is fast and it is
694 * appropriate to hold zone->lru_lock across the whole operation. But if
695 * the pages are mapped, the processing is slow (page_referenced()) so we
696 * should drop zone->lru_lock around each page. It's impossible to balance
697 * this, so instead we remove the pages from the LRU while processing them.
698 * It is safe to rely on PG_active against the non-LRU pages in here because
699 * nobody will play with that bit on a non-LRU page.
700 *
701 * The downside is that we have to touch page->_count against each page.
702 * But we had to alter page->flags anyway.
703 */
1742f19f
AM
704static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
705 struct scan_control *sc)
1da177e4 706{
69e05944 707 unsigned long pgmoved;
1da177e4 708 int pgdeactivate = 0;
69e05944 709 unsigned long pgscanned;
1da177e4
LT
710 LIST_HEAD(l_hold); /* The pages which were snipped off */
711 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
712 LIST_HEAD(l_active); /* Pages to go onto the active_list */
713 struct page *page;
714 struct pagevec pvec;
715 int reclaim_mapped = 0;
2903fb16 716
6e5ef1a9 717 if (sc->may_swap) {
2903fb16
CL
718 long mapped_ratio;
719 long distress;
720 long swap_tendency;
721
722 /*
723 * `distress' is a measure of how much trouble we're having
724 * reclaiming pages. 0 -> no problems. 100 -> great trouble.
725 */
726 distress = 100 >> zone->prev_priority;
727
728 /*
729 * The point of this algorithm is to decide when to start
730 * reclaiming mapped memory instead of just pagecache. Work out
731 * how much memory
732 * is mapped.
733 */
734 mapped_ratio = (sc->nr_mapped * 100) / total_memory;
735
736 /*
737 * Now decide how much we really want to unmap some pages. The
738 * mapped ratio is downgraded - just because there's a lot of
739 * mapped memory doesn't necessarily mean that page reclaim
740 * isn't succeeding.
741 *
742 * The distress ratio is important - we don't want to start
743 * going oom.
744 *
745 * A 100% value of vm_swappiness overrides this algorithm
746 * altogether.
747 */
d6277db4 748 swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
2903fb16
CL
749
750 /*
751 * Now use this metric to decide whether to start moving mapped
752 * memory onto the inactive list.
753 */
754 if (swap_tendency >= 100)
755 reclaim_mapped = 1;
756 }
1da177e4
LT
757
758 lru_add_drain();
759 spin_lock_irq(&zone->lru_lock);
760 pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
761 &l_hold, &pgscanned);
762 zone->pages_scanned += pgscanned;
763 zone->nr_active -= pgmoved;
764 spin_unlock_irq(&zone->lru_lock);
765
1da177e4
LT
766 while (!list_empty(&l_hold)) {
767 cond_resched();
768 page = lru_to_page(&l_hold);
769 list_del(&page->lru);
770 if (page_mapped(page)) {
771 if (!reclaim_mapped ||
772 (total_swap_pages == 0 && PageAnon(page)) ||
f7b7fd8f 773 page_referenced(page, 0)) {
1da177e4
LT
774 list_add(&page->lru, &l_active);
775 continue;
776 }
777 }
778 list_add(&page->lru, &l_inactive);
779 }
780
781 pagevec_init(&pvec, 1);
782 pgmoved = 0;
783 spin_lock_irq(&zone->lru_lock);
784 while (!list_empty(&l_inactive)) {
785 page = lru_to_page(&l_inactive);
786 prefetchw_prev_lru_page(page, &l_inactive, flags);
8d438f96
NP
787 BUG_ON(PageLRU(page));
788 SetPageLRU(page);
4c84cacf
NP
789 BUG_ON(!PageActive(page));
790 ClearPageActive(page);
791
1da177e4
LT
792 list_move(&page->lru, &zone->inactive_list);
793 pgmoved++;
794 if (!pagevec_add(&pvec, page)) {
795 zone->nr_inactive += pgmoved;
796 spin_unlock_irq(&zone->lru_lock);
797 pgdeactivate += pgmoved;
798 pgmoved = 0;
799 if (buffer_heads_over_limit)
800 pagevec_strip(&pvec);
801 __pagevec_release(&pvec);
802 spin_lock_irq(&zone->lru_lock);
803 }
804 }
805 zone->nr_inactive += pgmoved;
806 pgdeactivate += pgmoved;
807 if (buffer_heads_over_limit) {
808 spin_unlock_irq(&zone->lru_lock);
809 pagevec_strip(&pvec);
810 spin_lock_irq(&zone->lru_lock);
811 }
812
813 pgmoved = 0;
814 while (!list_empty(&l_active)) {
815 page = lru_to_page(&l_active);
816 prefetchw_prev_lru_page(page, &l_active, flags);
8d438f96
NP
817 BUG_ON(PageLRU(page));
818 SetPageLRU(page);
1da177e4
LT
819 BUG_ON(!PageActive(page));
820 list_move(&page->lru, &zone->active_list);
821 pgmoved++;
822 if (!pagevec_add(&pvec, page)) {
823 zone->nr_active += pgmoved;
824 pgmoved = 0;
825 spin_unlock_irq(&zone->lru_lock);
826 __pagevec_release(&pvec);
827 spin_lock_irq(&zone->lru_lock);
828 }
829 }
830 zone->nr_active += pgmoved;
a74609fa
NP
831 spin_unlock(&zone->lru_lock);
832
833 __mod_page_state_zone(zone, pgrefill, pgscanned);
834 __mod_page_state(pgdeactivate, pgdeactivate);
835 local_irq_enable();
1da177e4 836
a74609fa 837 pagevec_release(&pvec);
1da177e4
LT
838}
839
840/*
841 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
842 */
05ff5137
AM
843static unsigned long shrink_zone(int priority, struct zone *zone,
844 struct scan_control *sc)
1da177e4
LT
845{
846 unsigned long nr_active;
847 unsigned long nr_inactive;
8695949a 848 unsigned long nr_to_scan;
05ff5137 849 unsigned long nr_reclaimed = 0;
1da177e4 850
53e9a615
MH
851 atomic_inc(&zone->reclaim_in_progress);
852
1da177e4
LT
853 /*
854 * Add one to `nr_to_scan' just to make sure that the kernel will
855 * slowly sift through the active list.
856 */
8695949a 857 zone->nr_scan_active += (zone->nr_active >> priority) + 1;
1da177e4
LT
858 nr_active = zone->nr_scan_active;
859 if (nr_active >= sc->swap_cluster_max)
860 zone->nr_scan_active = 0;
861 else
862 nr_active = 0;
863
8695949a 864 zone->nr_scan_inactive += (zone->nr_inactive >> priority) + 1;
1da177e4
LT
865 nr_inactive = zone->nr_scan_inactive;
866 if (nr_inactive >= sc->swap_cluster_max)
867 zone->nr_scan_inactive = 0;
868 else
869 nr_inactive = 0;
870
1da177e4
LT
871 while (nr_active || nr_inactive) {
872 if (nr_active) {
8695949a 873 nr_to_scan = min(nr_active,
1da177e4 874 (unsigned long)sc->swap_cluster_max);
8695949a 875 nr_active -= nr_to_scan;
1742f19f 876 shrink_active_list(nr_to_scan, zone, sc);
1da177e4
LT
877 }
878
879 if (nr_inactive) {
8695949a 880 nr_to_scan = min(nr_inactive,
1da177e4 881 (unsigned long)sc->swap_cluster_max);
8695949a 882 nr_inactive -= nr_to_scan;
1742f19f
AM
883 nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
884 sc);
1da177e4
LT
885 }
886 }
887
888 throttle_vm_writeout();
53e9a615
MH
889
890 atomic_dec(&zone->reclaim_in_progress);
05ff5137 891 return nr_reclaimed;
1da177e4
LT
892}
893
894/*
895 * This is the direct reclaim path, for page-allocating processes. We only
896 * try to reclaim pages from zones which will satisfy the caller's allocation
897 * request.
898 *
899 * We reclaim from a zone even if that zone is over pages_high. Because:
900 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
901 * allocation or
902 * b) The zones may be over pages_high but they must go *over* pages_high to
903 * satisfy the `incremental min' zone defense algorithm.
904 *
905 * Returns the number of reclaimed pages.
906 *
907 * If a zone is deemed to be full of pinned pages then just give it a light
908 * scan then give up on it.
909 */
1742f19f 910static unsigned long shrink_zones(int priority, struct zone **zones,
05ff5137 911 struct scan_control *sc)
1da177e4 912{
05ff5137 913 unsigned long nr_reclaimed = 0;
1da177e4
LT
914 int i;
915
916 for (i = 0; zones[i] != NULL; i++) {
917 struct zone *zone = zones[i];
918
f3fe6512 919 if (!populated_zone(zone))
1da177e4
LT
920 continue;
921
9bf2229f 922 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1da177e4
LT
923 continue;
924
8695949a
CL
925 zone->temp_priority = priority;
926 if (zone->prev_priority > priority)
927 zone->prev_priority = priority;
1da177e4 928
8695949a 929 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1da177e4
LT
930 continue; /* Let kswapd poll it */
931
05ff5137 932 nr_reclaimed += shrink_zone(priority, zone, sc);
1da177e4 933 }
05ff5137 934 return nr_reclaimed;
1da177e4
LT
935}
936
937/*
938 * This is the main entry point to direct page reclaim.
939 *
940 * If a full scan of the inactive list fails to free enough memory then we
941 * are "out of memory" and something needs to be killed.
942 *
943 * If the caller is !__GFP_FS then the probability of a failure is reasonably
944 * high - the zone may be full of dirty or under-writeback pages, which this
945 * caller can't do much about. We kick pdflush and take explicit naps in the
946 * hope that some of these pages can be written. But if the allocating task
947 * holds filesystem locks which prevent writeout this might not work, and the
948 * allocation attempt will fail.
949 */
69e05944 950unsigned long try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
1da177e4
LT
951{
952 int priority;
953 int ret = 0;
69e05944 954 unsigned long total_scanned = 0;
05ff5137 955 unsigned long nr_reclaimed = 0;
1da177e4 956 struct reclaim_state *reclaim_state = current->reclaim_state;
1da177e4
LT
957 unsigned long lru_pages = 0;
958 int i;
179e9639
AM
959 struct scan_control sc = {
960 .gfp_mask = gfp_mask,
961 .may_writepage = !laptop_mode,
962 .swap_cluster_max = SWAP_CLUSTER_MAX,
963 .may_swap = 1,
d6277db4 964 .swappiness = vm_swappiness,
179e9639 965 };
1da177e4
LT
966
967 inc_page_state(allocstall);
968
969 for (i = 0; zones[i] != NULL; i++) {
970 struct zone *zone = zones[i];
971
9bf2229f 972 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1da177e4
LT
973 continue;
974
975 zone->temp_priority = DEF_PRIORITY;
976 lru_pages += zone->nr_active + zone->nr_inactive;
977 }
978
979 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
980 sc.nr_mapped = read_page_state(nr_mapped);
981 sc.nr_scanned = 0;
f7b7fd8f
RR
982 if (!priority)
983 disable_swap_token();
1742f19f 984 nr_reclaimed += shrink_zones(priority, zones, &sc);
1da177e4
LT
985 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
986 if (reclaim_state) {
05ff5137 987 nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4
LT
988 reclaim_state->reclaimed_slab = 0;
989 }
990 total_scanned += sc.nr_scanned;
05ff5137 991 if (nr_reclaimed >= sc.swap_cluster_max) {
1da177e4
LT
992 ret = 1;
993 goto out;
994 }
995
996 /*
997 * Try to write back as many pages as we just scanned. This
998 * tends to cause slow streaming writers to write data to the
999 * disk smoothly, at the dirtying rate, which is nice. But
1000 * that's undesirable in laptop mode, where we *want* lumpy
1001 * writeout. So in laptop mode, write out the whole world.
1002 */
179e9639
AM
1003 if (total_scanned > sc.swap_cluster_max +
1004 sc.swap_cluster_max / 2) {
687a21ce 1005 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1da177e4
LT
1006 sc.may_writepage = 1;
1007 }
1008
1009 /* Take a nap, wait for some writeback to complete */
1010 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1011 blk_congestion_wait(WRITE, HZ/10);
1012 }
1013out:
1014 for (i = 0; zones[i] != 0; i++) {
1015 struct zone *zone = zones[i];
1016
9bf2229f 1017 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1da177e4
LT
1018 continue;
1019
1020 zone->prev_priority = zone->temp_priority;
1021 }
1022 return ret;
1023}
1024
1025/*
1026 * For kswapd, balance_pgdat() will work across all this node's zones until
1027 * they are all at pages_high.
1028 *
1da177e4
LT
1029 * Returns the number of pages which were actually freed.
1030 *
1031 * There is special handling here for zones which are full of pinned pages.
1032 * This can happen if the pages are all mlocked, or if they are all used by
1033 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1034 * What we do is to detect the case where all pages in the zone have been
1035 * scanned twice and there has been zero successful reclaim. Mark the zone as
1036 * dead and from now on, only perform a short scan. Basically we're polling
1037 * the zone for when the problem goes away.
1038 *
1039 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1040 * zones which have free_pages > pages_high, but once a zone is found to have
1041 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1042 * of the number of free pages in the lower zones. This interoperates with
1043 * the page allocator fallback scheme to ensure that aging of pages is balanced
1044 * across the zones.
1045 */
d6277db4 1046static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1da177e4 1047{
1da177e4
LT
1048 int all_zones_ok;
1049 int priority;
1050 int i;
69e05944 1051 unsigned long total_scanned;
05ff5137 1052 unsigned long nr_reclaimed;
1da177e4 1053 struct reclaim_state *reclaim_state = current->reclaim_state;
179e9639
AM
1054 struct scan_control sc = {
1055 .gfp_mask = GFP_KERNEL,
1056 .may_swap = 1,
d6277db4
RW
1057 .swap_cluster_max = SWAP_CLUSTER_MAX,
1058 .swappiness = vm_swappiness,
179e9639 1059 };
1da177e4
LT
1060
1061loop_again:
1062 total_scanned = 0;
05ff5137 1063 nr_reclaimed = 0;
c0bbbc73 1064 sc.may_writepage = !laptop_mode;
1da177e4
LT
1065 sc.nr_mapped = read_page_state(nr_mapped);
1066
1067 inc_page_state(pageoutrun);
1068
1069 for (i = 0; i < pgdat->nr_zones; i++) {
1070 struct zone *zone = pgdat->node_zones + i;
1071
1072 zone->temp_priority = DEF_PRIORITY;
1073 }
1074
1075 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1076 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1077 unsigned long lru_pages = 0;
1078
f7b7fd8f
RR
1079 /* The swap token gets in the way of swapout... */
1080 if (!priority)
1081 disable_swap_token();
1082
1da177e4
LT
1083 all_zones_ok = 1;
1084
d6277db4
RW
1085 /*
1086 * Scan in the highmem->dma direction for the highest
1087 * zone which needs scanning
1088 */
1089 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1090 struct zone *zone = pgdat->node_zones + i;
1da177e4 1091
d6277db4
RW
1092 if (!populated_zone(zone))
1093 continue;
1da177e4 1094
d6277db4
RW
1095 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1096 continue;
1da177e4 1097
d6277db4
RW
1098 if (!zone_watermark_ok(zone, order, zone->pages_high,
1099 0, 0)) {
1100 end_zone = i;
1101 goto scan;
1da177e4 1102 }
1da177e4 1103 }
d6277db4 1104 goto out;
1da177e4
LT
1105scan:
1106 for (i = 0; i <= end_zone; i++) {
1107 struct zone *zone = pgdat->node_zones + i;
1108
1109 lru_pages += zone->nr_active + zone->nr_inactive;
1110 }
1111
1112 /*
1113 * Now scan the zone in the dma->highmem direction, stopping
1114 * at the last zone which needs scanning.
1115 *
1116 * We do this because the page allocator works in the opposite
1117 * direction. This prevents the page allocator from allocating
1118 * pages behind kswapd's direction of progress, which would
1119 * cause too much scanning of the lower zones.
1120 */
1121 for (i = 0; i <= end_zone; i++) {
1122 struct zone *zone = pgdat->node_zones + i;
b15e0905 1123 int nr_slab;
1da177e4 1124
f3fe6512 1125 if (!populated_zone(zone))
1da177e4
LT
1126 continue;
1127
1128 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1129 continue;
1130
d6277db4
RW
1131 if (!zone_watermark_ok(zone, order, zone->pages_high,
1132 end_zone, 0))
1133 all_zones_ok = 0;
1da177e4
LT
1134 zone->temp_priority = priority;
1135 if (zone->prev_priority > priority)
1136 zone->prev_priority = priority;
1137 sc.nr_scanned = 0;
05ff5137 1138 nr_reclaimed += shrink_zone(priority, zone, &sc);
1da177e4 1139 reclaim_state->reclaimed_slab = 0;
b15e0905 1140 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1141 lru_pages);
05ff5137 1142 nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4
LT
1143 total_scanned += sc.nr_scanned;
1144 if (zone->all_unreclaimable)
1145 continue;
b15e0905 1146 if (nr_slab == 0 && zone->pages_scanned >=
1147 (zone->nr_active + zone->nr_inactive) * 4)
1da177e4
LT
1148 zone->all_unreclaimable = 1;
1149 /*
1150 * If we've done a decent amount of scanning and
1151 * the reclaim ratio is low, start doing writepage
1152 * even in laptop mode
1153 */
1154 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
05ff5137 1155 total_scanned > nr_reclaimed + nr_reclaimed / 2)
1da177e4
LT
1156 sc.may_writepage = 1;
1157 }
1da177e4
LT
1158 if (all_zones_ok)
1159 break; /* kswapd: all done */
1160 /*
1161 * OK, kswapd is getting into trouble. Take a nap, then take
1162 * another pass across the zones.
1163 */
1164 if (total_scanned && priority < DEF_PRIORITY - 2)
1165 blk_congestion_wait(WRITE, HZ/10);
1166
1167 /*
1168 * We do this so kswapd doesn't build up large priorities for
1169 * example when it is freeing in parallel with allocators. It
1170 * matches the direct reclaim path behaviour in terms of impact
1171 * on zone->*_priority.
1172 */
d6277db4 1173 if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
1174 break;
1175 }
1176out:
1177 for (i = 0; i < pgdat->nr_zones; i++) {
1178 struct zone *zone = pgdat->node_zones + i;
1179
1180 zone->prev_priority = zone->temp_priority;
1181 }
1182 if (!all_zones_ok) {
1183 cond_resched();
1184 goto loop_again;
1185 }
1186
05ff5137 1187 return nr_reclaimed;
1da177e4
LT
1188}
1189
1190/*
1191 * The background pageout daemon, started as a kernel thread
1192 * from the init process.
1193 *
1194 * This basically trickles out pages so that we have _some_
1195 * free memory available even if there is no other activity
1196 * that frees anything up. This is needed for things like routing
1197 * etc, where we otherwise might have all activity going on in
1198 * asynchronous contexts that cannot page things out.
1199 *
1200 * If there are applications that are active memory-allocators
1201 * (most normal use), this basically shouldn't matter.
1202 */
1203static int kswapd(void *p)
1204{
1205 unsigned long order;
1206 pg_data_t *pgdat = (pg_data_t*)p;
1207 struct task_struct *tsk = current;
1208 DEFINE_WAIT(wait);
1209 struct reclaim_state reclaim_state = {
1210 .reclaimed_slab = 0,
1211 };
1212 cpumask_t cpumask;
1213
1214 daemonize("kswapd%d", pgdat->node_id);
1215 cpumask = node_to_cpumask(pgdat->node_id);
1216 if (!cpus_empty(cpumask))
1217 set_cpus_allowed(tsk, cpumask);
1218 current->reclaim_state = &reclaim_state;
1219
1220 /*
1221 * Tell the memory management that we're a "memory allocator",
1222 * and that if we need more memory we should get access to it
1223 * regardless (see "__alloc_pages()"). "kswapd" should
1224 * never get caught in the normal page freeing logic.
1225 *
1226 * (Kswapd normally doesn't need memory anyway, but sometimes
1227 * you need a small amount of memory in order to be able to
1228 * page out something else, and this flag essentially protects
1229 * us from recursively trying to free more memory as we're
1230 * trying to free the first piece of memory in the first place).
1231 */
930d9152 1232 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1da177e4
LT
1233
1234 order = 0;
1235 for ( ; ; ) {
1236 unsigned long new_order;
3e1d1d28
CL
1237
1238 try_to_freeze();
1da177e4
LT
1239
1240 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1241 new_order = pgdat->kswapd_max_order;
1242 pgdat->kswapd_max_order = 0;
1243 if (order < new_order) {
1244 /*
1245 * Don't sleep if someone wants a larger 'order'
1246 * allocation
1247 */
1248 order = new_order;
1249 } else {
1250 schedule();
1251 order = pgdat->kswapd_max_order;
1252 }
1253 finish_wait(&pgdat->kswapd_wait, &wait);
1254
d6277db4 1255 balance_pgdat(pgdat, order);
1da177e4
LT
1256 }
1257 return 0;
1258}
1259
1260/*
1261 * A zone is low on free memory, so wake its kswapd task to service it.
1262 */
1263void wakeup_kswapd(struct zone *zone, int order)
1264{
1265 pg_data_t *pgdat;
1266
f3fe6512 1267 if (!populated_zone(zone))
1da177e4
LT
1268 return;
1269
1270 pgdat = zone->zone_pgdat;
7fb1d9fc 1271 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1da177e4
LT
1272 return;
1273 if (pgdat->kswapd_max_order < order)
1274 pgdat->kswapd_max_order = order;
9bf2229f 1275 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1da177e4 1276 return;
8d0986e2 1277 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 1278 return;
8d0986e2 1279 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
1280}
1281
1282#ifdef CONFIG_PM
1283/*
d6277db4
RW
1284 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1285 * from LRU lists system-wide, for given pass and priority, and returns the
1286 * number of reclaimed pages
1287 *
1288 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1289 */
1290static unsigned long shrink_all_zones(unsigned long nr_pages, int pass,
1291 int prio, struct scan_control *sc)
1292{
1293 struct zone *zone;
1294 unsigned long nr_to_scan, ret = 0;
1295
1296 for_each_zone(zone) {
1297
1298 if (!populated_zone(zone))
1299 continue;
1300
1301 if (zone->all_unreclaimable && prio != DEF_PRIORITY)
1302 continue;
1303
1304 /* For pass = 0 we don't shrink the active list */
1305 if (pass > 0) {
1306 zone->nr_scan_active += (zone->nr_active >> prio) + 1;
1307 if (zone->nr_scan_active >= nr_pages || pass > 3) {
1308 zone->nr_scan_active = 0;
1309 nr_to_scan = min(nr_pages, zone->nr_active);
1310 shrink_active_list(nr_to_scan, zone, sc);
1311 }
1312 }
1313
1314 zone->nr_scan_inactive += (zone->nr_inactive >> prio) + 1;
1315 if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1316 zone->nr_scan_inactive = 0;
1317 nr_to_scan = min(nr_pages, zone->nr_inactive);
1318 ret += shrink_inactive_list(nr_to_scan, zone, sc);
1319 if (ret >= nr_pages)
1320 return ret;
1321 }
1322 }
1323
1324 return ret;
1325}
1326
1327/*
1328 * Try to free `nr_pages' of memory, system-wide, and return the number of
1329 * freed pages.
1330 *
1331 * Rather than trying to age LRUs the aim is to preserve the overall
1332 * LRU order by reclaiming preferentially
1333 * inactive > active > active referenced > active mapped
1da177e4 1334 */
69e05944 1335unsigned long shrink_all_memory(unsigned long nr_pages)
1da177e4 1336{
d6277db4 1337 unsigned long lru_pages, nr_slab;
69e05944 1338 unsigned long ret = 0;
d6277db4
RW
1339 int pass;
1340 struct reclaim_state reclaim_state;
1341 struct zone *zone;
1342 struct scan_control sc = {
1343 .gfp_mask = GFP_KERNEL,
1344 .may_swap = 0,
1345 .swap_cluster_max = nr_pages,
1346 .may_writepage = 1,
1347 .swappiness = vm_swappiness,
1da177e4
LT
1348 };
1349
1350 current->reclaim_state = &reclaim_state;
69e05944 1351
d6277db4
RW
1352 lru_pages = 0;
1353 for_each_zone(zone)
1354 lru_pages += zone->nr_active + zone->nr_inactive;
1355
1356 nr_slab = read_page_state(nr_slab);
1357 /* If slab caches are huge, it's better to hit them first */
1358 while (nr_slab >= lru_pages) {
1359 reclaim_state.reclaimed_slab = 0;
1360 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1361 if (!reclaim_state.reclaimed_slab)
1da177e4 1362 break;
d6277db4
RW
1363
1364 ret += reclaim_state.reclaimed_slab;
1365 if (ret >= nr_pages)
1366 goto out;
1367
1368 nr_slab -= reclaim_state.reclaimed_slab;
1da177e4 1369 }
d6277db4
RW
1370
1371 /*
1372 * We try to shrink LRUs in 5 passes:
1373 * 0 = Reclaim from inactive_list only
1374 * 1 = Reclaim from active list but don't reclaim mapped
1375 * 2 = 2nd pass of type 1
1376 * 3 = Reclaim mapped (normal reclaim)
1377 * 4 = 2nd pass of type 3
1378 */
1379 for (pass = 0; pass < 5; pass++) {
1380 int prio;
1381
1382 /* Needed for shrinking slab caches later on */
1383 if (!lru_pages)
1384 for_each_zone(zone) {
1385 lru_pages += zone->nr_active;
1386 lru_pages += zone->nr_inactive;
1387 }
1388
1389 /* Force reclaiming mapped pages in the passes #3 and #4 */
1390 if (pass > 2) {
1391 sc.may_swap = 1;
1392 sc.swappiness = 100;
1393 }
1394
1395 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1396 unsigned long nr_to_scan = nr_pages - ret;
1397
1398 sc.nr_mapped = read_page_state(nr_mapped);
1399 sc.nr_scanned = 0;
1400
1401 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1402 if (ret >= nr_pages)
1403 goto out;
1404
1405 reclaim_state.reclaimed_slab = 0;
1406 shrink_slab(sc.nr_scanned, sc.gfp_mask, lru_pages);
1407 ret += reclaim_state.reclaimed_slab;
1408 if (ret >= nr_pages)
1409 goto out;
1410
1411 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1412 blk_congestion_wait(WRITE, HZ / 10);
1413 }
1414
1415 lru_pages = 0;
248a0301 1416 }
d6277db4
RW
1417
1418 /*
1419 * If ret = 0, we could not shrink LRUs, but there may be something
1420 * in slab caches
1421 */
1422 if (!ret)
1423 do {
1424 reclaim_state.reclaimed_slab = 0;
1425 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1426 ret += reclaim_state.reclaimed_slab;
1427 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1428
1429out:
1da177e4 1430 current->reclaim_state = NULL;
d6277db4 1431
1da177e4
LT
1432 return ret;
1433}
1434#endif
1435
1436#ifdef CONFIG_HOTPLUG_CPU
1437/* It's optimal to keep kswapds on the same CPUs as their memory, but
1438 not required for correctness. So if the last cpu in a node goes
1439 away, we get changed to run anywhere: as the first one comes back,
1440 restore their cpu bindings. */
83d722f7 1441static int cpu_callback(struct notifier_block *nfb,
69e05944 1442 unsigned long action, void *hcpu)
1da177e4
LT
1443{
1444 pg_data_t *pgdat;
1445 cpumask_t mask;
1446
1447 if (action == CPU_ONLINE) {
ec936fc5 1448 for_each_online_pgdat(pgdat) {
1da177e4
LT
1449 mask = node_to_cpumask(pgdat->node_id);
1450 if (any_online_cpu(mask) != NR_CPUS)
1451 /* One of our CPUs online: restore mask */
1452 set_cpus_allowed(pgdat->kswapd, mask);
1453 }
1454 }
1455 return NOTIFY_OK;
1456}
1457#endif /* CONFIG_HOTPLUG_CPU */
1458
1459static int __init kswapd_init(void)
1460{
1461 pg_data_t *pgdat;
69e05944 1462
1da177e4 1463 swap_setup();
ec936fc5 1464 for_each_online_pgdat(pgdat) {
69e05944
AM
1465 pid_t pid;
1466
1467 pid = kernel_thread(kswapd, pgdat, CLONE_KERNEL);
1468 BUG_ON(pid < 0);
05eeae20 1469 read_lock(&tasklist_lock);
69e05944 1470 pgdat->kswapd = find_task_by_pid(pid);
05eeae20 1471 read_unlock(&tasklist_lock);
69e05944 1472 }
1da177e4
LT
1473 total_memory = nr_free_pagecache_pages();
1474 hotcpu_notifier(cpu_callback, 0);
1475 return 0;
1476}
1477
1478module_init(kswapd_init)
9eeff239
CL
1479
1480#ifdef CONFIG_NUMA
1481/*
1482 * Zone reclaim mode
1483 *
1484 * If non-zero call zone_reclaim when the number of free pages falls below
1485 * the watermarks.
1486 *
1487 * In the future we may add flags to the mode. However, the page allocator
1488 * should only have to check that zone_reclaim_mode != 0 before calling
1489 * zone_reclaim().
1490 */
1491int zone_reclaim_mode __read_mostly;
1492
1b2ffb78
CL
1493#define RECLAIM_OFF 0
1494#define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */
1495#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
1496#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2a16e3f4 1497#define RECLAIM_SLAB (1<<3) /* Do a global slab shrink if the zone is out of memory */
1b2ffb78 1498
9eeff239
CL
1499/*
1500 * Mininum time between zone reclaim scans
1501 */
2a11ff06 1502int zone_reclaim_interval __read_mostly = 30*HZ;
a92f7126
CL
1503
1504/*
1505 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1506 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1507 * a zone.
1508 */
1509#define ZONE_RECLAIM_PRIORITY 4
1510
9eeff239
CL
1511/*
1512 * Try to free up some pages from this zone through reclaim.
1513 */
179e9639 1514static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 1515{
7fb2d46d 1516 /* Minimum pages needed in order to stay on node */
69e05944 1517 const unsigned long nr_pages = 1 << order;
9eeff239
CL
1518 struct task_struct *p = current;
1519 struct reclaim_state reclaim_state;
8695949a 1520 int priority;
05ff5137 1521 unsigned long nr_reclaimed = 0;
179e9639
AM
1522 struct scan_control sc = {
1523 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1524 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1525 .nr_mapped = read_page_state(nr_mapped),
69e05944
AM
1526 .swap_cluster_max = max_t(unsigned long, nr_pages,
1527 SWAP_CLUSTER_MAX),
179e9639 1528 .gfp_mask = gfp_mask,
d6277db4 1529 .swappiness = vm_swappiness,
179e9639 1530 };
9eeff239
CL
1531
1532 disable_swap_token();
9eeff239 1533 cond_resched();
d4f7796e
CL
1534 /*
1535 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1536 * and we also need to be able to write out pages for RECLAIM_WRITE
1537 * and RECLAIM_SWAP.
1538 */
1539 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
9eeff239
CL
1540 reclaim_state.reclaimed_slab = 0;
1541 p->reclaim_state = &reclaim_state;
c84db23c 1542
a92f7126
CL
1543 /*
1544 * Free memory by calling shrink zone with increasing priorities
1545 * until we have enough memory freed.
1546 */
8695949a 1547 priority = ZONE_RECLAIM_PRIORITY;
a92f7126 1548 do {
05ff5137 1549 nr_reclaimed += shrink_zone(priority, zone, &sc);
8695949a 1550 priority--;
05ff5137 1551 } while (priority >= 0 && nr_reclaimed < nr_pages);
c84db23c 1552
05ff5137 1553 if (nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) {
2a16e3f4 1554 /*
7fb2d46d
CL
1555 * shrink_slab() does not currently allow us to determine how
1556 * many pages were freed in this zone. So we just shake the slab
1557 * a bit and then go off node for this particular allocation
1558 * despite possibly having freed enough memory to allocate in
1559 * this zone. If we freed local memory then the next
1560 * allocations will be local again.
2a16e3f4
CL
1561 *
1562 * shrink_slab will free memory on all zones and may take
1563 * a long time.
1564 */
1565 shrink_slab(sc.nr_scanned, gfp_mask, order);
2a16e3f4
CL
1566 }
1567
9eeff239 1568 p->reclaim_state = NULL;
d4f7796e 1569 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
9eeff239 1570
7fb2d46d
CL
1571 if (nr_reclaimed == 0) {
1572 /*
1573 * We were unable to reclaim enough pages to stay on node. We
1574 * now allow off node accesses for a certain time period before
1575 * trying again to reclaim pages from the local zone.
1576 */
9eeff239 1577 zone->last_unsuccessful_zone_reclaim = jiffies;
7fb2d46d 1578 }
9eeff239 1579
05ff5137 1580 return nr_reclaimed >= nr_pages;
9eeff239 1581}
179e9639
AM
1582
1583int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1584{
1585 cpumask_t mask;
1586 int node_id;
1587
1588 /*
1589 * Do not reclaim if there was a recent unsuccessful attempt at zone
1590 * reclaim. In that case we let allocations go off node for the
1591 * zone_reclaim_interval. Otherwise we would scan for each off-node
1592 * page allocation.
1593 */
1594 if (time_before(jiffies,
1595 zone->last_unsuccessful_zone_reclaim + zone_reclaim_interval))
1596 return 0;
1597
1598 /*
1599 * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1600 * not have reclaimable pages and if we should not delay the allocation
1601 * then do not scan.
1602 */
1603 if (!(gfp_mask & __GFP_WAIT) ||
1604 zone->all_unreclaimable ||
1605 atomic_read(&zone->reclaim_in_progress) > 0 ||
1606 (current->flags & PF_MEMALLOC))
1607 return 0;
1608
1609 /*
1610 * Only run zone reclaim on the local zone or on zones that do not
1611 * have associated processors. This will favor the local processor
1612 * over remote processors and spread off node memory allocations
1613 * as wide as possible.
1614 */
1615 node_id = zone->zone_pgdat->node_id;
1616 mask = node_to_cpumask(node_id);
1617 if (!cpus_empty(mask) && node_id != numa_node_id())
1618 return 0;
1619 return __zone_reclaim(zone, gfp_mask, order);
1620}
9eeff239 1621#endif