]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmscan.c
writeback, blkcg: propagate non-root blkcg congestion state
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4
LT
16#include <linux/mm.h>
17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
268bb0ce 47#include <linux/prefetch.h>
b1de0d13 48#include <linux/printk.h>
1da177e4
LT
49
50#include <asm/tlbflush.h>
51#include <asm/div64.h>
52
53#include <linux/swapops.h>
117aad1e 54#include <linux/balloon_compaction.h>
1da177e4 55
0f8053a5
NP
56#include "internal.h"
57
33906bc5
MG
58#define CREATE_TRACE_POINTS
59#include <trace/events/vmscan.h>
60
1da177e4 61struct scan_control {
22fba335
KM
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
64
1da177e4 65 /* This context's GFP mask */
6daa0e28 66 gfp_t gfp_mask;
1da177e4 67
ee814fe2 68 /* Allocation order */
5ad333eb 69 int order;
66e1707b 70
ee814fe2
JW
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
9e3b2f8c 76
f16015fb
JW
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
66e1707b 82
ee814fe2
JW
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 unsigned int may_writepage:1;
87
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
90
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
93
241994ed
JW
94 /* Can cgroups be reclaimed below their normal consumption range? */
95 unsigned int may_thrash:1;
96
ee814fe2
JW
97 unsigned int hibernation_mode:1;
98
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready:1;
101
102 /* Incremented by the number of inactive pages that were scanned */
103 unsigned long nr_scanned;
104
105 /* Number of pages freed so far during a call to shrink_zones() */
106 unsigned long nr_reclaimed;
1da177e4
LT
107};
108
1da177e4
LT
109#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
110
111#ifdef ARCH_HAS_PREFETCH
112#define prefetch_prev_lru_page(_page, _base, _field) \
113 do { \
114 if ((_page)->lru.prev != _base) { \
115 struct page *prev; \
116 \
117 prev = lru_to_page(&(_page->lru)); \
118 prefetch(&prev->_field); \
119 } \
120 } while (0)
121#else
122#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
123#endif
124
125#ifdef ARCH_HAS_PREFETCHW
126#define prefetchw_prev_lru_page(_page, _base, _field) \
127 do { \
128 if ((_page)->lru.prev != _base) { \
129 struct page *prev; \
130 \
131 prev = lru_to_page(&(_page->lru)); \
132 prefetchw(&prev->_field); \
133 } \
134 } while (0)
135#else
136#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
137#endif
138
139/*
140 * From 0 .. 100. Higher means more swappy.
141 */
142int vm_swappiness = 60;
d0480be4
WSH
143/*
144 * The total number of pages which are beyond the high watermark within all
145 * zones.
146 */
147unsigned long vm_total_pages;
1da177e4
LT
148
149static LIST_HEAD(shrinker_list);
150static DECLARE_RWSEM(shrinker_rwsem);
151
c255a458 152#ifdef CONFIG_MEMCG
89b5fae5
JW
153static bool global_reclaim(struct scan_control *sc)
154{
f16015fb 155 return !sc->target_mem_cgroup;
89b5fae5 156}
91a45470 157#else
89b5fae5
JW
158static bool global_reclaim(struct scan_control *sc)
159{
160 return true;
161}
91a45470
KH
162#endif
163
a1c3bfb2 164static unsigned long zone_reclaimable_pages(struct zone *zone)
6e543d57
LD
165{
166 int nr;
167
168 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
169 zone_page_state(zone, NR_INACTIVE_FILE);
170
171 if (get_nr_swap_pages() > 0)
172 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
173 zone_page_state(zone, NR_INACTIVE_ANON);
174
175 return nr;
176}
177
178bool zone_reclaimable(struct zone *zone)
179{
0d5d823a
MG
180 return zone_page_state(zone, NR_PAGES_SCANNED) <
181 zone_reclaimable_pages(zone) * 6;
6e543d57
LD
182}
183
4d7dcca2 184static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 185{
c3c787e8 186 if (!mem_cgroup_disabled())
4d7dcca2 187 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 188
074291fe 189 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
190}
191
1da177e4 192/*
1d3d4437 193 * Add a shrinker callback to be called from the vm.
1da177e4 194 */
1d3d4437 195int register_shrinker(struct shrinker *shrinker)
1da177e4 196{
1d3d4437
GC
197 size_t size = sizeof(*shrinker->nr_deferred);
198
199 /*
200 * If we only have one possible node in the system anyway, save
201 * ourselves the trouble and disable NUMA aware behavior. This way we
202 * will save memory and some small loop time later.
203 */
204 if (nr_node_ids == 1)
205 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
206
207 if (shrinker->flags & SHRINKER_NUMA_AWARE)
208 size *= nr_node_ids;
209
210 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
211 if (!shrinker->nr_deferred)
212 return -ENOMEM;
213
8e1f936b
RR
214 down_write(&shrinker_rwsem);
215 list_add_tail(&shrinker->list, &shrinker_list);
216 up_write(&shrinker_rwsem);
1d3d4437 217 return 0;
1da177e4 218}
8e1f936b 219EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
220
221/*
222 * Remove one
223 */
8e1f936b 224void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
225{
226 down_write(&shrinker_rwsem);
227 list_del(&shrinker->list);
228 up_write(&shrinker_rwsem);
ae393321 229 kfree(shrinker->nr_deferred);
1da177e4 230}
8e1f936b 231EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
232
233#define SHRINK_BATCH 128
1d3d4437 234
cb731d6c
VD
235static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
236 struct shrinker *shrinker,
237 unsigned long nr_scanned,
238 unsigned long nr_eligible)
1d3d4437
GC
239{
240 unsigned long freed = 0;
241 unsigned long long delta;
242 long total_scan;
d5bc5fd3 243 long freeable;
1d3d4437
GC
244 long nr;
245 long new_nr;
246 int nid = shrinkctl->nid;
247 long batch_size = shrinker->batch ? shrinker->batch
248 : SHRINK_BATCH;
249
d5bc5fd3
VD
250 freeable = shrinker->count_objects(shrinker, shrinkctl);
251 if (freeable == 0)
1d3d4437
GC
252 return 0;
253
254 /*
255 * copy the current shrinker scan count into a local variable
256 * and zero it so that other concurrent shrinker invocations
257 * don't also do this scanning work.
258 */
259 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
260
261 total_scan = nr;
6b4f7799 262 delta = (4 * nr_scanned) / shrinker->seeks;
d5bc5fd3 263 delta *= freeable;
6b4f7799 264 do_div(delta, nr_eligible + 1);
1d3d4437
GC
265 total_scan += delta;
266 if (total_scan < 0) {
8612c663 267 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 268 shrinker->scan_objects, total_scan);
d5bc5fd3 269 total_scan = freeable;
1d3d4437
GC
270 }
271
272 /*
273 * We need to avoid excessive windup on filesystem shrinkers
274 * due to large numbers of GFP_NOFS allocations causing the
275 * shrinkers to return -1 all the time. This results in a large
276 * nr being built up so when a shrink that can do some work
277 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 278 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
279 * memory.
280 *
281 * Hence only allow the shrinker to scan the entire cache when
282 * a large delta change is calculated directly.
283 */
d5bc5fd3
VD
284 if (delta < freeable / 4)
285 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
286
287 /*
288 * Avoid risking looping forever due to too large nr value:
289 * never try to free more than twice the estimate number of
290 * freeable entries.
291 */
d5bc5fd3
VD
292 if (total_scan > freeable * 2)
293 total_scan = freeable * 2;
1d3d4437
GC
294
295 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
6b4f7799
JW
296 nr_scanned, nr_eligible,
297 freeable, delta, total_scan);
1d3d4437 298
0b1fb40a
VD
299 /*
300 * Normally, we should not scan less than batch_size objects in one
301 * pass to avoid too frequent shrinker calls, but if the slab has less
302 * than batch_size objects in total and we are really tight on memory,
303 * we will try to reclaim all available objects, otherwise we can end
304 * up failing allocations although there are plenty of reclaimable
305 * objects spread over several slabs with usage less than the
306 * batch_size.
307 *
308 * We detect the "tight on memory" situations by looking at the total
309 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 310 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
311 * scanning at high prio and therefore should try to reclaim as much as
312 * possible.
313 */
314 while (total_scan >= batch_size ||
d5bc5fd3 315 total_scan >= freeable) {
a0b02131 316 unsigned long ret;
0b1fb40a 317 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 318
0b1fb40a 319 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
320 ret = shrinker->scan_objects(shrinker, shrinkctl);
321 if (ret == SHRINK_STOP)
322 break;
323 freed += ret;
1d3d4437 324
0b1fb40a
VD
325 count_vm_events(SLABS_SCANNED, nr_to_scan);
326 total_scan -= nr_to_scan;
1d3d4437
GC
327
328 cond_resched();
329 }
330
331 /*
332 * move the unused scan count back into the shrinker in a
333 * manner that handles concurrent updates. If we exhausted the
334 * scan, there is no need to do an update.
335 */
336 if (total_scan > 0)
337 new_nr = atomic_long_add_return(total_scan,
338 &shrinker->nr_deferred[nid]);
339 else
340 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
341
df9024a8 342 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 343 return freed;
1495f230
YH
344}
345
6b4f7799 346/**
cb731d6c 347 * shrink_slab - shrink slab caches
6b4f7799
JW
348 * @gfp_mask: allocation context
349 * @nid: node whose slab caches to target
cb731d6c 350 * @memcg: memory cgroup whose slab caches to target
6b4f7799
JW
351 * @nr_scanned: pressure numerator
352 * @nr_eligible: pressure denominator
1da177e4 353 *
6b4f7799 354 * Call the shrink functions to age shrinkable caches.
1da177e4 355 *
6b4f7799
JW
356 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
357 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 358 *
cb731d6c
VD
359 * @memcg specifies the memory cgroup to target. If it is not NULL,
360 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
361 * objects from the memory cgroup specified. Otherwise all shrinkers
362 * are called, and memcg aware shrinkers are supposed to scan the
363 * global list then.
364 *
6b4f7799
JW
365 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
366 * the available objects should be scanned. Page reclaim for example
367 * passes the number of pages scanned and the number of pages on the
368 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
369 * when it encountered mapped pages. The ratio is further biased by
370 * the ->seeks setting of the shrink function, which indicates the
371 * cost to recreate an object relative to that of an LRU page.
b15e0905 372 *
6b4f7799 373 * Returns the number of reclaimed slab objects.
1da177e4 374 */
cb731d6c
VD
375static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
376 struct mem_cgroup *memcg,
377 unsigned long nr_scanned,
378 unsigned long nr_eligible)
1da177e4
LT
379{
380 struct shrinker *shrinker;
24f7c6b9 381 unsigned long freed = 0;
1da177e4 382
cb731d6c
VD
383 if (memcg && !memcg_kmem_is_active(memcg))
384 return 0;
385
6b4f7799
JW
386 if (nr_scanned == 0)
387 nr_scanned = SWAP_CLUSTER_MAX;
1da177e4 388
f06590bd 389 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
390 /*
391 * If we would return 0, our callers would understand that we
392 * have nothing else to shrink and give up trying. By returning
393 * 1 we keep it going and assume we'll be able to shrink next
394 * time.
395 */
396 freed = 1;
f06590bd
MK
397 goto out;
398 }
1da177e4
LT
399
400 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
401 struct shrink_control sc = {
402 .gfp_mask = gfp_mask,
403 .nid = nid,
cb731d6c 404 .memcg = memcg,
6b4f7799 405 };
ec97097b 406
cb731d6c
VD
407 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
408 continue;
409
6b4f7799
JW
410 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
411 sc.nid = 0;
1da177e4 412
cb731d6c 413 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
1da177e4 414 }
6b4f7799 415
1da177e4 416 up_read(&shrinker_rwsem);
f06590bd
MK
417out:
418 cond_resched();
24f7c6b9 419 return freed;
1da177e4
LT
420}
421
cb731d6c
VD
422void drop_slab_node(int nid)
423{
424 unsigned long freed;
425
426 do {
427 struct mem_cgroup *memcg = NULL;
428
429 freed = 0;
430 do {
431 freed += shrink_slab(GFP_KERNEL, nid, memcg,
432 1000, 1000);
433 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
434 } while (freed > 10);
435}
436
437void drop_slab(void)
438{
439 int nid;
440
441 for_each_online_node(nid)
442 drop_slab_node(nid);
443}
444
1da177e4
LT
445static inline int is_page_cache_freeable(struct page *page)
446{
ceddc3a5
JW
447 /*
448 * A freeable page cache page is referenced only by the caller
449 * that isolated the page, the page cache radix tree and
450 * optional buffer heads at page->private.
451 */
edcf4748 452 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
453}
454
7d3579e8
KM
455static int may_write_to_queue(struct backing_dev_info *bdi,
456 struct scan_control *sc)
1da177e4 457{
930d9152 458 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
459 return 1;
460 if (!bdi_write_congested(bdi))
461 return 1;
462 if (bdi == current->backing_dev_info)
463 return 1;
464 return 0;
465}
466
467/*
468 * We detected a synchronous write error writing a page out. Probably
469 * -ENOSPC. We need to propagate that into the address_space for a subsequent
470 * fsync(), msync() or close().
471 *
472 * The tricky part is that after writepage we cannot touch the mapping: nothing
473 * prevents it from being freed up. But we have a ref on the page and once
474 * that page is locked, the mapping is pinned.
475 *
476 * We're allowed to run sleeping lock_page() here because we know the caller has
477 * __GFP_FS.
478 */
479static void handle_write_error(struct address_space *mapping,
480 struct page *page, int error)
481{
7eaceacc 482 lock_page(page);
3e9f45bd
GC
483 if (page_mapping(page) == mapping)
484 mapping_set_error(mapping, error);
1da177e4
LT
485 unlock_page(page);
486}
487
04e62a29
CL
488/* possible outcome of pageout() */
489typedef enum {
490 /* failed to write page out, page is locked */
491 PAGE_KEEP,
492 /* move page to the active list, page is locked */
493 PAGE_ACTIVATE,
494 /* page has been sent to the disk successfully, page is unlocked */
495 PAGE_SUCCESS,
496 /* page is clean and locked */
497 PAGE_CLEAN,
498} pageout_t;
499
1da177e4 500/*
1742f19f
AM
501 * pageout is called by shrink_page_list() for each dirty page.
502 * Calls ->writepage().
1da177e4 503 */
c661b078 504static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 505 struct scan_control *sc)
1da177e4
LT
506{
507 /*
508 * If the page is dirty, only perform writeback if that write
509 * will be non-blocking. To prevent this allocation from being
510 * stalled by pagecache activity. But note that there may be
511 * stalls if we need to run get_block(). We could test
512 * PagePrivate for that.
513 *
8174202b 514 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
515 * this page's queue, we can perform writeback even if that
516 * will block.
517 *
518 * If the page is swapcache, write it back even if that would
519 * block, for some throttling. This happens by accident, because
520 * swap_backing_dev_info is bust: it doesn't reflect the
521 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
522 */
523 if (!is_page_cache_freeable(page))
524 return PAGE_KEEP;
525 if (!mapping) {
526 /*
527 * Some data journaling orphaned pages can have
528 * page->mapping == NULL while being dirty with clean buffers.
529 */
266cf658 530 if (page_has_private(page)) {
1da177e4
LT
531 if (try_to_free_buffers(page)) {
532 ClearPageDirty(page);
b1de0d13 533 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
534 return PAGE_CLEAN;
535 }
536 }
537 return PAGE_KEEP;
538 }
539 if (mapping->a_ops->writepage == NULL)
540 return PAGE_ACTIVATE;
de1414a6 541 if (!may_write_to_queue(inode_to_bdi(mapping->host), sc))
1da177e4
LT
542 return PAGE_KEEP;
543
544 if (clear_page_dirty_for_io(page)) {
545 int res;
546 struct writeback_control wbc = {
547 .sync_mode = WB_SYNC_NONE,
548 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
549 .range_start = 0,
550 .range_end = LLONG_MAX,
1da177e4
LT
551 .for_reclaim = 1,
552 };
553
554 SetPageReclaim(page);
555 res = mapping->a_ops->writepage(page, &wbc);
556 if (res < 0)
557 handle_write_error(mapping, page, res);
994fc28c 558 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
559 ClearPageReclaim(page);
560 return PAGE_ACTIVATE;
561 }
c661b078 562
1da177e4
LT
563 if (!PageWriteback(page)) {
564 /* synchronous write or broken a_ops? */
565 ClearPageReclaim(page);
566 }
23b9da55 567 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 568 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
569 return PAGE_SUCCESS;
570 }
571
572 return PAGE_CLEAN;
573}
574
a649fd92 575/*
e286781d
NP
576 * Same as remove_mapping, but if the page is removed from the mapping, it
577 * gets returned with a refcount of 0.
a649fd92 578 */
a528910e
JW
579static int __remove_mapping(struct address_space *mapping, struct page *page,
580 bool reclaimed)
49d2e9cc 581{
c4843a75
GT
582 unsigned long flags;
583 struct mem_cgroup *memcg;
584
28e4d965
NP
585 BUG_ON(!PageLocked(page));
586 BUG_ON(mapping != page_mapping(page));
49d2e9cc 587
c4843a75
GT
588 memcg = mem_cgroup_begin_page_stat(page);
589 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 590 /*
0fd0e6b0
NP
591 * The non racy check for a busy page.
592 *
593 * Must be careful with the order of the tests. When someone has
594 * a ref to the page, it may be possible that they dirty it then
595 * drop the reference. So if PageDirty is tested before page_count
596 * here, then the following race may occur:
597 *
598 * get_user_pages(&page);
599 * [user mapping goes away]
600 * write_to(page);
601 * !PageDirty(page) [good]
602 * SetPageDirty(page);
603 * put_page(page);
604 * !page_count(page) [good, discard it]
605 *
606 * [oops, our write_to data is lost]
607 *
608 * Reversing the order of the tests ensures such a situation cannot
609 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
610 * load is not satisfied before that of page->_count.
611 *
612 * Note that if SetPageDirty is always performed via set_page_dirty,
613 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 614 */
e286781d 615 if (!page_freeze_refs(page, 2))
49d2e9cc 616 goto cannot_free;
e286781d
NP
617 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
618 if (unlikely(PageDirty(page))) {
619 page_unfreeze_refs(page, 2);
49d2e9cc 620 goto cannot_free;
e286781d 621 }
49d2e9cc
CL
622
623 if (PageSwapCache(page)) {
624 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 625 mem_cgroup_swapout(page, swap);
49d2e9cc 626 __delete_from_swap_cache(page);
c4843a75
GT
627 spin_unlock_irqrestore(&mapping->tree_lock, flags);
628 mem_cgroup_end_page_stat(memcg);
0a31bc97 629 swapcache_free(swap);
e286781d 630 } else {
6072d13c 631 void (*freepage)(struct page *);
a528910e 632 void *shadow = NULL;
6072d13c
LT
633
634 freepage = mapping->a_ops->freepage;
a528910e
JW
635 /*
636 * Remember a shadow entry for reclaimed file cache in
637 * order to detect refaults, thus thrashing, later on.
638 *
639 * But don't store shadows in an address space that is
640 * already exiting. This is not just an optizimation,
641 * inode reclaim needs to empty out the radix tree or
642 * the nodes are lost. Don't plant shadows behind its
643 * back.
644 */
645 if (reclaimed && page_is_file_cache(page) &&
646 !mapping_exiting(mapping))
647 shadow = workingset_eviction(mapping, page);
c4843a75
GT
648 __delete_from_page_cache(page, shadow, memcg);
649 spin_unlock_irqrestore(&mapping->tree_lock, flags);
650 mem_cgroup_end_page_stat(memcg);
6072d13c
LT
651
652 if (freepage != NULL)
653 freepage(page);
49d2e9cc
CL
654 }
655
49d2e9cc
CL
656 return 1;
657
658cannot_free:
c4843a75
GT
659 spin_unlock_irqrestore(&mapping->tree_lock, flags);
660 mem_cgroup_end_page_stat(memcg);
49d2e9cc
CL
661 return 0;
662}
663
e286781d
NP
664/*
665 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
666 * someone else has a ref on the page, abort and return 0. If it was
667 * successfully detached, return 1. Assumes the caller has a single ref on
668 * this page.
669 */
670int remove_mapping(struct address_space *mapping, struct page *page)
671{
a528910e 672 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
673 /*
674 * Unfreezing the refcount with 1 rather than 2 effectively
675 * drops the pagecache ref for us without requiring another
676 * atomic operation.
677 */
678 page_unfreeze_refs(page, 1);
679 return 1;
680 }
681 return 0;
682}
683
894bc310
LS
684/**
685 * putback_lru_page - put previously isolated page onto appropriate LRU list
686 * @page: page to be put back to appropriate lru list
687 *
688 * Add previously isolated @page to appropriate LRU list.
689 * Page may still be unevictable for other reasons.
690 *
691 * lru_lock must not be held, interrupts must be enabled.
692 */
894bc310
LS
693void putback_lru_page(struct page *page)
694{
0ec3b74c 695 bool is_unevictable;
bbfd28ee 696 int was_unevictable = PageUnevictable(page);
894bc310 697
309381fe 698 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
699
700redo:
701 ClearPageUnevictable(page);
702
39b5f29a 703 if (page_evictable(page)) {
894bc310
LS
704 /*
705 * For evictable pages, we can use the cache.
706 * In event of a race, worst case is we end up with an
707 * unevictable page on [in]active list.
708 * We know how to handle that.
709 */
0ec3b74c 710 is_unevictable = false;
c53954a0 711 lru_cache_add(page);
894bc310
LS
712 } else {
713 /*
714 * Put unevictable pages directly on zone's unevictable
715 * list.
716 */
0ec3b74c 717 is_unevictable = true;
894bc310 718 add_page_to_unevictable_list(page);
6a7b9548 719 /*
21ee9f39
MK
720 * When racing with an mlock or AS_UNEVICTABLE clearing
721 * (page is unlocked) make sure that if the other thread
722 * does not observe our setting of PG_lru and fails
24513264 723 * isolation/check_move_unevictable_pages,
21ee9f39 724 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
725 * the page back to the evictable list.
726 *
21ee9f39 727 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
728 */
729 smp_mb();
894bc310 730 }
894bc310
LS
731
732 /*
733 * page's status can change while we move it among lru. If an evictable
734 * page is on unevictable list, it never be freed. To avoid that,
735 * check after we added it to the list, again.
736 */
0ec3b74c 737 if (is_unevictable && page_evictable(page)) {
894bc310
LS
738 if (!isolate_lru_page(page)) {
739 put_page(page);
740 goto redo;
741 }
742 /* This means someone else dropped this page from LRU
743 * So, it will be freed or putback to LRU again. There is
744 * nothing to do here.
745 */
746 }
747
0ec3b74c 748 if (was_unevictable && !is_unevictable)
bbfd28ee 749 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 750 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
751 count_vm_event(UNEVICTABLE_PGCULLED);
752
894bc310
LS
753 put_page(page); /* drop ref from isolate */
754}
755
dfc8d636
JW
756enum page_references {
757 PAGEREF_RECLAIM,
758 PAGEREF_RECLAIM_CLEAN,
64574746 759 PAGEREF_KEEP,
dfc8d636
JW
760 PAGEREF_ACTIVATE,
761};
762
763static enum page_references page_check_references(struct page *page,
764 struct scan_control *sc)
765{
64574746 766 int referenced_ptes, referenced_page;
dfc8d636 767 unsigned long vm_flags;
dfc8d636 768
c3ac9a8a
JW
769 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
770 &vm_flags);
64574746 771 referenced_page = TestClearPageReferenced(page);
dfc8d636 772
dfc8d636
JW
773 /*
774 * Mlock lost the isolation race with us. Let try_to_unmap()
775 * move the page to the unevictable list.
776 */
777 if (vm_flags & VM_LOCKED)
778 return PAGEREF_RECLAIM;
779
64574746 780 if (referenced_ptes) {
e4898273 781 if (PageSwapBacked(page))
64574746
JW
782 return PAGEREF_ACTIVATE;
783 /*
784 * All mapped pages start out with page table
785 * references from the instantiating fault, so we need
786 * to look twice if a mapped file page is used more
787 * than once.
788 *
789 * Mark it and spare it for another trip around the
790 * inactive list. Another page table reference will
791 * lead to its activation.
792 *
793 * Note: the mark is set for activated pages as well
794 * so that recently deactivated but used pages are
795 * quickly recovered.
796 */
797 SetPageReferenced(page);
798
34dbc67a 799 if (referenced_page || referenced_ptes > 1)
64574746
JW
800 return PAGEREF_ACTIVATE;
801
c909e993
KK
802 /*
803 * Activate file-backed executable pages after first usage.
804 */
805 if (vm_flags & VM_EXEC)
806 return PAGEREF_ACTIVATE;
807
64574746
JW
808 return PAGEREF_KEEP;
809 }
dfc8d636
JW
810
811 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 812 if (referenced_page && !PageSwapBacked(page))
64574746
JW
813 return PAGEREF_RECLAIM_CLEAN;
814
815 return PAGEREF_RECLAIM;
dfc8d636
JW
816}
817
e2be15f6
MG
818/* Check if a page is dirty or under writeback */
819static void page_check_dirty_writeback(struct page *page,
820 bool *dirty, bool *writeback)
821{
b4597226
MG
822 struct address_space *mapping;
823
e2be15f6
MG
824 /*
825 * Anonymous pages are not handled by flushers and must be written
826 * from reclaim context. Do not stall reclaim based on them
827 */
828 if (!page_is_file_cache(page)) {
829 *dirty = false;
830 *writeback = false;
831 return;
832 }
833
834 /* By default assume that the page flags are accurate */
835 *dirty = PageDirty(page);
836 *writeback = PageWriteback(page);
b4597226
MG
837
838 /* Verify dirty/writeback state if the filesystem supports it */
839 if (!page_has_private(page))
840 return;
841
842 mapping = page_mapping(page);
843 if (mapping && mapping->a_ops->is_dirty_writeback)
844 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
845}
846
1da177e4 847/*
1742f19f 848 * shrink_page_list() returns the number of reclaimed pages
1da177e4 849 */
1742f19f 850static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 851 struct zone *zone,
f84f6e2b 852 struct scan_control *sc,
02c6de8d 853 enum ttu_flags ttu_flags,
8e950282 854 unsigned long *ret_nr_dirty,
d43006d5 855 unsigned long *ret_nr_unqueued_dirty,
8e950282 856 unsigned long *ret_nr_congested,
02c6de8d 857 unsigned long *ret_nr_writeback,
b1a6f21e 858 unsigned long *ret_nr_immediate,
02c6de8d 859 bool force_reclaim)
1da177e4
LT
860{
861 LIST_HEAD(ret_pages);
abe4c3b5 862 LIST_HEAD(free_pages);
1da177e4 863 int pgactivate = 0;
d43006d5 864 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
865 unsigned long nr_dirty = 0;
866 unsigned long nr_congested = 0;
05ff5137 867 unsigned long nr_reclaimed = 0;
92df3a72 868 unsigned long nr_writeback = 0;
b1a6f21e 869 unsigned long nr_immediate = 0;
1da177e4
LT
870
871 cond_resched();
872
1da177e4
LT
873 while (!list_empty(page_list)) {
874 struct address_space *mapping;
875 struct page *page;
876 int may_enter_fs;
02c6de8d 877 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 878 bool dirty, writeback;
1da177e4
LT
879
880 cond_resched();
881
882 page = lru_to_page(page_list);
883 list_del(&page->lru);
884
529ae9aa 885 if (!trylock_page(page))
1da177e4
LT
886 goto keep;
887
309381fe
SL
888 VM_BUG_ON_PAGE(PageActive(page), page);
889 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1da177e4
LT
890
891 sc->nr_scanned++;
80e43426 892
39b5f29a 893 if (unlikely(!page_evictable(page)))
b291f000 894 goto cull_mlocked;
894bc310 895
a6dc60f8 896 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
897 goto keep_locked;
898
1da177e4
LT
899 /* Double the slab pressure for mapped and swapcache pages */
900 if (page_mapped(page) || PageSwapCache(page))
901 sc->nr_scanned++;
902
c661b078
AW
903 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
904 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
905
e2be15f6
MG
906 /*
907 * The number of dirty pages determines if a zone is marked
908 * reclaim_congested which affects wait_iff_congested. kswapd
909 * will stall and start writing pages if the tail of the LRU
910 * is all dirty unqueued pages.
911 */
912 page_check_dirty_writeback(page, &dirty, &writeback);
913 if (dirty || writeback)
914 nr_dirty++;
915
916 if (dirty && !writeback)
917 nr_unqueued_dirty++;
918
d04e8acd
MG
919 /*
920 * Treat this page as congested if the underlying BDI is or if
921 * pages are cycling through the LRU so quickly that the
922 * pages marked for immediate reclaim are making it to the
923 * end of the LRU a second time.
924 */
e2be15f6 925 mapping = page_mapping(page);
1da58ee2 926 if (((dirty || writeback) && mapping &&
de1414a6 927 bdi_write_congested(inode_to_bdi(mapping->host))) ||
d04e8acd 928 (writeback && PageReclaim(page)))
e2be15f6
MG
929 nr_congested++;
930
283aba9f
MG
931 /*
932 * If a page at the tail of the LRU is under writeback, there
933 * are three cases to consider.
934 *
935 * 1) If reclaim is encountering an excessive number of pages
936 * under writeback and this page is both under writeback and
937 * PageReclaim then it indicates that pages are being queued
938 * for IO but are being recycled through the LRU before the
939 * IO can complete. Waiting on the page itself risks an
940 * indefinite stall if it is impossible to writeback the
941 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
942 * note that the LRU is being scanned too quickly and the
943 * caller can stall after page list has been processed.
283aba9f
MG
944 *
945 * 2) Global reclaim encounters a page, memcg encounters a
946 * page that is not marked for immediate reclaim or
947 * the caller does not have __GFP_IO. In this case mark
948 * the page for immediate reclaim and continue scanning.
949 *
950 * __GFP_IO is checked because a loop driver thread might
951 * enter reclaim, and deadlock if it waits on a page for
952 * which it is needed to do the write (loop masks off
953 * __GFP_IO|__GFP_FS for this reason); but more thought
954 * would probably show more reasons.
955 *
956 * Don't require __GFP_FS, since we're not going into the
957 * FS, just waiting on its writeback completion. Worryingly,
958 * ext4 gfs2 and xfs allocate pages with
959 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
960 * may_enter_fs here is liable to OOM on them.
961 *
962 * 3) memcg encounters a page that is not already marked
963 * PageReclaim. memcg does not have any dirty pages
964 * throttling so we could easily OOM just because too many
965 * pages are in writeback and there is nothing else to
966 * reclaim. Wait for the writeback to complete.
967 */
c661b078 968 if (PageWriteback(page)) {
283aba9f
MG
969 /* Case 1 above */
970 if (current_is_kswapd() &&
971 PageReclaim(page) &&
57054651 972 test_bit(ZONE_WRITEBACK, &zone->flags)) {
b1a6f21e
MG
973 nr_immediate++;
974 goto keep_locked;
283aba9f
MG
975
976 /* Case 2 above */
977 } else if (global_reclaim(sc) ||
c3b94f44
HD
978 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
979 /*
980 * This is slightly racy - end_page_writeback()
981 * might have just cleared PageReclaim, then
982 * setting PageReclaim here end up interpreted
983 * as PageReadahead - but that does not matter
984 * enough to care. What we do want is for this
985 * page to have PageReclaim set next time memcg
986 * reclaim reaches the tests above, so it will
987 * then wait_on_page_writeback() to avoid OOM;
988 * and it's also appropriate in global reclaim.
989 */
990 SetPageReclaim(page);
e62e384e 991 nr_writeback++;
283aba9f 992
c3b94f44 993 goto keep_locked;
283aba9f
MG
994
995 /* Case 3 above */
996 } else {
997 wait_on_page_writeback(page);
e62e384e 998 }
c661b078 999 }
1da177e4 1000
02c6de8d
MK
1001 if (!force_reclaim)
1002 references = page_check_references(page, sc);
1003
dfc8d636
JW
1004 switch (references) {
1005 case PAGEREF_ACTIVATE:
1da177e4 1006 goto activate_locked;
64574746
JW
1007 case PAGEREF_KEEP:
1008 goto keep_locked;
dfc8d636
JW
1009 case PAGEREF_RECLAIM:
1010 case PAGEREF_RECLAIM_CLEAN:
1011 ; /* try to reclaim the page below */
1012 }
1da177e4 1013
1da177e4
LT
1014 /*
1015 * Anonymous process memory has backing store?
1016 * Try to allocate it some swap space here.
1017 */
b291f000 1018 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
1019 if (!(sc->gfp_mask & __GFP_IO))
1020 goto keep_locked;
5bc7b8ac 1021 if (!add_to_swap(page, page_list))
1da177e4 1022 goto activate_locked;
63eb6b93 1023 may_enter_fs = 1;
1da177e4 1024
e2be15f6
MG
1025 /* Adding to swap updated mapping */
1026 mapping = page_mapping(page);
1027 }
1da177e4
LT
1028
1029 /*
1030 * The page is mapped into the page tables of one or more
1031 * processes. Try to unmap it here.
1032 */
1033 if (page_mapped(page) && mapping) {
02c6de8d 1034 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
1035 case SWAP_FAIL:
1036 goto activate_locked;
1037 case SWAP_AGAIN:
1038 goto keep_locked;
b291f000
NP
1039 case SWAP_MLOCK:
1040 goto cull_mlocked;
1da177e4
LT
1041 case SWAP_SUCCESS:
1042 ; /* try to free the page below */
1043 }
1044 }
1045
1046 if (PageDirty(page)) {
ee72886d
MG
1047 /*
1048 * Only kswapd can writeback filesystem pages to
d43006d5
MG
1049 * avoid risk of stack overflow but only writeback
1050 * if many dirty pages have been encountered.
ee72886d 1051 */
f84f6e2b 1052 if (page_is_file_cache(page) &&
9e3b2f8c 1053 (!current_is_kswapd() ||
57054651 1054 !test_bit(ZONE_DIRTY, &zone->flags))) {
49ea7eb6
MG
1055 /*
1056 * Immediately reclaim when written back.
1057 * Similar in principal to deactivate_page()
1058 * except we already have the page isolated
1059 * and know it's dirty
1060 */
1061 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1062 SetPageReclaim(page);
1063
ee72886d
MG
1064 goto keep_locked;
1065 }
1066
dfc8d636 1067 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1068 goto keep_locked;
4dd4b920 1069 if (!may_enter_fs)
1da177e4 1070 goto keep_locked;
52a8363e 1071 if (!sc->may_writepage)
1da177e4
LT
1072 goto keep_locked;
1073
1074 /* Page is dirty, try to write it out here */
7d3579e8 1075 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1076 case PAGE_KEEP:
1077 goto keep_locked;
1078 case PAGE_ACTIVATE:
1079 goto activate_locked;
1080 case PAGE_SUCCESS:
7d3579e8 1081 if (PageWriteback(page))
41ac1999 1082 goto keep;
7d3579e8 1083 if (PageDirty(page))
1da177e4 1084 goto keep;
7d3579e8 1085
1da177e4
LT
1086 /*
1087 * A synchronous write - probably a ramdisk. Go
1088 * ahead and try to reclaim the page.
1089 */
529ae9aa 1090 if (!trylock_page(page))
1da177e4
LT
1091 goto keep;
1092 if (PageDirty(page) || PageWriteback(page))
1093 goto keep_locked;
1094 mapping = page_mapping(page);
1095 case PAGE_CLEAN:
1096 ; /* try to free the page below */
1097 }
1098 }
1099
1100 /*
1101 * If the page has buffers, try to free the buffer mappings
1102 * associated with this page. If we succeed we try to free
1103 * the page as well.
1104 *
1105 * We do this even if the page is PageDirty().
1106 * try_to_release_page() does not perform I/O, but it is
1107 * possible for a page to have PageDirty set, but it is actually
1108 * clean (all its buffers are clean). This happens if the
1109 * buffers were written out directly, with submit_bh(). ext3
894bc310 1110 * will do this, as well as the blockdev mapping.
1da177e4
LT
1111 * try_to_release_page() will discover that cleanness and will
1112 * drop the buffers and mark the page clean - it can be freed.
1113 *
1114 * Rarely, pages can have buffers and no ->mapping. These are
1115 * the pages which were not successfully invalidated in
1116 * truncate_complete_page(). We try to drop those buffers here
1117 * and if that worked, and the page is no longer mapped into
1118 * process address space (page_count == 1) it can be freed.
1119 * Otherwise, leave the page on the LRU so it is swappable.
1120 */
266cf658 1121 if (page_has_private(page)) {
1da177e4
LT
1122 if (!try_to_release_page(page, sc->gfp_mask))
1123 goto activate_locked;
e286781d
NP
1124 if (!mapping && page_count(page) == 1) {
1125 unlock_page(page);
1126 if (put_page_testzero(page))
1127 goto free_it;
1128 else {
1129 /*
1130 * rare race with speculative reference.
1131 * the speculative reference will free
1132 * this page shortly, so we may
1133 * increment nr_reclaimed here (and
1134 * leave it off the LRU).
1135 */
1136 nr_reclaimed++;
1137 continue;
1138 }
1139 }
1da177e4
LT
1140 }
1141
a528910e 1142 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1143 goto keep_locked;
1da177e4 1144
a978d6f5
NP
1145 /*
1146 * At this point, we have no other references and there is
1147 * no way to pick any more up (removed from LRU, removed
1148 * from pagecache). Can use non-atomic bitops now (and
1149 * we obviously don't have to worry about waking up a process
1150 * waiting on the page lock, because there are no references.
1151 */
1152 __clear_page_locked(page);
e286781d 1153free_it:
05ff5137 1154 nr_reclaimed++;
abe4c3b5
MG
1155
1156 /*
1157 * Is there need to periodically free_page_list? It would
1158 * appear not as the counts should be low
1159 */
1160 list_add(&page->lru, &free_pages);
1da177e4
LT
1161 continue;
1162
b291f000 1163cull_mlocked:
63d6c5ad
HD
1164 if (PageSwapCache(page))
1165 try_to_free_swap(page);
b291f000
NP
1166 unlock_page(page);
1167 putback_lru_page(page);
1168 continue;
1169
1da177e4 1170activate_locked:
68a22394
RR
1171 /* Not a candidate for swapping, so reclaim swap space. */
1172 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1173 try_to_free_swap(page);
309381fe 1174 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1175 SetPageActive(page);
1176 pgactivate++;
1177keep_locked:
1178 unlock_page(page);
1179keep:
1180 list_add(&page->lru, &ret_pages);
309381fe 1181 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1182 }
abe4c3b5 1183
747db954 1184 mem_cgroup_uncharge_list(&free_pages);
b745bc85 1185 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1186
1da177e4 1187 list_splice(&ret_pages, page_list);
f8891e5e 1188 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1189
8e950282
MG
1190 *ret_nr_dirty += nr_dirty;
1191 *ret_nr_congested += nr_congested;
d43006d5 1192 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1193 *ret_nr_writeback += nr_writeback;
b1a6f21e 1194 *ret_nr_immediate += nr_immediate;
05ff5137 1195 return nr_reclaimed;
1da177e4
LT
1196}
1197
02c6de8d
MK
1198unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1199 struct list_head *page_list)
1200{
1201 struct scan_control sc = {
1202 .gfp_mask = GFP_KERNEL,
1203 .priority = DEF_PRIORITY,
1204 .may_unmap = 1,
1205 };
8e950282 1206 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1207 struct page *page, *next;
1208 LIST_HEAD(clean_pages);
1209
1210 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e
RA
1211 if (page_is_file_cache(page) && !PageDirty(page) &&
1212 !isolated_balloon_page(page)) {
02c6de8d
MK
1213 ClearPageActive(page);
1214 list_move(&page->lru, &clean_pages);
1215 }
1216 }
1217
1218 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1219 TTU_UNMAP|TTU_IGNORE_ACCESS,
1220 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d 1221 list_splice(&clean_pages, page_list);
83da7510 1222 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1223 return ret;
1224}
1225
5ad333eb
AW
1226/*
1227 * Attempt to remove the specified page from its LRU. Only take this page
1228 * if it is of the appropriate PageActive status. Pages which are being
1229 * freed elsewhere are also ignored.
1230 *
1231 * page: page to consider
1232 * mode: one of the LRU isolation modes defined above
1233 *
1234 * returns 0 on success, -ve errno on failure.
1235 */
f3fd4a61 1236int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1237{
1238 int ret = -EINVAL;
1239
1240 /* Only take pages on the LRU. */
1241 if (!PageLRU(page))
1242 return ret;
1243
e46a2879
MK
1244 /* Compaction should not handle unevictable pages but CMA can do so */
1245 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1246 return ret;
1247
5ad333eb 1248 ret = -EBUSY;
08e552c6 1249
c8244935
MG
1250 /*
1251 * To minimise LRU disruption, the caller can indicate that it only
1252 * wants to isolate pages it will be able to operate on without
1253 * blocking - clean pages for the most part.
1254 *
1255 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1256 * is used by reclaim when it is cannot write to backing storage
1257 *
1258 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1259 * that it is possible to migrate without blocking
1260 */
1261 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1262 /* All the caller can do on PageWriteback is block */
1263 if (PageWriteback(page))
1264 return ret;
1265
1266 if (PageDirty(page)) {
1267 struct address_space *mapping;
1268
1269 /* ISOLATE_CLEAN means only clean pages */
1270 if (mode & ISOLATE_CLEAN)
1271 return ret;
1272
1273 /*
1274 * Only pages without mappings or that have a
1275 * ->migratepage callback are possible to migrate
1276 * without blocking
1277 */
1278 mapping = page_mapping(page);
1279 if (mapping && !mapping->a_ops->migratepage)
1280 return ret;
1281 }
1282 }
39deaf85 1283
f80c0673
MK
1284 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1285 return ret;
1286
5ad333eb
AW
1287 if (likely(get_page_unless_zero(page))) {
1288 /*
1289 * Be careful not to clear PageLRU until after we're
1290 * sure the page is not being freed elsewhere -- the
1291 * page release code relies on it.
1292 */
1293 ClearPageLRU(page);
1294 ret = 0;
1295 }
1296
1297 return ret;
1298}
1299
1da177e4
LT
1300/*
1301 * zone->lru_lock is heavily contended. Some of the functions that
1302 * shrink the lists perform better by taking out a batch of pages
1303 * and working on them outside the LRU lock.
1304 *
1305 * For pagecache intensive workloads, this function is the hottest
1306 * spot in the kernel (apart from copy_*_user functions).
1307 *
1308 * Appropriate locks must be held before calling this function.
1309 *
1310 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1311 * @lruvec: The LRU vector to pull pages from.
1da177e4 1312 * @dst: The temp list to put pages on to.
f626012d 1313 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1314 * @sc: The scan_control struct for this reclaim session
5ad333eb 1315 * @mode: One of the LRU isolation modes
3cb99451 1316 * @lru: LRU list id for isolating
1da177e4
LT
1317 *
1318 * returns how many pages were moved onto *@dst.
1319 */
69e05944 1320static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1321 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1322 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1323 isolate_mode_t mode, enum lru_list lru)
1da177e4 1324{
75b00af7 1325 struct list_head *src = &lruvec->lists[lru];
69e05944 1326 unsigned long nr_taken = 0;
c9b02d97 1327 unsigned long scan;
1da177e4 1328
c9b02d97 1329 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1330 struct page *page;
fa9add64 1331 int nr_pages;
5ad333eb 1332
1da177e4
LT
1333 page = lru_to_page(src);
1334 prefetchw_prev_lru_page(page, src, flags);
1335
309381fe 1336 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1337
f3fd4a61 1338 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1339 case 0:
fa9add64
HD
1340 nr_pages = hpage_nr_pages(page);
1341 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1342 list_move(&page->lru, dst);
fa9add64 1343 nr_taken += nr_pages;
5ad333eb
AW
1344 break;
1345
1346 case -EBUSY:
1347 /* else it is being freed elsewhere */
1348 list_move(&page->lru, src);
1349 continue;
46453a6e 1350
5ad333eb
AW
1351 default:
1352 BUG();
1353 }
1da177e4
LT
1354 }
1355
f626012d 1356 *nr_scanned = scan;
75b00af7
HD
1357 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1358 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1359 return nr_taken;
1360}
1361
62695a84
NP
1362/**
1363 * isolate_lru_page - tries to isolate a page from its LRU list
1364 * @page: page to isolate from its LRU list
1365 *
1366 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1367 * vmstat statistic corresponding to whatever LRU list the page was on.
1368 *
1369 * Returns 0 if the page was removed from an LRU list.
1370 * Returns -EBUSY if the page was not on an LRU list.
1371 *
1372 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1373 * the active list, it will have PageActive set. If it was found on
1374 * the unevictable list, it will have the PageUnevictable bit set. That flag
1375 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1376 *
1377 * The vmstat statistic corresponding to the list on which the page was
1378 * found will be decremented.
1379 *
1380 * Restrictions:
1381 * (1) Must be called with an elevated refcount on the page. This is a
1382 * fundamentnal difference from isolate_lru_pages (which is called
1383 * without a stable reference).
1384 * (2) the lru_lock must not be held.
1385 * (3) interrupts must be enabled.
1386 */
1387int isolate_lru_page(struct page *page)
1388{
1389 int ret = -EBUSY;
1390
309381fe 1391 VM_BUG_ON_PAGE(!page_count(page), page);
0c917313 1392
62695a84
NP
1393 if (PageLRU(page)) {
1394 struct zone *zone = page_zone(page);
fa9add64 1395 struct lruvec *lruvec;
62695a84
NP
1396
1397 spin_lock_irq(&zone->lru_lock);
fa9add64 1398 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1399 if (PageLRU(page)) {
894bc310 1400 int lru = page_lru(page);
0c917313 1401 get_page(page);
62695a84 1402 ClearPageLRU(page);
fa9add64
HD
1403 del_page_from_lru_list(page, lruvec, lru);
1404 ret = 0;
62695a84
NP
1405 }
1406 spin_unlock_irq(&zone->lru_lock);
1407 }
1408 return ret;
1409}
1410
35cd7815 1411/*
d37dd5dc
FW
1412 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1413 * then get resheduled. When there are massive number of tasks doing page
1414 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1415 * the LRU list will go small and be scanned faster than necessary, leading to
1416 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1417 */
1418static int too_many_isolated(struct zone *zone, int file,
1419 struct scan_control *sc)
1420{
1421 unsigned long inactive, isolated;
1422
1423 if (current_is_kswapd())
1424 return 0;
1425
89b5fae5 1426 if (!global_reclaim(sc))
35cd7815
RR
1427 return 0;
1428
1429 if (file) {
1430 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1431 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1432 } else {
1433 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1434 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1435 }
1436
3cf23841
FW
1437 /*
1438 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1439 * won't get blocked by normal direct-reclaimers, forming a circular
1440 * deadlock.
1441 */
1442 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1443 inactive >>= 3;
1444
35cd7815
RR
1445 return isolated > inactive;
1446}
1447
66635629 1448static noinline_for_stack void
75b00af7 1449putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1450{
27ac81d8
KK
1451 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1452 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1453 LIST_HEAD(pages_to_free);
66635629 1454
66635629
MG
1455 /*
1456 * Put back any unfreeable pages.
1457 */
66635629 1458 while (!list_empty(page_list)) {
3f79768f 1459 struct page *page = lru_to_page(page_list);
66635629 1460 int lru;
3f79768f 1461
309381fe 1462 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1463 list_del(&page->lru);
39b5f29a 1464 if (unlikely(!page_evictable(page))) {
66635629
MG
1465 spin_unlock_irq(&zone->lru_lock);
1466 putback_lru_page(page);
1467 spin_lock_irq(&zone->lru_lock);
1468 continue;
1469 }
fa9add64
HD
1470
1471 lruvec = mem_cgroup_page_lruvec(page, zone);
1472
7a608572 1473 SetPageLRU(page);
66635629 1474 lru = page_lru(page);
fa9add64
HD
1475 add_page_to_lru_list(page, lruvec, lru);
1476
66635629
MG
1477 if (is_active_lru(lru)) {
1478 int file = is_file_lru(lru);
9992af10
RR
1479 int numpages = hpage_nr_pages(page);
1480 reclaim_stat->recent_rotated[file] += numpages;
66635629 1481 }
2bcf8879
HD
1482 if (put_page_testzero(page)) {
1483 __ClearPageLRU(page);
1484 __ClearPageActive(page);
fa9add64 1485 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1486
1487 if (unlikely(PageCompound(page))) {
1488 spin_unlock_irq(&zone->lru_lock);
747db954 1489 mem_cgroup_uncharge(page);
2bcf8879
HD
1490 (*get_compound_page_dtor(page))(page);
1491 spin_lock_irq(&zone->lru_lock);
1492 } else
1493 list_add(&page->lru, &pages_to_free);
66635629
MG
1494 }
1495 }
66635629 1496
3f79768f
HD
1497 /*
1498 * To save our caller's stack, now use input list for pages to free.
1499 */
1500 list_splice(&pages_to_free, page_list);
66635629
MG
1501}
1502
399ba0b9
N
1503/*
1504 * If a kernel thread (such as nfsd for loop-back mounts) services
1505 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1506 * In that case we should only throttle if the backing device it is
1507 * writing to is congested. In other cases it is safe to throttle.
1508 */
1509static int current_may_throttle(void)
1510{
1511 return !(current->flags & PF_LESS_THROTTLE) ||
1512 current->backing_dev_info == NULL ||
1513 bdi_write_congested(current->backing_dev_info);
1514}
1515
1da177e4 1516/*
1742f19f
AM
1517 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1518 * of reclaimed pages
1da177e4 1519 */
66635629 1520static noinline_for_stack unsigned long
1a93be0e 1521shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1522 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1523{
1524 LIST_HEAD(page_list);
e247dbce 1525 unsigned long nr_scanned;
05ff5137 1526 unsigned long nr_reclaimed = 0;
e247dbce 1527 unsigned long nr_taken;
8e950282
MG
1528 unsigned long nr_dirty = 0;
1529 unsigned long nr_congested = 0;
e2be15f6 1530 unsigned long nr_unqueued_dirty = 0;
92df3a72 1531 unsigned long nr_writeback = 0;
b1a6f21e 1532 unsigned long nr_immediate = 0;
f3fd4a61 1533 isolate_mode_t isolate_mode = 0;
3cb99451 1534 int file = is_file_lru(lru);
1a93be0e
KK
1535 struct zone *zone = lruvec_zone(lruvec);
1536 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1537
35cd7815 1538 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1539 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1540
1541 /* We are about to die and free our memory. Return now. */
1542 if (fatal_signal_pending(current))
1543 return SWAP_CLUSTER_MAX;
1544 }
1545
1da177e4 1546 lru_add_drain();
f80c0673
MK
1547
1548 if (!sc->may_unmap)
61317289 1549 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1550 if (!sc->may_writepage)
61317289 1551 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1552
1da177e4 1553 spin_lock_irq(&zone->lru_lock);
b35ea17b 1554
5dc35979
KK
1555 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1556 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1557
1558 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1559 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1560
89b5fae5 1561 if (global_reclaim(sc)) {
0d5d823a 1562 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
e247dbce 1563 if (current_is_kswapd())
75b00af7 1564 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1565 else
75b00af7 1566 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1567 }
d563c050 1568 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1569
d563c050 1570 if (nr_taken == 0)
66635629 1571 return 0;
5ad333eb 1572
02c6de8d 1573 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1574 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1575 &nr_writeback, &nr_immediate,
1576 false);
c661b078 1577
3f79768f
HD
1578 spin_lock_irq(&zone->lru_lock);
1579
95d918fc 1580 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1581
904249aa
YH
1582 if (global_reclaim(sc)) {
1583 if (current_is_kswapd())
1584 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1585 nr_reclaimed);
1586 else
1587 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1588 nr_reclaimed);
1589 }
a74609fa 1590
27ac81d8 1591 putback_inactive_pages(lruvec, &page_list);
3f79768f 1592
95d918fc 1593 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1594
1595 spin_unlock_irq(&zone->lru_lock);
1596
747db954 1597 mem_cgroup_uncharge_list(&page_list);
b745bc85 1598 free_hot_cold_page_list(&page_list, true);
e11da5b4 1599
92df3a72
MG
1600 /*
1601 * If reclaim is isolating dirty pages under writeback, it implies
1602 * that the long-lived page allocation rate is exceeding the page
1603 * laundering rate. Either the global limits are not being effective
1604 * at throttling processes due to the page distribution throughout
1605 * zones or there is heavy usage of a slow backing device. The
1606 * only option is to throttle from reclaim context which is not ideal
1607 * as there is no guarantee the dirtying process is throttled in the
1608 * same way balance_dirty_pages() manages.
1609 *
8e950282
MG
1610 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1611 * of pages under pages flagged for immediate reclaim and stall if any
1612 * are encountered in the nr_immediate check below.
92df3a72 1613 */
918fc718 1614 if (nr_writeback && nr_writeback == nr_taken)
57054651 1615 set_bit(ZONE_WRITEBACK, &zone->flags);
92df3a72 1616
d43006d5 1617 /*
b1a6f21e
MG
1618 * memcg will stall in page writeback so only consider forcibly
1619 * stalling for global reclaim
d43006d5 1620 */
b1a6f21e 1621 if (global_reclaim(sc)) {
8e950282
MG
1622 /*
1623 * Tag a zone as congested if all the dirty pages scanned were
1624 * backed by a congested BDI and wait_iff_congested will stall.
1625 */
1626 if (nr_dirty && nr_dirty == nr_congested)
57054651 1627 set_bit(ZONE_CONGESTED, &zone->flags);
8e950282 1628
b1a6f21e
MG
1629 /*
1630 * If dirty pages are scanned that are not queued for IO, it
1631 * implies that flushers are not keeping up. In this case, flag
57054651
JW
1632 * the zone ZONE_DIRTY and kswapd will start writing pages from
1633 * reclaim context.
b1a6f21e
MG
1634 */
1635 if (nr_unqueued_dirty == nr_taken)
57054651 1636 set_bit(ZONE_DIRTY, &zone->flags);
b1a6f21e
MG
1637
1638 /*
b738d764
LT
1639 * If kswapd scans pages marked marked for immediate
1640 * reclaim and under writeback (nr_immediate), it implies
1641 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1642 * they are written so also forcibly stall.
1643 */
b738d764 1644 if (nr_immediate && current_may_throttle())
b1a6f21e 1645 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1646 }
d43006d5 1647
8e950282
MG
1648 /*
1649 * Stall direct reclaim for IO completions if underlying BDIs or zone
1650 * is congested. Allow kswapd to continue until it starts encountering
1651 * unqueued dirty pages or cycling through the LRU too quickly.
1652 */
399ba0b9
N
1653 if (!sc->hibernation_mode && !current_is_kswapd() &&
1654 current_may_throttle())
8e950282
MG
1655 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1656
e11da5b4
MG
1657 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1658 zone_idx(zone),
1659 nr_scanned, nr_reclaimed,
9e3b2f8c 1660 sc->priority,
23b9da55 1661 trace_shrink_flags(file));
05ff5137 1662 return nr_reclaimed;
1da177e4
LT
1663}
1664
1665/*
1666 * This moves pages from the active list to the inactive list.
1667 *
1668 * We move them the other way if the page is referenced by one or more
1669 * processes, from rmap.
1670 *
1671 * If the pages are mostly unmapped, the processing is fast and it is
1672 * appropriate to hold zone->lru_lock across the whole operation. But if
1673 * the pages are mapped, the processing is slow (page_referenced()) so we
1674 * should drop zone->lru_lock around each page. It's impossible to balance
1675 * this, so instead we remove the pages from the LRU while processing them.
1676 * It is safe to rely on PG_active against the non-LRU pages in here because
1677 * nobody will play with that bit on a non-LRU page.
1678 *
1679 * The downside is that we have to touch page->_count against each page.
1680 * But we had to alter page->flags anyway.
1681 */
1cfb419b 1682
fa9add64 1683static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1684 struct list_head *list,
2bcf8879 1685 struct list_head *pages_to_free,
3eb4140f
WF
1686 enum lru_list lru)
1687{
fa9add64 1688 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1689 unsigned long pgmoved = 0;
3eb4140f 1690 struct page *page;
fa9add64 1691 int nr_pages;
3eb4140f 1692
3eb4140f
WF
1693 while (!list_empty(list)) {
1694 page = lru_to_page(list);
fa9add64 1695 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f 1696
309381fe 1697 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1698 SetPageLRU(page);
1699
fa9add64
HD
1700 nr_pages = hpage_nr_pages(page);
1701 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1702 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1703 pgmoved += nr_pages;
3eb4140f 1704
2bcf8879
HD
1705 if (put_page_testzero(page)) {
1706 __ClearPageLRU(page);
1707 __ClearPageActive(page);
fa9add64 1708 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1709
1710 if (unlikely(PageCompound(page))) {
1711 spin_unlock_irq(&zone->lru_lock);
747db954 1712 mem_cgroup_uncharge(page);
2bcf8879
HD
1713 (*get_compound_page_dtor(page))(page);
1714 spin_lock_irq(&zone->lru_lock);
1715 } else
1716 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1717 }
1718 }
1719 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1720 if (!is_active_lru(lru))
1721 __count_vm_events(PGDEACTIVATE, pgmoved);
1722}
1cfb419b 1723
f626012d 1724static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1725 struct lruvec *lruvec,
f16015fb 1726 struct scan_control *sc,
9e3b2f8c 1727 enum lru_list lru)
1da177e4 1728{
44c241f1 1729 unsigned long nr_taken;
f626012d 1730 unsigned long nr_scanned;
6fe6b7e3 1731 unsigned long vm_flags;
1da177e4 1732 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1733 LIST_HEAD(l_active);
b69408e8 1734 LIST_HEAD(l_inactive);
1da177e4 1735 struct page *page;
1a93be0e 1736 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1737 unsigned long nr_rotated = 0;
f3fd4a61 1738 isolate_mode_t isolate_mode = 0;
3cb99451 1739 int file = is_file_lru(lru);
1a93be0e 1740 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1741
1742 lru_add_drain();
f80c0673
MK
1743
1744 if (!sc->may_unmap)
61317289 1745 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1746 if (!sc->may_writepage)
61317289 1747 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1748
1da177e4 1749 spin_lock_irq(&zone->lru_lock);
925b7673 1750
5dc35979
KK
1751 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1752 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1753 if (global_reclaim(sc))
0d5d823a 1754 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
89b5fae5 1755
b7c46d15 1756 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1757
f626012d 1758 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1759 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1760 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1761 spin_unlock_irq(&zone->lru_lock);
1762
1da177e4
LT
1763 while (!list_empty(&l_hold)) {
1764 cond_resched();
1765 page = lru_to_page(&l_hold);
1766 list_del(&page->lru);
7e9cd484 1767
39b5f29a 1768 if (unlikely(!page_evictable(page))) {
894bc310
LS
1769 putback_lru_page(page);
1770 continue;
1771 }
1772
cc715d99
MG
1773 if (unlikely(buffer_heads_over_limit)) {
1774 if (page_has_private(page) && trylock_page(page)) {
1775 if (page_has_private(page))
1776 try_to_release_page(page, 0);
1777 unlock_page(page);
1778 }
1779 }
1780
c3ac9a8a
JW
1781 if (page_referenced(page, 0, sc->target_mem_cgroup,
1782 &vm_flags)) {
9992af10 1783 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1784 /*
1785 * Identify referenced, file-backed active pages and
1786 * give them one more trip around the active list. So
1787 * that executable code get better chances to stay in
1788 * memory under moderate memory pressure. Anon pages
1789 * are not likely to be evicted by use-once streaming
1790 * IO, plus JVM can create lots of anon VM_EXEC pages,
1791 * so we ignore them here.
1792 */
41e20983 1793 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1794 list_add(&page->lru, &l_active);
1795 continue;
1796 }
1797 }
7e9cd484 1798
5205e56e 1799 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1800 list_add(&page->lru, &l_inactive);
1801 }
1802
b555749a 1803 /*
8cab4754 1804 * Move pages back to the lru list.
b555749a 1805 */
2a1dc509 1806 spin_lock_irq(&zone->lru_lock);
556adecb 1807 /*
8cab4754
WF
1808 * Count referenced pages from currently used mappings as rotated,
1809 * even though only some of them are actually re-activated. This
1810 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 1811 * get_scan_count.
7e9cd484 1812 */
b7c46d15 1813 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1814
fa9add64
HD
1815 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1816 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1817 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1818 spin_unlock_irq(&zone->lru_lock);
2bcf8879 1819
747db954 1820 mem_cgroup_uncharge_list(&l_hold);
b745bc85 1821 free_hot_cold_page_list(&l_hold, true);
1da177e4
LT
1822}
1823
74e3f3c3 1824#ifdef CONFIG_SWAP
14797e23 1825static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1826{
1827 unsigned long active, inactive;
1828
1829 active = zone_page_state(zone, NR_ACTIVE_ANON);
1830 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1831
1832 if (inactive * zone->inactive_ratio < active)
1833 return 1;
1834
1835 return 0;
1836}
1837
14797e23
KM
1838/**
1839 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1840 * @lruvec: LRU vector to check
14797e23
KM
1841 *
1842 * Returns true if the zone does not have enough inactive anon pages,
1843 * meaning some active anon pages need to be deactivated.
1844 */
c56d5c7d 1845static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1846{
74e3f3c3
MK
1847 /*
1848 * If we don't have swap space, anonymous page deactivation
1849 * is pointless.
1850 */
1851 if (!total_swap_pages)
1852 return 0;
1853
c3c787e8 1854 if (!mem_cgroup_disabled())
c56d5c7d 1855 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1856
c56d5c7d 1857 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1858}
74e3f3c3 1859#else
c56d5c7d 1860static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1861{
1862 return 0;
1863}
1864#endif
14797e23 1865
56e49d21
RR
1866/**
1867 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1868 * @lruvec: LRU vector to check
56e49d21
RR
1869 *
1870 * When the system is doing streaming IO, memory pressure here
1871 * ensures that active file pages get deactivated, until more
1872 * than half of the file pages are on the inactive list.
1873 *
1874 * Once we get to that situation, protect the system's working
1875 * set from being evicted by disabling active file page aging.
1876 *
1877 * This uses a different ratio than the anonymous pages, because
1878 * the page cache uses a use-once replacement algorithm.
1879 */
c56d5c7d 1880static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1881{
e3790144
JW
1882 unsigned long inactive;
1883 unsigned long active;
1884
1885 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1886 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1887
e3790144 1888 return active > inactive;
56e49d21
RR
1889}
1890
75b00af7 1891static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1892{
75b00af7 1893 if (is_file_lru(lru))
c56d5c7d 1894 return inactive_file_is_low(lruvec);
b39415b2 1895 else
c56d5c7d 1896 return inactive_anon_is_low(lruvec);
b39415b2
RR
1897}
1898
4f98a2fe 1899static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1900 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1901{
b39415b2 1902 if (is_active_lru(lru)) {
75b00af7 1903 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1904 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1905 return 0;
1906 }
1907
1a93be0e 1908 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1909}
1910
9a265114
JW
1911enum scan_balance {
1912 SCAN_EQUAL,
1913 SCAN_FRACT,
1914 SCAN_ANON,
1915 SCAN_FILE,
1916};
1917
4f98a2fe
RR
1918/*
1919 * Determine how aggressively the anon and file LRU lists should be
1920 * scanned. The relative value of each set of LRU lists is determined
1921 * by looking at the fraction of the pages scanned we did rotate back
1922 * onto the active list instead of evict.
1923 *
be7bd59d
WL
1924 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1925 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1926 */
02695175 1927static void get_scan_count(struct lruvec *lruvec, int swappiness,
6b4f7799
JW
1928 struct scan_control *sc, unsigned long *nr,
1929 unsigned long *lru_pages)
4f98a2fe 1930{
9a265114
JW
1931 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1932 u64 fraction[2];
1933 u64 denominator = 0; /* gcc */
1934 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1935 unsigned long anon_prio, file_prio;
9a265114 1936 enum scan_balance scan_balance;
0bf1457f 1937 unsigned long anon, file;
9a265114 1938 bool force_scan = false;
4f98a2fe 1939 unsigned long ap, fp;
4111304d 1940 enum lru_list lru;
6f04f48d
SS
1941 bool some_scanned;
1942 int pass;
246e87a9 1943
f11c0ca5
JW
1944 /*
1945 * If the zone or memcg is small, nr[l] can be 0. This
1946 * results in no scanning on this priority and a potential
1947 * priority drop. Global direct reclaim can go to the next
1948 * zone and tends to have no problems. Global kswapd is for
1949 * zone balancing and it needs to scan a minimum amount. When
1950 * reclaiming for a memcg, a priority drop can cause high
1951 * latencies, so it's better to scan a minimum amount there as
1952 * well.
1953 */
90cbc250
VD
1954 if (current_is_kswapd()) {
1955 if (!zone_reclaimable(zone))
1956 force_scan = true;
1957 if (!mem_cgroup_lruvec_online(lruvec))
1958 force_scan = true;
1959 }
89b5fae5 1960 if (!global_reclaim(sc))
a4d3e9e7 1961 force_scan = true;
76a33fc3
SL
1962
1963 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1964 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1965 scan_balance = SCAN_FILE;
76a33fc3
SL
1966 goto out;
1967 }
4f98a2fe 1968
10316b31
JW
1969 /*
1970 * Global reclaim will swap to prevent OOM even with no
1971 * swappiness, but memcg users want to use this knob to
1972 * disable swapping for individual groups completely when
1973 * using the memory controller's swap limit feature would be
1974 * too expensive.
1975 */
02695175 1976 if (!global_reclaim(sc) && !swappiness) {
9a265114 1977 scan_balance = SCAN_FILE;
10316b31
JW
1978 goto out;
1979 }
1980
1981 /*
1982 * Do not apply any pressure balancing cleverness when the
1983 * system is close to OOM, scan both anon and file equally
1984 * (unless the swappiness setting disagrees with swapping).
1985 */
02695175 1986 if (!sc->priority && swappiness) {
9a265114 1987 scan_balance = SCAN_EQUAL;
10316b31
JW
1988 goto out;
1989 }
1990
62376251
JW
1991 /*
1992 * Prevent the reclaimer from falling into the cache trap: as
1993 * cache pages start out inactive, every cache fault will tip
1994 * the scan balance towards the file LRU. And as the file LRU
1995 * shrinks, so does the window for rotation from references.
1996 * This means we have a runaway feedback loop where a tiny
1997 * thrashing file LRU becomes infinitely more attractive than
1998 * anon pages. Try to detect this based on file LRU size.
1999 */
2000 if (global_reclaim(sc)) {
2ab051e1
JM
2001 unsigned long zonefile;
2002 unsigned long zonefree;
2003
2004 zonefree = zone_page_state(zone, NR_FREE_PAGES);
2005 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2006 zone_page_state(zone, NR_INACTIVE_FILE);
62376251 2007
2ab051e1 2008 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
62376251
JW
2009 scan_balance = SCAN_ANON;
2010 goto out;
2011 }
2012 }
2013
7c5bd705
JW
2014 /*
2015 * There is enough inactive page cache, do not reclaim
2016 * anything from the anonymous working set right now.
2017 */
2018 if (!inactive_file_is_low(lruvec)) {
9a265114 2019 scan_balance = SCAN_FILE;
7c5bd705
JW
2020 goto out;
2021 }
2022
9a265114
JW
2023 scan_balance = SCAN_FRACT;
2024
58c37f6e
KM
2025 /*
2026 * With swappiness at 100, anonymous and file have the same priority.
2027 * This scanning priority is essentially the inverse of IO cost.
2028 */
02695175 2029 anon_prio = swappiness;
75b00af7 2030 file_prio = 200 - anon_prio;
58c37f6e 2031
4f98a2fe
RR
2032 /*
2033 * OK, so we have swap space and a fair amount of page cache
2034 * pages. We use the recently rotated / recently scanned
2035 * ratios to determine how valuable each cache is.
2036 *
2037 * Because workloads change over time (and to avoid overflow)
2038 * we keep these statistics as a floating average, which ends
2039 * up weighing recent references more than old ones.
2040 *
2041 * anon in [0], file in [1]
2042 */
2ab051e1
JM
2043
2044 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2045 get_lru_size(lruvec, LRU_INACTIVE_ANON);
2046 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2047 get_lru_size(lruvec, LRU_INACTIVE_FILE);
2048
90126375 2049 spin_lock_irq(&zone->lru_lock);
6e901571 2050 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2051 reclaim_stat->recent_scanned[0] /= 2;
2052 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2053 }
2054
6e901571 2055 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2056 reclaim_stat->recent_scanned[1] /= 2;
2057 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2058 }
2059
4f98a2fe 2060 /*
00d8089c
RR
2061 * The amount of pressure on anon vs file pages is inversely
2062 * proportional to the fraction of recently scanned pages on
2063 * each list that were recently referenced and in active use.
4f98a2fe 2064 */
fe35004f 2065 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2066 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2067
fe35004f 2068 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2069 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 2070 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 2071
76a33fc3
SL
2072 fraction[0] = ap;
2073 fraction[1] = fp;
2074 denominator = ap + fp + 1;
2075out:
6f04f48d
SS
2076 some_scanned = false;
2077 /* Only use force_scan on second pass. */
2078 for (pass = 0; !some_scanned && pass < 2; pass++) {
6b4f7799 2079 *lru_pages = 0;
6f04f48d
SS
2080 for_each_evictable_lru(lru) {
2081 int file = is_file_lru(lru);
2082 unsigned long size;
2083 unsigned long scan;
6e08a369 2084
6f04f48d
SS
2085 size = get_lru_size(lruvec, lru);
2086 scan = size >> sc->priority;
9a265114 2087
6f04f48d
SS
2088 if (!scan && pass && force_scan)
2089 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2090
6f04f48d
SS
2091 switch (scan_balance) {
2092 case SCAN_EQUAL:
2093 /* Scan lists relative to size */
2094 break;
2095 case SCAN_FRACT:
2096 /*
2097 * Scan types proportional to swappiness and
2098 * their relative recent reclaim efficiency.
2099 */
2100 scan = div64_u64(scan * fraction[file],
2101 denominator);
2102 break;
2103 case SCAN_FILE:
2104 case SCAN_ANON:
2105 /* Scan one type exclusively */
6b4f7799
JW
2106 if ((scan_balance == SCAN_FILE) != file) {
2107 size = 0;
6f04f48d 2108 scan = 0;
6b4f7799 2109 }
6f04f48d
SS
2110 break;
2111 default:
2112 /* Look ma, no brain */
2113 BUG();
2114 }
6b4f7799
JW
2115
2116 *lru_pages += size;
6f04f48d 2117 nr[lru] = scan;
6b4f7799 2118
9a265114 2119 /*
6f04f48d
SS
2120 * Skip the second pass and don't force_scan,
2121 * if we found something to scan.
9a265114 2122 */
6f04f48d 2123 some_scanned |= !!scan;
9a265114 2124 }
76a33fc3 2125 }
6e08a369 2126}
4f98a2fe 2127
9b4f98cd
JW
2128/*
2129 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2130 */
02695175 2131static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
6b4f7799 2132 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd
JW
2133{
2134 unsigned long nr[NR_LRU_LISTS];
e82e0561 2135 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2136 unsigned long nr_to_scan;
2137 enum lru_list lru;
2138 unsigned long nr_reclaimed = 0;
2139 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2140 struct blk_plug plug;
1a501907 2141 bool scan_adjusted;
9b4f98cd 2142
6b4f7799 2143 get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
9b4f98cd 2144
e82e0561
MG
2145 /* Record the original scan target for proportional adjustments later */
2146 memcpy(targets, nr, sizeof(nr));
2147
1a501907
MG
2148 /*
2149 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2150 * event that can occur when there is little memory pressure e.g.
2151 * multiple streaming readers/writers. Hence, we do not abort scanning
2152 * when the requested number of pages are reclaimed when scanning at
2153 * DEF_PRIORITY on the assumption that the fact we are direct
2154 * reclaiming implies that kswapd is not keeping up and it is best to
2155 * do a batch of work at once. For memcg reclaim one check is made to
2156 * abort proportional reclaim if either the file or anon lru has already
2157 * dropped to zero at the first pass.
2158 */
2159 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2160 sc->priority == DEF_PRIORITY);
2161
9b4f98cd
JW
2162 blk_start_plug(&plug);
2163 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2164 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2165 unsigned long nr_anon, nr_file, percentage;
2166 unsigned long nr_scanned;
2167
9b4f98cd
JW
2168 for_each_evictable_lru(lru) {
2169 if (nr[lru]) {
2170 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2171 nr[lru] -= nr_to_scan;
2172
2173 nr_reclaimed += shrink_list(lru, nr_to_scan,
2174 lruvec, sc);
2175 }
2176 }
e82e0561
MG
2177
2178 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2179 continue;
2180
e82e0561
MG
2181 /*
2182 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2183 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2184 * proportionally what was requested by get_scan_count(). We
2185 * stop reclaiming one LRU and reduce the amount scanning
2186 * proportional to the original scan target.
2187 */
2188 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2189 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2190
1a501907
MG
2191 /*
2192 * It's just vindictive to attack the larger once the smaller
2193 * has gone to zero. And given the way we stop scanning the
2194 * smaller below, this makes sure that we only make one nudge
2195 * towards proportionality once we've got nr_to_reclaim.
2196 */
2197 if (!nr_file || !nr_anon)
2198 break;
2199
e82e0561
MG
2200 if (nr_file > nr_anon) {
2201 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2202 targets[LRU_ACTIVE_ANON] + 1;
2203 lru = LRU_BASE;
2204 percentage = nr_anon * 100 / scan_target;
2205 } else {
2206 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2207 targets[LRU_ACTIVE_FILE] + 1;
2208 lru = LRU_FILE;
2209 percentage = nr_file * 100 / scan_target;
2210 }
2211
2212 /* Stop scanning the smaller of the LRU */
2213 nr[lru] = 0;
2214 nr[lru + LRU_ACTIVE] = 0;
2215
2216 /*
2217 * Recalculate the other LRU scan count based on its original
2218 * scan target and the percentage scanning already complete
2219 */
2220 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2221 nr_scanned = targets[lru] - nr[lru];
2222 nr[lru] = targets[lru] * (100 - percentage) / 100;
2223 nr[lru] -= min(nr[lru], nr_scanned);
2224
2225 lru += LRU_ACTIVE;
2226 nr_scanned = targets[lru] - nr[lru];
2227 nr[lru] = targets[lru] * (100 - percentage) / 100;
2228 nr[lru] -= min(nr[lru], nr_scanned);
2229
2230 scan_adjusted = true;
9b4f98cd
JW
2231 }
2232 blk_finish_plug(&plug);
2233 sc->nr_reclaimed += nr_reclaimed;
2234
2235 /*
2236 * Even if we did not try to evict anon pages at all, we want to
2237 * rebalance the anon lru active/inactive ratio.
2238 */
2239 if (inactive_anon_is_low(lruvec))
2240 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2241 sc, LRU_ACTIVE_ANON);
2242
2243 throttle_vm_writeout(sc->gfp_mask);
2244}
2245
23b9da55 2246/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2247static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2248{
d84da3f9 2249 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2250 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2251 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2252 return true;
2253
2254 return false;
2255}
2256
3e7d3449 2257/*
23b9da55
MG
2258 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2259 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2260 * true if more pages should be reclaimed such that when the page allocator
2261 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2262 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2263 */
9b4f98cd 2264static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2265 unsigned long nr_reclaimed,
2266 unsigned long nr_scanned,
2267 struct scan_control *sc)
2268{
2269 unsigned long pages_for_compaction;
2270 unsigned long inactive_lru_pages;
2271
2272 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2273 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2274 return false;
2275
2876592f
MG
2276 /* Consider stopping depending on scan and reclaim activity */
2277 if (sc->gfp_mask & __GFP_REPEAT) {
2278 /*
2279 * For __GFP_REPEAT allocations, stop reclaiming if the
2280 * full LRU list has been scanned and we are still failing
2281 * to reclaim pages. This full LRU scan is potentially
2282 * expensive but a __GFP_REPEAT caller really wants to succeed
2283 */
2284 if (!nr_reclaimed && !nr_scanned)
2285 return false;
2286 } else {
2287 /*
2288 * For non-__GFP_REPEAT allocations which can presumably
2289 * fail without consequence, stop if we failed to reclaim
2290 * any pages from the last SWAP_CLUSTER_MAX number of
2291 * pages that were scanned. This will return to the
2292 * caller faster at the risk reclaim/compaction and
2293 * the resulting allocation attempt fails
2294 */
2295 if (!nr_reclaimed)
2296 return false;
2297 }
3e7d3449
MG
2298
2299 /*
2300 * If we have not reclaimed enough pages for compaction and the
2301 * inactive lists are large enough, continue reclaiming
2302 */
2303 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2304 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2305 if (get_nr_swap_pages() > 0)
9b4f98cd 2306 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2307 if (sc->nr_reclaimed < pages_for_compaction &&
2308 inactive_lru_pages > pages_for_compaction)
2309 return true;
2310
2311 /* If compaction would go ahead or the allocation would succeed, stop */
ebff3980 2312 switch (compaction_suitable(zone, sc->order, 0, 0)) {
3e7d3449
MG
2313 case COMPACT_PARTIAL:
2314 case COMPACT_CONTINUE:
2315 return false;
2316 default:
2317 return true;
2318 }
2319}
2320
6b4f7799
JW
2321static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2322 bool is_classzone)
1da177e4 2323{
cb731d6c 2324 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2325 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2326 bool reclaimable = false;
1da177e4 2327
9b4f98cd
JW
2328 do {
2329 struct mem_cgroup *root = sc->target_mem_cgroup;
2330 struct mem_cgroup_reclaim_cookie reclaim = {
2331 .zone = zone,
2332 .priority = sc->priority,
2333 };
6b4f7799 2334 unsigned long zone_lru_pages = 0;
694fbc0f 2335 struct mem_cgroup *memcg;
3e7d3449 2336
9b4f98cd
JW
2337 nr_reclaimed = sc->nr_reclaimed;
2338 nr_scanned = sc->nr_scanned;
1da177e4 2339
694fbc0f
AM
2340 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2341 do {
6b4f7799 2342 unsigned long lru_pages;
cb731d6c 2343 unsigned long scanned;
9b4f98cd 2344 struct lruvec *lruvec;
02695175 2345 int swappiness;
5660048c 2346
241994ed
JW
2347 if (mem_cgroup_low(root, memcg)) {
2348 if (!sc->may_thrash)
2349 continue;
2350 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2351 }
2352
9b4f98cd 2353 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2354 swappiness = mem_cgroup_swappiness(memcg);
cb731d6c 2355 scanned = sc->nr_scanned;
f9be23d6 2356
6b4f7799
JW
2357 shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2358 zone_lru_pages += lru_pages;
f16015fb 2359
cb731d6c
VD
2360 if (memcg && is_classzone)
2361 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2362 memcg, sc->nr_scanned - scanned,
2363 lru_pages);
2364
9b4f98cd 2365 /*
a394cb8e
MH
2366 * Direct reclaim and kswapd have to scan all memory
2367 * cgroups to fulfill the overall scan target for the
9b4f98cd 2368 * zone.
a394cb8e
MH
2369 *
2370 * Limit reclaim, on the other hand, only cares about
2371 * nr_to_reclaim pages to be reclaimed and it will
2372 * retry with decreasing priority if one round over the
2373 * whole hierarchy is not sufficient.
9b4f98cd 2374 */
a394cb8e
MH
2375 if (!global_reclaim(sc) &&
2376 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2377 mem_cgroup_iter_break(root, memcg);
2378 break;
2379 }
241994ed 2380 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2381
6b4f7799
JW
2382 /*
2383 * Shrink the slab caches in the same proportion that
2384 * the eligible LRU pages were scanned.
2385 */
cb731d6c
VD
2386 if (global_reclaim(sc) && is_classzone)
2387 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2388 sc->nr_scanned - nr_scanned,
2389 zone_lru_pages);
2390
2391 if (reclaim_state) {
2392 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2393 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2394 }
2395
70ddf637
AV
2396 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2397 sc->nr_scanned - nr_scanned,
2398 sc->nr_reclaimed - nr_reclaimed);
2399
2344d7e4
JW
2400 if (sc->nr_reclaimed - nr_reclaimed)
2401 reclaimable = true;
2402
9b4f98cd
JW
2403 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2404 sc->nr_scanned - nr_scanned, sc));
2344d7e4
JW
2405
2406 return reclaimable;
f16015fb
JW
2407}
2408
53853e2d
VB
2409/*
2410 * Returns true if compaction should go ahead for a high-order request, or
2411 * the high-order allocation would succeed without compaction.
2412 */
0b06496a 2413static inline bool compaction_ready(struct zone *zone, int order)
fe4b1b24
MG
2414{
2415 unsigned long balance_gap, watermark;
2416 bool watermark_ok;
2417
fe4b1b24
MG
2418 /*
2419 * Compaction takes time to run and there are potentially other
2420 * callers using the pages just freed. Continue reclaiming until
2421 * there is a buffer of free pages available to give compaction
2422 * a reasonable chance of completing and allocating the page
2423 */
4be89a34
JZ
2424 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2425 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
0b06496a 2426 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
fe4b1b24
MG
2427 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2428
2429 /*
2430 * If compaction is deferred, reclaim up to a point where
2431 * compaction will have a chance of success when re-enabled
2432 */
0b06496a 2433 if (compaction_deferred(zone, order))
fe4b1b24
MG
2434 return watermark_ok;
2435
53853e2d
VB
2436 /*
2437 * If compaction is not ready to start and allocation is not likely
2438 * to succeed without it, then keep reclaiming.
2439 */
ebff3980 2440 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
fe4b1b24
MG
2441 return false;
2442
2443 return watermark_ok;
2444}
2445
1da177e4
LT
2446/*
2447 * This is the direct reclaim path, for page-allocating processes. We only
2448 * try to reclaim pages from zones which will satisfy the caller's allocation
2449 * request.
2450 *
41858966
MG
2451 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2452 * Because:
1da177e4
LT
2453 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2454 * allocation or
41858966
MG
2455 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2456 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2457 * zone defense algorithm.
1da177e4 2458 *
1da177e4
LT
2459 * If a zone is deemed to be full of pinned pages then just give it a light
2460 * scan then give up on it.
2344d7e4
JW
2461 *
2462 * Returns true if a zone was reclaimable.
1da177e4 2463 */
2344d7e4 2464static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2465{
dd1a239f 2466 struct zoneref *z;
54a6eb5c 2467 struct zone *zone;
0608f43d
AM
2468 unsigned long nr_soft_reclaimed;
2469 unsigned long nr_soft_scanned;
619d0d76 2470 gfp_t orig_mask;
9bbc04ee 2471 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2344d7e4 2472 bool reclaimable = false;
1cfb419b 2473
cc715d99
MG
2474 /*
2475 * If the number of buffer_heads in the machine exceeds the maximum
2476 * allowed level, force direct reclaim to scan the highmem zone as
2477 * highmem pages could be pinning lowmem pages storing buffer_heads
2478 */
619d0d76 2479 orig_mask = sc->gfp_mask;
cc715d99
MG
2480 if (buffer_heads_over_limit)
2481 sc->gfp_mask |= __GFP_HIGHMEM;
2482
d4debc66 2483 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6b4f7799
JW
2484 requested_highidx, sc->nodemask) {
2485 enum zone_type classzone_idx;
2486
f3fe6512 2487 if (!populated_zone(zone))
1da177e4 2488 continue;
6b4f7799
JW
2489
2490 classzone_idx = requested_highidx;
2491 while (!populated_zone(zone->zone_pgdat->node_zones +
2492 classzone_idx))
2493 classzone_idx--;
2494
1cfb419b
KH
2495 /*
2496 * Take care memory controller reclaiming has small influence
2497 * to global LRU.
2498 */
89b5fae5 2499 if (global_reclaim(sc)) {
344736f2
VD
2500 if (!cpuset_zone_allowed(zone,
2501 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2502 continue;
65ec02cb 2503
6e543d57
LD
2504 if (sc->priority != DEF_PRIORITY &&
2505 !zone_reclaimable(zone))
1cfb419b 2506 continue; /* Let kswapd poll it */
0b06496a
JW
2507
2508 /*
2509 * If we already have plenty of memory free for
2510 * compaction in this zone, don't free any more.
2511 * Even though compaction is invoked for any
2512 * non-zero order, only frequent costly order
2513 * reclamation is disruptive enough to become a
2514 * noticeable problem, like transparent huge
2515 * page allocations.
2516 */
2517 if (IS_ENABLED(CONFIG_COMPACTION) &&
2518 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2519 zonelist_zone_idx(z) <= requested_highidx &&
2520 compaction_ready(zone, sc->order)) {
2521 sc->compaction_ready = true;
2522 continue;
e0887c19 2523 }
0b06496a 2524
0608f43d
AM
2525 /*
2526 * This steals pages from memory cgroups over softlimit
2527 * and returns the number of reclaimed pages and
2528 * scanned pages. This works for global memory pressure
2529 * and balancing, not for a memcg's limit.
2530 */
2531 nr_soft_scanned = 0;
2532 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2533 sc->order, sc->gfp_mask,
2534 &nr_soft_scanned);
2535 sc->nr_reclaimed += nr_soft_reclaimed;
2536 sc->nr_scanned += nr_soft_scanned;
2344d7e4
JW
2537 if (nr_soft_reclaimed)
2538 reclaimable = true;
ac34a1a3 2539 /* need some check for avoid more shrink_zone() */
1cfb419b 2540 }
408d8544 2541
6b4f7799 2542 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2344d7e4
JW
2543 reclaimable = true;
2544
2545 if (global_reclaim(sc) &&
2546 !reclaimable && zone_reclaimable(zone))
2547 reclaimable = true;
1da177e4 2548 }
e0c23279 2549
619d0d76
WY
2550 /*
2551 * Restore to original mask to avoid the impact on the caller if we
2552 * promoted it to __GFP_HIGHMEM.
2553 */
2554 sc->gfp_mask = orig_mask;
d1908362 2555
2344d7e4 2556 return reclaimable;
1da177e4 2557}
4f98a2fe 2558
1da177e4
LT
2559/*
2560 * This is the main entry point to direct page reclaim.
2561 *
2562 * If a full scan of the inactive list fails to free enough memory then we
2563 * are "out of memory" and something needs to be killed.
2564 *
2565 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2566 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2567 * caller can't do much about. We kick the writeback threads and take explicit
2568 * naps in the hope that some of these pages can be written. But if the
2569 * allocating task holds filesystem locks which prevent writeout this might not
2570 * work, and the allocation attempt will fail.
a41f24ea
NA
2571 *
2572 * returns: 0, if no pages reclaimed
2573 * else, the number of pages reclaimed
1da177e4 2574 */
dac1d27b 2575static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2576 struct scan_control *sc)
1da177e4 2577{
241994ed 2578 int initial_priority = sc->priority;
69e05944 2579 unsigned long total_scanned = 0;
22fba335 2580 unsigned long writeback_threshold;
2344d7e4 2581 bool zones_reclaimable;
241994ed 2582retry:
873b4771
KK
2583 delayacct_freepages_start();
2584
89b5fae5 2585 if (global_reclaim(sc))
1cfb419b 2586 count_vm_event(ALLOCSTALL);
1da177e4 2587
9e3b2f8c 2588 do {
70ddf637
AV
2589 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2590 sc->priority);
66e1707b 2591 sc->nr_scanned = 0;
2344d7e4 2592 zones_reclaimable = shrink_zones(zonelist, sc);
c6a8a8c5 2593
66e1707b 2594 total_scanned += sc->nr_scanned;
bb21c7ce 2595 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2596 break;
2597
2598 if (sc->compaction_ready)
2599 break;
1da177e4 2600
0e50ce3b
MK
2601 /*
2602 * If we're getting trouble reclaiming, start doing
2603 * writepage even in laptop mode.
2604 */
2605 if (sc->priority < DEF_PRIORITY - 2)
2606 sc->may_writepage = 1;
2607
1da177e4
LT
2608 /*
2609 * Try to write back as many pages as we just scanned. This
2610 * tends to cause slow streaming writers to write data to the
2611 * disk smoothly, at the dirtying rate, which is nice. But
2612 * that's undesirable in laptop mode, where we *want* lumpy
2613 * writeout. So in laptop mode, write out the whole world.
2614 */
22fba335
KM
2615 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2616 if (total_scanned > writeback_threshold) {
0e175a18
CW
2617 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2618 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2619 sc->may_writepage = 1;
1da177e4 2620 }
0b06496a 2621 } while (--sc->priority >= 0);
bb21c7ce 2622
873b4771
KK
2623 delayacct_freepages_end();
2624
bb21c7ce
KM
2625 if (sc->nr_reclaimed)
2626 return sc->nr_reclaimed;
2627
0cee34fd 2628 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2629 if (sc->compaction_ready)
7335084d
MG
2630 return 1;
2631
241994ed
JW
2632 /* Untapped cgroup reserves? Don't OOM, retry. */
2633 if (!sc->may_thrash) {
2634 sc->priority = initial_priority;
2635 sc->may_thrash = 1;
2636 goto retry;
2637 }
2638
2344d7e4
JW
2639 /* Any of the zones still reclaimable? Don't OOM. */
2640 if (zones_reclaimable)
bb21c7ce
KM
2641 return 1;
2642
2643 return 0;
1da177e4
LT
2644}
2645
5515061d
MG
2646static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2647{
2648 struct zone *zone;
2649 unsigned long pfmemalloc_reserve = 0;
2650 unsigned long free_pages = 0;
2651 int i;
2652 bool wmark_ok;
2653
2654 for (i = 0; i <= ZONE_NORMAL; i++) {
2655 zone = &pgdat->node_zones[i];
675becce
MG
2656 if (!populated_zone(zone))
2657 continue;
2658
5515061d
MG
2659 pfmemalloc_reserve += min_wmark_pages(zone);
2660 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2661 }
2662
675becce
MG
2663 /* If there are no reserves (unexpected config) then do not throttle */
2664 if (!pfmemalloc_reserve)
2665 return true;
2666
5515061d
MG
2667 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2668
2669 /* kswapd must be awake if processes are being throttled */
2670 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2671 pgdat->classzone_idx = min(pgdat->classzone_idx,
2672 (enum zone_type)ZONE_NORMAL);
2673 wake_up_interruptible(&pgdat->kswapd_wait);
2674 }
2675
2676 return wmark_ok;
2677}
2678
2679/*
2680 * Throttle direct reclaimers if backing storage is backed by the network
2681 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2682 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2683 * when the low watermark is reached.
2684 *
2685 * Returns true if a fatal signal was delivered during throttling. If this
2686 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2687 */
50694c28 2688static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2689 nodemask_t *nodemask)
2690{
675becce 2691 struct zoneref *z;
5515061d 2692 struct zone *zone;
675becce 2693 pg_data_t *pgdat = NULL;
5515061d
MG
2694
2695 /*
2696 * Kernel threads should not be throttled as they may be indirectly
2697 * responsible for cleaning pages necessary for reclaim to make forward
2698 * progress. kjournald for example may enter direct reclaim while
2699 * committing a transaction where throttling it could forcing other
2700 * processes to block on log_wait_commit().
2701 */
2702 if (current->flags & PF_KTHREAD)
50694c28
MG
2703 goto out;
2704
2705 /*
2706 * If a fatal signal is pending, this process should not throttle.
2707 * It should return quickly so it can exit and free its memory
2708 */
2709 if (fatal_signal_pending(current))
2710 goto out;
5515061d 2711
675becce
MG
2712 /*
2713 * Check if the pfmemalloc reserves are ok by finding the first node
2714 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2715 * GFP_KERNEL will be required for allocating network buffers when
2716 * swapping over the network so ZONE_HIGHMEM is unusable.
2717 *
2718 * Throttling is based on the first usable node and throttled processes
2719 * wait on a queue until kswapd makes progress and wakes them. There
2720 * is an affinity then between processes waking up and where reclaim
2721 * progress has been made assuming the process wakes on the same node.
2722 * More importantly, processes running on remote nodes will not compete
2723 * for remote pfmemalloc reserves and processes on different nodes
2724 * should make reasonable progress.
2725 */
2726 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2727 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2728 if (zone_idx(zone) > ZONE_NORMAL)
2729 continue;
2730
2731 /* Throttle based on the first usable node */
2732 pgdat = zone->zone_pgdat;
2733 if (pfmemalloc_watermark_ok(pgdat))
2734 goto out;
2735 break;
2736 }
2737
2738 /* If no zone was usable by the allocation flags then do not throttle */
2739 if (!pgdat)
50694c28 2740 goto out;
5515061d 2741
68243e76
MG
2742 /* Account for the throttling */
2743 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2744
5515061d
MG
2745 /*
2746 * If the caller cannot enter the filesystem, it's possible that it
2747 * is due to the caller holding an FS lock or performing a journal
2748 * transaction in the case of a filesystem like ext[3|4]. In this case,
2749 * it is not safe to block on pfmemalloc_wait as kswapd could be
2750 * blocked waiting on the same lock. Instead, throttle for up to a
2751 * second before continuing.
2752 */
2753 if (!(gfp_mask & __GFP_FS)) {
2754 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2755 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2756
2757 goto check_pending;
5515061d
MG
2758 }
2759
2760 /* Throttle until kswapd wakes the process */
2761 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2762 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2763
2764check_pending:
2765 if (fatal_signal_pending(current))
2766 return true;
2767
2768out:
2769 return false;
5515061d
MG
2770}
2771
dac1d27b 2772unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2773 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2774{
33906bc5 2775 unsigned long nr_reclaimed;
66e1707b 2776 struct scan_control sc = {
ee814fe2 2777 .nr_to_reclaim = SWAP_CLUSTER_MAX,
21caf2fc 2778 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
ee814fe2
JW
2779 .order = order,
2780 .nodemask = nodemask,
2781 .priority = DEF_PRIORITY,
66e1707b 2782 .may_writepage = !laptop_mode,
a6dc60f8 2783 .may_unmap = 1,
2e2e4259 2784 .may_swap = 1,
66e1707b
BS
2785 };
2786
5515061d 2787 /*
50694c28
MG
2788 * Do not enter reclaim if fatal signal was delivered while throttled.
2789 * 1 is returned so that the page allocator does not OOM kill at this
2790 * point.
5515061d 2791 */
50694c28 2792 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2793 return 1;
2794
33906bc5
MG
2795 trace_mm_vmscan_direct_reclaim_begin(order,
2796 sc.may_writepage,
2797 gfp_mask);
2798
3115cd91 2799 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2800
2801 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2802
2803 return nr_reclaimed;
66e1707b
BS
2804}
2805
c255a458 2806#ifdef CONFIG_MEMCG
66e1707b 2807
72835c86 2808unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2809 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2810 struct zone *zone,
2811 unsigned long *nr_scanned)
4e416953
BS
2812{
2813 struct scan_control sc = {
b8f5c566 2814 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 2815 .target_mem_cgroup = memcg,
4e416953
BS
2816 .may_writepage = !laptop_mode,
2817 .may_unmap = 1,
2818 .may_swap = !noswap,
4e416953 2819 };
f9be23d6 2820 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2821 int swappiness = mem_cgroup_swappiness(memcg);
6b4f7799 2822 unsigned long lru_pages;
0ae5e89c 2823
4e416953
BS
2824 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2825 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2826
9e3b2f8c 2827 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2828 sc.may_writepage,
2829 sc.gfp_mask);
2830
4e416953
BS
2831 /*
2832 * NOTE: Although we can get the priority field, using it
2833 * here is not a good idea, since it limits the pages we can scan.
2834 * if we don't reclaim here, the shrink_zone from balance_pgdat
2835 * will pick up pages from other mem cgroup's as well. We hack
2836 * the priority and make it zero.
2837 */
6b4f7799 2838 shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
bdce6d9e
KM
2839
2840 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2841
0ae5e89c 2842 *nr_scanned = sc.nr_scanned;
4e416953
BS
2843 return sc.nr_reclaimed;
2844}
2845
72835c86 2846unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 2847 unsigned long nr_pages,
a7885eb8 2848 gfp_t gfp_mask,
b70a2a21 2849 bool may_swap)
66e1707b 2850{
4e416953 2851 struct zonelist *zonelist;
bdce6d9e 2852 unsigned long nr_reclaimed;
889976db 2853 int nid;
66e1707b 2854 struct scan_control sc = {
b70a2a21 2855 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
a09ed5e0
YH
2856 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2857 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
ee814fe2
JW
2858 .target_mem_cgroup = memcg,
2859 .priority = DEF_PRIORITY,
2860 .may_writepage = !laptop_mode,
2861 .may_unmap = 1,
b70a2a21 2862 .may_swap = may_swap,
a09ed5e0 2863 };
66e1707b 2864
889976db
YH
2865 /*
2866 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2867 * take care of from where we get pages. So the node where we start the
2868 * scan does not need to be the current node.
2869 */
72835c86 2870 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2871
2872 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2873
2874 trace_mm_vmscan_memcg_reclaim_begin(0,
2875 sc.may_writepage,
2876 sc.gfp_mask);
2877
3115cd91 2878 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
bdce6d9e
KM
2879
2880 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2881
2882 return nr_reclaimed;
66e1707b
BS
2883}
2884#endif
2885
9e3b2f8c 2886static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2887{
b95a2f2d 2888 struct mem_cgroup *memcg;
f16015fb 2889
b95a2f2d
JW
2890 if (!total_swap_pages)
2891 return;
2892
2893 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2894 do {
c56d5c7d 2895 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2896
c56d5c7d 2897 if (inactive_anon_is_low(lruvec))
1a93be0e 2898 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2899 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2900
2901 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2902 } while (memcg);
f16015fb
JW
2903}
2904
60cefed4
JW
2905static bool zone_balanced(struct zone *zone, int order,
2906 unsigned long balance_gap, int classzone_idx)
2907{
2908 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2909 balance_gap, classzone_idx, 0))
2910 return false;
2911
ebff3980
VB
2912 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2913 order, 0, classzone_idx) == COMPACT_SKIPPED)
60cefed4
JW
2914 return false;
2915
2916 return true;
2917}
2918
1741c877 2919/*
4ae0a48b
ZC
2920 * pgdat_balanced() is used when checking if a node is balanced.
2921 *
2922 * For order-0, all zones must be balanced!
2923 *
2924 * For high-order allocations only zones that meet watermarks and are in a
2925 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2926 * total of balanced pages must be at least 25% of the zones allowed by
2927 * classzone_idx for the node to be considered balanced. Forcing all zones to
2928 * be balanced for high orders can cause excessive reclaim when there are
2929 * imbalanced zones.
1741c877
MG
2930 * The choice of 25% is due to
2931 * o a 16M DMA zone that is balanced will not balance a zone on any
2932 * reasonable sized machine
2933 * o On all other machines, the top zone must be at least a reasonable
25985edc 2934 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2935 * would need to be at least 256M for it to be balance a whole node.
2936 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2937 * to balance a node on its own. These seemed like reasonable ratios.
2938 */
4ae0a48b 2939static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2940{
b40da049 2941 unsigned long managed_pages = 0;
4ae0a48b 2942 unsigned long balanced_pages = 0;
1741c877
MG
2943 int i;
2944
4ae0a48b
ZC
2945 /* Check the watermark levels */
2946 for (i = 0; i <= classzone_idx; i++) {
2947 struct zone *zone = pgdat->node_zones + i;
1741c877 2948
4ae0a48b
ZC
2949 if (!populated_zone(zone))
2950 continue;
2951
b40da049 2952 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2953
2954 /*
2955 * A special case here:
2956 *
2957 * balance_pgdat() skips over all_unreclaimable after
2958 * DEF_PRIORITY. Effectively, it considers them balanced so
2959 * they must be considered balanced here as well!
2960 */
6e543d57 2961 if (!zone_reclaimable(zone)) {
b40da049 2962 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2963 continue;
2964 }
2965
2966 if (zone_balanced(zone, order, 0, i))
b40da049 2967 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2968 else if (!order)
2969 return false;
2970 }
2971
2972 if (order)
b40da049 2973 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
2974 else
2975 return true;
1741c877
MG
2976}
2977
5515061d
MG
2978/*
2979 * Prepare kswapd for sleeping. This verifies that there are no processes
2980 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2981 *
2982 * Returns true if kswapd is ready to sleep
2983 */
2984static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2985 int classzone_idx)
f50de2d3 2986{
f50de2d3
MG
2987 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2988 if (remaining)
5515061d
MG
2989 return false;
2990
2991 /*
9e5e3661
VB
2992 * The throttled processes are normally woken up in balance_pgdat() as
2993 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
2994 * race between when kswapd checks the watermarks and a process gets
2995 * throttled. There is also a potential race if processes get
2996 * throttled, kswapd wakes, a large process exits thereby balancing the
2997 * zones, which causes kswapd to exit balance_pgdat() before reaching
2998 * the wake up checks. If kswapd is going to sleep, no process should
2999 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3000 * the wake up is premature, processes will wake kswapd and get
3001 * throttled again. The difference from wake ups in balance_pgdat() is
3002 * that here we are under prepare_to_wait().
5515061d 3003 */
9e5e3661
VB
3004 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3005 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3006
4ae0a48b 3007 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
3008}
3009
75485363
MG
3010/*
3011 * kswapd shrinks the zone by the number of pages required to reach
3012 * the high watermark.
b8e83b94
MG
3013 *
3014 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3015 * reclaim or if the lack of progress was due to pages under writeback.
3016 * This is used to determine if the scanning priority needs to be raised.
75485363 3017 */
b8e83b94 3018static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 3019 int classzone_idx,
75485363 3020 struct scan_control *sc,
2ab44f43 3021 unsigned long *nr_attempted)
75485363 3022{
7c954f6d
MG
3023 int testorder = sc->order;
3024 unsigned long balance_gap;
7c954f6d 3025 bool lowmem_pressure;
75485363
MG
3026
3027 /* Reclaim above the high watermark. */
3028 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
3029
3030 /*
3031 * Kswapd reclaims only single pages with compaction enabled. Trying
3032 * too hard to reclaim until contiguous free pages have become
3033 * available can hurt performance by evicting too much useful data
3034 * from memory. Do not reclaim more than needed for compaction.
3035 */
3036 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
ebff3980
VB
3037 compaction_suitable(zone, sc->order, 0, classzone_idx)
3038 != COMPACT_SKIPPED)
7c954f6d
MG
3039 testorder = 0;
3040
3041 /*
3042 * We put equal pressure on every zone, unless one zone has way too
3043 * many pages free already. The "too many pages" is defined as the
3044 * high wmark plus a "gap" where the gap is either the low
3045 * watermark or 1% of the zone, whichever is smaller.
3046 */
4be89a34
JZ
3047 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3048 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
7c954f6d
MG
3049
3050 /*
3051 * If there is no low memory pressure or the zone is balanced then no
3052 * reclaim is necessary
3053 */
3054 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3055 if (!lowmem_pressure && zone_balanced(zone, testorder,
3056 balance_gap, classzone_idx))
3057 return true;
3058
6b4f7799 3059 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
75485363 3060
2ab44f43
MG
3061 /* Account for the number of pages attempted to reclaim */
3062 *nr_attempted += sc->nr_to_reclaim;
3063
57054651 3064 clear_bit(ZONE_WRITEBACK, &zone->flags);
283aba9f 3065
7c954f6d
MG
3066 /*
3067 * If a zone reaches its high watermark, consider it to be no longer
3068 * congested. It's possible there are dirty pages backed by congested
3069 * BDIs but as pressure is relieved, speculatively avoid congestion
3070 * waits.
3071 */
6e543d57 3072 if (zone_reclaimable(zone) &&
7c954f6d 3073 zone_balanced(zone, testorder, 0, classzone_idx)) {
57054651
JW
3074 clear_bit(ZONE_CONGESTED, &zone->flags);
3075 clear_bit(ZONE_DIRTY, &zone->flags);
7c954f6d
MG
3076 }
3077
b8e83b94 3078 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3079}
3080
1da177e4
LT
3081/*
3082 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 3083 * they are all at high_wmark_pages(zone).
1da177e4 3084 *
0abdee2b 3085 * Returns the final order kswapd was reclaiming at
1da177e4
LT
3086 *
3087 * There is special handling here for zones which are full of pinned pages.
3088 * This can happen if the pages are all mlocked, or if they are all used by
3089 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3090 * What we do is to detect the case where all pages in the zone have been
3091 * scanned twice and there has been zero successful reclaim. Mark the zone as
3092 * dead and from now on, only perform a short scan. Basically we're polling
3093 * the zone for when the problem goes away.
3094 *
3095 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
3096 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3097 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3098 * lower zones regardless of the number of free pages in the lower zones. This
3099 * interoperates with the page allocator fallback scheme to ensure that aging
3100 * of pages is balanced across the zones.
1da177e4 3101 */
99504748 3102static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 3103 int *classzone_idx)
1da177e4 3104{
1da177e4 3105 int i;
99504748 3106 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0608f43d
AM
3107 unsigned long nr_soft_reclaimed;
3108 unsigned long nr_soft_scanned;
179e9639
AM
3109 struct scan_control sc = {
3110 .gfp_mask = GFP_KERNEL,
ee814fe2 3111 .order = order,
b8e83b94 3112 .priority = DEF_PRIORITY,
ee814fe2 3113 .may_writepage = !laptop_mode,
a6dc60f8 3114 .may_unmap = 1,
2e2e4259 3115 .may_swap = 1,
179e9639 3116 };
f8891e5e 3117 count_vm_event(PAGEOUTRUN);
1da177e4 3118
9e3b2f8c 3119 do {
2ab44f43 3120 unsigned long nr_attempted = 0;
b8e83b94 3121 bool raise_priority = true;
2ab44f43 3122 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
3123
3124 sc.nr_reclaimed = 0;
1da177e4 3125
d6277db4
RW
3126 /*
3127 * Scan in the highmem->dma direction for the highest
3128 * zone which needs scanning
3129 */
3130 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3131 struct zone *zone = pgdat->node_zones + i;
1da177e4 3132
d6277db4
RW
3133 if (!populated_zone(zone))
3134 continue;
1da177e4 3135
6e543d57
LD
3136 if (sc.priority != DEF_PRIORITY &&
3137 !zone_reclaimable(zone))
d6277db4 3138 continue;
1da177e4 3139
556adecb
RR
3140 /*
3141 * Do some background aging of the anon list, to give
3142 * pages a chance to be referenced before reclaiming.
3143 */
9e3b2f8c 3144 age_active_anon(zone, &sc);
556adecb 3145
cc715d99
MG
3146 /*
3147 * If the number of buffer_heads in the machine
3148 * exceeds the maximum allowed level and this node
3149 * has a highmem zone, force kswapd to reclaim from
3150 * it to relieve lowmem pressure.
3151 */
3152 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3153 end_zone = i;
3154 break;
3155 }
3156
60cefed4 3157 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 3158 end_zone = i;
e1dbeda6 3159 break;
439423f6 3160 } else {
d43006d5
MG
3161 /*
3162 * If balanced, clear the dirty and congested
3163 * flags
3164 */
57054651
JW
3165 clear_bit(ZONE_CONGESTED, &zone->flags);
3166 clear_bit(ZONE_DIRTY, &zone->flags);
1da177e4 3167 }
1da177e4 3168 }
dafcb73e 3169
b8e83b94 3170 if (i < 0)
e1dbeda6
AM
3171 goto out;
3172
1da177e4
LT
3173 for (i = 0; i <= end_zone; i++) {
3174 struct zone *zone = pgdat->node_zones + i;
3175
2ab44f43
MG
3176 if (!populated_zone(zone))
3177 continue;
3178
2ab44f43
MG
3179 /*
3180 * If any zone is currently balanced then kswapd will
3181 * not call compaction as it is expected that the
3182 * necessary pages are already available.
3183 */
3184 if (pgdat_needs_compaction &&
3185 zone_watermark_ok(zone, order,
3186 low_wmark_pages(zone),
3187 *classzone_idx, 0))
3188 pgdat_needs_compaction = false;
1da177e4
LT
3189 }
3190
b7ea3c41
MG
3191 /*
3192 * If we're getting trouble reclaiming, start doing writepage
3193 * even in laptop mode.
3194 */
3195 if (sc.priority < DEF_PRIORITY - 2)
3196 sc.may_writepage = 1;
3197
1da177e4
LT
3198 /*
3199 * Now scan the zone in the dma->highmem direction, stopping
3200 * at the last zone which needs scanning.
3201 *
3202 * We do this because the page allocator works in the opposite
3203 * direction. This prevents the page allocator from allocating
3204 * pages behind kswapd's direction of progress, which would
3205 * cause too much scanning of the lower zones.
3206 */
3207 for (i = 0; i <= end_zone; i++) {
3208 struct zone *zone = pgdat->node_zones + i;
3209
f3fe6512 3210 if (!populated_zone(zone))
1da177e4
LT
3211 continue;
3212
6e543d57
LD
3213 if (sc.priority != DEF_PRIORITY &&
3214 !zone_reclaimable(zone))
1da177e4
LT
3215 continue;
3216
1da177e4 3217 sc.nr_scanned = 0;
4e416953 3218
0608f43d
AM
3219 nr_soft_scanned = 0;
3220 /*
3221 * Call soft limit reclaim before calling shrink_zone.
3222 */
3223 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3224 order, sc.gfp_mask,
3225 &nr_soft_scanned);
3226 sc.nr_reclaimed += nr_soft_reclaimed;
3227
32a4330d 3228 /*
7c954f6d
MG
3229 * There should be no need to raise the scanning
3230 * priority if enough pages are already being scanned
3231 * that that high watermark would be met at 100%
3232 * efficiency.
fe2c2a10 3233 */
6b4f7799
JW
3234 if (kswapd_shrink_zone(zone, end_zone,
3235 &sc, &nr_attempted))
7c954f6d 3236 raise_priority = false;
1da177e4 3237 }
5515061d
MG
3238
3239 /*
3240 * If the low watermark is met there is no need for processes
3241 * to be throttled on pfmemalloc_wait as they should not be
3242 * able to safely make forward progress. Wake them
3243 */
3244 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3245 pfmemalloc_watermark_ok(pgdat))
cfc51155 3246 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3247
1da177e4 3248 /*
b8e83b94
MG
3249 * Fragmentation may mean that the system cannot be rebalanced
3250 * for high-order allocations in all zones. If twice the
3251 * allocation size has been reclaimed and the zones are still
3252 * not balanced then recheck the watermarks at order-0 to
3253 * prevent kswapd reclaiming excessively. Assume that a
3254 * process requested a high-order can direct reclaim/compact.
1da177e4 3255 */
b8e83b94
MG
3256 if (order && sc.nr_reclaimed >= 2UL << order)
3257 order = sc.order = 0;
8357376d 3258
b8e83b94
MG
3259 /* Check if kswapd should be suspending */
3260 if (try_to_freeze() || kthread_should_stop())
3261 break;
8357376d 3262
2ab44f43
MG
3263 /*
3264 * Compact if necessary and kswapd is reclaiming at least the
3265 * high watermark number of pages as requsted
3266 */
3267 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3268 compact_pgdat(pgdat, order);
3269
73ce02e9 3270 /*
b8e83b94
MG
3271 * Raise priority if scanning rate is too low or there was no
3272 * progress in reclaiming pages
73ce02e9 3273 */
b8e83b94
MG
3274 if (raise_priority || !sc.nr_reclaimed)
3275 sc.priority--;
9aa41348 3276 } while (sc.priority >= 1 &&
b8e83b94 3277 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3278
b8e83b94 3279out:
0abdee2b 3280 /*
5515061d 3281 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3282 * makes a decision on the order we were last reclaiming at. However,
3283 * if another caller entered the allocator slow path while kswapd
3284 * was awake, order will remain at the higher level
3285 */
dc83edd9 3286 *classzone_idx = end_zone;
0abdee2b 3287 return order;
1da177e4
LT
3288}
3289
dc83edd9 3290static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3291{
3292 long remaining = 0;
3293 DEFINE_WAIT(wait);
3294
3295 if (freezing(current) || kthread_should_stop())
3296 return;
3297
3298 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3299
3300 /* Try to sleep for a short interval */
5515061d 3301 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3302 remaining = schedule_timeout(HZ/10);
3303 finish_wait(&pgdat->kswapd_wait, &wait);
3304 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3305 }
3306
3307 /*
3308 * After a short sleep, check if it was a premature sleep. If not, then
3309 * go fully to sleep until explicitly woken up.
3310 */
5515061d 3311 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3312 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3313
3314 /*
3315 * vmstat counters are not perfectly accurate and the estimated
3316 * value for counters such as NR_FREE_PAGES can deviate from the
3317 * true value by nr_online_cpus * threshold. To avoid the zone
3318 * watermarks being breached while under pressure, we reduce the
3319 * per-cpu vmstat threshold while kswapd is awake and restore
3320 * them before going back to sleep.
3321 */
3322 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3323
62997027
MG
3324 /*
3325 * Compaction records what page blocks it recently failed to
3326 * isolate pages from and skips them in the future scanning.
3327 * When kswapd is going to sleep, it is reasonable to assume
3328 * that pages and compaction may succeed so reset the cache.
3329 */
3330 reset_isolation_suitable(pgdat);
3331
1c7e7f6c
AK
3332 if (!kthread_should_stop())
3333 schedule();
3334
f0bc0a60
KM
3335 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3336 } else {
3337 if (remaining)
3338 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3339 else
3340 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3341 }
3342 finish_wait(&pgdat->kswapd_wait, &wait);
3343}
3344
1da177e4
LT
3345/*
3346 * The background pageout daemon, started as a kernel thread
4f98a2fe 3347 * from the init process.
1da177e4
LT
3348 *
3349 * This basically trickles out pages so that we have _some_
3350 * free memory available even if there is no other activity
3351 * that frees anything up. This is needed for things like routing
3352 * etc, where we otherwise might have all activity going on in
3353 * asynchronous contexts that cannot page things out.
3354 *
3355 * If there are applications that are active memory-allocators
3356 * (most normal use), this basically shouldn't matter.
3357 */
3358static int kswapd(void *p)
3359{
215ddd66 3360 unsigned long order, new_order;
d2ebd0f6 3361 unsigned balanced_order;
215ddd66 3362 int classzone_idx, new_classzone_idx;
d2ebd0f6 3363 int balanced_classzone_idx;
1da177e4
LT
3364 pg_data_t *pgdat = (pg_data_t*)p;
3365 struct task_struct *tsk = current;
f0bc0a60 3366
1da177e4
LT
3367 struct reclaim_state reclaim_state = {
3368 .reclaimed_slab = 0,
3369 };
a70f7302 3370 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3371
cf40bd16
NP
3372 lockdep_set_current_reclaim_state(GFP_KERNEL);
3373
174596a0 3374 if (!cpumask_empty(cpumask))
c5f59f08 3375 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3376 current->reclaim_state = &reclaim_state;
3377
3378 /*
3379 * Tell the memory management that we're a "memory allocator",
3380 * and that if we need more memory we should get access to it
3381 * regardless (see "__alloc_pages()"). "kswapd" should
3382 * never get caught in the normal page freeing logic.
3383 *
3384 * (Kswapd normally doesn't need memory anyway, but sometimes
3385 * you need a small amount of memory in order to be able to
3386 * page out something else, and this flag essentially protects
3387 * us from recursively trying to free more memory as we're
3388 * trying to free the first piece of memory in the first place).
3389 */
930d9152 3390 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3391 set_freezable();
1da177e4 3392
215ddd66 3393 order = new_order = 0;
d2ebd0f6 3394 balanced_order = 0;
215ddd66 3395 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3396 balanced_classzone_idx = classzone_idx;
1da177e4 3397 for ( ; ; ) {
6f6313d4 3398 bool ret;
3e1d1d28 3399
215ddd66
MG
3400 /*
3401 * If the last balance_pgdat was unsuccessful it's unlikely a
3402 * new request of a similar or harder type will succeed soon
3403 * so consider going to sleep on the basis we reclaimed at
3404 */
d2ebd0f6
AS
3405 if (balanced_classzone_idx >= new_classzone_idx &&
3406 balanced_order == new_order) {
215ddd66
MG
3407 new_order = pgdat->kswapd_max_order;
3408 new_classzone_idx = pgdat->classzone_idx;
3409 pgdat->kswapd_max_order = 0;
3410 pgdat->classzone_idx = pgdat->nr_zones - 1;
3411 }
3412
99504748 3413 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3414 /*
3415 * Don't sleep if someone wants a larger 'order'
99504748 3416 * allocation or has tigher zone constraints
1da177e4
LT
3417 */
3418 order = new_order;
99504748 3419 classzone_idx = new_classzone_idx;
1da177e4 3420 } else {
d2ebd0f6
AS
3421 kswapd_try_to_sleep(pgdat, balanced_order,
3422 balanced_classzone_idx);
1da177e4 3423 order = pgdat->kswapd_max_order;
99504748 3424 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3425 new_order = order;
3426 new_classzone_idx = classzone_idx;
4d40502e 3427 pgdat->kswapd_max_order = 0;
215ddd66 3428 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3429 }
1da177e4 3430
8fe23e05
DR
3431 ret = try_to_freeze();
3432 if (kthread_should_stop())
3433 break;
3434
3435 /*
3436 * We can speed up thawing tasks if we don't call balance_pgdat
3437 * after returning from the refrigerator
3438 */
33906bc5
MG
3439 if (!ret) {
3440 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3441 balanced_classzone_idx = classzone_idx;
3442 balanced_order = balance_pgdat(pgdat, order,
3443 &balanced_classzone_idx);
33906bc5 3444 }
1da177e4 3445 }
b0a8cc58 3446
71abdc15 3447 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3448 current->reclaim_state = NULL;
71abdc15
JW
3449 lockdep_clear_current_reclaim_state();
3450
1da177e4
LT
3451 return 0;
3452}
3453
3454/*
3455 * A zone is low on free memory, so wake its kswapd task to service it.
3456 */
99504748 3457void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3458{
3459 pg_data_t *pgdat;
3460
f3fe6512 3461 if (!populated_zone(zone))
1da177e4
LT
3462 return;
3463
344736f2 3464 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3465 return;
88f5acf8 3466 pgdat = zone->zone_pgdat;
99504748 3467 if (pgdat->kswapd_max_order < order) {
1da177e4 3468 pgdat->kswapd_max_order = order;
99504748
MG
3469 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3470 }
8d0986e2 3471 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3472 return;
892f795d 3473 if (zone_balanced(zone, order, 0, 0))
88f5acf8
MG
3474 return;
3475
3476 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3477 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3478}
3479
c6f37f12 3480#ifdef CONFIG_HIBERNATION
1da177e4 3481/*
7b51755c 3482 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3483 * freed pages.
3484 *
3485 * Rather than trying to age LRUs the aim is to preserve the overall
3486 * LRU order by reclaiming preferentially
3487 * inactive > active > active referenced > active mapped
1da177e4 3488 */
7b51755c 3489unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3490{
d6277db4 3491 struct reclaim_state reclaim_state;
d6277db4 3492 struct scan_control sc = {
ee814fe2 3493 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3494 .gfp_mask = GFP_HIGHUSER_MOVABLE,
ee814fe2 3495 .priority = DEF_PRIORITY,
d6277db4 3496 .may_writepage = 1,
ee814fe2
JW
3497 .may_unmap = 1,
3498 .may_swap = 1,
7b51755c 3499 .hibernation_mode = 1,
1da177e4 3500 };
a09ed5e0 3501 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3502 struct task_struct *p = current;
3503 unsigned long nr_reclaimed;
1da177e4 3504
7b51755c
KM
3505 p->flags |= PF_MEMALLOC;
3506 lockdep_set_current_reclaim_state(sc.gfp_mask);
3507 reclaim_state.reclaimed_slab = 0;
3508 p->reclaim_state = &reclaim_state;
d6277db4 3509
3115cd91 3510 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3511
7b51755c
KM
3512 p->reclaim_state = NULL;
3513 lockdep_clear_current_reclaim_state();
3514 p->flags &= ~PF_MEMALLOC;
d6277db4 3515
7b51755c 3516 return nr_reclaimed;
1da177e4 3517}
c6f37f12 3518#endif /* CONFIG_HIBERNATION */
1da177e4 3519
1da177e4
LT
3520/* It's optimal to keep kswapds on the same CPUs as their memory, but
3521 not required for correctness. So if the last cpu in a node goes
3522 away, we get changed to run anywhere: as the first one comes back,
3523 restore their cpu bindings. */
fcb35a9b
GKH
3524static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3525 void *hcpu)
1da177e4 3526{
58c0a4a7 3527 int nid;
1da177e4 3528
8bb78442 3529 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3530 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3531 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3532 const struct cpumask *mask;
3533
3534 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3535
3e597945 3536 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3537 /* One of our CPUs online: restore mask */
c5f59f08 3538 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3539 }
3540 }
3541 return NOTIFY_OK;
3542}
1da177e4 3543
3218ae14
YG
3544/*
3545 * This kswapd start function will be called by init and node-hot-add.
3546 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3547 */
3548int kswapd_run(int nid)
3549{
3550 pg_data_t *pgdat = NODE_DATA(nid);
3551 int ret = 0;
3552
3553 if (pgdat->kswapd)
3554 return 0;
3555
3556 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3557 if (IS_ERR(pgdat->kswapd)) {
3558 /* failure at boot is fatal */
3559 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3560 pr_err("Failed to start kswapd on node %d\n", nid);
3561 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3562 pgdat->kswapd = NULL;
3218ae14
YG
3563 }
3564 return ret;
3565}
3566
8fe23e05 3567/*
d8adde17 3568 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3569 * hold mem_hotplug_begin/end().
8fe23e05
DR
3570 */
3571void kswapd_stop(int nid)
3572{
3573 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3574
d8adde17 3575 if (kswapd) {
8fe23e05 3576 kthread_stop(kswapd);
d8adde17
JL
3577 NODE_DATA(nid)->kswapd = NULL;
3578 }
8fe23e05
DR
3579}
3580
1da177e4
LT
3581static int __init kswapd_init(void)
3582{
3218ae14 3583 int nid;
69e05944 3584
1da177e4 3585 swap_setup();
48fb2e24 3586 for_each_node_state(nid, N_MEMORY)
3218ae14 3587 kswapd_run(nid);
1da177e4
LT
3588 hotcpu_notifier(cpu_callback, 0);
3589 return 0;
3590}
3591
3592module_init(kswapd_init)
9eeff239
CL
3593
3594#ifdef CONFIG_NUMA
3595/*
3596 * Zone reclaim mode
3597 *
3598 * If non-zero call zone_reclaim when the number of free pages falls below
3599 * the watermarks.
9eeff239
CL
3600 */
3601int zone_reclaim_mode __read_mostly;
3602
1b2ffb78 3603#define RECLAIM_OFF 0
7d03431c 3604#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3605#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3606#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3607
a92f7126
CL
3608/*
3609 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3610 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3611 * a zone.
3612 */
3613#define ZONE_RECLAIM_PRIORITY 4
3614
9614634f
CL
3615/*
3616 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3617 * occur.
3618 */
3619int sysctl_min_unmapped_ratio = 1;
3620
0ff38490
CL
3621/*
3622 * If the number of slab pages in a zone grows beyond this percentage then
3623 * slab reclaim needs to occur.
3624 */
3625int sysctl_min_slab_ratio = 5;
3626
90afa5de
MG
3627static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3628{
3629 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3630 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3631 zone_page_state(zone, NR_ACTIVE_FILE);
3632
3633 /*
3634 * It's possible for there to be more file mapped pages than
3635 * accounted for by the pages on the file LRU lists because
3636 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3637 */
3638 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3639}
3640
3641/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3642static long zone_pagecache_reclaimable(struct zone *zone)
3643{
3644 long nr_pagecache_reclaimable;
3645 long delta = 0;
3646
3647 /*
3648 * If RECLAIM_SWAP is set, then all file pages are considered
3649 * potentially reclaimable. Otherwise, we have to worry about
3650 * pages like swapcache and zone_unmapped_file_pages() provides
3651 * a better estimate
3652 */
3653 if (zone_reclaim_mode & RECLAIM_SWAP)
3654 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3655 else
3656 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3657
3658 /* If we can't clean pages, remove dirty pages from consideration */
3659 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3660 delta += zone_page_state(zone, NR_FILE_DIRTY);
3661
3662 /* Watch for any possible underflows due to delta */
3663 if (unlikely(delta > nr_pagecache_reclaimable))
3664 delta = nr_pagecache_reclaimable;
3665
3666 return nr_pagecache_reclaimable - delta;
3667}
3668
9eeff239
CL
3669/*
3670 * Try to free up some pages from this zone through reclaim.
3671 */
179e9639 3672static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3673{
7fb2d46d 3674 /* Minimum pages needed in order to stay on node */
69e05944 3675 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3676 struct task_struct *p = current;
3677 struct reclaim_state reclaim_state;
179e9639 3678 struct scan_control sc = {
62b726c1 3679 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3680 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3681 .order = order,
9e3b2f8c 3682 .priority = ZONE_RECLAIM_PRIORITY,
ee814fe2
JW
3683 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3684 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3685 .may_swap = 1,
179e9639 3686 };
9eeff239 3687
9eeff239 3688 cond_resched();
d4f7796e
CL
3689 /*
3690 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3691 * and we also need to be able to write out pages for RECLAIM_WRITE
3692 * and RECLAIM_SWAP.
3693 */
3694 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3695 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3696 reclaim_state.reclaimed_slab = 0;
3697 p->reclaim_state = &reclaim_state;
c84db23c 3698
90afa5de 3699 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3700 /*
3701 * Free memory by calling shrink zone with increasing
3702 * priorities until we have enough memory freed.
3703 */
0ff38490 3704 do {
6b4f7799 3705 shrink_zone(zone, &sc, true);
9e3b2f8c 3706 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3707 }
c84db23c 3708
9eeff239 3709 p->reclaim_state = NULL;
d4f7796e 3710 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3711 lockdep_clear_current_reclaim_state();
a79311c1 3712 return sc.nr_reclaimed >= nr_pages;
9eeff239 3713}
179e9639
AM
3714
3715int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3716{
179e9639 3717 int node_id;
d773ed6b 3718 int ret;
179e9639
AM
3719
3720 /*
0ff38490
CL
3721 * Zone reclaim reclaims unmapped file backed pages and
3722 * slab pages if we are over the defined limits.
34aa1330 3723 *
9614634f
CL
3724 * A small portion of unmapped file backed pages is needed for
3725 * file I/O otherwise pages read by file I/O will be immediately
3726 * thrown out if the zone is overallocated. So we do not reclaim
3727 * if less than a specified percentage of the zone is used by
3728 * unmapped file backed pages.
179e9639 3729 */
90afa5de
MG
3730 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3731 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3732 return ZONE_RECLAIM_FULL;
179e9639 3733
6e543d57 3734 if (!zone_reclaimable(zone))
fa5e084e 3735 return ZONE_RECLAIM_FULL;
d773ed6b 3736
179e9639 3737 /*
d773ed6b 3738 * Do not scan if the allocation should not be delayed.
179e9639 3739 */
d773ed6b 3740 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3741 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3742
3743 /*
3744 * Only run zone reclaim on the local zone or on zones that do not
3745 * have associated processors. This will favor the local processor
3746 * over remote processors and spread off node memory allocations
3747 * as wide as possible.
3748 */
89fa3024 3749 node_id = zone_to_nid(zone);
37c0708d 3750 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3751 return ZONE_RECLAIM_NOSCAN;
d773ed6b 3752
57054651 3753 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
fa5e084e
MG
3754 return ZONE_RECLAIM_NOSCAN;
3755
d773ed6b 3756 ret = __zone_reclaim(zone, gfp_mask, order);
57054651 3757 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
d773ed6b 3758
24cf7251
MG
3759 if (!ret)
3760 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3761
d773ed6b 3762 return ret;
179e9639 3763}
9eeff239 3764#endif
894bc310 3765
894bc310
LS
3766/*
3767 * page_evictable - test whether a page is evictable
3768 * @page: the page to test
894bc310
LS
3769 *
3770 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3771 * lists vs unevictable list.
894bc310
LS
3772 *
3773 * Reasons page might not be evictable:
ba9ddf49 3774 * (1) page's mapping marked unevictable
b291f000 3775 * (2) page is part of an mlocked VMA
ba9ddf49 3776 *
894bc310 3777 */
39b5f29a 3778int page_evictable(struct page *page)
894bc310 3779{
39b5f29a 3780 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3781}
89e004ea 3782
85046579 3783#ifdef CONFIG_SHMEM
89e004ea 3784/**
24513264
HD
3785 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3786 * @pages: array of pages to check
3787 * @nr_pages: number of pages to check
89e004ea 3788 *
24513264 3789 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3790 *
3791 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3792 */
24513264 3793void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3794{
925b7673 3795 struct lruvec *lruvec;
24513264
HD
3796 struct zone *zone = NULL;
3797 int pgscanned = 0;
3798 int pgrescued = 0;
3799 int i;
89e004ea 3800
24513264
HD
3801 for (i = 0; i < nr_pages; i++) {
3802 struct page *page = pages[i];
3803 struct zone *pagezone;
89e004ea 3804
24513264
HD
3805 pgscanned++;
3806 pagezone = page_zone(page);
3807 if (pagezone != zone) {
3808 if (zone)
3809 spin_unlock_irq(&zone->lru_lock);
3810 zone = pagezone;
3811 spin_lock_irq(&zone->lru_lock);
3812 }
fa9add64 3813 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3814
24513264
HD
3815 if (!PageLRU(page) || !PageUnevictable(page))
3816 continue;
89e004ea 3817
39b5f29a 3818 if (page_evictable(page)) {
24513264
HD
3819 enum lru_list lru = page_lru_base_type(page);
3820
309381fe 3821 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3822 ClearPageUnevictable(page);
fa9add64
HD
3823 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3824 add_page_to_lru_list(page, lruvec, lru);
24513264 3825 pgrescued++;
89e004ea 3826 }
24513264 3827 }
89e004ea 3828
24513264
HD
3829 if (zone) {
3830 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3831 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3832 spin_unlock_irq(&zone->lru_lock);
89e004ea 3833 }
89e004ea 3834}
85046579 3835#endif /* CONFIG_SHMEM */