]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmscan.c
mm: throttle direct reclaimers if PF_MEMALLOC reserves are low and swap is backed...
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
1da177e4
LT
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
3e7d3449 34#include <linux/compaction.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
929bea7c 43#include <linux/oom.h>
268bb0ce 44#include <linux/prefetch.h>
1da177e4
LT
45
46#include <asm/tlbflush.h>
47#include <asm/div64.h>
48
49#include <linux/swapops.h>
50
0f8053a5
NP
51#include "internal.h"
52
33906bc5
MG
53#define CREATE_TRACE_POINTS
54#include <trace/events/vmscan.h>
55
1da177e4 56struct scan_control {
1da177e4
LT
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
59
a79311c1
RR
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
62
22fba335
KM
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
7b51755c
KM
66 unsigned long hibernation_mode;
67
1da177e4 68 /* This context's GFP mask */
6daa0e28 69 gfp_t gfp_mask;
1da177e4
LT
70
71 int may_writepage;
72
a6dc60f8
JW
73 /* Can mapped pages be reclaimed? */
74 int may_unmap;
f1fd1067 75
2e2e4259
KM
76 /* Can pages be swapped as part of reclaim? */
77 int may_swap;
78
5ad333eb 79 int order;
66e1707b 80
9e3b2f8c
KK
81 /* Scan (total_size >> priority) pages at once */
82 int priority;
83
f16015fb
JW
84 /*
85 * The memory cgroup that hit its limit and as a result is the
86 * primary target of this reclaim invocation.
87 */
88 struct mem_cgroup *target_mem_cgroup;
66e1707b 89
327c0e96
KH
90 /*
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
93 */
94 nodemask_t *nodemask;
1da177e4
LT
95};
96
1da177e4
LT
97#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99#ifdef ARCH_HAS_PREFETCH
100#define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
107 } \
108 } while (0)
109#else
110#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111#endif
112
113#ifdef ARCH_HAS_PREFETCHW
114#define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
121 } \
122 } while (0)
123#else
124#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127/*
128 * From 0 .. 100. Higher means more swappy.
129 */
130int vm_swappiness = 60;
bd1e22b8 131long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
132
133static LIST_HEAD(shrinker_list);
134static DECLARE_RWSEM(shrinker_rwsem);
135
c255a458 136#ifdef CONFIG_MEMCG
89b5fae5
JW
137static bool global_reclaim(struct scan_control *sc)
138{
f16015fb 139 return !sc->target_mem_cgroup;
89b5fae5 140}
91a45470 141#else
89b5fae5
JW
142static bool global_reclaim(struct scan_control *sc)
143{
144 return true;
145}
91a45470
KH
146#endif
147
4d7dcca2 148static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 149{
c3c787e8 150 if (!mem_cgroup_disabled())
4d7dcca2 151 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 152
074291fe 153 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
154}
155
1da177e4
LT
156/*
157 * Add a shrinker callback to be called from the vm
158 */
8e1f936b 159void register_shrinker(struct shrinker *shrinker)
1da177e4 160{
83aeeada 161 atomic_long_set(&shrinker->nr_in_batch, 0);
8e1f936b
RR
162 down_write(&shrinker_rwsem);
163 list_add_tail(&shrinker->list, &shrinker_list);
164 up_write(&shrinker_rwsem);
1da177e4 165}
8e1f936b 166EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
167
168/*
169 * Remove one
170 */
8e1f936b 171void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
172{
173 down_write(&shrinker_rwsem);
174 list_del(&shrinker->list);
175 up_write(&shrinker_rwsem);
1da177e4 176}
8e1f936b 177EXPORT_SYMBOL(unregister_shrinker);
1da177e4 178
1495f230
YH
179static inline int do_shrinker_shrink(struct shrinker *shrinker,
180 struct shrink_control *sc,
181 unsigned long nr_to_scan)
182{
183 sc->nr_to_scan = nr_to_scan;
184 return (*shrinker->shrink)(shrinker, sc);
185}
186
1da177e4
LT
187#define SHRINK_BATCH 128
188/*
189 * Call the shrink functions to age shrinkable caches
190 *
191 * Here we assume it costs one seek to replace a lru page and that it also
192 * takes a seek to recreate a cache object. With this in mind we age equal
193 * percentages of the lru and ageable caches. This should balance the seeks
194 * generated by these structures.
195 *
183ff22b 196 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
197 * slab to avoid swapping.
198 *
199 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
200 *
201 * `lru_pages' represents the number of on-LRU pages in all the zones which
202 * are eligible for the caller's allocation attempt. It is used for balancing
203 * slab reclaim versus page reclaim.
b15e0905 204 *
205 * Returns the number of slab objects which we shrunk.
1da177e4 206 */
a09ed5e0 207unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 208 unsigned long nr_pages_scanned,
a09ed5e0 209 unsigned long lru_pages)
1da177e4
LT
210{
211 struct shrinker *shrinker;
69e05944 212 unsigned long ret = 0;
1da177e4 213
1495f230
YH
214 if (nr_pages_scanned == 0)
215 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 216
f06590bd
MK
217 if (!down_read_trylock(&shrinker_rwsem)) {
218 /* Assume we'll be able to shrink next time */
219 ret = 1;
220 goto out;
221 }
1da177e4
LT
222
223 list_for_each_entry(shrinker, &shrinker_list, list) {
224 unsigned long long delta;
635697c6
KK
225 long total_scan;
226 long max_pass;
09576073 227 int shrink_ret = 0;
acf92b48
DC
228 long nr;
229 long new_nr;
e9299f50
DC
230 long batch_size = shrinker->batch ? shrinker->batch
231 : SHRINK_BATCH;
1da177e4 232
635697c6
KK
233 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
234 if (max_pass <= 0)
235 continue;
236
acf92b48
DC
237 /*
238 * copy the current shrinker scan count into a local variable
239 * and zero it so that other concurrent shrinker invocations
240 * don't also do this scanning work.
241 */
83aeeada 242 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
acf92b48
DC
243
244 total_scan = nr;
1495f230 245 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 246 delta *= max_pass;
1da177e4 247 do_div(delta, lru_pages + 1);
acf92b48
DC
248 total_scan += delta;
249 if (total_scan < 0) {
88c3bd70
DR
250 printk(KERN_ERR "shrink_slab: %pF negative objects to "
251 "delete nr=%ld\n",
acf92b48
DC
252 shrinker->shrink, total_scan);
253 total_scan = max_pass;
ea164d73
AA
254 }
255
3567b59a
DC
256 /*
257 * We need to avoid excessive windup on filesystem shrinkers
258 * due to large numbers of GFP_NOFS allocations causing the
259 * shrinkers to return -1 all the time. This results in a large
260 * nr being built up so when a shrink that can do some work
261 * comes along it empties the entire cache due to nr >>>
262 * max_pass. This is bad for sustaining a working set in
263 * memory.
264 *
265 * Hence only allow the shrinker to scan the entire cache when
266 * a large delta change is calculated directly.
267 */
268 if (delta < max_pass / 4)
269 total_scan = min(total_scan, max_pass / 2);
270
ea164d73
AA
271 /*
272 * Avoid risking looping forever due to too large nr value:
273 * never try to free more than twice the estimate number of
274 * freeable entries.
275 */
acf92b48
DC
276 if (total_scan > max_pass * 2)
277 total_scan = max_pass * 2;
1da177e4 278
acf92b48 279 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
280 nr_pages_scanned, lru_pages,
281 max_pass, delta, total_scan);
282
e9299f50 283 while (total_scan >= batch_size) {
b15e0905 284 int nr_before;
1da177e4 285
1495f230
YH
286 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
287 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 288 batch_size);
1da177e4
LT
289 if (shrink_ret == -1)
290 break;
b15e0905 291 if (shrink_ret < nr_before)
292 ret += nr_before - shrink_ret;
e9299f50
DC
293 count_vm_events(SLABS_SCANNED, batch_size);
294 total_scan -= batch_size;
1da177e4
LT
295
296 cond_resched();
297 }
298
acf92b48
DC
299 /*
300 * move the unused scan count back into the shrinker in a
301 * manner that handles concurrent updates. If we exhausted the
302 * scan, there is no need to do an update.
303 */
83aeeada
KK
304 if (total_scan > 0)
305 new_nr = atomic_long_add_return(total_scan,
306 &shrinker->nr_in_batch);
307 else
308 new_nr = atomic_long_read(&shrinker->nr_in_batch);
acf92b48
DC
309
310 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
311 }
312 up_read(&shrinker_rwsem);
f06590bd
MK
313out:
314 cond_resched();
b15e0905 315 return ret;
1da177e4
LT
316}
317
1da177e4
LT
318static inline int is_page_cache_freeable(struct page *page)
319{
ceddc3a5
JW
320 /*
321 * A freeable page cache page is referenced only by the caller
322 * that isolated the page, the page cache radix tree and
323 * optional buffer heads at page->private.
324 */
edcf4748 325 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
326}
327
7d3579e8
KM
328static int may_write_to_queue(struct backing_dev_info *bdi,
329 struct scan_control *sc)
1da177e4 330{
930d9152 331 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
332 return 1;
333 if (!bdi_write_congested(bdi))
334 return 1;
335 if (bdi == current->backing_dev_info)
336 return 1;
337 return 0;
338}
339
340/*
341 * We detected a synchronous write error writing a page out. Probably
342 * -ENOSPC. We need to propagate that into the address_space for a subsequent
343 * fsync(), msync() or close().
344 *
345 * The tricky part is that after writepage we cannot touch the mapping: nothing
346 * prevents it from being freed up. But we have a ref on the page and once
347 * that page is locked, the mapping is pinned.
348 *
349 * We're allowed to run sleeping lock_page() here because we know the caller has
350 * __GFP_FS.
351 */
352static void handle_write_error(struct address_space *mapping,
353 struct page *page, int error)
354{
7eaceacc 355 lock_page(page);
3e9f45bd
GC
356 if (page_mapping(page) == mapping)
357 mapping_set_error(mapping, error);
1da177e4
LT
358 unlock_page(page);
359}
360
04e62a29
CL
361/* possible outcome of pageout() */
362typedef enum {
363 /* failed to write page out, page is locked */
364 PAGE_KEEP,
365 /* move page to the active list, page is locked */
366 PAGE_ACTIVATE,
367 /* page has been sent to the disk successfully, page is unlocked */
368 PAGE_SUCCESS,
369 /* page is clean and locked */
370 PAGE_CLEAN,
371} pageout_t;
372
1da177e4 373/*
1742f19f
AM
374 * pageout is called by shrink_page_list() for each dirty page.
375 * Calls ->writepage().
1da177e4 376 */
c661b078 377static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 378 struct scan_control *sc)
1da177e4
LT
379{
380 /*
381 * If the page is dirty, only perform writeback if that write
382 * will be non-blocking. To prevent this allocation from being
383 * stalled by pagecache activity. But note that there may be
384 * stalls if we need to run get_block(). We could test
385 * PagePrivate for that.
386 *
6aceb53b 387 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
388 * this page's queue, we can perform writeback even if that
389 * will block.
390 *
391 * If the page is swapcache, write it back even if that would
392 * block, for some throttling. This happens by accident, because
393 * swap_backing_dev_info is bust: it doesn't reflect the
394 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
395 */
396 if (!is_page_cache_freeable(page))
397 return PAGE_KEEP;
398 if (!mapping) {
399 /*
400 * Some data journaling orphaned pages can have
401 * page->mapping == NULL while being dirty with clean buffers.
402 */
266cf658 403 if (page_has_private(page)) {
1da177e4
LT
404 if (try_to_free_buffers(page)) {
405 ClearPageDirty(page);
d40cee24 406 printk("%s: orphaned page\n", __func__);
1da177e4
LT
407 return PAGE_CLEAN;
408 }
409 }
410 return PAGE_KEEP;
411 }
412 if (mapping->a_ops->writepage == NULL)
413 return PAGE_ACTIVATE;
0e093d99 414 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
415 return PAGE_KEEP;
416
417 if (clear_page_dirty_for_io(page)) {
418 int res;
419 struct writeback_control wbc = {
420 .sync_mode = WB_SYNC_NONE,
421 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
422 .range_start = 0,
423 .range_end = LLONG_MAX,
1da177e4
LT
424 .for_reclaim = 1,
425 };
426
427 SetPageReclaim(page);
428 res = mapping->a_ops->writepage(page, &wbc);
429 if (res < 0)
430 handle_write_error(mapping, page, res);
994fc28c 431 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
432 ClearPageReclaim(page);
433 return PAGE_ACTIVATE;
434 }
c661b078 435
1da177e4
LT
436 if (!PageWriteback(page)) {
437 /* synchronous write or broken a_ops? */
438 ClearPageReclaim(page);
439 }
23b9da55 440 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 441 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
442 return PAGE_SUCCESS;
443 }
444
445 return PAGE_CLEAN;
446}
447
a649fd92 448/*
e286781d
NP
449 * Same as remove_mapping, but if the page is removed from the mapping, it
450 * gets returned with a refcount of 0.
a649fd92 451 */
e286781d 452static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 453{
28e4d965
NP
454 BUG_ON(!PageLocked(page));
455 BUG_ON(mapping != page_mapping(page));
49d2e9cc 456
19fd6231 457 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 458 /*
0fd0e6b0
NP
459 * The non racy check for a busy page.
460 *
461 * Must be careful with the order of the tests. When someone has
462 * a ref to the page, it may be possible that they dirty it then
463 * drop the reference. So if PageDirty is tested before page_count
464 * here, then the following race may occur:
465 *
466 * get_user_pages(&page);
467 * [user mapping goes away]
468 * write_to(page);
469 * !PageDirty(page) [good]
470 * SetPageDirty(page);
471 * put_page(page);
472 * !page_count(page) [good, discard it]
473 *
474 * [oops, our write_to data is lost]
475 *
476 * Reversing the order of the tests ensures such a situation cannot
477 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478 * load is not satisfied before that of page->_count.
479 *
480 * Note that if SetPageDirty is always performed via set_page_dirty,
481 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 482 */
e286781d 483 if (!page_freeze_refs(page, 2))
49d2e9cc 484 goto cannot_free;
e286781d
NP
485 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486 if (unlikely(PageDirty(page))) {
487 page_unfreeze_refs(page, 2);
49d2e9cc 488 goto cannot_free;
e286781d 489 }
49d2e9cc
CL
490
491 if (PageSwapCache(page)) {
492 swp_entry_t swap = { .val = page_private(page) };
493 __delete_from_swap_cache(page);
19fd6231 494 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 495 swapcache_free(swap, page);
e286781d 496 } else {
6072d13c
LT
497 void (*freepage)(struct page *);
498
499 freepage = mapping->a_ops->freepage;
500
e64a782f 501 __delete_from_page_cache(page);
19fd6231 502 spin_unlock_irq(&mapping->tree_lock);
e767e056 503 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
504
505 if (freepage != NULL)
506 freepage(page);
49d2e9cc
CL
507 }
508
49d2e9cc
CL
509 return 1;
510
511cannot_free:
19fd6231 512 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
513 return 0;
514}
515
e286781d
NP
516/*
517 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
518 * someone else has a ref on the page, abort and return 0. If it was
519 * successfully detached, return 1. Assumes the caller has a single ref on
520 * this page.
521 */
522int remove_mapping(struct address_space *mapping, struct page *page)
523{
524 if (__remove_mapping(mapping, page)) {
525 /*
526 * Unfreezing the refcount with 1 rather than 2 effectively
527 * drops the pagecache ref for us without requiring another
528 * atomic operation.
529 */
530 page_unfreeze_refs(page, 1);
531 return 1;
532 }
533 return 0;
534}
535
894bc310
LS
536/**
537 * putback_lru_page - put previously isolated page onto appropriate LRU list
538 * @page: page to be put back to appropriate lru list
539 *
540 * Add previously isolated @page to appropriate LRU list.
541 * Page may still be unevictable for other reasons.
542 *
543 * lru_lock must not be held, interrupts must be enabled.
544 */
894bc310
LS
545void putback_lru_page(struct page *page)
546{
547 int lru;
548 int active = !!TestClearPageActive(page);
bbfd28ee 549 int was_unevictable = PageUnevictable(page);
894bc310
LS
550
551 VM_BUG_ON(PageLRU(page));
552
553redo:
554 ClearPageUnevictable(page);
555
556 if (page_evictable(page, NULL)) {
557 /*
558 * For evictable pages, we can use the cache.
559 * In event of a race, worst case is we end up with an
560 * unevictable page on [in]active list.
561 * We know how to handle that.
562 */
401a8e1c 563 lru = active + page_lru_base_type(page);
894bc310
LS
564 lru_cache_add_lru(page, lru);
565 } else {
566 /*
567 * Put unevictable pages directly on zone's unevictable
568 * list.
569 */
570 lru = LRU_UNEVICTABLE;
571 add_page_to_unevictable_list(page);
6a7b9548 572 /*
21ee9f39
MK
573 * When racing with an mlock or AS_UNEVICTABLE clearing
574 * (page is unlocked) make sure that if the other thread
575 * does not observe our setting of PG_lru and fails
24513264 576 * isolation/check_move_unevictable_pages,
21ee9f39 577 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
578 * the page back to the evictable list.
579 *
21ee9f39 580 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
581 */
582 smp_mb();
894bc310 583 }
894bc310
LS
584
585 /*
586 * page's status can change while we move it among lru. If an evictable
587 * page is on unevictable list, it never be freed. To avoid that,
588 * check after we added it to the list, again.
589 */
590 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
591 if (!isolate_lru_page(page)) {
592 put_page(page);
593 goto redo;
594 }
595 /* This means someone else dropped this page from LRU
596 * So, it will be freed or putback to LRU again. There is
597 * nothing to do here.
598 */
599 }
600
bbfd28ee
LS
601 if (was_unevictable && lru != LRU_UNEVICTABLE)
602 count_vm_event(UNEVICTABLE_PGRESCUED);
603 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604 count_vm_event(UNEVICTABLE_PGCULLED);
605
894bc310
LS
606 put_page(page); /* drop ref from isolate */
607}
608
dfc8d636
JW
609enum page_references {
610 PAGEREF_RECLAIM,
611 PAGEREF_RECLAIM_CLEAN,
64574746 612 PAGEREF_KEEP,
dfc8d636
JW
613 PAGEREF_ACTIVATE,
614};
615
616static enum page_references page_check_references(struct page *page,
617 struct scan_control *sc)
618{
64574746 619 int referenced_ptes, referenced_page;
dfc8d636 620 unsigned long vm_flags;
dfc8d636 621
c3ac9a8a
JW
622 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623 &vm_flags);
64574746 624 referenced_page = TestClearPageReferenced(page);
dfc8d636 625
dfc8d636
JW
626 /*
627 * Mlock lost the isolation race with us. Let try_to_unmap()
628 * move the page to the unevictable list.
629 */
630 if (vm_flags & VM_LOCKED)
631 return PAGEREF_RECLAIM;
632
64574746 633 if (referenced_ptes) {
e4898273 634 if (PageSwapBacked(page))
64574746
JW
635 return PAGEREF_ACTIVATE;
636 /*
637 * All mapped pages start out with page table
638 * references from the instantiating fault, so we need
639 * to look twice if a mapped file page is used more
640 * than once.
641 *
642 * Mark it and spare it for another trip around the
643 * inactive list. Another page table reference will
644 * lead to its activation.
645 *
646 * Note: the mark is set for activated pages as well
647 * so that recently deactivated but used pages are
648 * quickly recovered.
649 */
650 SetPageReferenced(page);
651
34dbc67a 652 if (referenced_page || referenced_ptes > 1)
64574746
JW
653 return PAGEREF_ACTIVATE;
654
c909e993
KK
655 /*
656 * Activate file-backed executable pages after first usage.
657 */
658 if (vm_flags & VM_EXEC)
659 return PAGEREF_ACTIVATE;
660
64574746
JW
661 return PAGEREF_KEEP;
662 }
dfc8d636
JW
663
664 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 665 if (referenced_page && !PageSwapBacked(page))
64574746
JW
666 return PAGEREF_RECLAIM_CLEAN;
667
668 return PAGEREF_RECLAIM;
dfc8d636
JW
669}
670
1da177e4 671/*
1742f19f 672 * shrink_page_list() returns the number of reclaimed pages
1da177e4 673 */
1742f19f 674static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 675 struct zone *zone,
f84f6e2b 676 struct scan_control *sc,
92df3a72
MG
677 unsigned long *ret_nr_dirty,
678 unsigned long *ret_nr_writeback)
1da177e4
LT
679{
680 LIST_HEAD(ret_pages);
abe4c3b5 681 LIST_HEAD(free_pages);
1da177e4 682 int pgactivate = 0;
0e093d99
MG
683 unsigned long nr_dirty = 0;
684 unsigned long nr_congested = 0;
05ff5137 685 unsigned long nr_reclaimed = 0;
92df3a72 686 unsigned long nr_writeback = 0;
1da177e4
LT
687
688 cond_resched();
689
1da177e4 690 while (!list_empty(page_list)) {
dfc8d636 691 enum page_references references;
1da177e4
LT
692 struct address_space *mapping;
693 struct page *page;
694 int may_enter_fs;
1da177e4
LT
695
696 cond_resched();
697
698 page = lru_to_page(page_list);
699 list_del(&page->lru);
700
529ae9aa 701 if (!trylock_page(page))
1da177e4
LT
702 goto keep;
703
725d704e 704 VM_BUG_ON(PageActive(page));
6a18adb3 705 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
706
707 sc->nr_scanned++;
80e43426 708
b291f000
NP
709 if (unlikely(!page_evictable(page, NULL)))
710 goto cull_mlocked;
894bc310 711
a6dc60f8 712 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
713 goto keep_locked;
714
1da177e4
LT
715 /* Double the slab pressure for mapped and swapcache pages */
716 if (page_mapped(page) || PageSwapCache(page))
717 sc->nr_scanned++;
718
c661b078
AW
719 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
720 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
721
722 if (PageWriteback(page)) {
92df3a72 723 nr_writeback++;
41ac1999
MG
724 unlock_page(page);
725 goto keep;
c661b078 726 }
1da177e4 727
6a18adb3 728 references = page_check_references(page, sc);
dfc8d636
JW
729 switch (references) {
730 case PAGEREF_ACTIVATE:
1da177e4 731 goto activate_locked;
64574746
JW
732 case PAGEREF_KEEP:
733 goto keep_locked;
dfc8d636
JW
734 case PAGEREF_RECLAIM:
735 case PAGEREF_RECLAIM_CLEAN:
736 ; /* try to reclaim the page below */
737 }
1da177e4 738
1da177e4
LT
739 /*
740 * Anonymous process memory has backing store?
741 * Try to allocate it some swap space here.
742 */
b291f000 743 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
744 if (!(sc->gfp_mask & __GFP_IO))
745 goto keep_locked;
ac47b003 746 if (!add_to_swap(page))
1da177e4 747 goto activate_locked;
63eb6b93 748 may_enter_fs = 1;
b291f000 749 }
1da177e4
LT
750
751 mapping = page_mapping(page);
1da177e4
LT
752
753 /*
754 * The page is mapped into the page tables of one or more
755 * processes. Try to unmap it here.
756 */
757 if (page_mapped(page) && mapping) {
14fa31b8 758 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
759 case SWAP_FAIL:
760 goto activate_locked;
761 case SWAP_AGAIN:
762 goto keep_locked;
b291f000
NP
763 case SWAP_MLOCK:
764 goto cull_mlocked;
1da177e4
LT
765 case SWAP_SUCCESS:
766 ; /* try to free the page below */
767 }
768 }
769
770 if (PageDirty(page)) {
0e093d99
MG
771 nr_dirty++;
772
ee72886d
MG
773 /*
774 * Only kswapd can writeback filesystem pages to
f84f6e2b
MG
775 * avoid risk of stack overflow but do not writeback
776 * unless under significant pressure.
ee72886d 777 */
f84f6e2b 778 if (page_is_file_cache(page) &&
9e3b2f8c
KK
779 (!current_is_kswapd() ||
780 sc->priority >= DEF_PRIORITY - 2)) {
49ea7eb6
MG
781 /*
782 * Immediately reclaim when written back.
783 * Similar in principal to deactivate_page()
784 * except we already have the page isolated
785 * and know it's dirty
786 */
787 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
788 SetPageReclaim(page);
789
ee72886d
MG
790 goto keep_locked;
791 }
792
dfc8d636 793 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 794 goto keep_locked;
4dd4b920 795 if (!may_enter_fs)
1da177e4 796 goto keep_locked;
52a8363e 797 if (!sc->may_writepage)
1da177e4
LT
798 goto keep_locked;
799
800 /* Page is dirty, try to write it out here */
7d3579e8 801 switch (pageout(page, mapping, sc)) {
1da177e4 802 case PAGE_KEEP:
0e093d99 803 nr_congested++;
1da177e4
LT
804 goto keep_locked;
805 case PAGE_ACTIVATE:
806 goto activate_locked;
807 case PAGE_SUCCESS:
7d3579e8 808 if (PageWriteback(page))
41ac1999 809 goto keep;
7d3579e8 810 if (PageDirty(page))
1da177e4 811 goto keep;
7d3579e8 812
1da177e4
LT
813 /*
814 * A synchronous write - probably a ramdisk. Go
815 * ahead and try to reclaim the page.
816 */
529ae9aa 817 if (!trylock_page(page))
1da177e4
LT
818 goto keep;
819 if (PageDirty(page) || PageWriteback(page))
820 goto keep_locked;
821 mapping = page_mapping(page);
822 case PAGE_CLEAN:
823 ; /* try to free the page below */
824 }
825 }
826
827 /*
828 * If the page has buffers, try to free the buffer mappings
829 * associated with this page. If we succeed we try to free
830 * the page as well.
831 *
832 * We do this even if the page is PageDirty().
833 * try_to_release_page() does not perform I/O, but it is
834 * possible for a page to have PageDirty set, but it is actually
835 * clean (all its buffers are clean). This happens if the
836 * buffers were written out directly, with submit_bh(). ext3
894bc310 837 * will do this, as well as the blockdev mapping.
1da177e4
LT
838 * try_to_release_page() will discover that cleanness and will
839 * drop the buffers and mark the page clean - it can be freed.
840 *
841 * Rarely, pages can have buffers and no ->mapping. These are
842 * the pages which were not successfully invalidated in
843 * truncate_complete_page(). We try to drop those buffers here
844 * and if that worked, and the page is no longer mapped into
845 * process address space (page_count == 1) it can be freed.
846 * Otherwise, leave the page on the LRU so it is swappable.
847 */
266cf658 848 if (page_has_private(page)) {
1da177e4
LT
849 if (!try_to_release_page(page, sc->gfp_mask))
850 goto activate_locked;
e286781d
NP
851 if (!mapping && page_count(page) == 1) {
852 unlock_page(page);
853 if (put_page_testzero(page))
854 goto free_it;
855 else {
856 /*
857 * rare race with speculative reference.
858 * the speculative reference will free
859 * this page shortly, so we may
860 * increment nr_reclaimed here (and
861 * leave it off the LRU).
862 */
863 nr_reclaimed++;
864 continue;
865 }
866 }
1da177e4
LT
867 }
868
e286781d 869 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 870 goto keep_locked;
1da177e4 871
a978d6f5
NP
872 /*
873 * At this point, we have no other references and there is
874 * no way to pick any more up (removed from LRU, removed
875 * from pagecache). Can use non-atomic bitops now (and
876 * we obviously don't have to worry about waking up a process
877 * waiting on the page lock, because there are no references.
878 */
879 __clear_page_locked(page);
e286781d 880free_it:
05ff5137 881 nr_reclaimed++;
abe4c3b5
MG
882
883 /*
884 * Is there need to periodically free_page_list? It would
885 * appear not as the counts should be low
886 */
887 list_add(&page->lru, &free_pages);
1da177e4
LT
888 continue;
889
b291f000 890cull_mlocked:
63d6c5ad
HD
891 if (PageSwapCache(page))
892 try_to_free_swap(page);
b291f000
NP
893 unlock_page(page);
894 putback_lru_page(page);
895 continue;
896
1da177e4 897activate_locked:
68a22394
RR
898 /* Not a candidate for swapping, so reclaim swap space. */
899 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 900 try_to_free_swap(page);
894bc310 901 VM_BUG_ON(PageActive(page));
1da177e4
LT
902 SetPageActive(page);
903 pgactivate++;
904keep_locked:
905 unlock_page(page);
906keep:
907 list_add(&page->lru, &ret_pages);
b291f000 908 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 909 }
abe4c3b5 910
0e093d99
MG
911 /*
912 * Tag a zone as congested if all the dirty pages encountered were
913 * backed by a congested BDI. In this case, reclaimers should just
914 * back off and wait for congestion to clear because further reclaim
915 * will encounter the same problem
916 */
89b5fae5 917 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
6a18adb3 918 zone_set_flag(zone, ZONE_CONGESTED);
0e093d99 919
cc59850e 920 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 921
1da177e4 922 list_splice(&ret_pages, page_list);
f8891e5e 923 count_vm_events(PGACTIVATE, pgactivate);
92df3a72
MG
924 *ret_nr_dirty += nr_dirty;
925 *ret_nr_writeback += nr_writeback;
05ff5137 926 return nr_reclaimed;
1da177e4
LT
927}
928
5ad333eb
AW
929/*
930 * Attempt to remove the specified page from its LRU. Only take this page
931 * if it is of the appropriate PageActive status. Pages which are being
932 * freed elsewhere are also ignored.
933 *
934 * page: page to consider
935 * mode: one of the LRU isolation modes defined above
936 *
937 * returns 0 on success, -ve errno on failure.
938 */
f3fd4a61 939int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
940{
941 int ret = -EINVAL;
942
943 /* Only take pages on the LRU. */
944 if (!PageLRU(page))
945 return ret;
946
c53919ad 947 /* Do not give back unevictable pages for compaction */
894bc310
LS
948 if (PageUnevictable(page))
949 return ret;
950
5ad333eb 951 ret = -EBUSY;
08e552c6 952
c8244935
MG
953 /*
954 * To minimise LRU disruption, the caller can indicate that it only
955 * wants to isolate pages it will be able to operate on without
956 * blocking - clean pages for the most part.
957 *
958 * ISOLATE_CLEAN means that only clean pages should be isolated. This
959 * is used by reclaim when it is cannot write to backing storage
960 *
961 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
962 * that it is possible to migrate without blocking
963 */
964 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
965 /* All the caller can do on PageWriteback is block */
966 if (PageWriteback(page))
967 return ret;
968
969 if (PageDirty(page)) {
970 struct address_space *mapping;
971
972 /* ISOLATE_CLEAN means only clean pages */
973 if (mode & ISOLATE_CLEAN)
974 return ret;
975
976 /*
977 * Only pages without mappings or that have a
978 * ->migratepage callback are possible to migrate
979 * without blocking
980 */
981 mapping = page_mapping(page);
982 if (mapping && !mapping->a_ops->migratepage)
983 return ret;
984 }
985 }
39deaf85 986
f80c0673
MK
987 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
988 return ret;
989
5ad333eb
AW
990 if (likely(get_page_unless_zero(page))) {
991 /*
992 * Be careful not to clear PageLRU until after we're
993 * sure the page is not being freed elsewhere -- the
994 * page release code relies on it.
995 */
996 ClearPageLRU(page);
997 ret = 0;
998 }
999
1000 return ret;
1001}
1002
1da177e4
LT
1003/*
1004 * zone->lru_lock is heavily contended. Some of the functions that
1005 * shrink the lists perform better by taking out a batch of pages
1006 * and working on them outside the LRU lock.
1007 *
1008 * For pagecache intensive workloads, this function is the hottest
1009 * spot in the kernel (apart from copy_*_user functions).
1010 *
1011 * Appropriate locks must be held before calling this function.
1012 *
1013 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1014 * @lruvec: The LRU vector to pull pages from.
1da177e4 1015 * @dst: The temp list to put pages on to.
f626012d 1016 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1017 * @sc: The scan_control struct for this reclaim session
5ad333eb 1018 * @mode: One of the LRU isolation modes
3cb99451 1019 * @lru: LRU list id for isolating
1da177e4
LT
1020 *
1021 * returns how many pages were moved onto *@dst.
1022 */
69e05944 1023static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1024 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1025 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1026 isolate_mode_t mode, enum lru_list lru)
1da177e4 1027{
75b00af7 1028 struct list_head *src = &lruvec->lists[lru];
69e05944 1029 unsigned long nr_taken = 0;
c9b02d97 1030 unsigned long scan;
1da177e4 1031
c9b02d97 1032 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1033 struct page *page;
fa9add64 1034 int nr_pages;
5ad333eb 1035
1da177e4
LT
1036 page = lru_to_page(src);
1037 prefetchw_prev_lru_page(page, src, flags);
1038
725d704e 1039 VM_BUG_ON(!PageLRU(page));
8d438f96 1040
f3fd4a61 1041 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1042 case 0:
fa9add64
HD
1043 nr_pages = hpage_nr_pages(page);
1044 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1045 list_move(&page->lru, dst);
fa9add64 1046 nr_taken += nr_pages;
5ad333eb
AW
1047 break;
1048
1049 case -EBUSY:
1050 /* else it is being freed elsewhere */
1051 list_move(&page->lru, src);
1052 continue;
46453a6e 1053
5ad333eb
AW
1054 default:
1055 BUG();
1056 }
1da177e4
LT
1057 }
1058
f626012d 1059 *nr_scanned = scan;
75b00af7
HD
1060 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1061 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1062 return nr_taken;
1063}
1064
62695a84
NP
1065/**
1066 * isolate_lru_page - tries to isolate a page from its LRU list
1067 * @page: page to isolate from its LRU list
1068 *
1069 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1070 * vmstat statistic corresponding to whatever LRU list the page was on.
1071 *
1072 * Returns 0 if the page was removed from an LRU list.
1073 * Returns -EBUSY if the page was not on an LRU list.
1074 *
1075 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1076 * the active list, it will have PageActive set. If it was found on
1077 * the unevictable list, it will have the PageUnevictable bit set. That flag
1078 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1079 *
1080 * The vmstat statistic corresponding to the list on which the page was
1081 * found will be decremented.
1082 *
1083 * Restrictions:
1084 * (1) Must be called with an elevated refcount on the page. This is a
1085 * fundamentnal difference from isolate_lru_pages (which is called
1086 * without a stable reference).
1087 * (2) the lru_lock must not be held.
1088 * (3) interrupts must be enabled.
1089 */
1090int isolate_lru_page(struct page *page)
1091{
1092 int ret = -EBUSY;
1093
0c917313
KK
1094 VM_BUG_ON(!page_count(page));
1095
62695a84
NP
1096 if (PageLRU(page)) {
1097 struct zone *zone = page_zone(page);
fa9add64 1098 struct lruvec *lruvec;
62695a84
NP
1099
1100 spin_lock_irq(&zone->lru_lock);
fa9add64 1101 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1102 if (PageLRU(page)) {
894bc310 1103 int lru = page_lru(page);
0c917313 1104 get_page(page);
62695a84 1105 ClearPageLRU(page);
fa9add64
HD
1106 del_page_from_lru_list(page, lruvec, lru);
1107 ret = 0;
62695a84
NP
1108 }
1109 spin_unlock_irq(&zone->lru_lock);
1110 }
1111 return ret;
1112}
1113
35cd7815
RR
1114/*
1115 * Are there way too many processes in the direct reclaim path already?
1116 */
1117static int too_many_isolated(struct zone *zone, int file,
1118 struct scan_control *sc)
1119{
1120 unsigned long inactive, isolated;
1121
1122 if (current_is_kswapd())
1123 return 0;
1124
89b5fae5 1125 if (!global_reclaim(sc))
35cd7815
RR
1126 return 0;
1127
1128 if (file) {
1129 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1130 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1131 } else {
1132 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1133 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1134 }
1135
1136 return isolated > inactive;
1137}
1138
66635629 1139static noinline_for_stack void
75b00af7 1140putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1141{
27ac81d8
KK
1142 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1143 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1144 LIST_HEAD(pages_to_free);
66635629 1145
66635629
MG
1146 /*
1147 * Put back any unfreeable pages.
1148 */
66635629 1149 while (!list_empty(page_list)) {
3f79768f 1150 struct page *page = lru_to_page(page_list);
66635629 1151 int lru;
3f79768f 1152
66635629
MG
1153 VM_BUG_ON(PageLRU(page));
1154 list_del(&page->lru);
1155 if (unlikely(!page_evictable(page, NULL))) {
1156 spin_unlock_irq(&zone->lru_lock);
1157 putback_lru_page(page);
1158 spin_lock_irq(&zone->lru_lock);
1159 continue;
1160 }
fa9add64
HD
1161
1162 lruvec = mem_cgroup_page_lruvec(page, zone);
1163
7a608572 1164 SetPageLRU(page);
66635629 1165 lru = page_lru(page);
fa9add64
HD
1166 add_page_to_lru_list(page, lruvec, lru);
1167
66635629
MG
1168 if (is_active_lru(lru)) {
1169 int file = is_file_lru(lru);
9992af10
RR
1170 int numpages = hpage_nr_pages(page);
1171 reclaim_stat->recent_rotated[file] += numpages;
66635629 1172 }
2bcf8879
HD
1173 if (put_page_testzero(page)) {
1174 __ClearPageLRU(page);
1175 __ClearPageActive(page);
fa9add64 1176 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1177
1178 if (unlikely(PageCompound(page))) {
1179 spin_unlock_irq(&zone->lru_lock);
1180 (*get_compound_page_dtor(page))(page);
1181 spin_lock_irq(&zone->lru_lock);
1182 } else
1183 list_add(&page->lru, &pages_to_free);
66635629
MG
1184 }
1185 }
66635629 1186
3f79768f
HD
1187 /*
1188 * To save our caller's stack, now use input list for pages to free.
1189 */
1190 list_splice(&pages_to_free, page_list);
66635629
MG
1191}
1192
1da177e4 1193/*
1742f19f
AM
1194 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1195 * of reclaimed pages
1da177e4 1196 */
66635629 1197static noinline_for_stack unsigned long
1a93be0e 1198shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1199 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1200{
1201 LIST_HEAD(page_list);
e247dbce 1202 unsigned long nr_scanned;
05ff5137 1203 unsigned long nr_reclaimed = 0;
e247dbce 1204 unsigned long nr_taken;
92df3a72
MG
1205 unsigned long nr_dirty = 0;
1206 unsigned long nr_writeback = 0;
f3fd4a61 1207 isolate_mode_t isolate_mode = 0;
3cb99451 1208 int file = is_file_lru(lru);
1a93be0e
KK
1209 struct zone *zone = lruvec_zone(lruvec);
1210 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1211
35cd7815 1212 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1213 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1214
1215 /* We are about to die and free our memory. Return now. */
1216 if (fatal_signal_pending(current))
1217 return SWAP_CLUSTER_MAX;
1218 }
1219
1da177e4 1220 lru_add_drain();
f80c0673
MK
1221
1222 if (!sc->may_unmap)
61317289 1223 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1224 if (!sc->may_writepage)
61317289 1225 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1226
1da177e4 1227 spin_lock_irq(&zone->lru_lock);
b35ea17b 1228
5dc35979
KK
1229 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1230 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1231
1232 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1233 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1234
89b5fae5 1235 if (global_reclaim(sc)) {
e247dbce
KM
1236 zone->pages_scanned += nr_scanned;
1237 if (current_is_kswapd())
75b00af7 1238 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1239 else
75b00af7 1240 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1241 }
d563c050 1242 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1243
d563c050 1244 if (nr_taken == 0)
66635629 1245 return 0;
5ad333eb 1246
6a18adb3 1247 nr_reclaimed = shrink_page_list(&page_list, zone, sc,
92df3a72 1248 &nr_dirty, &nr_writeback);
c661b078 1249
3f79768f
HD
1250 spin_lock_irq(&zone->lru_lock);
1251
95d918fc 1252 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1253
904249aa
YH
1254 if (global_reclaim(sc)) {
1255 if (current_is_kswapd())
1256 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1257 nr_reclaimed);
1258 else
1259 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1260 nr_reclaimed);
1261 }
a74609fa 1262
27ac81d8 1263 putback_inactive_pages(lruvec, &page_list);
3f79768f 1264
95d918fc 1265 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1266
1267 spin_unlock_irq(&zone->lru_lock);
1268
1269 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1270
92df3a72
MG
1271 /*
1272 * If reclaim is isolating dirty pages under writeback, it implies
1273 * that the long-lived page allocation rate is exceeding the page
1274 * laundering rate. Either the global limits are not being effective
1275 * at throttling processes due to the page distribution throughout
1276 * zones or there is heavy usage of a slow backing device. The
1277 * only option is to throttle from reclaim context which is not ideal
1278 * as there is no guarantee the dirtying process is throttled in the
1279 * same way balance_dirty_pages() manages.
1280 *
1281 * This scales the number of dirty pages that must be under writeback
1282 * before throttling depending on priority. It is a simple backoff
1283 * function that has the most effect in the range DEF_PRIORITY to
1284 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1285 * in trouble and reclaim is considered to be in trouble.
1286 *
1287 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1288 * DEF_PRIORITY-1 50% must be PageWriteback
1289 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1290 * ...
1291 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1292 * isolated page is PageWriteback
1293 */
9e3b2f8c
KK
1294 if (nr_writeback && nr_writeback >=
1295 (nr_taken >> (DEF_PRIORITY - sc->priority)))
92df3a72
MG
1296 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1297
e11da5b4
MG
1298 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1299 zone_idx(zone),
1300 nr_scanned, nr_reclaimed,
9e3b2f8c 1301 sc->priority,
23b9da55 1302 trace_shrink_flags(file));
05ff5137 1303 return nr_reclaimed;
1da177e4
LT
1304}
1305
1306/*
1307 * This moves pages from the active list to the inactive list.
1308 *
1309 * We move them the other way if the page is referenced by one or more
1310 * processes, from rmap.
1311 *
1312 * If the pages are mostly unmapped, the processing is fast and it is
1313 * appropriate to hold zone->lru_lock across the whole operation. But if
1314 * the pages are mapped, the processing is slow (page_referenced()) so we
1315 * should drop zone->lru_lock around each page. It's impossible to balance
1316 * this, so instead we remove the pages from the LRU while processing them.
1317 * It is safe to rely on PG_active against the non-LRU pages in here because
1318 * nobody will play with that bit on a non-LRU page.
1319 *
1320 * The downside is that we have to touch page->_count against each page.
1321 * But we had to alter page->flags anyway.
1322 */
1cfb419b 1323
fa9add64 1324static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1325 struct list_head *list,
2bcf8879 1326 struct list_head *pages_to_free,
3eb4140f
WF
1327 enum lru_list lru)
1328{
fa9add64 1329 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1330 unsigned long pgmoved = 0;
3eb4140f 1331 struct page *page;
fa9add64 1332 int nr_pages;
3eb4140f 1333
3eb4140f
WF
1334 while (!list_empty(list)) {
1335 page = lru_to_page(list);
fa9add64 1336 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f
WF
1337
1338 VM_BUG_ON(PageLRU(page));
1339 SetPageLRU(page);
1340
fa9add64
HD
1341 nr_pages = hpage_nr_pages(page);
1342 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1343 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1344 pgmoved += nr_pages;
3eb4140f 1345
2bcf8879
HD
1346 if (put_page_testzero(page)) {
1347 __ClearPageLRU(page);
1348 __ClearPageActive(page);
fa9add64 1349 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1350
1351 if (unlikely(PageCompound(page))) {
1352 spin_unlock_irq(&zone->lru_lock);
1353 (*get_compound_page_dtor(page))(page);
1354 spin_lock_irq(&zone->lru_lock);
1355 } else
1356 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1357 }
1358 }
1359 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1360 if (!is_active_lru(lru))
1361 __count_vm_events(PGDEACTIVATE, pgmoved);
1362}
1cfb419b 1363
f626012d 1364static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1365 struct lruvec *lruvec,
f16015fb 1366 struct scan_control *sc,
9e3b2f8c 1367 enum lru_list lru)
1da177e4 1368{
44c241f1 1369 unsigned long nr_taken;
f626012d 1370 unsigned long nr_scanned;
6fe6b7e3 1371 unsigned long vm_flags;
1da177e4 1372 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1373 LIST_HEAD(l_active);
b69408e8 1374 LIST_HEAD(l_inactive);
1da177e4 1375 struct page *page;
1a93be0e 1376 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1377 unsigned long nr_rotated = 0;
f3fd4a61 1378 isolate_mode_t isolate_mode = 0;
3cb99451 1379 int file = is_file_lru(lru);
1a93be0e 1380 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1381
1382 lru_add_drain();
f80c0673
MK
1383
1384 if (!sc->may_unmap)
61317289 1385 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1386 if (!sc->may_writepage)
61317289 1387 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1388
1da177e4 1389 spin_lock_irq(&zone->lru_lock);
925b7673 1390
5dc35979
KK
1391 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1392 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1393 if (global_reclaim(sc))
f626012d 1394 zone->pages_scanned += nr_scanned;
89b5fae5 1395
b7c46d15 1396 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1397
f626012d 1398 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1399 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1400 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1401 spin_unlock_irq(&zone->lru_lock);
1402
1da177e4
LT
1403 while (!list_empty(&l_hold)) {
1404 cond_resched();
1405 page = lru_to_page(&l_hold);
1406 list_del(&page->lru);
7e9cd484 1407
894bc310
LS
1408 if (unlikely(!page_evictable(page, NULL))) {
1409 putback_lru_page(page);
1410 continue;
1411 }
1412
cc715d99
MG
1413 if (unlikely(buffer_heads_over_limit)) {
1414 if (page_has_private(page) && trylock_page(page)) {
1415 if (page_has_private(page))
1416 try_to_release_page(page, 0);
1417 unlock_page(page);
1418 }
1419 }
1420
c3ac9a8a
JW
1421 if (page_referenced(page, 0, sc->target_mem_cgroup,
1422 &vm_flags)) {
9992af10 1423 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1424 /*
1425 * Identify referenced, file-backed active pages and
1426 * give them one more trip around the active list. So
1427 * that executable code get better chances to stay in
1428 * memory under moderate memory pressure. Anon pages
1429 * are not likely to be evicted by use-once streaming
1430 * IO, plus JVM can create lots of anon VM_EXEC pages,
1431 * so we ignore them here.
1432 */
41e20983 1433 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1434 list_add(&page->lru, &l_active);
1435 continue;
1436 }
1437 }
7e9cd484 1438
5205e56e 1439 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1440 list_add(&page->lru, &l_inactive);
1441 }
1442
b555749a 1443 /*
8cab4754 1444 * Move pages back to the lru list.
b555749a 1445 */
2a1dc509 1446 spin_lock_irq(&zone->lru_lock);
556adecb 1447 /*
8cab4754
WF
1448 * Count referenced pages from currently used mappings as rotated,
1449 * even though only some of them are actually re-activated. This
1450 * helps balance scan pressure between file and anonymous pages in
1451 * get_scan_ratio.
7e9cd484 1452 */
b7c46d15 1453 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1454
fa9add64
HD
1455 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1456 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1457 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1458 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1459
1460 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1461}
1462
74e3f3c3 1463#ifdef CONFIG_SWAP
14797e23 1464static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1465{
1466 unsigned long active, inactive;
1467
1468 active = zone_page_state(zone, NR_ACTIVE_ANON);
1469 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1470
1471 if (inactive * zone->inactive_ratio < active)
1472 return 1;
1473
1474 return 0;
1475}
1476
14797e23
KM
1477/**
1478 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1479 * @lruvec: LRU vector to check
14797e23
KM
1480 *
1481 * Returns true if the zone does not have enough inactive anon pages,
1482 * meaning some active anon pages need to be deactivated.
1483 */
c56d5c7d 1484static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1485{
74e3f3c3
MK
1486 /*
1487 * If we don't have swap space, anonymous page deactivation
1488 * is pointless.
1489 */
1490 if (!total_swap_pages)
1491 return 0;
1492
c3c787e8 1493 if (!mem_cgroup_disabled())
c56d5c7d 1494 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1495
c56d5c7d 1496 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1497}
74e3f3c3 1498#else
c56d5c7d 1499static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1500{
1501 return 0;
1502}
1503#endif
14797e23 1504
56e49d21
RR
1505static int inactive_file_is_low_global(struct zone *zone)
1506{
1507 unsigned long active, inactive;
1508
1509 active = zone_page_state(zone, NR_ACTIVE_FILE);
1510 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1511
1512 return (active > inactive);
1513}
1514
1515/**
1516 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1517 * @lruvec: LRU vector to check
56e49d21
RR
1518 *
1519 * When the system is doing streaming IO, memory pressure here
1520 * ensures that active file pages get deactivated, until more
1521 * than half of the file pages are on the inactive list.
1522 *
1523 * Once we get to that situation, protect the system's working
1524 * set from being evicted by disabling active file page aging.
1525 *
1526 * This uses a different ratio than the anonymous pages, because
1527 * the page cache uses a use-once replacement algorithm.
1528 */
c56d5c7d 1529static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1530{
c3c787e8 1531 if (!mem_cgroup_disabled())
c56d5c7d 1532 return mem_cgroup_inactive_file_is_low(lruvec);
56e49d21 1533
c56d5c7d 1534 return inactive_file_is_low_global(lruvec_zone(lruvec));
56e49d21
RR
1535}
1536
75b00af7 1537static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1538{
75b00af7 1539 if (is_file_lru(lru))
c56d5c7d 1540 return inactive_file_is_low(lruvec);
b39415b2 1541 else
c56d5c7d 1542 return inactive_anon_is_low(lruvec);
b39415b2
RR
1543}
1544
4f98a2fe 1545static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1546 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1547{
b39415b2 1548 if (is_active_lru(lru)) {
75b00af7 1549 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1550 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1551 return 0;
1552 }
1553
1a93be0e 1554 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1555}
1556
3d58ab5c 1557static int vmscan_swappiness(struct scan_control *sc)
1f4c025b 1558{
89b5fae5 1559 if (global_reclaim(sc))
1f4c025b 1560 return vm_swappiness;
3d58ab5c 1561 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1f4c025b
KH
1562}
1563
4f98a2fe
RR
1564/*
1565 * Determine how aggressively the anon and file LRU lists should be
1566 * scanned. The relative value of each set of LRU lists is determined
1567 * by looking at the fraction of the pages scanned we did rotate back
1568 * onto the active list instead of evict.
1569 *
be7bd59d
WL
1570 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1571 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1572 */
90126375 1573static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
9e3b2f8c 1574 unsigned long *nr)
4f98a2fe
RR
1575{
1576 unsigned long anon, file, free;
1577 unsigned long anon_prio, file_prio;
1578 unsigned long ap, fp;
90126375 1579 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
76a33fc3 1580 u64 fraction[2], denominator;
4111304d 1581 enum lru_list lru;
76a33fc3 1582 int noswap = 0;
a4d3e9e7 1583 bool force_scan = false;
90126375 1584 struct zone *zone = lruvec_zone(lruvec);
246e87a9 1585
f11c0ca5
JW
1586 /*
1587 * If the zone or memcg is small, nr[l] can be 0. This
1588 * results in no scanning on this priority and a potential
1589 * priority drop. Global direct reclaim can go to the next
1590 * zone and tends to have no problems. Global kswapd is for
1591 * zone balancing and it needs to scan a minimum amount. When
1592 * reclaiming for a memcg, a priority drop can cause high
1593 * latencies, so it's better to scan a minimum amount there as
1594 * well.
1595 */
90126375 1596 if (current_is_kswapd() && zone->all_unreclaimable)
a4d3e9e7 1597 force_scan = true;
89b5fae5 1598 if (!global_reclaim(sc))
a4d3e9e7 1599 force_scan = true;
76a33fc3
SL
1600
1601 /* If we have no swap space, do not bother scanning anon pages. */
1602 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1603 noswap = 1;
1604 fraction[0] = 0;
1605 fraction[1] = 1;
1606 denominator = 1;
1607 goto out;
1608 }
4f98a2fe 1609
4d7dcca2
HD
1610 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1611 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1612 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1613 get_lru_size(lruvec, LRU_INACTIVE_FILE);
a4d3e9e7 1614
89b5fae5 1615 if (global_reclaim(sc)) {
90126375 1616 free = zone_page_state(zone, NR_FREE_PAGES);
eeee9a8c
KM
1617 /* If we have very few page cache pages,
1618 force-scan anon pages. */
90126375 1619 if (unlikely(file + free <= high_wmark_pages(zone))) {
76a33fc3
SL
1620 fraction[0] = 1;
1621 fraction[1] = 0;
1622 denominator = 1;
1623 goto out;
eeee9a8c 1624 }
4f98a2fe
RR
1625 }
1626
58c37f6e
KM
1627 /*
1628 * With swappiness at 100, anonymous and file have the same priority.
1629 * This scanning priority is essentially the inverse of IO cost.
1630 */
3d58ab5c 1631 anon_prio = vmscan_swappiness(sc);
75b00af7 1632 file_prio = 200 - anon_prio;
58c37f6e 1633
4f98a2fe
RR
1634 /*
1635 * OK, so we have swap space and a fair amount of page cache
1636 * pages. We use the recently rotated / recently scanned
1637 * ratios to determine how valuable each cache is.
1638 *
1639 * Because workloads change over time (and to avoid overflow)
1640 * we keep these statistics as a floating average, which ends
1641 * up weighing recent references more than old ones.
1642 *
1643 * anon in [0], file in [1]
1644 */
90126375 1645 spin_lock_irq(&zone->lru_lock);
6e901571 1646 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1647 reclaim_stat->recent_scanned[0] /= 2;
1648 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1649 }
1650
6e901571 1651 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1652 reclaim_stat->recent_scanned[1] /= 2;
1653 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1654 }
1655
4f98a2fe 1656 /*
00d8089c
RR
1657 * The amount of pressure on anon vs file pages is inversely
1658 * proportional to the fraction of recently scanned pages on
1659 * each list that were recently referenced and in active use.
4f98a2fe 1660 */
fe35004f 1661 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1662 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1663
fe35004f 1664 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1665 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 1666 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1667
76a33fc3
SL
1668 fraction[0] = ap;
1669 fraction[1] = fp;
1670 denominator = ap + fp + 1;
1671out:
4111304d
HD
1672 for_each_evictable_lru(lru) {
1673 int file = is_file_lru(lru);
76a33fc3 1674 unsigned long scan;
6e08a369 1675
4d7dcca2 1676 scan = get_lru_size(lruvec, lru);
9e3b2f8c
KK
1677 if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1678 scan >>= sc->priority;
f11c0ca5
JW
1679 if (!scan && force_scan)
1680 scan = SWAP_CLUSTER_MAX;
76a33fc3
SL
1681 scan = div64_u64(scan * fraction[file], denominator);
1682 }
4111304d 1683 nr[lru] = scan;
76a33fc3 1684 }
6e08a369 1685}
4f98a2fe 1686
23b9da55 1687/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 1688static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55
MG
1689{
1690 if (COMPACTION_BUILD && sc->order &&
1691 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 1692 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
1693 return true;
1694
1695 return false;
1696}
1697
3e7d3449 1698/*
23b9da55
MG
1699 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1700 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1701 * true if more pages should be reclaimed such that when the page allocator
1702 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1703 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 1704 */
90bdcfaf 1705static inline bool should_continue_reclaim(struct lruvec *lruvec,
3e7d3449
MG
1706 unsigned long nr_reclaimed,
1707 unsigned long nr_scanned,
1708 struct scan_control *sc)
1709{
1710 unsigned long pages_for_compaction;
1711 unsigned long inactive_lru_pages;
1712
1713 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 1714 if (!in_reclaim_compaction(sc))
3e7d3449
MG
1715 return false;
1716
2876592f
MG
1717 /* Consider stopping depending on scan and reclaim activity */
1718 if (sc->gfp_mask & __GFP_REPEAT) {
1719 /*
1720 * For __GFP_REPEAT allocations, stop reclaiming if the
1721 * full LRU list has been scanned and we are still failing
1722 * to reclaim pages. This full LRU scan is potentially
1723 * expensive but a __GFP_REPEAT caller really wants to succeed
1724 */
1725 if (!nr_reclaimed && !nr_scanned)
1726 return false;
1727 } else {
1728 /*
1729 * For non-__GFP_REPEAT allocations which can presumably
1730 * fail without consequence, stop if we failed to reclaim
1731 * any pages from the last SWAP_CLUSTER_MAX number of
1732 * pages that were scanned. This will return to the
1733 * caller faster at the risk reclaim/compaction and
1734 * the resulting allocation attempt fails
1735 */
1736 if (!nr_reclaimed)
1737 return false;
1738 }
3e7d3449
MG
1739
1740 /*
1741 * If we have not reclaimed enough pages for compaction and the
1742 * inactive lists are large enough, continue reclaiming
1743 */
1744 pages_for_compaction = (2UL << sc->order);
4d7dcca2 1745 inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
86cfd3a4 1746 if (nr_swap_pages > 0)
4d7dcca2 1747 inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
3e7d3449
MG
1748 if (sc->nr_reclaimed < pages_for_compaction &&
1749 inactive_lru_pages > pages_for_compaction)
1750 return true;
1751
1752 /* If compaction would go ahead or the allocation would succeed, stop */
90bdcfaf 1753 switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
3e7d3449
MG
1754 case COMPACT_PARTIAL:
1755 case COMPACT_CONTINUE:
1756 return false;
1757 default:
1758 return true;
1759 }
1760}
1761
1da177e4
LT
1762/*
1763 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1764 */
f9be23d6 1765static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1da177e4 1766{
b69408e8 1767 unsigned long nr[NR_LRU_LISTS];
8695949a 1768 unsigned long nr_to_scan;
4111304d 1769 enum lru_list lru;
f0fdc5e8 1770 unsigned long nr_reclaimed, nr_scanned;
22fba335 1771 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
3da367c3 1772 struct blk_plug plug;
e0f79b8f 1773
3e7d3449
MG
1774restart:
1775 nr_reclaimed = 0;
f0fdc5e8 1776 nr_scanned = sc->nr_scanned;
90126375 1777 get_scan_count(lruvec, sc, nr);
1da177e4 1778
3da367c3 1779 blk_start_plug(&plug);
556adecb
RR
1780 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1781 nr[LRU_INACTIVE_FILE]) {
4111304d
HD
1782 for_each_evictable_lru(lru) {
1783 if (nr[lru]) {
ece74b2e 1784 nr_to_scan = min_t(unsigned long,
4111304d
HD
1785 nr[lru], SWAP_CLUSTER_MAX);
1786 nr[lru] -= nr_to_scan;
1da177e4 1787
4111304d 1788 nr_reclaimed += shrink_list(lru, nr_to_scan,
1a93be0e 1789 lruvec, sc);
b69408e8 1790 }
1da177e4 1791 }
a79311c1
RR
1792 /*
1793 * On large memory systems, scan >> priority can become
1794 * really large. This is fine for the starting priority;
1795 * we want to put equal scanning pressure on each zone.
1796 * However, if the VM has a harder time of freeing pages,
1797 * with multiple processes reclaiming pages, the total
1798 * freeing target can get unreasonably large.
1799 */
9e3b2f8c
KK
1800 if (nr_reclaimed >= nr_to_reclaim &&
1801 sc->priority < DEF_PRIORITY)
a79311c1 1802 break;
1da177e4 1803 }
3da367c3 1804 blk_finish_plug(&plug);
3e7d3449 1805 sc->nr_reclaimed += nr_reclaimed;
01dbe5c9 1806
556adecb
RR
1807 /*
1808 * Even if we did not try to evict anon pages at all, we want to
1809 * rebalance the anon lru active/inactive ratio.
1810 */
c56d5c7d 1811 if (inactive_anon_is_low(lruvec))
1a93be0e 1812 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 1813 sc, LRU_ACTIVE_ANON);
556adecb 1814
3e7d3449 1815 /* reclaim/compaction might need reclaim to continue */
90bdcfaf 1816 if (should_continue_reclaim(lruvec, nr_reclaimed,
9e3b2f8c 1817 sc->nr_scanned - nr_scanned, sc))
3e7d3449
MG
1818 goto restart;
1819
232ea4d6 1820 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1821}
1822
9e3b2f8c 1823static void shrink_zone(struct zone *zone, struct scan_control *sc)
f16015fb 1824{
5660048c
JW
1825 struct mem_cgroup *root = sc->target_mem_cgroup;
1826 struct mem_cgroup_reclaim_cookie reclaim = {
f16015fb 1827 .zone = zone,
9e3b2f8c 1828 .priority = sc->priority,
f16015fb 1829 };
5660048c
JW
1830 struct mem_cgroup *memcg;
1831
5660048c
JW
1832 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1833 do {
f9be23d6
KK
1834 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
1835
1836 shrink_lruvec(lruvec, sc);
f16015fb 1837
5660048c
JW
1838 /*
1839 * Limit reclaim has historically picked one memcg and
1840 * scanned it with decreasing priority levels until
1841 * nr_to_reclaim had been reclaimed. This priority
1842 * cycle is thus over after a single memcg.
b95a2f2d
JW
1843 *
1844 * Direct reclaim and kswapd, on the other hand, have
1845 * to scan all memory cgroups to fulfill the overall
1846 * scan target for the zone.
5660048c
JW
1847 */
1848 if (!global_reclaim(sc)) {
1849 mem_cgroup_iter_break(root, memcg);
1850 break;
1851 }
1852 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1853 } while (memcg);
f16015fb
JW
1854}
1855
fe4b1b24
MG
1856/* Returns true if compaction should go ahead for a high-order request */
1857static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1858{
1859 unsigned long balance_gap, watermark;
1860 bool watermark_ok;
1861
1862 /* Do not consider compaction for orders reclaim is meant to satisfy */
1863 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1864 return false;
1865
1866 /*
1867 * Compaction takes time to run and there are potentially other
1868 * callers using the pages just freed. Continue reclaiming until
1869 * there is a buffer of free pages available to give compaction
1870 * a reasonable chance of completing and allocating the page
1871 */
1872 balance_gap = min(low_wmark_pages(zone),
1873 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1874 KSWAPD_ZONE_BALANCE_GAP_RATIO);
1875 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1876 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1877
1878 /*
1879 * If compaction is deferred, reclaim up to a point where
1880 * compaction will have a chance of success when re-enabled
1881 */
aff62249 1882 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
1883 return watermark_ok;
1884
1885 /* If compaction is not ready to start, keep reclaiming */
1886 if (!compaction_suitable(zone, sc->order))
1887 return false;
1888
1889 return watermark_ok;
1890}
1891
1da177e4
LT
1892/*
1893 * This is the direct reclaim path, for page-allocating processes. We only
1894 * try to reclaim pages from zones which will satisfy the caller's allocation
1895 * request.
1896 *
41858966
MG
1897 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1898 * Because:
1da177e4
LT
1899 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1900 * allocation or
41858966
MG
1901 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1902 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1903 * zone defense algorithm.
1da177e4 1904 *
1da177e4
LT
1905 * If a zone is deemed to be full of pinned pages then just give it a light
1906 * scan then give up on it.
e0c23279
MG
1907 *
1908 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 1909 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
1910 * the caller that it should consider retrying the allocation instead of
1911 * further reclaim.
1da177e4 1912 */
9e3b2f8c 1913static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 1914{
dd1a239f 1915 struct zoneref *z;
54a6eb5c 1916 struct zone *zone;
d149e3b2
YH
1917 unsigned long nr_soft_reclaimed;
1918 unsigned long nr_soft_scanned;
0cee34fd 1919 bool aborted_reclaim = false;
1cfb419b 1920
cc715d99
MG
1921 /*
1922 * If the number of buffer_heads in the machine exceeds the maximum
1923 * allowed level, force direct reclaim to scan the highmem zone as
1924 * highmem pages could be pinning lowmem pages storing buffer_heads
1925 */
1926 if (buffer_heads_over_limit)
1927 sc->gfp_mask |= __GFP_HIGHMEM;
1928
d4debc66
MG
1929 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1930 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 1931 if (!populated_zone(zone))
1da177e4 1932 continue;
1cfb419b
KH
1933 /*
1934 * Take care memory controller reclaiming has small influence
1935 * to global LRU.
1936 */
89b5fae5 1937 if (global_reclaim(sc)) {
1cfb419b
KH
1938 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1939 continue;
9e3b2f8c
KK
1940 if (zone->all_unreclaimable &&
1941 sc->priority != DEF_PRIORITY)
1cfb419b 1942 continue; /* Let kswapd poll it */
e0887c19
RR
1943 if (COMPACTION_BUILD) {
1944 /*
e0c23279
MG
1945 * If we already have plenty of memory free for
1946 * compaction in this zone, don't free any more.
1947 * Even though compaction is invoked for any
1948 * non-zero order, only frequent costly order
1949 * reclamation is disruptive enough to become a
c7cfa37b
CA
1950 * noticeable problem, like transparent huge
1951 * page allocations.
e0887c19 1952 */
fe4b1b24 1953 if (compaction_ready(zone, sc)) {
0cee34fd 1954 aborted_reclaim = true;
e0887c19 1955 continue;
e0c23279 1956 }
e0887c19 1957 }
ac34a1a3
KH
1958 /*
1959 * This steals pages from memory cgroups over softlimit
1960 * and returns the number of reclaimed pages and
1961 * scanned pages. This works for global memory pressure
1962 * and balancing, not for a memcg's limit.
1963 */
1964 nr_soft_scanned = 0;
1965 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
1966 sc->order, sc->gfp_mask,
1967 &nr_soft_scanned);
1968 sc->nr_reclaimed += nr_soft_reclaimed;
1969 sc->nr_scanned += nr_soft_scanned;
1970 /* need some check for avoid more shrink_zone() */
1cfb419b 1971 }
408d8544 1972
9e3b2f8c 1973 shrink_zone(zone, sc);
1da177e4 1974 }
e0c23279 1975
0cee34fd 1976 return aborted_reclaim;
d1908362
MK
1977}
1978
1979static bool zone_reclaimable(struct zone *zone)
1980{
1981 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1982}
1983
929bea7c 1984/* All zones in zonelist are unreclaimable? */
d1908362
MK
1985static bool all_unreclaimable(struct zonelist *zonelist,
1986 struct scan_control *sc)
1987{
1988 struct zoneref *z;
1989 struct zone *zone;
d1908362
MK
1990
1991 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1992 gfp_zone(sc->gfp_mask), sc->nodemask) {
1993 if (!populated_zone(zone))
1994 continue;
1995 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1996 continue;
929bea7c
KM
1997 if (!zone->all_unreclaimable)
1998 return false;
d1908362
MK
1999 }
2000
929bea7c 2001 return true;
1da177e4 2002}
4f98a2fe 2003
1da177e4
LT
2004/*
2005 * This is the main entry point to direct page reclaim.
2006 *
2007 * If a full scan of the inactive list fails to free enough memory then we
2008 * are "out of memory" and something needs to be killed.
2009 *
2010 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2011 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2012 * caller can't do much about. We kick the writeback threads and take explicit
2013 * naps in the hope that some of these pages can be written. But if the
2014 * allocating task holds filesystem locks which prevent writeout this might not
2015 * work, and the allocation attempt will fail.
a41f24ea
NA
2016 *
2017 * returns: 0, if no pages reclaimed
2018 * else, the number of pages reclaimed
1da177e4 2019 */
dac1d27b 2020static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2021 struct scan_control *sc,
2022 struct shrink_control *shrink)
1da177e4 2023{
69e05944 2024 unsigned long total_scanned = 0;
1da177e4 2025 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2026 struct zoneref *z;
54a6eb5c 2027 struct zone *zone;
22fba335 2028 unsigned long writeback_threshold;
0cee34fd 2029 bool aborted_reclaim;
1da177e4 2030
873b4771
KK
2031 delayacct_freepages_start();
2032
89b5fae5 2033 if (global_reclaim(sc))
1cfb419b 2034 count_vm_event(ALLOCSTALL);
1da177e4 2035
9e3b2f8c 2036 do {
66e1707b 2037 sc->nr_scanned = 0;
9e3b2f8c 2038 aborted_reclaim = shrink_zones(zonelist, sc);
e0c23279 2039
66e1707b
BS
2040 /*
2041 * Don't shrink slabs when reclaiming memory from
2042 * over limit cgroups
2043 */
89b5fae5 2044 if (global_reclaim(sc)) {
c6a8a8c5 2045 unsigned long lru_pages = 0;
d4debc66
MG
2046 for_each_zone_zonelist(zone, z, zonelist,
2047 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2048 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2049 continue;
2050
2051 lru_pages += zone_reclaimable_pages(zone);
2052 }
2053
1495f230 2054 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2055 if (reclaim_state) {
a79311c1 2056 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2057 reclaim_state->reclaimed_slab = 0;
2058 }
1da177e4 2059 }
66e1707b 2060 total_scanned += sc->nr_scanned;
bb21c7ce 2061 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2062 goto out;
1da177e4
LT
2063
2064 /*
2065 * Try to write back as many pages as we just scanned. This
2066 * tends to cause slow streaming writers to write data to the
2067 * disk smoothly, at the dirtying rate, which is nice. But
2068 * that's undesirable in laptop mode, where we *want* lumpy
2069 * writeout. So in laptop mode, write out the whole world.
2070 */
22fba335
KM
2071 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2072 if (total_scanned > writeback_threshold) {
0e175a18
CW
2073 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2074 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2075 sc->may_writepage = 1;
1da177e4
LT
2076 }
2077
2078 /* Take a nap, wait for some writeback to complete */
7b51755c 2079 if (!sc->hibernation_mode && sc->nr_scanned &&
9e3b2f8c 2080 sc->priority < DEF_PRIORITY - 2) {
0e093d99
MG
2081 struct zone *preferred_zone;
2082
2083 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2084 &cpuset_current_mems_allowed,
2085 &preferred_zone);
0e093d99
MG
2086 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2087 }
9e3b2f8c 2088 } while (--sc->priority >= 0);
bb21c7ce 2089
1da177e4 2090out:
873b4771
KK
2091 delayacct_freepages_end();
2092
bb21c7ce
KM
2093 if (sc->nr_reclaimed)
2094 return sc->nr_reclaimed;
2095
929bea7c
KM
2096 /*
2097 * As hibernation is going on, kswapd is freezed so that it can't mark
2098 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2099 * check.
2100 */
2101 if (oom_killer_disabled)
2102 return 0;
2103
0cee34fd
MG
2104 /* Aborted reclaim to try compaction? don't OOM, then */
2105 if (aborted_reclaim)
7335084d
MG
2106 return 1;
2107
bb21c7ce 2108 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2109 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2110 return 1;
2111
2112 return 0;
1da177e4
LT
2113}
2114
5515061d
MG
2115static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2116{
2117 struct zone *zone;
2118 unsigned long pfmemalloc_reserve = 0;
2119 unsigned long free_pages = 0;
2120 int i;
2121 bool wmark_ok;
2122
2123 for (i = 0; i <= ZONE_NORMAL; i++) {
2124 zone = &pgdat->node_zones[i];
2125 pfmemalloc_reserve += min_wmark_pages(zone);
2126 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2127 }
2128
2129 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2130
2131 /* kswapd must be awake if processes are being throttled */
2132 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2133 pgdat->classzone_idx = min(pgdat->classzone_idx,
2134 (enum zone_type)ZONE_NORMAL);
2135 wake_up_interruptible(&pgdat->kswapd_wait);
2136 }
2137
2138 return wmark_ok;
2139}
2140
2141/*
2142 * Throttle direct reclaimers if backing storage is backed by the network
2143 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2144 * depleted. kswapd will continue to make progress and wake the processes
2145 * when the low watermark is reached
2146 */
2147static void throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2148 nodemask_t *nodemask)
2149{
2150 struct zone *zone;
2151 int high_zoneidx = gfp_zone(gfp_mask);
2152 pg_data_t *pgdat;
2153
2154 /*
2155 * Kernel threads should not be throttled as they may be indirectly
2156 * responsible for cleaning pages necessary for reclaim to make forward
2157 * progress. kjournald for example may enter direct reclaim while
2158 * committing a transaction where throttling it could forcing other
2159 * processes to block on log_wait_commit().
2160 */
2161 if (current->flags & PF_KTHREAD)
2162 return;
2163
2164 /* Check if the pfmemalloc reserves are ok */
2165 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2166 pgdat = zone->zone_pgdat;
2167 if (pfmemalloc_watermark_ok(pgdat))
2168 return;
2169
2170 /*
2171 * If the caller cannot enter the filesystem, it's possible that it
2172 * is due to the caller holding an FS lock or performing a journal
2173 * transaction in the case of a filesystem like ext[3|4]. In this case,
2174 * it is not safe to block on pfmemalloc_wait as kswapd could be
2175 * blocked waiting on the same lock. Instead, throttle for up to a
2176 * second before continuing.
2177 */
2178 if (!(gfp_mask & __GFP_FS)) {
2179 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2180 pfmemalloc_watermark_ok(pgdat), HZ);
2181 return;
2182 }
2183
2184 /* Throttle until kswapd wakes the process */
2185 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2186 pfmemalloc_watermark_ok(pgdat));
2187}
2188
dac1d27b 2189unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2190 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2191{
33906bc5 2192 unsigned long nr_reclaimed;
66e1707b
BS
2193 struct scan_control sc = {
2194 .gfp_mask = gfp_mask,
2195 .may_writepage = !laptop_mode,
22fba335 2196 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2197 .may_unmap = 1,
2e2e4259 2198 .may_swap = 1,
66e1707b 2199 .order = order,
9e3b2f8c 2200 .priority = DEF_PRIORITY,
f16015fb 2201 .target_mem_cgroup = NULL,
327c0e96 2202 .nodemask = nodemask,
66e1707b 2203 };
a09ed5e0
YH
2204 struct shrink_control shrink = {
2205 .gfp_mask = sc.gfp_mask,
2206 };
66e1707b 2207
5515061d
MG
2208 throttle_direct_reclaim(gfp_mask, zonelist, nodemask);
2209
2210 /*
2211 * Do not enter reclaim if fatal signal is pending. 1 is returned so
2212 * that the page allocator does not consider triggering OOM
2213 */
2214 if (fatal_signal_pending(current))
2215 return 1;
2216
33906bc5
MG
2217 trace_mm_vmscan_direct_reclaim_begin(order,
2218 sc.may_writepage,
2219 gfp_mask);
2220
a09ed5e0 2221 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2222
2223 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2224
2225 return nr_reclaimed;
66e1707b
BS
2226}
2227
c255a458 2228#ifdef CONFIG_MEMCG
66e1707b 2229
72835c86 2230unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2231 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2232 struct zone *zone,
2233 unsigned long *nr_scanned)
4e416953
BS
2234{
2235 struct scan_control sc = {
0ae5e89c 2236 .nr_scanned = 0,
b8f5c566 2237 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2238 .may_writepage = !laptop_mode,
2239 .may_unmap = 1,
2240 .may_swap = !noswap,
4e416953 2241 .order = 0,
9e3b2f8c 2242 .priority = 0,
72835c86 2243 .target_mem_cgroup = memcg,
4e416953 2244 };
f9be23d6 2245 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
0ae5e89c 2246
4e416953
BS
2247 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2248 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2249
9e3b2f8c 2250 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2251 sc.may_writepage,
2252 sc.gfp_mask);
2253
4e416953
BS
2254 /*
2255 * NOTE: Although we can get the priority field, using it
2256 * here is not a good idea, since it limits the pages we can scan.
2257 * if we don't reclaim here, the shrink_zone from balance_pgdat
2258 * will pick up pages from other mem cgroup's as well. We hack
2259 * the priority and make it zero.
2260 */
f9be23d6 2261 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
2262
2263 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2264
0ae5e89c 2265 *nr_scanned = sc.nr_scanned;
4e416953
BS
2266 return sc.nr_reclaimed;
2267}
2268
72835c86 2269unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2270 gfp_t gfp_mask,
185efc0f 2271 bool noswap)
66e1707b 2272{
4e416953 2273 struct zonelist *zonelist;
bdce6d9e 2274 unsigned long nr_reclaimed;
889976db 2275 int nid;
66e1707b 2276 struct scan_control sc = {
66e1707b 2277 .may_writepage = !laptop_mode,
a6dc60f8 2278 .may_unmap = 1,
2e2e4259 2279 .may_swap = !noswap,
22fba335 2280 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2281 .order = 0,
9e3b2f8c 2282 .priority = DEF_PRIORITY,
72835c86 2283 .target_mem_cgroup = memcg,
327c0e96 2284 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2285 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2286 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2287 };
2288 struct shrink_control shrink = {
2289 .gfp_mask = sc.gfp_mask,
66e1707b 2290 };
66e1707b 2291
889976db
YH
2292 /*
2293 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2294 * take care of from where we get pages. So the node where we start the
2295 * scan does not need to be the current node.
2296 */
72835c86 2297 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2298
2299 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2300
2301 trace_mm_vmscan_memcg_reclaim_begin(0,
2302 sc.may_writepage,
2303 sc.gfp_mask);
2304
a09ed5e0 2305 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2306
2307 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2308
2309 return nr_reclaimed;
66e1707b
BS
2310}
2311#endif
2312
9e3b2f8c 2313static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2314{
b95a2f2d 2315 struct mem_cgroup *memcg;
f16015fb 2316
b95a2f2d
JW
2317 if (!total_swap_pages)
2318 return;
2319
2320 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2321 do {
c56d5c7d 2322 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2323
c56d5c7d 2324 if (inactive_anon_is_low(lruvec))
1a93be0e 2325 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2326 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2327
2328 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2329 } while (memcg);
f16015fb
JW
2330}
2331
1741c877
MG
2332/*
2333 * pgdat_balanced is used when checking if a node is balanced for high-order
2334 * allocations. Only zones that meet watermarks and are in a zone allowed
2335 * by the callers classzone_idx are added to balanced_pages. The total of
2336 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2337 * for the node to be considered balanced. Forcing all zones to be balanced
2338 * for high orders can cause excessive reclaim when there are imbalanced zones.
2339 * The choice of 25% is due to
2340 * o a 16M DMA zone that is balanced will not balance a zone on any
2341 * reasonable sized machine
2342 * o On all other machines, the top zone must be at least a reasonable
25985edc 2343 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2344 * would need to be at least 256M for it to be balance a whole node.
2345 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2346 * to balance a node on its own. These seemed like reasonable ratios.
2347 */
2348static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2349 int classzone_idx)
2350{
2351 unsigned long present_pages = 0;
2352 int i;
2353
2354 for (i = 0; i <= classzone_idx; i++)
2355 present_pages += pgdat->node_zones[i].present_pages;
2356
4746efde
SL
2357 /* A special case here: if zone has no page, we think it's balanced */
2358 return balanced_pages >= (present_pages >> 2);
1741c877
MG
2359}
2360
5515061d
MG
2361/*
2362 * Prepare kswapd for sleeping. This verifies that there are no processes
2363 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2364 *
2365 * Returns true if kswapd is ready to sleep
2366 */
2367static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2368 int classzone_idx)
f50de2d3 2369{
bb3ab596 2370 int i;
1741c877
MG
2371 unsigned long balanced = 0;
2372 bool all_zones_ok = true;
f50de2d3
MG
2373
2374 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2375 if (remaining)
5515061d
MG
2376 return false;
2377
2378 /*
2379 * There is a potential race between when kswapd checks its watermarks
2380 * and a process gets throttled. There is also a potential race if
2381 * processes get throttled, kswapd wakes, a large process exits therby
2382 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2383 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2384 * so wake them now if necessary. If necessary, processes will wake
2385 * kswapd and get throttled again
2386 */
2387 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2388 wake_up(&pgdat->pfmemalloc_wait);
2389 return false;
2390 }
f50de2d3 2391
0abdee2b 2392 /* Check the watermark levels */
08951e54 2393 for (i = 0; i <= classzone_idx; i++) {
bb3ab596
KM
2394 struct zone *zone = pgdat->node_zones + i;
2395
2396 if (!populated_zone(zone))
2397 continue;
2398
355b09c4
MG
2399 /*
2400 * balance_pgdat() skips over all_unreclaimable after
2401 * DEF_PRIORITY. Effectively, it considers them balanced so
2402 * they must be considered balanced here as well if kswapd
2403 * is to sleep
2404 */
2405 if (zone->all_unreclaimable) {
2406 balanced += zone->present_pages;
de3fab39 2407 continue;
355b09c4 2408 }
de3fab39 2409
88f5acf8 2410 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
da175d06 2411 i, 0))
1741c877
MG
2412 all_zones_ok = false;
2413 else
2414 balanced += zone->present_pages;
bb3ab596 2415 }
f50de2d3 2416
1741c877
MG
2417 /*
2418 * For high-order requests, the balanced zones must contain at least
2419 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2420 * must be balanced
2421 */
2422 if (order)
5515061d 2423 return pgdat_balanced(pgdat, balanced, classzone_idx);
1741c877 2424 else
5515061d 2425 return all_zones_ok;
f50de2d3
MG
2426}
2427
1da177e4
LT
2428/*
2429 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2430 * they are all at high_wmark_pages(zone).
1da177e4 2431 *
0abdee2b 2432 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2433 *
2434 * There is special handling here for zones which are full of pinned pages.
2435 * This can happen if the pages are all mlocked, or if they are all used by
2436 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2437 * What we do is to detect the case where all pages in the zone have been
2438 * scanned twice and there has been zero successful reclaim. Mark the zone as
2439 * dead and from now on, only perform a short scan. Basically we're polling
2440 * the zone for when the problem goes away.
2441 *
2442 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2443 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2444 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2445 * lower zones regardless of the number of free pages in the lower zones. This
2446 * interoperates with the page allocator fallback scheme to ensure that aging
2447 * of pages is balanced across the zones.
1da177e4 2448 */
99504748 2449static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2450 int *classzone_idx)
1da177e4 2451{
1da177e4 2452 int all_zones_ok;
1741c877 2453 unsigned long balanced;
1da177e4 2454 int i;
99504748 2455 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
69e05944 2456 unsigned long total_scanned;
1da177e4 2457 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2458 unsigned long nr_soft_reclaimed;
2459 unsigned long nr_soft_scanned;
179e9639
AM
2460 struct scan_control sc = {
2461 .gfp_mask = GFP_KERNEL,
a6dc60f8 2462 .may_unmap = 1,
2e2e4259 2463 .may_swap = 1,
22fba335
KM
2464 /*
2465 * kswapd doesn't want to be bailed out while reclaim. because
2466 * we want to put equal scanning pressure on each zone.
2467 */
2468 .nr_to_reclaim = ULONG_MAX,
5ad333eb 2469 .order = order,
f16015fb 2470 .target_mem_cgroup = NULL,
179e9639 2471 };
a09ed5e0
YH
2472 struct shrink_control shrink = {
2473 .gfp_mask = sc.gfp_mask,
2474 };
1da177e4
LT
2475loop_again:
2476 total_scanned = 0;
9e3b2f8c 2477 sc.priority = DEF_PRIORITY;
a79311c1 2478 sc.nr_reclaimed = 0;
c0bbbc73 2479 sc.may_writepage = !laptop_mode;
f8891e5e 2480 count_vm_event(PAGEOUTRUN);
1da177e4 2481
9e3b2f8c 2482 do {
1da177e4 2483 unsigned long lru_pages = 0;
bb3ab596 2484 int has_under_min_watermark_zone = 0;
1da177e4
LT
2485
2486 all_zones_ok = 1;
1741c877 2487 balanced = 0;
1da177e4 2488
d6277db4
RW
2489 /*
2490 * Scan in the highmem->dma direction for the highest
2491 * zone which needs scanning
2492 */
2493 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2494 struct zone *zone = pgdat->node_zones + i;
1da177e4 2495
d6277db4
RW
2496 if (!populated_zone(zone))
2497 continue;
1da177e4 2498
9e3b2f8c
KK
2499 if (zone->all_unreclaimable &&
2500 sc.priority != DEF_PRIORITY)
d6277db4 2501 continue;
1da177e4 2502
556adecb
RR
2503 /*
2504 * Do some background aging of the anon list, to give
2505 * pages a chance to be referenced before reclaiming.
2506 */
9e3b2f8c 2507 age_active_anon(zone, &sc);
556adecb 2508
cc715d99
MG
2509 /*
2510 * If the number of buffer_heads in the machine
2511 * exceeds the maximum allowed level and this node
2512 * has a highmem zone, force kswapd to reclaim from
2513 * it to relieve lowmem pressure.
2514 */
2515 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2516 end_zone = i;
2517 break;
2518 }
2519
88f5acf8 2520 if (!zone_watermark_ok_safe(zone, order,
41858966 2521 high_wmark_pages(zone), 0, 0)) {
d6277db4 2522 end_zone = i;
e1dbeda6 2523 break;
439423f6
SL
2524 } else {
2525 /* If balanced, clear the congested flag */
2526 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2527 }
1da177e4 2528 }
e1dbeda6
AM
2529 if (i < 0)
2530 goto out;
2531
1da177e4
LT
2532 for (i = 0; i <= end_zone; i++) {
2533 struct zone *zone = pgdat->node_zones + i;
2534
adea02a1 2535 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2536 }
2537
2538 /*
2539 * Now scan the zone in the dma->highmem direction, stopping
2540 * at the last zone which needs scanning.
2541 *
2542 * We do this because the page allocator works in the opposite
2543 * direction. This prevents the page allocator from allocating
2544 * pages behind kswapd's direction of progress, which would
2545 * cause too much scanning of the lower zones.
2546 */
2547 for (i = 0; i <= end_zone; i++) {
2548 struct zone *zone = pgdat->node_zones + i;
fe2c2a10 2549 int nr_slab, testorder;
8afdcece 2550 unsigned long balance_gap;
1da177e4 2551
f3fe6512 2552 if (!populated_zone(zone))
1da177e4
LT
2553 continue;
2554
9e3b2f8c
KK
2555 if (zone->all_unreclaimable &&
2556 sc.priority != DEF_PRIORITY)
1da177e4
LT
2557 continue;
2558
1da177e4 2559 sc.nr_scanned = 0;
4e416953 2560
0ae5e89c 2561 nr_soft_scanned = 0;
4e416953
BS
2562 /*
2563 * Call soft limit reclaim before calling shrink_zone.
4e416953 2564 */
0ae5e89c
YH
2565 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2566 order, sc.gfp_mask,
2567 &nr_soft_scanned);
2568 sc.nr_reclaimed += nr_soft_reclaimed;
2569 total_scanned += nr_soft_scanned;
00918b6a 2570
32a4330d 2571 /*
8afdcece
MG
2572 * We put equal pressure on every zone, unless
2573 * one zone has way too many pages free
2574 * already. The "too many pages" is defined
2575 * as the high wmark plus a "gap" where the
2576 * gap is either the low watermark or 1%
2577 * of the zone, whichever is smaller.
32a4330d 2578 */
8afdcece
MG
2579 balance_gap = min(low_wmark_pages(zone),
2580 (zone->present_pages +
2581 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2582 KSWAPD_ZONE_BALANCE_GAP_RATIO);
fe2c2a10
RR
2583 /*
2584 * Kswapd reclaims only single pages with compaction
2585 * enabled. Trying too hard to reclaim until contiguous
2586 * free pages have become available can hurt performance
2587 * by evicting too much useful data from memory.
2588 * Do not reclaim more than needed for compaction.
2589 */
2590 testorder = order;
2591 if (COMPACTION_BUILD && order &&
2592 compaction_suitable(zone, order) !=
2593 COMPACT_SKIPPED)
2594 testorder = 0;
2595
cc715d99 2596 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
643ac9fc 2597 !zone_watermark_ok_safe(zone, testorder,
8afdcece 2598 high_wmark_pages(zone) + balance_gap,
d7868dae 2599 end_zone, 0)) {
9e3b2f8c 2600 shrink_zone(zone, &sc);
5a03b051 2601
d7868dae
MG
2602 reclaim_state->reclaimed_slab = 0;
2603 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2604 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2605 total_scanned += sc.nr_scanned;
2606
2607 if (nr_slab == 0 && !zone_reclaimable(zone))
2608 zone->all_unreclaimable = 1;
2609 }
2610
1da177e4
LT
2611 /*
2612 * If we've done a decent amount of scanning and
2613 * the reclaim ratio is low, start doing writepage
2614 * even in laptop mode
2615 */
2616 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2617 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2618 sc.may_writepage = 1;
bb3ab596 2619
215ddd66
MG
2620 if (zone->all_unreclaimable) {
2621 if (end_zone && end_zone == i)
2622 end_zone--;
d7868dae 2623 continue;
215ddd66 2624 }
d7868dae 2625
fe2c2a10 2626 if (!zone_watermark_ok_safe(zone, testorder,
45973d74
MK
2627 high_wmark_pages(zone), end_zone, 0)) {
2628 all_zones_ok = 0;
2629 /*
2630 * We are still under min water mark. This
2631 * means that we have a GFP_ATOMIC allocation
2632 * failure risk. Hurry up!
2633 */
88f5acf8 2634 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2635 min_wmark_pages(zone), end_zone, 0))
2636 has_under_min_watermark_zone = 1;
0e093d99
MG
2637 } else {
2638 /*
2639 * If a zone reaches its high watermark,
2640 * consider it to be no longer congested. It's
2641 * possible there are dirty pages backed by
2642 * congested BDIs but as pressure is relieved,
ab8704b8 2643 * speculatively avoid congestion waits
0e093d99
MG
2644 */
2645 zone_clear_flag(zone, ZONE_CONGESTED);
dc83edd9 2646 if (i <= *classzone_idx)
1741c877 2647 balanced += zone->present_pages;
45973d74 2648 }
bb3ab596 2649
1da177e4 2650 }
5515061d
MG
2651
2652 /*
2653 * If the low watermark is met there is no need for processes
2654 * to be throttled on pfmemalloc_wait as they should not be
2655 * able to safely make forward progress. Wake them
2656 */
2657 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2658 pfmemalloc_watermark_ok(pgdat))
2659 wake_up(&pgdat->pfmemalloc_wait);
2660
dc83edd9 2661 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
1da177e4
LT
2662 break; /* kswapd: all done */
2663 /*
2664 * OK, kswapd is getting into trouble. Take a nap, then take
2665 * another pass across the zones.
2666 */
9e3b2f8c 2667 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
bb3ab596
KM
2668 if (has_under_min_watermark_zone)
2669 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2670 else
2671 congestion_wait(BLK_RW_ASYNC, HZ/10);
2672 }
1da177e4
LT
2673
2674 /*
2675 * We do this so kswapd doesn't build up large priorities for
2676 * example when it is freeing in parallel with allocators. It
2677 * matches the direct reclaim path behaviour in terms of impact
2678 * on zone->*_priority.
2679 */
a79311c1 2680 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4 2681 break;
9e3b2f8c 2682 } while (--sc.priority >= 0);
1da177e4 2683out:
99504748
MG
2684
2685 /*
2686 * order-0: All zones must meet high watermark for a balanced node
1741c877
MG
2687 * high-order: Balanced zones must make up at least 25% of the node
2688 * for the node to be balanced
99504748 2689 */
dc83edd9 2690 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
1da177e4 2691 cond_resched();
8357376d
RW
2692
2693 try_to_freeze();
2694
73ce02e9
KM
2695 /*
2696 * Fragmentation may mean that the system cannot be
2697 * rebalanced for high-order allocations in all zones.
2698 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2699 * it means the zones have been fully scanned and are still
2700 * not balanced. For high-order allocations, there is
2701 * little point trying all over again as kswapd may
2702 * infinite loop.
2703 *
2704 * Instead, recheck all watermarks at order-0 as they
2705 * are the most important. If watermarks are ok, kswapd will go
2706 * back to sleep. High-order users can still perform direct
2707 * reclaim if they wish.
2708 */
2709 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2710 order = sc.order = 0;
2711
1da177e4
LT
2712 goto loop_again;
2713 }
2714
99504748
MG
2715 /*
2716 * If kswapd was reclaiming at a higher order, it has the option of
2717 * sleeping without all zones being balanced. Before it does, it must
2718 * ensure that the watermarks for order-0 on *all* zones are met and
2719 * that the congestion flags are cleared. The congestion flag must
2720 * be cleared as kswapd is the only mechanism that clears the flag
2721 * and it is potentially going to sleep here.
2722 */
2723 if (order) {
7be62de9
RR
2724 int zones_need_compaction = 1;
2725
99504748
MG
2726 for (i = 0; i <= end_zone; i++) {
2727 struct zone *zone = pgdat->node_zones + i;
2728
2729 if (!populated_zone(zone))
2730 continue;
2731
9e3b2f8c
KK
2732 if (zone->all_unreclaimable &&
2733 sc.priority != DEF_PRIORITY)
99504748
MG
2734 continue;
2735
fe2c2a10 2736 /* Would compaction fail due to lack of free memory? */
496b919b
RR
2737 if (COMPACTION_BUILD &&
2738 compaction_suitable(zone, order) == COMPACT_SKIPPED)
fe2c2a10
RR
2739 goto loop_again;
2740
99504748
MG
2741 /* Confirm the zone is balanced for order-0 */
2742 if (!zone_watermark_ok(zone, 0,
2743 high_wmark_pages(zone), 0, 0)) {
2744 order = sc.order = 0;
2745 goto loop_again;
2746 }
2747
7be62de9
RR
2748 /* Check if the memory needs to be defragmented. */
2749 if (zone_watermark_ok(zone, order,
2750 low_wmark_pages(zone), *classzone_idx, 0))
2751 zones_need_compaction = 0;
2752
99504748
MG
2753 /* If balanced, clear the congested flag */
2754 zone_clear_flag(zone, ZONE_CONGESTED);
2755 }
7be62de9
RR
2756
2757 if (zones_need_compaction)
2758 compact_pgdat(pgdat, order);
99504748
MG
2759 }
2760
0abdee2b 2761 /*
5515061d 2762 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
2763 * makes a decision on the order we were last reclaiming at. However,
2764 * if another caller entered the allocator slow path while kswapd
2765 * was awake, order will remain at the higher level
2766 */
dc83edd9 2767 *classzone_idx = end_zone;
0abdee2b 2768 return order;
1da177e4
LT
2769}
2770
dc83edd9 2771static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
2772{
2773 long remaining = 0;
2774 DEFINE_WAIT(wait);
2775
2776 if (freezing(current) || kthread_should_stop())
2777 return;
2778
2779 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2780
2781 /* Try to sleep for a short interval */
5515061d 2782 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2783 remaining = schedule_timeout(HZ/10);
2784 finish_wait(&pgdat->kswapd_wait, &wait);
2785 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2786 }
2787
2788 /*
2789 * After a short sleep, check if it was a premature sleep. If not, then
2790 * go fully to sleep until explicitly woken up.
2791 */
5515061d 2792 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2793 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2794
2795 /*
2796 * vmstat counters are not perfectly accurate and the estimated
2797 * value for counters such as NR_FREE_PAGES can deviate from the
2798 * true value by nr_online_cpus * threshold. To avoid the zone
2799 * watermarks being breached while under pressure, we reduce the
2800 * per-cpu vmstat threshold while kswapd is awake and restore
2801 * them before going back to sleep.
2802 */
2803 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
2804
2805 if (!kthread_should_stop())
2806 schedule();
2807
f0bc0a60
KM
2808 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2809 } else {
2810 if (remaining)
2811 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2812 else
2813 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2814 }
2815 finish_wait(&pgdat->kswapd_wait, &wait);
2816}
2817
1da177e4
LT
2818/*
2819 * The background pageout daemon, started as a kernel thread
4f98a2fe 2820 * from the init process.
1da177e4
LT
2821 *
2822 * This basically trickles out pages so that we have _some_
2823 * free memory available even if there is no other activity
2824 * that frees anything up. This is needed for things like routing
2825 * etc, where we otherwise might have all activity going on in
2826 * asynchronous contexts that cannot page things out.
2827 *
2828 * If there are applications that are active memory-allocators
2829 * (most normal use), this basically shouldn't matter.
2830 */
2831static int kswapd(void *p)
2832{
215ddd66 2833 unsigned long order, new_order;
d2ebd0f6 2834 unsigned balanced_order;
215ddd66 2835 int classzone_idx, new_classzone_idx;
d2ebd0f6 2836 int balanced_classzone_idx;
1da177e4
LT
2837 pg_data_t *pgdat = (pg_data_t*)p;
2838 struct task_struct *tsk = current;
f0bc0a60 2839
1da177e4
LT
2840 struct reclaim_state reclaim_state = {
2841 .reclaimed_slab = 0,
2842 };
a70f7302 2843 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2844
cf40bd16
NP
2845 lockdep_set_current_reclaim_state(GFP_KERNEL);
2846
174596a0 2847 if (!cpumask_empty(cpumask))
c5f59f08 2848 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2849 current->reclaim_state = &reclaim_state;
2850
2851 /*
2852 * Tell the memory management that we're a "memory allocator",
2853 * and that if we need more memory we should get access to it
2854 * regardless (see "__alloc_pages()"). "kswapd" should
2855 * never get caught in the normal page freeing logic.
2856 *
2857 * (Kswapd normally doesn't need memory anyway, but sometimes
2858 * you need a small amount of memory in order to be able to
2859 * page out something else, and this flag essentially protects
2860 * us from recursively trying to free more memory as we're
2861 * trying to free the first piece of memory in the first place).
2862 */
930d9152 2863 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2864 set_freezable();
1da177e4 2865
215ddd66 2866 order = new_order = 0;
d2ebd0f6 2867 balanced_order = 0;
215ddd66 2868 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 2869 balanced_classzone_idx = classzone_idx;
1da177e4 2870 for ( ; ; ) {
8fe23e05 2871 int ret;
3e1d1d28 2872
215ddd66
MG
2873 /*
2874 * If the last balance_pgdat was unsuccessful it's unlikely a
2875 * new request of a similar or harder type will succeed soon
2876 * so consider going to sleep on the basis we reclaimed at
2877 */
d2ebd0f6
AS
2878 if (balanced_classzone_idx >= new_classzone_idx &&
2879 balanced_order == new_order) {
215ddd66
MG
2880 new_order = pgdat->kswapd_max_order;
2881 new_classzone_idx = pgdat->classzone_idx;
2882 pgdat->kswapd_max_order = 0;
2883 pgdat->classzone_idx = pgdat->nr_zones - 1;
2884 }
2885
99504748 2886 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
2887 /*
2888 * Don't sleep if someone wants a larger 'order'
99504748 2889 * allocation or has tigher zone constraints
1da177e4
LT
2890 */
2891 order = new_order;
99504748 2892 classzone_idx = new_classzone_idx;
1da177e4 2893 } else {
d2ebd0f6
AS
2894 kswapd_try_to_sleep(pgdat, balanced_order,
2895 balanced_classzone_idx);
1da177e4 2896 order = pgdat->kswapd_max_order;
99504748 2897 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
2898 new_order = order;
2899 new_classzone_idx = classzone_idx;
4d40502e 2900 pgdat->kswapd_max_order = 0;
215ddd66 2901 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 2902 }
1da177e4 2903
8fe23e05
DR
2904 ret = try_to_freeze();
2905 if (kthread_should_stop())
2906 break;
2907
2908 /*
2909 * We can speed up thawing tasks if we don't call balance_pgdat
2910 * after returning from the refrigerator
2911 */
33906bc5
MG
2912 if (!ret) {
2913 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
2914 balanced_classzone_idx = classzone_idx;
2915 balanced_order = balance_pgdat(pgdat, order,
2916 &balanced_classzone_idx);
33906bc5 2917 }
1da177e4
LT
2918 }
2919 return 0;
2920}
2921
2922/*
2923 * A zone is low on free memory, so wake its kswapd task to service it.
2924 */
99504748 2925void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
2926{
2927 pg_data_t *pgdat;
2928
f3fe6512 2929 if (!populated_zone(zone))
1da177e4
LT
2930 return;
2931
88f5acf8 2932 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2933 return;
88f5acf8 2934 pgdat = zone->zone_pgdat;
99504748 2935 if (pgdat->kswapd_max_order < order) {
1da177e4 2936 pgdat->kswapd_max_order = order;
99504748
MG
2937 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2938 }
8d0986e2 2939 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2940 return;
88f5acf8
MG
2941 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2942 return;
2943
2944 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 2945 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2946}
2947
adea02a1
WF
2948/*
2949 * The reclaimable count would be mostly accurate.
2950 * The less reclaimable pages may be
2951 * - mlocked pages, which will be moved to unevictable list when encountered
2952 * - mapped pages, which may require several travels to be reclaimed
2953 * - dirty pages, which is not "instantly" reclaimable
2954 */
2955unsigned long global_reclaimable_pages(void)
4f98a2fe 2956{
adea02a1
WF
2957 int nr;
2958
2959 nr = global_page_state(NR_ACTIVE_FILE) +
2960 global_page_state(NR_INACTIVE_FILE);
2961
2962 if (nr_swap_pages > 0)
2963 nr += global_page_state(NR_ACTIVE_ANON) +
2964 global_page_state(NR_INACTIVE_ANON);
2965
2966 return nr;
2967}
2968
2969unsigned long zone_reclaimable_pages(struct zone *zone)
2970{
2971 int nr;
2972
2973 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2974 zone_page_state(zone, NR_INACTIVE_FILE);
2975
2976 if (nr_swap_pages > 0)
2977 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2978 zone_page_state(zone, NR_INACTIVE_ANON);
2979
2980 return nr;
4f98a2fe
RR
2981}
2982
c6f37f12 2983#ifdef CONFIG_HIBERNATION
1da177e4 2984/*
7b51755c 2985 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2986 * freed pages.
2987 *
2988 * Rather than trying to age LRUs the aim is to preserve the overall
2989 * LRU order by reclaiming preferentially
2990 * inactive > active > active referenced > active mapped
1da177e4 2991 */
7b51755c 2992unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2993{
d6277db4 2994 struct reclaim_state reclaim_state;
d6277db4 2995 struct scan_control sc = {
7b51755c
KM
2996 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2997 .may_swap = 1,
2998 .may_unmap = 1,
d6277db4 2999 .may_writepage = 1,
7b51755c
KM
3000 .nr_to_reclaim = nr_to_reclaim,
3001 .hibernation_mode = 1,
7b51755c 3002 .order = 0,
9e3b2f8c 3003 .priority = DEF_PRIORITY,
1da177e4 3004 };
a09ed5e0
YH
3005 struct shrink_control shrink = {
3006 .gfp_mask = sc.gfp_mask,
3007 };
3008 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3009 struct task_struct *p = current;
3010 unsigned long nr_reclaimed;
1da177e4 3011
7b51755c
KM
3012 p->flags |= PF_MEMALLOC;
3013 lockdep_set_current_reclaim_state(sc.gfp_mask);
3014 reclaim_state.reclaimed_slab = 0;
3015 p->reclaim_state = &reclaim_state;
d6277db4 3016
a09ed5e0 3017 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 3018
7b51755c
KM
3019 p->reclaim_state = NULL;
3020 lockdep_clear_current_reclaim_state();
3021 p->flags &= ~PF_MEMALLOC;
d6277db4 3022
7b51755c 3023 return nr_reclaimed;
1da177e4 3024}
c6f37f12 3025#endif /* CONFIG_HIBERNATION */
1da177e4 3026
1da177e4
LT
3027/* It's optimal to keep kswapds on the same CPUs as their memory, but
3028 not required for correctness. So if the last cpu in a node goes
3029 away, we get changed to run anywhere: as the first one comes back,
3030 restore their cpu bindings. */
9c7b216d 3031static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 3032 unsigned long action, void *hcpu)
1da177e4 3033{
58c0a4a7 3034 int nid;
1da177e4 3035
8bb78442 3036 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 3037 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 3038 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3039 const struct cpumask *mask;
3040
3041 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3042
3e597945 3043 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3044 /* One of our CPUs online: restore mask */
c5f59f08 3045 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3046 }
3047 }
3048 return NOTIFY_OK;
3049}
1da177e4 3050
3218ae14
YG
3051/*
3052 * This kswapd start function will be called by init and node-hot-add.
3053 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3054 */
3055int kswapd_run(int nid)
3056{
3057 pg_data_t *pgdat = NODE_DATA(nid);
3058 int ret = 0;
3059
3060 if (pgdat->kswapd)
3061 return 0;
3062
3063 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3064 if (IS_ERR(pgdat->kswapd)) {
3065 /* failure at boot is fatal */
3066 BUG_ON(system_state == SYSTEM_BOOTING);
3067 printk("Failed to start kswapd on node %d\n",nid);
3068 ret = -1;
3069 }
3070 return ret;
3071}
3072
8fe23e05 3073/*
d8adde17
JL
3074 * Called by memory hotplug when all memory in a node is offlined. Caller must
3075 * hold lock_memory_hotplug().
8fe23e05
DR
3076 */
3077void kswapd_stop(int nid)
3078{
3079 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3080
d8adde17 3081 if (kswapd) {
8fe23e05 3082 kthread_stop(kswapd);
d8adde17
JL
3083 NODE_DATA(nid)->kswapd = NULL;
3084 }
8fe23e05
DR
3085}
3086
1da177e4
LT
3087static int __init kswapd_init(void)
3088{
3218ae14 3089 int nid;
69e05944 3090
1da177e4 3091 swap_setup();
9422ffba 3092 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 3093 kswapd_run(nid);
1da177e4
LT
3094 hotcpu_notifier(cpu_callback, 0);
3095 return 0;
3096}
3097
3098module_init(kswapd_init)
9eeff239
CL
3099
3100#ifdef CONFIG_NUMA
3101/*
3102 * Zone reclaim mode
3103 *
3104 * If non-zero call zone_reclaim when the number of free pages falls below
3105 * the watermarks.
9eeff239
CL
3106 */
3107int zone_reclaim_mode __read_mostly;
3108
1b2ffb78 3109#define RECLAIM_OFF 0
7d03431c 3110#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3111#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3112#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3113
a92f7126
CL
3114/*
3115 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3116 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3117 * a zone.
3118 */
3119#define ZONE_RECLAIM_PRIORITY 4
3120
9614634f
CL
3121/*
3122 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3123 * occur.
3124 */
3125int sysctl_min_unmapped_ratio = 1;
3126
0ff38490
CL
3127/*
3128 * If the number of slab pages in a zone grows beyond this percentage then
3129 * slab reclaim needs to occur.
3130 */
3131int sysctl_min_slab_ratio = 5;
3132
90afa5de
MG
3133static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3134{
3135 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3136 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3137 zone_page_state(zone, NR_ACTIVE_FILE);
3138
3139 /*
3140 * It's possible for there to be more file mapped pages than
3141 * accounted for by the pages on the file LRU lists because
3142 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3143 */
3144 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3145}
3146
3147/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3148static long zone_pagecache_reclaimable(struct zone *zone)
3149{
3150 long nr_pagecache_reclaimable;
3151 long delta = 0;
3152
3153 /*
3154 * If RECLAIM_SWAP is set, then all file pages are considered
3155 * potentially reclaimable. Otherwise, we have to worry about
3156 * pages like swapcache and zone_unmapped_file_pages() provides
3157 * a better estimate
3158 */
3159 if (zone_reclaim_mode & RECLAIM_SWAP)
3160 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3161 else
3162 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3163
3164 /* If we can't clean pages, remove dirty pages from consideration */
3165 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3166 delta += zone_page_state(zone, NR_FILE_DIRTY);
3167
3168 /* Watch for any possible underflows due to delta */
3169 if (unlikely(delta > nr_pagecache_reclaimable))
3170 delta = nr_pagecache_reclaimable;
3171
3172 return nr_pagecache_reclaimable - delta;
3173}
3174
9eeff239
CL
3175/*
3176 * Try to free up some pages from this zone through reclaim.
3177 */
179e9639 3178static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3179{
7fb2d46d 3180 /* Minimum pages needed in order to stay on node */
69e05944 3181 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3182 struct task_struct *p = current;
3183 struct reclaim_state reclaim_state;
179e9639
AM
3184 struct scan_control sc = {
3185 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3186 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3187 .may_swap = 1,
22fba335
KM
3188 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3189 SWAP_CLUSTER_MAX),
179e9639 3190 .gfp_mask = gfp_mask,
bd2f6199 3191 .order = order,
9e3b2f8c 3192 .priority = ZONE_RECLAIM_PRIORITY,
179e9639 3193 };
a09ed5e0
YH
3194 struct shrink_control shrink = {
3195 .gfp_mask = sc.gfp_mask,
3196 };
15748048 3197 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3198
9eeff239 3199 cond_resched();
d4f7796e
CL
3200 /*
3201 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3202 * and we also need to be able to write out pages for RECLAIM_WRITE
3203 * and RECLAIM_SWAP.
3204 */
3205 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3206 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3207 reclaim_state.reclaimed_slab = 0;
3208 p->reclaim_state = &reclaim_state;
c84db23c 3209
90afa5de 3210 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3211 /*
3212 * Free memory by calling shrink zone with increasing
3213 * priorities until we have enough memory freed.
3214 */
0ff38490 3215 do {
9e3b2f8c
KK
3216 shrink_zone(zone, &sc);
3217 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3218 }
c84db23c 3219
15748048
KM
3220 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3221 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3222 /*
7fb2d46d 3223 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3224 * many pages were freed in this zone. So we take the current
3225 * number of slab pages and shake the slab until it is reduced
3226 * by the same nr_pages that we used for reclaiming unmapped
3227 * pages.
2a16e3f4 3228 *
0ff38490
CL
3229 * Note that shrink_slab will free memory on all zones and may
3230 * take a long time.
2a16e3f4 3231 */
4dc4b3d9
KM
3232 for (;;) {
3233 unsigned long lru_pages = zone_reclaimable_pages(zone);
3234
3235 /* No reclaimable slab or very low memory pressure */
1495f230 3236 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3237 break;
3238
3239 /* Freed enough memory */
3240 nr_slab_pages1 = zone_page_state(zone,
3241 NR_SLAB_RECLAIMABLE);
3242 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3243 break;
3244 }
83e33a47
CL
3245
3246 /*
3247 * Update nr_reclaimed by the number of slab pages we
3248 * reclaimed from this zone.
3249 */
15748048
KM
3250 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3251 if (nr_slab_pages1 < nr_slab_pages0)
3252 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3253 }
3254
9eeff239 3255 p->reclaim_state = NULL;
d4f7796e 3256 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3257 lockdep_clear_current_reclaim_state();
a79311c1 3258 return sc.nr_reclaimed >= nr_pages;
9eeff239 3259}
179e9639
AM
3260
3261int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3262{
179e9639 3263 int node_id;
d773ed6b 3264 int ret;
179e9639
AM
3265
3266 /*
0ff38490
CL
3267 * Zone reclaim reclaims unmapped file backed pages and
3268 * slab pages if we are over the defined limits.
34aa1330 3269 *
9614634f
CL
3270 * A small portion of unmapped file backed pages is needed for
3271 * file I/O otherwise pages read by file I/O will be immediately
3272 * thrown out if the zone is overallocated. So we do not reclaim
3273 * if less than a specified percentage of the zone is used by
3274 * unmapped file backed pages.
179e9639 3275 */
90afa5de
MG
3276 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3277 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3278 return ZONE_RECLAIM_FULL;
179e9639 3279
93e4a89a 3280 if (zone->all_unreclaimable)
fa5e084e 3281 return ZONE_RECLAIM_FULL;
d773ed6b 3282
179e9639 3283 /*
d773ed6b 3284 * Do not scan if the allocation should not be delayed.
179e9639 3285 */
d773ed6b 3286 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3287 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3288
3289 /*
3290 * Only run zone reclaim on the local zone or on zones that do not
3291 * have associated processors. This will favor the local processor
3292 * over remote processors and spread off node memory allocations
3293 * as wide as possible.
3294 */
89fa3024 3295 node_id = zone_to_nid(zone);
37c0708d 3296 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3297 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3298
3299 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3300 return ZONE_RECLAIM_NOSCAN;
3301
d773ed6b
DR
3302 ret = __zone_reclaim(zone, gfp_mask, order);
3303 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3304
24cf7251
MG
3305 if (!ret)
3306 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3307
d773ed6b 3308 return ret;
179e9639 3309}
9eeff239 3310#endif
894bc310 3311
894bc310
LS
3312/*
3313 * page_evictable - test whether a page is evictable
3314 * @page: the page to test
3315 * @vma: the VMA in which the page is or will be mapped, may be NULL
3316 *
3317 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
3318 * lists vs unevictable list. The vma argument is !NULL when called from the
3319 * fault path to determine how to instantate a new page.
894bc310
LS
3320 *
3321 * Reasons page might not be evictable:
ba9ddf49 3322 * (1) page's mapping marked unevictable
b291f000 3323 * (2) page is part of an mlocked VMA
ba9ddf49 3324 *
894bc310
LS
3325 */
3326int page_evictable(struct page *page, struct vm_area_struct *vma)
3327{
3328
ba9ddf49
LS
3329 if (mapping_unevictable(page_mapping(page)))
3330 return 0;
3331
096a7cf4 3332 if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
b291f000 3333 return 0;
894bc310
LS
3334
3335 return 1;
3336}
89e004ea 3337
85046579 3338#ifdef CONFIG_SHMEM
89e004ea 3339/**
24513264
HD
3340 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3341 * @pages: array of pages to check
3342 * @nr_pages: number of pages to check
89e004ea 3343 *
24513264 3344 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3345 *
3346 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3347 */
24513264 3348void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3349{
925b7673 3350 struct lruvec *lruvec;
24513264
HD
3351 struct zone *zone = NULL;
3352 int pgscanned = 0;
3353 int pgrescued = 0;
3354 int i;
89e004ea 3355
24513264
HD
3356 for (i = 0; i < nr_pages; i++) {
3357 struct page *page = pages[i];
3358 struct zone *pagezone;
89e004ea 3359
24513264
HD
3360 pgscanned++;
3361 pagezone = page_zone(page);
3362 if (pagezone != zone) {
3363 if (zone)
3364 spin_unlock_irq(&zone->lru_lock);
3365 zone = pagezone;
3366 spin_lock_irq(&zone->lru_lock);
3367 }
fa9add64 3368 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3369
24513264
HD
3370 if (!PageLRU(page) || !PageUnevictable(page))
3371 continue;
89e004ea 3372
24513264
HD
3373 if (page_evictable(page, NULL)) {
3374 enum lru_list lru = page_lru_base_type(page);
3375
3376 VM_BUG_ON(PageActive(page));
3377 ClearPageUnevictable(page);
fa9add64
HD
3378 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3379 add_page_to_lru_list(page, lruvec, lru);
24513264 3380 pgrescued++;
89e004ea 3381 }
24513264 3382 }
89e004ea 3383
24513264
HD
3384 if (zone) {
3385 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3386 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3387 spin_unlock_irq(&zone->lru_lock);
89e004ea 3388 }
89e004ea 3389}
85046579 3390#endif /* CONFIG_SHMEM */
af936a16 3391
264e56d8 3392static void warn_scan_unevictable_pages(void)
af936a16 3393{
264e56d8 3394 printk_once(KERN_WARNING
25bd91bd 3395 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3396 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3397 "one, please send an email to linux-mm@kvack.org.\n",
3398 current->comm);
af936a16
LS
3399}
3400
3401/*
3402 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3403 * all nodes' unevictable lists for evictable pages
3404 */
3405unsigned long scan_unevictable_pages;
3406
3407int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3408 void __user *buffer,
af936a16
LS
3409 size_t *length, loff_t *ppos)
3410{
264e56d8 3411 warn_scan_unevictable_pages();
8d65af78 3412 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3413 scan_unevictable_pages = 0;
3414 return 0;
3415}
3416
e4455abb 3417#ifdef CONFIG_NUMA
af936a16
LS
3418/*
3419 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3420 * a specified node's per zone unevictable lists for evictable pages.
3421 */
3422
10fbcf4c
KS
3423static ssize_t read_scan_unevictable_node(struct device *dev,
3424 struct device_attribute *attr,
af936a16
LS
3425 char *buf)
3426{
264e56d8 3427 warn_scan_unevictable_pages();
af936a16
LS
3428 return sprintf(buf, "0\n"); /* always zero; should fit... */
3429}
3430
10fbcf4c
KS
3431static ssize_t write_scan_unevictable_node(struct device *dev,
3432 struct device_attribute *attr,
af936a16
LS
3433 const char *buf, size_t count)
3434{
264e56d8 3435 warn_scan_unevictable_pages();
af936a16
LS
3436 return 1;
3437}
3438
3439
10fbcf4c 3440static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3441 read_scan_unevictable_node,
3442 write_scan_unevictable_node);
3443
3444int scan_unevictable_register_node(struct node *node)
3445{
10fbcf4c 3446 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3447}
3448
3449void scan_unevictable_unregister_node(struct node *node)
3450{
10fbcf4c 3451 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3452}
e4455abb 3453#endif