]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/vmscan.c
mm: add a gfp-translate script to help understand page allocation failure reports
[mirror_ubuntu-artful-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
1da177e4
LT
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
0f8053a5
NP
49#include "internal.h"
50
1da177e4 51struct scan_control {
1da177e4
LT
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
54
a79311c1
RR
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed;
57
1da177e4 58 /* This context's GFP mask */
6daa0e28 59 gfp_t gfp_mask;
1da177e4
LT
60
61 int may_writepage;
62
a6dc60f8
JW
63 /* Can mapped pages be reclaimed? */
64 int may_unmap;
f1fd1067 65
2e2e4259
KM
66 /* Can pages be swapped as part of reclaim? */
67 int may_swap;
68
1da177e4
LT
69 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
70 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
71 * In this context, it doesn't matter that we scan the
72 * whole list at once. */
73 int swap_cluster_max;
d6277db4
RW
74
75 int swappiness;
408d8544
NP
76
77 int all_unreclaimable;
5ad333eb
AW
78
79 int order;
66e1707b
BS
80
81 /* Which cgroup do we reclaim from */
82 struct mem_cgroup *mem_cgroup;
83
327c0e96
KH
84 /*
85 * Nodemask of nodes allowed by the caller. If NULL, all nodes
86 * are scanned.
87 */
88 nodemask_t *nodemask;
89
66e1707b
BS
90 /* Pluggable isolate pages callback */
91 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
92 unsigned long *scanned, int order, int mode,
93 struct zone *z, struct mem_cgroup *mem_cont,
4f98a2fe 94 int active, int file);
1da177e4
LT
95};
96
1da177e4
LT
97#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99#ifdef ARCH_HAS_PREFETCH
100#define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
107 } \
108 } while (0)
109#else
110#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111#endif
112
113#ifdef ARCH_HAS_PREFETCHW
114#define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
121 } \
122 } while (0)
123#else
124#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127/*
128 * From 0 .. 100. Higher means more swappy.
129 */
130int vm_swappiness = 60;
bd1e22b8 131long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
132
133static LIST_HEAD(shrinker_list);
134static DECLARE_RWSEM(shrinker_rwsem);
135
00f0b825 136#ifdef CONFIG_CGROUP_MEM_RES_CTLR
e72e2bd6 137#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
91a45470 138#else
e72e2bd6 139#define scanning_global_lru(sc) (1)
91a45470
KH
140#endif
141
6e901571
KM
142static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143 struct scan_control *sc)
144{
e72e2bd6 145 if (!scanning_global_lru(sc))
3e2f41f1
KM
146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147
6e901571
KM
148 return &zone->reclaim_stat;
149}
150
c9f299d9
KM
151static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
152 enum lru_list lru)
153{
e72e2bd6 154 if (!scanning_global_lru(sc))
a3d8e054
KM
155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156
c9f299d9
KM
157 return zone_page_state(zone, NR_LRU_BASE + lru);
158}
159
160
1da177e4
LT
161/*
162 * Add a shrinker callback to be called from the vm
163 */
8e1f936b 164void register_shrinker(struct shrinker *shrinker)
1da177e4 165{
8e1f936b
RR
166 shrinker->nr = 0;
167 down_write(&shrinker_rwsem);
168 list_add_tail(&shrinker->list, &shrinker_list);
169 up_write(&shrinker_rwsem);
1da177e4 170}
8e1f936b 171EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
172
173/*
174 * Remove one
175 */
8e1f936b 176void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
177{
178 down_write(&shrinker_rwsem);
179 list_del(&shrinker->list);
180 up_write(&shrinker_rwsem);
1da177e4 181}
8e1f936b 182EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
183
184#define SHRINK_BATCH 128
185/*
186 * Call the shrink functions to age shrinkable caches
187 *
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object. With this in mind we age equal
190 * percentages of the lru and ageable caches. This should balance the seeks
191 * generated by these structures.
192 *
183ff22b 193 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
194 * slab to avoid swapping.
195 *
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197 *
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt. It is used for balancing
200 * slab reclaim versus page reclaim.
b15e0905 201 *
202 * Returns the number of slab objects which we shrunk.
1da177e4 203 */
69e05944
AM
204unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205 unsigned long lru_pages)
1da177e4
LT
206{
207 struct shrinker *shrinker;
69e05944 208 unsigned long ret = 0;
1da177e4
LT
209
210 if (scanned == 0)
211 scanned = SWAP_CLUSTER_MAX;
212
213 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 214 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
215
216 list_for_each_entry(shrinker, &shrinker_list, list) {
217 unsigned long long delta;
218 unsigned long total_scan;
8e1f936b 219 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
1da177e4
LT
220
221 delta = (4 * scanned) / shrinker->seeks;
ea164d73 222 delta *= max_pass;
1da177e4
LT
223 do_div(delta, lru_pages + 1);
224 shrinker->nr += delta;
ea164d73 225 if (shrinker->nr < 0) {
88c3bd70
DR
226 printk(KERN_ERR "shrink_slab: %pF negative objects to "
227 "delete nr=%ld\n",
228 shrinker->shrink, shrinker->nr);
ea164d73
AA
229 shrinker->nr = max_pass;
230 }
231
232 /*
233 * Avoid risking looping forever due to too large nr value:
234 * never try to free more than twice the estimate number of
235 * freeable entries.
236 */
237 if (shrinker->nr > max_pass * 2)
238 shrinker->nr = max_pass * 2;
1da177e4
LT
239
240 total_scan = shrinker->nr;
241 shrinker->nr = 0;
242
243 while (total_scan >= SHRINK_BATCH) {
244 long this_scan = SHRINK_BATCH;
245 int shrink_ret;
b15e0905 246 int nr_before;
1da177e4 247
8e1f936b
RR
248 nr_before = (*shrinker->shrink)(0, gfp_mask);
249 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
1da177e4
LT
250 if (shrink_ret == -1)
251 break;
b15e0905 252 if (shrink_ret < nr_before)
253 ret += nr_before - shrink_ret;
f8891e5e 254 count_vm_events(SLABS_SCANNED, this_scan);
1da177e4
LT
255 total_scan -= this_scan;
256
257 cond_resched();
258 }
259
260 shrinker->nr += total_scan;
261 }
262 up_read(&shrinker_rwsem);
b15e0905 263 return ret;
1da177e4
LT
264}
265
266/* Called without lock on whether page is mapped, so answer is unstable */
267static inline int page_mapping_inuse(struct page *page)
268{
269 struct address_space *mapping;
270
271 /* Page is in somebody's page tables. */
272 if (page_mapped(page))
273 return 1;
274
275 /* Be more reluctant to reclaim swapcache than pagecache */
276 if (PageSwapCache(page))
277 return 1;
278
279 mapping = page_mapping(page);
280 if (!mapping)
281 return 0;
282
283 /* File is mmap'd by somebody? */
284 return mapping_mapped(mapping);
285}
286
287static inline int is_page_cache_freeable(struct page *page)
288{
266cf658 289 return page_count(page) - !!page_has_private(page) == 2;
1da177e4
LT
290}
291
292static int may_write_to_queue(struct backing_dev_info *bdi)
293{
930d9152 294 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
295 return 1;
296 if (!bdi_write_congested(bdi))
297 return 1;
298 if (bdi == current->backing_dev_info)
299 return 1;
300 return 0;
301}
302
303/*
304 * We detected a synchronous write error writing a page out. Probably
305 * -ENOSPC. We need to propagate that into the address_space for a subsequent
306 * fsync(), msync() or close().
307 *
308 * The tricky part is that after writepage we cannot touch the mapping: nothing
309 * prevents it from being freed up. But we have a ref on the page and once
310 * that page is locked, the mapping is pinned.
311 *
312 * We're allowed to run sleeping lock_page() here because we know the caller has
313 * __GFP_FS.
314 */
315static void handle_write_error(struct address_space *mapping,
316 struct page *page, int error)
317{
318 lock_page(page);
3e9f45bd
GC
319 if (page_mapping(page) == mapping)
320 mapping_set_error(mapping, error);
1da177e4
LT
321 unlock_page(page);
322}
323
c661b078
AW
324/* Request for sync pageout. */
325enum pageout_io {
326 PAGEOUT_IO_ASYNC,
327 PAGEOUT_IO_SYNC,
328};
329
04e62a29
CL
330/* possible outcome of pageout() */
331typedef enum {
332 /* failed to write page out, page is locked */
333 PAGE_KEEP,
334 /* move page to the active list, page is locked */
335 PAGE_ACTIVATE,
336 /* page has been sent to the disk successfully, page is unlocked */
337 PAGE_SUCCESS,
338 /* page is clean and locked */
339 PAGE_CLEAN,
340} pageout_t;
341
1da177e4 342/*
1742f19f
AM
343 * pageout is called by shrink_page_list() for each dirty page.
344 * Calls ->writepage().
1da177e4 345 */
c661b078
AW
346static pageout_t pageout(struct page *page, struct address_space *mapping,
347 enum pageout_io sync_writeback)
1da177e4
LT
348{
349 /*
350 * If the page is dirty, only perform writeback if that write
351 * will be non-blocking. To prevent this allocation from being
352 * stalled by pagecache activity. But note that there may be
353 * stalls if we need to run get_block(). We could test
354 * PagePrivate for that.
355 *
356 * If this process is currently in generic_file_write() against
357 * this page's queue, we can perform writeback even if that
358 * will block.
359 *
360 * If the page is swapcache, write it back even if that would
361 * block, for some throttling. This happens by accident, because
362 * swap_backing_dev_info is bust: it doesn't reflect the
363 * congestion state of the swapdevs. Easy to fix, if needed.
364 * See swapfile.c:page_queue_congested().
365 */
366 if (!is_page_cache_freeable(page))
367 return PAGE_KEEP;
368 if (!mapping) {
369 /*
370 * Some data journaling orphaned pages can have
371 * page->mapping == NULL while being dirty with clean buffers.
372 */
266cf658 373 if (page_has_private(page)) {
1da177e4
LT
374 if (try_to_free_buffers(page)) {
375 ClearPageDirty(page);
d40cee24 376 printk("%s: orphaned page\n", __func__);
1da177e4
LT
377 return PAGE_CLEAN;
378 }
379 }
380 return PAGE_KEEP;
381 }
382 if (mapping->a_ops->writepage == NULL)
383 return PAGE_ACTIVATE;
384 if (!may_write_to_queue(mapping->backing_dev_info))
385 return PAGE_KEEP;
386
387 if (clear_page_dirty_for_io(page)) {
388 int res;
389 struct writeback_control wbc = {
390 .sync_mode = WB_SYNC_NONE,
391 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
392 .range_start = 0,
393 .range_end = LLONG_MAX,
1da177e4
LT
394 .nonblocking = 1,
395 .for_reclaim = 1,
396 };
397
398 SetPageReclaim(page);
399 res = mapping->a_ops->writepage(page, &wbc);
400 if (res < 0)
401 handle_write_error(mapping, page, res);
994fc28c 402 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
403 ClearPageReclaim(page);
404 return PAGE_ACTIVATE;
405 }
c661b078
AW
406
407 /*
408 * Wait on writeback if requested to. This happens when
409 * direct reclaiming a large contiguous area and the
410 * first attempt to free a range of pages fails.
411 */
412 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
413 wait_on_page_writeback(page);
414
1da177e4
LT
415 if (!PageWriteback(page)) {
416 /* synchronous write or broken a_ops? */
417 ClearPageReclaim(page);
418 }
e129b5c2 419 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
420 return PAGE_SUCCESS;
421 }
422
423 return PAGE_CLEAN;
424}
425
a649fd92 426/*
e286781d
NP
427 * Same as remove_mapping, but if the page is removed from the mapping, it
428 * gets returned with a refcount of 0.
a649fd92 429 */
e286781d 430static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 431{
28e4d965
NP
432 BUG_ON(!PageLocked(page));
433 BUG_ON(mapping != page_mapping(page));
49d2e9cc 434
19fd6231 435 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 436 /*
0fd0e6b0
NP
437 * The non racy check for a busy page.
438 *
439 * Must be careful with the order of the tests. When someone has
440 * a ref to the page, it may be possible that they dirty it then
441 * drop the reference. So if PageDirty is tested before page_count
442 * here, then the following race may occur:
443 *
444 * get_user_pages(&page);
445 * [user mapping goes away]
446 * write_to(page);
447 * !PageDirty(page) [good]
448 * SetPageDirty(page);
449 * put_page(page);
450 * !page_count(page) [good, discard it]
451 *
452 * [oops, our write_to data is lost]
453 *
454 * Reversing the order of the tests ensures such a situation cannot
455 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
456 * load is not satisfied before that of page->_count.
457 *
458 * Note that if SetPageDirty is always performed via set_page_dirty,
459 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 460 */
e286781d 461 if (!page_freeze_refs(page, 2))
49d2e9cc 462 goto cannot_free;
e286781d
NP
463 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
464 if (unlikely(PageDirty(page))) {
465 page_unfreeze_refs(page, 2);
49d2e9cc 466 goto cannot_free;
e286781d 467 }
49d2e9cc
CL
468
469 if (PageSwapCache(page)) {
470 swp_entry_t swap = { .val = page_private(page) };
471 __delete_from_swap_cache(page);
19fd6231 472 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 473 swapcache_free(swap, page);
e286781d
NP
474 } else {
475 __remove_from_page_cache(page);
19fd6231 476 spin_unlock_irq(&mapping->tree_lock);
e767e056 477 mem_cgroup_uncharge_cache_page(page);
49d2e9cc
CL
478 }
479
49d2e9cc
CL
480 return 1;
481
482cannot_free:
19fd6231 483 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
484 return 0;
485}
486
e286781d
NP
487/*
488 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
489 * someone else has a ref on the page, abort and return 0. If it was
490 * successfully detached, return 1. Assumes the caller has a single ref on
491 * this page.
492 */
493int remove_mapping(struct address_space *mapping, struct page *page)
494{
495 if (__remove_mapping(mapping, page)) {
496 /*
497 * Unfreezing the refcount with 1 rather than 2 effectively
498 * drops the pagecache ref for us without requiring another
499 * atomic operation.
500 */
501 page_unfreeze_refs(page, 1);
502 return 1;
503 }
504 return 0;
505}
506
894bc310
LS
507/**
508 * putback_lru_page - put previously isolated page onto appropriate LRU list
509 * @page: page to be put back to appropriate lru list
510 *
511 * Add previously isolated @page to appropriate LRU list.
512 * Page may still be unevictable for other reasons.
513 *
514 * lru_lock must not be held, interrupts must be enabled.
515 */
894bc310
LS
516void putback_lru_page(struct page *page)
517{
518 int lru;
519 int active = !!TestClearPageActive(page);
bbfd28ee 520 int was_unevictable = PageUnevictable(page);
894bc310
LS
521
522 VM_BUG_ON(PageLRU(page));
523
524redo:
525 ClearPageUnevictable(page);
526
527 if (page_evictable(page, NULL)) {
528 /*
529 * For evictable pages, we can use the cache.
530 * In event of a race, worst case is we end up with an
531 * unevictable page on [in]active list.
532 * We know how to handle that.
533 */
534 lru = active + page_is_file_cache(page);
535 lru_cache_add_lru(page, lru);
536 } else {
537 /*
538 * Put unevictable pages directly on zone's unevictable
539 * list.
540 */
541 lru = LRU_UNEVICTABLE;
542 add_page_to_unevictable_list(page);
543 }
894bc310
LS
544
545 /*
546 * page's status can change while we move it among lru. If an evictable
547 * page is on unevictable list, it never be freed. To avoid that,
548 * check after we added it to the list, again.
549 */
550 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
551 if (!isolate_lru_page(page)) {
552 put_page(page);
553 goto redo;
554 }
555 /* This means someone else dropped this page from LRU
556 * So, it will be freed or putback to LRU again. There is
557 * nothing to do here.
558 */
559 }
560
bbfd28ee
LS
561 if (was_unevictable && lru != LRU_UNEVICTABLE)
562 count_vm_event(UNEVICTABLE_PGRESCUED);
563 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
564 count_vm_event(UNEVICTABLE_PGCULLED);
565
894bc310
LS
566 put_page(page); /* drop ref from isolate */
567}
568
1da177e4 569/*
1742f19f 570 * shrink_page_list() returns the number of reclaimed pages
1da177e4 571 */
1742f19f 572static unsigned long shrink_page_list(struct list_head *page_list,
c661b078
AW
573 struct scan_control *sc,
574 enum pageout_io sync_writeback)
1da177e4
LT
575{
576 LIST_HEAD(ret_pages);
577 struct pagevec freed_pvec;
578 int pgactivate = 0;
05ff5137 579 unsigned long nr_reclaimed = 0;
1da177e4
LT
580
581 cond_resched();
582
583 pagevec_init(&freed_pvec, 1);
584 while (!list_empty(page_list)) {
585 struct address_space *mapping;
586 struct page *page;
587 int may_enter_fs;
588 int referenced;
589
590 cond_resched();
591
592 page = lru_to_page(page_list);
593 list_del(&page->lru);
594
529ae9aa 595 if (!trylock_page(page))
1da177e4
LT
596 goto keep;
597
725d704e 598 VM_BUG_ON(PageActive(page));
1da177e4
LT
599
600 sc->nr_scanned++;
80e43426 601
b291f000
NP
602 if (unlikely(!page_evictable(page, NULL)))
603 goto cull_mlocked;
894bc310 604
a6dc60f8 605 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
606 goto keep_locked;
607
1da177e4
LT
608 /* Double the slab pressure for mapped and swapcache pages */
609 if (page_mapped(page) || PageSwapCache(page))
610 sc->nr_scanned++;
611
c661b078
AW
612 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
613 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
614
615 if (PageWriteback(page)) {
616 /*
617 * Synchronous reclaim is performed in two passes,
618 * first an asynchronous pass over the list to
619 * start parallel writeback, and a second synchronous
620 * pass to wait for the IO to complete. Wait here
621 * for any page for which writeback has already
622 * started.
623 */
624 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
625 wait_on_page_writeback(page);
4dd4b920 626 else
c661b078
AW
627 goto keep_locked;
628 }
1da177e4 629
bed7161a 630 referenced = page_referenced(page, 1, sc->mem_cgroup);
1da177e4 631 /* In active use or really unfreeable? Activate it. */
5ad333eb
AW
632 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
633 referenced && page_mapping_inuse(page))
1da177e4
LT
634 goto activate_locked;
635
1da177e4
LT
636 /*
637 * Anonymous process memory has backing store?
638 * Try to allocate it some swap space here.
639 */
b291f000 640 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
641 if (!(sc->gfp_mask & __GFP_IO))
642 goto keep_locked;
ac47b003 643 if (!add_to_swap(page))
1da177e4 644 goto activate_locked;
63eb6b93 645 may_enter_fs = 1;
b291f000 646 }
1da177e4
LT
647
648 mapping = page_mapping(page);
1da177e4
LT
649
650 /*
651 * The page is mapped into the page tables of one or more
652 * processes. Try to unmap it here.
653 */
654 if (page_mapped(page) && mapping) {
a48d07af 655 switch (try_to_unmap(page, 0)) {
1da177e4
LT
656 case SWAP_FAIL:
657 goto activate_locked;
658 case SWAP_AGAIN:
659 goto keep_locked;
b291f000
NP
660 case SWAP_MLOCK:
661 goto cull_mlocked;
1da177e4
LT
662 case SWAP_SUCCESS:
663 ; /* try to free the page below */
664 }
665 }
666
667 if (PageDirty(page)) {
5ad333eb 668 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
1da177e4 669 goto keep_locked;
4dd4b920 670 if (!may_enter_fs)
1da177e4 671 goto keep_locked;
52a8363e 672 if (!sc->may_writepage)
1da177e4
LT
673 goto keep_locked;
674
675 /* Page is dirty, try to write it out here */
c661b078 676 switch (pageout(page, mapping, sync_writeback)) {
1da177e4
LT
677 case PAGE_KEEP:
678 goto keep_locked;
679 case PAGE_ACTIVATE:
680 goto activate_locked;
681 case PAGE_SUCCESS:
4dd4b920 682 if (PageWriteback(page) || PageDirty(page))
1da177e4
LT
683 goto keep;
684 /*
685 * A synchronous write - probably a ramdisk. Go
686 * ahead and try to reclaim the page.
687 */
529ae9aa 688 if (!trylock_page(page))
1da177e4
LT
689 goto keep;
690 if (PageDirty(page) || PageWriteback(page))
691 goto keep_locked;
692 mapping = page_mapping(page);
693 case PAGE_CLEAN:
694 ; /* try to free the page below */
695 }
696 }
697
698 /*
699 * If the page has buffers, try to free the buffer mappings
700 * associated with this page. If we succeed we try to free
701 * the page as well.
702 *
703 * We do this even if the page is PageDirty().
704 * try_to_release_page() does not perform I/O, but it is
705 * possible for a page to have PageDirty set, but it is actually
706 * clean (all its buffers are clean). This happens if the
707 * buffers were written out directly, with submit_bh(). ext3
894bc310 708 * will do this, as well as the blockdev mapping.
1da177e4
LT
709 * try_to_release_page() will discover that cleanness and will
710 * drop the buffers and mark the page clean - it can be freed.
711 *
712 * Rarely, pages can have buffers and no ->mapping. These are
713 * the pages which were not successfully invalidated in
714 * truncate_complete_page(). We try to drop those buffers here
715 * and if that worked, and the page is no longer mapped into
716 * process address space (page_count == 1) it can be freed.
717 * Otherwise, leave the page on the LRU so it is swappable.
718 */
266cf658 719 if (page_has_private(page)) {
1da177e4
LT
720 if (!try_to_release_page(page, sc->gfp_mask))
721 goto activate_locked;
e286781d
NP
722 if (!mapping && page_count(page) == 1) {
723 unlock_page(page);
724 if (put_page_testzero(page))
725 goto free_it;
726 else {
727 /*
728 * rare race with speculative reference.
729 * the speculative reference will free
730 * this page shortly, so we may
731 * increment nr_reclaimed here (and
732 * leave it off the LRU).
733 */
734 nr_reclaimed++;
735 continue;
736 }
737 }
1da177e4
LT
738 }
739
e286781d 740 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 741 goto keep_locked;
1da177e4 742
a978d6f5
NP
743 /*
744 * At this point, we have no other references and there is
745 * no way to pick any more up (removed from LRU, removed
746 * from pagecache). Can use non-atomic bitops now (and
747 * we obviously don't have to worry about waking up a process
748 * waiting on the page lock, because there are no references.
749 */
750 __clear_page_locked(page);
e286781d 751free_it:
05ff5137 752 nr_reclaimed++;
e286781d
NP
753 if (!pagevec_add(&freed_pvec, page)) {
754 __pagevec_free(&freed_pvec);
755 pagevec_reinit(&freed_pvec);
756 }
1da177e4
LT
757 continue;
758
b291f000 759cull_mlocked:
63d6c5ad
HD
760 if (PageSwapCache(page))
761 try_to_free_swap(page);
b291f000
NP
762 unlock_page(page);
763 putback_lru_page(page);
764 continue;
765
1da177e4 766activate_locked:
68a22394
RR
767 /* Not a candidate for swapping, so reclaim swap space. */
768 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 769 try_to_free_swap(page);
894bc310 770 VM_BUG_ON(PageActive(page));
1da177e4
LT
771 SetPageActive(page);
772 pgactivate++;
773keep_locked:
774 unlock_page(page);
775keep:
776 list_add(&page->lru, &ret_pages);
b291f000 777 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4
LT
778 }
779 list_splice(&ret_pages, page_list);
780 if (pagevec_count(&freed_pvec))
e286781d 781 __pagevec_free(&freed_pvec);
f8891e5e 782 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 783 return nr_reclaimed;
1da177e4
LT
784}
785
5ad333eb
AW
786/* LRU Isolation modes. */
787#define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
788#define ISOLATE_ACTIVE 1 /* Isolate active pages. */
789#define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
790
791/*
792 * Attempt to remove the specified page from its LRU. Only take this page
793 * if it is of the appropriate PageActive status. Pages which are being
794 * freed elsewhere are also ignored.
795 *
796 * page: page to consider
797 * mode: one of the LRU isolation modes defined above
798 *
799 * returns 0 on success, -ve errno on failure.
800 */
4f98a2fe 801int __isolate_lru_page(struct page *page, int mode, int file)
5ad333eb
AW
802{
803 int ret = -EINVAL;
804
805 /* Only take pages on the LRU. */
806 if (!PageLRU(page))
807 return ret;
808
809 /*
810 * When checking the active state, we need to be sure we are
811 * dealing with comparible boolean values. Take the logical not
812 * of each.
813 */
814 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
815 return ret;
816
4f98a2fe
RR
817 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
818 return ret;
819
894bc310
LS
820 /*
821 * When this function is being called for lumpy reclaim, we
822 * initially look into all LRU pages, active, inactive and
823 * unevictable; only give shrink_page_list evictable pages.
824 */
825 if (PageUnevictable(page))
826 return ret;
827
5ad333eb 828 ret = -EBUSY;
08e552c6 829
5ad333eb
AW
830 if (likely(get_page_unless_zero(page))) {
831 /*
832 * Be careful not to clear PageLRU until after we're
833 * sure the page is not being freed elsewhere -- the
834 * page release code relies on it.
835 */
836 ClearPageLRU(page);
837 ret = 0;
08e552c6 838 mem_cgroup_del_lru(page);
5ad333eb
AW
839 }
840
841 return ret;
842}
843
1da177e4
LT
844/*
845 * zone->lru_lock is heavily contended. Some of the functions that
846 * shrink the lists perform better by taking out a batch of pages
847 * and working on them outside the LRU lock.
848 *
849 * For pagecache intensive workloads, this function is the hottest
850 * spot in the kernel (apart from copy_*_user functions).
851 *
852 * Appropriate locks must be held before calling this function.
853 *
854 * @nr_to_scan: The number of pages to look through on the list.
855 * @src: The LRU list to pull pages off.
856 * @dst: The temp list to put pages on to.
857 * @scanned: The number of pages that were scanned.
5ad333eb
AW
858 * @order: The caller's attempted allocation order
859 * @mode: One of the LRU isolation modes
4f98a2fe 860 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
861 *
862 * returns how many pages were moved onto *@dst.
863 */
69e05944
AM
864static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
865 struct list_head *src, struct list_head *dst,
4f98a2fe 866 unsigned long *scanned, int order, int mode, int file)
1da177e4 867{
69e05944 868 unsigned long nr_taken = 0;
c9b02d97 869 unsigned long scan;
1da177e4 870
c9b02d97 871 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
872 struct page *page;
873 unsigned long pfn;
874 unsigned long end_pfn;
875 unsigned long page_pfn;
876 int zone_id;
877
1da177e4
LT
878 page = lru_to_page(src);
879 prefetchw_prev_lru_page(page, src, flags);
880
725d704e 881 VM_BUG_ON(!PageLRU(page));
8d438f96 882
4f98a2fe 883 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
884 case 0:
885 list_move(&page->lru, dst);
7c8ee9a8 886 nr_taken++;
5ad333eb
AW
887 break;
888
889 case -EBUSY:
890 /* else it is being freed elsewhere */
891 list_move(&page->lru, src);
892 continue;
46453a6e 893
5ad333eb
AW
894 default:
895 BUG();
896 }
897
898 if (!order)
899 continue;
900
901 /*
902 * Attempt to take all pages in the order aligned region
903 * surrounding the tag page. Only take those pages of
904 * the same active state as that tag page. We may safely
905 * round the target page pfn down to the requested order
906 * as the mem_map is guarenteed valid out to MAX_ORDER,
907 * where that page is in a different zone we will detect
908 * it from its zone id and abort this block scan.
909 */
910 zone_id = page_zone_id(page);
911 page_pfn = page_to_pfn(page);
912 pfn = page_pfn & ~((1 << order) - 1);
913 end_pfn = pfn + (1 << order);
914 for (; pfn < end_pfn; pfn++) {
915 struct page *cursor_page;
916
917 /* The target page is in the block, ignore it. */
918 if (unlikely(pfn == page_pfn))
919 continue;
920
921 /* Avoid holes within the zone. */
922 if (unlikely(!pfn_valid_within(pfn)))
923 break;
924
925 cursor_page = pfn_to_page(pfn);
4f98a2fe 926
5ad333eb
AW
927 /* Check that we have not crossed a zone boundary. */
928 if (unlikely(page_zone_id(cursor_page) != zone_id))
929 continue;
4f98a2fe 930 switch (__isolate_lru_page(cursor_page, mode, file)) {
5ad333eb
AW
931 case 0:
932 list_move(&cursor_page->lru, dst);
933 nr_taken++;
934 scan++;
935 break;
936
937 case -EBUSY:
938 /* else it is being freed elsewhere */
939 list_move(&cursor_page->lru, src);
940 default:
894bc310 941 break; /* ! on LRU or wrong list */
5ad333eb
AW
942 }
943 }
1da177e4
LT
944 }
945
946 *scanned = scan;
947 return nr_taken;
948}
949
66e1707b
BS
950static unsigned long isolate_pages_global(unsigned long nr,
951 struct list_head *dst,
952 unsigned long *scanned, int order,
953 int mode, struct zone *z,
954 struct mem_cgroup *mem_cont,
4f98a2fe 955 int active, int file)
66e1707b 956{
4f98a2fe 957 int lru = LRU_BASE;
66e1707b 958 if (active)
4f98a2fe
RR
959 lru += LRU_ACTIVE;
960 if (file)
961 lru += LRU_FILE;
962 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
963 mode, !!file);
66e1707b
BS
964}
965
5ad333eb
AW
966/*
967 * clear_active_flags() is a helper for shrink_active_list(), clearing
968 * any active bits from the pages in the list.
969 */
4f98a2fe
RR
970static unsigned long clear_active_flags(struct list_head *page_list,
971 unsigned int *count)
5ad333eb
AW
972{
973 int nr_active = 0;
4f98a2fe 974 int lru;
5ad333eb
AW
975 struct page *page;
976
4f98a2fe
RR
977 list_for_each_entry(page, page_list, lru) {
978 lru = page_is_file_cache(page);
5ad333eb 979 if (PageActive(page)) {
4f98a2fe 980 lru += LRU_ACTIVE;
5ad333eb
AW
981 ClearPageActive(page);
982 nr_active++;
983 }
4f98a2fe
RR
984 count[lru]++;
985 }
5ad333eb
AW
986
987 return nr_active;
988}
989
62695a84
NP
990/**
991 * isolate_lru_page - tries to isolate a page from its LRU list
992 * @page: page to isolate from its LRU list
993 *
994 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
995 * vmstat statistic corresponding to whatever LRU list the page was on.
996 *
997 * Returns 0 if the page was removed from an LRU list.
998 * Returns -EBUSY if the page was not on an LRU list.
999 *
1000 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1001 * the active list, it will have PageActive set. If it was found on
1002 * the unevictable list, it will have the PageUnevictable bit set. That flag
1003 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1004 *
1005 * The vmstat statistic corresponding to the list on which the page was
1006 * found will be decremented.
1007 *
1008 * Restrictions:
1009 * (1) Must be called with an elevated refcount on the page. This is a
1010 * fundamentnal difference from isolate_lru_pages (which is called
1011 * without a stable reference).
1012 * (2) the lru_lock must not be held.
1013 * (3) interrupts must be enabled.
1014 */
1015int isolate_lru_page(struct page *page)
1016{
1017 int ret = -EBUSY;
1018
1019 if (PageLRU(page)) {
1020 struct zone *zone = page_zone(page);
1021
1022 spin_lock_irq(&zone->lru_lock);
1023 if (PageLRU(page) && get_page_unless_zero(page)) {
894bc310 1024 int lru = page_lru(page);
62695a84
NP
1025 ret = 0;
1026 ClearPageLRU(page);
4f98a2fe 1027
4f98a2fe 1028 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1029 }
1030 spin_unlock_irq(&zone->lru_lock);
1031 }
1032 return ret;
1033}
1034
1da177e4 1035/*
1742f19f
AM
1036 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1037 * of reclaimed pages
1da177e4 1038 */
1742f19f 1039static unsigned long shrink_inactive_list(unsigned long max_scan,
33c120ed
RR
1040 struct zone *zone, struct scan_control *sc,
1041 int priority, int file)
1da177e4
LT
1042{
1043 LIST_HEAD(page_list);
1044 struct pagevec pvec;
69e05944 1045 unsigned long nr_scanned = 0;
05ff5137 1046 unsigned long nr_reclaimed = 0;
6e901571 1047 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
78dc583d
KM
1048 int lumpy_reclaim = 0;
1049
1050 /*
1051 * If we need a large contiguous chunk of memory, or have
1052 * trouble getting a small set of contiguous pages, we
1053 * will reclaim both active and inactive pages.
1054 *
1055 * We use the same threshold as pageout congestion_wait below.
1056 */
1057 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1058 lumpy_reclaim = 1;
1059 else if (sc->order && priority < DEF_PRIORITY - 2)
1060 lumpy_reclaim = 1;
1da177e4
LT
1061
1062 pagevec_init(&pvec, 1);
1063
1064 lru_add_drain();
1065 spin_lock_irq(&zone->lru_lock);
69e05944 1066 do {
1da177e4 1067 struct page *page;
69e05944
AM
1068 unsigned long nr_taken;
1069 unsigned long nr_scan;
1070 unsigned long nr_freed;
5ad333eb 1071 unsigned long nr_active;
4f98a2fe 1072 unsigned int count[NR_LRU_LISTS] = { 0, };
78dc583d 1073 int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
1da177e4 1074
66e1707b 1075 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
4f98a2fe
RR
1076 &page_list, &nr_scan, sc->order, mode,
1077 zone, sc->mem_cgroup, 0, file);
1078 nr_active = clear_active_flags(&page_list, count);
e9187bdc 1079 __count_vm_events(PGDEACTIVATE, nr_active);
5ad333eb 1080
4f98a2fe
RR
1081 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1082 -count[LRU_ACTIVE_FILE]);
1083 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1084 -count[LRU_INACTIVE_FILE]);
1085 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1086 -count[LRU_ACTIVE_ANON]);
1087 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1088 -count[LRU_INACTIVE_ANON]);
1089
e72e2bd6 1090 if (scanning_global_lru(sc))
1cfb419b 1091 zone->pages_scanned += nr_scan;
3e2f41f1
KM
1092
1093 reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1094 reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1095 reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1096 reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1097
1da177e4
LT
1098 spin_unlock_irq(&zone->lru_lock);
1099
69e05944 1100 nr_scanned += nr_scan;
c661b078
AW
1101 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1102
1103 /*
1104 * If we are direct reclaiming for contiguous pages and we do
1105 * not reclaim everything in the list, try again and wait
1106 * for IO to complete. This will stall high-order allocations
1107 * but that should be acceptable to the caller
1108 */
1109 if (nr_freed < nr_taken && !current_is_kswapd() &&
78dc583d 1110 lumpy_reclaim) {
c661b078
AW
1111 congestion_wait(WRITE, HZ/10);
1112
1113 /*
1114 * The attempt at page out may have made some
1115 * of the pages active, mark them inactive again.
1116 */
4f98a2fe 1117 nr_active = clear_active_flags(&page_list, count);
c661b078
AW
1118 count_vm_events(PGDEACTIVATE, nr_active);
1119
1120 nr_freed += shrink_page_list(&page_list, sc,
1121 PAGEOUT_IO_SYNC);
1122 }
1123
05ff5137 1124 nr_reclaimed += nr_freed;
a74609fa
NP
1125 local_irq_disable();
1126 if (current_is_kswapd()) {
f8891e5e
CL
1127 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1128 __count_vm_events(KSWAPD_STEAL, nr_freed);
e72e2bd6 1129 } else if (scanning_global_lru(sc))
f8891e5e 1130 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1cfb419b 1131
918d3f90 1132 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
a74609fa 1133
fb8d14e1
WF
1134 if (nr_taken == 0)
1135 goto done;
1136
a74609fa 1137 spin_lock(&zone->lru_lock);
1da177e4
LT
1138 /*
1139 * Put back any unfreeable pages.
1140 */
1141 while (!list_empty(&page_list)) {
894bc310 1142 int lru;
1da177e4 1143 page = lru_to_page(&page_list);
725d704e 1144 VM_BUG_ON(PageLRU(page));
1da177e4 1145 list_del(&page->lru);
894bc310
LS
1146 if (unlikely(!page_evictable(page, NULL))) {
1147 spin_unlock_irq(&zone->lru_lock);
1148 putback_lru_page(page);
1149 spin_lock_irq(&zone->lru_lock);
1150 continue;
1151 }
1152 SetPageLRU(page);
1153 lru = page_lru(page);
1154 add_page_to_lru_list(zone, page, lru);
3e2f41f1 1155 if (PageActive(page)) {
4f98a2fe 1156 int file = !!page_is_file_cache(page);
6e901571 1157 reclaim_stat->recent_rotated[file]++;
4f98a2fe 1158 }
1da177e4
LT
1159 if (!pagevec_add(&pvec, page)) {
1160 spin_unlock_irq(&zone->lru_lock);
1161 __pagevec_release(&pvec);
1162 spin_lock_irq(&zone->lru_lock);
1163 }
1164 }
69e05944 1165 } while (nr_scanned < max_scan);
fb8d14e1 1166 spin_unlock(&zone->lru_lock);
1da177e4 1167done:
fb8d14e1 1168 local_irq_enable();
1da177e4 1169 pagevec_release(&pvec);
05ff5137 1170 return nr_reclaimed;
1da177e4
LT
1171}
1172
3bb1a852
MB
1173/*
1174 * We are about to scan this zone at a certain priority level. If that priority
1175 * level is smaller (ie: more urgent) than the previous priority, then note
1176 * that priority level within the zone. This is done so that when the next
1177 * process comes in to scan this zone, it will immediately start out at this
1178 * priority level rather than having to build up its own scanning priority.
1179 * Here, this priority affects only the reclaim-mapped threshold.
1180 */
1181static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1182{
1183 if (priority < zone->prev_priority)
1184 zone->prev_priority = priority;
1185}
1186
1da177e4
LT
1187/*
1188 * This moves pages from the active list to the inactive list.
1189 *
1190 * We move them the other way if the page is referenced by one or more
1191 * processes, from rmap.
1192 *
1193 * If the pages are mostly unmapped, the processing is fast and it is
1194 * appropriate to hold zone->lru_lock across the whole operation. But if
1195 * the pages are mapped, the processing is slow (page_referenced()) so we
1196 * should drop zone->lru_lock around each page. It's impossible to balance
1197 * this, so instead we remove the pages from the LRU while processing them.
1198 * It is safe to rely on PG_active against the non-LRU pages in here because
1199 * nobody will play with that bit on a non-LRU page.
1200 *
1201 * The downside is that we have to touch page->_count against each page.
1202 * But we had to alter page->flags anyway.
1203 */
1cfb419b
KH
1204
1205
1742f19f 1206static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1207 struct scan_control *sc, int priority, int file)
1da177e4 1208{
69e05944 1209 unsigned long pgmoved;
69e05944 1210 unsigned long pgscanned;
1da177e4 1211 LIST_HEAD(l_hold); /* The pages which were snipped off */
b69408e8 1212 LIST_HEAD(l_inactive);
1da177e4
LT
1213 struct page *page;
1214 struct pagevec pvec;
4f98a2fe 1215 enum lru_list lru;
6e901571 1216 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1da177e4
LT
1217
1218 lru_add_drain();
1219 spin_lock_irq(&zone->lru_lock);
66e1707b
BS
1220 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1221 ISOLATE_ACTIVE, zone,
4f98a2fe 1222 sc->mem_cgroup, 1, file);
1cfb419b
KH
1223 /*
1224 * zone->pages_scanned is used for detect zone's oom
1225 * mem_cgroup remembers nr_scan by itself.
1226 */
e72e2bd6 1227 if (scanning_global_lru(sc)) {
1cfb419b 1228 zone->pages_scanned += pgscanned;
4f98a2fe 1229 }
3e2f41f1 1230 reclaim_stat->recent_scanned[!!file] += pgmoved;
1cfb419b 1231
4f98a2fe
RR
1232 if (file)
1233 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1234 else
1235 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1da177e4
LT
1236 spin_unlock_irq(&zone->lru_lock);
1237
af166777 1238 pgmoved = 0; /* count referenced (mapping) mapped pages */
1da177e4
LT
1239 while (!list_empty(&l_hold)) {
1240 cond_resched();
1241 page = lru_to_page(&l_hold);
1242 list_del(&page->lru);
7e9cd484 1243
894bc310
LS
1244 if (unlikely(!page_evictable(page, NULL))) {
1245 putback_lru_page(page);
1246 continue;
1247 }
1248
7e9cd484
RR
1249 /* page_referenced clears PageReferenced */
1250 if (page_mapping_inuse(page) &&
1251 page_referenced(page, 0, sc->mem_cgroup))
1252 pgmoved++;
1253
1da177e4
LT
1254 list_add(&page->lru, &l_inactive);
1255 }
1256
b555749a
AM
1257 /*
1258 * Move the pages to the [file or anon] inactive list.
1259 */
1260 pagevec_init(&pvec, 1);
b555749a
AM
1261 lru = LRU_BASE + file * LRU_FILE;
1262
2a1dc509 1263 spin_lock_irq(&zone->lru_lock);
556adecb 1264 /*
7e9cd484
RR
1265 * Count referenced pages from currently used mappings as
1266 * rotated, even though they are moved to the inactive list.
1267 * This helps balance scan pressure between file and anonymous
1268 * pages in get_scan_ratio.
1269 */
3e2f41f1 1270 reclaim_stat->recent_rotated[!!file] += pgmoved;
556adecb 1271
af166777 1272 pgmoved = 0; /* count pages moved to inactive list */
1da177e4
LT
1273 while (!list_empty(&l_inactive)) {
1274 page = lru_to_page(&l_inactive);
1275 prefetchw_prev_lru_page(page, &l_inactive, flags);
725d704e 1276 VM_BUG_ON(PageLRU(page));
8d438f96 1277 SetPageLRU(page);
725d704e 1278 VM_BUG_ON(!PageActive(page));
4c84cacf
NP
1279 ClearPageActive(page);
1280
4f98a2fe 1281 list_move(&page->lru, &zone->lru[lru].list);
08e552c6 1282 mem_cgroup_add_lru_list(page, lru);
1da177e4
LT
1283 pgmoved++;
1284 if (!pagevec_add(&pvec, page)) {
1da177e4 1285 spin_unlock_irq(&zone->lru_lock);
1da177e4
LT
1286 if (buffer_heads_over_limit)
1287 pagevec_strip(&pvec);
1288 __pagevec_release(&pvec);
1289 spin_lock_irq(&zone->lru_lock);
1290 }
1291 }
4f98a2fe 1292 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
f8891e5e 1293 __count_zone_vm_events(PGREFILL, zone, pgscanned);
af166777 1294 __count_vm_events(PGDEACTIVATE, pgmoved);
f8891e5e 1295 spin_unlock_irq(&zone->lru_lock);
2443462b
JW
1296 if (buffer_heads_over_limit)
1297 pagevec_strip(&pvec);
a74609fa 1298 pagevec_release(&pvec);
1da177e4
LT
1299}
1300
14797e23 1301static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1302{
1303 unsigned long active, inactive;
1304
1305 active = zone_page_state(zone, NR_ACTIVE_ANON);
1306 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1307
1308 if (inactive * zone->inactive_ratio < active)
1309 return 1;
1310
1311 return 0;
1312}
1313
14797e23
KM
1314/**
1315 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1316 * @zone: zone to check
1317 * @sc: scan control of this context
1318 *
1319 * Returns true if the zone does not have enough inactive anon pages,
1320 * meaning some active anon pages need to be deactivated.
1321 */
1322static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1323{
1324 int low;
1325
e72e2bd6 1326 if (scanning_global_lru(sc))
14797e23
KM
1327 low = inactive_anon_is_low_global(zone);
1328 else
c772be93 1329 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
14797e23
KM
1330 return low;
1331}
1332
56e49d21
RR
1333static int inactive_file_is_low_global(struct zone *zone)
1334{
1335 unsigned long active, inactive;
1336
1337 active = zone_page_state(zone, NR_ACTIVE_FILE);
1338 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1339
1340 return (active > inactive);
1341}
1342
1343/**
1344 * inactive_file_is_low - check if file pages need to be deactivated
1345 * @zone: zone to check
1346 * @sc: scan control of this context
1347 *
1348 * When the system is doing streaming IO, memory pressure here
1349 * ensures that active file pages get deactivated, until more
1350 * than half of the file pages are on the inactive list.
1351 *
1352 * Once we get to that situation, protect the system's working
1353 * set from being evicted by disabling active file page aging.
1354 *
1355 * This uses a different ratio than the anonymous pages, because
1356 * the page cache uses a use-once replacement algorithm.
1357 */
1358static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1359{
1360 int low;
1361
1362 if (scanning_global_lru(sc))
1363 low = inactive_file_is_low_global(zone);
1364 else
1365 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1366 return low;
1367}
1368
4f98a2fe 1369static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1370 struct zone *zone, struct scan_control *sc, int priority)
1371{
4f98a2fe
RR
1372 int file = is_file_lru(lru);
1373
56e49d21 1374 if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) {
556adecb
RR
1375 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1376 return 0;
1377 }
1378
14797e23 1379 if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
4f98a2fe 1380 shrink_active_list(nr_to_scan, zone, sc, priority, file);
b69408e8
CL
1381 return 0;
1382 }
33c120ed 1383 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1384}
1385
1386/*
1387 * Determine how aggressively the anon and file LRU lists should be
1388 * scanned. The relative value of each set of LRU lists is determined
1389 * by looking at the fraction of the pages scanned we did rotate back
1390 * onto the active list instead of evict.
1391 *
1392 * percent[0] specifies how much pressure to put on ram/swap backed
1393 * memory, while percent[1] determines pressure on the file LRUs.
1394 */
1395static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1396 unsigned long *percent)
1397{
1398 unsigned long anon, file, free;
1399 unsigned long anon_prio, file_prio;
1400 unsigned long ap, fp;
6e901571 1401 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
4f98a2fe 1402
4f98a2fe 1403 /* If we have no swap space, do not bother scanning anon pages. */
2e2e4259 1404 if (!sc->may_swap || (nr_swap_pages <= 0)) {
4f98a2fe
RR
1405 percent[0] = 0;
1406 percent[1] = 100;
1407 return;
1408 }
1409
c9f299d9
KM
1410 anon = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
1411 zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
1412 file = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
1413 zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
b962716b 1414
e72e2bd6 1415 if (scanning_global_lru(sc)) {
eeee9a8c
KM
1416 free = zone_page_state(zone, NR_FREE_PAGES);
1417 /* If we have very few page cache pages,
1418 force-scan anon pages. */
41858966 1419 if (unlikely(file + free <= high_wmark_pages(zone))) {
eeee9a8c
KM
1420 percent[0] = 100;
1421 percent[1] = 0;
1422 return;
1423 }
4f98a2fe
RR
1424 }
1425
1426 /*
1427 * OK, so we have swap space and a fair amount of page cache
1428 * pages. We use the recently rotated / recently scanned
1429 * ratios to determine how valuable each cache is.
1430 *
1431 * Because workloads change over time (and to avoid overflow)
1432 * we keep these statistics as a floating average, which ends
1433 * up weighing recent references more than old ones.
1434 *
1435 * anon in [0], file in [1]
1436 */
6e901571 1437 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
4f98a2fe 1438 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1439 reclaim_stat->recent_scanned[0] /= 2;
1440 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1441 spin_unlock_irq(&zone->lru_lock);
1442 }
1443
6e901571 1444 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
4f98a2fe 1445 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1446 reclaim_stat->recent_scanned[1] /= 2;
1447 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1448 spin_unlock_irq(&zone->lru_lock);
1449 }
1450
1451 /*
1452 * With swappiness at 100, anonymous and file have the same priority.
1453 * This scanning priority is essentially the inverse of IO cost.
1454 */
1455 anon_prio = sc->swappiness;
1456 file_prio = 200 - sc->swappiness;
1457
1458 /*
00d8089c
RR
1459 * The amount of pressure on anon vs file pages is inversely
1460 * proportional to the fraction of recently scanned pages on
1461 * each list that were recently referenced and in active use.
4f98a2fe 1462 */
6e901571
KM
1463 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1464 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1465
6e901571
KM
1466 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1467 fp /= reclaim_stat->recent_rotated[1] + 1;
4f98a2fe
RR
1468
1469 /* Normalize to percentages */
1470 percent[0] = 100 * ap / (ap + fp + 1);
1471 percent[1] = 100 - percent[0];
b69408e8
CL
1472}
1473
6e08a369
WF
1474/*
1475 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1476 * until we collected @swap_cluster_max pages to scan.
1477 */
1478static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1479 unsigned long *nr_saved_scan,
1480 unsigned long swap_cluster_max)
1481{
1482 unsigned long nr;
1483
1484 *nr_saved_scan += nr_to_scan;
1485 nr = *nr_saved_scan;
1486
1487 if (nr >= swap_cluster_max)
1488 *nr_saved_scan = 0;
1489 else
1490 nr = 0;
1491
1492 return nr;
1493}
4f98a2fe 1494
1da177e4
LT
1495/*
1496 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1497 */
a79311c1 1498static void shrink_zone(int priority, struct zone *zone,
05ff5137 1499 struct scan_control *sc)
1da177e4 1500{
b69408e8 1501 unsigned long nr[NR_LRU_LISTS];
8695949a 1502 unsigned long nr_to_scan;
4f98a2fe 1503 unsigned long percent[2]; /* anon @ 0; file @ 1 */
b69408e8 1504 enum lru_list l;
01dbe5c9
KM
1505 unsigned long nr_reclaimed = sc->nr_reclaimed;
1506 unsigned long swap_cluster_max = sc->swap_cluster_max;
1da177e4 1507
4f98a2fe
RR
1508 get_scan_ratio(zone, sc, percent);
1509
894bc310 1510 for_each_evictable_lru(l) {
9439c1c9 1511 int file = is_file_lru(l);
8713e012 1512 unsigned long scan;
e0f79b8f 1513
f272b7bc 1514 scan = zone_nr_pages(zone, sc, l);
9439c1c9
KM
1515 if (priority) {
1516 scan >>= priority;
1517 scan = (scan * percent[file]) / 100;
1518 }
6e08a369
WF
1519 if (scanning_global_lru(sc))
1520 nr[l] = nr_scan_try_batch(scan,
1521 &zone->lru[l].nr_saved_scan,
1522 swap_cluster_max);
1523 else
9439c1c9 1524 nr[l] = scan;
1cfb419b 1525 }
1da177e4 1526
556adecb
RR
1527 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1528 nr[LRU_INACTIVE_FILE]) {
894bc310 1529 for_each_evictable_lru(l) {
b69408e8 1530 if (nr[l]) {
01dbe5c9 1531 nr_to_scan = min(nr[l], swap_cluster_max);
b69408e8 1532 nr[l] -= nr_to_scan;
1da177e4 1533
01dbe5c9
KM
1534 nr_reclaimed += shrink_list(l, nr_to_scan,
1535 zone, sc, priority);
b69408e8 1536 }
1da177e4 1537 }
a79311c1
RR
1538 /*
1539 * On large memory systems, scan >> priority can become
1540 * really large. This is fine for the starting priority;
1541 * we want to put equal scanning pressure on each zone.
1542 * However, if the VM has a harder time of freeing pages,
1543 * with multiple processes reclaiming pages, the total
1544 * freeing target can get unreasonably large.
1545 */
01dbe5c9 1546 if (nr_reclaimed > swap_cluster_max &&
a79311c1
RR
1547 priority < DEF_PRIORITY && !current_is_kswapd())
1548 break;
1da177e4
LT
1549 }
1550
01dbe5c9
KM
1551 sc->nr_reclaimed = nr_reclaimed;
1552
556adecb
RR
1553 /*
1554 * Even if we did not try to evict anon pages at all, we want to
1555 * rebalance the anon lru active/inactive ratio.
1556 */
69c85481 1557 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
556adecb
RR
1558 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1559
232ea4d6 1560 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1561}
1562
1563/*
1564 * This is the direct reclaim path, for page-allocating processes. We only
1565 * try to reclaim pages from zones which will satisfy the caller's allocation
1566 * request.
1567 *
41858966
MG
1568 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1569 * Because:
1da177e4
LT
1570 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1571 * allocation or
41858966
MG
1572 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1573 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1574 * zone defense algorithm.
1da177e4 1575 *
1da177e4
LT
1576 * If a zone is deemed to be full of pinned pages then just give it a light
1577 * scan then give up on it.
1578 */
a79311c1 1579static void shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 1580 struct scan_control *sc)
1da177e4 1581{
54a6eb5c 1582 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
dd1a239f 1583 struct zoneref *z;
54a6eb5c 1584 struct zone *zone;
1cfb419b 1585
408d8544 1586 sc->all_unreclaimable = 1;
327c0e96
KH
1587 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1588 sc->nodemask) {
f3fe6512 1589 if (!populated_zone(zone))
1da177e4 1590 continue;
1cfb419b
KH
1591 /*
1592 * Take care memory controller reclaiming has small influence
1593 * to global LRU.
1594 */
e72e2bd6 1595 if (scanning_global_lru(sc)) {
1cfb419b
KH
1596 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1597 continue;
1598 note_zone_scanning_priority(zone, priority);
1da177e4 1599
1cfb419b
KH
1600 if (zone_is_all_unreclaimable(zone) &&
1601 priority != DEF_PRIORITY)
1602 continue; /* Let kswapd poll it */
1603 sc->all_unreclaimable = 0;
1604 } else {
1605 /*
1606 * Ignore cpuset limitation here. We just want to reduce
1607 * # of used pages by us regardless of memory shortage.
1608 */
1609 sc->all_unreclaimable = 0;
1610 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1611 priority);
1612 }
408d8544 1613
a79311c1 1614 shrink_zone(priority, zone, sc);
1da177e4
LT
1615 }
1616}
4f98a2fe 1617
1da177e4
LT
1618/*
1619 * This is the main entry point to direct page reclaim.
1620 *
1621 * If a full scan of the inactive list fails to free enough memory then we
1622 * are "out of memory" and something needs to be killed.
1623 *
1624 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1625 * high - the zone may be full of dirty or under-writeback pages, which this
1626 * caller can't do much about. We kick pdflush and take explicit naps in the
1627 * hope that some of these pages can be written. But if the allocating task
1628 * holds filesystem locks which prevent writeout this might not work, and the
1629 * allocation attempt will fail.
a41f24ea
NA
1630 *
1631 * returns: 0, if no pages reclaimed
1632 * else, the number of pages reclaimed
1da177e4 1633 */
dac1d27b 1634static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
dd1a239f 1635 struct scan_control *sc)
1da177e4
LT
1636{
1637 int priority;
c700be3d 1638 unsigned long ret = 0;
69e05944 1639 unsigned long total_scanned = 0;
1da177e4 1640 struct reclaim_state *reclaim_state = current->reclaim_state;
1da177e4 1641 unsigned long lru_pages = 0;
dd1a239f 1642 struct zoneref *z;
54a6eb5c 1643 struct zone *zone;
dd1a239f 1644 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1da177e4 1645
873b4771
KK
1646 delayacct_freepages_start();
1647
e72e2bd6 1648 if (scanning_global_lru(sc))
1cfb419b
KH
1649 count_vm_event(ALLOCSTALL);
1650 /*
1651 * mem_cgroup will not do shrink_slab.
1652 */
e72e2bd6 1653 if (scanning_global_lru(sc)) {
54a6eb5c 1654 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1da177e4 1655
1cfb419b
KH
1656 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1657 continue;
1da177e4 1658
4f98a2fe 1659 lru_pages += zone_lru_pages(zone);
1cfb419b 1660 }
1da177e4
LT
1661 }
1662
1663 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 1664 sc->nr_scanned = 0;
f7b7fd8f
RR
1665 if (!priority)
1666 disable_swap_token();
a79311c1 1667 shrink_zones(priority, zonelist, sc);
66e1707b
BS
1668 /*
1669 * Don't shrink slabs when reclaiming memory from
1670 * over limit cgroups
1671 */
e72e2bd6 1672 if (scanning_global_lru(sc)) {
dd1a239f 1673 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
91a45470 1674 if (reclaim_state) {
a79311c1 1675 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
1676 reclaim_state->reclaimed_slab = 0;
1677 }
1da177e4 1678 }
66e1707b 1679 total_scanned += sc->nr_scanned;
a79311c1
RR
1680 if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1681 ret = sc->nr_reclaimed;
1da177e4
LT
1682 goto out;
1683 }
1684
1685 /*
1686 * Try to write back as many pages as we just scanned. This
1687 * tends to cause slow streaming writers to write data to the
1688 * disk smoothly, at the dirtying rate, which is nice. But
1689 * that's undesirable in laptop mode, where we *want* lumpy
1690 * writeout. So in laptop mode, write out the whole world.
1691 */
66e1707b
BS
1692 if (total_scanned > sc->swap_cluster_max +
1693 sc->swap_cluster_max / 2) {
687a21ce 1694 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
66e1707b 1695 sc->may_writepage = 1;
1da177e4
LT
1696 }
1697
1698 /* Take a nap, wait for some writeback to complete */
4dd4b920 1699 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
3fcfab16 1700 congestion_wait(WRITE, HZ/10);
1da177e4 1701 }
87547ee9 1702 /* top priority shrink_zones still had more to do? don't OOM, then */
e72e2bd6 1703 if (!sc->all_unreclaimable && scanning_global_lru(sc))
a79311c1 1704 ret = sc->nr_reclaimed;
1da177e4 1705out:
3bb1a852
MB
1706 /*
1707 * Now that we've scanned all the zones at this priority level, note
1708 * that level within the zone so that the next thread which performs
1709 * scanning of this zone will immediately start out at this priority
1710 * level. This affects only the decision whether or not to bring
1711 * mapped pages onto the inactive list.
1712 */
1713 if (priority < 0)
1714 priority = 0;
1da177e4 1715
e72e2bd6 1716 if (scanning_global_lru(sc)) {
54a6eb5c 1717 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1cfb419b
KH
1718
1719 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1720 continue;
1721
1722 zone->prev_priority = priority;
1723 }
1724 } else
1725 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1da177e4 1726
873b4771
KK
1727 delayacct_freepages_end();
1728
1da177e4
LT
1729 return ret;
1730}
1731
dac1d27b 1732unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 1733 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b
BS
1734{
1735 struct scan_control sc = {
1736 .gfp_mask = gfp_mask,
1737 .may_writepage = !laptop_mode,
1738 .swap_cluster_max = SWAP_CLUSTER_MAX,
a6dc60f8 1739 .may_unmap = 1,
2e2e4259 1740 .may_swap = 1,
66e1707b
BS
1741 .swappiness = vm_swappiness,
1742 .order = order,
1743 .mem_cgroup = NULL,
1744 .isolate_pages = isolate_pages_global,
327c0e96 1745 .nodemask = nodemask,
66e1707b
BS
1746 };
1747
dd1a239f 1748 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1749}
1750
00f0b825 1751#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 1752
e1a1cd59 1753unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
a7885eb8
KM
1754 gfp_t gfp_mask,
1755 bool noswap,
1756 unsigned int swappiness)
66e1707b
BS
1757{
1758 struct scan_control sc = {
66e1707b 1759 .may_writepage = !laptop_mode,
a6dc60f8 1760 .may_unmap = 1,
2e2e4259 1761 .may_swap = !noswap,
66e1707b 1762 .swap_cluster_max = SWAP_CLUSTER_MAX,
a7885eb8 1763 .swappiness = swappiness,
66e1707b
BS
1764 .order = 0,
1765 .mem_cgroup = mem_cont,
1766 .isolate_pages = mem_cgroup_isolate_pages,
327c0e96 1767 .nodemask = NULL, /* we don't care the placement */
66e1707b 1768 };
dac1d27b 1769 struct zonelist *zonelist;
66e1707b 1770
dd1a239f
MG
1771 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1772 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1773 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1774 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1775}
1776#endif
1777
1da177e4
LT
1778/*
1779 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 1780 * they are all at high_wmark_pages(zone).
1da177e4 1781 *
1da177e4
LT
1782 * Returns the number of pages which were actually freed.
1783 *
1784 * There is special handling here for zones which are full of pinned pages.
1785 * This can happen if the pages are all mlocked, or if they are all used by
1786 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1787 * What we do is to detect the case where all pages in the zone have been
1788 * scanned twice and there has been zero successful reclaim. Mark the zone as
1789 * dead and from now on, only perform a short scan. Basically we're polling
1790 * the zone for when the problem goes away.
1791 *
1792 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
1793 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1794 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1795 * lower zones regardless of the number of free pages in the lower zones. This
1796 * interoperates with the page allocator fallback scheme to ensure that aging
1797 * of pages is balanced across the zones.
1da177e4 1798 */
d6277db4 1799static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1da177e4 1800{
1da177e4
LT
1801 int all_zones_ok;
1802 int priority;
1803 int i;
69e05944 1804 unsigned long total_scanned;
1da177e4 1805 struct reclaim_state *reclaim_state = current->reclaim_state;
179e9639
AM
1806 struct scan_control sc = {
1807 .gfp_mask = GFP_KERNEL,
a6dc60f8 1808 .may_unmap = 1,
2e2e4259 1809 .may_swap = 1,
d6277db4
RW
1810 .swap_cluster_max = SWAP_CLUSTER_MAX,
1811 .swappiness = vm_swappiness,
5ad333eb 1812 .order = order,
66e1707b
BS
1813 .mem_cgroup = NULL,
1814 .isolate_pages = isolate_pages_global,
179e9639 1815 };
3bb1a852
MB
1816 /*
1817 * temp_priority is used to remember the scanning priority at which
41858966
MG
1818 * this zone was successfully refilled to
1819 * free_pages == high_wmark_pages(zone).
3bb1a852
MB
1820 */
1821 int temp_priority[MAX_NR_ZONES];
1da177e4
LT
1822
1823loop_again:
1824 total_scanned = 0;
a79311c1 1825 sc.nr_reclaimed = 0;
c0bbbc73 1826 sc.may_writepage = !laptop_mode;
f8891e5e 1827 count_vm_event(PAGEOUTRUN);
1da177e4 1828
3bb1a852
MB
1829 for (i = 0; i < pgdat->nr_zones; i++)
1830 temp_priority[i] = DEF_PRIORITY;
1da177e4
LT
1831
1832 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1833 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1834 unsigned long lru_pages = 0;
1835
f7b7fd8f
RR
1836 /* The swap token gets in the way of swapout... */
1837 if (!priority)
1838 disable_swap_token();
1839
1da177e4
LT
1840 all_zones_ok = 1;
1841
d6277db4
RW
1842 /*
1843 * Scan in the highmem->dma direction for the highest
1844 * zone which needs scanning
1845 */
1846 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1847 struct zone *zone = pgdat->node_zones + i;
1da177e4 1848
d6277db4
RW
1849 if (!populated_zone(zone))
1850 continue;
1da177e4 1851
e815af95
DR
1852 if (zone_is_all_unreclaimable(zone) &&
1853 priority != DEF_PRIORITY)
d6277db4 1854 continue;
1da177e4 1855
556adecb
RR
1856 /*
1857 * Do some background aging of the anon list, to give
1858 * pages a chance to be referenced before reclaiming.
1859 */
14797e23 1860 if (inactive_anon_is_low(zone, &sc))
556adecb
RR
1861 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1862 &sc, priority, 0);
1863
41858966
MG
1864 if (!zone_watermark_ok(zone, order,
1865 high_wmark_pages(zone), 0, 0)) {
d6277db4 1866 end_zone = i;
e1dbeda6 1867 break;
1da177e4 1868 }
1da177e4 1869 }
e1dbeda6
AM
1870 if (i < 0)
1871 goto out;
1872
1da177e4
LT
1873 for (i = 0; i <= end_zone; i++) {
1874 struct zone *zone = pgdat->node_zones + i;
1875
4f98a2fe 1876 lru_pages += zone_lru_pages(zone);
1da177e4
LT
1877 }
1878
1879 /*
1880 * Now scan the zone in the dma->highmem direction, stopping
1881 * at the last zone which needs scanning.
1882 *
1883 * We do this because the page allocator works in the opposite
1884 * direction. This prevents the page allocator from allocating
1885 * pages behind kswapd's direction of progress, which would
1886 * cause too much scanning of the lower zones.
1887 */
1888 for (i = 0; i <= end_zone; i++) {
1889 struct zone *zone = pgdat->node_zones + i;
b15e0905 1890 int nr_slab;
1da177e4 1891
f3fe6512 1892 if (!populated_zone(zone))
1da177e4
LT
1893 continue;
1894
e815af95
DR
1895 if (zone_is_all_unreclaimable(zone) &&
1896 priority != DEF_PRIORITY)
1da177e4
LT
1897 continue;
1898
41858966
MG
1899 if (!zone_watermark_ok(zone, order,
1900 high_wmark_pages(zone), end_zone, 0))
d6277db4 1901 all_zones_ok = 0;
3bb1a852 1902 temp_priority[i] = priority;
1da177e4 1903 sc.nr_scanned = 0;
3bb1a852 1904 note_zone_scanning_priority(zone, priority);
32a4330d
RR
1905 /*
1906 * We put equal pressure on every zone, unless one
1907 * zone has way too many pages free already.
1908 */
41858966
MG
1909 if (!zone_watermark_ok(zone, order,
1910 8*high_wmark_pages(zone), end_zone, 0))
a79311c1 1911 shrink_zone(priority, zone, &sc);
1da177e4 1912 reclaim_state->reclaimed_slab = 0;
b15e0905 1913 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1914 lru_pages);
a79311c1 1915 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4 1916 total_scanned += sc.nr_scanned;
e815af95 1917 if (zone_is_all_unreclaimable(zone))
1da177e4 1918 continue;
b15e0905 1919 if (nr_slab == 0 && zone->pages_scanned >=
4f98a2fe 1920 (zone_lru_pages(zone) * 6))
e815af95
DR
1921 zone_set_flag(zone,
1922 ZONE_ALL_UNRECLAIMABLE);
1da177e4
LT
1923 /*
1924 * If we've done a decent amount of scanning and
1925 * the reclaim ratio is low, start doing writepage
1926 * even in laptop mode
1927 */
1928 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 1929 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4
LT
1930 sc.may_writepage = 1;
1931 }
1da177e4
LT
1932 if (all_zones_ok)
1933 break; /* kswapd: all done */
1934 /*
1935 * OK, kswapd is getting into trouble. Take a nap, then take
1936 * another pass across the zones.
1937 */
4dd4b920 1938 if (total_scanned && priority < DEF_PRIORITY - 2)
3fcfab16 1939 congestion_wait(WRITE, HZ/10);
1da177e4
LT
1940
1941 /*
1942 * We do this so kswapd doesn't build up large priorities for
1943 * example when it is freeing in parallel with allocators. It
1944 * matches the direct reclaim path behaviour in terms of impact
1945 * on zone->*_priority.
1946 */
a79311c1 1947 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
1948 break;
1949 }
1950out:
3bb1a852
MB
1951 /*
1952 * Note within each zone the priority level at which this zone was
1953 * brought into a happy state. So that the next thread which scans this
1954 * zone will start out at that priority level.
1955 */
1da177e4
LT
1956 for (i = 0; i < pgdat->nr_zones; i++) {
1957 struct zone *zone = pgdat->node_zones + i;
1958
3bb1a852 1959 zone->prev_priority = temp_priority[i];
1da177e4
LT
1960 }
1961 if (!all_zones_ok) {
1962 cond_resched();
8357376d
RW
1963
1964 try_to_freeze();
1965
73ce02e9
KM
1966 /*
1967 * Fragmentation may mean that the system cannot be
1968 * rebalanced for high-order allocations in all zones.
1969 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1970 * it means the zones have been fully scanned and are still
1971 * not balanced. For high-order allocations, there is
1972 * little point trying all over again as kswapd may
1973 * infinite loop.
1974 *
1975 * Instead, recheck all watermarks at order-0 as they
1976 * are the most important. If watermarks are ok, kswapd will go
1977 * back to sleep. High-order users can still perform direct
1978 * reclaim if they wish.
1979 */
1980 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
1981 order = sc.order = 0;
1982
1da177e4
LT
1983 goto loop_again;
1984 }
1985
a79311c1 1986 return sc.nr_reclaimed;
1da177e4
LT
1987}
1988
1989/*
1990 * The background pageout daemon, started as a kernel thread
4f98a2fe 1991 * from the init process.
1da177e4
LT
1992 *
1993 * This basically trickles out pages so that we have _some_
1994 * free memory available even if there is no other activity
1995 * that frees anything up. This is needed for things like routing
1996 * etc, where we otherwise might have all activity going on in
1997 * asynchronous contexts that cannot page things out.
1998 *
1999 * If there are applications that are active memory-allocators
2000 * (most normal use), this basically shouldn't matter.
2001 */
2002static int kswapd(void *p)
2003{
2004 unsigned long order;
2005 pg_data_t *pgdat = (pg_data_t*)p;
2006 struct task_struct *tsk = current;
2007 DEFINE_WAIT(wait);
2008 struct reclaim_state reclaim_state = {
2009 .reclaimed_slab = 0,
2010 };
a70f7302 2011 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2012
cf40bd16
NP
2013 lockdep_set_current_reclaim_state(GFP_KERNEL);
2014
174596a0 2015 if (!cpumask_empty(cpumask))
c5f59f08 2016 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2017 current->reclaim_state = &reclaim_state;
2018
2019 /*
2020 * Tell the memory management that we're a "memory allocator",
2021 * and that if we need more memory we should get access to it
2022 * regardless (see "__alloc_pages()"). "kswapd" should
2023 * never get caught in the normal page freeing logic.
2024 *
2025 * (Kswapd normally doesn't need memory anyway, but sometimes
2026 * you need a small amount of memory in order to be able to
2027 * page out something else, and this flag essentially protects
2028 * us from recursively trying to free more memory as we're
2029 * trying to free the first piece of memory in the first place).
2030 */
930d9152 2031 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2032 set_freezable();
1da177e4
LT
2033
2034 order = 0;
2035 for ( ; ; ) {
2036 unsigned long new_order;
3e1d1d28 2037
1da177e4
LT
2038 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2039 new_order = pgdat->kswapd_max_order;
2040 pgdat->kswapd_max_order = 0;
2041 if (order < new_order) {
2042 /*
2043 * Don't sleep if someone wants a larger 'order'
2044 * allocation
2045 */
2046 order = new_order;
2047 } else {
b1296cc4
RW
2048 if (!freezing(current))
2049 schedule();
2050
1da177e4
LT
2051 order = pgdat->kswapd_max_order;
2052 }
2053 finish_wait(&pgdat->kswapd_wait, &wait);
2054
b1296cc4
RW
2055 if (!try_to_freeze()) {
2056 /* We can speed up thawing tasks if we don't call
2057 * balance_pgdat after returning from the refrigerator
2058 */
2059 balance_pgdat(pgdat, order);
2060 }
1da177e4
LT
2061 }
2062 return 0;
2063}
2064
2065/*
2066 * A zone is low on free memory, so wake its kswapd task to service it.
2067 */
2068void wakeup_kswapd(struct zone *zone, int order)
2069{
2070 pg_data_t *pgdat;
2071
f3fe6512 2072 if (!populated_zone(zone))
1da177e4
LT
2073 return;
2074
2075 pgdat = zone->zone_pgdat;
41858966 2076 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
1da177e4
LT
2077 return;
2078 if (pgdat->kswapd_max_order < order)
2079 pgdat->kswapd_max_order = order;
02a0e53d 2080 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2081 return;
8d0986e2 2082 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2083 return;
8d0986e2 2084 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2085}
2086
4f98a2fe
RR
2087unsigned long global_lru_pages(void)
2088{
2089 return global_page_state(NR_ACTIVE_ANON)
2090 + global_page_state(NR_ACTIVE_FILE)
2091 + global_page_state(NR_INACTIVE_ANON)
2092 + global_page_state(NR_INACTIVE_FILE);
2093}
2094
c6f37f12 2095#ifdef CONFIG_HIBERNATION
1da177e4 2096/*
d6277db4 2097 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
d979677c 2098 * from LRU lists system-wide, for given pass and priority.
d6277db4
RW
2099 *
2100 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2101 */
d979677c 2102static void shrink_all_zones(unsigned long nr_pages, int prio,
e07aa05b 2103 int pass, struct scan_control *sc)
d6277db4
RW
2104{
2105 struct zone *zone;
d979677c 2106 unsigned long nr_reclaimed = 0;
d6277db4 2107
ee99c71c 2108 for_each_populated_zone(zone) {
0cb57258 2109 enum lru_list l;
d6277db4 2110
e815af95 2111 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
d6277db4
RW
2112 continue;
2113
894bc310 2114 for_each_evictable_lru(l) {
0cb57258
JW
2115 enum zone_stat_item ls = NR_LRU_BASE + l;
2116 unsigned long lru_pages = zone_page_state(zone, ls);
2117
894bc310 2118 /* For pass = 0, we don't shrink the active list */
0cb57258
JW
2119 if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2120 l == LRU_ACTIVE_FILE))
b69408e8
CL
2121 continue;
2122
6e08a369
WF
2123 zone->lru[l].nr_saved_scan += (lru_pages >> prio) + 1;
2124 if (zone->lru[l].nr_saved_scan >= nr_pages || pass > 3) {
0cb57258
JW
2125 unsigned long nr_to_scan;
2126
6e08a369 2127 zone->lru[l].nr_saved_scan = 0;
0cb57258 2128 nr_to_scan = min(nr_pages, lru_pages);
d979677c 2129 nr_reclaimed += shrink_list(l, nr_to_scan, zone,
b69408e8 2130 sc, prio);
d979677c 2131 if (nr_reclaimed >= nr_pages) {
a21e2553 2132 sc->nr_reclaimed += nr_reclaimed;
d979677c
MK
2133 return;
2134 }
d6277db4
RW
2135 }
2136 }
d6277db4 2137 }
a21e2553 2138 sc->nr_reclaimed += nr_reclaimed;
d6277db4
RW
2139}
2140
2141/*
2142 * Try to free `nr_pages' of memory, system-wide, and return the number of
2143 * freed pages.
2144 *
2145 * Rather than trying to age LRUs the aim is to preserve the overall
2146 * LRU order by reclaiming preferentially
2147 * inactive > active > active referenced > active mapped
1da177e4 2148 */
69e05944 2149unsigned long shrink_all_memory(unsigned long nr_pages)
1da177e4 2150{
d6277db4 2151 unsigned long lru_pages, nr_slab;
d6277db4
RW
2152 int pass;
2153 struct reclaim_state reclaim_state;
d6277db4
RW
2154 struct scan_control sc = {
2155 .gfp_mask = GFP_KERNEL,
a6dc60f8 2156 .may_unmap = 0,
d6277db4 2157 .may_writepage = 1,
66e1707b 2158 .isolate_pages = isolate_pages_global,
a21e2553 2159 .nr_reclaimed = 0,
1da177e4
LT
2160 };
2161
2162 current->reclaim_state = &reclaim_state;
69e05944 2163
4f98a2fe 2164 lru_pages = global_lru_pages();
972d1a7b 2165 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
d6277db4
RW
2166 /* If slab caches are huge, it's better to hit them first */
2167 while (nr_slab >= lru_pages) {
2168 reclaim_state.reclaimed_slab = 0;
2169 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2170 if (!reclaim_state.reclaimed_slab)
1da177e4 2171 break;
d6277db4 2172
d979677c
MK
2173 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2174 if (sc.nr_reclaimed >= nr_pages)
d6277db4
RW
2175 goto out;
2176
2177 nr_slab -= reclaim_state.reclaimed_slab;
1da177e4 2178 }
d6277db4
RW
2179
2180 /*
2181 * We try to shrink LRUs in 5 passes:
2182 * 0 = Reclaim from inactive_list only
2183 * 1 = Reclaim from active list but don't reclaim mapped
2184 * 2 = 2nd pass of type 1
2185 * 3 = Reclaim mapped (normal reclaim)
2186 * 4 = 2nd pass of type 3
2187 */
2188 for (pass = 0; pass < 5; pass++) {
2189 int prio;
2190
d6277db4 2191 /* Force reclaiming mapped pages in the passes #3 and #4 */
3049103d 2192 if (pass > 2)
a6dc60f8 2193 sc.may_unmap = 1;
d6277db4
RW
2194
2195 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
d979677c 2196 unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
d6277db4 2197
d6277db4 2198 sc.nr_scanned = 0;
9786bf84 2199 sc.swap_cluster_max = nr_to_scan;
d979677c
MK
2200 shrink_all_zones(nr_to_scan, prio, pass, &sc);
2201 if (sc.nr_reclaimed >= nr_pages)
d6277db4
RW
2202 goto out;
2203
2204 reclaim_state.reclaimed_slab = 0;
76395d37 2205 shrink_slab(sc.nr_scanned, sc.gfp_mask,
4f98a2fe 2206 global_lru_pages());
d979677c
MK
2207 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2208 if (sc.nr_reclaimed >= nr_pages)
d6277db4
RW
2209 goto out;
2210
2211 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
3fcfab16 2212 congestion_wait(WRITE, HZ / 10);
d6277db4 2213 }
248a0301 2214 }
d6277db4
RW
2215
2216 /*
d979677c
MK
2217 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2218 * something in slab caches
d6277db4 2219 */
d979677c 2220 if (!sc.nr_reclaimed) {
d6277db4
RW
2221 do {
2222 reclaim_state.reclaimed_slab = 0;
4f98a2fe 2223 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
d979677c
MK
2224 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2225 } while (sc.nr_reclaimed < nr_pages &&
2226 reclaim_state.reclaimed_slab > 0);
76395d37 2227 }
d6277db4 2228
d979677c 2229
d6277db4 2230out:
1da177e4 2231 current->reclaim_state = NULL;
d6277db4 2232
d979677c 2233 return sc.nr_reclaimed;
1da177e4 2234}
c6f37f12 2235#endif /* CONFIG_HIBERNATION */
1da177e4 2236
1da177e4
LT
2237/* It's optimal to keep kswapds on the same CPUs as their memory, but
2238 not required for correctness. So if the last cpu in a node goes
2239 away, we get changed to run anywhere: as the first one comes back,
2240 restore their cpu bindings. */
9c7b216d 2241static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2242 unsigned long action, void *hcpu)
1da177e4 2243{
58c0a4a7 2244 int nid;
1da177e4 2245
8bb78442 2246 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2247 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2248 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2249 const struct cpumask *mask;
2250
2251 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 2252
3e597945 2253 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2254 /* One of our CPUs online: restore mask */
c5f59f08 2255 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2256 }
2257 }
2258 return NOTIFY_OK;
2259}
1da177e4 2260
3218ae14
YG
2261/*
2262 * This kswapd start function will be called by init and node-hot-add.
2263 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2264 */
2265int kswapd_run(int nid)
2266{
2267 pg_data_t *pgdat = NODE_DATA(nid);
2268 int ret = 0;
2269
2270 if (pgdat->kswapd)
2271 return 0;
2272
2273 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2274 if (IS_ERR(pgdat->kswapd)) {
2275 /* failure at boot is fatal */
2276 BUG_ON(system_state == SYSTEM_BOOTING);
2277 printk("Failed to start kswapd on node %d\n",nid);
2278 ret = -1;
2279 }
2280 return ret;
2281}
2282
1da177e4
LT
2283static int __init kswapd_init(void)
2284{
3218ae14 2285 int nid;
69e05944 2286
1da177e4 2287 swap_setup();
9422ffba 2288 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 2289 kswapd_run(nid);
1da177e4
LT
2290 hotcpu_notifier(cpu_callback, 0);
2291 return 0;
2292}
2293
2294module_init(kswapd_init)
9eeff239
CL
2295
2296#ifdef CONFIG_NUMA
2297/*
2298 * Zone reclaim mode
2299 *
2300 * If non-zero call zone_reclaim when the number of free pages falls below
2301 * the watermarks.
9eeff239
CL
2302 */
2303int zone_reclaim_mode __read_mostly;
2304
1b2ffb78 2305#define RECLAIM_OFF 0
7d03431c 2306#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
2307#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2308#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2309
a92f7126
CL
2310/*
2311 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2312 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2313 * a zone.
2314 */
2315#define ZONE_RECLAIM_PRIORITY 4
2316
9614634f
CL
2317/*
2318 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2319 * occur.
2320 */
2321int sysctl_min_unmapped_ratio = 1;
2322
0ff38490
CL
2323/*
2324 * If the number of slab pages in a zone grows beyond this percentage then
2325 * slab reclaim needs to occur.
2326 */
2327int sysctl_min_slab_ratio = 5;
2328
9eeff239
CL
2329/*
2330 * Try to free up some pages from this zone through reclaim.
2331 */
179e9639 2332static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 2333{
7fb2d46d 2334 /* Minimum pages needed in order to stay on node */
69e05944 2335 const unsigned long nr_pages = 1 << order;
9eeff239
CL
2336 struct task_struct *p = current;
2337 struct reclaim_state reclaim_state;
8695949a 2338 int priority;
179e9639
AM
2339 struct scan_control sc = {
2340 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 2341 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 2342 .may_swap = 1,
69e05944
AM
2343 .swap_cluster_max = max_t(unsigned long, nr_pages,
2344 SWAP_CLUSTER_MAX),
179e9639 2345 .gfp_mask = gfp_mask,
d6277db4 2346 .swappiness = vm_swappiness,
bd2f6199 2347 .order = order,
66e1707b 2348 .isolate_pages = isolate_pages_global,
179e9639 2349 };
83e33a47 2350 unsigned long slab_reclaimable;
9eeff239
CL
2351
2352 disable_swap_token();
9eeff239 2353 cond_resched();
d4f7796e
CL
2354 /*
2355 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2356 * and we also need to be able to write out pages for RECLAIM_WRITE
2357 * and RECLAIM_SWAP.
2358 */
2359 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
9eeff239
CL
2360 reclaim_state.reclaimed_slab = 0;
2361 p->reclaim_state = &reclaim_state;
c84db23c 2362
0ff38490
CL
2363 if (zone_page_state(zone, NR_FILE_PAGES) -
2364 zone_page_state(zone, NR_FILE_MAPPED) >
2365 zone->min_unmapped_pages) {
2366 /*
2367 * Free memory by calling shrink zone with increasing
2368 * priorities until we have enough memory freed.
2369 */
2370 priority = ZONE_RECLAIM_PRIORITY;
2371 do {
3bb1a852 2372 note_zone_scanning_priority(zone, priority);
a79311c1 2373 shrink_zone(priority, zone, &sc);
0ff38490 2374 priority--;
a79311c1 2375 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 2376 }
c84db23c 2377
83e33a47
CL
2378 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2379 if (slab_reclaimable > zone->min_slab_pages) {
2a16e3f4 2380 /*
7fb2d46d 2381 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
2382 * many pages were freed in this zone. So we take the current
2383 * number of slab pages and shake the slab until it is reduced
2384 * by the same nr_pages that we used for reclaiming unmapped
2385 * pages.
2a16e3f4 2386 *
0ff38490
CL
2387 * Note that shrink_slab will free memory on all zones and may
2388 * take a long time.
2a16e3f4 2389 */
0ff38490 2390 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
83e33a47
CL
2391 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2392 slab_reclaimable - nr_pages)
0ff38490 2393 ;
83e33a47
CL
2394
2395 /*
2396 * Update nr_reclaimed by the number of slab pages we
2397 * reclaimed from this zone.
2398 */
a79311c1 2399 sc.nr_reclaimed += slab_reclaimable -
83e33a47 2400 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2a16e3f4
CL
2401 }
2402
9eeff239 2403 p->reclaim_state = NULL;
d4f7796e 2404 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
a79311c1 2405 return sc.nr_reclaimed >= nr_pages;
9eeff239 2406}
179e9639
AM
2407
2408int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2409{
179e9639 2410 int node_id;
d773ed6b 2411 int ret;
179e9639
AM
2412
2413 /*
0ff38490
CL
2414 * Zone reclaim reclaims unmapped file backed pages and
2415 * slab pages if we are over the defined limits.
34aa1330 2416 *
9614634f
CL
2417 * A small portion of unmapped file backed pages is needed for
2418 * file I/O otherwise pages read by file I/O will be immediately
2419 * thrown out if the zone is overallocated. So we do not reclaim
2420 * if less than a specified percentage of the zone is used by
2421 * unmapped file backed pages.
179e9639 2422 */
34aa1330 2423 if (zone_page_state(zone, NR_FILE_PAGES) -
0ff38490
CL
2424 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2425 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2426 <= zone->min_slab_pages)
9614634f 2427 return 0;
179e9639 2428
d773ed6b
DR
2429 if (zone_is_all_unreclaimable(zone))
2430 return 0;
2431
179e9639 2432 /*
d773ed6b 2433 * Do not scan if the allocation should not be delayed.
179e9639 2434 */
d773ed6b 2435 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
179e9639
AM
2436 return 0;
2437
2438 /*
2439 * Only run zone reclaim on the local zone or on zones that do not
2440 * have associated processors. This will favor the local processor
2441 * over remote processors and spread off node memory allocations
2442 * as wide as possible.
2443 */
89fa3024 2444 node_id = zone_to_nid(zone);
37c0708d 2445 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
179e9639 2446 return 0;
d773ed6b
DR
2447
2448 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2449 return 0;
2450 ret = __zone_reclaim(zone, gfp_mask, order);
2451 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2452
2453 return ret;
179e9639 2454}
9eeff239 2455#endif
894bc310 2456
894bc310
LS
2457/*
2458 * page_evictable - test whether a page is evictable
2459 * @page: the page to test
2460 * @vma: the VMA in which the page is or will be mapped, may be NULL
2461 *
2462 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
2463 * lists vs unevictable list. The vma argument is !NULL when called from the
2464 * fault path to determine how to instantate a new page.
894bc310
LS
2465 *
2466 * Reasons page might not be evictable:
ba9ddf49 2467 * (1) page's mapping marked unevictable
b291f000 2468 * (2) page is part of an mlocked VMA
ba9ddf49 2469 *
894bc310
LS
2470 */
2471int page_evictable(struct page *page, struct vm_area_struct *vma)
2472{
2473
ba9ddf49
LS
2474 if (mapping_unevictable(page_mapping(page)))
2475 return 0;
2476
b291f000
NP
2477 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2478 return 0;
894bc310
LS
2479
2480 return 1;
2481}
89e004ea
LS
2482
2483/**
2484 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2485 * @page: page to check evictability and move to appropriate lru list
2486 * @zone: zone page is in
2487 *
2488 * Checks a page for evictability and moves the page to the appropriate
2489 * zone lru list.
2490 *
2491 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2492 * have PageUnevictable set.
2493 */
2494static void check_move_unevictable_page(struct page *page, struct zone *zone)
2495{
2496 VM_BUG_ON(PageActive(page));
2497
2498retry:
2499 ClearPageUnevictable(page);
2500 if (page_evictable(page, NULL)) {
2501 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
af936a16 2502
89e004ea
LS
2503 __dec_zone_state(zone, NR_UNEVICTABLE);
2504 list_move(&page->lru, &zone->lru[l].list);
08e552c6 2505 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
89e004ea
LS
2506 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2507 __count_vm_event(UNEVICTABLE_PGRESCUED);
2508 } else {
2509 /*
2510 * rotate unevictable list
2511 */
2512 SetPageUnevictable(page);
2513 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
08e552c6 2514 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
89e004ea
LS
2515 if (page_evictable(page, NULL))
2516 goto retry;
2517 }
2518}
2519
2520/**
2521 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2522 * @mapping: struct address_space to scan for evictable pages
2523 *
2524 * Scan all pages in mapping. Check unevictable pages for
2525 * evictability and move them to the appropriate zone lru list.
2526 */
2527void scan_mapping_unevictable_pages(struct address_space *mapping)
2528{
2529 pgoff_t next = 0;
2530 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2531 PAGE_CACHE_SHIFT;
2532 struct zone *zone;
2533 struct pagevec pvec;
2534
2535 if (mapping->nrpages == 0)
2536 return;
2537
2538 pagevec_init(&pvec, 0);
2539 while (next < end &&
2540 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2541 int i;
2542 int pg_scanned = 0;
2543
2544 zone = NULL;
2545
2546 for (i = 0; i < pagevec_count(&pvec); i++) {
2547 struct page *page = pvec.pages[i];
2548 pgoff_t page_index = page->index;
2549 struct zone *pagezone = page_zone(page);
2550
2551 pg_scanned++;
2552 if (page_index > next)
2553 next = page_index;
2554 next++;
2555
2556 if (pagezone != zone) {
2557 if (zone)
2558 spin_unlock_irq(&zone->lru_lock);
2559 zone = pagezone;
2560 spin_lock_irq(&zone->lru_lock);
2561 }
2562
2563 if (PageLRU(page) && PageUnevictable(page))
2564 check_move_unevictable_page(page, zone);
2565 }
2566 if (zone)
2567 spin_unlock_irq(&zone->lru_lock);
2568 pagevec_release(&pvec);
2569
2570 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2571 }
2572
2573}
af936a16
LS
2574
2575/**
2576 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2577 * @zone - zone of which to scan the unevictable list
2578 *
2579 * Scan @zone's unevictable LRU lists to check for pages that have become
2580 * evictable. Move those that have to @zone's inactive list where they
2581 * become candidates for reclaim, unless shrink_inactive_zone() decides
2582 * to reactivate them. Pages that are still unevictable are rotated
2583 * back onto @zone's unevictable list.
2584 */
2585#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
14b90b22 2586static void scan_zone_unevictable_pages(struct zone *zone)
af936a16
LS
2587{
2588 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2589 unsigned long scan;
2590 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2591
2592 while (nr_to_scan > 0) {
2593 unsigned long batch_size = min(nr_to_scan,
2594 SCAN_UNEVICTABLE_BATCH_SIZE);
2595
2596 spin_lock_irq(&zone->lru_lock);
2597 for (scan = 0; scan < batch_size; scan++) {
2598 struct page *page = lru_to_page(l_unevictable);
2599
2600 if (!trylock_page(page))
2601 continue;
2602
2603 prefetchw_prev_lru_page(page, l_unevictable, flags);
2604
2605 if (likely(PageLRU(page) && PageUnevictable(page)))
2606 check_move_unevictable_page(page, zone);
2607
2608 unlock_page(page);
2609 }
2610 spin_unlock_irq(&zone->lru_lock);
2611
2612 nr_to_scan -= batch_size;
2613 }
2614}
2615
2616
2617/**
2618 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2619 *
2620 * A really big hammer: scan all zones' unevictable LRU lists to check for
2621 * pages that have become evictable. Move those back to the zones'
2622 * inactive list where they become candidates for reclaim.
2623 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2624 * and we add swap to the system. As such, it runs in the context of a task
2625 * that has possibly/probably made some previously unevictable pages
2626 * evictable.
2627 */
ff30153b 2628static void scan_all_zones_unevictable_pages(void)
af936a16
LS
2629{
2630 struct zone *zone;
2631
2632 for_each_zone(zone) {
2633 scan_zone_unevictable_pages(zone);
2634 }
2635}
2636
2637/*
2638 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2639 * all nodes' unevictable lists for evictable pages
2640 */
2641unsigned long scan_unevictable_pages;
2642
2643int scan_unevictable_handler(struct ctl_table *table, int write,
2644 struct file *file, void __user *buffer,
2645 size_t *length, loff_t *ppos)
2646{
2647 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2648
2649 if (write && *(unsigned long *)table->data)
2650 scan_all_zones_unevictable_pages();
2651
2652 scan_unevictable_pages = 0;
2653 return 0;
2654}
2655
2656/*
2657 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2658 * a specified node's per zone unevictable lists for evictable pages.
2659 */
2660
2661static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2662 struct sysdev_attribute *attr,
2663 char *buf)
2664{
2665 return sprintf(buf, "0\n"); /* always zero; should fit... */
2666}
2667
2668static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2669 struct sysdev_attribute *attr,
2670 const char *buf, size_t count)
2671{
2672 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2673 struct zone *zone;
2674 unsigned long res;
2675 unsigned long req = strict_strtoul(buf, 10, &res);
2676
2677 if (!req)
2678 return 1; /* zero is no-op */
2679
2680 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2681 if (!populated_zone(zone))
2682 continue;
2683 scan_zone_unevictable_pages(zone);
2684 }
2685 return 1;
2686}
2687
2688
2689static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2690 read_scan_unevictable_node,
2691 write_scan_unevictable_node);
2692
2693int scan_unevictable_register_node(struct node *node)
2694{
2695 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2696}
2697
2698void scan_unevictable_unregister_node(struct node *node)
2699{
2700 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2701}
2702