]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/vmscan.c
mm: prevent potential recursive reclaim due to clearing PF_MEMALLOC
[mirror_ubuntu-artful-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4 16#include <linux/mm.h>
5b3cc15a 17#include <linux/sched/mm.h>
1da177e4 18#include <linux/module.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/kernel_stat.h>
21#include <linux/swap.h>
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/highmem.h>
70ddf637 25#include <linux/vmpressure.h>
e129b5c2 26#include <linux/vmstat.h>
1da177e4
LT
27#include <linux/file.h>
28#include <linux/writeback.h>
29#include <linux/blkdev.h>
30#include <linux/buffer_head.h> /* for try_to_release_page(),
31 buffer_heads_over_limit */
32#include <linux/mm_inline.h>
1da177e4
LT
33#include <linux/backing-dev.h>
34#include <linux/rmap.h>
35#include <linux/topology.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
3e7d3449 38#include <linux/compaction.h>
1da177e4
LT
39#include <linux/notifier.h>
40#include <linux/rwsem.h>
248a0301 41#include <linux/delay.h>
3218ae14 42#include <linux/kthread.h>
7dfb7103 43#include <linux/freezer.h>
66e1707b 44#include <linux/memcontrol.h>
873b4771 45#include <linux/delayacct.h>
af936a16 46#include <linux/sysctl.h>
929bea7c 47#include <linux/oom.h>
268bb0ce 48#include <linux/prefetch.h>
b1de0d13 49#include <linux/printk.h>
f9fe48be 50#include <linux/dax.h>
1da177e4
LT
51
52#include <asm/tlbflush.h>
53#include <asm/div64.h>
54
55#include <linux/swapops.h>
117aad1e 56#include <linux/balloon_compaction.h>
1da177e4 57
0f8053a5
NP
58#include "internal.h"
59
33906bc5
MG
60#define CREATE_TRACE_POINTS
61#include <trace/events/vmscan.h>
62
1da177e4 63struct scan_control {
22fba335
KM
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
66
1da177e4 67 /* This context's GFP mask */
6daa0e28 68 gfp_t gfp_mask;
1da177e4 69
ee814fe2 70 /* Allocation order */
5ad333eb 71 int order;
66e1707b 72
ee814fe2
JW
73 /*
74 * Nodemask of nodes allowed by the caller. If NULL, all nodes
75 * are scanned.
76 */
77 nodemask_t *nodemask;
9e3b2f8c 78
f16015fb
JW
79 /*
80 * The memory cgroup that hit its limit and as a result is the
81 * primary target of this reclaim invocation.
82 */
83 struct mem_cgroup *target_mem_cgroup;
66e1707b 84
ee814fe2
JW
85 /* Scan (total_size >> priority) pages at once */
86 int priority;
87
b2e18757
MG
88 /* The highest zone to isolate pages for reclaim from */
89 enum zone_type reclaim_idx;
90
1276ad68 91 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
92 unsigned int may_writepage:1;
93
94 /* Can mapped pages be reclaimed? */
95 unsigned int may_unmap:1;
96
97 /* Can pages be swapped as part of reclaim? */
98 unsigned int may_swap:1;
99
d6622f63
YX
100 /*
101 * Cgroups are not reclaimed below their configured memory.low,
102 * unless we threaten to OOM. If any cgroups are skipped due to
103 * memory.low and nothing was reclaimed, go back for memory.low.
104 */
105 unsigned int memcg_low_reclaim:1;
106 unsigned int memcg_low_skipped:1;
241994ed 107
ee814fe2
JW
108 unsigned int hibernation_mode:1;
109
110 /* One of the zones is ready for compaction */
111 unsigned int compaction_ready:1;
112
113 /* Incremented by the number of inactive pages that were scanned */
114 unsigned long nr_scanned;
115
116 /* Number of pages freed so far during a call to shrink_zones() */
117 unsigned long nr_reclaimed;
1da177e4
LT
118};
119
1da177e4
LT
120#ifdef ARCH_HAS_PREFETCH
121#define prefetch_prev_lru_page(_page, _base, _field) \
122 do { \
123 if ((_page)->lru.prev != _base) { \
124 struct page *prev; \
125 \
126 prev = lru_to_page(&(_page->lru)); \
127 prefetch(&prev->_field); \
128 } \
129 } while (0)
130#else
131#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132#endif
133
134#ifdef ARCH_HAS_PREFETCHW
135#define prefetchw_prev_lru_page(_page, _base, _field) \
136 do { \
137 if ((_page)->lru.prev != _base) { \
138 struct page *prev; \
139 \
140 prev = lru_to_page(&(_page->lru)); \
141 prefetchw(&prev->_field); \
142 } \
143 } while (0)
144#else
145#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146#endif
147
148/*
149 * From 0 .. 100. Higher means more swappy.
150 */
151int vm_swappiness = 60;
d0480be4
WSH
152/*
153 * The total number of pages which are beyond the high watermark within all
154 * zones.
155 */
156unsigned long vm_total_pages;
1da177e4
LT
157
158static LIST_HEAD(shrinker_list);
159static DECLARE_RWSEM(shrinker_rwsem);
160
c255a458 161#ifdef CONFIG_MEMCG
89b5fae5
JW
162static bool global_reclaim(struct scan_control *sc)
163{
f16015fb 164 return !sc->target_mem_cgroup;
89b5fae5 165}
97c9341f
TH
166
167/**
168 * sane_reclaim - is the usual dirty throttling mechanism operational?
169 * @sc: scan_control in question
170 *
171 * The normal page dirty throttling mechanism in balance_dirty_pages() is
172 * completely broken with the legacy memcg and direct stalling in
173 * shrink_page_list() is used for throttling instead, which lacks all the
174 * niceties such as fairness, adaptive pausing, bandwidth proportional
175 * allocation and configurability.
176 *
177 * This function tests whether the vmscan currently in progress can assume
178 * that the normal dirty throttling mechanism is operational.
179 */
180static bool sane_reclaim(struct scan_control *sc)
181{
182 struct mem_cgroup *memcg = sc->target_mem_cgroup;
183
184 if (!memcg)
185 return true;
186#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 187 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
188 return true;
189#endif
190 return false;
191}
91a45470 192#else
89b5fae5
JW
193static bool global_reclaim(struct scan_control *sc)
194{
195 return true;
196}
97c9341f
TH
197
198static bool sane_reclaim(struct scan_control *sc)
199{
200 return true;
201}
91a45470
KH
202#endif
203
5a1c84b4
MG
204/*
205 * This misses isolated pages which are not accounted for to save counters.
206 * As the data only determines if reclaim or compaction continues, it is
207 * not expected that isolated pages will be a dominating factor.
208 */
209unsigned long zone_reclaimable_pages(struct zone *zone)
210{
211 unsigned long nr;
212
213 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
214 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
215 if (get_nr_swap_pages() > 0)
216 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
217 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
218
219 return nr;
220}
221
599d0c95
MG
222unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
223{
224 unsigned long nr;
225
226 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
227 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
228 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
6e543d57
LD
229
230 if (get_nr_swap_pages() > 0)
599d0c95
MG
231 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
232 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
233 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
6e543d57
LD
234
235 return nr;
236}
237
fd538803
MH
238/**
239 * lruvec_lru_size - Returns the number of pages on the given LRU list.
240 * @lruvec: lru vector
241 * @lru: lru to use
242 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
243 */
244unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 245{
fd538803
MH
246 unsigned long lru_size;
247 int zid;
248
c3c787e8 249 if (!mem_cgroup_disabled())
fd538803
MH
250 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
251 else
252 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
a3d8e054 253
fd538803
MH
254 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
255 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
256 unsigned long size;
c9f299d9 257
fd538803
MH
258 if (!managed_zone(zone))
259 continue;
260
261 if (!mem_cgroup_disabled())
262 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
263 else
264 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
265 NR_ZONE_LRU_BASE + lru);
266 lru_size -= min(size, lru_size);
267 }
268
269 return lru_size;
b4536f0c 270
b4536f0c
MH
271}
272
1da177e4 273/*
1d3d4437 274 * Add a shrinker callback to be called from the vm.
1da177e4 275 */
1d3d4437 276int register_shrinker(struct shrinker *shrinker)
1da177e4 277{
1d3d4437
GC
278 size_t size = sizeof(*shrinker->nr_deferred);
279
1d3d4437
GC
280 if (shrinker->flags & SHRINKER_NUMA_AWARE)
281 size *= nr_node_ids;
282
283 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
284 if (!shrinker->nr_deferred)
285 return -ENOMEM;
286
8e1f936b
RR
287 down_write(&shrinker_rwsem);
288 list_add_tail(&shrinker->list, &shrinker_list);
289 up_write(&shrinker_rwsem);
1d3d4437 290 return 0;
1da177e4 291}
8e1f936b 292EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
293
294/*
295 * Remove one
296 */
8e1f936b 297void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
298{
299 down_write(&shrinker_rwsem);
300 list_del(&shrinker->list);
301 up_write(&shrinker_rwsem);
ae393321 302 kfree(shrinker->nr_deferred);
1da177e4 303}
8e1f936b 304EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
305
306#define SHRINK_BATCH 128
1d3d4437 307
cb731d6c
VD
308static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
309 struct shrinker *shrinker,
310 unsigned long nr_scanned,
311 unsigned long nr_eligible)
1d3d4437
GC
312{
313 unsigned long freed = 0;
314 unsigned long long delta;
315 long total_scan;
d5bc5fd3 316 long freeable;
1d3d4437
GC
317 long nr;
318 long new_nr;
319 int nid = shrinkctl->nid;
320 long batch_size = shrinker->batch ? shrinker->batch
321 : SHRINK_BATCH;
5f33a080 322 long scanned = 0, next_deferred;
1d3d4437 323
d5bc5fd3
VD
324 freeable = shrinker->count_objects(shrinker, shrinkctl);
325 if (freeable == 0)
1d3d4437
GC
326 return 0;
327
328 /*
329 * copy the current shrinker scan count into a local variable
330 * and zero it so that other concurrent shrinker invocations
331 * don't also do this scanning work.
332 */
333 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
334
335 total_scan = nr;
6b4f7799 336 delta = (4 * nr_scanned) / shrinker->seeks;
d5bc5fd3 337 delta *= freeable;
6b4f7799 338 do_div(delta, nr_eligible + 1);
1d3d4437
GC
339 total_scan += delta;
340 if (total_scan < 0) {
8612c663 341 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 342 shrinker->scan_objects, total_scan);
d5bc5fd3 343 total_scan = freeable;
5f33a080
SL
344 next_deferred = nr;
345 } else
346 next_deferred = total_scan;
1d3d4437
GC
347
348 /*
349 * We need to avoid excessive windup on filesystem shrinkers
350 * due to large numbers of GFP_NOFS allocations causing the
351 * shrinkers to return -1 all the time. This results in a large
352 * nr being built up so when a shrink that can do some work
353 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 354 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
355 * memory.
356 *
357 * Hence only allow the shrinker to scan the entire cache when
358 * a large delta change is calculated directly.
359 */
d5bc5fd3
VD
360 if (delta < freeable / 4)
361 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
362
363 /*
364 * Avoid risking looping forever due to too large nr value:
365 * never try to free more than twice the estimate number of
366 * freeable entries.
367 */
d5bc5fd3
VD
368 if (total_scan > freeable * 2)
369 total_scan = freeable * 2;
1d3d4437
GC
370
371 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
6b4f7799
JW
372 nr_scanned, nr_eligible,
373 freeable, delta, total_scan);
1d3d4437 374
0b1fb40a
VD
375 /*
376 * Normally, we should not scan less than batch_size objects in one
377 * pass to avoid too frequent shrinker calls, but if the slab has less
378 * than batch_size objects in total and we are really tight on memory,
379 * we will try to reclaim all available objects, otherwise we can end
380 * up failing allocations although there are plenty of reclaimable
381 * objects spread over several slabs with usage less than the
382 * batch_size.
383 *
384 * We detect the "tight on memory" situations by looking at the total
385 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 386 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
387 * scanning at high prio and therefore should try to reclaim as much as
388 * possible.
389 */
390 while (total_scan >= batch_size ||
d5bc5fd3 391 total_scan >= freeable) {
a0b02131 392 unsigned long ret;
0b1fb40a 393 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 394
0b1fb40a 395 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
396 ret = shrinker->scan_objects(shrinker, shrinkctl);
397 if (ret == SHRINK_STOP)
398 break;
399 freed += ret;
1d3d4437 400
0b1fb40a
VD
401 count_vm_events(SLABS_SCANNED, nr_to_scan);
402 total_scan -= nr_to_scan;
5f33a080 403 scanned += nr_to_scan;
1d3d4437
GC
404
405 cond_resched();
406 }
407
5f33a080
SL
408 if (next_deferred >= scanned)
409 next_deferred -= scanned;
410 else
411 next_deferred = 0;
1d3d4437
GC
412 /*
413 * move the unused scan count back into the shrinker in a
414 * manner that handles concurrent updates. If we exhausted the
415 * scan, there is no need to do an update.
416 */
5f33a080
SL
417 if (next_deferred > 0)
418 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
419 &shrinker->nr_deferred[nid]);
420 else
421 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
422
df9024a8 423 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 424 return freed;
1495f230
YH
425}
426
6b4f7799 427/**
cb731d6c 428 * shrink_slab - shrink slab caches
6b4f7799
JW
429 * @gfp_mask: allocation context
430 * @nid: node whose slab caches to target
cb731d6c 431 * @memcg: memory cgroup whose slab caches to target
6b4f7799
JW
432 * @nr_scanned: pressure numerator
433 * @nr_eligible: pressure denominator
1da177e4 434 *
6b4f7799 435 * Call the shrink functions to age shrinkable caches.
1da177e4 436 *
6b4f7799
JW
437 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
438 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 439 *
cb731d6c
VD
440 * @memcg specifies the memory cgroup to target. If it is not NULL,
441 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
0fc9f58a
VD
442 * objects from the memory cgroup specified. Otherwise, only unaware
443 * shrinkers are called.
cb731d6c 444 *
6b4f7799
JW
445 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
446 * the available objects should be scanned. Page reclaim for example
447 * passes the number of pages scanned and the number of pages on the
448 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
449 * when it encountered mapped pages. The ratio is further biased by
450 * the ->seeks setting of the shrink function, which indicates the
451 * cost to recreate an object relative to that of an LRU page.
b15e0905 452 *
6b4f7799 453 * Returns the number of reclaimed slab objects.
1da177e4 454 */
cb731d6c
VD
455static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
456 struct mem_cgroup *memcg,
457 unsigned long nr_scanned,
458 unsigned long nr_eligible)
1da177e4
LT
459{
460 struct shrinker *shrinker;
24f7c6b9 461 unsigned long freed = 0;
1da177e4 462
0fc9f58a 463 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
cb731d6c
VD
464 return 0;
465
6b4f7799
JW
466 if (nr_scanned == 0)
467 nr_scanned = SWAP_CLUSTER_MAX;
1da177e4 468
f06590bd 469 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
470 /*
471 * If we would return 0, our callers would understand that we
472 * have nothing else to shrink and give up trying. By returning
473 * 1 we keep it going and assume we'll be able to shrink next
474 * time.
475 */
476 freed = 1;
f06590bd
MK
477 goto out;
478 }
1da177e4
LT
479
480 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
481 struct shrink_control sc = {
482 .gfp_mask = gfp_mask,
483 .nid = nid,
cb731d6c 484 .memcg = memcg,
6b4f7799 485 };
ec97097b 486
0fc9f58a
VD
487 /*
488 * If kernel memory accounting is disabled, we ignore
489 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
490 * passing NULL for memcg.
491 */
492 if (memcg_kmem_enabled() &&
493 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
cb731d6c
VD
494 continue;
495
6b4f7799
JW
496 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
497 sc.nid = 0;
1da177e4 498
cb731d6c 499 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
1da177e4 500 }
6b4f7799 501
1da177e4 502 up_read(&shrinker_rwsem);
f06590bd
MK
503out:
504 cond_resched();
24f7c6b9 505 return freed;
1da177e4
LT
506}
507
cb731d6c
VD
508void drop_slab_node(int nid)
509{
510 unsigned long freed;
511
512 do {
513 struct mem_cgroup *memcg = NULL;
514
515 freed = 0;
516 do {
517 freed += shrink_slab(GFP_KERNEL, nid, memcg,
518 1000, 1000);
519 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
520 } while (freed > 10);
521}
522
523void drop_slab(void)
524{
525 int nid;
526
527 for_each_online_node(nid)
528 drop_slab_node(nid);
529}
530
1da177e4
LT
531static inline int is_page_cache_freeable(struct page *page)
532{
ceddc3a5
JW
533 /*
534 * A freeable page cache page is referenced only by the caller
535 * that isolated the page, the page cache radix tree and
536 * optional buffer heads at page->private.
537 */
edcf4748 538 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
539}
540
703c2708 541static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 542{
930d9152 543 if (current->flags & PF_SWAPWRITE)
1da177e4 544 return 1;
703c2708 545 if (!inode_write_congested(inode))
1da177e4 546 return 1;
703c2708 547 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
548 return 1;
549 return 0;
550}
551
552/*
553 * We detected a synchronous write error writing a page out. Probably
554 * -ENOSPC. We need to propagate that into the address_space for a subsequent
555 * fsync(), msync() or close().
556 *
557 * The tricky part is that after writepage we cannot touch the mapping: nothing
558 * prevents it from being freed up. But we have a ref on the page and once
559 * that page is locked, the mapping is pinned.
560 *
561 * We're allowed to run sleeping lock_page() here because we know the caller has
562 * __GFP_FS.
563 */
564static void handle_write_error(struct address_space *mapping,
565 struct page *page, int error)
566{
7eaceacc 567 lock_page(page);
3e9f45bd
GC
568 if (page_mapping(page) == mapping)
569 mapping_set_error(mapping, error);
1da177e4
LT
570 unlock_page(page);
571}
572
04e62a29
CL
573/* possible outcome of pageout() */
574typedef enum {
575 /* failed to write page out, page is locked */
576 PAGE_KEEP,
577 /* move page to the active list, page is locked */
578 PAGE_ACTIVATE,
579 /* page has been sent to the disk successfully, page is unlocked */
580 PAGE_SUCCESS,
581 /* page is clean and locked */
582 PAGE_CLEAN,
583} pageout_t;
584
1da177e4 585/*
1742f19f
AM
586 * pageout is called by shrink_page_list() for each dirty page.
587 * Calls ->writepage().
1da177e4 588 */
c661b078 589static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 590 struct scan_control *sc)
1da177e4
LT
591{
592 /*
593 * If the page is dirty, only perform writeback if that write
594 * will be non-blocking. To prevent this allocation from being
595 * stalled by pagecache activity. But note that there may be
596 * stalls if we need to run get_block(). We could test
597 * PagePrivate for that.
598 *
8174202b 599 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
600 * this page's queue, we can perform writeback even if that
601 * will block.
602 *
603 * If the page is swapcache, write it back even if that would
604 * block, for some throttling. This happens by accident, because
605 * swap_backing_dev_info is bust: it doesn't reflect the
606 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
607 */
608 if (!is_page_cache_freeable(page))
609 return PAGE_KEEP;
610 if (!mapping) {
611 /*
612 * Some data journaling orphaned pages can have
613 * page->mapping == NULL while being dirty with clean buffers.
614 */
266cf658 615 if (page_has_private(page)) {
1da177e4
LT
616 if (try_to_free_buffers(page)) {
617 ClearPageDirty(page);
b1de0d13 618 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
619 return PAGE_CLEAN;
620 }
621 }
622 return PAGE_KEEP;
623 }
624 if (mapping->a_ops->writepage == NULL)
625 return PAGE_ACTIVATE;
703c2708 626 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
627 return PAGE_KEEP;
628
629 if (clear_page_dirty_for_io(page)) {
630 int res;
631 struct writeback_control wbc = {
632 .sync_mode = WB_SYNC_NONE,
633 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
634 .range_start = 0,
635 .range_end = LLONG_MAX,
1da177e4
LT
636 .for_reclaim = 1,
637 };
638
639 SetPageReclaim(page);
640 res = mapping->a_ops->writepage(page, &wbc);
641 if (res < 0)
642 handle_write_error(mapping, page, res);
994fc28c 643 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
644 ClearPageReclaim(page);
645 return PAGE_ACTIVATE;
646 }
c661b078 647
1da177e4
LT
648 if (!PageWriteback(page)) {
649 /* synchronous write or broken a_ops? */
650 ClearPageReclaim(page);
651 }
3aa23851 652 trace_mm_vmscan_writepage(page);
c4a25635 653 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
654 return PAGE_SUCCESS;
655 }
656
657 return PAGE_CLEAN;
658}
659
a649fd92 660/*
e286781d
NP
661 * Same as remove_mapping, but if the page is removed from the mapping, it
662 * gets returned with a refcount of 0.
a649fd92 663 */
a528910e
JW
664static int __remove_mapping(struct address_space *mapping, struct page *page,
665 bool reclaimed)
49d2e9cc 666{
c4843a75 667 unsigned long flags;
c4843a75 668
28e4d965
NP
669 BUG_ON(!PageLocked(page));
670 BUG_ON(mapping != page_mapping(page));
49d2e9cc 671
c4843a75 672 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 673 /*
0fd0e6b0
NP
674 * The non racy check for a busy page.
675 *
676 * Must be careful with the order of the tests. When someone has
677 * a ref to the page, it may be possible that they dirty it then
678 * drop the reference. So if PageDirty is tested before page_count
679 * here, then the following race may occur:
680 *
681 * get_user_pages(&page);
682 * [user mapping goes away]
683 * write_to(page);
684 * !PageDirty(page) [good]
685 * SetPageDirty(page);
686 * put_page(page);
687 * !page_count(page) [good, discard it]
688 *
689 * [oops, our write_to data is lost]
690 *
691 * Reversing the order of the tests ensures such a situation cannot
692 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 693 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
694 *
695 * Note that if SetPageDirty is always performed via set_page_dirty,
696 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 697 */
fe896d18 698 if (!page_ref_freeze(page, 2))
49d2e9cc 699 goto cannot_free;
e286781d
NP
700 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
701 if (unlikely(PageDirty(page))) {
fe896d18 702 page_ref_unfreeze(page, 2);
49d2e9cc 703 goto cannot_free;
e286781d 704 }
49d2e9cc
CL
705
706 if (PageSwapCache(page)) {
707 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 708 mem_cgroup_swapout(page, swap);
49d2e9cc 709 __delete_from_swap_cache(page);
c4843a75 710 spin_unlock_irqrestore(&mapping->tree_lock, flags);
0a31bc97 711 swapcache_free(swap);
e286781d 712 } else {
6072d13c 713 void (*freepage)(struct page *);
a528910e 714 void *shadow = NULL;
6072d13c
LT
715
716 freepage = mapping->a_ops->freepage;
a528910e
JW
717 /*
718 * Remember a shadow entry for reclaimed file cache in
719 * order to detect refaults, thus thrashing, later on.
720 *
721 * But don't store shadows in an address space that is
722 * already exiting. This is not just an optizimation,
723 * inode reclaim needs to empty out the radix tree or
724 * the nodes are lost. Don't plant shadows behind its
725 * back.
f9fe48be
RZ
726 *
727 * We also don't store shadows for DAX mappings because the
728 * only page cache pages found in these are zero pages
729 * covering holes, and because we don't want to mix DAX
730 * exceptional entries and shadow exceptional entries in the
731 * same page_tree.
a528910e
JW
732 */
733 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 734 !mapping_exiting(mapping) && !dax_mapping(mapping))
a528910e 735 shadow = workingset_eviction(mapping, page);
62cccb8c 736 __delete_from_page_cache(page, shadow);
c4843a75 737 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
738
739 if (freepage != NULL)
740 freepage(page);
49d2e9cc
CL
741 }
742
49d2e9cc
CL
743 return 1;
744
745cannot_free:
c4843a75 746 spin_unlock_irqrestore(&mapping->tree_lock, flags);
49d2e9cc
CL
747 return 0;
748}
749
e286781d
NP
750/*
751 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
752 * someone else has a ref on the page, abort and return 0. If it was
753 * successfully detached, return 1. Assumes the caller has a single ref on
754 * this page.
755 */
756int remove_mapping(struct address_space *mapping, struct page *page)
757{
a528910e 758 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
759 /*
760 * Unfreezing the refcount with 1 rather than 2 effectively
761 * drops the pagecache ref for us without requiring another
762 * atomic operation.
763 */
fe896d18 764 page_ref_unfreeze(page, 1);
e286781d
NP
765 return 1;
766 }
767 return 0;
768}
769
894bc310
LS
770/**
771 * putback_lru_page - put previously isolated page onto appropriate LRU list
772 * @page: page to be put back to appropriate lru list
773 *
774 * Add previously isolated @page to appropriate LRU list.
775 * Page may still be unevictable for other reasons.
776 *
777 * lru_lock must not be held, interrupts must be enabled.
778 */
894bc310
LS
779void putback_lru_page(struct page *page)
780{
0ec3b74c 781 bool is_unevictable;
bbfd28ee 782 int was_unevictable = PageUnevictable(page);
894bc310 783
309381fe 784 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
785
786redo:
787 ClearPageUnevictable(page);
788
39b5f29a 789 if (page_evictable(page)) {
894bc310
LS
790 /*
791 * For evictable pages, we can use the cache.
792 * In event of a race, worst case is we end up with an
793 * unevictable page on [in]active list.
794 * We know how to handle that.
795 */
0ec3b74c 796 is_unevictable = false;
c53954a0 797 lru_cache_add(page);
894bc310
LS
798 } else {
799 /*
800 * Put unevictable pages directly on zone's unevictable
801 * list.
802 */
0ec3b74c 803 is_unevictable = true;
894bc310 804 add_page_to_unevictable_list(page);
6a7b9548 805 /*
21ee9f39
MK
806 * When racing with an mlock or AS_UNEVICTABLE clearing
807 * (page is unlocked) make sure that if the other thread
808 * does not observe our setting of PG_lru and fails
24513264 809 * isolation/check_move_unevictable_pages,
21ee9f39 810 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
811 * the page back to the evictable list.
812 *
21ee9f39 813 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
814 */
815 smp_mb();
894bc310 816 }
894bc310
LS
817
818 /*
819 * page's status can change while we move it among lru. If an evictable
820 * page is on unevictable list, it never be freed. To avoid that,
821 * check after we added it to the list, again.
822 */
0ec3b74c 823 if (is_unevictable && page_evictable(page)) {
894bc310
LS
824 if (!isolate_lru_page(page)) {
825 put_page(page);
826 goto redo;
827 }
828 /* This means someone else dropped this page from LRU
829 * So, it will be freed or putback to LRU again. There is
830 * nothing to do here.
831 */
832 }
833
0ec3b74c 834 if (was_unevictable && !is_unevictable)
bbfd28ee 835 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 836 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
837 count_vm_event(UNEVICTABLE_PGCULLED);
838
894bc310
LS
839 put_page(page); /* drop ref from isolate */
840}
841
dfc8d636
JW
842enum page_references {
843 PAGEREF_RECLAIM,
844 PAGEREF_RECLAIM_CLEAN,
64574746 845 PAGEREF_KEEP,
dfc8d636
JW
846 PAGEREF_ACTIVATE,
847};
848
849static enum page_references page_check_references(struct page *page,
850 struct scan_control *sc)
851{
64574746 852 int referenced_ptes, referenced_page;
dfc8d636 853 unsigned long vm_flags;
dfc8d636 854
c3ac9a8a
JW
855 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
856 &vm_flags);
64574746 857 referenced_page = TestClearPageReferenced(page);
dfc8d636 858
dfc8d636
JW
859 /*
860 * Mlock lost the isolation race with us. Let try_to_unmap()
861 * move the page to the unevictable list.
862 */
863 if (vm_flags & VM_LOCKED)
864 return PAGEREF_RECLAIM;
865
64574746 866 if (referenced_ptes) {
e4898273 867 if (PageSwapBacked(page))
64574746
JW
868 return PAGEREF_ACTIVATE;
869 /*
870 * All mapped pages start out with page table
871 * references from the instantiating fault, so we need
872 * to look twice if a mapped file page is used more
873 * than once.
874 *
875 * Mark it and spare it for another trip around the
876 * inactive list. Another page table reference will
877 * lead to its activation.
878 *
879 * Note: the mark is set for activated pages as well
880 * so that recently deactivated but used pages are
881 * quickly recovered.
882 */
883 SetPageReferenced(page);
884
34dbc67a 885 if (referenced_page || referenced_ptes > 1)
64574746
JW
886 return PAGEREF_ACTIVATE;
887
c909e993
KK
888 /*
889 * Activate file-backed executable pages after first usage.
890 */
891 if (vm_flags & VM_EXEC)
892 return PAGEREF_ACTIVATE;
893
64574746
JW
894 return PAGEREF_KEEP;
895 }
dfc8d636
JW
896
897 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 898 if (referenced_page && !PageSwapBacked(page))
64574746
JW
899 return PAGEREF_RECLAIM_CLEAN;
900
901 return PAGEREF_RECLAIM;
dfc8d636
JW
902}
903
e2be15f6
MG
904/* Check if a page is dirty or under writeback */
905static void page_check_dirty_writeback(struct page *page,
906 bool *dirty, bool *writeback)
907{
b4597226
MG
908 struct address_space *mapping;
909
e2be15f6
MG
910 /*
911 * Anonymous pages are not handled by flushers and must be written
912 * from reclaim context. Do not stall reclaim based on them
913 */
802a3a92
SL
914 if (!page_is_file_cache(page) ||
915 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
916 *dirty = false;
917 *writeback = false;
918 return;
919 }
920
921 /* By default assume that the page flags are accurate */
922 *dirty = PageDirty(page);
923 *writeback = PageWriteback(page);
b4597226
MG
924
925 /* Verify dirty/writeback state if the filesystem supports it */
926 if (!page_has_private(page))
927 return;
928
929 mapping = page_mapping(page);
930 if (mapping && mapping->a_ops->is_dirty_writeback)
931 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
932}
933
3c710c1a
MH
934struct reclaim_stat {
935 unsigned nr_dirty;
936 unsigned nr_unqueued_dirty;
937 unsigned nr_congested;
938 unsigned nr_writeback;
939 unsigned nr_immediate;
5bccd166
MH
940 unsigned nr_activate;
941 unsigned nr_ref_keep;
942 unsigned nr_unmap_fail;
3c710c1a
MH
943};
944
1da177e4 945/*
1742f19f 946 * shrink_page_list() returns the number of reclaimed pages
1da177e4 947 */
1742f19f 948static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 949 struct pglist_data *pgdat,
f84f6e2b 950 struct scan_control *sc,
02c6de8d 951 enum ttu_flags ttu_flags,
3c710c1a 952 struct reclaim_stat *stat,
02c6de8d 953 bool force_reclaim)
1da177e4
LT
954{
955 LIST_HEAD(ret_pages);
abe4c3b5 956 LIST_HEAD(free_pages);
1da177e4 957 int pgactivate = 0;
3c710c1a
MH
958 unsigned nr_unqueued_dirty = 0;
959 unsigned nr_dirty = 0;
960 unsigned nr_congested = 0;
961 unsigned nr_reclaimed = 0;
962 unsigned nr_writeback = 0;
963 unsigned nr_immediate = 0;
5bccd166
MH
964 unsigned nr_ref_keep = 0;
965 unsigned nr_unmap_fail = 0;
1da177e4
LT
966
967 cond_resched();
968
1da177e4
LT
969 while (!list_empty(page_list)) {
970 struct address_space *mapping;
971 struct page *page;
972 int may_enter_fs;
02c6de8d 973 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 974 bool dirty, writeback;
1da177e4
LT
975
976 cond_resched();
977
978 page = lru_to_page(page_list);
979 list_del(&page->lru);
980
529ae9aa 981 if (!trylock_page(page))
1da177e4
LT
982 goto keep;
983
309381fe 984 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
985
986 sc->nr_scanned++;
80e43426 987
39b5f29a 988 if (unlikely(!page_evictable(page)))
ad6b6704 989 goto activate_locked;
894bc310 990
a6dc60f8 991 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
992 goto keep_locked;
993
1da177e4 994 /* Double the slab pressure for mapped and swapcache pages */
802a3a92
SL
995 if ((page_mapped(page) || PageSwapCache(page)) &&
996 !(PageAnon(page) && !PageSwapBacked(page)))
1da177e4
LT
997 sc->nr_scanned++;
998
c661b078
AW
999 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1000 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1001
e2be15f6
MG
1002 /*
1003 * The number of dirty pages determines if a zone is marked
1004 * reclaim_congested which affects wait_iff_congested. kswapd
1005 * will stall and start writing pages if the tail of the LRU
1006 * is all dirty unqueued pages.
1007 */
1008 page_check_dirty_writeback(page, &dirty, &writeback);
1009 if (dirty || writeback)
1010 nr_dirty++;
1011
1012 if (dirty && !writeback)
1013 nr_unqueued_dirty++;
1014
d04e8acd
MG
1015 /*
1016 * Treat this page as congested if the underlying BDI is or if
1017 * pages are cycling through the LRU so quickly that the
1018 * pages marked for immediate reclaim are making it to the
1019 * end of the LRU a second time.
1020 */
e2be15f6 1021 mapping = page_mapping(page);
1da58ee2 1022 if (((dirty || writeback) && mapping &&
703c2708 1023 inode_write_congested(mapping->host)) ||
d04e8acd 1024 (writeback && PageReclaim(page)))
e2be15f6
MG
1025 nr_congested++;
1026
283aba9f
MG
1027 /*
1028 * If a page at the tail of the LRU is under writeback, there
1029 * are three cases to consider.
1030 *
1031 * 1) If reclaim is encountering an excessive number of pages
1032 * under writeback and this page is both under writeback and
1033 * PageReclaim then it indicates that pages are being queued
1034 * for IO but are being recycled through the LRU before the
1035 * IO can complete. Waiting on the page itself risks an
1036 * indefinite stall if it is impossible to writeback the
1037 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1038 * note that the LRU is being scanned too quickly and the
1039 * caller can stall after page list has been processed.
283aba9f 1040 *
97c9341f 1041 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1042 * not marked for immediate reclaim, or the caller does not
1043 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1044 * not to fs). In this case mark the page for immediate
97c9341f 1045 * reclaim and continue scanning.
283aba9f 1046 *
ecf5fc6e
MH
1047 * Require may_enter_fs because we would wait on fs, which
1048 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1049 * enter reclaim, and deadlock if it waits on a page for
1050 * which it is needed to do the write (loop masks off
1051 * __GFP_IO|__GFP_FS for this reason); but more thought
1052 * would probably show more reasons.
1053 *
7fadc820 1054 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1055 * PageReclaim. memcg does not have any dirty pages
1056 * throttling so we could easily OOM just because too many
1057 * pages are in writeback and there is nothing else to
1058 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1059 *
1060 * In cases 1) and 2) we activate the pages to get them out of
1061 * the way while we continue scanning for clean pages on the
1062 * inactive list and refilling from the active list. The
1063 * observation here is that waiting for disk writes is more
1064 * expensive than potentially causing reloads down the line.
1065 * Since they're marked for immediate reclaim, they won't put
1066 * memory pressure on the cache working set any longer than it
1067 * takes to write them to disk.
283aba9f 1068 */
c661b078 1069 if (PageWriteback(page)) {
283aba9f
MG
1070 /* Case 1 above */
1071 if (current_is_kswapd() &&
1072 PageReclaim(page) &&
599d0c95 1073 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
b1a6f21e 1074 nr_immediate++;
c55e8d03 1075 goto activate_locked;
283aba9f
MG
1076
1077 /* Case 2 above */
97c9341f 1078 } else if (sane_reclaim(sc) ||
ecf5fc6e 1079 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1080 /*
1081 * This is slightly racy - end_page_writeback()
1082 * might have just cleared PageReclaim, then
1083 * setting PageReclaim here end up interpreted
1084 * as PageReadahead - but that does not matter
1085 * enough to care. What we do want is for this
1086 * page to have PageReclaim set next time memcg
1087 * reclaim reaches the tests above, so it will
1088 * then wait_on_page_writeback() to avoid OOM;
1089 * and it's also appropriate in global reclaim.
1090 */
1091 SetPageReclaim(page);
e62e384e 1092 nr_writeback++;
c55e8d03 1093 goto activate_locked;
283aba9f
MG
1094
1095 /* Case 3 above */
1096 } else {
7fadc820 1097 unlock_page(page);
283aba9f 1098 wait_on_page_writeback(page);
7fadc820
HD
1099 /* then go back and try same page again */
1100 list_add_tail(&page->lru, page_list);
1101 continue;
e62e384e 1102 }
c661b078 1103 }
1da177e4 1104
02c6de8d
MK
1105 if (!force_reclaim)
1106 references = page_check_references(page, sc);
1107
dfc8d636
JW
1108 switch (references) {
1109 case PAGEREF_ACTIVATE:
1da177e4 1110 goto activate_locked;
64574746 1111 case PAGEREF_KEEP:
5bccd166 1112 nr_ref_keep++;
64574746 1113 goto keep_locked;
dfc8d636
JW
1114 case PAGEREF_RECLAIM:
1115 case PAGEREF_RECLAIM_CLEAN:
1116 ; /* try to reclaim the page below */
1117 }
1da177e4 1118
1da177e4
LT
1119 /*
1120 * Anonymous process memory has backing store?
1121 * Try to allocate it some swap space here.
802a3a92 1122 * Lazyfree page could be freed directly
1da177e4 1123 */
802a3a92
SL
1124 if (PageAnon(page) && PageSwapBacked(page) &&
1125 !PageSwapCache(page)) {
63eb6b93
HD
1126 if (!(sc->gfp_mask & __GFP_IO))
1127 goto keep_locked;
5bc7b8ac 1128 if (!add_to_swap(page, page_list))
1da177e4 1129 goto activate_locked;
63eb6b93 1130 may_enter_fs = 1;
1da177e4 1131
e2be15f6
MG
1132 /* Adding to swap updated mapping */
1133 mapping = page_mapping(page);
7751b2da
KS
1134 } else if (unlikely(PageTransHuge(page))) {
1135 /* Split file THP */
1136 if (split_huge_page_to_list(page, page_list))
1137 goto keep_locked;
e2be15f6 1138 }
1da177e4 1139
7751b2da
KS
1140 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1141
1da177e4
LT
1142 /*
1143 * The page is mapped into the page tables of one or more
1144 * processes. Try to unmap it here.
1145 */
802a3a92 1146 if (page_mapped(page)) {
666e5a40 1147 if (!try_to_unmap(page, ttu_flags | TTU_BATCH_FLUSH)) {
5bccd166 1148 nr_unmap_fail++;
1da177e4 1149 goto activate_locked;
1da177e4
LT
1150 }
1151 }
1152
1153 if (PageDirty(page)) {
ee72886d 1154 /*
4eda4823
JW
1155 * Only kswapd can writeback filesystem pages
1156 * to avoid risk of stack overflow. But avoid
1157 * injecting inefficient single-page IO into
1158 * flusher writeback as much as possible: only
1159 * write pages when we've encountered many
1160 * dirty pages, and when we've already scanned
1161 * the rest of the LRU for clean pages and see
1162 * the same dirty pages again (PageReclaim).
ee72886d 1163 */
f84f6e2b 1164 if (page_is_file_cache(page) &&
4eda4823
JW
1165 (!current_is_kswapd() || !PageReclaim(page) ||
1166 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1167 /*
1168 * Immediately reclaim when written back.
1169 * Similar in principal to deactivate_page()
1170 * except we already have the page isolated
1171 * and know it's dirty
1172 */
c4a25635 1173 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1174 SetPageReclaim(page);
1175
c55e8d03 1176 goto activate_locked;
ee72886d
MG
1177 }
1178
dfc8d636 1179 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1180 goto keep_locked;
4dd4b920 1181 if (!may_enter_fs)
1da177e4 1182 goto keep_locked;
52a8363e 1183 if (!sc->may_writepage)
1da177e4
LT
1184 goto keep_locked;
1185
d950c947
MG
1186 /*
1187 * Page is dirty. Flush the TLB if a writable entry
1188 * potentially exists to avoid CPU writes after IO
1189 * starts and then write it out here.
1190 */
1191 try_to_unmap_flush_dirty();
7d3579e8 1192 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1193 case PAGE_KEEP:
1194 goto keep_locked;
1195 case PAGE_ACTIVATE:
1196 goto activate_locked;
1197 case PAGE_SUCCESS:
7d3579e8 1198 if (PageWriteback(page))
41ac1999 1199 goto keep;
7d3579e8 1200 if (PageDirty(page))
1da177e4 1201 goto keep;
7d3579e8 1202
1da177e4
LT
1203 /*
1204 * A synchronous write - probably a ramdisk. Go
1205 * ahead and try to reclaim the page.
1206 */
529ae9aa 1207 if (!trylock_page(page))
1da177e4
LT
1208 goto keep;
1209 if (PageDirty(page) || PageWriteback(page))
1210 goto keep_locked;
1211 mapping = page_mapping(page);
1212 case PAGE_CLEAN:
1213 ; /* try to free the page below */
1214 }
1215 }
1216
1217 /*
1218 * If the page has buffers, try to free the buffer mappings
1219 * associated with this page. If we succeed we try to free
1220 * the page as well.
1221 *
1222 * We do this even if the page is PageDirty().
1223 * try_to_release_page() does not perform I/O, but it is
1224 * possible for a page to have PageDirty set, but it is actually
1225 * clean (all its buffers are clean). This happens if the
1226 * buffers were written out directly, with submit_bh(). ext3
894bc310 1227 * will do this, as well as the blockdev mapping.
1da177e4
LT
1228 * try_to_release_page() will discover that cleanness and will
1229 * drop the buffers and mark the page clean - it can be freed.
1230 *
1231 * Rarely, pages can have buffers and no ->mapping. These are
1232 * the pages which were not successfully invalidated in
1233 * truncate_complete_page(). We try to drop those buffers here
1234 * and if that worked, and the page is no longer mapped into
1235 * process address space (page_count == 1) it can be freed.
1236 * Otherwise, leave the page on the LRU so it is swappable.
1237 */
266cf658 1238 if (page_has_private(page)) {
1da177e4
LT
1239 if (!try_to_release_page(page, sc->gfp_mask))
1240 goto activate_locked;
e286781d
NP
1241 if (!mapping && page_count(page) == 1) {
1242 unlock_page(page);
1243 if (put_page_testzero(page))
1244 goto free_it;
1245 else {
1246 /*
1247 * rare race with speculative reference.
1248 * the speculative reference will free
1249 * this page shortly, so we may
1250 * increment nr_reclaimed here (and
1251 * leave it off the LRU).
1252 */
1253 nr_reclaimed++;
1254 continue;
1255 }
1256 }
1da177e4
LT
1257 }
1258
802a3a92
SL
1259 if (PageAnon(page) && !PageSwapBacked(page)) {
1260 /* follow __remove_mapping for reference */
1261 if (!page_ref_freeze(page, 1))
1262 goto keep_locked;
1263 if (PageDirty(page)) {
1264 page_ref_unfreeze(page, 1);
1265 goto keep_locked;
1266 }
1da177e4 1267
802a3a92
SL
1268 count_vm_event(PGLAZYFREED);
1269 } else if (!mapping || !__remove_mapping(mapping, page, true))
1270 goto keep_locked;
a978d6f5
NP
1271 /*
1272 * At this point, we have no other references and there is
1273 * no way to pick any more up (removed from LRU, removed
1274 * from pagecache). Can use non-atomic bitops now (and
1275 * we obviously don't have to worry about waking up a process
1276 * waiting on the page lock, because there are no references.
1277 */
48c935ad 1278 __ClearPageLocked(page);
e286781d 1279free_it:
05ff5137 1280 nr_reclaimed++;
abe4c3b5
MG
1281
1282 /*
1283 * Is there need to periodically free_page_list? It would
1284 * appear not as the counts should be low
1285 */
1286 list_add(&page->lru, &free_pages);
1da177e4
LT
1287 continue;
1288
1289activate_locked:
68a22394 1290 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1291 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1292 PageMlocked(page)))
a2c43eed 1293 try_to_free_swap(page);
309381fe 1294 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704
MK
1295 if (!PageMlocked(page)) {
1296 SetPageActive(page);
1297 pgactivate++;
1298 }
1da177e4
LT
1299keep_locked:
1300 unlock_page(page);
1301keep:
1302 list_add(&page->lru, &ret_pages);
309381fe 1303 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1304 }
abe4c3b5 1305
747db954 1306 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1307 try_to_unmap_flush();
b745bc85 1308 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1309
1da177e4 1310 list_splice(&ret_pages, page_list);
f8891e5e 1311 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1312
3c710c1a
MH
1313 if (stat) {
1314 stat->nr_dirty = nr_dirty;
1315 stat->nr_congested = nr_congested;
1316 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1317 stat->nr_writeback = nr_writeback;
1318 stat->nr_immediate = nr_immediate;
5bccd166
MH
1319 stat->nr_activate = pgactivate;
1320 stat->nr_ref_keep = nr_ref_keep;
1321 stat->nr_unmap_fail = nr_unmap_fail;
3c710c1a 1322 }
05ff5137 1323 return nr_reclaimed;
1da177e4
LT
1324}
1325
02c6de8d
MK
1326unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1327 struct list_head *page_list)
1328{
1329 struct scan_control sc = {
1330 .gfp_mask = GFP_KERNEL,
1331 .priority = DEF_PRIORITY,
1332 .may_unmap = 1,
1333 };
3c710c1a 1334 unsigned long ret;
02c6de8d
MK
1335 struct page *page, *next;
1336 LIST_HEAD(clean_pages);
1337
1338 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1339 if (page_is_file_cache(page) && !PageDirty(page) &&
b1123ea6 1340 !__PageMovable(page)) {
02c6de8d
MK
1341 ClearPageActive(page);
1342 list_move(&page->lru, &clean_pages);
1343 }
1344 }
1345
599d0c95 1346 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
a128ca71 1347 TTU_IGNORE_ACCESS, NULL, true);
02c6de8d 1348 list_splice(&clean_pages, page_list);
599d0c95 1349 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1350 return ret;
1351}
1352
5ad333eb
AW
1353/*
1354 * Attempt to remove the specified page from its LRU. Only take this page
1355 * if it is of the appropriate PageActive status. Pages which are being
1356 * freed elsewhere are also ignored.
1357 *
1358 * page: page to consider
1359 * mode: one of the LRU isolation modes defined above
1360 *
1361 * returns 0 on success, -ve errno on failure.
1362 */
f3fd4a61 1363int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1364{
1365 int ret = -EINVAL;
1366
1367 /* Only take pages on the LRU. */
1368 if (!PageLRU(page))
1369 return ret;
1370
e46a2879
MK
1371 /* Compaction should not handle unevictable pages but CMA can do so */
1372 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1373 return ret;
1374
5ad333eb 1375 ret = -EBUSY;
08e552c6 1376
c8244935
MG
1377 /*
1378 * To minimise LRU disruption, the caller can indicate that it only
1379 * wants to isolate pages it will be able to operate on without
1380 * blocking - clean pages for the most part.
1381 *
c8244935
MG
1382 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1383 * that it is possible to migrate without blocking
1384 */
1276ad68 1385 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1386 /* All the caller can do on PageWriteback is block */
1387 if (PageWriteback(page))
1388 return ret;
1389
1390 if (PageDirty(page)) {
1391 struct address_space *mapping;
1392
c8244935
MG
1393 /*
1394 * Only pages without mappings or that have a
1395 * ->migratepage callback are possible to migrate
1396 * without blocking
1397 */
1398 mapping = page_mapping(page);
1399 if (mapping && !mapping->a_ops->migratepage)
1400 return ret;
1401 }
1402 }
39deaf85 1403
f80c0673
MK
1404 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1405 return ret;
1406
5ad333eb
AW
1407 if (likely(get_page_unless_zero(page))) {
1408 /*
1409 * Be careful not to clear PageLRU until after we're
1410 * sure the page is not being freed elsewhere -- the
1411 * page release code relies on it.
1412 */
1413 ClearPageLRU(page);
1414 ret = 0;
1415 }
1416
1417 return ret;
1418}
1419
7ee36a14
MG
1420
1421/*
1422 * Update LRU sizes after isolating pages. The LRU size updates must
1423 * be complete before mem_cgroup_update_lru_size due to a santity check.
1424 */
1425static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1426 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1427{
7ee36a14
MG
1428 int zid;
1429
7ee36a14
MG
1430 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1431 if (!nr_zone_taken[zid])
1432 continue;
1433
1434 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1435#ifdef CONFIG_MEMCG
b4536f0c 1436 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1437#endif
b4536f0c
MH
1438 }
1439
7ee36a14
MG
1440}
1441
1da177e4 1442/*
a52633d8 1443 * zone_lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1444 * shrink the lists perform better by taking out a batch of pages
1445 * and working on them outside the LRU lock.
1446 *
1447 * For pagecache intensive workloads, this function is the hottest
1448 * spot in the kernel (apart from copy_*_user functions).
1449 *
1450 * Appropriate locks must be held before calling this function.
1451 *
1452 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1453 * @lruvec: The LRU vector to pull pages from.
1da177e4 1454 * @dst: The temp list to put pages on to.
f626012d 1455 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1456 * @sc: The scan_control struct for this reclaim session
5ad333eb 1457 * @mode: One of the LRU isolation modes
3cb99451 1458 * @lru: LRU list id for isolating
1da177e4
LT
1459 *
1460 * returns how many pages were moved onto *@dst.
1461 */
69e05944 1462static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1463 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1464 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1465 isolate_mode_t mode, enum lru_list lru)
1da177e4 1466{
75b00af7 1467 struct list_head *src = &lruvec->lists[lru];
69e05944 1468 unsigned long nr_taken = 0;
599d0c95 1469 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1470 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1471 unsigned long skipped = 0;
599d0c95 1472 unsigned long scan, nr_pages;
b2e18757 1473 LIST_HEAD(pages_skipped);
1da177e4 1474
0b802f10 1475 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
3db65812 1476 !list_empty(src); scan++) {
5ad333eb 1477 struct page *page;
5ad333eb 1478
1da177e4
LT
1479 page = lru_to_page(src);
1480 prefetchw_prev_lru_page(page, src, flags);
1481
309381fe 1482 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1483
b2e18757
MG
1484 if (page_zonenum(page) > sc->reclaim_idx) {
1485 list_move(&page->lru, &pages_skipped);
7cc30fcf 1486 nr_skipped[page_zonenum(page)]++;
b2e18757
MG
1487 continue;
1488 }
1489
f3fd4a61 1490 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1491 case 0:
599d0c95
MG
1492 nr_pages = hpage_nr_pages(page);
1493 nr_taken += nr_pages;
1494 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1495 list_move(&page->lru, dst);
5ad333eb
AW
1496 break;
1497
1498 case -EBUSY:
1499 /* else it is being freed elsewhere */
1500 list_move(&page->lru, src);
1501 continue;
46453a6e 1502
5ad333eb
AW
1503 default:
1504 BUG();
1505 }
1da177e4
LT
1506 }
1507
b2e18757
MG
1508 /*
1509 * Splice any skipped pages to the start of the LRU list. Note that
1510 * this disrupts the LRU order when reclaiming for lower zones but
1511 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1512 * scanning would soon rescan the same pages to skip and put the
1513 * system at risk of premature OOM.
1514 */
7cc30fcf
MG
1515 if (!list_empty(&pages_skipped)) {
1516 int zid;
1517
3db65812 1518 list_splice(&pages_skipped, src);
7cc30fcf
MG
1519 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1520 if (!nr_skipped[zid])
1521 continue;
1522
1523 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1524 skipped += nr_skipped[zid];
7cc30fcf
MG
1525 }
1526 }
3db65812 1527 *nr_scanned = scan;
1265e3a6 1528 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
32b3f297 1529 scan, skipped, nr_taken, mode, lru);
b4536f0c 1530 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1531 return nr_taken;
1532}
1533
62695a84
NP
1534/**
1535 * isolate_lru_page - tries to isolate a page from its LRU list
1536 * @page: page to isolate from its LRU list
1537 *
1538 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1539 * vmstat statistic corresponding to whatever LRU list the page was on.
1540 *
1541 * Returns 0 if the page was removed from an LRU list.
1542 * Returns -EBUSY if the page was not on an LRU list.
1543 *
1544 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1545 * the active list, it will have PageActive set. If it was found on
1546 * the unevictable list, it will have the PageUnevictable bit set. That flag
1547 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1548 *
1549 * The vmstat statistic corresponding to the list on which the page was
1550 * found will be decremented.
1551 *
1552 * Restrictions:
1553 * (1) Must be called with an elevated refcount on the page. This is a
1554 * fundamentnal difference from isolate_lru_pages (which is called
1555 * without a stable reference).
1556 * (2) the lru_lock must not be held.
1557 * (3) interrupts must be enabled.
1558 */
1559int isolate_lru_page(struct page *page)
1560{
1561 int ret = -EBUSY;
1562
309381fe 1563 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1564 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1565
62695a84
NP
1566 if (PageLRU(page)) {
1567 struct zone *zone = page_zone(page);
fa9add64 1568 struct lruvec *lruvec;
62695a84 1569
a52633d8 1570 spin_lock_irq(zone_lru_lock(zone));
599d0c95 1571 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0c917313 1572 if (PageLRU(page)) {
894bc310 1573 int lru = page_lru(page);
0c917313 1574 get_page(page);
62695a84 1575 ClearPageLRU(page);
fa9add64
HD
1576 del_page_from_lru_list(page, lruvec, lru);
1577 ret = 0;
62695a84 1578 }
a52633d8 1579 spin_unlock_irq(zone_lru_lock(zone));
62695a84
NP
1580 }
1581 return ret;
1582}
1583
35cd7815 1584/*
d37dd5dc
FW
1585 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1586 * then get resheduled. When there are massive number of tasks doing page
1587 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1588 * the LRU list will go small and be scanned faster than necessary, leading to
1589 * unnecessary swapping, thrashing and OOM.
35cd7815 1590 */
599d0c95 1591static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1592 struct scan_control *sc)
1593{
1594 unsigned long inactive, isolated;
1595
1596 if (current_is_kswapd())
1597 return 0;
1598
97c9341f 1599 if (!sane_reclaim(sc))
35cd7815
RR
1600 return 0;
1601
1602 if (file) {
599d0c95
MG
1603 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1604 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1605 } else {
599d0c95
MG
1606 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1607 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1608 }
1609
3cf23841
FW
1610 /*
1611 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1612 * won't get blocked by normal direct-reclaimers, forming a circular
1613 * deadlock.
1614 */
d0164adc 1615 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1616 inactive >>= 3;
1617
35cd7815
RR
1618 return isolated > inactive;
1619}
1620
66635629 1621static noinline_for_stack void
75b00af7 1622putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1623{
27ac81d8 1624 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
599d0c95 1625 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3f79768f 1626 LIST_HEAD(pages_to_free);
66635629 1627
66635629
MG
1628 /*
1629 * Put back any unfreeable pages.
1630 */
66635629 1631 while (!list_empty(page_list)) {
3f79768f 1632 struct page *page = lru_to_page(page_list);
66635629 1633 int lru;
3f79768f 1634
309381fe 1635 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1636 list_del(&page->lru);
39b5f29a 1637 if (unlikely(!page_evictable(page))) {
599d0c95 1638 spin_unlock_irq(&pgdat->lru_lock);
66635629 1639 putback_lru_page(page);
599d0c95 1640 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1641 continue;
1642 }
fa9add64 1643
599d0c95 1644 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1645
7a608572 1646 SetPageLRU(page);
66635629 1647 lru = page_lru(page);
fa9add64
HD
1648 add_page_to_lru_list(page, lruvec, lru);
1649
66635629
MG
1650 if (is_active_lru(lru)) {
1651 int file = is_file_lru(lru);
9992af10
RR
1652 int numpages = hpage_nr_pages(page);
1653 reclaim_stat->recent_rotated[file] += numpages;
66635629 1654 }
2bcf8879
HD
1655 if (put_page_testzero(page)) {
1656 __ClearPageLRU(page);
1657 __ClearPageActive(page);
fa9add64 1658 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1659
1660 if (unlikely(PageCompound(page))) {
599d0c95 1661 spin_unlock_irq(&pgdat->lru_lock);
747db954 1662 mem_cgroup_uncharge(page);
2bcf8879 1663 (*get_compound_page_dtor(page))(page);
599d0c95 1664 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1665 } else
1666 list_add(&page->lru, &pages_to_free);
66635629
MG
1667 }
1668 }
66635629 1669
3f79768f
HD
1670 /*
1671 * To save our caller's stack, now use input list for pages to free.
1672 */
1673 list_splice(&pages_to_free, page_list);
66635629
MG
1674}
1675
399ba0b9
N
1676/*
1677 * If a kernel thread (such as nfsd for loop-back mounts) services
1678 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1679 * In that case we should only throttle if the backing device it is
1680 * writing to is congested. In other cases it is safe to throttle.
1681 */
1682static int current_may_throttle(void)
1683{
1684 return !(current->flags & PF_LESS_THROTTLE) ||
1685 current->backing_dev_info == NULL ||
1686 bdi_write_congested(current->backing_dev_info);
1687}
1688
1da177e4 1689/*
b2e18757 1690 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1691 * of reclaimed pages
1da177e4 1692 */
66635629 1693static noinline_for_stack unsigned long
1a93be0e 1694shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1695 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1696{
1697 LIST_HEAD(page_list);
e247dbce 1698 unsigned long nr_scanned;
05ff5137 1699 unsigned long nr_reclaimed = 0;
e247dbce 1700 unsigned long nr_taken;
3c710c1a 1701 struct reclaim_stat stat = {};
f3fd4a61 1702 isolate_mode_t isolate_mode = 0;
3cb99451 1703 int file = is_file_lru(lru);
599d0c95 1704 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1705 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1706
599d0c95 1707 while (unlikely(too_many_isolated(pgdat, file, sc))) {
58355c78 1708 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1709
1710 /* We are about to die and free our memory. Return now. */
1711 if (fatal_signal_pending(current))
1712 return SWAP_CLUSTER_MAX;
1713 }
1714
1da177e4 1715 lru_add_drain();
f80c0673
MK
1716
1717 if (!sc->may_unmap)
61317289 1718 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1719
599d0c95 1720 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1721
5dc35979
KK
1722 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1723 &nr_scanned, sc, isolate_mode, lru);
95d918fc 1724
599d0c95 1725 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1726 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1727
89b5fae5 1728 if (global_reclaim(sc)) {
e247dbce 1729 if (current_is_kswapd())
599d0c95 1730 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
e247dbce 1731 else
599d0c95 1732 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
e247dbce 1733 }
599d0c95 1734 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1735
d563c050 1736 if (nr_taken == 0)
66635629 1737 return 0;
5ad333eb 1738
a128ca71 1739 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
3c710c1a 1740 &stat, false);
c661b078 1741
599d0c95 1742 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1743
904249aa
YH
1744 if (global_reclaim(sc)) {
1745 if (current_is_kswapd())
599d0c95 1746 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
904249aa 1747 else
599d0c95 1748 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
904249aa 1749 }
a74609fa 1750
27ac81d8 1751 putback_inactive_pages(lruvec, &page_list);
3f79768f 1752
599d0c95 1753 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1754
599d0c95 1755 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1756
747db954 1757 mem_cgroup_uncharge_list(&page_list);
b745bc85 1758 free_hot_cold_page_list(&page_list, true);
e11da5b4 1759
92df3a72
MG
1760 /*
1761 * If reclaim is isolating dirty pages under writeback, it implies
1762 * that the long-lived page allocation rate is exceeding the page
1763 * laundering rate. Either the global limits are not being effective
1764 * at throttling processes due to the page distribution throughout
1765 * zones or there is heavy usage of a slow backing device. The
1766 * only option is to throttle from reclaim context which is not ideal
1767 * as there is no guarantee the dirtying process is throttled in the
1768 * same way balance_dirty_pages() manages.
1769 *
8e950282
MG
1770 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1771 * of pages under pages flagged for immediate reclaim and stall if any
1772 * are encountered in the nr_immediate check below.
92df3a72 1773 */
3c710c1a 1774 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
599d0c95 1775 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
92df3a72 1776
d43006d5 1777 /*
97c9341f
TH
1778 * Legacy memcg will stall in page writeback so avoid forcibly
1779 * stalling here.
d43006d5 1780 */
97c9341f 1781 if (sane_reclaim(sc)) {
8e950282
MG
1782 /*
1783 * Tag a zone as congested if all the dirty pages scanned were
1784 * backed by a congested BDI and wait_iff_congested will stall.
1785 */
3c710c1a 1786 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
599d0c95 1787 set_bit(PGDAT_CONGESTED, &pgdat->flags);
8e950282 1788
b1a6f21e
MG
1789 /*
1790 * If dirty pages are scanned that are not queued for IO, it
726d061f
JW
1791 * implies that flushers are not doing their job. This can
1792 * happen when memory pressure pushes dirty pages to the end of
1793 * the LRU before the dirty limits are breached and the dirty
1794 * data has expired. It can also happen when the proportion of
1795 * dirty pages grows not through writes but through memory
1796 * pressure reclaiming all the clean cache. And in some cases,
1797 * the flushers simply cannot keep up with the allocation
1798 * rate. Nudge the flusher threads in case they are asleep, but
1799 * also allow kswapd to start writing pages during reclaim.
b1a6f21e 1800 */
726d061f
JW
1801 if (stat.nr_unqueued_dirty == nr_taken) {
1802 wakeup_flusher_threads(0, WB_REASON_VMSCAN);
599d0c95 1803 set_bit(PGDAT_DIRTY, &pgdat->flags);
726d061f 1804 }
b1a6f21e
MG
1805
1806 /*
b738d764
LT
1807 * If kswapd scans pages marked marked for immediate
1808 * reclaim and under writeback (nr_immediate), it implies
1809 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1810 * they are written so also forcibly stall.
1811 */
3c710c1a 1812 if (stat.nr_immediate && current_may_throttle())
b1a6f21e 1813 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1814 }
d43006d5 1815
8e950282
MG
1816 /*
1817 * Stall direct reclaim for IO completions if underlying BDIs or zone
1818 * is congested. Allow kswapd to continue until it starts encountering
1819 * unqueued dirty pages or cycling through the LRU too quickly.
1820 */
399ba0b9
N
1821 if (!sc->hibernation_mode && !current_is_kswapd() &&
1822 current_may_throttle())
599d0c95 1823 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
8e950282 1824
599d0c95
MG
1825 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1826 nr_scanned, nr_reclaimed,
5bccd166
MH
1827 stat.nr_dirty, stat.nr_writeback,
1828 stat.nr_congested, stat.nr_immediate,
1829 stat.nr_activate, stat.nr_ref_keep,
1830 stat.nr_unmap_fail,
ba5e9579 1831 sc->priority, file);
05ff5137 1832 return nr_reclaimed;
1da177e4
LT
1833}
1834
1835/*
1836 * This moves pages from the active list to the inactive list.
1837 *
1838 * We move them the other way if the page is referenced by one or more
1839 * processes, from rmap.
1840 *
1841 * If the pages are mostly unmapped, the processing is fast and it is
a52633d8 1842 * appropriate to hold zone_lru_lock across the whole operation. But if
1da177e4 1843 * the pages are mapped, the processing is slow (page_referenced()) so we
a52633d8 1844 * should drop zone_lru_lock around each page. It's impossible to balance
1da177e4
LT
1845 * this, so instead we remove the pages from the LRU while processing them.
1846 * It is safe to rely on PG_active against the non-LRU pages in here because
1847 * nobody will play with that bit on a non-LRU page.
1848 *
0139aa7b 1849 * The downside is that we have to touch page->_refcount against each page.
1da177e4 1850 * But we had to alter page->flags anyway.
9d998b4f
MH
1851 *
1852 * Returns the number of pages moved to the given lru.
1da177e4 1853 */
1cfb419b 1854
9d998b4f 1855static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1856 struct list_head *list,
2bcf8879 1857 struct list_head *pages_to_free,
3eb4140f
WF
1858 enum lru_list lru)
1859{
599d0c95 1860 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3eb4140f 1861 struct page *page;
fa9add64 1862 int nr_pages;
9d998b4f 1863 int nr_moved = 0;
3eb4140f 1864
3eb4140f
WF
1865 while (!list_empty(list)) {
1866 page = lru_to_page(list);
599d0c95 1867 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3eb4140f 1868
309381fe 1869 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1870 SetPageLRU(page);
1871
fa9add64 1872 nr_pages = hpage_nr_pages(page);
599d0c95 1873 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
925b7673 1874 list_move(&page->lru, &lruvec->lists[lru]);
3eb4140f 1875
2bcf8879
HD
1876 if (put_page_testzero(page)) {
1877 __ClearPageLRU(page);
1878 __ClearPageActive(page);
fa9add64 1879 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1880
1881 if (unlikely(PageCompound(page))) {
599d0c95 1882 spin_unlock_irq(&pgdat->lru_lock);
747db954 1883 mem_cgroup_uncharge(page);
2bcf8879 1884 (*get_compound_page_dtor(page))(page);
599d0c95 1885 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1886 } else
1887 list_add(&page->lru, pages_to_free);
9d998b4f
MH
1888 } else {
1889 nr_moved += nr_pages;
3eb4140f
WF
1890 }
1891 }
9d5e6a9f 1892
3eb4140f 1893 if (!is_active_lru(lru))
f0958906 1894 __count_vm_events(PGDEACTIVATE, nr_moved);
9d998b4f
MH
1895
1896 return nr_moved;
3eb4140f 1897}
1cfb419b 1898
f626012d 1899static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1900 struct lruvec *lruvec,
f16015fb 1901 struct scan_control *sc,
9e3b2f8c 1902 enum lru_list lru)
1da177e4 1903{
44c241f1 1904 unsigned long nr_taken;
f626012d 1905 unsigned long nr_scanned;
6fe6b7e3 1906 unsigned long vm_flags;
1da177e4 1907 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1908 LIST_HEAD(l_active);
b69408e8 1909 LIST_HEAD(l_inactive);
1da177e4 1910 struct page *page;
1a93be0e 1911 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
9d998b4f
MH
1912 unsigned nr_deactivate, nr_activate;
1913 unsigned nr_rotated = 0;
f3fd4a61 1914 isolate_mode_t isolate_mode = 0;
3cb99451 1915 int file = is_file_lru(lru);
599d0c95 1916 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
1917
1918 lru_add_drain();
f80c0673
MK
1919
1920 if (!sc->may_unmap)
61317289 1921 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1922
599d0c95 1923 spin_lock_irq(&pgdat->lru_lock);
925b7673 1924
5dc35979
KK
1925 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1926 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1927
599d0c95 1928 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 1929 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1930
599d0c95 1931 __count_vm_events(PGREFILL, nr_scanned);
9d5e6a9f 1932
599d0c95 1933 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 1934
1da177e4
LT
1935 while (!list_empty(&l_hold)) {
1936 cond_resched();
1937 page = lru_to_page(&l_hold);
1938 list_del(&page->lru);
7e9cd484 1939
39b5f29a 1940 if (unlikely(!page_evictable(page))) {
894bc310
LS
1941 putback_lru_page(page);
1942 continue;
1943 }
1944
cc715d99
MG
1945 if (unlikely(buffer_heads_over_limit)) {
1946 if (page_has_private(page) && trylock_page(page)) {
1947 if (page_has_private(page))
1948 try_to_release_page(page, 0);
1949 unlock_page(page);
1950 }
1951 }
1952
c3ac9a8a
JW
1953 if (page_referenced(page, 0, sc->target_mem_cgroup,
1954 &vm_flags)) {
9992af10 1955 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1956 /*
1957 * Identify referenced, file-backed active pages and
1958 * give them one more trip around the active list. So
1959 * that executable code get better chances to stay in
1960 * memory under moderate memory pressure. Anon pages
1961 * are not likely to be evicted by use-once streaming
1962 * IO, plus JVM can create lots of anon VM_EXEC pages,
1963 * so we ignore them here.
1964 */
41e20983 1965 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1966 list_add(&page->lru, &l_active);
1967 continue;
1968 }
1969 }
7e9cd484 1970
5205e56e 1971 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1972 list_add(&page->lru, &l_inactive);
1973 }
1974
b555749a 1975 /*
8cab4754 1976 * Move pages back to the lru list.
b555749a 1977 */
599d0c95 1978 spin_lock_irq(&pgdat->lru_lock);
556adecb 1979 /*
8cab4754
WF
1980 * Count referenced pages from currently used mappings as rotated,
1981 * even though only some of them are actually re-activated. This
1982 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 1983 * get_scan_count.
7e9cd484 1984 */
b7c46d15 1985 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1986
9d998b4f
MH
1987 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1988 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
599d0c95
MG
1989 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1990 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 1991
747db954 1992 mem_cgroup_uncharge_list(&l_hold);
b745bc85 1993 free_hot_cold_page_list(&l_hold, true);
9d998b4f
MH
1994 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
1995 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
1996}
1997
59dc76b0
RR
1998/*
1999 * The inactive anon list should be small enough that the VM never has
2000 * to do too much work.
14797e23 2001 *
59dc76b0
RR
2002 * The inactive file list should be small enough to leave most memory
2003 * to the established workingset on the scan-resistant active list,
2004 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2005 *
59dc76b0
RR
2006 * Both inactive lists should also be large enough that each inactive
2007 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2008 *
2a2e4885
JW
2009 * If that fails and refaulting is observed, the inactive list grows.
2010 *
59dc76b0
RR
2011 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2012 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2013 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2014 *
59dc76b0
RR
2015 * total target max
2016 * memory ratio inactive
2017 * -------------------------------------
2018 * 10MB 1 5MB
2019 * 100MB 1 50MB
2020 * 1GB 3 250MB
2021 * 10GB 10 0.9GB
2022 * 100GB 31 3GB
2023 * 1TB 101 10GB
2024 * 10TB 320 32GB
56e49d21 2025 */
f8d1a311 2026static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2a2e4885
JW
2027 struct mem_cgroup *memcg,
2028 struct scan_control *sc, bool actual_reclaim)
56e49d21 2029{
fd538803 2030 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2a2e4885
JW
2031 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2032 enum lru_list inactive_lru = file * LRU_FILE;
2033 unsigned long inactive, active;
2034 unsigned long inactive_ratio;
2035 unsigned long refaults;
59dc76b0 2036 unsigned long gb;
e3790144 2037
59dc76b0
RR
2038 /*
2039 * If we don't have swap space, anonymous page deactivation
2040 * is pointless.
2041 */
2042 if (!file && !total_swap_pages)
2043 return false;
56e49d21 2044
fd538803
MH
2045 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2046 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
f8d1a311 2047
2a2e4885 2048 if (memcg)
ccda7f43 2049 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
b39415b2 2050 else
2a2e4885
JW
2051 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2052
2053 /*
2054 * When refaults are being observed, it means a new workingset
2055 * is being established. Disable active list protection to get
2056 * rid of the stale workingset quickly.
2057 */
2058 if (file && actual_reclaim && lruvec->refaults != refaults) {
2059 inactive_ratio = 0;
2060 } else {
2061 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2062 if (gb)
2063 inactive_ratio = int_sqrt(10 * gb);
2064 else
2065 inactive_ratio = 1;
2066 }
59dc76b0 2067
2a2e4885
JW
2068 if (actual_reclaim)
2069 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2070 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2071 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2072 inactive_ratio, file);
fd538803 2073
59dc76b0 2074 return inactive * inactive_ratio < active;
b39415b2
RR
2075}
2076
4f98a2fe 2077static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2a2e4885
JW
2078 struct lruvec *lruvec, struct mem_cgroup *memcg,
2079 struct scan_control *sc)
b69408e8 2080{
b39415b2 2081 if (is_active_lru(lru)) {
2a2e4885
JW
2082 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2083 memcg, sc, true))
1a93be0e 2084 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
2085 return 0;
2086 }
2087
1a93be0e 2088 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
2089}
2090
9a265114
JW
2091enum scan_balance {
2092 SCAN_EQUAL,
2093 SCAN_FRACT,
2094 SCAN_ANON,
2095 SCAN_FILE,
2096};
2097
4f98a2fe
RR
2098/*
2099 * Determine how aggressively the anon and file LRU lists should be
2100 * scanned. The relative value of each set of LRU lists is determined
2101 * by looking at the fraction of the pages scanned we did rotate back
2102 * onto the active list instead of evict.
2103 *
be7bd59d
WL
2104 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2105 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2106 */
33377678 2107static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
2108 struct scan_control *sc, unsigned long *nr,
2109 unsigned long *lru_pages)
4f98a2fe 2110{
33377678 2111 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2112 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2113 u64 fraction[2];
2114 u64 denominator = 0; /* gcc */
599d0c95 2115 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2116 unsigned long anon_prio, file_prio;
9a265114 2117 enum scan_balance scan_balance;
0bf1457f 2118 unsigned long anon, file;
4f98a2fe 2119 unsigned long ap, fp;
4111304d 2120 enum lru_list lru;
76a33fc3
SL
2121
2122 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2123 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2124 scan_balance = SCAN_FILE;
76a33fc3
SL
2125 goto out;
2126 }
4f98a2fe 2127
10316b31
JW
2128 /*
2129 * Global reclaim will swap to prevent OOM even with no
2130 * swappiness, but memcg users want to use this knob to
2131 * disable swapping for individual groups completely when
2132 * using the memory controller's swap limit feature would be
2133 * too expensive.
2134 */
02695175 2135 if (!global_reclaim(sc) && !swappiness) {
9a265114 2136 scan_balance = SCAN_FILE;
10316b31
JW
2137 goto out;
2138 }
2139
2140 /*
2141 * Do not apply any pressure balancing cleverness when the
2142 * system is close to OOM, scan both anon and file equally
2143 * (unless the swappiness setting disagrees with swapping).
2144 */
02695175 2145 if (!sc->priority && swappiness) {
9a265114 2146 scan_balance = SCAN_EQUAL;
10316b31
JW
2147 goto out;
2148 }
2149
62376251
JW
2150 /*
2151 * Prevent the reclaimer from falling into the cache trap: as
2152 * cache pages start out inactive, every cache fault will tip
2153 * the scan balance towards the file LRU. And as the file LRU
2154 * shrinks, so does the window for rotation from references.
2155 * This means we have a runaway feedback loop where a tiny
2156 * thrashing file LRU becomes infinitely more attractive than
2157 * anon pages. Try to detect this based on file LRU size.
2158 */
2159 if (global_reclaim(sc)) {
599d0c95
MG
2160 unsigned long pgdatfile;
2161 unsigned long pgdatfree;
2162 int z;
2163 unsigned long total_high_wmark = 0;
2ab051e1 2164
599d0c95
MG
2165 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2166 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2167 node_page_state(pgdat, NR_INACTIVE_FILE);
2168
2169 for (z = 0; z < MAX_NR_ZONES; z++) {
2170 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2171 if (!managed_zone(zone))
599d0c95
MG
2172 continue;
2173
2174 total_high_wmark += high_wmark_pages(zone);
2175 }
62376251 2176
599d0c95 2177 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
62376251
JW
2178 scan_balance = SCAN_ANON;
2179 goto out;
2180 }
2181 }
2182
7c5bd705 2183 /*
316bda0e
VD
2184 * If there is enough inactive page cache, i.e. if the size of the
2185 * inactive list is greater than that of the active list *and* the
2186 * inactive list actually has some pages to scan on this priority, we
2187 * do not reclaim anything from the anonymous working set right now.
2188 * Without the second condition we could end up never scanning an
2189 * lruvec even if it has plenty of old anonymous pages unless the
2190 * system is under heavy pressure.
7c5bd705 2191 */
2a2e4885 2192 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
71ab6cfe 2193 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
9a265114 2194 scan_balance = SCAN_FILE;
7c5bd705
JW
2195 goto out;
2196 }
2197
9a265114
JW
2198 scan_balance = SCAN_FRACT;
2199
58c37f6e
KM
2200 /*
2201 * With swappiness at 100, anonymous and file have the same priority.
2202 * This scanning priority is essentially the inverse of IO cost.
2203 */
02695175 2204 anon_prio = swappiness;
75b00af7 2205 file_prio = 200 - anon_prio;
58c37f6e 2206
4f98a2fe
RR
2207 /*
2208 * OK, so we have swap space and a fair amount of page cache
2209 * pages. We use the recently rotated / recently scanned
2210 * ratios to determine how valuable each cache is.
2211 *
2212 * Because workloads change over time (and to avoid overflow)
2213 * we keep these statistics as a floating average, which ends
2214 * up weighing recent references more than old ones.
2215 *
2216 * anon in [0], file in [1]
2217 */
2ab051e1 2218
fd538803
MH
2219 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2220 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2221 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2222 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2ab051e1 2223
599d0c95 2224 spin_lock_irq(&pgdat->lru_lock);
6e901571 2225 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2226 reclaim_stat->recent_scanned[0] /= 2;
2227 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2228 }
2229
6e901571 2230 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2231 reclaim_stat->recent_scanned[1] /= 2;
2232 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2233 }
2234
4f98a2fe 2235 /*
00d8089c
RR
2236 * The amount of pressure on anon vs file pages is inversely
2237 * proportional to the fraction of recently scanned pages on
2238 * each list that were recently referenced and in active use.
4f98a2fe 2239 */
fe35004f 2240 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2241 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2242
fe35004f 2243 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2244 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2245 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2246
76a33fc3
SL
2247 fraction[0] = ap;
2248 fraction[1] = fp;
2249 denominator = ap + fp + 1;
2250out:
688035f7
JW
2251 *lru_pages = 0;
2252 for_each_evictable_lru(lru) {
2253 int file = is_file_lru(lru);
2254 unsigned long size;
2255 unsigned long scan;
6b4f7799 2256
688035f7
JW
2257 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2258 scan = size >> sc->priority;
2259 /*
2260 * If the cgroup's already been deleted, make sure to
2261 * scrape out the remaining cache.
2262 */
2263 if (!scan && !mem_cgroup_online(memcg))
2264 scan = min(size, SWAP_CLUSTER_MAX);
6b4f7799 2265
688035f7
JW
2266 switch (scan_balance) {
2267 case SCAN_EQUAL:
2268 /* Scan lists relative to size */
2269 break;
2270 case SCAN_FRACT:
9a265114 2271 /*
688035f7
JW
2272 * Scan types proportional to swappiness and
2273 * their relative recent reclaim efficiency.
9a265114 2274 */
688035f7
JW
2275 scan = div64_u64(scan * fraction[file],
2276 denominator);
2277 break;
2278 case SCAN_FILE:
2279 case SCAN_ANON:
2280 /* Scan one type exclusively */
2281 if ((scan_balance == SCAN_FILE) != file) {
2282 size = 0;
2283 scan = 0;
2284 }
2285 break;
2286 default:
2287 /* Look ma, no brain */
2288 BUG();
9a265114 2289 }
688035f7
JW
2290
2291 *lru_pages += size;
2292 nr[lru] = scan;
76a33fc3 2293 }
6e08a369 2294}
4f98a2fe 2295
9b4f98cd 2296/*
a9dd0a83 2297 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
9b4f98cd 2298 */
a9dd0a83 2299static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
33377678 2300 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2301{
ef8f2327 2302 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
9b4f98cd 2303 unsigned long nr[NR_LRU_LISTS];
e82e0561 2304 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2305 unsigned long nr_to_scan;
2306 enum lru_list lru;
2307 unsigned long nr_reclaimed = 0;
2308 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2309 struct blk_plug plug;
1a501907 2310 bool scan_adjusted;
9b4f98cd 2311
33377678 2312 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2313
e82e0561
MG
2314 /* Record the original scan target for proportional adjustments later */
2315 memcpy(targets, nr, sizeof(nr));
2316
1a501907
MG
2317 /*
2318 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2319 * event that can occur when there is little memory pressure e.g.
2320 * multiple streaming readers/writers. Hence, we do not abort scanning
2321 * when the requested number of pages are reclaimed when scanning at
2322 * DEF_PRIORITY on the assumption that the fact we are direct
2323 * reclaiming implies that kswapd is not keeping up and it is best to
2324 * do a batch of work at once. For memcg reclaim one check is made to
2325 * abort proportional reclaim if either the file or anon lru has already
2326 * dropped to zero at the first pass.
2327 */
2328 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2329 sc->priority == DEF_PRIORITY);
2330
9b4f98cd
JW
2331 blk_start_plug(&plug);
2332 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2333 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2334 unsigned long nr_anon, nr_file, percentage;
2335 unsigned long nr_scanned;
2336
9b4f98cd
JW
2337 for_each_evictable_lru(lru) {
2338 if (nr[lru]) {
2339 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2340 nr[lru] -= nr_to_scan;
2341
2342 nr_reclaimed += shrink_list(lru, nr_to_scan,
2a2e4885 2343 lruvec, memcg, sc);
9b4f98cd
JW
2344 }
2345 }
e82e0561 2346
bd041733
MH
2347 cond_resched();
2348
e82e0561
MG
2349 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2350 continue;
2351
e82e0561
MG
2352 /*
2353 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2354 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2355 * proportionally what was requested by get_scan_count(). We
2356 * stop reclaiming one LRU and reduce the amount scanning
2357 * proportional to the original scan target.
2358 */
2359 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2360 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2361
1a501907
MG
2362 /*
2363 * It's just vindictive to attack the larger once the smaller
2364 * has gone to zero. And given the way we stop scanning the
2365 * smaller below, this makes sure that we only make one nudge
2366 * towards proportionality once we've got nr_to_reclaim.
2367 */
2368 if (!nr_file || !nr_anon)
2369 break;
2370
e82e0561
MG
2371 if (nr_file > nr_anon) {
2372 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2373 targets[LRU_ACTIVE_ANON] + 1;
2374 lru = LRU_BASE;
2375 percentage = nr_anon * 100 / scan_target;
2376 } else {
2377 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2378 targets[LRU_ACTIVE_FILE] + 1;
2379 lru = LRU_FILE;
2380 percentage = nr_file * 100 / scan_target;
2381 }
2382
2383 /* Stop scanning the smaller of the LRU */
2384 nr[lru] = 0;
2385 nr[lru + LRU_ACTIVE] = 0;
2386
2387 /*
2388 * Recalculate the other LRU scan count based on its original
2389 * scan target and the percentage scanning already complete
2390 */
2391 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2392 nr_scanned = targets[lru] - nr[lru];
2393 nr[lru] = targets[lru] * (100 - percentage) / 100;
2394 nr[lru] -= min(nr[lru], nr_scanned);
2395
2396 lru += LRU_ACTIVE;
2397 nr_scanned = targets[lru] - nr[lru];
2398 nr[lru] = targets[lru] * (100 - percentage) / 100;
2399 nr[lru] -= min(nr[lru], nr_scanned);
2400
2401 scan_adjusted = true;
9b4f98cd
JW
2402 }
2403 blk_finish_plug(&plug);
2404 sc->nr_reclaimed += nr_reclaimed;
2405
2406 /*
2407 * Even if we did not try to evict anon pages at all, we want to
2408 * rebalance the anon lru active/inactive ratio.
2409 */
2a2e4885 2410 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
9b4f98cd
JW
2411 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2412 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2413}
2414
23b9da55 2415/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2416static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2417{
d84da3f9 2418 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2419 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2420 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2421 return true;
2422
2423 return false;
2424}
2425
3e7d3449 2426/*
23b9da55
MG
2427 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2428 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2429 * true if more pages should be reclaimed such that when the page allocator
2430 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2431 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2432 */
a9dd0a83 2433static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449
MG
2434 unsigned long nr_reclaimed,
2435 unsigned long nr_scanned,
2436 struct scan_control *sc)
2437{
2438 unsigned long pages_for_compaction;
2439 unsigned long inactive_lru_pages;
a9dd0a83 2440 int z;
3e7d3449
MG
2441
2442 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2443 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2444 return false;
2445
2876592f
MG
2446 /* Consider stopping depending on scan and reclaim activity */
2447 if (sc->gfp_mask & __GFP_REPEAT) {
2448 /*
2449 * For __GFP_REPEAT allocations, stop reclaiming if the
2450 * full LRU list has been scanned and we are still failing
2451 * to reclaim pages. This full LRU scan is potentially
2452 * expensive but a __GFP_REPEAT caller really wants to succeed
2453 */
2454 if (!nr_reclaimed && !nr_scanned)
2455 return false;
2456 } else {
2457 /*
2458 * For non-__GFP_REPEAT allocations which can presumably
2459 * fail without consequence, stop if we failed to reclaim
2460 * any pages from the last SWAP_CLUSTER_MAX number of
2461 * pages that were scanned. This will return to the
2462 * caller faster at the risk reclaim/compaction and
2463 * the resulting allocation attempt fails
2464 */
2465 if (!nr_reclaimed)
2466 return false;
2467 }
3e7d3449
MG
2468
2469 /*
2470 * If we have not reclaimed enough pages for compaction and the
2471 * inactive lists are large enough, continue reclaiming
2472 */
9861a62c 2473 pages_for_compaction = compact_gap(sc->order);
a9dd0a83 2474 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
ec8acf20 2475 if (get_nr_swap_pages() > 0)
a9dd0a83 2476 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3e7d3449
MG
2477 if (sc->nr_reclaimed < pages_for_compaction &&
2478 inactive_lru_pages > pages_for_compaction)
2479 return true;
2480
2481 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2482 for (z = 0; z <= sc->reclaim_idx; z++) {
2483 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2484 if (!managed_zone(zone))
a9dd0a83
MG
2485 continue;
2486
2487 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2488 case COMPACT_SUCCESS:
a9dd0a83
MG
2489 case COMPACT_CONTINUE:
2490 return false;
2491 default:
2492 /* check next zone */
2493 ;
2494 }
3e7d3449 2495 }
a9dd0a83 2496 return true;
3e7d3449
MG
2497}
2498
970a39a3 2499static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2500{
cb731d6c 2501 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2502 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2503 bool reclaimable = false;
1da177e4 2504
9b4f98cd
JW
2505 do {
2506 struct mem_cgroup *root = sc->target_mem_cgroup;
2507 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 2508 .pgdat = pgdat,
9b4f98cd
JW
2509 .priority = sc->priority,
2510 };
a9dd0a83 2511 unsigned long node_lru_pages = 0;
694fbc0f 2512 struct mem_cgroup *memcg;
3e7d3449 2513
9b4f98cd
JW
2514 nr_reclaimed = sc->nr_reclaimed;
2515 nr_scanned = sc->nr_scanned;
1da177e4 2516
694fbc0f
AM
2517 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2518 do {
6b4f7799 2519 unsigned long lru_pages;
8e8ae645 2520 unsigned long reclaimed;
cb731d6c 2521 unsigned long scanned;
5660048c 2522
241994ed 2523 if (mem_cgroup_low(root, memcg)) {
d6622f63
YX
2524 if (!sc->memcg_low_reclaim) {
2525 sc->memcg_low_skipped = 1;
241994ed 2526 continue;
d6622f63 2527 }
31176c78 2528 mem_cgroup_event(memcg, MEMCG_LOW);
241994ed
JW
2529 }
2530
8e8ae645 2531 reclaimed = sc->nr_reclaimed;
cb731d6c 2532 scanned = sc->nr_scanned;
f9be23d6 2533
a9dd0a83
MG
2534 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2535 node_lru_pages += lru_pages;
f16015fb 2536
b5afba29 2537 if (memcg)
a9dd0a83 2538 shrink_slab(sc->gfp_mask, pgdat->node_id,
cb731d6c
VD
2539 memcg, sc->nr_scanned - scanned,
2540 lru_pages);
2541
8e8ae645
JW
2542 /* Record the group's reclaim efficiency */
2543 vmpressure(sc->gfp_mask, memcg, false,
2544 sc->nr_scanned - scanned,
2545 sc->nr_reclaimed - reclaimed);
2546
9b4f98cd 2547 /*
a394cb8e
MH
2548 * Direct reclaim and kswapd have to scan all memory
2549 * cgroups to fulfill the overall scan target for the
a9dd0a83 2550 * node.
a394cb8e
MH
2551 *
2552 * Limit reclaim, on the other hand, only cares about
2553 * nr_to_reclaim pages to be reclaimed and it will
2554 * retry with decreasing priority if one round over the
2555 * whole hierarchy is not sufficient.
9b4f98cd 2556 */
a394cb8e
MH
2557 if (!global_reclaim(sc) &&
2558 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2559 mem_cgroup_iter_break(root, memcg);
2560 break;
2561 }
241994ed 2562 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2563
6b4f7799
JW
2564 /*
2565 * Shrink the slab caches in the same proportion that
2566 * the eligible LRU pages were scanned.
2567 */
b2e18757 2568 if (global_reclaim(sc))
a9dd0a83 2569 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
cb731d6c 2570 sc->nr_scanned - nr_scanned,
a9dd0a83 2571 node_lru_pages);
cb731d6c
VD
2572
2573 if (reclaim_state) {
2574 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2575 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2576 }
2577
8e8ae645
JW
2578 /* Record the subtree's reclaim efficiency */
2579 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2580 sc->nr_scanned - nr_scanned,
2581 sc->nr_reclaimed - nr_reclaimed);
2582
2344d7e4
JW
2583 if (sc->nr_reclaimed - nr_reclaimed)
2584 reclaimable = true;
2585
a9dd0a83 2586 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
9b4f98cd 2587 sc->nr_scanned - nr_scanned, sc));
2344d7e4 2588
c73322d0
JW
2589 /*
2590 * Kswapd gives up on balancing particular nodes after too
2591 * many failures to reclaim anything from them and goes to
2592 * sleep. On reclaim progress, reset the failure counter. A
2593 * successful direct reclaim run will revive a dormant kswapd.
2594 */
2595 if (reclaimable)
2596 pgdat->kswapd_failures = 0;
2597
2344d7e4 2598 return reclaimable;
f16015fb
JW
2599}
2600
53853e2d 2601/*
fdd4c614
VB
2602 * Returns true if compaction should go ahead for a costly-order request, or
2603 * the allocation would already succeed without compaction. Return false if we
2604 * should reclaim first.
53853e2d 2605 */
4f588331 2606static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2607{
31483b6a 2608 unsigned long watermark;
fdd4c614 2609 enum compact_result suitable;
fe4b1b24 2610
fdd4c614
VB
2611 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2612 if (suitable == COMPACT_SUCCESS)
2613 /* Allocation should succeed already. Don't reclaim. */
2614 return true;
2615 if (suitable == COMPACT_SKIPPED)
2616 /* Compaction cannot yet proceed. Do reclaim. */
2617 return false;
fe4b1b24 2618
53853e2d 2619 /*
fdd4c614
VB
2620 * Compaction is already possible, but it takes time to run and there
2621 * are potentially other callers using the pages just freed. So proceed
2622 * with reclaim to make a buffer of free pages available to give
2623 * compaction a reasonable chance of completing and allocating the page.
2624 * Note that we won't actually reclaim the whole buffer in one attempt
2625 * as the target watermark in should_continue_reclaim() is lower. But if
2626 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2627 */
fdd4c614 2628 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2629
fdd4c614 2630 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2631}
2632
1da177e4
LT
2633/*
2634 * This is the direct reclaim path, for page-allocating processes. We only
2635 * try to reclaim pages from zones which will satisfy the caller's allocation
2636 * request.
2637 *
1da177e4
LT
2638 * If a zone is deemed to be full of pinned pages then just give it a light
2639 * scan then give up on it.
2640 */
0a0337e0 2641static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2642{
dd1a239f 2643 struct zoneref *z;
54a6eb5c 2644 struct zone *zone;
0608f43d
AM
2645 unsigned long nr_soft_reclaimed;
2646 unsigned long nr_soft_scanned;
619d0d76 2647 gfp_t orig_mask;
79dafcdc 2648 pg_data_t *last_pgdat = NULL;
1cfb419b 2649
cc715d99
MG
2650 /*
2651 * If the number of buffer_heads in the machine exceeds the maximum
2652 * allowed level, force direct reclaim to scan the highmem zone as
2653 * highmem pages could be pinning lowmem pages storing buffer_heads
2654 */
619d0d76 2655 orig_mask = sc->gfp_mask;
b2e18757 2656 if (buffer_heads_over_limit) {
cc715d99 2657 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2658 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2659 }
cc715d99 2660
d4debc66 2661 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2662 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2663 /*
2664 * Take care memory controller reclaiming has small influence
2665 * to global LRU.
2666 */
89b5fae5 2667 if (global_reclaim(sc)) {
344736f2
VD
2668 if (!cpuset_zone_allowed(zone,
2669 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2670 continue;
65ec02cb 2671
0b06496a
JW
2672 /*
2673 * If we already have plenty of memory free for
2674 * compaction in this zone, don't free any more.
2675 * Even though compaction is invoked for any
2676 * non-zero order, only frequent costly order
2677 * reclamation is disruptive enough to become a
2678 * noticeable problem, like transparent huge
2679 * page allocations.
2680 */
2681 if (IS_ENABLED(CONFIG_COMPACTION) &&
2682 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2683 compaction_ready(zone, sc)) {
0b06496a
JW
2684 sc->compaction_ready = true;
2685 continue;
e0887c19 2686 }
0b06496a 2687
79dafcdc
MG
2688 /*
2689 * Shrink each node in the zonelist once. If the
2690 * zonelist is ordered by zone (not the default) then a
2691 * node may be shrunk multiple times but in that case
2692 * the user prefers lower zones being preserved.
2693 */
2694 if (zone->zone_pgdat == last_pgdat)
2695 continue;
2696
0608f43d
AM
2697 /*
2698 * This steals pages from memory cgroups over softlimit
2699 * and returns the number of reclaimed pages and
2700 * scanned pages. This works for global memory pressure
2701 * and balancing, not for a memcg's limit.
2702 */
2703 nr_soft_scanned = 0;
ef8f2327 2704 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2705 sc->order, sc->gfp_mask,
2706 &nr_soft_scanned);
2707 sc->nr_reclaimed += nr_soft_reclaimed;
2708 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2709 /* need some check for avoid more shrink_zone() */
1cfb419b 2710 }
408d8544 2711
79dafcdc
MG
2712 /* See comment about same check for global reclaim above */
2713 if (zone->zone_pgdat == last_pgdat)
2714 continue;
2715 last_pgdat = zone->zone_pgdat;
970a39a3 2716 shrink_node(zone->zone_pgdat, sc);
1da177e4 2717 }
e0c23279 2718
619d0d76
WY
2719 /*
2720 * Restore to original mask to avoid the impact on the caller if we
2721 * promoted it to __GFP_HIGHMEM.
2722 */
2723 sc->gfp_mask = orig_mask;
1da177e4 2724}
4f98a2fe 2725
2a2e4885
JW
2726static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2727{
2728 struct mem_cgroup *memcg;
2729
2730 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2731 do {
2732 unsigned long refaults;
2733 struct lruvec *lruvec;
2734
2735 if (memcg)
ccda7f43 2736 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2a2e4885
JW
2737 else
2738 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2739
2740 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2741 lruvec->refaults = refaults;
2742 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2743}
2744
1da177e4
LT
2745/*
2746 * This is the main entry point to direct page reclaim.
2747 *
2748 * If a full scan of the inactive list fails to free enough memory then we
2749 * are "out of memory" and something needs to be killed.
2750 *
2751 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2752 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2753 * caller can't do much about. We kick the writeback threads and take explicit
2754 * naps in the hope that some of these pages can be written. But if the
2755 * allocating task holds filesystem locks which prevent writeout this might not
2756 * work, and the allocation attempt will fail.
a41f24ea
NA
2757 *
2758 * returns: 0, if no pages reclaimed
2759 * else, the number of pages reclaimed
1da177e4 2760 */
dac1d27b 2761static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2762 struct scan_control *sc)
1da177e4 2763{
241994ed 2764 int initial_priority = sc->priority;
2a2e4885
JW
2765 pg_data_t *last_pgdat;
2766 struct zoneref *z;
2767 struct zone *zone;
241994ed 2768retry:
873b4771
KK
2769 delayacct_freepages_start();
2770
89b5fae5 2771 if (global_reclaim(sc))
7cc30fcf 2772 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 2773
9e3b2f8c 2774 do {
70ddf637
AV
2775 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2776 sc->priority);
66e1707b 2777 sc->nr_scanned = 0;
0a0337e0 2778 shrink_zones(zonelist, sc);
c6a8a8c5 2779
bb21c7ce 2780 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2781 break;
2782
2783 if (sc->compaction_ready)
2784 break;
1da177e4 2785
0e50ce3b
MK
2786 /*
2787 * If we're getting trouble reclaiming, start doing
2788 * writepage even in laptop mode.
2789 */
2790 if (sc->priority < DEF_PRIORITY - 2)
2791 sc->may_writepage = 1;
0b06496a 2792 } while (--sc->priority >= 0);
bb21c7ce 2793
2a2e4885
JW
2794 last_pgdat = NULL;
2795 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2796 sc->nodemask) {
2797 if (zone->zone_pgdat == last_pgdat)
2798 continue;
2799 last_pgdat = zone->zone_pgdat;
2800 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2801 }
2802
873b4771
KK
2803 delayacct_freepages_end();
2804
bb21c7ce
KM
2805 if (sc->nr_reclaimed)
2806 return sc->nr_reclaimed;
2807
0cee34fd 2808 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2809 if (sc->compaction_ready)
7335084d
MG
2810 return 1;
2811
241994ed 2812 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 2813 if (sc->memcg_low_skipped) {
241994ed 2814 sc->priority = initial_priority;
d6622f63
YX
2815 sc->memcg_low_reclaim = 1;
2816 sc->memcg_low_skipped = 0;
241994ed
JW
2817 goto retry;
2818 }
2819
bb21c7ce 2820 return 0;
1da177e4
LT
2821}
2822
c73322d0 2823static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
2824{
2825 struct zone *zone;
2826 unsigned long pfmemalloc_reserve = 0;
2827 unsigned long free_pages = 0;
2828 int i;
2829 bool wmark_ok;
2830
c73322d0
JW
2831 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2832 return true;
2833
5515061d
MG
2834 for (i = 0; i <= ZONE_NORMAL; i++) {
2835 zone = &pgdat->node_zones[i];
d450abd8
JW
2836 if (!managed_zone(zone))
2837 continue;
2838
2839 if (!zone_reclaimable_pages(zone))
675becce
MG
2840 continue;
2841
5515061d
MG
2842 pfmemalloc_reserve += min_wmark_pages(zone);
2843 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2844 }
2845
675becce
MG
2846 /* If there are no reserves (unexpected config) then do not throttle */
2847 if (!pfmemalloc_reserve)
2848 return true;
2849
5515061d
MG
2850 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2851
2852 /* kswapd must be awake if processes are being throttled */
2853 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 2854 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
2855 (enum zone_type)ZONE_NORMAL);
2856 wake_up_interruptible(&pgdat->kswapd_wait);
2857 }
2858
2859 return wmark_ok;
2860}
2861
2862/*
2863 * Throttle direct reclaimers if backing storage is backed by the network
2864 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2865 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2866 * when the low watermark is reached.
2867 *
2868 * Returns true if a fatal signal was delivered during throttling. If this
2869 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2870 */
50694c28 2871static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2872 nodemask_t *nodemask)
2873{
675becce 2874 struct zoneref *z;
5515061d 2875 struct zone *zone;
675becce 2876 pg_data_t *pgdat = NULL;
5515061d
MG
2877
2878 /*
2879 * Kernel threads should not be throttled as they may be indirectly
2880 * responsible for cleaning pages necessary for reclaim to make forward
2881 * progress. kjournald for example may enter direct reclaim while
2882 * committing a transaction where throttling it could forcing other
2883 * processes to block on log_wait_commit().
2884 */
2885 if (current->flags & PF_KTHREAD)
50694c28
MG
2886 goto out;
2887
2888 /*
2889 * If a fatal signal is pending, this process should not throttle.
2890 * It should return quickly so it can exit and free its memory
2891 */
2892 if (fatal_signal_pending(current))
2893 goto out;
5515061d 2894
675becce
MG
2895 /*
2896 * Check if the pfmemalloc reserves are ok by finding the first node
2897 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2898 * GFP_KERNEL will be required for allocating network buffers when
2899 * swapping over the network so ZONE_HIGHMEM is unusable.
2900 *
2901 * Throttling is based on the first usable node and throttled processes
2902 * wait on a queue until kswapd makes progress and wakes them. There
2903 * is an affinity then between processes waking up and where reclaim
2904 * progress has been made assuming the process wakes on the same node.
2905 * More importantly, processes running on remote nodes will not compete
2906 * for remote pfmemalloc reserves and processes on different nodes
2907 * should make reasonable progress.
2908 */
2909 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2910 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2911 if (zone_idx(zone) > ZONE_NORMAL)
2912 continue;
2913
2914 /* Throttle based on the first usable node */
2915 pgdat = zone->zone_pgdat;
c73322d0 2916 if (allow_direct_reclaim(pgdat))
675becce
MG
2917 goto out;
2918 break;
2919 }
2920
2921 /* If no zone was usable by the allocation flags then do not throttle */
2922 if (!pgdat)
50694c28 2923 goto out;
5515061d 2924
68243e76
MG
2925 /* Account for the throttling */
2926 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2927
5515061d
MG
2928 /*
2929 * If the caller cannot enter the filesystem, it's possible that it
2930 * is due to the caller holding an FS lock or performing a journal
2931 * transaction in the case of a filesystem like ext[3|4]. In this case,
2932 * it is not safe to block on pfmemalloc_wait as kswapd could be
2933 * blocked waiting on the same lock. Instead, throttle for up to a
2934 * second before continuing.
2935 */
2936 if (!(gfp_mask & __GFP_FS)) {
2937 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 2938 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
2939
2940 goto check_pending;
5515061d
MG
2941 }
2942
2943 /* Throttle until kswapd wakes the process */
2944 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 2945 allow_direct_reclaim(pgdat));
50694c28
MG
2946
2947check_pending:
2948 if (fatal_signal_pending(current))
2949 return true;
2950
2951out:
2952 return false;
5515061d
MG
2953}
2954
dac1d27b 2955unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2956 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2957{
33906bc5 2958 unsigned long nr_reclaimed;
66e1707b 2959 struct scan_control sc = {
ee814fe2 2960 .nr_to_reclaim = SWAP_CLUSTER_MAX,
7dea19f9 2961 .gfp_mask = (gfp_mask = current_gfp_context(gfp_mask)),
b2e18757 2962 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
2963 .order = order,
2964 .nodemask = nodemask,
2965 .priority = DEF_PRIORITY,
66e1707b 2966 .may_writepage = !laptop_mode,
a6dc60f8 2967 .may_unmap = 1,
2e2e4259 2968 .may_swap = 1,
66e1707b
BS
2969 };
2970
5515061d 2971 /*
50694c28
MG
2972 * Do not enter reclaim if fatal signal was delivered while throttled.
2973 * 1 is returned so that the page allocator does not OOM kill at this
2974 * point.
5515061d 2975 */
50694c28 2976 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2977 return 1;
2978
33906bc5
MG
2979 trace_mm_vmscan_direct_reclaim_begin(order,
2980 sc.may_writepage,
e5146b12
MG
2981 gfp_mask,
2982 sc.reclaim_idx);
33906bc5 2983
3115cd91 2984 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2985
2986 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2987
2988 return nr_reclaimed;
66e1707b
BS
2989}
2990
c255a458 2991#ifdef CONFIG_MEMCG
66e1707b 2992
a9dd0a83 2993unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 2994 gfp_t gfp_mask, bool noswap,
ef8f2327 2995 pg_data_t *pgdat,
0ae5e89c 2996 unsigned long *nr_scanned)
4e416953
BS
2997{
2998 struct scan_control sc = {
b8f5c566 2999 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3000 .target_mem_cgroup = memcg,
4e416953
BS
3001 .may_writepage = !laptop_mode,
3002 .may_unmap = 1,
b2e18757 3003 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3004 .may_swap = !noswap,
4e416953 3005 };
6b4f7799 3006 unsigned long lru_pages;
0ae5e89c 3007
4e416953
BS
3008 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3009 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3010
9e3b2f8c 3011 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e 3012 sc.may_writepage,
e5146b12
MG
3013 sc.gfp_mask,
3014 sc.reclaim_idx);
bdce6d9e 3015
4e416953
BS
3016 /*
3017 * NOTE: Although we can get the priority field, using it
3018 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3019 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3020 * will pick up pages from other mem cgroup's as well. We hack
3021 * the priority and make it zero.
3022 */
ef8f2327 3023 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
bdce6d9e
KM
3024
3025 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3026
0ae5e89c 3027 *nr_scanned = sc.nr_scanned;
4e416953
BS
3028 return sc.nr_reclaimed;
3029}
3030
72835c86 3031unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3032 unsigned long nr_pages,
a7885eb8 3033 gfp_t gfp_mask,
b70a2a21 3034 bool may_swap)
66e1707b 3035{
4e416953 3036 struct zonelist *zonelist;
bdce6d9e 3037 unsigned long nr_reclaimed;
889976db 3038 int nid;
66e1707b 3039 struct scan_control sc = {
b70a2a21 3040 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3041 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3042 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3043 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3044 .target_mem_cgroup = memcg,
3045 .priority = DEF_PRIORITY,
3046 .may_writepage = !laptop_mode,
3047 .may_unmap = 1,
b70a2a21 3048 .may_swap = may_swap,
a09ed5e0 3049 };
66e1707b 3050
889976db
YH
3051 /*
3052 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3053 * take care of from where we get pages. So the node where we start the
3054 * scan does not need to be the current node.
3055 */
72835c86 3056 nid = mem_cgroup_select_victim_node(memcg);
889976db 3057
c9634cf0 3058 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
bdce6d9e
KM
3059
3060 trace_mm_vmscan_memcg_reclaim_begin(0,
3061 sc.may_writepage,
e5146b12
MG
3062 sc.gfp_mask,
3063 sc.reclaim_idx);
bdce6d9e 3064
89a28483 3065 current->flags |= PF_MEMALLOC;
3115cd91 3066 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
89a28483 3067 current->flags &= ~PF_MEMALLOC;
bdce6d9e
KM
3068
3069 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3070
3071 return nr_reclaimed;
66e1707b
BS
3072}
3073#endif
3074
1d82de61 3075static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3076 struct scan_control *sc)
f16015fb 3077{
b95a2f2d 3078 struct mem_cgroup *memcg;
f16015fb 3079
b95a2f2d
JW
3080 if (!total_swap_pages)
3081 return;
3082
3083 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3084 do {
ef8f2327 3085 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
b95a2f2d 3086
2a2e4885 3087 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
1a93be0e 3088 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3089 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3090
3091 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3092 } while (memcg);
f16015fb
JW
3093}
3094
e716f2eb
MG
3095/*
3096 * Returns true if there is an eligible zone balanced for the request order
3097 * and classzone_idx
3098 */
3099static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
60cefed4 3100{
e716f2eb
MG
3101 int i;
3102 unsigned long mark = -1;
3103 struct zone *zone;
60cefed4 3104
e716f2eb
MG
3105 for (i = 0; i <= classzone_idx; i++) {
3106 zone = pgdat->node_zones + i;
6256c6b4 3107
e716f2eb
MG
3108 if (!managed_zone(zone))
3109 continue;
3110
3111 mark = high_wmark_pages(zone);
3112 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3113 return true;
3114 }
3115
3116 /*
3117 * If a node has no populated zone within classzone_idx, it does not
3118 * need balancing by definition. This can happen if a zone-restricted
3119 * allocation tries to wake a remote kswapd.
3120 */
3121 if (mark == -1)
3122 return true;
3123
3124 return false;
60cefed4
JW
3125}
3126
631b6e08
MG
3127/* Clear pgdat state for congested, dirty or under writeback. */
3128static void clear_pgdat_congested(pg_data_t *pgdat)
3129{
3130 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3131 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3132 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3133}
3134
5515061d
MG
3135/*
3136 * Prepare kswapd for sleeping. This verifies that there are no processes
3137 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3138 *
3139 * Returns true if kswapd is ready to sleep
3140 */
d9f21d42 3141static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3142{
5515061d 3143 /*
9e5e3661 3144 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3145 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3146 * race between when kswapd checks the watermarks and a process gets
3147 * throttled. There is also a potential race if processes get
3148 * throttled, kswapd wakes, a large process exits thereby balancing the
3149 * zones, which causes kswapd to exit balance_pgdat() before reaching
3150 * the wake up checks. If kswapd is going to sleep, no process should
3151 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3152 * the wake up is premature, processes will wake kswapd and get
3153 * throttled again. The difference from wake ups in balance_pgdat() is
3154 * that here we are under prepare_to_wait().
5515061d 3155 */
9e5e3661
VB
3156 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3157 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3158
c73322d0
JW
3159 /* Hopeless node, leave it to direct reclaim */
3160 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3161 return true;
3162
e716f2eb
MG
3163 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3164 clear_pgdat_congested(pgdat);
3165 return true;
1d82de61
MG
3166 }
3167
333b0a45 3168 return false;
f50de2d3
MG
3169}
3170
75485363 3171/*
1d82de61
MG
3172 * kswapd shrinks a node of pages that are at or below the highest usable
3173 * zone that is currently unbalanced.
b8e83b94
MG
3174 *
3175 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3176 * reclaim or if the lack of progress was due to pages under writeback.
3177 * This is used to determine if the scanning priority needs to be raised.
75485363 3178 */
1d82de61 3179static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3180 struct scan_control *sc)
75485363 3181{
1d82de61
MG
3182 struct zone *zone;
3183 int z;
75485363 3184
1d82de61
MG
3185 /* Reclaim a number of pages proportional to the number of zones */
3186 sc->nr_to_reclaim = 0;
970a39a3 3187 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3188 zone = pgdat->node_zones + z;
6aa303de 3189 if (!managed_zone(zone))
1d82de61 3190 continue;
7c954f6d 3191
1d82de61
MG
3192 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3193 }
7c954f6d
MG
3194
3195 /*
1d82de61
MG
3196 * Historically care was taken to put equal pressure on all zones but
3197 * now pressure is applied based on node LRU order.
7c954f6d 3198 */
970a39a3 3199 shrink_node(pgdat, sc);
283aba9f 3200
7c954f6d 3201 /*
1d82de61
MG
3202 * Fragmentation may mean that the system cannot be rebalanced for
3203 * high-order allocations. If twice the allocation size has been
3204 * reclaimed then recheck watermarks only at order-0 to prevent
3205 * excessive reclaim. Assume that a process requested a high-order
3206 * can direct reclaim/compact.
7c954f6d 3207 */
9861a62c 3208 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3209 sc->order = 0;
7c954f6d 3210
b8e83b94 3211 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3212}
3213
1da177e4 3214/*
1d82de61
MG
3215 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3216 * that are eligible for use by the caller until at least one zone is
3217 * balanced.
1da177e4 3218 *
1d82de61 3219 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3220 *
3221 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3222 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1d82de61
MG
3223 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3224 * or lower is eligible for reclaim until at least one usable zone is
3225 * balanced.
1da177e4 3226 */
accf6242 3227static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3228{
1da177e4 3229 int i;
0608f43d
AM
3230 unsigned long nr_soft_reclaimed;
3231 unsigned long nr_soft_scanned;
1d82de61 3232 struct zone *zone;
179e9639
AM
3233 struct scan_control sc = {
3234 .gfp_mask = GFP_KERNEL,
ee814fe2 3235 .order = order,
b8e83b94 3236 .priority = DEF_PRIORITY,
ee814fe2 3237 .may_writepage = !laptop_mode,
a6dc60f8 3238 .may_unmap = 1,
2e2e4259 3239 .may_swap = 1,
179e9639 3240 };
f8891e5e 3241 count_vm_event(PAGEOUTRUN);
1da177e4 3242
9e3b2f8c 3243 do {
c73322d0 3244 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94
MG
3245 bool raise_priority = true;
3246
84c7a777 3247 sc.reclaim_idx = classzone_idx;
1da177e4 3248
86c79f6b 3249 /*
84c7a777
MG
3250 * If the number of buffer_heads exceeds the maximum allowed
3251 * then consider reclaiming from all zones. This has a dual
3252 * purpose -- on 64-bit systems it is expected that
3253 * buffer_heads are stripped during active rotation. On 32-bit
3254 * systems, highmem pages can pin lowmem memory and shrinking
3255 * buffers can relieve lowmem pressure. Reclaim may still not
3256 * go ahead if all eligible zones for the original allocation
3257 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3258 */
3259 if (buffer_heads_over_limit) {
3260 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3261 zone = pgdat->node_zones + i;
6aa303de 3262 if (!managed_zone(zone))
86c79f6b 3263 continue;
cc715d99 3264
970a39a3 3265 sc.reclaim_idx = i;
e1dbeda6 3266 break;
1da177e4 3267 }
1da177e4 3268 }
dafcb73e 3269
86c79f6b 3270 /*
e716f2eb
MG
3271 * Only reclaim if there are no eligible zones. Note that
3272 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3273 * have adjusted it.
86c79f6b 3274 */
e716f2eb
MG
3275 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3276 goto out;
e1dbeda6 3277
1d82de61
MG
3278 /*
3279 * Do some background aging of the anon list, to give
3280 * pages a chance to be referenced before reclaiming. All
3281 * pages are rotated regardless of classzone as this is
3282 * about consistent aging.
3283 */
ef8f2327 3284 age_active_anon(pgdat, &sc);
1d82de61 3285
b7ea3c41
MG
3286 /*
3287 * If we're getting trouble reclaiming, start doing writepage
3288 * even in laptop mode.
3289 */
047d72c3 3290 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3291 sc.may_writepage = 1;
3292
1d82de61
MG
3293 /* Call soft limit reclaim before calling shrink_node. */
3294 sc.nr_scanned = 0;
3295 nr_soft_scanned = 0;
ef8f2327 3296 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3297 sc.gfp_mask, &nr_soft_scanned);
3298 sc.nr_reclaimed += nr_soft_reclaimed;
3299
1da177e4 3300 /*
1d82de61
MG
3301 * There should be no need to raise the scanning priority if
3302 * enough pages are already being scanned that that high
3303 * watermark would be met at 100% efficiency.
1da177e4 3304 */
970a39a3 3305 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3306 raise_priority = false;
5515061d
MG
3307
3308 /*
3309 * If the low watermark is met there is no need for processes
3310 * to be throttled on pfmemalloc_wait as they should not be
3311 * able to safely make forward progress. Wake them
3312 */
3313 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3314 allow_direct_reclaim(pgdat))
cfc51155 3315 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3316
b8e83b94
MG
3317 /* Check if kswapd should be suspending */
3318 if (try_to_freeze() || kthread_should_stop())
3319 break;
8357376d 3320
73ce02e9 3321 /*
b8e83b94
MG
3322 * Raise priority if scanning rate is too low or there was no
3323 * progress in reclaiming pages
73ce02e9 3324 */
c73322d0
JW
3325 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3326 if (raise_priority || !nr_reclaimed)
b8e83b94 3327 sc.priority--;
1d82de61 3328 } while (sc.priority >= 1);
1da177e4 3329
c73322d0
JW
3330 if (!sc.nr_reclaimed)
3331 pgdat->kswapd_failures++;
3332
b8e83b94 3333out:
2a2e4885 3334 snapshot_refaults(NULL, pgdat);
0abdee2b 3335 /*
1d82de61
MG
3336 * Return the order kswapd stopped reclaiming at as
3337 * prepare_kswapd_sleep() takes it into account. If another caller
3338 * entered the allocator slow path while kswapd was awake, order will
3339 * remain at the higher level.
0abdee2b 3340 */
1d82de61 3341 return sc.order;
1da177e4
LT
3342}
3343
e716f2eb
MG
3344/*
3345 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3346 * allocation request woke kswapd for. When kswapd has not woken recently,
3347 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3348 * given classzone and returns it or the highest classzone index kswapd
3349 * was recently woke for.
3350 */
3351static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3352 enum zone_type classzone_idx)
3353{
3354 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3355 return classzone_idx;
3356
3357 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3358}
3359
38087d9b
MG
3360static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3361 unsigned int classzone_idx)
f0bc0a60
KM
3362{
3363 long remaining = 0;
3364 DEFINE_WAIT(wait);
3365
3366 if (freezing(current) || kthread_should_stop())
3367 return;
3368
3369 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3370
333b0a45
SG
3371 /*
3372 * Try to sleep for a short interval. Note that kcompactd will only be
3373 * woken if it is possible to sleep for a short interval. This is
3374 * deliberate on the assumption that if reclaim cannot keep an
3375 * eligible zone balanced that it's also unlikely that compaction will
3376 * succeed.
3377 */
d9f21d42 3378 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3379 /*
3380 * Compaction records what page blocks it recently failed to
3381 * isolate pages from and skips them in the future scanning.
3382 * When kswapd is going to sleep, it is reasonable to assume
3383 * that pages and compaction may succeed so reset the cache.
3384 */
3385 reset_isolation_suitable(pgdat);
3386
3387 /*
3388 * We have freed the memory, now we should compact it to make
3389 * allocation of the requested order possible.
3390 */
38087d9b 3391 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3392
f0bc0a60 3393 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3394
3395 /*
3396 * If woken prematurely then reset kswapd_classzone_idx and
3397 * order. The values will either be from a wakeup request or
3398 * the previous request that slept prematurely.
3399 */
3400 if (remaining) {
e716f2eb 3401 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b
MG
3402 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3403 }
3404
f0bc0a60
KM
3405 finish_wait(&pgdat->kswapd_wait, &wait);
3406 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3407 }
3408
3409 /*
3410 * After a short sleep, check if it was a premature sleep. If not, then
3411 * go fully to sleep until explicitly woken up.
3412 */
d9f21d42
MG
3413 if (!remaining &&
3414 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3415 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3416
3417 /*
3418 * vmstat counters are not perfectly accurate and the estimated
3419 * value for counters such as NR_FREE_PAGES can deviate from the
3420 * true value by nr_online_cpus * threshold. To avoid the zone
3421 * watermarks being breached while under pressure, we reduce the
3422 * per-cpu vmstat threshold while kswapd is awake and restore
3423 * them before going back to sleep.
3424 */
3425 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3426
3427 if (!kthread_should_stop())
3428 schedule();
3429
f0bc0a60
KM
3430 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3431 } else {
3432 if (remaining)
3433 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3434 else
3435 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3436 }
3437 finish_wait(&pgdat->kswapd_wait, &wait);
3438}
3439
1da177e4
LT
3440/*
3441 * The background pageout daemon, started as a kernel thread
4f98a2fe 3442 * from the init process.
1da177e4
LT
3443 *
3444 * This basically trickles out pages so that we have _some_
3445 * free memory available even if there is no other activity
3446 * that frees anything up. This is needed for things like routing
3447 * etc, where we otherwise might have all activity going on in
3448 * asynchronous contexts that cannot page things out.
3449 *
3450 * If there are applications that are active memory-allocators
3451 * (most normal use), this basically shouldn't matter.
3452 */
3453static int kswapd(void *p)
3454{
e716f2eb
MG
3455 unsigned int alloc_order, reclaim_order;
3456 unsigned int classzone_idx = MAX_NR_ZONES - 1;
1da177e4
LT
3457 pg_data_t *pgdat = (pg_data_t*)p;
3458 struct task_struct *tsk = current;
f0bc0a60 3459
1da177e4
LT
3460 struct reclaim_state reclaim_state = {
3461 .reclaimed_slab = 0,
3462 };
a70f7302 3463 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3464
cf40bd16
NP
3465 lockdep_set_current_reclaim_state(GFP_KERNEL);
3466
174596a0 3467 if (!cpumask_empty(cpumask))
c5f59f08 3468 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3469 current->reclaim_state = &reclaim_state;
3470
3471 /*
3472 * Tell the memory management that we're a "memory allocator",
3473 * and that if we need more memory we should get access to it
3474 * regardless (see "__alloc_pages()"). "kswapd" should
3475 * never get caught in the normal page freeing logic.
3476 *
3477 * (Kswapd normally doesn't need memory anyway, but sometimes
3478 * you need a small amount of memory in order to be able to
3479 * page out something else, and this flag essentially protects
3480 * us from recursively trying to free more memory as we're
3481 * trying to free the first piece of memory in the first place).
3482 */
930d9152 3483 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3484 set_freezable();
1da177e4 3485
e716f2eb
MG
3486 pgdat->kswapd_order = 0;
3487 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3488 for ( ; ; ) {
6f6313d4 3489 bool ret;
3e1d1d28 3490
e716f2eb
MG
3491 alloc_order = reclaim_order = pgdat->kswapd_order;
3492 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3493
38087d9b
MG
3494kswapd_try_sleep:
3495 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3496 classzone_idx);
215ddd66 3497
38087d9b
MG
3498 /* Read the new order and classzone_idx */
3499 alloc_order = reclaim_order = pgdat->kswapd_order;
e716f2eb 3500 classzone_idx = kswapd_classzone_idx(pgdat, 0);
38087d9b 3501 pgdat->kswapd_order = 0;
e716f2eb 3502 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3503
8fe23e05
DR
3504 ret = try_to_freeze();
3505 if (kthread_should_stop())
3506 break;
3507
3508 /*
3509 * We can speed up thawing tasks if we don't call balance_pgdat
3510 * after returning from the refrigerator
3511 */
38087d9b
MG
3512 if (ret)
3513 continue;
3514
3515 /*
3516 * Reclaim begins at the requested order but if a high-order
3517 * reclaim fails then kswapd falls back to reclaiming for
3518 * order-0. If that happens, kswapd will consider sleeping
3519 * for the order it finished reclaiming at (reclaim_order)
3520 * but kcompactd is woken to compact for the original
3521 * request (alloc_order).
3522 */
e5146b12
MG
3523 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3524 alloc_order);
38087d9b
MG
3525 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3526 if (reclaim_order < alloc_order)
3527 goto kswapd_try_sleep;
1da177e4 3528 }
b0a8cc58 3529
71abdc15 3530 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3531 current->reclaim_state = NULL;
71abdc15
JW
3532 lockdep_clear_current_reclaim_state();
3533
1da177e4
LT
3534 return 0;
3535}
3536
3537/*
3538 * A zone is low on free memory, so wake its kswapd task to service it.
3539 */
99504748 3540void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3541{
3542 pg_data_t *pgdat;
3543
6aa303de 3544 if (!managed_zone(zone))
1da177e4
LT
3545 return;
3546
344736f2 3547 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3548 return;
88f5acf8 3549 pgdat = zone->zone_pgdat;
e716f2eb
MG
3550 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3551 classzone_idx);
38087d9b 3552 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3553 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3554 return;
e1a55637 3555
c73322d0
JW
3556 /* Hopeless node, leave it to direct reclaim */
3557 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3558 return;
3559
e716f2eb
MG
3560 if (pgdat_balanced(pgdat, order, classzone_idx))
3561 return;
88f5acf8 3562
e716f2eb 3563 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
8d0986e2 3564 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3565}
3566
c6f37f12 3567#ifdef CONFIG_HIBERNATION
1da177e4 3568/*
7b51755c 3569 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3570 * freed pages.
3571 *
3572 * Rather than trying to age LRUs the aim is to preserve the overall
3573 * LRU order by reclaiming preferentially
3574 * inactive > active > active referenced > active mapped
1da177e4 3575 */
7b51755c 3576unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3577{
d6277db4 3578 struct reclaim_state reclaim_state;
d6277db4 3579 struct scan_control sc = {
ee814fe2 3580 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3581 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3582 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3583 .priority = DEF_PRIORITY,
d6277db4 3584 .may_writepage = 1,
ee814fe2
JW
3585 .may_unmap = 1,
3586 .may_swap = 1,
7b51755c 3587 .hibernation_mode = 1,
1da177e4 3588 };
a09ed5e0 3589 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3590 struct task_struct *p = current;
3591 unsigned long nr_reclaimed;
1da177e4 3592
7b51755c
KM
3593 p->flags |= PF_MEMALLOC;
3594 lockdep_set_current_reclaim_state(sc.gfp_mask);
3595 reclaim_state.reclaimed_slab = 0;
3596 p->reclaim_state = &reclaim_state;
d6277db4 3597
3115cd91 3598 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3599
7b51755c
KM
3600 p->reclaim_state = NULL;
3601 lockdep_clear_current_reclaim_state();
3602 p->flags &= ~PF_MEMALLOC;
d6277db4 3603
7b51755c 3604 return nr_reclaimed;
1da177e4 3605}
c6f37f12 3606#endif /* CONFIG_HIBERNATION */
1da177e4 3607
1da177e4
LT
3608/* It's optimal to keep kswapds on the same CPUs as their memory, but
3609 not required for correctness. So if the last cpu in a node goes
3610 away, we get changed to run anywhere: as the first one comes back,
3611 restore their cpu bindings. */
517bbed9 3612static int kswapd_cpu_online(unsigned int cpu)
1da177e4 3613{
58c0a4a7 3614 int nid;
1da177e4 3615
517bbed9
SAS
3616 for_each_node_state(nid, N_MEMORY) {
3617 pg_data_t *pgdat = NODE_DATA(nid);
3618 const struct cpumask *mask;
a70f7302 3619
517bbed9 3620 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3621
517bbed9
SAS
3622 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3623 /* One of our CPUs online: restore mask */
3624 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4 3625 }
517bbed9 3626 return 0;
1da177e4 3627}
1da177e4 3628
3218ae14
YG
3629/*
3630 * This kswapd start function will be called by init and node-hot-add.
3631 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3632 */
3633int kswapd_run(int nid)
3634{
3635 pg_data_t *pgdat = NODE_DATA(nid);
3636 int ret = 0;
3637
3638 if (pgdat->kswapd)
3639 return 0;
3640
3641 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3642 if (IS_ERR(pgdat->kswapd)) {
3643 /* failure at boot is fatal */
3644 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3645 pr_err("Failed to start kswapd on node %d\n", nid);
3646 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3647 pgdat->kswapd = NULL;
3218ae14
YG
3648 }
3649 return ret;
3650}
3651
8fe23e05 3652/*
d8adde17 3653 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3654 * hold mem_hotplug_begin/end().
8fe23e05
DR
3655 */
3656void kswapd_stop(int nid)
3657{
3658 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3659
d8adde17 3660 if (kswapd) {
8fe23e05 3661 kthread_stop(kswapd);
d8adde17
JL
3662 NODE_DATA(nid)->kswapd = NULL;
3663 }
8fe23e05
DR
3664}
3665
1da177e4
LT
3666static int __init kswapd_init(void)
3667{
517bbed9 3668 int nid, ret;
69e05944 3669
1da177e4 3670 swap_setup();
48fb2e24 3671 for_each_node_state(nid, N_MEMORY)
3218ae14 3672 kswapd_run(nid);
517bbed9
SAS
3673 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3674 "mm/vmscan:online", kswapd_cpu_online,
3675 NULL);
3676 WARN_ON(ret < 0);
1da177e4
LT
3677 return 0;
3678}
3679
3680module_init(kswapd_init)
9eeff239
CL
3681
3682#ifdef CONFIG_NUMA
3683/*
a5f5f91d 3684 * Node reclaim mode
9eeff239 3685 *
a5f5f91d 3686 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 3687 * the watermarks.
9eeff239 3688 */
a5f5f91d 3689int node_reclaim_mode __read_mostly;
9eeff239 3690
1b2ffb78 3691#define RECLAIM_OFF 0
7d03431c 3692#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3693#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3694#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3695
a92f7126 3696/*
a5f5f91d 3697 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
3698 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3699 * a zone.
3700 */
a5f5f91d 3701#define NODE_RECLAIM_PRIORITY 4
a92f7126 3702
9614634f 3703/*
a5f5f91d 3704 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
3705 * occur.
3706 */
3707int sysctl_min_unmapped_ratio = 1;
3708
0ff38490
CL
3709/*
3710 * If the number of slab pages in a zone grows beyond this percentage then
3711 * slab reclaim needs to occur.
3712 */
3713int sysctl_min_slab_ratio = 5;
3714
11fb9989 3715static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 3716{
11fb9989
MG
3717 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3718 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3719 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
3720
3721 /*
3722 * It's possible for there to be more file mapped pages than
3723 * accounted for by the pages on the file LRU lists because
3724 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3725 */
3726 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3727}
3728
3729/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 3730static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 3731{
d031a157
AM
3732 unsigned long nr_pagecache_reclaimable;
3733 unsigned long delta = 0;
90afa5de
MG
3734
3735 /*
95bbc0c7 3736 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 3737 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 3738 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
3739 * a better estimate
3740 */
a5f5f91d
MG
3741 if (node_reclaim_mode & RECLAIM_UNMAP)
3742 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 3743 else
a5f5f91d 3744 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
3745
3746 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
3747 if (!(node_reclaim_mode & RECLAIM_WRITE))
3748 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
3749
3750 /* Watch for any possible underflows due to delta */
3751 if (unlikely(delta > nr_pagecache_reclaimable))
3752 delta = nr_pagecache_reclaimable;
3753
3754 return nr_pagecache_reclaimable - delta;
3755}
3756
9eeff239 3757/*
a5f5f91d 3758 * Try to free up some pages from this node through reclaim.
9eeff239 3759 */
a5f5f91d 3760static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 3761{
7fb2d46d 3762 /* Minimum pages needed in order to stay on node */
69e05944 3763 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3764 struct task_struct *p = current;
3765 struct reclaim_state reclaim_state;
a5f5f91d 3766 int classzone_idx = gfp_zone(gfp_mask);
179e9639 3767 struct scan_control sc = {
62b726c1 3768 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3769 .gfp_mask = (gfp_mask = current_gfp_context(gfp_mask)),
bd2f6199 3770 .order = order,
a5f5f91d
MG
3771 .priority = NODE_RECLAIM_PRIORITY,
3772 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3773 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 3774 .may_swap = 1,
a5f5f91d 3775 .reclaim_idx = classzone_idx,
179e9639 3776 };
9eeff239 3777
9eeff239 3778 cond_resched();
d4f7796e 3779 /*
95bbc0c7 3780 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 3781 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 3782 * and RECLAIM_UNMAP.
d4f7796e
CL
3783 */
3784 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3785 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3786 reclaim_state.reclaimed_slab = 0;
3787 p->reclaim_state = &reclaim_state;
c84db23c 3788
a5f5f91d 3789 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490
CL
3790 /*
3791 * Free memory by calling shrink zone with increasing
3792 * priorities until we have enough memory freed.
3793 */
0ff38490 3794 do {
970a39a3 3795 shrink_node(pgdat, &sc);
9e3b2f8c 3796 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3797 }
c84db23c 3798
9eeff239 3799 p->reclaim_state = NULL;
d4f7796e 3800 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3801 lockdep_clear_current_reclaim_state();
a79311c1 3802 return sc.nr_reclaimed >= nr_pages;
9eeff239 3803}
179e9639 3804
a5f5f91d 3805int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 3806{
d773ed6b 3807 int ret;
179e9639
AM
3808
3809 /*
a5f5f91d 3810 * Node reclaim reclaims unmapped file backed pages and
0ff38490 3811 * slab pages if we are over the defined limits.
34aa1330 3812 *
9614634f
CL
3813 * A small portion of unmapped file backed pages is needed for
3814 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
3815 * thrown out if the node is overallocated. So we do not reclaim
3816 * if less than a specified percentage of the node is used by
9614634f 3817 * unmapped file backed pages.
179e9639 3818 */
a5f5f91d
MG
3819 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3820 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3821 return NODE_RECLAIM_FULL;
179e9639
AM
3822
3823 /*
d773ed6b 3824 * Do not scan if the allocation should not be delayed.
179e9639 3825 */
d0164adc 3826 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 3827 return NODE_RECLAIM_NOSCAN;
179e9639
AM
3828
3829 /*
a5f5f91d 3830 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
3831 * have associated processors. This will favor the local processor
3832 * over remote processors and spread off node memory allocations
3833 * as wide as possible.
3834 */
a5f5f91d
MG
3835 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3836 return NODE_RECLAIM_NOSCAN;
d773ed6b 3837
a5f5f91d
MG
3838 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3839 return NODE_RECLAIM_NOSCAN;
fa5e084e 3840
a5f5f91d
MG
3841 ret = __node_reclaim(pgdat, gfp_mask, order);
3842 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 3843
24cf7251
MG
3844 if (!ret)
3845 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3846
d773ed6b 3847 return ret;
179e9639 3848}
9eeff239 3849#endif
894bc310 3850
894bc310
LS
3851/*
3852 * page_evictable - test whether a page is evictable
3853 * @page: the page to test
894bc310
LS
3854 *
3855 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3856 * lists vs unevictable list.
894bc310
LS
3857 *
3858 * Reasons page might not be evictable:
ba9ddf49 3859 * (1) page's mapping marked unevictable
b291f000 3860 * (2) page is part of an mlocked VMA
ba9ddf49 3861 *
894bc310 3862 */
39b5f29a 3863int page_evictable(struct page *page)
894bc310 3864{
39b5f29a 3865 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3866}
89e004ea 3867
85046579 3868#ifdef CONFIG_SHMEM
89e004ea 3869/**
24513264
HD
3870 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3871 * @pages: array of pages to check
3872 * @nr_pages: number of pages to check
89e004ea 3873 *
24513264 3874 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3875 *
3876 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3877 */
24513264 3878void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3879{
925b7673 3880 struct lruvec *lruvec;
785b99fe 3881 struct pglist_data *pgdat = NULL;
24513264
HD
3882 int pgscanned = 0;
3883 int pgrescued = 0;
3884 int i;
89e004ea 3885
24513264
HD
3886 for (i = 0; i < nr_pages; i++) {
3887 struct page *page = pages[i];
785b99fe 3888 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 3889
24513264 3890 pgscanned++;
785b99fe
MG
3891 if (pagepgdat != pgdat) {
3892 if (pgdat)
3893 spin_unlock_irq(&pgdat->lru_lock);
3894 pgdat = pagepgdat;
3895 spin_lock_irq(&pgdat->lru_lock);
24513264 3896 }
785b99fe 3897 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 3898
24513264
HD
3899 if (!PageLRU(page) || !PageUnevictable(page))
3900 continue;
89e004ea 3901
39b5f29a 3902 if (page_evictable(page)) {
24513264
HD
3903 enum lru_list lru = page_lru_base_type(page);
3904
309381fe 3905 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3906 ClearPageUnevictable(page);
fa9add64
HD
3907 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3908 add_page_to_lru_list(page, lruvec, lru);
24513264 3909 pgrescued++;
89e004ea 3910 }
24513264 3911 }
89e004ea 3912
785b99fe 3913 if (pgdat) {
24513264
HD
3914 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3915 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 3916 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 3917 }
89e004ea 3918}
85046579 3919#endif /* CONFIG_SHMEM */