]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmscan.c
vmscan: delete dead code
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
1da177e4
LT
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
0f8053a5
NP
49#include "internal.h"
50
33906bc5
MG
51#define CREATE_TRACE_POINTS
52#include <trace/events/vmscan.h>
53
1da177e4 54struct scan_control {
1da177e4
LT
55 /* Incremented by the number of inactive pages that were scanned */
56 unsigned long nr_scanned;
57
a79311c1
RR
58 /* Number of pages freed so far during a call to shrink_zones() */
59 unsigned long nr_reclaimed;
60
22fba335
KM
61 /* How many pages shrink_list() should reclaim */
62 unsigned long nr_to_reclaim;
63
7b51755c
KM
64 unsigned long hibernation_mode;
65
1da177e4 66 /* This context's GFP mask */
6daa0e28 67 gfp_t gfp_mask;
1da177e4
LT
68
69 int may_writepage;
70
a6dc60f8
JW
71 /* Can mapped pages be reclaimed? */
72 int may_unmap;
f1fd1067 73
2e2e4259
KM
74 /* Can pages be swapped as part of reclaim? */
75 int may_swap;
76
d6277db4 77 int swappiness;
408d8544 78
5ad333eb 79 int order;
66e1707b 80
5f53e762 81 /*
415b54e3
NK
82 * Intend to reclaim enough continuous memory rather than reclaim
83 * enough amount of memory. i.e, mode for high order allocation.
5f53e762
KM
84 */
85 bool lumpy_reclaim_mode;
86
66e1707b
BS
87 /* Which cgroup do we reclaim from */
88 struct mem_cgroup *mem_cgroup;
89
327c0e96
KH
90 /*
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
93 */
94 nodemask_t *nodemask;
1da177e4
LT
95};
96
1da177e4
LT
97#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99#ifdef ARCH_HAS_PREFETCH
100#define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
107 } \
108 } while (0)
109#else
110#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111#endif
112
113#ifdef ARCH_HAS_PREFETCHW
114#define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
121 } \
122 } while (0)
123#else
124#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127/*
128 * From 0 .. 100. Higher means more swappy.
129 */
130int vm_swappiness = 60;
bd1e22b8 131long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
132
133static LIST_HEAD(shrinker_list);
134static DECLARE_RWSEM(shrinker_rwsem);
135
00f0b825 136#ifdef CONFIG_CGROUP_MEM_RES_CTLR
e72e2bd6 137#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
91a45470 138#else
e72e2bd6 139#define scanning_global_lru(sc) (1)
91a45470
KH
140#endif
141
6e901571
KM
142static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143 struct scan_control *sc)
144{
e72e2bd6 145 if (!scanning_global_lru(sc))
3e2f41f1
KM
146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147
6e901571
KM
148 return &zone->reclaim_stat;
149}
150
0b217676
VL
151static unsigned long zone_nr_lru_pages(struct zone *zone,
152 struct scan_control *sc, enum lru_list lru)
c9f299d9 153{
e72e2bd6 154 if (!scanning_global_lru(sc))
a3d8e054
KM
155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156
c9f299d9
KM
157 return zone_page_state(zone, NR_LRU_BASE + lru);
158}
159
160
1da177e4
LT
161/*
162 * Add a shrinker callback to be called from the vm
163 */
8e1f936b 164void register_shrinker(struct shrinker *shrinker)
1da177e4 165{
8e1f936b
RR
166 shrinker->nr = 0;
167 down_write(&shrinker_rwsem);
168 list_add_tail(&shrinker->list, &shrinker_list);
169 up_write(&shrinker_rwsem);
1da177e4 170}
8e1f936b 171EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
172
173/*
174 * Remove one
175 */
8e1f936b 176void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
177{
178 down_write(&shrinker_rwsem);
179 list_del(&shrinker->list);
180 up_write(&shrinker_rwsem);
1da177e4 181}
8e1f936b 182EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
183
184#define SHRINK_BATCH 128
185/*
186 * Call the shrink functions to age shrinkable caches
187 *
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object. With this in mind we age equal
190 * percentages of the lru and ageable caches. This should balance the seeks
191 * generated by these structures.
192 *
183ff22b 193 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
194 * slab to avoid swapping.
195 *
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197 *
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt. It is used for balancing
200 * slab reclaim versus page reclaim.
b15e0905 201 *
202 * Returns the number of slab objects which we shrunk.
1da177e4 203 */
69e05944
AM
204unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205 unsigned long lru_pages)
1da177e4
LT
206{
207 struct shrinker *shrinker;
69e05944 208 unsigned long ret = 0;
1da177e4
LT
209
210 if (scanned == 0)
211 scanned = SWAP_CLUSTER_MAX;
212
213 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 214 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
215
216 list_for_each_entry(shrinker, &shrinker_list, list) {
217 unsigned long long delta;
218 unsigned long total_scan;
7f8275d0 219 unsigned long max_pass;
1da177e4 220
7f8275d0 221 max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
1da177e4 222 delta = (4 * scanned) / shrinker->seeks;
ea164d73 223 delta *= max_pass;
1da177e4
LT
224 do_div(delta, lru_pages + 1);
225 shrinker->nr += delta;
ea164d73 226 if (shrinker->nr < 0) {
88c3bd70
DR
227 printk(KERN_ERR "shrink_slab: %pF negative objects to "
228 "delete nr=%ld\n",
229 shrinker->shrink, shrinker->nr);
ea164d73
AA
230 shrinker->nr = max_pass;
231 }
232
233 /*
234 * Avoid risking looping forever due to too large nr value:
235 * never try to free more than twice the estimate number of
236 * freeable entries.
237 */
238 if (shrinker->nr > max_pass * 2)
239 shrinker->nr = max_pass * 2;
1da177e4
LT
240
241 total_scan = shrinker->nr;
242 shrinker->nr = 0;
243
244 while (total_scan >= SHRINK_BATCH) {
245 long this_scan = SHRINK_BATCH;
246 int shrink_ret;
b15e0905 247 int nr_before;
1da177e4 248
7f8275d0
DC
249 nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
250 shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
251 gfp_mask);
1da177e4
LT
252 if (shrink_ret == -1)
253 break;
b15e0905 254 if (shrink_ret < nr_before)
255 ret += nr_before - shrink_ret;
f8891e5e 256 count_vm_events(SLABS_SCANNED, this_scan);
1da177e4
LT
257 total_scan -= this_scan;
258
259 cond_resched();
260 }
261
262 shrinker->nr += total_scan;
263 }
264 up_read(&shrinker_rwsem);
b15e0905 265 return ret;
1da177e4
LT
266}
267
1da177e4
LT
268static inline int is_page_cache_freeable(struct page *page)
269{
ceddc3a5
JW
270 /*
271 * A freeable page cache page is referenced only by the caller
272 * that isolated the page, the page cache radix tree and
273 * optional buffer heads at page->private.
274 */
edcf4748 275 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
276}
277
278static int may_write_to_queue(struct backing_dev_info *bdi)
279{
930d9152 280 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
281 return 1;
282 if (!bdi_write_congested(bdi))
283 return 1;
284 if (bdi == current->backing_dev_info)
285 return 1;
286 return 0;
287}
288
289/*
290 * We detected a synchronous write error writing a page out. Probably
291 * -ENOSPC. We need to propagate that into the address_space for a subsequent
292 * fsync(), msync() or close().
293 *
294 * The tricky part is that after writepage we cannot touch the mapping: nothing
295 * prevents it from being freed up. But we have a ref on the page and once
296 * that page is locked, the mapping is pinned.
297 *
298 * We're allowed to run sleeping lock_page() here because we know the caller has
299 * __GFP_FS.
300 */
301static void handle_write_error(struct address_space *mapping,
302 struct page *page, int error)
303{
a6aa62a0 304 lock_page_nosync(page);
3e9f45bd
GC
305 if (page_mapping(page) == mapping)
306 mapping_set_error(mapping, error);
1da177e4
LT
307 unlock_page(page);
308}
309
c661b078
AW
310/* Request for sync pageout. */
311enum pageout_io {
312 PAGEOUT_IO_ASYNC,
313 PAGEOUT_IO_SYNC,
314};
315
04e62a29
CL
316/* possible outcome of pageout() */
317typedef enum {
318 /* failed to write page out, page is locked */
319 PAGE_KEEP,
320 /* move page to the active list, page is locked */
321 PAGE_ACTIVATE,
322 /* page has been sent to the disk successfully, page is unlocked */
323 PAGE_SUCCESS,
324 /* page is clean and locked */
325 PAGE_CLEAN,
326} pageout_t;
327
1da177e4 328/*
1742f19f
AM
329 * pageout is called by shrink_page_list() for each dirty page.
330 * Calls ->writepage().
1da177e4 331 */
c661b078
AW
332static pageout_t pageout(struct page *page, struct address_space *mapping,
333 enum pageout_io sync_writeback)
1da177e4
LT
334{
335 /*
336 * If the page is dirty, only perform writeback if that write
337 * will be non-blocking. To prevent this allocation from being
338 * stalled by pagecache activity. But note that there may be
339 * stalls if we need to run get_block(). We could test
340 * PagePrivate for that.
341 *
6aceb53b 342 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
343 * this page's queue, we can perform writeback even if that
344 * will block.
345 *
346 * If the page is swapcache, write it back even if that would
347 * block, for some throttling. This happens by accident, because
348 * swap_backing_dev_info is bust: it doesn't reflect the
349 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
350 */
351 if (!is_page_cache_freeable(page))
352 return PAGE_KEEP;
353 if (!mapping) {
354 /*
355 * Some data journaling orphaned pages can have
356 * page->mapping == NULL while being dirty with clean buffers.
357 */
266cf658 358 if (page_has_private(page)) {
1da177e4
LT
359 if (try_to_free_buffers(page)) {
360 ClearPageDirty(page);
d40cee24 361 printk("%s: orphaned page\n", __func__);
1da177e4
LT
362 return PAGE_CLEAN;
363 }
364 }
365 return PAGE_KEEP;
366 }
367 if (mapping->a_ops->writepage == NULL)
368 return PAGE_ACTIVATE;
369 if (!may_write_to_queue(mapping->backing_dev_info))
370 return PAGE_KEEP;
371
372 if (clear_page_dirty_for_io(page)) {
373 int res;
374 struct writeback_control wbc = {
375 .sync_mode = WB_SYNC_NONE,
376 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
377 .range_start = 0,
378 .range_end = LLONG_MAX,
1da177e4
LT
379 .for_reclaim = 1,
380 };
381
382 SetPageReclaim(page);
383 res = mapping->a_ops->writepage(page, &wbc);
384 if (res < 0)
385 handle_write_error(mapping, page, res);
994fc28c 386 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
387 ClearPageReclaim(page);
388 return PAGE_ACTIVATE;
389 }
c661b078
AW
390
391 /*
392 * Wait on writeback if requested to. This happens when
393 * direct reclaiming a large contiguous area and the
394 * first attempt to free a range of pages fails.
395 */
396 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
397 wait_on_page_writeback(page);
398
1da177e4
LT
399 if (!PageWriteback(page)) {
400 /* synchronous write or broken a_ops? */
401 ClearPageReclaim(page);
402 }
755f0225
MG
403 trace_mm_vmscan_writepage(page,
404 trace_reclaim_flags(page, sync_writeback));
e129b5c2 405 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
406 return PAGE_SUCCESS;
407 }
408
409 return PAGE_CLEAN;
410}
411
a649fd92 412/*
e286781d
NP
413 * Same as remove_mapping, but if the page is removed from the mapping, it
414 * gets returned with a refcount of 0.
a649fd92 415 */
e286781d 416static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 417{
28e4d965
NP
418 BUG_ON(!PageLocked(page));
419 BUG_ON(mapping != page_mapping(page));
49d2e9cc 420
19fd6231 421 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 422 /*
0fd0e6b0
NP
423 * The non racy check for a busy page.
424 *
425 * Must be careful with the order of the tests. When someone has
426 * a ref to the page, it may be possible that they dirty it then
427 * drop the reference. So if PageDirty is tested before page_count
428 * here, then the following race may occur:
429 *
430 * get_user_pages(&page);
431 * [user mapping goes away]
432 * write_to(page);
433 * !PageDirty(page) [good]
434 * SetPageDirty(page);
435 * put_page(page);
436 * !page_count(page) [good, discard it]
437 *
438 * [oops, our write_to data is lost]
439 *
440 * Reversing the order of the tests ensures such a situation cannot
441 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
442 * load is not satisfied before that of page->_count.
443 *
444 * Note that if SetPageDirty is always performed via set_page_dirty,
445 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 446 */
e286781d 447 if (!page_freeze_refs(page, 2))
49d2e9cc 448 goto cannot_free;
e286781d
NP
449 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
450 if (unlikely(PageDirty(page))) {
451 page_unfreeze_refs(page, 2);
49d2e9cc 452 goto cannot_free;
e286781d 453 }
49d2e9cc
CL
454
455 if (PageSwapCache(page)) {
456 swp_entry_t swap = { .val = page_private(page) };
457 __delete_from_swap_cache(page);
19fd6231 458 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 459 swapcache_free(swap, page);
e286781d
NP
460 } else {
461 __remove_from_page_cache(page);
19fd6231 462 spin_unlock_irq(&mapping->tree_lock);
e767e056 463 mem_cgroup_uncharge_cache_page(page);
49d2e9cc
CL
464 }
465
49d2e9cc
CL
466 return 1;
467
468cannot_free:
19fd6231 469 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
470 return 0;
471}
472
e286781d
NP
473/*
474 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
475 * someone else has a ref on the page, abort and return 0. If it was
476 * successfully detached, return 1. Assumes the caller has a single ref on
477 * this page.
478 */
479int remove_mapping(struct address_space *mapping, struct page *page)
480{
481 if (__remove_mapping(mapping, page)) {
482 /*
483 * Unfreezing the refcount with 1 rather than 2 effectively
484 * drops the pagecache ref for us without requiring another
485 * atomic operation.
486 */
487 page_unfreeze_refs(page, 1);
488 return 1;
489 }
490 return 0;
491}
492
894bc310
LS
493/**
494 * putback_lru_page - put previously isolated page onto appropriate LRU list
495 * @page: page to be put back to appropriate lru list
496 *
497 * Add previously isolated @page to appropriate LRU list.
498 * Page may still be unevictable for other reasons.
499 *
500 * lru_lock must not be held, interrupts must be enabled.
501 */
894bc310
LS
502void putback_lru_page(struct page *page)
503{
504 int lru;
505 int active = !!TestClearPageActive(page);
bbfd28ee 506 int was_unevictable = PageUnevictable(page);
894bc310
LS
507
508 VM_BUG_ON(PageLRU(page));
509
510redo:
511 ClearPageUnevictable(page);
512
513 if (page_evictable(page, NULL)) {
514 /*
515 * For evictable pages, we can use the cache.
516 * In event of a race, worst case is we end up with an
517 * unevictable page on [in]active list.
518 * We know how to handle that.
519 */
401a8e1c 520 lru = active + page_lru_base_type(page);
894bc310
LS
521 lru_cache_add_lru(page, lru);
522 } else {
523 /*
524 * Put unevictable pages directly on zone's unevictable
525 * list.
526 */
527 lru = LRU_UNEVICTABLE;
528 add_page_to_unevictable_list(page);
6a7b9548
JW
529 /*
530 * When racing with an mlock clearing (page is
531 * unlocked), make sure that if the other thread does
532 * not observe our setting of PG_lru and fails
533 * isolation, we see PG_mlocked cleared below and move
534 * the page back to the evictable list.
535 *
536 * The other side is TestClearPageMlocked().
537 */
538 smp_mb();
894bc310 539 }
894bc310
LS
540
541 /*
542 * page's status can change while we move it among lru. If an evictable
543 * page is on unevictable list, it never be freed. To avoid that,
544 * check after we added it to the list, again.
545 */
546 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
547 if (!isolate_lru_page(page)) {
548 put_page(page);
549 goto redo;
550 }
551 /* This means someone else dropped this page from LRU
552 * So, it will be freed or putback to LRU again. There is
553 * nothing to do here.
554 */
555 }
556
bbfd28ee
LS
557 if (was_unevictable && lru != LRU_UNEVICTABLE)
558 count_vm_event(UNEVICTABLE_PGRESCUED);
559 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
560 count_vm_event(UNEVICTABLE_PGCULLED);
561
894bc310
LS
562 put_page(page); /* drop ref from isolate */
563}
564
dfc8d636
JW
565enum page_references {
566 PAGEREF_RECLAIM,
567 PAGEREF_RECLAIM_CLEAN,
64574746 568 PAGEREF_KEEP,
dfc8d636
JW
569 PAGEREF_ACTIVATE,
570};
571
572static enum page_references page_check_references(struct page *page,
573 struct scan_control *sc)
574{
64574746 575 int referenced_ptes, referenced_page;
dfc8d636 576 unsigned long vm_flags;
dfc8d636 577
64574746
JW
578 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
579 referenced_page = TestClearPageReferenced(page);
dfc8d636
JW
580
581 /* Lumpy reclaim - ignore references */
5f53e762 582 if (sc->lumpy_reclaim_mode)
dfc8d636
JW
583 return PAGEREF_RECLAIM;
584
585 /*
586 * Mlock lost the isolation race with us. Let try_to_unmap()
587 * move the page to the unevictable list.
588 */
589 if (vm_flags & VM_LOCKED)
590 return PAGEREF_RECLAIM;
591
64574746
JW
592 if (referenced_ptes) {
593 if (PageAnon(page))
594 return PAGEREF_ACTIVATE;
595 /*
596 * All mapped pages start out with page table
597 * references from the instantiating fault, so we need
598 * to look twice if a mapped file page is used more
599 * than once.
600 *
601 * Mark it and spare it for another trip around the
602 * inactive list. Another page table reference will
603 * lead to its activation.
604 *
605 * Note: the mark is set for activated pages as well
606 * so that recently deactivated but used pages are
607 * quickly recovered.
608 */
609 SetPageReferenced(page);
610
611 if (referenced_page)
612 return PAGEREF_ACTIVATE;
613
614 return PAGEREF_KEEP;
615 }
dfc8d636
JW
616
617 /* Reclaim if clean, defer dirty pages to writeback */
64574746
JW
618 if (referenced_page)
619 return PAGEREF_RECLAIM_CLEAN;
620
621 return PAGEREF_RECLAIM;
dfc8d636
JW
622}
623
abe4c3b5
MG
624static noinline_for_stack void free_page_list(struct list_head *free_pages)
625{
626 struct pagevec freed_pvec;
627 struct page *page, *tmp;
628
629 pagevec_init(&freed_pvec, 1);
630
631 list_for_each_entry_safe(page, tmp, free_pages, lru) {
632 list_del(&page->lru);
633 if (!pagevec_add(&freed_pvec, page)) {
634 __pagevec_free(&freed_pvec);
635 pagevec_reinit(&freed_pvec);
636 }
637 }
638
639 pagevec_free(&freed_pvec);
640}
641
1da177e4 642/*
1742f19f 643 * shrink_page_list() returns the number of reclaimed pages
1da177e4 644 */
1742f19f 645static unsigned long shrink_page_list(struct list_head *page_list,
c661b078
AW
646 struct scan_control *sc,
647 enum pageout_io sync_writeback)
1da177e4
LT
648{
649 LIST_HEAD(ret_pages);
abe4c3b5 650 LIST_HEAD(free_pages);
1da177e4 651 int pgactivate = 0;
05ff5137 652 unsigned long nr_reclaimed = 0;
1da177e4
LT
653
654 cond_resched();
655
1da177e4 656 while (!list_empty(page_list)) {
dfc8d636 657 enum page_references references;
1da177e4
LT
658 struct address_space *mapping;
659 struct page *page;
660 int may_enter_fs;
1da177e4
LT
661
662 cond_resched();
663
664 page = lru_to_page(page_list);
665 list_del(&page->lru);
666
529ae9aa 667 if (!trylock_page(page))
1da177e4
LT
668 goto keep;
669
725d704e 670 VM_BUG_ON(PageActive(page));
1da177e4
LT
671
672 sc->nr_scanned++;
80e43426 673
b291f000
NP
674 if (unlikely(!page_evictable(page, NULL)))
675 goto cull_mlocked;
894bc310 676
a6dc60f8 677 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
678 goto keep_locked;
679
1da177e4
LT
680 /* Double the slab pressure for mapped and swapcache pages */
681 if (page_mapped(page) || PageSwapCache(page))
682 sc->nr_scanned++;
683
c661b078
AW
684 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
685 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
686
687 if (PageWriteback(page)) {
688 /*
689 * Synchronous reclaim is performed in two passes,
690 * first an asynchronous pass over the list to
691 * start parallel writeback, and a second synchronous
692 * pass to wait for the IO to complete. Wait here
693 * for any page for which writeback has already
694 * started.
695 */
696 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
697 wait_on_page_writeback(page);
4dd4b920 698 else
c661b078
AW
699 goto keep_locked;
700 }
1da177e4 701
dfc8d636
JW
702 references = page_check_references(page, sc);
703 switch (references) {
704 case PAGEREF_ACTIVATE:
1da177e4 705 goto activate_locked;
64574746
JW
706 case PAGEREF_KEEP:
707 goto keep_locked;
dfc8d636
JW
708 case PAGEREF_RECLAIM:
709 case PAGEREF_RECLAIM_CLEAN:
710 ; /* try to reclaim the page below */
711 }
1da177e4 712
1da177e4
LT
713 /*
714 * Anonymous process memory has backing store?
715 * Try to allocate it some swap space here.
716 */
b291f000 717 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
718 if (!(sc->gfp_mask & __GFP_IO))
719 goto keep_locked;
ac47b003 720 if (!add_to_swap(page))
1da177e4 721 goto activate_locked;
63eb6b93 722 may_enter_fs = 1;
b291f000 723 }
1da177e4
LT
724
725 mapping = page_mapping(page);
1da177e4
LT
726
727 /*
728 * The page is mapped into the page tables of one or more
729 * processes. Try to unmap it here.
730 */
731 if (page_mapped(page) && mapping) {
14fa31b8 732 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
733 case SWAP_FAIL:
734 goto activate_locked;
735 case SWAP_AGAIN:
736 goto keep_locked;
b291f000
NP
737 case SWAP_MLOCK:
738 goto cull_mlocked;
1da177e4
LT
739 case SWAP_SUCCESS:
740 ; /* try to free the page below */
741 }
742 }
743
744 if (PageDirty(page)) {
dfc8d636 745 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 746 goto keep_locked;
4dd4b920 747 if (!may_enter_fs)
1da177e4 748 goto keep_locked;
52a8363e 749 if (!sc->may_writepage)
1da177e4
LT
750 goto keep_locked;
751
752 /* Page is dirty, try to write it out here */
c661b078 753 switch (pageout(page, mapping, sync_writeback)) {
1da177e4
LT
754 case PAGE_KEEP:
755 goto keep_locked;
756 case PAGE_ACTIVATE:
757 goto activate_locked;
758 case PAGE_SUCCESS:
4dd4b920 759 if (PageWriteback(page) || PageDirty(page))
1da177e4
LT
760 goto keep;
761 /*
762 * A synchronous write - probably a ramdisk. Go
763 * ahead and try to reclaim the page.
764 */
529ae9aa 765 if (!trylock_page(page))
1da177e4
LT
766 goto keep;
767 if (PageDirty(page) || PageWriteback(page))
768 goto keep_locked;
769 mapping = page_mapping(page);
770 case PAGE_CLEAN:
771 ; /* try to free the page below */
772 }
773 }
774
775 /*
776 * If the page has buffers, try to free the buffer mappings
777 * associated with this page. If we succeed we try to free
778 * the page as well.
779 *
780 * We do this even if the page is PageDirty().
781 * try_to_release_page() does not perform I/O, but it is
782 * possible for a page to have PageDirty set, but it is actually
783 * clean (all its buffers are clean). This happens if the
784 * buffers were written out directly, with submit_bh(). ext3
894bc310 785 * will do this, as well as the blockdev mapping.
1da177e4
LT
786 * try_to_release_page() will discover that cleanness and will
787 * drop the buffers and mark the page clean - it can be freed.
788 *
789 * Rarely, pages can have buffers and no ->mapping. These are
790 * the pages which were not successfully invalidated in
791 * truncate_complete_page(). We try to drop those buffers here
792 * and if that worked, and the page is no longer mapped into
793 * process address space (page_count == 1) it can be freed.
794 * Otherwise, leave the page on the LRU so it is swappable.
795 */
266cf658 796 if (page_has_private(page)) {
1da177e4
LT
797 if (!try_to_release_page(page, sc->gfp_mask))
798 goto activate_locked;
e286781d
NP
799 if (!mapping && page_count(page) == 1) {
800 unlock_page(page);
801 if (put_page_testzero(page))
802 goto free_it;
803 else {
804 /*
805 * rare race with speculative reference.
806 * the speculative reference will free
807 * this page shortly, so we may
808 * increment nr_reclaimed here (and
809 * leave it off the LRU).
810 */
811 nr_reclaimed++;
812 continue;
813 }
814 }
1da177e4
LT
815 }
816
e286781d 817 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 818 goto keep_locked;
1da177e4 819
a978d6f5
NP
820 /*
821 * At this point, we have no other references and there is
822 * no way to pick any more up (removed from LRU, removed
823 * from pagecache). Can use non-atomic bitops now (and
824 * we obviously don't have to worry about waking up a process
825 * waiting on the page lock, because there are no references.
826 */
827 __clear_page_locked(page);
e286781d 828free_it:
05ff5137 829 nr_reclaimed++;
abe4c3b5
MG
830
831 /*
832 * Is there need to periodically free_page_list? It would
833 * appear not as the counts should be low
834 */
835 list_add(&page->lru, &free_pages);
1da177e4
LT
836 continue;
837
b291f000 838cull_mlocked:
63d6c5ad
HD
839 if (PageSwapCache(page))
840 try_to_free_swap(page);
b291f000
NP
841 unlock_page(page);
842 putback_lru_page(page);
843 continue;
844
1da177e4 845activate_locked:
68a22394
RR
846 /* Not a candidate for swapping, so reclaim swap space. */
847 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 848 try_to_free_swap(page);
894bc310 849 VM_BUG_ON(PageActive(page));
1da177e4
LT
850 SetPageActive(page);
851 pgactivate++;
852keep_locked:
853 unlock_page(page);
854keep:
855 list_add(&page->lru, &ret_pages);
b291f000 856 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 857 }
abe4c3b5
MG
858
859 free_page_list(&free_pages);
860
1da177e4 861 list_splice(&ret_pages, page_list);
f8891e5e 862 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 863 return nr_reclaimed;
1da177e4
LT
864}
865
5ad333eb
AW
866/*
867 * Attempt to remove the specified page from its LRU. Only take this page
868 * if it is of the appropriate PageActive status. Pages which are being
869 * freed elsewhere are also ignored.
870 *
871 * page: page to consider
872 * mode: one of the LRU isolation modes defined above
873 *
874 * returns 0 on success, -ve errno on failure.
875 */
4f98a2fe 876int __isolate_lru_page(struct page *page, int mode, int file)
5ad333eb
AW
877{
878 int ret = -EINVAL;
879
880 /* Only take pages on the LRU. */
881 if (!PageLRU(page))
882 return ret;
883
884 /*
885 * When checking the active state, we need to be sure we are
886 * dealing with comparible boolean values. Take the logical not
887 * of each.
888 */
889 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
890 return ret;
891
6c0b1351 892 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
4f98a2fe
RR
893 return ret;
894
894bc310
LS
895 /*
896 * When this function is being called for lumpy reclaim, we
897 * initially look into all LRU pages, active, inactive and
898 * unevictable; only give shrink_page_list evictable pages.
899 */
900 if (PageUnevictable(page))
901 return ret;
902
5ad333eb 903 ret = -EBUSY;
08e552c6 904
5ad333eb
AW
905 if (likely(get_page_unless_zero(page))) {
906 /*
907 * Be careful not to clear PageLRU until after we're
908 * sure the page is not being freed elsewhere -- the
909 * page release code relies on it.
910 */
911 ClearPageLRU(page);
912 ret = 0;
913 }
914
915 return ret;
916}
917
1da177e4
LT
918/*
919 * zone->lru_lock is heavily contended. Some of the functions that
920 * shrink the lists perform better by taking out a batch of pages
921 * and working on them outside the LRU lock.
922 *
923 * For pagecache intensive workloads, this function is the hottest
924 * spot in the kernel (apart from copy_*_user functions).
925 *
926 * Appropriate locks must be held before calling this function.
927 *
928 * @nr_to_scan: The number of pages to look through on the list.
929 * @src: The LRU list to pull pages off.
930 * @dst: The temp list to put pages on to.
931 * @scanned: The number of pages that were scanned.
5ad333eb
AW
932 * @order: The caller's attempted allocation order
933 * @mode: One of the LRU isolation modes
4f98a2fe 934 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
935 *
936 * returns how many pages were moved onto *@dst.
937 */
69e05944
AM
938static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
939 struct list_head *src, struct list_head *dst,
4f98a2fe 940 unsigned long *scanned, int order, int mode, int file)
1da177e4 941{
69e05944 942 unsigned long nr_taken = 0;
a8a94d15
MG
943 unsigned long nr_lumpy_taken = 0;
944 unsigned long nr_lumpy_dirty = 0;
945 unsigned long nr_lumpy_failed = 0;
c9b02d97 946 unsigned long scan;
1da177e4 947
c9b02d97 948 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
949 struct page *page;
950 unsigned long pfn;
951 unsigned long end_pfn;
952 unsigned long page_pfn;
953 int zone_id;
954
1da177e4
LT
955 page = lru_to_page(src);
956 prefetchw_prev_lru_page(page, src, flags);
957
725d704e 958 VM_BUG_ON(!PageLRU(page));
8d438f96 959
4f98a2fe 960 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
961 case 0:
962 list_move(&page->lru, dst);
2ffebca6 963 mem_cgroup_del_lru(page);
7c8ee9a8 964 nr_taken++;
5ad333eb
AW
965 break;
966
967 case -EBUSY:
968 /* else it is being freed elsewhere */
969 list_move(&page->lru, src);
2ffebca6 970 mem_cgroup_rotate_lru_list(page, page_lru(page));
5ad333eb 971 continue;
46453a6e 972
5ad333eb
AW
973 default:
974 BUG();
975 }
976
977 if (!order)
978 continue;
979
980 /*
981 * Attempt to take all pages in the order aligned region
982 * surrounding the tag page. Only take those pages of
983 * the same active state as that tag page. We may safely
984 * round the target page pfn down to the requested order
985 * as the mem_map is guarenteed valid out to MAX_ORDER,
986 * where that page is in a different zone we will detect
987 * it from its zone id and abort this block scan.
988 */
989 zone_id = page_zone_id(page);
990 page_pfn = page_to_pfn(page);
991 pfn = page_pfn & ~((1 << order) - 1);
992 end_pfn = pfn + (1 << order);
993 for (; pfn < end_pfn; pfn++) {
994 struct page *cursor_page;
995
996 /* The target page is in the block, ignore it. */
997 if (unlikely(pfn == page_pfn))
998 continue;
999
1000 /* Avoid holes within the zone. */
1001 if (unlikely(!pfn_valid_within(pfn)))
1002 break;
1003
1004 cursor_page = pfn_to_page(pfn);
4f98a2fe 1005
5ad333eb
AW
1006 /* Check that we have not crossed a zone boundary. */
1007 if (unlikely(page_zone_id(cursor_page) != zone_id))
1008 continue;
de2e7567
MK
1009
1010 /*
1011 * If we don't have enough swap space, reclaiming of
1012 * anon page which don't already have a swap slot is
1013 * pointless.
1014 */
1015 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1016 !PageSwapCache(cursor_page))
1017 continue;
1018
ee993b13 1019 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
5ad333eb 1020 list_move(&cursor_page->lru, dst);
cb4cbcf6 1021 mem_cgroup_del_lru(cursor_page);
5ad333eb 1022 nr_taken++;
a8a94d15
MG
1023 nr_lumpy_taken++;
1024 if (PageDirty(cursor_page))
1025 nr_lumpy_dirty++;
5ad333eb 1026 scan++;
a8a94d15
MG
1027 } else {
1028 if (mode == ISOLATE_BOTH &&
1029 page_count(cursor_page))
1030 nr_lumpy_failed++;
5ad333eb
AW
1031 }
1032 }
1da177e4
LT
1033 }
1034
1035 *scanned = scan;
a8a94d15
MG
1036
1037 trace_mm_vmscan_lru_isolate(order,
1038 nr_to_scan, scan,
1039 nr_taken,
1040 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1041 mode);
1da177e4
LT
1042 return nr_taken;
1043}
1044
66e1707b
BS
1045static unsigned long isolate_pages_global(unsigned long nr,
1046 struct list_head *dst,
1047 unsigned long *scanned, int order,
1048 int mode, struct zone *z,
4f98a2fe 1049 int active, int file)
66e1707b 1050{
4f98a2fe 1051 int lru = LRU_BASE;
66e1707b 1052 if (active)
4f98a2fe
RR
1053 lru += LRU_ACTIVE;
1054 if (file)
1055 lru += LRU_FILE;
1056 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
b7c46d15 1057 mode, file);
66e1707b
BS
1058}
1059
5ad333eb
AW
1060/*
1061 * clear_active_flags() is a helper for shrink_active_list(), clearing
1062 * any active bits from the pages in the list.
1063 */
4f98a2fe
RR
1064static unsigned long clear_active_flags(struct list_head *page_list,
1065 unsigned int *count)
5ad333eb
AW
1066{
1067 int nr_active = 0;
4f98a2fe 1068 int lru;
5ad333eb
AW
1069 struct page *page;
1070
4f98a2fe 1071 list_for_each_entry(page, page_list, lru) {
401a8e1c 1072 lru = page_lru_base_type(page);
5ad333eb 1073 if (PageActive(page)) {
4f98a2fe 1074 lru += LRU_ACTIVE;
5ad333eb
AW
1075 ClearPageActive(page);
1076 nr_active++;
1077 }
1489fa14
MG
1078 if (count)
1079 count[lru]++;
4f98a2fe 1080 }
5ad333eb
AW
1081
1082 return nr_active;
1083}
1084
62695a84
NP
1085/**
1086 * isolate_lru_page - tries to isolate a page from its LRU list
1087 * @page: page to isolate from its LRU list
1088 *
1089 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1090 * vmstat statistic corresponding to whatever LRU list the page was on.
1091 *
1092 * Returns 0 if the page was removed from an LRU list.
1093 * Returns -EBUSY if the page was not on an LRU list.
1094 *
1095 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1096 * the active list, it will have PageActive set. If it was found on
1097 * the unevictable list, it will have the PageUnevictable bit set. That flag
1098 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1099 *
1100 * The vmstat statistic corresponding to the list on which the page was
1101 * found will be decremented.
1102 *
1103 * Restrictions:
1104 * (1) Must be called with an elevated refcount on the page. This is a
1105 * fundamentnal difference from isolate_lru_pages (which is called
1106 * without a stable reference).
1107 * (2) the lru_lock must not be held.
1108 * (3) interrupts must be enabled.
1109 */
1110int isolate_lru_page(struct page *page)
1111{
1112 int ret = -EBUSY;
1113
1114 if (PageLRU(page)) {
1115 struct zone *zone = page_zone(page);
1116
1117 spin_lock_irq(&zone->lru_lock);
1118 if (PageLRU(page) && get_page_unless_zero(page)) {
894bc310 1119 int lru = page_lru(page);
62695a84
NP
1120 ret = 0;
1121 ClearPageLRU(page);
4f98a2fe 1122
4f98a2fe 1123 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1124 }
1125 spin_unlock_irq(&zone->lru_lock);
1126 }
1127 return ret;
1128}
1129
35cd7815
RR
1130/*
1131 * Are there way too many processes in the direct reclaim path already?
1132 */
1133static int too_many_isolated(struct zone *zone, int file,
1134 struct scan_control *sc)
1135{
1136 unsigned long inactive, isolated;
1137
1138 if (current_is_kswapd())
1139 return 0;
1140
1141 if (!scanning_global_lru(sc))
1142 return 0;
1143
1144 if (file) {
1145 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1146 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1147 } else {
1148 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1149 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1150 }
1151
1152 return isolated > inactive;
1153}
1154
66635629
MG
1155/*
1156 * TODO: Try merging with migrations version of putback_lru_pages
1157 */
1158static noinline_for_stack void
1489fa14 1159putback_lru_pages(struct zone *zone, struct scan_control *sc,
66635629
MG
1160 unsigned long nr_anon, unsigned long nr_file,
1161 struct list_head *page_list)
1162{
1163 struct page *page;
1164 struct pagevec pvec;
1489fa14 1165 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
66635629
MG
1166
1167 pagevec_init(&pvec, 1);
1168
1169 /*
1170 * Put back any unfreeable pages.
1171 */
1172 spin_lock(&zone->lru_lock);
1173 while (!list_empty(page_list)) {
1174 int lru;
1175 page = lru_to_page(page_list);
1176 VM_BUG_ON(PageLRU(page));
1177 list_del(&page->lru);
1178 if (unlikely(!page_evictable(page, NULL))) {
1179 spin_unlock_irq(&zone->lru_lock);
1180 putback_lru_page(page);
1181 spin_lock_irq(&zone->lru_lock);
1182 continue;
1183 }
1184 SetPageLRU(page);
1185 lru = page_lru(page);
1186 add_page_to_lru_list(zone, page, lru);
1187 if (is_active_lru(lru)) {
1188 int file = is_file_lru(lru);
1189 reclaim_stat->recent_rotated[file]++;
1190 }
1191 if (!pagevec_add(&pvec, page)) {
1192 spin_unlock_irq(&zone->lru_lock);
1193 __pagevec_release(&pvec);
1194 spin_lock_irq(&zone->lru_lock);
1195 }
1196 }
1197 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1198 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1199
1200 spin_unlock_irq(&zone->lru_lock);
1201 pagevec_release(&pvec);
1202}
1203
1489fa14
MG
1204static noinline_for_stack void update_isolated_counts(struct zone *zone,
1205 struct scan_control *sc,
1206 unsigned long *nr_anon,
1207 unsigned long *nr_file,
1208 struct list_head *isolated_list)
1209{
1210 unsigned long nr_active;
1211 unsigned int count[NR_LRU_LISTS] = { 0, };
1212 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1213
1214 nr_active = clear_active_flags(isolated_list, count);
1215 __count_vm_events(PGDEACTIVATE, nr_active);
1216
1217 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1218 -count[LRU_ACTIVE_FILE]);
1219 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1220 -count[LRU_INACTIVE_FILE]);
1221 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1222 -count[LRU_ACTIVE_ANON]);
1223 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1224 -count[LRU_INACTIVE_ANON]);
1225
1226 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1227 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1228 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1229 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1230
1231 reclaim_stat->recent_scanned[0] += *nr_anon;
1232 reclaim_stat->recent_scanned[1] += *nr_file;
1233}
1234
e31f3698
WF
1235/*
1236 * Returns true if the caller should wait to clean dirty/writeback pages.
1237 *
1238 * If we are direct reclaiming for contiguous pages and we do not reclaim
1239 * everything in the list, try again and wait for writeback IO to complete.
1240 * This will stall high-order allocations noticeably. Only do that when really
1241 * need to free the pages under high memory pressure.
1242 */
1243static inline bool should_reclaim_stall(unsigned long nr_taken,
1244 unsigned long nr_freed,
1245 int priority,
1246 struct scan_control *sc)
1247{
1248 int lumpy_stall_priority;
1249
1250 /* kswapd should not stall on sync IO */
1251 if (current_is_kswapd())
1252 return false;
1253
1254 /* Only stall on lumpy reclaim */
1255 if (!sc->lumpy_reclaim_mode)
1256 return false;
1257
1258 /* If we have relaimed everything on the isolated list, no stall */
1259 if (nr_freed == nr_taken)
1260 return false;
1261
1262 /*
1263 * For high-order allocations, there are two stall thresholds.
1264 * High-cost allocations stall immediately where as lower
1265 * order allocations such as stacks require the scanning
1266 * priority to be much higher before stalling.
1267 */
1268 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1269 lumpy_stall_priority = DEF_PRIORITY;
1270 else
1271 lumpy_stall_priority = DEF_PRIORITY / 3;
1272
1273 return priority <= lumpy_stall_priority;
1274}
1275
1da177e4 1276/*
1742f19f
AM
1277 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1278 * of reclaimed pages
1da177e4 1279 */
66635629
MG
1280static noinline_for_stack unsigned long
1281shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1282 struct scan_control *sc, int priority, int file)
1da177e4
LT
1283{
1284 LIST_HEAD(page_list);
e247dbce 1285 unsigned long nr_scanned;
05ff5137 1286 unsigned long nr_reclaimed = 0;
e247dbce
KM
1287 unsigned long nr_taken;
1288 unsigned long nr_active;
e247dbce
KM
1289 unsigned long nr_anon;
1290 unsigned long nr_file;
78dc583d 1291
35cd7815 1292 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1293 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1294
1295 /* We are about to die and free our memory. Return now. */
1296 if (fatal_signal_pending(current))
1297 return SWAP_CLUSTER_MAX;
1298 }
1299
1da177e4 1300
1da177e4
LT
1301 lru_add_drain();
1302 spin_lock_irq(&zone->lru_lock);
b35ea17b 1303
e247dbce
KM
1304 if (scanning_global_lru(sc)) {
1305 nr_taken = isolate_pages_global(nr_to_scan,
1306 &page_list, &nr_scanned, sc->order,
1307 sc->lumpy_reclaim_mode ?
1308 ISOLATE_BOTH : ISOLATE_INACTIVE,
1309 zone, 0, file);
1310 zone->pages_scanned += nr_scanned;
1311 if (current_is_kswapd())
1312 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1313 nr_scanned);
1314 else
1315 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1316 nr_scanned);
1317 } else {
1318 nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1319 &page_list, &nr_scanned, sc->order,
1320 sc->lumpy_reclaim_mode ?
1321 ISOLATE_BOTH : ISOLATE_INACTIVE,
1322 zone, sc->mem_cgroup,
1323 0, file);
1324 /*
1325 * mem_cgroup_isolate_pages() keeps track of
1326 * scanned pages on its own.
1327 */
1328 }
b35ea17b 1329
66635629
MG
1330 if (nr_taken == 0) {
1331 spin_unlock_irq(&zone->lru_lock);
1332 return 0;
1333 }
5ad333eb 1334
1489fa14 1335 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1da177e4 1336
e247dbce 1337 spin_unlock_irq(&zone->lru_lock);
c661b078 1338
e247dbce 1339 nr_reclaimed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
c661b078 1340
e31f3698
WF
1341 /* Check if we should syncronously wait for writeback */
1342 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
e247dbce 1343 congestion_wait(BLK_RW_ASYNC, HZ/10);
c661b078 1344
e247dbce
KM
1345 /*
1346 * The attempt at page out may have made some
1347 * of the pages active, mark them inactive again.
1348 */
1489fa14 1349 nr_active = clear_active_flags(&page_list, NULL);
e247dbce 1350 count_vm_events(PGDEACTIVATE, nr_active);
c661b078 1351
e247dbce
KM
1352 nr_reclaimed += shrink_page_list(&page_list, sc, PAGEOUT_IO_SYNC);
1353 }
b35ea17b 1354
e247dbce
KM
1355 local_irq_disable();
1356 if (current_is_kswapd())
1357 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1358 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
a74609fa 1359
1489fa14 1360 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
05ff5137 1361 return nr_reclaimed;
1da177e4
LT
1362}
1363
1364/*
1365 * This moves pages from the active list to the inactive list.
1366 *
1367 * We move them the other way if the page is referenced by one or more
1368 * processes, from rmap.
1369 *
1370 * If the pages are mostly unmapped, the processing is fast and it is
1371 * appropriate to hold zone->lru_lock across the whole operation. But if
1372 * the pages are mapped, the processing is slow (page_referenced()) so we
1373 * should drop zone->lru_lock around each page. It's impossible to balance
1374 * this, so instead we remove the pages from the LRU while processing them.
1375 * It is safe to rely on PG_active against the non-LRU pages in here because
1376 * nobody will play with that bit on a non-LRU page.
1377 *
1378 * The downside is that we have to touch page->_count against each page.
1379 * But we had to alter page->flags anyway.
1380 */
1cfb419b 1381
3eb4140f
WF
1382static void move_active_pages_to_lru(struct zone *zone,
1383 struct list_head *list,
1384 enum lru_list lru)
1385{
1386 unsigned long pgmoved = 0;
1387 struct pagevec pvec;
1388 struct page *page;
1389
1390 pagevec_init(&pvec, 1);
1391
1392 while (!list_empty(list)) {
1393 page = lru_to_page(list);
3eb4140f
WF
1394
1395 VM_BUG_ON(PageLRU(page));
1396 SetPageLRU(page);
1397
3eb4140f
WF
1398 list_move(&page->lru, &zone->lru[lru].list);
1399 mem_cgroup_add_lru_list(page, lru);
1400 pgmoved++;
1401
1402 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1403 spin_unlock_irq(&zone->lru_lock);
1404 if (buffer_heads_over_limit)
1405 pagevec_strip(&pvec);
1406 __pagevec_release(&pvec);
1407 spin_lock_irq(&zone->lru_lock);
1408 }
1409 }
1410 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1411 if (!is_active_lru(lru))
1412 __count_vm_events(PGDEACTIVATE, pgmoved);
1413}
1cfb419b 1414
1742f19f 1415static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1416 struct scan_control *sc, int priority, int file)
1da177e4 1417{
44c241f1 1418 unsigned long nr_taken;
69e05944 1419 unsigned long pgscanned;
6fe6b7e3 1420 unsigned long vm_flags;
1da177e4 1421 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1422 LIST_HEAD(l_active);
b69408e8 1423 LIST_HEAD(l_inactive);
1da177e4 1424 struct page *page;
6e901571 1425 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
44c241f1 1426 unsigned long nr_rotated = 0;
1da177e4
LT
1427
1428 lru_add_drain();
1429 spin_lock_irq(&zone->lru_lock);
e72e2bd6 1430 if (scanning_global_lru(sc)) {
8b25c6d2
JW
1431 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1432 &pgscanned, sc->order,
1433 ISOLATE_ACTIVE, zone,
1434 1, file);
1cfb419b 1435 zone->pages_scanned += pgscanned;
8b25c6d2
JW
1436 } else {
1437 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1438 &pgscanned, sc->order,
1439 ISOLATE_ACTIVE, zone,
1440 sc->mem_cgroup, 1, file);
1441 /*
1442 * mem_cgroup_isolate_pages() keeps track of
1443 * scanned pages on its own.
1444 */
4f98a2fe 1445 }
8b25c6d2 1446
b7c46d15 1447 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1448
3eb4140f 1449 __count_zone_vm_events(PGREFILL, zone, pgscanned);
4f98a2fe 1450 if (file)
44c241f1 1451 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
4f98a2fe 1452 else
44c241f1 1453 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
a731286d 1454 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1455 spin_unlock_irq(&zone->lru_lock);
1456
1da177e4
LT
1457 while (!list_empty(&l_hold)) {
1458 cond_resched();
1459 page = lru_to_page(&l_hold);
1460 list_del(&page->lru);
7e9cd484 1461
894bc310
LS
1462 if (unlikely(!page_evictable(page, NULL))) {
1463 putback_lru_page(page);
1464 continue;
1465 }
1466
64574746 1467 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
44c241f1 1468 nr_rotated++;
8cab4754
WF
1469 /*
1470 * Identify referenced, file-backed active pages and
1471 * give them one more trip around the active list. So
1472 * that executable code get better chances to stay in
1473 * memory under moderate memory pressure. Anon pages
1474 * are not likely to be evicted by use-once streaming
1475 * IO, plus JVM can create lots of anon VM_EXEC pages,
1476 * so we ignore them here.
1477 */
41e20983 1478 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1479 list_add(&page->lru, &l_active);
1480 continue;
1481 }
1482 }
7e9cd484 1483
5205e56e 1484 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1485 list_add(&page->lru, &l_inactive);
1486 }
1487
b555749a 1488 /*
8cab4754 1489 * Move pages back to the lru list.
b555749a 1490 */
2a1dc509 1491 spin_lock_irq(&zone->lru_lock);
556adecb 1492 /*
8cab4754
WF
1493 * Count referenced pages from currently used mappings as rotated,
1494 * even though only some of them are actually re-activated. This
1495 * helps balance scan pressure between file and anonymous pages in
1496 * get_scan_ratio.
7e9cd484 1497 */
b7c46d15 1498 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1499
3eb4140f
WF
1500 move_active_pages_to_lru(zone, &l_active,
1501 LRU_ACTIVE + file * LRU_FILE);
1502 move_active_pages_to_lru(zone, &l_inactive,
1503 LRU_BASE + file * LRU_FILE);
a731286d 1504 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1505 spin_unlock_irq(&zone->lru_lock);
1da177e4
LT
1506}
1507
74e3f3c3 1508#ifdef CONFIG_SWAP
14797e23 1509static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1510{
1511 unsigned long active, inactive;
1512
1513 active = zone_page_state(zone, NR_ACTIVE_ANON);
1514 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1515
1516 if (inactive * zone->inactive_ratio < active)
1517 return 1;
1518
1519 return 0;
1520}
1521
14797e23
KM
1522/**
1523 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1524 * @zone: zone to check
1525 * @sc: scan control of this context
1526 *
1527 * Returns true if the zone does not have enough inactive anon pages,
1528 * meaning some active anon pages need to be deactivated.
1529 */
1530static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1531{
1532 int low;
1533
74e3f3c3
MK
1534 /*
1535 * If we don't have swap space, anonymous page deactivation
1536 * is pointless.
1537 */
1538 if (!total_swap_pages)
1539 return 0;
1540
e72e2bd6 1541 if (scanning_global_lru(sc))
14797e23
KM
1542 low = inactive_anon_is_low_global(zone);
1543 else
c772be93 1544 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
14797e23
KM
1545 return low;
1546}
74e3f3c3
MK
1547#else
1548static inline int inactive_anon_is_low(struct zone *zone,
1549 struct scan_control *sc)
1550{
1551 return 0;
1552}
1553#endif
14797e23 1554
56e49d21
RR
1555static int inactive_file_is_low_global(struct zone *zone)
1556{
1557 unsigned long active, inactive;
1558
1559 active = zone_page_state(zone, NR_ACTIVE_FILE);
1560 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1561
1562 return (active > inactive);
1563}
1564
1565/**
1566 * inactive_file_is_low - check if file pages need to be deactivated
1567 * @zone: zone to check
1568 * @sc: scan control of this context
1569 *
1570 * When the system is doing streaming IO, memory pressure here
1571 * ensures that active file pages get deactivated, until more
1572 * than half of the file pages are on the inactive list.
1573 *
1574 * Once we get to that situation, protect the system's working
1575 * set from being evicted by disabling active file page aging.
1576 *
1577 * This uses a different ratio than the anonymous pages, because
1578 * the page cache uses a use-once replacement algorithm.
1579 */
1580static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1581{
1582 int low;
1583
1584 if (scanning_global_lru(sc))
1585 low = inactive_file_is_low_global(zone);
1586 else
1587 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1588 return low;
1589}
1590
b39415b2
RR
1591static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1592 int file)
1593{
1594 if (file)
1595 return inactive_file_is_low(zone, sc);
1596 else
1597 return inactive_anon_is_low(zone, sc);
1598}
1599
4f98a2fe 1600static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1601 struct zone *zone, struct scan_control *sc, int priority)
1602{
4f98a2fe
RR
1603 int file = is_file_lru(lru);
1604
b39415b2
RR
1605 if (is_active_lru(lru)) {
1606 if (inactive_list_is_low(zone, sc, file))
1607 shrink_active_list(nr_to_scan, zone, sc, priority, file);
556adecb
RR
1608 return 0;
1609 }
1610
33c120ed 1611 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1612}
1613
76a33fc3
SL
1614/*
1615 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1616 * until we collected @swap_cluster_max pages to scan.
1617 */
1618static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1619 unsigned long *nr_saved_scan)
1620{
1621 unsigned long nr;
1622
1623 *nr_saved_scan += nr_to_scan;
1624 nr = *nr_saved_scan;
1625
1626 if (nr >= SWAP_CLUSTER_MAX)
1627 *nr_saved_scan = 0;
1628 else
1629 nr = 0;
1630
1631 return nr;
1632}
1633
4f98a2fe
RR
1634/*
1635 * Determine how aggressively the anon and file LRU lists should be
1636 * scanned. The relative value of each set of LRU lists is determined
1637 * by looking at the fraction of the pages scanned we did rotate back
1638 * onto the active list instead of evict.
1639 *
76a33fc3 1640 * nr[0] = anon pages to scan; nr[1] = file pages to scan
4f98a2fe 1641 */
76a33fc3
SL
1642static void get_scan_count(struct zone *zone, struct scan_control *sc,
1643 unsigned long *nr, int priority)
4f98a2fe
RR
1644{
1645 unsigned long anon, file, free;
1646 unsigned long anon_prio, file_prio;
1647 unsigned long ap, fp;
6e901571 1648 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
76a33fc3
SL
1649 u64 fraction[2], denominator;
1650 enum lru_list l;
1651 int noswap = 0;
1652
1653 /* If we have no swap space, do not bother scanning anon pages. */
1654 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1655 noswap = 1;
1656 fraction[0] = 0;
1657 fraction[1] = 1;
1658 denominator = 1;
1659 goto out;
1660 }
4f98a2fe 1661
0b217676
VL
1662 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1663 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1664 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1665 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
b962716b 1666
e72e2bd6 1667 if (scanning_global_lru(sc)) {
eeee9a8c
KM
1668 free = zone_page_state(zone, NR_FREE_PAGES);
1669 /* If we have very few page cache pages,
1670 force-scan anon pages. */
41858966 1671 if (unlikely(file + free <= high_wmark_pages(zone))) {
76a33fc3
SL
1672 fraction[0] = 1;
1673 fraction[1] = 0;
1674 denominator = 1;
1675 goto out;
eeee9a8c 1676 }
4f98a2fe
RR
1677 }
1678
58c37f6e
KM
1679 /*
1680 * With swappiness at 100, anonymous and file have the same priority.
1681 * This scanning priority is essentially the inverse of IO cost.
1682 */
1683 anon_prio = sc->swappiness;
1684 file_prio = 200 - sc->swappiness;
1685
4f98a2fe
RR
1686 /*
1687 * OK, so we have swap space and a fair amount of page cache
1688 * pages. We use the recently rotated / recently scanned
1689 * ratios to determine how valuable each cache is.
1690 *
1691 * Because workloads change over time (and to avoid overflow)
1692 * we keep these statistics as a floating average, which ends
1693 * up weighing recent references more than old ones.
1694 *
1695 * anon in [0], file in [1]
1696 */
58c37f6e 1697 spin_lock_irq(&zone->lru_lock);
6e901571 1698 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1699 reclaim_stat->recent_scanned[0] /= 2;
1700 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1701 }
1702
6e901571 1703 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1704 reclaim_stat->recent_scanned[1] /= 2;
1705 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1706 }
1707
4f98a2fe 1708 /*
00d8089c
RR
1709 * The amount of pressure on anon vs file pages is inversely
1710 * proportional to the fraction of recently scanned pages on
1711 * each list that were recently referenced and in active use.
4f98a2fe 1712 */
6e901571
KM
1713 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1714 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1715
6e901571
KM
1716 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1717 fp /= reclaim_stat->recent_rotated[1] + 1;
58c37f6e 1718 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1719
76a33fc3
SL
1720 fraction[0] = ap;
1721 fraction[1] = fp;
1722 denominator = ap + fp + 1;
1723out:
1724 for_each_evictable_lru(l) {
1725 int file = is_file_lru(l);
1726 unsigned long scan;
6e08a369 1727
76a33fc3
SL
1728 scan = zone_nr_lru_pages(zone, sc, l);
1729 if (priority || noswap) {
1730 scan >>= priority;
1731 scan = div64_u64(scan * fraction[file], denominator);
1732 }
1733 nr[l] = nr_scan_try_batch(scan,
1734 &reclaim_stat->nr_saved_scan[l]);
1735 }
6e08a369 1736}
4f98a2fe 1737
5f53e762
KM
1738static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc)
1739{
1740 /*
1741 * If we need a large contiguous chunk of memory, or have
1742 * trouble getting a small set of contiguous pages, we
1743 * will reclaim both active and inactive pages.
1744 */
1745 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1746 sc->lumpy_reclaim_mode = 1;
1747 else if (sc->order && priority < DEF_PRIORITY - 2)
1748 sc->lumpy_reclaim_mode = 1;
1749 else
1750 sc->lumpy_reclaim_mode = 0;
1751}
1752
1da177e4
LT
1753/*
1754 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1755 */
a79311c1 1756static void shrink_zone(int priority, struct zone *zone,
05ff5137 1757 struct scan_control *sc)
1da177e4 1758{
b69408e8 1759 unsigned long nr[NR_LRU_LISTS];
8695949a 1760 unsigned long nr_to_scan;
b69408e8 1761 enum lru_list l;
01dbe5c9 1762 unsigned long nr_reclaimed = sc->nr_reclaimed;
22fba335 1763 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
e0f79b8f 1764
76a33fc3 1765 get_scan_count(zone, sc, nr, priority);
1da177e4 1766
5f53e762
KM
1767 set_lumpy_reclaim_mode(priority, sc);
1768
556adecb
RR
1769 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1770 nr[LRU_INACTIVE_FILE]) {
894bc310 1771 for_each_evictable_lru(l) {
b69408e8 1772 if (nr[l]) {
ece74b2e
KM
1773 nr_to_scan = min_t(unsigned long,
1774 nr[l], SWAP_CLUSTER_MAX);
b69408e8 1775 nr[l] -= nr_to_scan;
1da177e4 1776
01dbe5c9
KM
1777 nr_reclaimed += shrink_list(l, nr_to_scan,
1778 zone, sc, priority);
b69408e8 1779 }
1da177e4 1780 }
a79311c1
RR
1781 /*
1782 * On large memory systems, scan >> priority can become
1783 * really large. This is fine for the starting priority;
1784 * we want to put equal scanning pressure on each zone.
1785 * However, if the VM has a harder time of freeing pages,
1786 * with multiple processes reclaiming pages, the total
1787 * freeing target can get unreasonably large.
1788 */
338fde90 1789 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
a79311c1 1790 break;
1da177e4
LT
1791 }
1792
01dbe5c9
KM
1793 sc->nr_reclaimed = nr_reclaimed;
1794
556adecb
RR
1795 /*
1796 * Even if we did not try to evict anon pages at all, we want to
1797 * rebalance the anon lru active/inactive ratio.
1798 */
74e3f3c3 1799 if (inactive_anon_is_low(zone, sc))
556adecb
RR
1800 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1801
232ea4d6 1802 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1803}
1804
1805/*
1806 * This is the direct reclaim path, for page-allocating processes. We only
1807 * try to reclaim pages from zones which will satisfy the caller's allocation
1808 * request.
1809 *
41858966
MG
1810 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1811 * Because:
1da177e4
LT
1812 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1813 * allocation or
41858966
MG
1814 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1815 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1816 * zone defense algorithm.
1da177e4 1817 *
1da177e4
LT
1818 * If a zone is deemed to be full of pinned pages then just give it a light
1819 * scan then give up on it.
1820 */
d1908362 1821static void shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 1822 struct scan_control *sc)
1da177e4 1823{
dd1a239f 1824 struct zoneref *z;
54a6eb5c 1825 struct zone *zone;
1cfb419b 1826
d4debc66
MG
1827 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1828 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 1829 if (!populated_zone(zone))
1da177e4 1830 continue;
1cfb419b
KH
1831 /*
1832 * Take care memory controller reclaiming has small influence
1833 * to global LRU.
1834 */
e72e2bd6 1835 if (scanning_global_lru(sc)) {
1cfb419b
KH
1836 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1837 continue;
93e4a89a 1838 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1cfb419b 1839 continue; /* Let kswapd poll it */
1cfb419b 1840 }
408d8544 1841
a79311c1 1842 shrink_zone(priority, zone, sc);
1da177e4 1843 }
d1908362
MK
1844}
1845
1846static bool zone_reclaimable(struct zone *zone)
1847{
1848 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1849}
1850
1851/*
1852 * As hibernation is going on, kswapd is freezed so that it can't mark
1853 * the zone into all_unreclaimable. It can't handle OOM during hibernation.
1854 * So let's check zone's unreclaimable in direct reclaim as well as kswapd.
1855 */
1856static bool all_unreclaimable(struct zonelist *zonelist,
1857 struct scan_control *sc)
1858{
1859 struct zoneref *z;
1860 struct zone *zone;
1861 bool all_unreclaimable = true;
1862
1863 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1864 gfp_zone(sc->gfp_mask), sc->nodemask) {
1865 if (!populated_zone(zone))
1866 continue;
1867 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1868 continue;
1869 if (zone_reclaimable(zone)) {
1870 all_unreclaimable = false;
1871 break;
1872 }
1873 }
1874
bb21c7ce 1875 return all_unreclaimable;
1da177e4 1876}
4f98a2fe 1877
1da177e4
LT
1878/*
1879 * This is the main entry point to direct page reclaim.
1880 *
1881 * If a full scan of the inactive list fails to free enough memory then we
1882 * are "out of memory" and something needs to be killed.
1883 *
1884 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1885 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
1886 * caller can't do much about. We kick the writeback threads and take explicit
1887 * naps in the hope that some of these pages can be written. But if the
1888 * allocating task holds filesystem locks which prevent writeout this might not
1889 * work, and the allocation attempt will fail.
a41f24ea
NA
1890 *
1891 * returns: 0, if no pages reclaimed
1892 * else, the number of pages reclaimed
1da177e4 1893 */
dac1d27b 1894static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
dd1a239f 1895 struct scan_control *sc)
1da177e4
LT
1896{
1897 int priority;
69e05944 1898 unsigned long total_scanned = 0;
1da177e4 1899 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 1900 struct zoneref *z;
54a6eb5c 1901 struct zone *zone;
22fba335 1902 unsigned long writeback_threshold;
1da177e4 1903
c0ff7453 1904 get_mems_allowed();
873b4771
KK
1905 delayacct_freepages_start();
1906
e72e2bd6 1907 if (scanning_global_lru(sc))
1cfb419b 1908 count_vm_event(ALLOCSTALL);
1da177e4
LT
1909
1910 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 1911 sc->nr_scanned = 0;
f7b7fd8f
RR
1912 if (!priority)
1913 disable_swap_token();
d1908362 1914 shrink_zones(priority, zonelist, sc);
66e1707b
BS
1915 /*
1916 * Don't shrink slabs when reclaiming memory from
1917 * over limit cgroups
1918 */
e72e2bd6 1919 if (scanning_global_lru(sc)) {
c6a8a8c5 1920 unsigned long lru_pages = 0;
d4debc66
MG
1921 for_each_zone_zonelist(zone, z, zonelist,
1922 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
1923 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1924 continue;
1925
1926 lru_pages += zone_reclaimable_pages(zone);
1927 }
1928
dd1a239f 1929 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
91a45470 1930 if (reclaim_state) {
a79311c1 1931 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
1932 reclaim_state->reclaimed_slab = 0;
1933 }
1da177e4 1934 }
66e1707b 1935 total_scanned += sc->nr_scanned;
bb21c7ce 1936 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 1937 goto out;
1da177e4
LT
1938
1939 /*
1940 * Try to write back as many pages as we just scanned. This
1941 * tends to cause slow streaming writers to write data to the
1942 * disk smoothly, at the dirtying rate, which is nice. But
1943 * that's undesirable in laptop mode, where we *want* lumpy
1944 * writeout. So in laptop mode, write out the whole world.
1945 */
22fba335
KM
1946 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1947 if (total_scanned > writeback_threshold) {
03ba3782 1948 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
66e1707b 1949 sc->may_writepage = 1;
1da177e4
LT
1950 }
1951
1952 /* Take a nap, wait for some writeback to complete */
7b51755c
KM
1953 if (!sc->hibernation_mode && sc->nr_scanned &&
1954 priority < DEF_PRIORITY - 2)
8aa7e847 1955 congestion_wait(BLK_RW_ASYNC, HZ/10);
1da177e4 1956 }
bb21c7ce 1957
1da177e4 1958out:
873b4771 1959 delayacct_freepages_end();
c0ff7453 1960 put_mems_allowed();
873b4771 1961
bb21c7ce
KM
1962 if (sc->nr_reclaimed)
1963 return sc->nr_reclaimed;
1964
1965 /* top priority shrink_zones still had more to do? don't OOM, then */
d1908362 1966 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
1967 return 1;
1968
1969 return 0;
1da177e4
LT
1970}
1971
dac1d27b 1972unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 1973 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 1974{
33906bc5 1975 unsigned long nr_reclaimed;
66e1707b
BS
1976 struct scan_control sc = {
1977 .gfp_mask = gfp_mask,
1978 .may_writepage = !laptop_mode,
22fba335 1979 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 1980 .may_unmap = 1,
2e2e4259 1981 .may_swap = 1,
66e1707b
BS
1982 .swappiness = vm_swappiness,
1983 .order = order,
1984 .mem_cgroup = NULL,
327c0e96 1985 .nodemask = nodemask,
66e1707b
BS
1986 };
1987
33906bc5
MG
1988 trace_mm_vmscan_direct_reclaim_begin(order,
1989 sc.may_writepage,
1990 gfp_mask);
1991
1992 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
1993
1994 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1995
1996 return nr_reclaimed;
66e1707b
BS
1997}
1998
00f0b825 1999#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 2000
4e416953
BS
2001unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2002 gfp_t gfp_mask, bool noswap,
2003 unsigned int swappiness,
14fec796 2004 struct zone *zone)
4e416953
BS
2005{
2006 struct scan_control sc = {
b8f5c566 2007 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2008 .may_writepage = !laptop_mode,
2009 .may_unmap = 1,
2010 .may_swap = !noswap,
4e416953
BS
2011 .swappiness = swappiness,
2012 .order = 0,
2013 .mem_cgroup = mem,
4e416953 2014 };
4e416953
BS
2015 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2016 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e
KM
2017
2018 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2019 sc.may_writepage,
2020 sc.gfp_mask);
2021
4e416953
BS
2022 /*
2023 * NOTE: Although we can get the priority field, using it
2024 * here is not a good idea, since it limits the pages we can scan.
2025 * if we don't reclaim here, the shrink_zone from balance_pgdat
2026 * will pick up pages from other mem cgroup's as well. We hack
2027 * the priority and make it zero.
2028 */
2029 shrink_zone(0, zone, &sc);
bdce6d9e
KM
2030
2031 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2032
4e416953
BS
2033 return sc.nr_reclaimed;
2034}
2035
e1a1cd59 2036unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
a7885eb8
KM
2037 gfp_t gfp_mask,
2038 bool noswap,
2039 unsigned int swappiness)
66e1707b 2040{
4e416953 2041 struct zonelist *zonelist;
bdce6d9e 2042 unsigned long nr_reclaimed;
66e1707b 2043 struct scan_control sc = {
66e1707b 2044 .may_writepage = !laptop_mode,
a6dc60f8 2045 .may_unmap = 1,
2e2e4259 2046 .may_swap = !noswap,
22fba335 2047 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a7885eb8 2048 .swappiness = swappiness,
66e1707b
BS
2049 .order = 0,
2050 .mem_cgroup = mem_cont,
327c0e96 2051 .nodemask = NULL, /* we don't care the placement */
66e1707b 2052 };
66e1707b 2053
dd1a239f
MG
2054 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2055 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2056 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
bdce6d9e
KM
2057
2058 trace_mm_vmscan_memcg_reclaim_begin(0,
2059 sc.may_writepage,
2060 sc.gfp_mask);
2061
2062 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2063
2064 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2065
2066 return nr_reclaimed;
66e1707b
BS
2067}
2068#endif
2069
f50de2d3 2070/* is kswapd sleeping prematurely? */
bb3ab596 2071static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
f50de2d3 2072{
bb3ab596 2073 int i;
f50de2d3
MG
2074
2075 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2076 if (remaining)
2077 return 1;
2078
2079 /* If after HZ/10, a zone is below the high mark, it's premature */
bb3ab596
KM
2080 for (i = 0; i < pgdat->nr_zones; i++) {
2081 struct zone *zone = pgdat->node_zones + i;
2082
2083 if (!populated_zone(zone))
2084 continue;
2085
93e4a89a 2086 if (zone->all_unreclaimable)
de3fab39
KM
2087 continue;
2088
f50de2d3
MG
2089 if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
2090 0, 0))
2091 return 1;
bb3ab596 2092 }
f50de2d3
MG
2093
2094 return 0;
2095}
2096
1da177e4
LT
2097/*
2098 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2099 * they are all at high_wmark_pages(zone).
1da177e4 2100 *
1da177e4
LT
2101 * Returns the number of pages which were actually freed.
2102 *
2103 * There is special handling here for zones which are full of pinned pages.
2104 * This can happen if the pages are all mlocked, or if they are all used by
2105 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2106 * What we do is to detect the case where all pages in the zone have been
2107 * scanned twice and there has been zero successful reclaim. Mark the zone as
2108 * dead and from now on, only perform a short scan. Basically we're polling
2109 * the zone for when the problem goes away.
2110 *
2111 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2112 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2113 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2114 * lower zones regardless of the number of free pages in the lower zones. This
2115 * interoperates with the page allocator fallback scheme to ensure that aging
2116 * of pages is balanced across the zones.
1da177e4 2117 */
d6277db4 2118static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1da177e4 2119{
1da177e4
LT
2120 int all_zones_ok;
2121 int priority;
2122 int i;
69e05944 2123 unsigned long total_scanned;
1da177e4 2124 struct reclaim_state *reclaim_state = current->reclaim_state;
179e9639
AM
2125 struct scan_control sc = {
2126 .gfp_mask = GFP_KERNEL,
a6dc60f8 2127 .may_unmap = 1,
2e2e4259 2128 .may_swap = 1,
22fba335
KM
2129 /*
2130 * kswapd doesn't want to be bailed out while reclaim. because
2131 * we want to put equal scanning pressure on each zone.
2132 */
2133 .nr_to_reclaim = ULONG_MAX,
d6277db4 2134 .swappiness = vm_swappiness,
5ad333eb 2135 .order = order,
66e1707b 2136 .mem_cgroup = NULL,
179e9639 2137 };
1da177e4
LT
2138loop_again:
2139 total_scanned = 0;
a79311c1 2140 sc.nr_reclaimed = 0;
c0bbbc73 2141 sc.may_writepage = !laptop_mode;
f8891e5e 2142 count_vm_event(PAGEOUTRUN);
1da177e4 2143
1da177e4
LT
2144 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2145 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2146 unsigned long lru_pages = 0;
bb3ab596 2147 int has_under_min_watermark_zone = 0;
1da177e4 2148
f7b7fd8f
RR
2149 /* The swap token gets in the way of swapout... */
2150 if (!priority)
2151 disable_swap_token();
2152
1da177e4
LT
2153 all_zones_ok = 1;
2154
d6277db4
RW
2155 /*
2156 * Scan in the highmem->dma direction for the highest
2157 * zone which needs scanning
2158 */
2159 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2160 struct zone *zone = pgdat->node_zones + i;
1da177e4 2161
d6277db4
RW
2162 if (!populated_zone(zone))
2163 continue;
1da177e4 2164
93e4a89a 2165 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
d6277db4 2166 continue;
1da177e4 2167
556adecb
RR
2168 /*
2169 * Do some background aging of the anon list, to give
2170 * pages a chance to be referenced before reclaiming.
2171 */
14797e23 2172 if (inactive_anon_is_low(zone, &sc))
556adecb
RR
2173 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2174 &sc, priority, 0);
2175
41858966
MG
2176 if (!zone_watermark_ok(zone, order,
2177 high_wmark_pages(zone), 0, 0)) {
d6277db4 2178 end_zone = i;
e1dbeda6 2179 break;
1da177e4 2180 }
1da177e4 2181 }
e1dbeda6
AM
2182 if (i < 0)
2183 goto out;
2184
1da177e4
LT
2185 for (i = 0; i <= end_zone; i++) {
2186 struct zone *zone = pgdat->node_zones + i;
2187
adea02a1 2188 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2189 }
2190
2191 /*
2192 * Now scan the zone in the dma->highmem direction, stopping
2193 * at the last zone which needs scanning.
2194 *
2195 * We do this because the page allocator works in the opposite
2196 * direction. This prevents the page allocator from allocating
2197 * pages behind kswapd's direction of progress, which would
2198 * cause too much scanning of the lower zones.
2199 */
2200 for (i = 0; i <= end_zone; i++) {
2201 struct zone *zone = pgdat->node_zones + i;
b15e0905 2202 int nr_slab;
1da177e4 2203
f3fe6512 2204 if (!populated_zone(zone))
1da177e4
LT
2205 continue;
2206
93e4a89a 2207 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1da177e4
LT
2208 continue;
2209
1da177e4 2210 sc.nr_scanned = 0;
4e416953 2211
4e416953
BS
2212 /*
2213 * Call soft limit reclaim before calling shrink_zone.
2214 * For now we ignore the return value
2215 */
00918b6a
KM
2216 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
2217
32a4330d
RR
2218 /*
2219 * We put equal pressure on every zone, unless one
2220 * zone has way too many pages free already.
2221 */
41858966
MG
2222 if (!zone_watermark_ok(zone, order,
2223 8*high_wmark_pages(zone), end_zone, 0))
a79311c1 2224 shrink_zone(priority, zone, &sc);
1da177e4 2225 reclaim_state->reclaimed_slab = 0;
b15e0905 2226 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2227 lru_pages);
a79311c1 2228 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4 2229 total_scanned += sc.nr_scanned;
93e4a89a 2230 if (zone->all_unreclaimable)
1da177e4 2231 continue;
d1908362 2232 if (nr_slab == 0 && !zone_reclaimable(zone))
93e4a89a 2233 zone->all_unreclaimable = 1;
1da177e4
LT
2234 /*
2235 * If we've done a decent amount of scanning and
2236 * the reclaim ratio is low, start doing writepage
2237 * even in laptop mode
2238 */
2239 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2240 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2241 sc.may_writepage = 1;
bb3ab596 2242
45973d74
MK
2243 if (!zone_watermark_ok(zone, order,
2244 high_wmark_pages(zone), end_zone, 0)) {
2245 all_zones_ok = 0;
2246 /*
2247 * We are still under min water mark. This
2248 * means that we have a GFP_ATOMIC allocation
2249 * failure risk. Hurry up!
2250 */
2251 if (!zone_watermark_ok(zone, order,
2252 min_wmark_pages(zone), end_zone, 0))
2253 has_under_min_watermark_zone = 1;
2254 }
bb3ab596 2255
1da177e4 2256 }
1da177e4
LT
2257 if (all_zones_ok)
2258 break; /* kswapd: all done */
2259 /*
2260 * OK, kswapd is getting into trouble. Take a nap, then take
2261 * another pass across the zones.
2262 */
bb3ab596
KM
2263 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2264 if (has_under_min_watermark_zone)
2265 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2266 else
2267 congestion_wait(BLK_RW_ASYNC, HZ/10);
2268 }
1da177e4
LT
2269
2270 /*
2271 * We do this so kswapd doesn't build up large priorities for
2272 * example when it is freeing in parallel with allocators. It
2273 * matches the direct reclaim path behaviour in terms of impact
2274 * on zone->*_priority.
2275 */
a79311c1 2276 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2277 break;
2278 }
2279out:
1da177e4
LT
2280 if (!all_zones_ok) {
2281 cond_resched();
8357376d
RW
2282
2283 try_to_freeze();
2284
73ce02e9
KM
2285 /*
2286 * Fragmentation may mean that the system cannot be
2287 * rebalanced for high-order allocations in all zones.
2288 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2289 * it means the zones have been fully scanned and are still
2290 * not balanced. For high-order allocations, there is
2291 * little point trying all over again as kswapd may
2292 * infinite loop.
2293 *
2294 * Instead, recheck all watermarks at order-0 as they
2295 * are the most important. If watermarks are ok, kswapd will go
2296 * back to sleep. High-order users can still perform direct
2297 * reclaim if they wish.
2298 */
2299 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2300 order = sc.order = 0;
2301
1da177e4
LT
2302 goto loop_again;
2303 }
2304
a79311c1 2305 return sc.nr_reclaimed;
1da177e4
LT
2306}
2307
2308/*
2309 * The background pageout daemon, started as a kernel thread
4f98a2fe 2310 * from the init process.
1da177e4
LT
2311 *
2312 * This basically trickles out pages so that we have _some_
2313 * free memory available even if there is no other activity
2314 * that frees anything up. This is needed for things like routing
2315 * etc, where we otherwise might have all activity going on in
2316 * asynchronous contexts that cannot page things out.
2317 *
2318 * If there are applications that are active memory-allocators
2319 * (most normal use), this basically shouldn't matter.
2320 */
2321static int kswapd(void *p)
2322{
2323 unsigned long order;
2324 pg_data_t *pgdat = (pg_data_t*)p;
2325 struct task_struct *tsk = current;
2326 DEFINE_WAIT(wait);
2327 struct reclaim_state reclaim_state = {
2328 .reclaimed_slab = 0,
2329 };
a70f7302 2330 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2331
cf40bd16
NP
2332 lockdep_set_current_reclaim_state(GFP_KERNEL);
2333
174596a0 2334 if (!cpumask_empty(cpumask))
c5f59f08 2335 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2336 current->reclaim_state = &reclaim_state;
2337
2338 /*
2339 * Tell the memory management that we're a "memory allocator",
2340 * and that if we need more memory we should get access to it
2341 * regardless (see "__alloc_pages()"). "kswapd" should
2342 * never get caught in the normal page freeing logic.
2343 *
2344 * (Kswapd normally doesn't need memory anyway, but sometimes
2345 * you need a small amount of memory in order to be able to
2346 * page out something else, and this flag essentially protects
2347 * us from recursively trying to free more memory as we're
2348 * trying to free the first piece of memory in the first place).
2349 */
930d9152 2350 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2351 set_freezable();
1da177e4
LT
2352
2353 order = 0;
2354 for ( ; ; ) {
2355 unsigned long new_order;
8fe23e05 2356 int ret;
3e1d1d28 2357
1da177e4
LT
2358 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2359 new_order = pgdat->kswapd_max_order;
2360 pgdat->kswapd_max_order = 0;
2361 if (order < new_order) {
2362 /*
2363 * Don't sleep if someone wants a larger 'order'
2364 * allocation
2365 */
2366 order = new_order;
2367 } else {
f50de2d3
MG
2368 if (!freezing(current) && !kthread_should_stop()) {
2369 long remaining = 0;
2370
2371 /* Try to sleep for a short interval */
bb3ab596 2372 if (!sleeping_prematurely(pgdat, order, remaining)) {
f50de2d3
MG
2373 remaining = schedule_timeout(HZ/10);
2374 finish_wait(&pgdat->kswapd_wait, &wait);
2375 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2376 }
2377
2378 /*
2379 * After a short sleep, check if it was a
2380 * premature sleep. If not, then go fully
2381 * to sleep until explicitly woken up
2382 */
33906bc5
MG
2383 if (!sleeping_prematurely(pgdat, order, remaining)) {
2384 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
f50de2d3 2385 schedule();
33906bc5 2386 } else {
f50de2d3 2387 if (remaining)
bb3ab596 2388 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
f50de2d3 2389 else
bb3ab596 2390 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
f50de2d3
MG
2391 }
2392 }
b1296cc4 2393
1da177e4
LT
2394 order = pgdat->kswapd_max_order;
2395 }
2396 finish_wait(&pgdat->kswapd_wait, &wait);
2397
8fe23e05
DR
2398 ret = try_to_freeze();
2399 if (kthread_should_stop())
2400 break;
2401
2402 /*
2403 * We can speed up thawing tasks if we don't call balance_pgdat
2404 * after returning from the refrigerator
2405 */
33906bc5
MG
2406 if (!ret) {
2407 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
b1296cc4 2408 balance_pgdat(pgdat, order);
33906bc5 2409 }
1da177e4
LT
2410 }
2411 return 0;
2412}
2413
2414/*
2415 * A zone is low on free memory, so wake its kswapd task to service it.
2416 */
2417void wakeup_kswapd(struct zone *zone, int order)
2418{
2419 pg_data_t *pgdat;
2420
f3fe6512 2421 if (!populated_zone(zone))
1da177e4
LT
2422 return;
2423
2424 pgdat = zone->zone_pgdat;
41858966 2425 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
1da177e4
LT
2426 return;
2427 if (pgdat->kswapd_max_order < order)
2428 pgdat->kswapd_max_order = order;
33906bc5 2429 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
02a0e53d 2430 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2431 return;
8d0986e2 2432 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2433 return;
8d0986e2 2434 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2435}
2436
adea02a1
WF
2437/*
2438 * The reclaimable count would be mostly accurate.
2439 * The less reclaimable pages may be
2440 * - mlocked pages, which will be moved to unevictable list when encountered
2441 * - mapped pages, which may require several travels to be reclaimed
2442 * - dirty pages, which is not "instantly" reclaimable
2443 */
2444unsigned long global_reclaimable_pages(void)
4f98a2fe 2445{
adea02a1
WF
2446 int nr;
2447
2448 nr = global_page_state(NR_ACTIVE_FILE) +
2449 global_page_state(NR_INACTIVE_FILE);
2450
2451 if (nr_swap_pages > 0)
2452 nr += global_page_state(NR_ACTIVE_ANON) +
2453 global_page_state(NR_INACTIVE_ANON);
2454
2455 return nr;
2456}
2457
2458unsigned long zone_reclaimable_pages(struct zone *zone)
2459{
2460 int nr;
2461
2462 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2463 zone_page_state(zone, NR_INACTIVE_FILE);
2464
2465 if (nr_swap_pages > 0)
2466 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2467 zone_page_state(zone, NR_INACTIVE_ANON);
2468
2469 return nr;
4f98a2fe
RR
2470}
2471
c6f37f12 2472#ifdef CONFIG_HIBERNATION
1da177e4 2473/*
7b51755c 2474 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2475 * freed pages.
2476 *
2477 * Rather than trying to age LRUs the aim is to preserve the overall
2478 * LRU order by reclaiming preferentially
2479 * inactive > active > active referenced > active mapped
1da177e4 2480 */
7b51755c 2481unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2482{
d6277db4 2483 struct reclaim_state reclaim_state;
d6277db4 2484 struct scan_control sc = {
7b51755c
KM
2485 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2486 .may_swap = 1,
2487 .may_unmap = 1,
d6277db4 2488 .may_writepage = 1,
7b51755c
KM
2489 .nr_to_reclaim = nr_to_reclaim,
2490 .hibernation_mode = 1,
2491 .swappiness = vm_swappiness,
2492 .order = 0,
1da177e4 2493 };
7b51755c
KM
2494 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2495 struct task_struct *p = current;
2496 unsigned long nr_reclaimed;
1da177e4 2497
7b51755c
KM
2498 p->flags |= PF_MEMALLOC;
2499 lockdep_set_current_reclaim_state(sc.gfp_mask);
2500 reclaim_state.reclaimed_slab = 0;
2501 p->reclaim_state = &reclaim_state;
d6277db4 2502
7b51755c 2503 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 2504
7b51755c
KM
2505 p->reclaim_state = NULL;
2506 lockdep_clear_current_reclaim_state();
2507 p->flags &= ~PF_MEMALLOC;
d6277db4 2508
7b51755c 2509 return nr_reclaimed;
1da177e4 2510}
c6f37f12 2511#endif /* CONFIG_HIBERNATION */
1da177e4 2512
1da177e4
LT
2513/* It's optimal to keep kswapds on the same CPUs as their memory, but
2514 not required for correctness. So if the last cpu in a node goes
2515 away, we get changed to run anywhere: as the first one comes back,
2516 restore their cpu bindings. */
9c7b216d 2517static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2518 unsigned long action, void *hcpu)
1da177e4 2519{
58c0a4a7 2520 int nid;
1da177e4 2521
8bb78442 2522 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2523 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2524 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2525 const struct cpumask *mask;
2526
2527 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 2528
3e597945 2529 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2530 /* One of our CPUs online: restore mask */
c5f59f08 2531 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2532 }
2533 }
2534 return NOTIFY_OK;
2535}
1da177e4 2536
3218ae14
YG
2537/*
2538 * This kswapd start function will be called by init and node-hot-add.
2539 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2540 */
2541int kswapd_run(int nid)
2542{
2543 pg_data_t *pgdat = NODE_DATA(nid);
2544 int ret = 0;
2545
2546 if (pgdat->kswapd)
2547 return 0;
2548
2549 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2550 if (IS_ERR(pgdat->kswapd)) {
2551 /* failure at boot is fatal */
2552 BUG_ON(system_state == SYSTEM_BOOTING);
2553 printk("Failed to start kswapd on node %d\n",nid);
2554 ret = -1;
2555 }
2556 return ret;
2557}
2558
8fe23e05
DR
2559/*
2560 * Called by memory hotplug when all memory in a node is offlined.
2561 */
2562void kswapd_stop(int nid)
2563{
2564 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2565
2566 if (kswapd)
2567 kthread_stop(kswapd);
2568}
2569
1da177e4
LT
2570static int __init kswapd_init(void)
2571{
3218ae14 2572 int nid;
69e05944 2573
1da177e4 2574 swap_setup();
9422ffba 2575 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 2576 kswapd_run(nid);
1da177e4
LT
2577 hotcpu_notifier(cpu_callback, 0);
2578 return 0;
2579}
2580
2581module_init(kswapd_init)
9eeff239
CL
2582
2583#ifdef CONFIG_NUMA
2584/*
2585 * Zone reclaim mode
2586 *
2587 * If non-zero call zone_reclaim when the number of free pages falls below
2588 * the watermarks.
9eeff239
CL
2589 */
2590int zone_reclaim_mode __read_mostly;
2591
1b2ffb78 2592#define RECLAIM_OFF 0
7d03431c 2593#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
2594#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2595#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2596
a92f7126
CL
2597/*
2598 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2599 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2600 * a zone.
2601 */
2602#define ZONE_RECLAIM_PRIORITY 4
2603
9614634f
CL
2604/*
2605 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2606 * occur.
2607 */
2608int sysctl_min_unmapped_ratio = 1;
2609
0ff38490
CL
2610/*
2611 * If the number of slab pages in a zone grows beyond this percentage then
2612 * slab reclaim needs to occur.
2613 */
2614int sysctl_min_slab_ratio = 5;
2615
90afa5de
MG
2616static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2617{
2618 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2619 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2620 zone_page_state(zone, NR_ACTIVE_FILE);
2621
2622 /*
2623 * It's possible for there to be more file mapped pages than
2624 * accounted for by the pages on the file LRU lists because
2625 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2626 */
2627 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2628}
2629
2630/* Work out how many page cache pages we can reclaim in this reclaim_mode */
2631static long zone_pagecache_reclaimable(struct zone *zone)
2632{
2633 long nr_pagecache_reclaimable;
2634 long delta = 0;
2635
2636 /*
2637 * If RECLAIM_SWAP is set, then all file pages are considered
2638 * potentially reclaimable. Otherwise, we have to worry about
2639 * pages like swapcache and zone_unmapped_file_pages() provides
2640 * a better estimate
2641 */
2642 if (zone_reclaim_mode & RECLAIM_SWAP)
2643 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2644 else
2645 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2646
2647 /* If we can't clean pages, remove dirty pages from consideration */
2648 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2649 delta += zone_page_state(zone, NR_FILE_DIRTY);
2650
2651 /* Watch for any possible underflows due to delta */
2652 if (unlikely(delta > nr_pagecache_reclaimable))
2653 delta = nr_pagecache_reclaimable;
2654
2655 return nr_pagecache_reclaimable - delta;
2656}
2657
9eeff239
CL
2658/*
2659 * Try to free up some pages from this zone through reclaim.
2660 */
179e9639 2661static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 2662{
7fb2d46d 2663 /* Minimum pages needed in order to stay on node */
69e05944 2664 const unsigned long nr_pages = 1 << order;
9eeff239
CL
2665 struct task_struct *p = current;
2666 struct reclaim_state reclaim_state;
8695949a 2667 int priority;
179e9639
AM
2668 struct scan_control sc = {
2669 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 2670 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 2671 .may_swap = 1,
22fba335
KM
2672 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2673 SWAP_CLUSTER_MAX),
179e9639 2674 .gfp_mask = gfp_mask,
d6277db4 2675 .swappiness = vm_swappiness,
bd2f6199 2676 .order = order,
179e9639 2677 };
15748048 2678 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 2679
9eeff239 2680 cond_resched();
d4f7796e
CL
2681 /*
2682 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2683 * and we also need to be able to write out pages for RECLAIM_WRITE
2684 * and RECLAIM_SWAP.
2685 */
2686 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 2687 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
2688 reclaim_state.reclaimed_slab = 0;
2689 p->reclaim_state = &reclaim_state;
c84db23c 2690
90afa5de 2691 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
2692 /*
2693 * Free memory by calling shrink zone with increasing
2694 * priorities until we have enough memory freed.
2695 */
2696 priority = ZONE_RECLAIM_PRIORITY;
2697 do {
a79311c1 2698 shrink_zone(priority, zone, &sc);
0ff38490 2699 priority--;
a79311c1 2700 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 2701 }
c84db23c 2702
15748048
KM
2703 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2704 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 2705 /*
7fb2d46d 2706 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
2707 * many pages were freed in this zone. So we take the current
2708 * number of slab pages and shake the slab until it is reduced
2709 * by the same nr_pages that we used for reclaiming unmapped
2710 * pages.
2a16e3f4 2711 *
0ff38490
CL
2712 * Note that shrink_slab will free memory on all zones and may
2713 * take a long time.
2a16e3f4 2714 */
4dc4b3d9
KM
2715 for (;;) {
2716 unsigned long lru_pages = zone_reclaimable_pages(zone);
2717
2718 /* No reclaimable slab or very low memory pressure */
2719 if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
2720 break;
2721
2722 /* Freed enough memory */
2723 nr_slab_pages1 = zone_page_state(zone,
2724 NR_SLAB_RECLAIMABLE);
2725 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
2726 break;
2727 }
83e33a47
CL
2728
2729 /*
2730 * Update nr_reclaimed by the number of slab pages we
2731 * reclaimed from this zone.
2732 */
15748048
KM
2733 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2734 if (nr_slab_pages1 < nr_slab_pages0)
2735 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
2736 }
2737
9eeff239 2738 p->reclaim_state = NULL;
d4f7796e 2739 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 2740 lockdep_clear_current_reclaim_state();
a79311c1 2741 return sc.nr_reclaimed >= nr_pages;
9eeff239 2742}
179e9639
AM
2743
2744int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2745{
179e9639 2746 int node_id;
d773ed6b 2747 int ret;
179e9639
AM
2748
2749 /*
0ff38490
CL
2750 * Zone reclaim reclaims unmapped file backed pages and
2751 * slab pages if we are over the defined limits.
34aa1330 2752 *
9614634f
CL
2753 * A small portion of unmapped file backed pages is needed for
2754 * file I/O otherwise pages read by file I/O will be immediately
2755 * thrown out if the zone is overallocated. So we do not reclaim
2756 * if less than a specified percentage of the zone is used by
2757 * unmapped file backed pages.
179e9639 2758 */
90afa5de
MG
2759 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2760 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 2761 return ZONE_RECLAIM_FULL;
179e9639 2762
93e4a89a 2763 if (zone->all_unreclaimable)
fa5e084e 2764 return ZONE_RECLAIM_FULL;
d773ed6b 2765
179e9639 2766 /*
d773ed6b 2767 * Do not scan if the allocation should not be delayed.
179e9639 2768 */
d773ed6b 2769 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 2770 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
2771
2772 /*
2773 * Only run zone reclaim on the local zone or on zones that do not
2774 * have associated processors. This will favor the local processor
2775 * over remote processors and spread off node memory allocations
2776 * as wide as possible.
2777 */
89fa3024 2778 node_id = zone_to_nid(zone);
37c0708d 2779 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 2780 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
2781
2782 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
2783 return ZONE_RECLAIM_NOSCAN;
2784
d773ed6b
DR
2785 ret = __zone_reclaim(zone, gfp_mask, order);
2786 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2787
24cf7251
MG
2788 if (!ret)
2789 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2790
d773ed6b 2791 return ret;
179e9639 2792}
9eeff239 2793#endif
894bc310 2794
894bc310
LS
2795/*
2796 * page_evictable - test whether a page is evictable
2797 * @page: the page to test
2798 * @vma: the VMA in which the page is or will be mapped, may be NULL
2799 *
2800 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
2801 * lists vs unevictable list. The vma argument is !NULL when called from the
2802 * fault path to determine how to instantate a new page.
894bc310
LS
2803 *
2804 * Reasons page might not be evictable:
ba9ddf49 2805 * (1) page's mapping marked unevictable
b291f000 2806 * (2) page is part of an mlocked VMA
ba9ddf49 2807 *
894bc310
LS
2808 */
2809int page_evictable(struct page *page, struct vm_area_struct *vma)
2810{
2811
ba9ddf49
LS
2812 if (mapping_unevictable(page_mapping(page)))
2813 return 0;
2814
b291f000
NP
2815 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2816 return 0;
894bc310
LS
2817
2818 return 1;
2819}
89e004ea
LS
2820
2821/**
2822 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2823 * @page: page to check evictability and move to appropriate lru list
2824 * @zone: zone page is in
2825 *
2826 * Checks a page for evictability and moves the page to the appropriate
2827 * zone lru list.
2828 *
2829 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2830 * have PageUnevictable set.
2831 */
2832static void check_move_unevictable_page(struct page *page, struct zone *zone)
2833{
2834 VM_BUG_ON(PageActive(page));
2835
2836retry:
2837 ClearPageUnevictable(page);
2838 if (page_evictable(page, NULL)) {
401a8e1c 2839 enum lru_list l = page_lru_base_type(page);
af936a16 2840
89e004ea
LS
2841 __dec_zone_state(zone, NR_UNEVICTABLE);
2842 list_move(&page->lru, &zone->lru[l].list);
08e552c6 2843 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
89e004ea
LS
2844 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2845 __count_vm_event(UNEVICTABLE_PGRESCUED);
2846 } else {
2847 /*
2848 * rotate unevictable list
2849 */
2850 SetPageUnevictable(page);
2851 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
08e552c6 2852 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
89e004ea
LS
2853 if (page_evictable(page, NULL))
2854 goto retry;
2855 }
2856}
2857
2858/**
2859 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2860 * @mapping: struct address_space to scan for evictable pages
2861 *
2862 * Scan all pages in mapping. Check unevictable pages for
2863 * evictability and move them to the appropriate zone lru list.
2864 */
2865void scan_mapping_unevictable_pages(struct address_space *mapping)
2866{
2867 pgoff_t next = 0;
2868 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2869 PAGE_CACHE_SHIFT;
2870 struct zone *zone;
2871 struct pagevec pvec;
2872
2873 if (mapping->nrpages == 0)
2874 return;
2875
2876 pagevec_init(&pvec, 0);
2877 while (next < end &&
2878 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2879 int i;
2880 int pg_scanned = 0;
2881
2882 zone = NULL;
2883
2884 for (i = 0; i < pagevec_count(&pvec); i++) {
2885 struct page *page = pvec.pages[i];
2886 pgoff_t page_index = page->index;
2887 struct zone *pagezone = page_zone(page);
2888
2889 pg_scanned++;
2890 if (page_index > next)
2891 next = page_index;
2892 next++;
2893
2894 if (pagezone != zone) {
2895 if (zone)
2896 spin_unlock_irq(&zone->lru_lock);
2897 zone = pagezone;
2898 spin_lock_irq(&zone->lru_lock);
2899 }
2900
2901 if (PageLRU(page) && PageUnevictable(page))
2902 check_move_unevictable_page(page, zone);
2903 }
2904 if (zone)
2905 spin_unlock_irq(&zone->lru_lock);
2906 pagevec_release(&pvec);
2907
2908 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2909 }
2910
2911}
af936a16
LS
2912
2913/**
2914 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2915 * @zone - zone of which to scan the unevictable list
2916 *
2917 * Scan @zone's unevictable LRU lists to check for pages that have become
2918 * evictable. Move those that have to @zone's inactive list where they
2919 * become candidates for reclaim, unless shrink_inactive_zone() decides
2920 * to reactivate them. Pages that are still unevictable are rotated
2921 * back onto @zone's unevictable list.
2922 */
2923#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
14b90b22 2924static void scan_zone_unevictable_pages(struct zone *zone)
af936a16
LS
2925{
2926 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2927 unsigned long scan;
2928 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2929
2930 while (nr_to_scan > 0) {
2931 unsigned long batch_size = min(nr_to_scan,
2932 SCAN_UNEVICTABLE_BATCH_SIZE);
2933
2934 spin_lock_irq(&zone->lru_lock);
2935 for (scan = 0; scan < batch_size; scan++) {
2936 struct page *page = lru_to_page(l_unevictable);
2937
2938 if (!trylock_page(page))
2939 continue;
2940
2941 prefetchw_prev_lru_page(page, l_unevictable, flags);
2942
2943 if (likely(PageLRU(page) && PageUnevictable(page)))
2944 check_move_unevictable_page(page, zone);
2945
2946 unlock_page(page);
2947 }
2948 spin_unlock_irq(&zone->lru_lock);
2949
2950 nr_to_scan -= batch_size;
2951 }
2952}
2953
2954
2955/**
2956 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2957 *
2958 * A really big hammer: scan all zones' unevictable LRU lists to check for
2959 * pages that have become evictable. Move those back to the zones'
2960 * inactive list where they become candidates for reclaim.
2961 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2962 * and we add swap to the system. As such, it runs in the context of a task
2963 * that has possibly/probably made some previously unevictable pages
2964 * evictable.
2965 */
ff30153b 2966static void scan_all_zones_unevictable_pages(void)
af936a16
LS
2967{
2968 struct zone *zone;
2969
2970 for_each_zone(zone) {
2971 scan_zone_unevictable_pages(zone);
2972 }
2973}
2974
2975/*
2976 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2977 * all nodes' unevictable lists for evictable pages
2978 */
2979unsigned long scan_unevictable_pages;
2980
2981int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 2982 void __user *buffer,
af936a16
LS
2983 size_t *length, loff_t *ppos)
2984{
8d65af78 2985 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
2986
2987 if (write && *(unsigned long *)table->data)
2988 scan_all_zones_unevictable_pages();
2989
2990 scan_unevictable_pages = 0;
2991 return 0;
2992}
2993
e4455abb 2994#ifdef CONFIG_NUMA
af936a16
LS
2995/*
2996 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2997 * a specified node's per zone unevictable lists for evictable pages.
2998 */
2999
3000static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3001 struct sysdev_attribute *attr,
3002 char *buf)
3003{
3004 return sprintf(buf, "0\n"); /* always zero; should fit... */
3005}
3006
3007static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3008 struct sysdev_attribute *attr,
3009 const char *buf, size_t count)
3010{
3011 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3012 struct zone *zone;
3013 unsigned long res;
3014 unsigned long req = strict_strtoul(buf, 10, &res);
3015
3016 if (!req)
3017 return 1; /* zero is no-op */
3018
3019 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3020 if (!populated_zone(zone))
3021 continue;
3022 scan_zone_unevictable_pages(zone);
3023 }
3024 return 1;
3025}
3026
3027
3028static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3029 read_scan_unevictable_node,
3030 write_scan_unevictable_node);
3031
3032int scan_unevictable_register_node(struct node *node)
3033{
3034 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3035}
3036
3037void scan_unevictable_unregister_node(struct node *node)
3038{
3039 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3040}
e4455abb 3041#endif