]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmscan.c
mm/vmscan: push zone pointer into shrink_page_list()
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
1da177e4
LT
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
3e7d3449 34#include <linux/compaction.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
929bea7c 43#include <linux/oom.h>
268bb0ce 44#include <linux/prefetch.h>
1da177e4
LT
45
46#include <asm/tlbflush.h>
47#include <asm/div64.h>
48
49#include <linux/swapops.h>
50
0f8053a5
NP
51#include "internal.h"
52
33906bc5
MG
53#define CREATE_TRACE_POINTS
54#include <trace/events/vmscan.h>
55
1da177e4 56struct scan_control {
1da177e4
LT
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
59
a79311c1
RR
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
62
22fba335
KM
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
7b51755c
KM
66 unsigned long hibernation_mode;
67
1da177e4 68 /* This context's GFP mask */
6daa0e28 69 gfp_t gfp_mask;
1da177e4
LT
70
71 int may_writepage;
72
a6dc60f8
JW
73 /* Can mapped pages be reclaimed? */
74 int may_unmap;
f1fd1067 75
2e2e4259
KM
76 /* Can pages be swapped as part of reclaim? */
77 int may_swap;
78
5ad333eb 79 int order;
66e1707b 80
9e3b2f8c
KK
81 /* Scan (total_size >> priority) pages at once */
82 int priority;
83
f16015fb
JW
84 /*
85 * The memory cgroup that hit its limit and as a result is the
86 * primary target of this reclaim invocation.
87 */
88 struct mem_cgroup *target_mem_cgroup;
66e1707b 89
327c0e96
KH
90 /*
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
93 */
94 nodemask_t *nodemask;
1da177e4
LT
95};
96
f16015fb
JW
97struct mem_cgroup_zone {
98 struct mem_cgroup *mem_cgroup;
99 struct zone *zone;
100};
101
1da177e4
LT
102#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
103
104#ifdef ARCH_HAS_PREFETCH
105#define prefetch_prev_lru_page(_page, _base, _field) \
106 do { \
107 if ((_page)->lru.prev != _base) { \
108 struct page *prev; \
109 \
110 prev = lru_to_page(&(_page->lru)); \
111 prefetch(&prev->_field); \
112 } \
113 } while (0)
114#else
115#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
116#endif
117
118#ifdef ARCH_HAS_PREFETCHW
119#define prefetchw_prev_lru_page(_page, _base, _field) \
120 do { \
121 if ((_page)->lru.prev != _base) { \
122 struct page *prev; \
123 \
124 prev = lru_to_page(&(_page->lru)); \
125 prefetchw(&prev->_field); \
126 } \
127 } while (0)
128#else
129#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
130#endif
131
132/*
133 * From 0 .. 100. Higher means more swappy.
134 */
135int vm_swappiness = 60;
bd1e22b8 136long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
137
138static LIST_HEAD(shrinker_list);
139static DECLARE_RWSEM(shrinker_rwsem);
140
00f0b825 141#ifdef CONFIG_CGROUP_MEM_RES_CTLR
89b5fae5
JW
142static bool global_reclaim(struct scan_control *sc)
143{
f16015fb 144 return !sc->target_mem_cgroup;
89b5fae5 145}
91a45470 146#else
89b5fae5
JW
147static bool global_reclaim(struct scan_control *sc)
148{
149 return true;
150}
91a45470
KH
151#endif
152
f16015fb 153static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
6e901571 154{
89abfab1 155 return &mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup)->reclaim_stat;
6e901571
KM
156}
157
f16015fb
JW
158static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
159 enum lru_list lru)
c9f299d9 160{
c3c787e8 161 if (!mem_cgroup_disabled())
f16015fb
JW
162 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
163 zone_to_nid(mz->zone),
164 zone_idx(mz->zone),
165 BIT(lru));
a3d8e054 166
f16015fb 167 return zone_page_state(mz->zone, NR_LRU_BASE + lru);
c9f299d9
KM
168}
169
170
1da177e4
LT
171/*
172 * Add a shrinker callback to be called from the vm
173 */
8e1f936b 174void register_shrinker(struct shrinker *shrinker)
1da177e4 175{
83aeeada 176 atomic_long_set(&shrinker->nr_in_batch, 0);
8e1f936b
RR
177 down_write(&shrinker_rwsem);
178 list_add_tail(&shrinker->list, &shrinker_list);
179 up_write(&shrinker_rwsem);
1da177e4 180}
8e1f936b 181EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
182
183/*
184 * Remove one
185 */
8e1f936b 186void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
187{
188 down_write(&shrinker_rwsem);
189 list_del(&shrinker->list);
190 up_write(&shrinker_rwsem);
1da177e4 191}
8e1f936b 192EXPORT_SYMBOL(unregister_shrinker);
1da177e4 193
1495f230
YH
194static inline int do_shrinker_shrink(struct shrinker *shrinker,
195 struct shrink_control *sc,
196 unsigned long nr_to_scan)
197{
198 sc->nr_to_scan = nr_to_scan;
199 return (*shrinker->shrink)(shrinker, sc);
200}
201
1da177e4
LT
202#define SHRINK_BATCH 128
203/*
204 * Call the shrink functions to age shrinkable caches
205 *
206 * Here we assume it costs one seek to replace a lru page and that it also
207 * takes a seek to recreate a cache object. With this in mind we age equal
208 * percentages of the lru and ageable caches. This should balance the seeks
209 * generated by these structures.
210 *
183ff22b 211 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
212 * slab to avoid swapping.
213 *
214 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
215 *
216 * `lru_pages' represents the number of on-LRU pages in all the zones which
217 * are eligible for the caller's allocation attempt. It is used for balancing
218 * slab reclaim versus page reclaim.
b15e0905 219 *
220 * Returns the number of slab objects which we shrunk.
1da177e4 221 */
a09ed5e0 222unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 223 unsigned long nr_pages_scanned,
a09ed5e0 224 unsigned long lru_pages)
1da177e4
LT
225{
226 struct shrinker *shrinker;
69e05944 227 unsigned long ret = 0;
1da177e4 228
1495f230
YH
229 if (nr_pages_scanned == 0)
230 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 231
f06590bd
MK
232 if (!down_read_trylock(&shrinker_rwsem)) {
233 /* Assume we'll be able to shrink next time */
234 ret = 1;
235 goto out;
236 }
1da177e4
LT
237
238 list_for_each_entry(shrinker, &shrinker_list, list) {
239 unsigned long long delta;
635697c6
KK
240 long total_scan;
241 long max_pass;
09576073 242 int shrink_ret = 0;
acf92b48
DC
243 long nr;
244 long new_nr;
e9299f50
DC
245 long batch_size = shrinker->batch ? shrinker->batch
246 : SHRINK_BATCH;
1da177e4 247
635697c6
KK
248 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
249 if (max_pass <= 0)
250 continue;
251
acf92b48
DC
252 /*
253 * copy the current shrinker scan count into a local variable
254 * and zero it so that other concurrent shrinker invocations
255 * don't also do this scanning work.
256 */
83aeeada 257 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
acf92b48
DC
258
259 total_scan = nr;
1495f230 260 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 261 delta *= max_pass;
1da177e4 262 do_div(delta, lru_pages + 1);
acf92b48
DC
263 total_scan += delta;
264 if (total_scan < 0) {
88c3bd70
DR
265 printk(KERN_ERR "shrink_slab: %pF negative objects to "
266 "delete nr=%ld\n",
acf92b48
DC
267 shrinker->shrink, total_scan);
268 total_scan = max_pass;
ea164d73
AA
269 }
270
3567b59a
DC
271 /*
272 * We need to avoid excessive windup on filesystem shrinkers
273 * due to large numbers of GFP_NOFS allocations causing the
274 * shrinkers to return -1 all the time. This results in a large
275 * nr being built up so when a shrink that can do some work
276 * comes along it empties the entire cache due to nr >>>
277 * max_pass. This is bad for sustaining a working set in
278 * memory.
279 *
280 * Hence only allow the shrinker to scan the entire cache when
281 * a large delta change is calculated directly.
282 */
283 if (delta < max_pass / 4)
284 total_scan = min(total_scan, max_pass / 2);
285
ea164d73
AA
286 /*
287 * Avoid risking looping forever due to too large nr value:
288 * never try to free more than twice the estimate number of
289 * freeable entries.
290 */
acf92b48
DC
291 if (total_scan > max_pass * 2)
292 total_scan = max_pass * 2;
1da177e4 293
acf92b48 294 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
295 nr_pages_scanned, lru_pages,
296 max_pass, delta, total_scan);
297
e9299f50 298 while (total_scan >= batch_size) {
b15e0905 299 int nr_before;
1da177e4 300
1495f230
YH
301 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
302 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 303 batch_size);
1da177e4
LT
304 if (shrink_ret == -1)
305 break;
b15e0905 306 if (shrink_ret < nr_before)
307 ret += nr_before - shrink_ret;
e9299f50
DC
308 count_vm_events(SLABS_SCANNED, batch_size);
309 total_scan -= batch_size;
1da177e4
LT
310
311 cond_resched();
312 }
313
acf92b48
DC
314 /*
315 * move the unused scan count back into the shrinker in a
316 * manner that handles concurrent updates. If we exhausted the
317 * scan, there is no need to do an update.
318 */
83aeeada
KK
319 if (total_scan > 0)
320 new_nr = atomic_long_add_return(total_scan,
321 &shrinker->nr_in_batch);
322 else
323 new_nr = atomic_long_read(&shrinker->nr_in_batch);
acf92b48
DC
324
325 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
326 }
327 up_read(&shrinker_rwsem);
f06590bd
MK
328out:
329 cond_resched();
b15e0905 330 return ret;
1da177e4
LT
331}
332
1da177e4
LT
333static inline int is_page_cache_freeable(struct page *page)
334{
ceddc3a5
JW
335 /*
336 * A freeable page cache page is referenced only by the caller
337 * that isolated the page, the page cache radix tree and
338 * optional buffer heads at page->private.
339 */
edcf4748 340 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
341}
342
7d3579e8
KM
343static int may_write_to_queue(struct backing_dev_info *bdi,
344 struct scan_control *sc)
1da177e4 345{
930d9152 346 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
347 return 1;
348 if (!bdi_write_congested(bdi))
349 return 1;
350 if (bdi == current->backing_dev_info)
351 return 1;
352 return 0;
353}
354
355/*
356 * We detected a synchronous write error writing a page out. Probably
357 * -ENOSPC. We need to propagate that into the address_space for a subsequent
358 * fsync(), msync() or close().
359 *
360 * The tricky part is that after writepage we cannot touch the mapping: nothing
361 * prevents it from being freed up. But we have a ref on the page and once
362 * that page is locked, the mapping is pinned.
363 *
364 * We're allowed to run sleeping lock_page() here because we know the caller has
365 * __GFP_FS.
366 */
367static void handle_write_error(struct address_space *mapping,
368 struct page *page, int error)
369{
7eaceacc 370 lock_page(page);
3e9f45bd
GC
371 if (page_mapping(page) == mapping)
372 mapping_set_error(mapping, error);
1da177e4
LT
373 unlock_page(page);
374}
375
04e62a29
CL
376/* possible outcome of pageout() */
377typedef enum {
378 /* failed to write page out, page is locked */
379 PAGE_KEEP,
380 /* move page to the active list, page is locked */
381 PAGE_ACTIVATE,
382 /* page has been sent to the disk successfully, page is unlocked */
383 PAGE_SUCCESS,
384 /* page is clean and locked */
385 PAGE_CLEAN,
386} pageout_t;
387
1da177e4 388/*
1742f19f
AM
389 * pageout is called by shrink_page_list() for each dirty page.
390 * Calls ->writepage().
1da177e4 391 */
c661b078 392static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 393 struct scan_control *sc)
1da177e4
LT
394{
395 /*
396 * If the page is dirty, only perform writeback if that write
397 * will be non-blocking. To prevent this allocation from being
398 * stalled by pagecache activity. But note that there may be
399 * stalls if we need to run get_block(). We could test
400 * PagePrivate for that.
401 *
6aceb53b 402 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
403 * this page's queue, we can perform writeback even if that
404 * will block.
405 *
406 * If the page is swapcache, write it back even if that would
407 * block, for some throttling. This happens by accident, because
408 * swap_backing_dev_info is bust: it doesn't reflect the
409 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
410 */
411 if (!is_page_cache_freeable(page))
412 return PAGE_KEEP;
413 if (!mapping) {
414 /*
415 * Some data journaling orphaned pages can have
416 * page->mapping == NULL while being dirty with clean buffers.
417 */
266cf658 418 if (page_has_private(page)) {
1da177e4
LT
419 if (try_to_free_buffers(page)) {
420 ClearPageDirty(page);
d40cee24 421 printk("%s: orphaned page\n", __func__);
1da177e4
LT
422 return PAGE_CLEAN;
423 }
424 }
425 return PAGE_KEEP;
426 }
427 if (mapping->a_ops->writepage == NULL)
428 return PAGE_ACTIVATE;
0e093d99 429 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
430 return PAGE_KEEP;
431
432 if (clear_page_dirty_for_io(page)) {
433 int res;
434 struct writeback_control wbc = {
435 .sync_mode = WB_SYNC_NONE,
436 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
437 .range_start = 0,
438 .range_end = LLONG_MAX,
1da177e4
LT
439 .for_reclaim = 1,
440 };
441
442 SetPageReclaim(page);
443 res = mapping->a_ops->writepage(page, &wbc);
444 if (res < 0)
445 handle_write_error(mapping, page, res);
994fc28c 446 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
447 ClearPageReclaim(page);
448 return PAGE_ACTIVATE;
449 }
c661b078 450
1da177e4
LT
451 if (!PageWriteback(page)) {
452 /* synchronous write or broken a_ops? */
453 ClearPageReclaim(page);
454 }
23b9da55 455 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 456 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
457 return PAGE_SUCCESS;
458 }
459
460 return PAGE_CLEAN;
461}
462
a649fd92 463/*
e286781d
NP
464 * Same as remove_mapping, but if the page is removed from the mapping, it
465 * gets returned with a refcount of 0.
a649fd92 466 */
e286781d 467static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 468{
28e4d965
NP
469 BUG_ON(!PageLocked(page));
470 BUG_ON(mapping != page_mapping(page));
49d2e9cc 471
19fd6231 472 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 473 /*
0fd0e6b0
NP
474 * The non racy check for a busy page.
475 *
476 * Must be careful with the order of the tests. When someone has
477 * a ref to the page, it may be possible that they dirty it then
478 * drop the reference. So if PageDirty is tested before page_count
479 * here, then the following race may occur:
480 *
481 * get_user_pages(&page);
482 * [user mapping goes away]
483 * write_to(page);
484 * !PageDirty(page) [good]
485 * SetPageDirty(page);
486 * put_page(page);
487 * !page_count(page) [good, discard it]
488 *
489 * [oops, our write_to data is lost]
490 *
491 * Reversing the order of the tests ensures such a situation cannot
492 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
493 * load is not satisfied before that of page->_count.
494 *
495 * Note that if SetPageDirty is always performed via set_page_dirty,
496 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 497 */
e286781d 498 if (!page_freeze_refs(page, 2))
49d2e9cc 499 goto cannot_free;
e286781d
NP
500 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
501 if (unlikely(PageDirty(page))) {
502 page_unfreeze_refs(page, 2);
49d2e9cc 503 goto cannot_free;
e286781d 504 }
49d2e9cc
CL
505
506 if (PageSwapCache(page)) {
507 swp_entry_t swap = { .val = page_private(page) };
508 __delete_from_swap_cache(page);
19fd6231 509 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 510 swapcache_free(swap, page);
e286781d 511 } else {
6072d13c
LT
512 void (*freepage)(struct page *);
513
514 freepage = mapping->a_ops->freepage;
515
e64a782f 516 __delete_from_page_cache(page);
19fd6231 517 spin_unlock_irq(&mapping->tree_lock);
e767e056 518 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
519
520 if (freepage != NULL)
521 freepage(page);
49d2e9cc
CL
522 }
523
49d2e9cc
CL
524 return 1;
525
526cannot_free:
19fd6231 527 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
528 return 0;
529}
530
e286781d
NP
531/*
532 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
533 * someone else has a ref on the page, abort and return 0. If it was
534 * successfully detached, return 1. Assumes the caller has a single ref on
535 * this page.
536 */
537int remove_mapping(struct address_space *mapping, struct page *page)
538{
539 if (__remove_mapping(mapping, page)) {
540 /*
541 * Unfreezing the refcount with 1 rather than 2 effectively
542 * drops the pagecache ref for us without requiring another
543 * atomic operation.
544 */
545 page_unfreeze_refs(page, 1);
546 return 1;
547 }
548 return 0;
549}
550
894bc310
LS
551/**
552 * putback_lru_page - put previously isolated page onto appropriate LRU list
553 * @page: page to be put back to appropriate lru list
554 *
555 * Add previously isolated @page to appropriate LRU list.
556 * Page may still be unevictable for other reasons.
557 *
558 * lru_lock must not be held, interrupts must be enabled.
559 */
894bc310
LS
560void putback_lru_page(struct page *page)
561{
562 int lru;
563 int active = !!TestClearPageActive(page);
bbfd28ee 564 int was_unevictable = PageUnevictable(page);
894bc310
LS
565
566 VM_BUG_ON(PageLRU(page));
567
568redo:
569 ClearPageUnevictable(page);
570
571 if (page_evictable(page, NULL)) {
572 /*
573 * For evictable pages, we can use the cache.
574 * In event of a race, worst case is we end up with an
575 * unevictable page on [in]active list.
576 * We know how to handle that.
577 */
401a8e1c 578 lru = active + page_lru_base_type(page);
894bc310
LS
579 lru_cache_add_lru(page, lru);
580 } else {
581 /*
582 * Put unevictable pages directly on zone's unevictable
583 * list.
584 */
585 lru = LRU_UNEVICTABLE;
586 add_page_to_unevictable_list(page);
6a7b9548 587 /*
21ee9f39
MK
588 * When racing with an mlock or AS_UNEVICTABLE clearing
589 * (page is unlocked) make sure that if the other thread
590 * does not observe our setting of PG_lru and fails
24513264 591 * isolation/check_move_unevictable_pages,
21ee9f39 592 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
593 * the page back to the evictable list.
594 *
21ee9f39 595 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
596 */
597 smp_mb();
894bc310 598 }
894bc310
LS
599
600 /*
601 * page's status can change while we move it among lru. If an evictable
602 * page is on unevictable list, it never be freed. To avoid that,
603 * check after we added it to the list, again.
604 */
605 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
606 if (!isolate_lru_page(page)) {
607 put_page(page);
608 goto redo;
609 }
610 /* This means someone else dropped this page from LRU
611 * So, it will be freed or putback to LRU again. There is
612 * nothing to do here.
613 */
614 }
615
bbfd28ee
LS
616 if (was_unevictable && lru != LRU_UNEVICTABLE)
617 count_vm_event(UNEVICTABLE_PGRESCUED);
618 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
619 count_vm_event(UNEVICTABLE_PGCULLED);
620
894bc310
LS
621 put_page(page); /* drop ref from isolate */
622}
623
dfc8d636
JW
624enum page_references {
625 PAGEREF_RECLAIM,
626 PAGEREF_RECLAIM_CLEAN,
64574746 627 PAGEREF_KEEP,
dfc8d636
JW
628 PAGEREF_ACTIVATE,
629};
630
631static enum page_references page_check_references(struct page *page,
632 struct scan_control *sc)
633{
64574746 634 int referenced_ptes, referenced_page;
dfc8d636 635 unsigned long vm_flags;
dfc8d636 636
c3ac9a8a
JW
637 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
638 &vm_flags);
64574746 639 referenced_page = TestClearPageReferenced(page);
dfc8d636 640
dfc8d636
JW
641 /*
642 * Mlock lost the isolation race with us. Let try_to_unmap()
643 * move the page to the unevictable list.
644 */
645 if (vm_flags & VM_LOCKED)
646 return PAGEREF_RECLAIM;
647
64574746 648 if (referenced_ptes) {
e4898273 649 if (PageSwapBacked(page))
64574746
JW
650 return PAGEREF_ACTIVATE;
651 /*
652 * All mapped pages start out with page table
653 * references from the instantiating fault, so we need
654 * to look twice if a mapped file page is used more
655 * than once.
656 *
657 * Mark it and spare it for another trip around the
658 * inactive list. Another page table reference will
659 * lead to its activation.
660 *
661 * Note: the mark is set for activated pages as well
662 * so that recently deactivated but used pages are
663 * quickly recovered.
664 */
665 SetPageReferenced(page);
666
34dbc67a 667 if (referenced_page || referenced_ptes > 1)
64574746
JW
668 return PAGEREF_ACTIVATE;
669
c909e993
KK
670 /*
671 * Activate file-backed executable pages after first usage.
672 */
673 if (vm_flags & VM_EXEC)
674 return PAGEREF_ACTIVATE;
675
64574746
JW
676 return PAGEREF_KEEP;
677 }
dfc8d636
JW
678
679 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 680 if (referenced_page && !PageSwapBacked(page))
64574746
JW
681 return PAGEREF_RECLAIM_CLEAN;
682
683 return PAGEREF_RECLAIM;
dfc8d636
JW
684}
685
1da177e4 686/*
1742f19f 687 * shrink_page_list() returns the number of reclaimed pages
1da177e4 688 */
1742f19f 689static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 690 struct zone *zone,
f84f6e2b 691 struct scan_control *sc,
92df3a72
MG
692 unsigned long *ret_nr_dirty,
693 unsigned long *ret_nr_writeback)
1da177e4
LT
694{
695 LIST_HEAD(ret_pages);
abe4c3b5 696 LIST_HEAD(free_pages);
1da177e4 697 int pgactivate = 0;
0e093d99
MG
698 unsigned long nr_dirty = 0;
699 unsigned long nr_congested = 0;
05ff5137 700 unsigned long nr_reclaimed = 0;
92df3a72 701 unsigned long nr_writeback = 0;
1da177e4
LT
702
703 cond_resched();
704
1da177e4 705 while (!list_empty(page_list)) {
dfc8d636 706 enum page_references references;
1da177e4
LT
707 struct address_space *mapping;
708 struct page *page;
709 int may_enter_fs;
1da177e4
LT
710
711 cond_resched();
712
713 page = lru_to_page(page_list);
714 list_del(&page->lru);
715
529ae9aa 716 if (!trylock_page(page))
1da177e4
LT
717 goto keep;
718
725d704e 719 VM_BUG_ON(PageActive(page));
6a18adb3 720 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
721
722 sc->nr_scanned++;
80e43426 723
b291f000
NP
724 if (unlikely(!page_evictable(page, NULL)))
725 goto cull_mlocked;
894bc310 726
a6dc60f8 727 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
728 goto keep_locked;
729
1da177e4
LT
730 /* Double the slab pressure for mapped and swapcache pages */
731 if (page_mapped(page) || PageSwapCache(page))
732 sc->nr_scanned++;
733
c661b078
AW
734 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
735 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
736
737 if (PageWriteback(page)) {
92df3a72 738 nr_writeback++;
41ac1999
MG
739 unlock_page(page);
740 goto keep;
c661b078 741 }
1da177e4 742
6a18adb3 743 references = page_check_references(page, sc);
dfc8d636
JW
744 switch (references) {
745 case PAGEREF_ACTIVATE:
1da177e4 746 goto activate_locked;
64574746
JW
747 case PAGEREF_KEEP:
748 goto keep_locked;
dfc8d636
JW
749 case PAGEREF_RECLAIM:
750 case PAGEREF_RECLAIM_CLEAN:
751 ; /* try to reclaim the page below */
752 }
1da177e4 753
1da177e4
LT
754 /*
755 * Anonymous process memory has backing store?
756 * Try to allocate it some swap space here.
757 */
b291f000 758 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
759 if (!(sc->gfp_mask & __GFP_IO))
760 goto keep_locked;
ac47b003 761 if (!add_to_swap(page))
1da177e4 762 goto activate_locked;
63eb6b93 763 may_enter_fs = 1;
b291f000 764 }
1da177e4
LT
765
766 mapping = page_mapping(page);
1da177e4
LT
767
768 /*
769 * The page is mapped into the page tables of one or more
770 * processes. Try to unmap it here.
771 */
772 if (page_mapped(page) && mapping) {
14fa31b8 773 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
774 case SWAP_FAIL:
775 goto activate_locked;
776 case SWAP_AGAIN:
777 goto keep_locked;
b291f000
NP
778 case SWAP_MLOCK:
779 goto cull_mlocked;
1da177e4
LT
780 case SWAP_SUCCESS:
781 ; /* try to free the page below */
782 }
783 }
784
785 if (PageDirty(page)) {
0e093d99
MG
786 nr_dirty++;
787
ee72886d
MG
788 /*
789 * Only kswapd can writeback filesystem pages to
f84f6e2b
MG
790 * avoid risk of stack overflow but do not writeback
791 * unless under significant pressure.
ee72886d 792 */
f84f6e2b 793 if (page_is_file_cache(page) &&
9e3b2f8c
KK
794 (!current_is_kswapd() ||
795 sc->priority >= DEF_PRIORITY - 2)) {
49ea7eb6
MG
796 /*
797 * Immediately reclaim when written back.
798 * Similar in principal to deactivate_page()
799 * except we already have the page isolated
800 * and know it's dirty
801 */
802 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
803 SetPageReclaim(page);
804
ee72886d
MG
805 goto keep_locked;
806 }
807
dfc8d636 808 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 809 goto keep_locked;
4dd4b920 810 if (!may_enter_fs)
1da177e4 811 goto keep_locked;
52a8363e 812 if (!sc->may_writepage)
1da177e4
LT
813 goto keep_locked;
814
815 /* Page is dirty, try to write it out here */
7d3579e8 816 switch (pageout(page, mapping, sc)) {
1da177e4 817 case PAGE_KEEP:
0e093d99 818 nr_congested++;
1da177e4
LT
819 goto keep_locked;
820 case PAGE_ACTIVATE:
821 goto activate_locked;
822 case PAGE_SUCCESS:
7d3579e8 823 if (PageWriteback(page))
41ac1999 824 goto keep;
7d3579e8 825 if (PageDirty(page))
1da177e4 826 goto keep;
7d3579e8 827
1da177e4
LT
828 /*
829 * A synchronous write - probably a ramdisk. Go
830 * ahead and try to reclaim the page.
831 */
529ae9aa 832 if (!trylock_page(page))
1da177e4
LT
833 goto keep;
834 if (PageDirty(page) || PageWriteback(page))
835 goto keep_locked;
836 mapping = page_mapping(page);
837 case PAGE_CLEAN:
838 ; /* try to free the page below */
839 }
840 }
841
842 /*
843 * If the page has buffers, try to free the buffer mappings
844 * associated with this page. If we succeed we try to free
845 * the page as well.
846 *
847 * We do this even if the page is PageDirty().
848 * try_to_release_page() does not perform I/O, but it is
849 * possible for a page to have PageDirty set, but it is actually
850 * clean (all its buffers are clean). This happens if the
851 * buffers were written out directly, with submit_bh(). ext3
894bc310 852 * will do this, as well as the blockdev mapping.
1da177e4
LT
853 * try_to_release_page() will discover that cleanness and will
854 * drop the buffers and mark the page clean - it can be freed.
855 *
856 * Rarely, pages can have buffers and no ->mapping. These are
857 * the pages which were not successfully invalidated in
858 * truncate_complete_page(). We try to drop those buffers here
859 * and if that worked, and the page is no longer mapped into
860 * process address space (page_count == 1) it can be freed.
861 * Otherwise, leave the page on the LRU so it is swappable.
862 */
266cf658 863 if (page_has_private(page)) {
1da177e4
LT
864 if (!try_to_release_page(page, sc->gfp_mask))
865 goto activate_locked;
e286781d
NP
866 if (!mapping && page_count(page) == 1) {
867 unlock_page(page);
868 if (put_page_testzero(page))
869 goto free_it;
870 else {
871 /*
872 * rare race with speculative reference.
873 * the speculative reference will free
874 * this page shortly, so we may
875 * increment nr_reclaimed here (and
876 * leave it off the LRU).
877 */
878 nr_reclaimed++;
879 continue;
880 }
881 }
1da177e4
LT
882 }
883
e286781d 884 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 885 goto keep_locked;
1da177e4 886
a978d6f5
NP
887 /*
888 * At this point, we have no other references and there is
889 * no way to pick any more up (removed from LRU, removed
890 * from pagecache). Can use non-atomic bitops now (and
891 * we obviously don't have to worry about waking up a process
892 * waiting on the page lock, because there are no references.
893 */
894 __clear_page_locked(page);
e286781d 895free_it:
05ff5137 896 nr_reclaimed++;
abe4c3b5
MG
897
898 /*
899 * Is there need to periodically free_page_list? It would
900 * appear not as the counts should be low
901 */
902 list_add(&page->lru, &free_pages);
1da177e4
LT
903 continue;
904
b291f000 905cull_mlocked:
63d6c5ad
HD
906 if (PageSwapCache(page))
907 try_to_free_swap(page);
b291f000
NP
908 unlock_page(page);
909 putback_lru_page(page);
910 continue;
911
1da177e4 912activate_locked:
68a22394
RR
913 /* Not a candidate for swapping, so reclaim swap space. */
914 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 915 try_to_free_swap(page);
894bc310 916 VM_BUG_ON(PageActive(page));
1da177e4
LT
917 SetPageActive(page);
918 pgactivate++;
919keep_locked:
920 unlock_page(page);
921keep:
922 list_add(&page->lru, &ret_pages);
b291f000 923 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 924 }
abe4c3b5 925
0e093d99
MG
926 /*
927 * Tag a zone as congested if all the dirty pages encountered were
928 * backed by a congested BDI. In this case, reclaimers should just
929 * back off and wait for congestion to clear because further reclaim
930 * will encounter the same problem
931 */
89b5fae5 932 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
6a18adb3 933 zone_set_flag(zone, ZONE_CONGESTED);
0e093d99 934
cc59850e 935 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 936
1da177e4 937 list_splice(&ret_pages, page_list);
f8891e5e 938 count_vm_events(PGACTIVATE, pgactivate);
92df3a72
MG
939 *ret_nr_dirty += nr_dirty;
940 *ret_nr_writeback += nr_writeback;
05ff5137 941 return nr_reclaimed;
1da177e4
LT
942}
943
5ad333eb
AW
944/*
945 * Attempt to remove the specified page from its LRU. Only take this page
946 * if it is of the appropriate PageActive status. Pages which are being
947 * freed elsewhere are also ignored.
948 *
949 * page: page to consider
950 * mode: one of the LRU isolation modes defined above
951 *
952 * returns 0 on success, -ve errno on failure.
953 */
f3fd4a61 954int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
955{
956 int ret = -EINVAL;
957
958 /* Only take pages on the LRU. */
959 if (!PageLRU(page))
960 return ret;
961
c53919ad 962 /* Do not give back unevictable pages for compaction */
894bc310
LS
963 if (PageUnevictable(page))
964 return ret;
965
5ad333eb 966 ret = -EBUSY;
08e552c6 967
c8244935
MG
968 /*
969 * To minimise LRU disruption, the caller can indicate that it only
970 * wants to isolate pages it will be able to operate on without
971 * blocking - clean pages for the most part.
972 *
973 * ISOLATE_CLEAN means that only clean pages should be isolated. This
974 * is used by reclaim when it is cannot write to backing storage
975 *
976 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
977 * that it is possible to migrate without blocking
978 */
979 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
980 /* All the caller can do on PageWriteback is block */
981 if (PageWriteback(page))
982 return ret;
983
984 if (PageDirty(page)) {
985 struct address_space *mapping;
986
987 /* ISOLATE_CLEAN means only clean pages */
988 if (mode & ISOLATE_CLEAN)
989 return ret;
990
991 /*
992 * Only pages without mappings or that have a
993 * ->migratepage callback are possible to migrate
994 * without blocking
995 */
996 mapping = page_mapping(page);
997 if (mapping && !mapping->a_ops->migratepage)
998 return ret;
999 }
1000 }
39deaf85 1001
f80c0673
MK
1002 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1003 return ret;
1004
5ad333eb
AW
1005 if (likely(get_page_unless_zero(page))) {
1006 /*
1007 * Be careful not to clear PageLRU until after we're
1008 * sure the page is not being freed elsewhere -- the
1009 * page release code relies on it.
1010 */
1011 ClearPageLRU(page);
1012 ret = 0;
1013 }
1014
1015 return ret;
1016}
1017
1da177e4
LT
1018/*
1019 * zone->lru_lock is heavily contended. Some of the functions that
1020 * shrink the lists perform better by taking out a batch of pages
1021 * and working on them outside the LRU lock.
1022 *
1023 * For pagecache intensive workloads, this function is the hottest
1024 * spot in the kernel (apart from copy_*_user functions).
1025 *
1026 * Appropriate locks must be held before calling this function.
1027 *
1028 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1029 * @lruvec: The LRU vector to pull pages from.
1da177e4 1030 * @dst: The temp list to put pages on to.
f626012d 1031 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1032 * @sc: The scan_control struct for this reclaim session
5ad333eb 1033 * @mode: One of the LRU isolation modes
3cb99451 1034 * @lru: LRU list id for isolating
1da177e4
LT
1035 *
1036 * returns how many pages were moved onto *@dst.
1037 */
69e05944 1038static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1039 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1040 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1041 isolate_mode_t mode, enum lru_list lru)
1da177e4 1042{
f626012d 1043 struct list_head *src;
69e05944 1044 unsigned long nr_taken = 0;
c9b02d97 1045 unsigned long scan;
3cb99451 1046 int file = is_file_lru(lru);
f626012d 1047
f626012d 1048 src = &lruvec->lists[lru];
1da177e4 1049
c9b02d97 1050 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1051 struct page *page;
5ad333eb 1052
1da177e4
LT
1053 page = lru_to_page(src);
1054 prefetchw_prev_lru_page(page, src, flags);
1055
725d704e 1056 VM_BUG_ON(!PageLRU(page));
8d438f96 1057
f3fd4a61 1058 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1059 case 0:
bbf808ed 1060 mem_cgroup_lru_del_list(page, lru);
5ad333eb 1061 list_move(&page->lru, dst);
2c888cfb 1062 nr_taken += hpage_nr_pages(page);
5ad333eb
AW
1063 break;
1064
1065 case -EBUSY:
1066 /* else it is being freed elsewhere */
1067 list_move(&page->lru, src);
1068 continue;
46453a6e 1069
5ad333eb
AW
1070 default:
1071 BUG();
1072 }
1da177e4
LT
1073 }
1074
f626012d 1075 *nr_scanned = scan;
a8a94d15 1076
fe2c2a10 1077 trace_mm_vmscan_lru_isolate(sc->order,
a8a94d15
MG
1078 nr_to_scan, scan,
1079 nr_taken,
ea4d349f 1080 mode, file);
1da177e4
LT
1081 return nr_taken;
1082}
1083
62695a84
NP
1084/**
1085 * isolate_lru_page - tries to isolate a page from its LRU list
1086 * @page: page to isolate from its LRU list
1087 *
1088 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1089 * vmstat statistic corresponding to whatever LRU list the page was on.
1090 *
1091 * Returns 0 if the page was removed from an LRU list.
1092 * Returns -EBUSY if the page was not on an LRU list.
1093 *
1094 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1095 * the active list, it will have PageActive set. If it was found on
1096 * the unevictable list, it will have the PageUnevictable bit set. That flag
1097 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1098 *
1099 * The vmstat statistic corresponding to the list on which the page was
1100 * found will be decremented.
1101 *
1102 * Restrictions:
1103 * (1) Must be called with an elevated refcount on the page. This is a
1104 * fundamentnal difference from isolate_lru_pages (which is called
1105 * without a stable reference).
1106 * (2) the lru_lock must not be held.
1107 * (3) interrupts must be enabled.
1108 */
1109int isolate_lru_page(struct page *page)
1110{
1111 int ret = -EBUSY;
1112
0c917313
KK
1113 VM_BUG_ON(!page_count(page));
1114
62695a84
NP
1115 if (PageLRU(page)) {
1116 struct zone *zone = page_zone(page);
1117
1118 spin_lock_irq(&zone->lru_lock);
0c917313 1119 if (PageLRU(page)) {
894bc310 1120 int lru = page_lru(page);
62695a84 1121 ret = 0;
0c917313 1122 get_page(page);
62695a84 1123 ClearPageLRU(page);
4f98a2fe 1124
4f98a2fe 1125 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1126 }
1127 spin_unlock_irq(&zone->lru_lock);
1128 }
1129 return ret;
1130}
1131
35cd7815
RR
1132/*
1133 * Are there way too many processes in the direct reclaim path already?
1134 */
1135static int too_many_isolated(struct zone *zone, int file,
1136 struct scan_control *sc)
1137{
1138 unsigned long inactive, isolated;
1139
1140 if (current_is_kswapd())
1141 return 0;
1142
89b5fae5 1143 if (!global_reclaim(sc))
35cd7815
RR
1144 return 0;
1145
1146 if (file) {
1147 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1148 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1149 } else {
1150 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1151 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1152 }
1153
1154 return isolated > inactive;
1155}
1156
66635629 1157static noinline_for_stack void
3f79768f
HD
1158putback_inactive_pages(struct mem_cgroup_zone *mz,
1159 struct list_head *page_list)
66635629 1160{
f16015fb 1161 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
3f79768f
HD
1162 struct zone *zone = mz->zone;
1163 LIST_HEAD(pages_to_free);
66635629 1164
66635629
MG
1165 /*
1166 * Put back any unfreeable pages.
1167 */
66635629 1168 while (!list_empty(page_list)) {
3f79768f 1169 struct page *page = lru_to_page(page_list);
66635629 1170 int lru;
3f79768f 1171
66635629
MG
1172 VM_BUG_ON(PageLRU(page));
1173 list_del(&page->lru);
1174 if (unlikely(!page_evictable(page, NULL))) {
1175 spin_unlock_irq(&zone->lru_lock);
1176 putback_lru_page(page);
1177 spin_lock_irq(&zone->lru_lock);
1178 continue;
1179 }
7a608572 1180 SetPageLRU(page);
66635629 1181 lru = page_lru(page);
7a608572 1182 add_page_to_lru_list(zone, page, lru);
66635629
MG
1183 if (is_active_lru(lru)) {
1184 int file = is_file_lru(lru);
9992af10
RR
1185 int numpages = hpage_nr_pages(page);
1186 reclaim_stat->recent_rotated[file] += numpages;
66635629 1187 }
2bcf8879
HD
1188 if (put_page_testzero(page)) {
1189 __ClearPageLRU(page);
1190 __ClearPageActive(page);
1191 del_page_from_lru_list(zone, page, lru);
1192
1193 if (unlikely(PageCompound(page))) {
1194 spin_unlock_irq(&zone->lru_lock);
1195 (*get_compound_page_dtor(page))(page);
1196 spin_lock_irq(&zone->lru_lock);
1197 } else
1198 list_add(&page->lru, &pages_to_free);
66635629
MG
1199 }
1200 }
66635629 1201
3f79768f
HD
1202 /*
1203 * To save our caller's stack, now use input list for pages to free.
1204 */
1205 list_splice(&pages_to_free, page_list);
66635629
MG
1206}
1207
f16015fb
JW
1208static noinline_for_stack void
1209update_isolated_counts(struct mem_cgroup_zone *mz,
3f79768f 1210 struct list_head *page_list,
f16015fb 1211 unsigned long *nr_anon,
3f79768f 1212 unsigned long *nr_file)
1489fa14 1213{
f16015fb 1214 struct zone *zone = mz->zone;
1489fa14 1215 unsigned int count[NR_LRU_LISTS] = { 0, };
3f79768f
HD
1216 unsigned long nr_active = 0;
1217 struct page *page;
1218 int lru;
1219
1220 /*
1221 * Count pages and clear active flags
1222 */
1223 list_for_each_entry(page, page_list, lru) {
1224 int numpages = hpage_nr_pages(page);
1225 lru = page_lru_base_type(page);
1226 if (PageActive(page)) {
1227 lru += LRU_ACTIVE;
1228 ClearPageActive(page);
1229 nr_active += numpages;
1230 }
1231 count[lru] += numpages;
1232 }
1489fa14 1233
d563c050 1234 preempt_disable();
1489fa14
MG
1235 __count_vm_events(PGDEACTIVATE, nr_active);
1236
1237 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1238 -count[LRU_ACTIVE_FILE]);
1239 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1240 -count[LRU_INACTIVE_FILE]);
1241 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1242 -count[LRU_ACTIVE_ANON]);
1243 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1244 -count[LRU_INACTIVE_ANON]);
1245
1246 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1247 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1489fa14 1248
d563c050
HD
1249 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1250 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1251 preempt_enable();
1489fa14
MG
1252}
1253
1da177e4 1254/*
1742f19f
AM
1255 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1256 * of reclaimed pages
1da177e4 1257 */
66635629 1258static noinline_for_stack unsigned long
f16015fb 1259shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
9e3b2f8c 1260 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1261{
1262 LIST_HEAD(page_list);
e247dbce 1263 unsigned long nr_scanned;
05ff5137 1264 unsigned long nr_reclaimed = 0;
e247dbce 1265 unsigned long nr_taken;
e247dbce
KM
1266 unsigned long nr_anon;
1267 unsigned long nr_file;
92df3a72
MG
1268 unsigned long nr_dirty = 0;
1269 unsigned long nr_writeback = 0;
f3fd4a61 1270 isolate_mode_t isolate_mode = 0;
3cb99451 1271 int file = is_file_lru(lru);
f16015fb 1272 struct zone *zone = mz->zone;
d563c050 1273 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
5dc35979 1274 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, mz->mem_cgroup);
78dc583d 1275
35cd7815 1276 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1277 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1278
1279 /* We are about to die and free our memory. Return now. */
1280 if (fatal_signal_pending(current))
1281 return SWAP_CLUSTER_MAX;
1282 }
1283
1da177e4 1284 lru_add_drain();
f80c0673
MK
1285
1286 if (!sc->may_unmap)
61317289 1287 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1288 if (!sc->may_writepage)
61317289 1289 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1290
1da177e4 1291 spin_lock_irq(&zone->lru_lock);
b35ea17b 1292
5dc35979
KK
1293 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1294 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1295 if (global_reclaim(sc)) {
e247dbce
KM
1296 zone->pages_scanned += nr_scanned;
1297 if (current_is_kswapd())
1298 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1299 nr_scanned);
1300 else
1301 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1302 nr_scanned);
e247dbce 1303 }
d563c050 1304 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1305
d563c050 1306 if (nr_taken == 0)
66635629 1307 return 0;
5ad333eb 1308
3f79768f
HD
1309 update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1310
6a18adb3 1311 nr_reclaimed = shrink_page_list(&page_list, zone, sc,
92df3a72 1312 &nr_dirty, &nr_writeback);
c661b078 1313
3f79768f
HD
1314 spin_lock_irq(&zone->lru_lock);
1315
d563c050
HD
1316 reclaim_stat->recent_scanned[0] += nr_anon;
1317 reclaim_stat->recent_scanned[1] += nr_file;
1318
904249aa
YH
1319 if (global_reclaim(sc)) {
1320 if (current_is_kswapd())
1321 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1322 nr_reclaimed);
1323 else
1324 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1325 nr_reclaimed);
1326 }
a74609fa 1327
3f79768f
HD
1328 putback_inactive_pages(mz, &page_list);
1329
1330 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1331 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1332
1333 spin_unlock_irq(&zone->lru_lock);
1334
1335 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1336
92df3a72
MG
1337 /*
1338 * If reclaim is isolating dirty pages under writeback, it implies
1339 * that the long-lived page allocation rate is exceeding the page
1340 * laundering rate. Either the global limits are not being effective
1341 * at throttling processes due to the page distribution throughout
1342 * zones or there is heavy usage of a slow backing device. The
1343 * only option is to throttle from reclaim context which is not ideal
1344 * as there is no guarantee the dirtying process is throttled in the
1345 * same way balance_dirty_pages() manages.
1346 *
1347 * This scales the number of dirty pages that must be under writeback
1348 * before throttling depending on priority. It is a simple backoff
1349 * function that has the most effect in the range DEF_PRIORITY to
1350 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1351 * in trouble and reclaim is considered to be in trouble.
1352 *
1353 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1354 * DEF_PRIORITY-1 50% must be PageWriteback
1355 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1356 * ...
1357 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1358 * isolated page is PageWriteback
1359 */
9e3b2f8c
KK
1360 if (nr_writeback && nr_writeback >=
1361 (nr_taken >> (DEF_PRIORITY - sc->priority)))
92df3a72
MG
1362 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1363
e11da5b4
MG
1364 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1365 zone_idx(zone),
1366 nr_scanned, nr_reclaimed,
9e3b2f8c 1367 sc->priority,
23b9da55 1368 trace_shrink_flags(file));
05ff5137 1369 return nr_reclaimed;
1da177e4
LT
1370}
1371
1372/*
1373 * This moves pages from the active list to the inactive list.
1374 *
1375 * We move them the other way if the page is referenced by one or more
1376 * processes, from rmap.
1377 *
1378 * If the pages are mostly unmapped, the processing is fast and it is
1379 * appropriate to hold zone->lru_lock across the whole operation. But if
1380 * the pages are mapped, the processing is slow (page_referenced()) so we
1381 * should drop zone->lru_lock around each page. It's impossible to balance
1382 * this, so instead we remove the pages from the LRU while processing them.
1383 * It is safe to rely on PG_active against the non-LRU pages in here because
1384 * nobody will play with that bit on a non-LRU page.
1385 *
1386 * The downside is that we have to touch page->_count against each page.
1387 * But we had to alter page->flags anyway.
1388 */
1cfb419b 1389
3eb4140f
WF
1390static void move_active_pages_to_lru(struct zone *zone,
1391 struct list_head *list,
2bcf8879 1392 struct list_head *pages_to_free,
3eb4140f
WF
1393 enum lru_list lru)
1394{
1395 unsigned long pgmoved = 0;
3eb4140f
WF
1396 struct page *page;
1397
3eb4140f 1398 while (!list_empty(list)) {
925b7673
JW
1399 struct lruvec *lruvec;
1400
3eb4140f 1401 page = lru_to_page(list);
3eb4140f
WF
1402
1403 VM_BUG_ON(PageLRU(page));
1404 SetPageLRU(page);
1405
925b7673
JW
1406 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1407 list_move(&page->lru, &lruvec->lists[lru]);
2c888cfb 1408 pgmoved += hpage_nr_pages(page);
3eb4140f 1409
2bcf8879
HD
1410 if (put_page_testzero(page)) {
1411 __ClearPageLRU(page);
1412 __ClearPageActive(page);
1413 del_page_from_lru_list(zone, page, lru);
1414
1415 if (unlikely(PageCompound(page))) {
1416 spin_unlock_irq(&zone->lru_lock);
1417 (*get_compound_page_dtor(page))(page);
1418 spin_lock_irq(&zone->lru_lock);
1419 } else
1420 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1421 }
1422 }
1423 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1424 if (!is_active_lru(lru))
1425 __count_vm_events(PGDEACTIVATE, pgmoved);
1426}
1cfb419b 1427
f626012d 1428static void shrink_active_list(unsigned long nr_to_scan,
f16015fb
JW
1429 struct mem_cgroup_zone *mz,
1430 struct scan_control *sc,
9e3b2f8c 1431 enum lru_list lru)
1da177e4 1432{
44c241f1 1433 unsigned long nr_taken;
f626012d 1434 unsigned long nr_scanned;
6fe6b7e3 1435 unsigned long vm_flags;
1da177e4 1436 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1437 LIST_HEAD(l_active);
b69408e8 1438 LIST_HEAD(l_inactive);
1da177e4 1439 struct page *page;
f16015fb 1440 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
44c241f1 1441 unsigned long nr_rotated = 0;
f3fd4a61 1442 isolate_mode_t isolate_mode = 0;
3cb99451 1443 int file = is_file_lru(lru);
f16015fb 1444 struct zone *zone = mz->zone;
5dc35979 1445 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, mz->mem_cgroup);
1da177e4
LT
1446
1447 lru_add_drain();
f80c0673
MK
1448
1449 if (!sc->may_unmap)
61317289 1450 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1451 if (!sc->may_writepage)
61317289 1452 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1453
1da177e4 1454 spin_lock_irq(&zone->lru_lock);
925b7673 1455
5dc35979
KK
1456 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1457 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1458 if (global_reclaim(sc))
f626012d 1459 zone->pages_scanned += nr_scanned;
89b5fae5 1460
b7c46d15 1461 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1462
f626012d 1463 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1464 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1465 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1466 spin_unlock_irq(&zone->lru_lock);
1467
1da177e4
LT
1468 while (!list_empty(&l_hold)) {
1469 cond_resched();
1470 page = lru_to_page(&l_hold);
1471 list_del(&page->lru);
7e9cd484 1472
894bc310
LS
1473 if (unlikely(!page_evictable(page, NULL))) {
1474 putback_lru_page(page);
1475 continue;
1476 }
1477
cc715d99
MG
1478 if (unlikely(buffer_heads_over_limit)) {
1479 if (page_has_private(page) && trylock_page(page)) {
1480 if (page_has_private(page))
1481 try_to_release_page(page, 0);
1482 unlock_page(page);
1483 }
1484 }
1485
c3ac9a8a
JW
1486 if (page_referenced(page, 0, sc->target_mem_cgroup,
1487 &vm_flags)) {
9992af10 1488 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1489 /*
1490 * Identify referenced, file-backed active pages and
1491 * give them one more trip around the active list. So
1492 * that executable code get better chances to stay in
1493 * memory under moderate memory pressure. Anon pages
1494 * are not likely to be evicted by use-once streaming
1495 * IO, plus JVM can create lots of anon VM_EXEC pages,
1496 * so we ignore them here.
1497 */
41e20983 1498 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1499 list_add(&page->lru, &l_active);
1500 continue;
1501 }
1502 }
7e9cd484 1503
5205e56e 1504 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1505 list_add(&page->lru, &l_inactive);
1506 }
1507
b555749a 1508 /*
8cab4754 1509 * Move pages back to the lru list.
b555749a 1510 */
2a1dc509 1511 spin_lock_irq(&zone->lru_lock);
556adecb 1512 /*
8cab4754
WF
1513 * Count referenced pages from currently used mappings as rotated,
1514 * even though only some of them are actually re-activated. This
1515 * helps balance scan pressure between file and anonymous pages in
1516 * get_scan_ratio.
7e9cd484 1517 */
b7c46d15 1518 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1519
3cb99451
KK
1520 move_active_pages_to_lru(zone, &l_active, &l_hold, lru);
1521 move_active_pages_to_lru(zone, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1522 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1523 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1524
1525 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1526}
1527
74e3f3c3 1528#ifdef CONFIG_SWAP
14797e23 1529static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1530{
1531 unsigned long active, inactive;
1532
1533 active = zone_page_state(zone, NR_ACTIVE_ANON);
1534 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1535
1536 if (inactive * zone->inactive_ratio < active)
1537 return 1;
1538
1539 return 0;
1540}
1541
14797e23
KM
1542/**
1543 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1544 * @zone: zone to check
1545 * @sc: scan control of this context
1546 *
1547 * Returns true if the zone does not have enough inactive anon pages,
1548 * meaning some active anon pages need to be deactivated.
1549 */
f16015fb 1550static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
14797e23 1551{
74e3f3c3
MK
1552 /*
1553 * If we don't have swap space, anonymous page deactivation
1554 * is pointless.
1555 */
1556 if (!total_swap_pages)
1557 return 0;
1558
c3c787e8 1559 if (!mem_cgroup_disabled())
f16015fb
JW
1560 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1561 mz->zone);
1562
1563 return inactive_anon_is_low_global(mz->zone);
14797e23 1564}
74e3f3c3 1565#else
f16015fb 1566static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
74e3f3c3
MK
1567{
1568 return 0;
1569}
1570#endif
14797e23 1571
56e49d21
RR
1572static int inactive_file_is_low_global(struct zone *zone)
1573{
1574 unsigned long active, inactive;
1575
1576 active = zone_page_state(zone, NR_ACTIVE_FILE);
1577 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1578
1579 return (active > inactive);
1580}
1581
1582/**
1583 * inactive_file_is_low - check if file pages need to be deactivated
f16015fb 1584 * @mz: memory cgroup and zone to check
56e49d21
RR
1585 *
1586 * When the system is doing streaming IO, memory pressure here
1587 * ensures that active file pages get deactivated, until more
1588 * than half of the file pages are on the inactive list.
1589 *
1590 * Once we get to that situation, protect the system's working
1591 * set from being evicted by disabling active file page aging.
1592 *
1593 * This uses a different ratio than the anonymous pages, because
1594 * the page cache uses a use-once replacement algorithm.
1595 */
f16015fb 1596static int inactive_file_is_low(struct mem_cgroup_zone *mz)
56e49d21 1597{
c3c787e8 1598 if (!mem_cgroup_disabled())
f16015fb
JW
1599 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1600 mz->zone);
56e49d21 1601
f16015fb 1602 return inactive_file_is_low_global(mz->zone);
56e49d21
RR
1603}
1604
f16015fb 1605static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
b39415b2
RR
1606{
1607 if (file)
f16015fb 1608 return inactive_file_is_low(mz);
b39415b2 1609 else
f16015fb 1610 return inactive_anon_is_low(mz);
b39415b2
RR
1611}
1612
4f98a2fe 1613static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
f16015fb 1614 struct mem_cgroup_zone *mz,
9e3b2f8c 1615 struct scan_control *sc)
b69408e8 1616{
4f98a2fe
RR
1617 int file = is_file_lru(lru);
1618
b39415b2 1619 if (is_active_lru(lru)) {
f16015fb 1620 if (inactive_list_is_low(mz, file))
9e3b2f8c 1621 shrink_active_list(nr_to_scan, mz, sc, lru);
556adecb
RR
1622 return 0;
1623 }
1624
9e3b2f8c 1625 return shrink_inactive_list(nr_to_scan, mz, sc, lru);
4f98a2fe
RR
1626}
1627
3d58ab5c 1628static int vmscan_swappiness(struct scan_control *sc)
1f4c025b 1629{
89b5fae5 1630 if (global_reclaim(sc))
1f4c025b 1631 return vm_swappiness;
3d58ab5c 1632 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1f4c025b
KH
1633}
1634
4f98a2fe
RR
1635/*
1636 * Determine how aggressively the anon and file LRU lists should be
1637 * scanned. The relative value of each set of LRU lists is determined
1638 * by looking at the fraction of the pages scanned we did rotate back
1639 * onto the active list instead of evict.
1640 *
76a33fc3 1641 * nr[0] = anon pages to scan; nr[1] = file pages to scan
4f98a2fe 1642 */
f16015fb 1643static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
9e3b2f8c 1644 unsigned long *nr)
4f98a2fe
RR
1645{
1646 unsigned long anon, file, free;
1647 unsigned long anon_prio, file_prio;
1648 unsigned long ap, fp;
f16015fb 1649 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
76a33fc3 1650 u64 fraction[2], denominator;
4111304d 1651 enum lru_list lru;
76a33fc3 1652 int noswap = 0;
a4d3e9e7 1653 bool force_scan = false;
246e87a9 1654
f11c0ca5
JW
1655 /*
1656 * If the zone or memcg is small, nr[l] can be 0. This
1657 * results in no scanning on this priority and a potential
1658 * priority drop. Global direct reclaim can go to the next
1659 * zone and tends to have no problems. Global kswapd is for
1660 * zone balancing and it needs to scan a minimum amount. When
1661 * reclaiming for a memcg, a priority drop can cause high
1662 * latencies, so it's better to scan a minimum amount there as
1663 * well.
1664 */
b95a2f2d 1665 if (current_is_kswapd() && mz->zone->all_unreclaimable)
a4d3e9e7 1666 force_scan = true;
89b5fae5 1667 if (!global_reclaim(sc))
a4d3e9e7 1668 force_scan = true;
76a33fc3
SL
1669
1670 /* If we have no swap space, do not bother scanning anon pages. */
1671 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1672 noswap = 1;
1673 fraction[0] = 0;
1674 fraction[1] = 1;
1675 denominator = 1;
1676 goto out;
1677 }
4f98a2fe 1678
f16015fb
JW
1679 anon = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1680 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1681 file = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1682 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
a4d3e9e7 1683
89b5fae5 1684 if (global_reclaim(sc)) {
f16015fb 1685 free = zone_page_state(mz->zone, NR_FREE_PAGES);
eeee9a8c
KM
1686 /* If we have very few page cache pages,
1687 force-scan anon pages. */
f16015fb 1688 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
76a33fc3
SL
1689 fraction[0] = 1;
1690 fraction[1] = 0;
1691 denominator = 1;
1692 goto out;
eeee9a8c 1693 }
4f98a2fe
RR
1694 }
1695
58c37f6e
KM
1696 /*
1697 * With swappiness at 100, anonymous and file have the same priority.
1698 * This scanning priority is essentially the inverse of IO cost.
1699 */
3d58ab5c
KK
1700 anon_prio = vmscan_swappiness(sc);
1701 file_prio = 200 - vmscan_swappiness(sc);
58c37f6e 1702
4f98a2fe
RR
1703 /*
1704 * OK, so we have swap space and a fair amount of page cache
1705 * pages. We use the recently rotated / recently scanned
1706 * ratios to determine how valuable each cache is.
1707 *
1708 * Because workloads change over time (and to avoid overflow)
1709 * we keep these statistics as a floating average, which ends
1710 * up weighing recent references more than old ones.
1711 *
1712 * anon in [0], file in [1]
1713 */
f16015fb 1714 spin_lock_irq(&mz->zone->lru_lock);
6e901571 1715 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1716 reclaim_stat->recent_scanned[0] /= 2;
1717 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1718 }
1719
6e901571 1720 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1721 reclaim_stat->recent_scanned[1] /= 2;
1722 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1723 }
1724
4f98a2fe 1725 /*
00d8089c
RR
1726 * The amount of pressure on anon vs file pages is inversely
1727 * proportional to the fraction of recently scanned pages on
1728 * each list that were recently referenced and in active use.
4f98a2fe 1729 */
fe35004f 1730 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1731 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1732
fe35004f 1733 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1734 fp /= reclaim_stat->recent_rotated[1] + 1;
f16015fb 1735 spin_unlock_irq(&mz->zone->lru_lock);
4f98a2fe 1736
76a33fc3
SL
1737 fraction[0] = ap;
1738 fraction[1] = fp;
1739 denominator = ap + fp + 1;
1740out:
4111304d
HD
1741 for_each_evictable_lru(lru) {
1742 int file = is_file_lru(lru);
76a33fc3 1743 unsigned long scan;
6e08a369 1744
4111304d 1745 scan = zone_nr_lru_pages(mz, lru);
9e3b2f8c
KK
1746 if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1747 scan >>= sc->priority;
f11c0ca5
JW
1748 if (!scan && force_scan)
1749 scan = SWAP_CLUSTER_MAX;
76a33fc3
SL
1750 scan = div64_u64(scan * fraction[file], denominator);
1751 }
4111304d 1752 nr[lru] = scan;
76a33fc3 1753 }
6e08a369 1754}
4f98a2fe 1755
23b9da55 1756/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 1757static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55
MG
1758{
1759 if (COMPACTION_BUILD && sc->order &&
1760 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 1761 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
1762 return true;
1763
1764 return false;
1765}
1766
3e7d3449 1767/*
23b9da55
MG
1768 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1769 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1770 * true if more pages should be reclaimed such that when the page allocator
1771 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1772 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 1773 */
f16015fb 1774static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
3e7d3449
MG
1775 unsigned long nr_reclaimed,
1776 unsigned long nr_scanned,
1777 struct scan_control *sc)
1778{
1779 unsigned long pages_for_compaction;
1780 unsigned long inactive_lru_pages;
1781
1782 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 1783 if (!in_reclaim_compaction(sc))
3e7d3449
MG
1784 return false;
1785
2876592f
MG
1786 /* Consider stopping depending on scan and reclaim activity */
1787 if (sc->gfp_mask & __GFP_REPEAT) {
1788 /*
1789 * For __GFP_REPEAT allocations, stop reclaiming if the
1790 * full LRU list has been scanned and we are still failing
1791 * to reclaim pages. This full LRU scan is potentially
1792 * expensive but a __GFP_REPEAT caller really wants to succeed
1793 */
1794 if (!nr_reclaimed && !nr_scanned)
1795 return false;
1796 } else {
1797 /*
1798 * For non-__GFP_REPEAT allocations which can presumably
1799 * fail without consequence, stop if we failed to reclaim
1800 * any pages from the last SWAP_CLUSTER_MAX number of
1801 * pages that were scanned. This will return to the
1802 * caller faster at the risk reclaim/compaction and
1803 * the resulting allocation attempt fails
1804 */
1805 if (!nr_reclaimed)
1806 return false;
1807 }
3e7d3449
MG
1808
1809 /*
1810 * If we have not reclaimed enough pages for compaction and the
1811 * inactive lists are large enough, continue reclaiming
1812 */
1813 pages_for_compaction = (2UL << sc->order);
f16015fb 1814 inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
86cfd3a4 1815 if (nr_swap_pages > 0)
f16015fb 1816 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
3e7d3449
MG
1817 if (sc->nr_reclaimed < pages_for_compaction &&
1818 inactive_lru_pages > pages_for_compaction)
1819 return true;
1820
1821 /* If compaction would go ahead or the allocation would succeed, stop */
f16015fb 1822 switch (compaction_suitable(mz->zone, sc->order)) {
3e7d3449
MG
1823 case COMPACT_PARTIAL:
1824 case COMPACT_CONTINUE:
1825 return false;
1826 default:
1827 return true;
1828 }
1829}
1830
1da177e4
LT
1831/*
1832 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1833 */
9e3b2f8c 1834static void shrink_mem_cgroup_zone(struct mem_cgroup_zone *mz,
f16015fb 1835 struct scan_control *sc)
1da177e4 1836{
b69408e8 1837 unsigned long nr[NR_LRU_LISTS];
8695949a 1838 unsigned long nr_to_scan;
4111304d 1839 enum lru_list lru;
f0fdc5e8 1840 unsigned long nr_reclaimed, nr_scanned;
22fba335 1841 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
3da367c3 1842 struct blk_plug plug;
e0f79b8f 1843
3e7d3449
MG
1844restart:
1845 nr_reclaimed = 0;
f0fdc5e8 1846 nr_scanned = sc->nr_scanned;
9e3b2f8c 1847 get_scan_count(mz, sc, nr);
1da177e4 1848
3da367c3 1849 blk_start_plug(&plug);
556adecb
RR
1850 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1851 nr[LRU_INACTIVE_FILE]) {
4111304d
HD
1852 for_each_evictable_lru(lru) {
1853 if (nr[lru]) {
ece74b2e 1854 nr_to_scan = min_t(unsigned long,
4111304d
HD
1855 nr[lru], SWAP_CLUSTER_MAX);
1856 nr[lru] -= nr_to_scan;
1da177e4 1857
4111304d 1858 nr_reclaimed += shrink_list(lru, nr_to_scan,
9e3b2f8c 1859 mz, sc);
b69408e8 1860 }
1da177e4 1861 }
a79311c1
RR
1862 /*
1863 * On large memory systems, scan >> priority can become
1864 * really large. This is fine for the starting priority;
1865 * we want to put equal scanning pressure on each zone.
1866 * However, if the VM has a harder time of freeing pages,
1867 * with multiple processes reclaiming pages, the total
1868 * freeing target can get unreasonably large.
1869 */
9e3b2f8c
KK
1870 if (nr_reclaimed >= nr_to_reclaim &&
1871 sc->priority < DEF_PRIORITY)
a79311c1 1872 break;
1da177e4 1873 }
3da367c3 1874 blk_finish_plug(&plug);
3e7d3449 1875 sc->nr_reclaimed += nr_reclaimed;
01dbe5c9 1876
556adecb
RR
1877 /*
1878 * Even if we did not try to evict anon pages at all, we want to
1879 * rebalance the anon lru active/inactive ratio.
1880 */
f16015fb 1881 if (inactive_anon_is_low(mz))
3cb99451 1882 shrink_active_list(SWAP_CLUSTER_MAX, mz,
9e3b2f8c 1883 sc, LRU_ACTIVE_ANON);
556adecb 1884
3e7d3449 1885 /* reclaim/compaction might need reclaim to continue */
f16015fb 1886 if (should_continue_reclaim(mz, nr_reclaimed,
9e3b2f8c 1887 sc->nr_scanned - nr_scanned, sc))
3e7d3449
MG
1888 goto restart;
1889
232ea4d6 1890 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1891}
1892
9e3b2f8c 1893static void shrink_zone(struct zone *zone, struct scan_control *sc)
f16015fb 1894{
5660048c
JW
1895 struct mem_cgroup *root = sc->target_mem_cgroup;
1896 struct mem_cgroup_reclaim_cookie reclaim = {
f16015fb 1897 .zone = zone,
9e3b2f8c 1898 .priority = sc->priority,
f16015fb 1899 };
5660048c
JW
1900 struct mem_cgroup *memcg;
1901
5660048c
JW
1902 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1903 do {
1904 struct mem_cgroup_zone mz = {
1905 .mem_cgroup = memcg,
1906 .zone = zone,
1907 };
f16015fb 1908
9e3b2f8c 1909 shrink_mem_cgroup_zone(&mz, sc);
5660048c
JW
1910 /*
1911 * Limit reclaim has historically picked one memcg and
1912 * scanned it with decreasing priority levels until
1913 * nr_to_reclaim had been reclaimed. This priority
1914 * cycle is thus over after a single memcg.
b95a2f2d
JW
1915 *
1916 * Direct reclaim and kswapd, on the other hand, have
1917 * to scan all memory cgroups to fulfill the overall
1918 * scan target for the zone.
5660048c
JW
1919 */
1920 if (!global_reclaim(sc)) {
1921 mem_cgroup_iter_break(root, memcg);
1922 break;
1923 }
1924 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1925 } while (memcg);
f16015fb
JW
1926}
1927
fe4b1b24
MG
1928/* Returns true if compaction should go ahead for a high-order request */
1929static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1930{
1931 unsigned long balance_gap, watermark;
1932 bool watermark_ok;
1933
1934 /* Do not consider compaction for orders reclaim is meant to satisfy */
1935 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1936 return false;
1937
1938 /*
1939 * Compaction takes time to run and there are potentially other
1940 * callers using the pages just freed. Continue reclaiming until
1941 * there is a buffer of free pages available to give compaction
1942 * a reasonable chance of completing and allocating the page
1943 */
1944 balance_gap = min(low_wmark_pages(zone),
1945 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1946 KSWAPD_ZONE_BALANCE_GAP_RATIO);
1947 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1948 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1949
1950 /*
1951 * If compaction is deferred, reclaim up to a point where
1952 * compaction will have a chance of success when re-enabled
1953 */
aff62249 1954 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
1955 return watermark_ok;
1956
1957 /* If compaction is not ready to start, keep reclaiming */
1958 if (!compaction_suitable(zone, sc->order))
1959 return false;
1960
1961 return watermark_ok;
1962}
1963
1da177e4
LT
1964/*
1965 * This is the direct reclaim path, for page-allocating processes. We only
1966 * try to reclaim pages from zones which will satisfy the caller's allocation
1967 * request.
1968 *
41858966
MG
1969 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1970 * Because:
1da177e4
LT
1971 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1972 * allocation or
41858966
MG
1973 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1974 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1975 * zone defense algorithm.
1da177e4 1976 *
1da177e4
LT
1977 * If a zone is deemed to be full of pinned pages then just give it a light
1978 * scan then give up on it.
e0c23279
MG
1979 *
1980 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 1981 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
1982 * the caller that it should consider retrying the allocation instead of
1983 * further reclaim.
1da177e4 1984 */
9e3b2f8c 1985static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 1986{
dd1a239f 1987 struct zoneref *z;
54a6eb5c 1988 struct zone *zone;
d149e3b2
YH
1989 unsigned long nr_soft_reclaimed;
1990 unsigned long nr_soft_scanned;
0cee34fd 1991 bool aborted_reclaim = false;
1cfb419b 1992
cc715d99
MG
1993 /*
1994 * If the number of buffer_heads in the machine exceeds the maximum
1995 * allowed level, force direct reclaim to scan the highmem zone as
1996 * highmem pages could be pinning lowmem pages storing buffer_heads
1997 */
1998 if (buffer_heads_over_limit)
1999 sc->gfp_mask |= __GFP_HIGHMEM;
2000
d4debc66
MG
2001 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2002 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2003 if (!populated_zone(zone))
1da177e4 2004 continue;
1cfb419b
KH
2005 /*
2006 * Take care memory controller reclaiming has small influence
2007 * to global LRU.
2008 */
89b5fae5 2009 if (global_reclaim(sc)) {
1cfb419b
KH
2010 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2011 continue;
9e3b2f8c
KK
2012 if (zone->all_unreclaimable &&
2013 sc->priority != DEF_PRIORITY)
1cfb419b 2014 continue; /* Let kswapd poll it */
e0887c19
RR
2015 if (COMPACTION_BUILD) {
2016 /*
e0c23279
MG
2017 * If we already have plenty of memory free for
2018 * compaction in this zone, don't free any more.
2019 * Even though compaction is invoked for any
2020 * non-zero order, only frequent costly order
2021 * reclamation is disruptive enough to become a
c7cfa37b
CA
2022 * noticeable problem, like transparent huge
2023 * page allocations.
e0887c19 2024 */
fe4b1b24 2025 if (compaction_ready(zone, sc)) {
0cee34fd 2026 aborted_reclaim = true;
e0887c19 2027 continue;
e0c23279 2028 }
e0887c19 2029 }
ac34a1a3
KH
2030 /*
2031 * This steals pages from memory cgroups over softlimit
2032 * and returns the number of reclaimed pages and
2033 * scanned pages. This works for global memory pressure
2034 * and balancing, not for a memcg's limit.
2035 */
2036 nr_soft_scanned = 0;
2037 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2038 sc->order, sc->gfp_mask,
2039 &nr_soft_scanned);
2040 sc->nr_reclaimed += nr_soft_reclaimed;
2041 sc->nr_scanned += nr_soft_scanned;
2042 /* need some check for avoid more shrink_zone() */
1cfb419b 2043 }
408d8544 2044
9e3b2f8c 2045 shrink_zone(zone, sc);
1da177e4 2046 }
e0c23279 2047
0cee34fd 2048 return aborted_reclaim;
d1908362
MK
2049}
2050
2051static bool zone_reclaimable(struct zone *zone)
2052{
2053 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2054}
2055
929bea7c 2056/* All zones in zonelist are unreclaimable? */
d1908362
MK
2057static bool all_unreclaimable(struct zonelist *zonelist,
2058 struct scan_control *sc)
2059{
2060 struct zoneref *z;
2061 struct zone *zone;
d1908362
MK
2062
2063 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2064 gfp_zone(sc->gfp_mask), sc->nodemask) {
2065 if (!populated_zone(zone))
2066 continue;
2067 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2068 continue;
929bea7c
KM
2069 if (!zone->all_unreclaimable)
2070 return false;
d1908362
MK
2071 }
2072
929bea7c 2073 return true;
1da177e4 2074}
4f98a2fe 2075
1da177e4
LT
2076/*
2077 * This is the main entry point to direct page reclaim.
2078 *
2079 * If a full scan of the inactive list fails to free enough memory then we
2080 * are "out of memory" and something needs to be killed.
2081 *
2082 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2083 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2084 * caller can't do much about. We kick the writeback threads and take explicit
2085 * naps in the hope that some of these pages can be written. But if the
2086 * allocating task holds filesystem locks which prevent writeout this might not
2087 * work, and the allocation attempt will fail.
a41f24ea
NA
2088 *
2089 * returns: 0, if no pages reclaimed
2090 * else, the number of pages reclaimed
1da177e4 2091 */
dac1d27b 2092static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2093 struct scan_control *sc,
2094 struct shrink_control *shrink)
1da177e4 2095{
69e05944 2096 unsigned long total_scanned = 0;
1da177e4 2097 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2098 struct zoneref *z;
54a6eb5c 2099 struct zone *zone;
22fba335 2100 unsigned long writeback_threshold;
0cee34fd 2101 bool aborted_reclaim;
1da177e4 2102
873b4771
KK
2103 delayacct_freepages_start();
2104
89b5fae5 2105 if (global_reclaim(sc))
1cfb419b 2106 count_vm_event(ALLOCSTALL);
1da177e4 2107
9e3b2f8c 2108 do {
66e1707b 2109 sc->nr_scanned = 0;
9e3b2f8c 2110 aborted_reclaim = shrink_zones(zonelist, sc);
e0c23279 2111
66e1707b
BS
2112 /*
2113 * Don't shrink slabs when reclaiming memory from
2114 * over limit cgroups
2115 */
89b5fae5 2116 if (global_reclaim(sc)) {
c6a8a8c5 2117 unsigned long lru_pages = 0;
d4debc66
MG
2118 for_each_zone_zonelist(zone, z, zonelist,
2119 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2120 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2121 continue;
2122
2123 lru_pages += zone_reclaimable_pages(zone);
2124 }
2125
1495f230 2126 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2127 if (reclaim_state) {
a79311c1 2128 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2129 reclaim_state->reclaimed_slab = 0;
2130 }
1da177e4 2131 }
66e1707b 2132 total_scanned += sc->nr_scanned;
bb21c7ce 2133 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2134 goto out;
1da177e4
LT
2135
2136 /*
2137 * Try to write back as many pages as we just scanned. This
2138 * tends to cause slow streaming writers to write data to the
2139 * disk smoothly, at the dirtying rate, which is nice. But
2140 * that's undesirable in laptop mode, where we *want* lumpy
2141 * writeout. So in laptop mode, write out the whole world.
2142 */
22fba335
KM
2143 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2144 if (total_scanned > writeback_threshold) {
0e175a18
CW
2145 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2146 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2147 sc->may_writepage = 1;
1da177e4
LT
2148 }
2149
2150 /* Take a nap, wait for some writeback to complete */
7b51755c 2151 if (!sc->hibernation_mode && sc->nr_scanned &&
9e3b2f8c 2152 sc->priority < DEF_PRIORITY - 2) {
0e093d99
MG
2153 struct zone *preferred_zone;
2154
2155 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2156 &cpuset_current_mems_allowed,
2157 &preferred_zone);
0e093d99
MG
2158 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2159 }
9e3b2f8c 2160 } while (--sc->priority >= 0);
bb21c7ce 2161
1da177e4 2162out:
873b4771
KK
2163 delayacct_freepages_end();
2164
bb21c7ce
KM
2165 if (sc->nr_reclaimed)
2166 return sc->nr_reclaimed;
2167
929bea7c
KM
2168 /*
2169 * As hibernation is going on, kswapd is freezed so that it can't mark
2170 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2171 * check.
2172 */
2173 if (oom_killer_disabled)
2174 return 0;
2175
0cee34fd
MG
2176 /* Aborted reclaim to try compaction? don't OOM, then */
2177 if (aborted_reclaim)
7335084d
MG
2178 return 1;
2179
bb21c7ce 2180 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2181 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2182 return 1;
2183
2184 return 0;
1da177e4
LT
2185}
2186
dac1d27b 2187unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2188 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2189{
33906bc5 2190 unsigned long nr_reclaimed;
66e1707b
BS
2191 struct scan_control sc = {
2192 .gfp_mask = gfp_mask,
2193 .may_writepage = !laptop_mode,
22fba335 2194 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2195 .may_unmap = 1,
2e2e4259 2196 .may_swap = 1,
66e1707b 2197 .order = order,
9e3b2f8c 2198 .priority = DEF_PRIORITY,
f16015fb 2199 .target_mem_cgroup = NULL,
327c0e96 2200 .nodemask = nodemask,
66e1707b 2201 };
a09ed5e0
YH
2202 struct shrink_control shrink = {
2203 .gfp_mask = sc.gfp_mask,
2204 };
66e1707b 2205
33906bc5
MG
2206 trace_mm_vmscan_direct_reclaim_begin(order,
2207 sc.may_writepage,
2208 gfp_mask);
2209
a09ed5e0 2210 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2211
2212 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2213
2214 return nr_reclaimed;
66e1707b
BS
2215}
2216
00f0b825 2217#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 2218
72835c86 2219unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2220 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2221 struct zone *zone,
2222 unsigned long *nr_scanned)
4e416953
BS
2223{
2224 struct scan_control sc = {
0ae5e89c 2225 .nr_scanned = 0,
b8f5c566 2226 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2227 .may_writepage = !laptop_mode,
2228 .may_unmap = 1,
2229 .may_swap = !noswap,
4e416953 2230 .order = 0,
9e3b2f8c 2231 .priority = 0,
72835c86 2232 .target_mem_cgroup = memcg,
4e416953 2233 };
5660048c 2234 struct mem_cgroup_zone mz = {
72835c86 2235 .mem_cgroup = memcg,
5660048c
JW
2236 .zone = zone,
2237 };
0ae5e89c 2238
4e416953
BS
2239 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2240 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2241
9e3b2f8c 2242 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2243 sc.may_writepage,
2244 sc.gfp_mask);
2245
4e416953
BS
2246 /*
2247 * NOTE: Although we can get the priority field, using it
2248 * here is not a good idea, since it limits the pages we can scan.
2249 * if we don't reclaim here, the shrink_zone from balance_pgdat
2250 * will pick up pages from other mem cgroup's as well. We hack
2251 * the priority and make it zero.
2252 */
9e3b2f8c 2253 shrink_mem_cgroup_zone(&mz, &sc);
bdce6d9e
KM
2254
2255 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2256
0ae5e89c 2257 *nr_scanned = sc.nr_scanned;
4e416953
BS
2258 return sc.nr_reclaimed;
2259}
2260
72835c86 2261unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2262 gfp_t gfp_mask,
185efc0f 2263 bool noswap)
66e1707b 2264{
4e416953 2265 struct zonelist *zonelist;
bdce6d9e 2266 unsigned long nr_reclaimed;
889976db 2267 int nid;
66e1707b 2268 struct scan_control sc = {
66e1707b 2269 .may_writepage = !laptop_mode,
a6dc60f8 2270 .may_unmap = 1,
2e2e4259 2271 .may_swap = !noswap,
22fba335 2272 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2273 .order = 0,
9e3b2f8c 2274 .priority = DEF_PRIORITY,
72835c86 2275 .target_mem_cgroup = memcg,
327c0e96 2276 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2277 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2278 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2279 };
2280 struct shrink_control shrink = {
2281 .gfp_mask = sc.gfp_mask,
66e1707b 2282 };
66e1707b 2283
889976db
YH
2284 /*
2285 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2286 * take care of from where we get pages. So the node where we start the
2287 * scan does not need to be the current node.
2288 */
72835c86 2289 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2290
2291 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2292
2293 trace_mm_vmscan_memcg_reclaim_begin(0,
2294 sc.may_writepage,
2295 sc.gfp_mask);
2296
a09ed5e0 2297 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2298
2299 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2300
2301 return nr_reclaimed;
66e1707b
BS
2302}
2303#endif
2304
9e3b2f8c 2305static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2306{
b95a2f2d 2307 struct mem_cgroup *memcg;
f16015fb 2308
b95a2f2d
JW
2309 if (!total_swap_pages)
2310 return;
2311
2312 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2313 do {
2314 struct mem_cgroup_zone mz = {
2315 .mem_cgroup = memcg,
2316 .zone = zone,
2317 };
2318
2319 if (inactive_anon_is_low(&mz))
2320 shrink_active_list(SWAP_CLUSTER_MAX, &mz,
9e3b2f8c 2321 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2322
2323 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2324 } while (memcg);
f16015fb
JW
2325}
2326
1741c877
MG
2327/*
2328 * pgdat_balanced is used when checking if a node is balanced for high-order
2329 * allocations. Only zones that meet watermarks and are in a zone allowed
2330 * by the callers classzone_idx are added to balanced_pages. The total of
2331 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2332 * for the node to be considered balanced. Forcing all zones to be balanced
2333 * for high orders can cause excessive reclaim when there are imbalanced zones.
2334 * The choice of 25% is due to
2335 * o a 16M DMA zone that is balanced will not balance a zone on any
2336 * reasonable sized machine
2337 * o On all other machines, the top zone must be at least a reasonable
25985edc 2338 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2339 * would need to be at least 256M for it to be balance a whole node.
2340 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2341 * to balance a node on its own. These seemed like reasonable ratios.
2342 */
2343static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2344 int classzone_idx)
2345{
2346 unsigned long present_pages = 0;
2347 int i;
2348
2349 for (i = 0; i <= classzone_idx; i++)
2350 present_pages += pgdat->node_zones[i].present_pages;
2351
4746efde
SL
2352 /* A special case here: if zone has no page, we think it's balanced */
2353 return balanced_pages >= (present_pages >> 2);
1741c877
MG
2354}
2355
f50de2d3 2356/* is kswapd sleeping prematurely? */
dc83edd9
MG
2357static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2358 int classzone_idx)
f50de2d3 2359{
bb3ab596 2360 int i;
1741c877
MG
2361 unsigned long balanced = 0;
2362 bool all_zones_ok = true;
f50de2d3
MG
2363
2364 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2365 if (remaining)
dc83edd9 2366 return true;
f50de2d3 2367
0abdee2b 2368 /* Check the watermark levels */
08951e54 2369 for (i = 0; i <= classzone_idx; i++) {
bb3ab596
KM
2370 struct zone *zone = pgdat->node_zones + i;
2371
2372 if (!populated_zone(zone))
2373 continue;
2374
355b09c4
MG
2375 /*
2376 * balance_pgdat() skips over all_unreclaimable after
2377 * DEF_PRIORITY. Effectively, it considers them balanced so
2378 * they must be considered balanced here as well if kswapd
2379 * is to sleep
2380 */
2381 if (zone->all_unreclaimable) {
2382 balanced += zone->present_pages;
de3fab39 2383 continue;
355b09c4 2384 }
de3fab39 2385
88f5acf8 2386 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
da175d06 2387 i, 0))
1741c877
MG
2388 all_zones_ok = false;
2389 else
2390 balanced += zone->present_pages;
bb3ab596 2391 }
f50de2d3 2392
1741c877
MG
2393 /*
2394 * For high-order requests, the balanced zones must contain at least
2395 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2396 * must be balanced
2397 */
2398 if (order)
afc7e326 2399 return !pgdat_balanced(pgdat, balanced, classzone_idx);
1741c877
MG
2400 else
2401 return !all_zones_ok;
f50de2d3
MG
2402}
2403
1da177e4
LT
2404/*
2405 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2406 * they are all at high_wmark_pages(zone).
1da177e4 2407 *
0abdee2b 2408 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2409 *
2410 * There is special handling here for zones which are full of pinned pages.
2411 * This can happen if the pages are all mlocked, or if they are all used by
2412 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2413 * What we do is to detect the case where all pages in the zone have been
2414 * scanned twice and there has been zero successful reclaim. Mark the zone as
2415 * dead and from now on, only perform a short scan. Basically we're polling
2416 * the zone for when the problem goes away.
2417 *
2418 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2419 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2420 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2421 * lower zones regardless of the number of free pages in the lower zones. This
2422 * interoperates with the page allocator fallback scheme to ensure that aging
2423 * of pages is balanced across the zones.
1da177e4 2424 */
99504748 2425static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2426 int *classzone_idx)
1da177e4 2427{
1da177e4 2428 int all_zones_ok;
1741c877 2429 unsigned long balanced;
1da177e4 2430 int i;
99504748 2431 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
69e05944 2432 unsigned long total_scanned;
1da177e4 2433 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2434 unsigned long nr_soft_reclaimed;
2435 unsigned long nr_soft_scanned;
179e9639
AM
2436 struct scan_control sc = {
2437 .gfp_mask = GFP_KERNEL,
a6dc60f8 2438 .may_unmap = 1,
2e2e4259 2439 .may_swap = 1,
22fba335
KM
2440 /*
2441 * kswapd doesn't want to be bailed out while reclaim. because
2442 * we want to put equal scanning pressure on each zone.
2443 */
2444 .nr_to_reclaim = ULONG_MAX,
5ad333eb 2445 .order = order,
f16015fb 2446 .target_mem_cgroup = NULL,
179e9639 2447 };
a09ed5e0
YH
2448 struct shrink_control shrink = {
2449 .gfp_mask = sc.gfp_mask,
2450 };
1da177e4
LT
2451loop_again:
2452 total_scanned = 0;
9e3b2f8c 2453 sc.priority = DEF_PRIORITY;
a79311c1 2454 sc.nr_reclaimed = 0;
c0bbbc73 2455 sc.may_writepage = !laptop_mode;
f8891e5e 2456 count_vm_event(PAGEOUTRUN);
1da177e4 2457
9e3b2f8c 2458 do {
1da177e4 2459 unsigned long lru_pages = 0;
bb3ab596 2460 int has_under_min_watermark_zone = 0;
1da177e4
LT
2461
2462 all_zones_ok = 1;
1741c877 2463 balanced = 0;
1da177e4 2464
d6277db4
RW
2465 /*
2466 * Scan in the highmem->dma direction for the highest
2467 * zone which needs scanning
2468 */
2469 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2470 struct zone *zone = pgdat->node_zones + i;
1da177e4 2471
d6277db4
RW
2472 if (!populated_zone(zone))
2473 continue;
1da177e4 2474
9e3b2f8c
KK
2475 if (zone->all_unreclaimable &&
2476 sc.priority != DEF_PRIORITY)
d6277db4 2477 continue;
1da177e4 2478
556adecb
RR
2479 /*
2480 * Do some background aging of the anon list, to give
2481 * pages a chance to be referenced before reclaiming.
2482 */
9e3b2f8c 2483 age_active_anon(zone, &sc);
556adecb 2484
cc715d99
MG
2485 /*
2486 * If the number of buffer_heads in the machine
2487 * exceeds the maximum allowed level and this node
2488 * has a highmem zone, force kswapd to reclaim from
2489 * it to relieve lowmem pressure.
2490 */
2491 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2492 end_zone = i;
2493 break;
2494 }
2495
88f5acf8 2496 if (!zone_watermark_ok_safe(zone, order,
41858966 2497 high_wmark_pages(zone), 0, 0)) {
d6277db4 2498 end_zone = i;
e1dbeda6 2499 break;
439423f6
SL
2500 } else {
2501 /* If balanced, clear the congested flag */
2502 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2503 }
1da177e4 2504 }
e1dbeda6
AM
2505 if (i < 0)
2506 goto out;
2507
1da177e4
LT
2508 for (i = 0; i <= end_zone; i++) {
2509 struct zone *zone = pgdat->node_zones + i;
2510
adea02a1 2511 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2512 }
2513
2514 /*
2515 * Now scan the zone in the dma->highmem direction, stopping
2516 * at the last zone which needs scanning.
2517 *
2518 * We do this because the page allocator works in the opposite
2519 * direction. This prevents the page allocator from allocating
2520 * pages behind kswapd's direction of progress, which would
2521 * cause too much scanning of the lower zones.
2522 */
2523 for (i = 0; i <= end_zone; i++) {
2524 struct zone *zone = pgdat->node_zones + i;
fe2c2a10 2525 int nr_slab, testorder;
8afdcece 2526 unsigned long balance_gap;
1da177e4 2527
f3fe6512 2528 if (!populated_zone(zone))
1da177e4
LT
2529 continue;
2530
9e3b2f8c
KK
2531 if (zone->all_unreclaimable &&
2532 sc.priority != DEF_PRIORITY)
1da177e4
LT
2533 continue;
2534
1da177e4 2535 sc.nr_scanned = 0;
4e416953 2536
0ae5e89c 2537 nr_soft_scanned = 0;
4e416953
BS
2538 /*
2539 * Call soft limit reclaim before calling shrink_zone.
4e416953 2540 */
0ae5e89c
YH
2541 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2542 order, sc.gfp_mask,
2543 &nr_soft_scanned);
2544 sc.nr_reclaimed += nr_soft_reclaimed;
2545 total_scanned += nr_soft_scanned;
00918b6a 2546
32a4330d 2547 /*
8afdcece
MG
2548 * We put equal pressure on every zone, unless
2549 * one zone has way too many pages free
2550 * already. The "too many pages" is defined
2551 * as the high wmark plus a "gap" where the
2552 * gap is either the low watermark or 1%
2553 * of the zone, whichever is smaller.
32a4330d 2554 */
8afdcece
MG
2555 balance_gap = min(low_wmark_pages(zone),
2556 (zone->present_pages +
2557 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2558 KSWAPD_ZONE_BALANCE_GAP_RATIO);
fe2c2a10
RR
2559 /*
2560 * Kswapd reclaims only single pages with compaction
2561 * enabled. Trying too hard to reclaim until contiguous
2562 * free pages have become available can hurt performance
2563 * by evicting too much useful data from memory.
2564 * Do not reclaim more than needed for compaction.
2565 */
2566 testorder = order;
2567 if (COMPACTION_BUILD && order &&
2568 compaction_suitable(zone, order) !=
2569 COMPACT_SKIPPED)
2570 testorder = 0;
2571
cc715d99 2572 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
643ac9fc 2573 !zone_watermark_ok_safe(zone, testorder,
8afdcece 2574 high_wmark_pages(zone) + balance_gap,
d7868dae 2575 end_zone, 0)) {
9e3b2f8c 2576 shrink_zone(zone, &sc);
5a03b051 2577
d7868dae
MG
2578 reclaim_state->reclaimed_slab = 0;
2579 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2580 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2581 total_scanned += sc.nr_scanned;
2582
2583 if (nr_slab == 0 && !zone_reclaimable(zone))
2584 zone->all_unreclaimable = 1;
2585 }
2586
1da177e4
LT
2587 /*
2588 * If we've done a decent amount of scanning and
2589 * the reclaim ratio is low, start doing writepage
2590 * even in laptop mode
2591 */
2592 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2593 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2594 sc.may_writepage = 1;
bb3ab596 2595
215ddd66
MG
2596 if (zone->all_unreclaimable) {
2597 if (end_zone && end_zone == i)
2598 end_zone--;
d7868dae 2599 continue;
215ddd66 2600 }
d7868dae 2601
fe2c2a10 2602 if (!zone_watermark_ok_safe(zone, testorder,
45973d74
MK
2603 high_wmark_pages(zone), end_zone, 0)) {
2604 all_zones_ok = 0;
2605 /*
2606 * We are still under min water mark. This
2607 * means that we have a GFP_ATOMIC allocation
2608 * failure risk. Hurry up!
2609 */
88f5acf8 2610 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2611 min_wmark_pages(zone), end_zone, 0))
2612 has_under_min_watermark_zone = 1;
0e093d99
MG
2613 } else {
2614 /*
2615 * If a zone reaches its high watermark,
2616 * consider it to be no longer congested. It's
2617 * possible there are dirty pages backed by
2618 * congested BDIs but as pressure is relieved,
2619 * spectulatively avoid congestion waits
2620 */
2621 zone_clear_flag(zone, ZONE_CONGESTED);
dc83edd9 2622 if (i <= *classzone_idx)
1741c877 2623 balanced += zone->present_pages;
45973d74 2624 }
bb3ab596 2625
1da177e4 2626 }
dc83edd9 2627 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
1da177e4
LT
2628 break; /* kswapd: all done */
2629 /*
2630 * OK, kswapd is getting into trouble. Take a nap, then take
2631 * another pass across the zones.
2632 */
9e3b2f8c 2633 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
bb3ab596
KM
2634 if (has_under_min_watermark_zone)
2635 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2636 else
2637 congestion_wait(BLK_RW_ASYNC, HZ/10);
2638 }
1da177e4
LT
2639
2640 /*
2641 * We do this so kswapd doesn't build up large priorities for
2642 * example when it is freeing in parallel with allocators. It
2643 * matches the direct reclaim path behaviour in terms of impact
2644 * on zone->*_priority.
2645 */
a79311c1 2646 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4 2647 break;
9e3b2f8c 2648 } while (--sc.priority >= 0);
1da177e4 2649out:
99504748
MG
2650
2651 /*
2652 * order-0: All zones must meet high watermark for a balanced node
1741c877
MG
2653 * high-order: Balanced zones must make up at least 25% of the node
2654 * for the node to be balanced
99504748 2655 */
dc83edd9 2656 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
1da177e4 2657 cond_resched();
8357376d
RW
2658
2659 try_to_freeze();
2660
73ce02e9
KM
2661 /*
2662 * Fragmentation may mean that the system cannot be
2663 * rebalanced for high-order allocations in all zones.
2664 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2665 * it means the zones have been fully scanned and are still
2666 * not balanced. For high-order allocations, there is
2667 * little point trying all over again as kswapd may
2668 * infinite loop.
2669 *
2670 * Instead, recheck all watermarks at order-0 as they
2671 * are the most important. If watermarks are ok, kswapd will go
2672 * back to sleep. High-order users can still perform direct
2673 * reclaim if they wish.
2674 */
2675 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2676 order = sc.order = 0;
2677
1da177e4
LT
2678 goto loop_again;
2679 }
2680
99504748
MG
2681 /*
2682 * If kswapd was reclaiming at a higher order, it has the option of
2683 * sleeping without all zones being balanced. Before it does, it must
2684 * ensure that the watermarks for order-0 on *all* zones are met and
2685 * that the congestion flags are cleared. The congestion flag must
2686 * be cleared as kswapd is the only mechanism that clears the flag
2687 * and it is potentially going to sleep here.
2688 */
2689 if (order) {
7be62de9
RR
2690 int zones_need_compaction = 1;
2691
99504748
MG
2692 for (i = 0; i <= end_zone; i++) {
2693 struct zone *zone = pgdat->node_zones + i;
2694
2695 if (!populated_zone(zone))
2696 continue;
2697
9e3b2f8c
KK
2698 if (zone->all_unreclaimable &&
2699 sc.priority != DEF_PRIORITY)
99504748
MG
2700 continue;
2701
fe2c2a10 2702 /* Would compaction fail due to lack of free memory? */
496b919b
RR
2703 if (COMPACTION_BUILD &&
2704 compaction_suitable(zone, order) == COMPACT_SKIPPED)
fe2c2a10
RR
2705 goto loop_again;
2706
99504748
MG
2707 /* Confirm the zone is balanced for order-0 */
2708 if (!zone_watermark_ok(zone, 0,
2709 high_wmark_pages(zone), 0, 0)) {
2710 order = sc.order = 0;
2711 goto loop_again;
2712 }
2713
7be62de9
RR
2714 /* Check if the memory needs to be defragmented. */
2715 if (zone_watermark_ok(zone, order,
2716 low_wmark_pages(zone), *classzone_idx, 0))
2717 zones_need_compaction = 0;
2718
99504748
MG
2719 /* If balanced, clear the congested flag */
2720 zone_clear_flag(zone, ZONE_CONGESTED);
2721 }
7be62de9
RR
2722
2723 if (zones_need_compaction)
2724 compact_pgdat(pgdat, order);
99504748
MG
2725 }
2726
0abdee2b
MG
2727 /*
2728 * Return the order we were reclaiming at so sleeping_prematurely()
2729 * makes a decision on the order we were last reclaiming at. However,
2730 * if another caller entered the allocator slow path while kswapd
2731 * was awake, order will remain at the higher level
2732 */
dc83edd9 2733 *classzone_idx = end_zone;
0abdee2b 2734 return order;
1da177e4
LT
2735}
2736
dc83edd9 2737static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
2738{
2739 long remaining = 0;
2740 DEFINE_WAIT(wait);
2741
2742 if (freezing(current) || kthread_should_stop())
2743 return;
2744
2745 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2746
2747 /* Try to sleep for a short interval */
dc83edd9 2748 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2749 remaining = schedule_timeout(HZ/10);
2750 finish_wait(&pgdat->kswapd_wait, &wait);
2751 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2752 }
2753
2754 /*
2755 * After a short sleep, check if it was a premature sleep. If not, then
2756 * go fully to sleep until explicitly woken up.
2757 */
dc83edd9 2758 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2759 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2760
2761 /*
2762 * vmstat counters are not perfectly accurate and the estimated
2763 * value for counters such as NR_FREE_PAGES can deviate from the
2764 * true value by nr_online_cpus * threshold. To avoid the zone
2765 * watermarks being breached while under pressure, we reduce the
2766 * per-cpu vmstat threshold while kswapd is awake and restore
2767 * them before going back to sleep.
2768 */
2769 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2770 schedule();
2771 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2772 } else {
2773 if (remaining)
2774 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2775 else
2776 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2777 }
2778 finish_wait(&pgdat->kswapd_wait, &wait);
2779}
2780
1da177e4
LT
2781/*
2782 * The background pageout daemon, started as a kernel thread
4f98a2fe 2783 * from the init process.
1da177e4
LT
2784 *
2785 * This basically trickles out pages so that we have _some_
2786 * free memory available even if there is no other activity
2787 * that frees anything up. This is needed for things like routing
2788 * etc, where we otherwise might have all activity going on in
2789 * asynchronous contexts that cannot page things out.
2790 *
2791 * If there are applications that are active memory-allocators
2792 * (most normal use), this basically shouldn't matter.
2793 */
2794static int kswapd(void *p)
2795{
215ddd66 2796 unsigned long order, new_order;
d2ebd0f6 2797 unsigned balanced_order;
215ddd66 2798 int classzone_idx, new_classzone_idx;
d2ebd0f6 2799 int balanced_classzone_idx;
1da177e4
LT
2800 pg_data_t *pgdat = (pg_data_t*)p;
2801 struct task_struct *tsk = current;
f0bc0a60 2802
1da177e4
LT
2803 struct reclaim_state reclaim_state = {
2804 .reclaimed_slab = 0,
2805 };
a70f7302 2806 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2807
cf40bd16
NP
2808 lockdep_set_current_reclaim_state(GFP_KERNEL);
2809
174596a0 2810 if (!cpumask_empty(cpumask))
c5f59f08 2811 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2812 current->reclaim_state = &reclaim_state;
2813
2814 /*
2815 * Tell the memory management that we're a "memory allocator",
2816 * and that if we need more memory we should get access to it
2817 * regardless (see "__alloc_pages()"). "kswapd" should
2818 * never get caught in the normal page freeing logic.
2819 *
2820 * (Kswapd normally doesn't need memory anyway, but sometimes
2821 * you need a small amount of memory in order to be able to
2822 * page out something else, and this flag essentially protects
2823 * us from recursively trying to free more memory as we're
2824 * trying to free the first piece of memory in the first place).
2825 */
930d9152 2826 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2827 set_freezable();
1da177e4 2828
215ddd66 2829 order = new_order = 0;
d2ebd0f6 2830 balanced_order = 0;
215ddd66 2831 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 2832 balanced_classzone_idx = classzone_idx;
1da177e4 2833 for ( ; ; ) {
8fe23e05 2834 int ret;
3e1d1d28 2835
215ddd66
MG
2836 /*
2837 * If the last balance_pgdat was unsuccessful it's unlikely a
2838 * new request of a similar or harder type will succeed soon
2839 * so consider going to sleep on the basis we reclaimed at
2840 */
d2ebd0f6
AS
2841 if (balanced_classzone_idx >= new_classzone_idx &&
2842 balanced_order == new_order) {
215ddd66
MG
2843 new_order = pgdat->kswapd_max_order;
2844 new_classzone_idx = pgdat->classzone_idx;
2845 pgdat->kswapd_max_order = 0;
2846 pgdat->classzone_idx = pgdat->nr_zones - 1;
2847 }
2848
99504748 2849 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
2850 /*
2851 * Don't sleep if someone wants a larger 'order'
99504748 2852 * allocation or has tigher zone constraints
1da177e4
LT
2853 */
2854 order = new_order;
99504748 2855 classzone_idx = new_classzone_idx;
1da177e4 2856 } else {
d2ebd0f6
AS
2857 kswapd_try_to_sleep(pgdat, balanced_order,
2858 balanced_classzone_idx);
1da177e4 2859 order = pgdat->kswapd_max_order;
99504748 2860 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
2861 new_order = order;
2862 new_classzone_idx = classzone_idx;
4d40502e 2863 pgdat->kswapd_max_order = 0;
215ddd66 2864 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 2865 }
1da177e4 2866
8fe23e05
DR
2867 ret = try_to_freeze();
2868 if (kthread_should_stop())
2869 break;
2870
2871 /*
2872 * We can speed up thawing tasks if we don't call balance_pgdat
2873 * after returning from the refrigerator
2874 */
33906bc5
MG
2875 if (!ret) {
2876 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
2877 balanced_classzone_idx = classzone_idx;
2878 balanced_order = balance_pgdat(pgdat, order,
2879 &balanced_classzone_idx);
33906bc5 2880 }
1da177e4
LT
2881 }
2882 return 0;
2883}
2884
2885/*
2886 * A zone is low on free memory, so wake its kswapd task to service it.
2887 */
99504748 2888void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
2889{
2890 pg_data_t *pgdat;
2891
f3fe6512 2892 if (!populated_zone(zone))
1da177e4
LT
2893 return;
2894
88f5acf8 2895 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2896 return;
88f5acf8 2897 pgdat = zone->zone_pgdat;
99504748 2898 if (pgdat->kswapd_max_order < order) {
1da177e4 2899 pgdat->kswapd_max_order = order;
99504748
MG
2900 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2901 }
8d0986e2 2902 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2903 return;
88f5acf8
MG
2904 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2905 return;
2906
2907 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 2908 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2909}
2910
adea02a1
WF
2911/*
2912 * The reclaimable count would be mostly accurate.
2913 * The less reclaimable pages may be
2914 * - mlocked pages, which will be moved to unevictable list when encountered
2915 * - mapped pages, which may require several travels to be reclaimed
2916 * - dirty pages, which is not "instantly" reclaimable
2917 */
2918unsigned long global_reclaimable_pages(void)
4f98a2fe 2919{
adea02a1
WF
2920 int nr;
2921
2922 nr = global_page_state(NR_ACTIVE_FILE) +
2923 global_page_state(NR_INACTIVE_FILE);
2924
2925 if (nr_swap_pages > 0)
2926 nr += global_page_state(NR_ACTIVE_ANON) +
2927 global_page_state(NR_INACTIVE_ANON);
2928
2929 return nr;
2930}
2931
2932unsigned long zone_reclaimable_pages(struct zone *zone)
2933{
2934 int nr;
2935
2936 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2937 zone_page_state(zone, NR_INACTIVE_FILE);
2938
2939 if (nr_swap_pages > 0)
2940 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2941 zone_page_state(zone, NR_INACTIVE_ANON);
2942
2943 return nr;
4f98a2fe
RR
2944}
2945
c6f37f12 2946#ifdef CONFIG_HIBERNATION
1da177e4 2947/*
7b51755c 2948 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2949 * freed pages.
2950 *
2951 * Rather than trying to age LRUs the aim is to preserve the overall
2952 * LRU order by reclaiming preferentially
2953 * inactive > active > active referenced > active mapped
1da177e4 2954 */
7b51755c 2955unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2956{
d6277db4 2957 struct reclaim_state reclaim_state;
d6277db4 2958 struct scan_control sc = {
7b51755c
KM
2959 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2960 .may_swap = 1,
2961 .may_unmap = 1,
d6277db4 2962 .may_writepage = 1,
7b51755c
KM
2963 .nr_to_reclaim = nr_to_reclaim,
2964 .hibernation_mode = 1,
7b51755c 2965 .order = 0,
9e3b2f8c 2966 .priority = DEF_PRIORITY,
1da177e4 2967 };
a09ed5e0
YH
2968 struct shrink_control shrink = {
2969 .gfp_mask = sc.gfp_mask,
2970 };
2971 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
2972 struct task_struct *p = current;
2973 unsigned long nr_reclaimed;
1da177e4 2974
7b51755c
KM
2975 p->flags |= PF_MEMALLOC;
2976 lockdep_set_current_reclaim_state(sc.gfp_mask);
2977 reclaim_state.reclaimed_slab = 0;
2978 p->reclaim_state = &reclaim_state;
d6277db4 2979
a09ed5e0 2980 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 2981
7b51755c
KM
2982 p->reclaim_state = NULL;
2983 lockdep_clear_current_reclaim_state();
2984 p->flags &= ~PF_MEMALLOC;
d6277db4 2985
7b51755c 2986 return nr_reclaimed;
1da177e4 2987}
c6f37f12 2988#endif /* CONFIG_HIBERNATION */
1da177e4 2989
1da177e4
LT
2990/* It's optimal to keep kswapds on the same CPUs as their memory, but
2991 not required for correctness. So if the last cpu in a node goes
2992 away, we get changed to run anywhere: as the first one comes back,
2993 restore their cpu bindings. */
9c7b216d 2994static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2995 unsigned long action, void *hcpu)
1da177e4 2996{
58c0a4a7 2997 int nid;
1da177e4 2998
8bb78442 2999 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 3000 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 3001 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3002 const struct cpumask *mask;
3003
3004 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3005
3e597945 3006 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3007 /* One of our CPUs online: restore mask */
c5f59f08 3008 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3009 }
3010 }
3011 return NOTIFY_OK;
3012}
1da177e4 3013
3218ae14
YG
3014/*
3015 * This kswapd start function will be called by init and node-hot-add.
3016 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3017 */
3018int kswapd_run(int nid)
3019{
3020 pg_data_t *pgdat = NODE_DATA(nid);
3021 int ret = 0;
3022
3023 if (pgdat->kswapd)
3024 return 0;
3025
3026 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3027 if (IS_ERR(pgdat->kswapd)) {
3028 /* failure at boot is fatal */
3029 BUG_ON(system_state == SYSTEM_BOOTING);
3030 printk("Failed to start kswapd on node %d\n",nid);
3031 ret = -1;
3032 }
3033 return ret;
3034}
3035
8fe23e05
DR
3036/*
3037 * Called by memory hotplug when all memory in a node is offlined.
3038 */
3039void kswapd_stop(int nid)
3040{
3041 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3042
3043 if (kswapd)
3044 kthread_stop(kswapd);
3045}
3046
1da177e4
LT
3047static int __init kswapd_init(void)
3048{
3218ae14 3049 int nid;
69e05944 3050
1da177e4 3051 swap_setup();
9422ffba 3052 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 3053 kswapd_run(nid);
1da177e4
LT
3054 hotcpu_notifier(cpu_callback, 0);
3055 return 0;
3056}
3057
3058module_init(kswapd_init)
9eeff239
CL
3059
3060#ifdef CONFIG_NUMA
3061/*
3062 * Zone reclaim mode
3063 *
3064 * If non-zero call zone_reclaim when the number of free pages falls below
3065 * the watermarks.
9eeff239
CL
3066 */
3067int zone_reclaim_mode __read_mostly;
3068
1b2ffb78 3069#define RECLAIM_OFF 0
7d03431c 3070#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3071#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3072#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3073
a92f7126
CL
3074/*
3075 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3076 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3077 * a zone.
3078 */
3079#define ZONE_RECLAIM_PRIORITY 4
3080
9614634f
CL
3081/*
3082 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3083 * occur.
3084 */
3085int sysctl_min_unmapped_ratio = 1;
3086
0ff38490
CL
3087/*
3088 * If the number of slab pages in a zone grows beyond this percentage then
3089 * slab reclaim needs to occur.
3090 */
3091int sysctl_min_slab_ratio = 5;
3092
90afa5de
MG
3093static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3094{
3095 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3096 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3097 zone_page_state(zone, NR_ACTIVE_FILE);
3098
3099 /*
3100 * It's possible for there to be more file mapped pages than
3101 * accounted for by the pages on the file LRU lists because
3102 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3103 */
3104 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3105}
3106
3107/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3108static long zone_pagecache_reclaimable(struct zone *zone)
3109{
3110 long nr_pagecache_reclaimable;
3111 long delta = 0;
3112
3113 /*
3114 * If RECLAIM_SWAP is set, then all file pages are considered
3115 * potentially reclaimable. Otherwise, we have to worry about
3116 * pages like swapcache and zone_unmapped_file_pages() provides
3117 * a better estimate
3118 */
3119 if (zone_reclaim_mode & RECLAIM_SWAP)
3120 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3121 else
3122 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3123
3124 /* If we can't clean pages, remove dirty pages from consideration */
3125 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3126 delta += zone_page_state(zone, NR_FILE_DIRTY);
3127
3128 /* Watch for any possible underflows due to delta */
3129 if (unlikely(delta > nr_pagecache_reclaimable))
3130 delta = nr_pagecache_reclaimable;
3131
3132 return nr_pagecache_reclaimable - delta;
3133}
3134
9eeff239
CL
3135/*
3136 * Try to free up some pages from this zone through reclaim.
3137 */
179e9639 3138static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3139{
7fb2d46d 3140 /* Minimum pages needed in order to stay on node */
69e05944 3141 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3142 struct task_struct *p = current;
3143 struct reclaim_state reclaim_state;
179e9639
AM
3144 struct scan_control sc = {
3145 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3146 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3147 .may_swap = 1,
22fba335
KM
3148 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3149 SWAP_CLUSTER_MAX),
179e9639 3150 .gfp_mask = gfp_mask,
bd2f6199 3151 .order = order,
9e3b2f8c 3152 .priority = ZONE_RECLAIM_PRIORITY,
179e9639 3153 };
a09ed5e0
YH
3154 struct shrink_control shrink = {
3155 .gfp_mask = sc.gfp_mask,
3156 };
15748048 3157 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3158
9eeff239 3159 cond_resched();
d4f7796e
CL
3160 /*
3161 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3162 * and we also need to be able to write out pages for RECLAIM_WRITE
3163 * and RECLAIM_SWAP.
3164 */
3165 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3166 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3167 reclaim_state.reclaimed_slab = 0;
3168 p->reclaim_state = &reclaim_state;
c84db23c 3169
90afa5de 3170 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3171 /*
3172 * Free memory by calling shrink zone with increasing
3173 * priorities until we have enough memory freed.
3174 */
0ff38490 3175 do {
9e3b2f8c
KK
3176 shrink_zone(zone, &sc);
3177 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3178 }
c84db23c 3179
15748048
KM
3180 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3181 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3182 /*
7fb2d46d 3183 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3184 * many pages were freed in this zone. So we take the current
3185 * number of slab pages and shake the slab until it is reduced
3186 * by the same nr_pages that we used for reclaiming unmapped
3187 * pages.
2a16e3f4 3188 *
0ff38490
CL
3189 * Note that shrink_slab will free memory on all zones and may
3190 * take a long time.
2a16e3f4 3191 */
4dc4b3d9
KM
3192 for (;;) {
3193 unsigned long lru_pages = zone_reclaimable_pages(zone);
3194
3195 /* No reclaimable slab or very low memory pressure */
1495f230 3196 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3197 break;
3198
3199 /* Freed enough memory */
3200 nr_slab_pages1 = zone_page_state(zone,
3201 NR_SLAB_RECLAIMABLE);
3202 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3203 break;
3204 }
83e33a47
CL
3205
3206 /*
3207 * Update nr_reclaimed by the number of slab pages we
3208 * reclaimed from this zone.
3209 */
15748048
KM
3210 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3211 if (nr_slab_pages1 < nr_slab_pages0)
3212 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3213 }
3214
9eeff239 3215 p->reclaim_state = NULL;
d4f7796e 3216 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3217 lockdep_clear_current_reclaim_state();
a79311c1 3218 return sc.nr_reclaimed >= nr_pages;
9eeff239 3219}
179e9639
AM
3220
3221int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3222{
179e9639 3223 int node_id;
d773ed6b 3224 int ret;
179e9639
AM
3225
3226 /*
0ff38490
CL
3227 * Zone reclaim reclaims unmapped file backed pages and
3228 * slab pages if we are over the defined limits.
34aa1330 3229 *
9614634f
CL
3230 * A small portion of unmapped file backed pages is needed for
3231 * file I/O otherwise pages read by file I/O will be immediately
3232 * thrown out if the zone is overallocated. So we do not reclaim
3233 * if less than a specified percentage of the zone is used by
3234 * unmapped file backed pages.
179e9639 3235 */
90afa5de
MG
3236 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3237 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3238 return ZONE_RECLAIM_FULL;
179e9639 3239
93e4a89a 3240 if (zone->all_unreclaimable)
fa5e084e 3241 return ZONE_RECLAIM_FULL;
d773ed6b 3242
179e9639 3243 /*
d773ed6b 3244 * Do not scan if the allocation should not be delayed.
179e9639 3245 */
d773ed6b 3246 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3247 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3248
3249 /*
3250 * Only run zone reclaim on the local zone or on zones that do not
3251 * have associated processors. This will favor the local processor
3252 * over remote processors and spread off node memory allocations
3253 * as wide as possible.
3254 */
89fa3024 3255 node_id = zone_to_nid(zone);
37c0708d 3256 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3257 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3258
3259 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3260 return ZONE_RECLAIM_NOSCAN;
3261
d773ed6b
DR
3262 ret = __zone_reclaim(zone, gfp_mask, order);
3263 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3264
24cf7251
MG
3265 if (!ret)
3266 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3267
d773ed6b 3268 return ret;
179e9639 3269}
9eeff239 3270#endif
894bc310 3271
894bc310
LS
3272/*
3273 * page_evictable - test whether a page is evictable
3274 * @page: the page to test
3275 * @vma: the VMA in which the page is or will be mapped, may be NULL
3276 *
3277 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
3278 * lists vs unevictable list. The vma argument is !NULL when called from the
3279 * fault path to determine how to instantate a new page.
894bc310
LS
3280 *
3281 * Reasons page might not be evictable:
ba9ddf49 3282 * (1) page's mapping marked unevictable
b291f000 3283 * (2) page is part of an mlocked VMA
ba9ddf49 3284 *
894bc310
LS
3285 */
3286int page_evictable(struct page *page, struct vm_area_struct *vma)
3287{
3288
ba9ddf49
LS
3289 if (mapping_unevictable(page_mapping(page)))
3290 return 0;
3291
096a7cf4 3292 if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
b291f000 3293 return 0;
894bc310
LS
3294
3295 return 1;
3296}
89e004ea 3297
85046579 3298#ifdef CONFIG_SHMEM
89e004ea 3299/**
24513264
HD
3300 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3301 * @pages: array of pages to check
3302 * @nr_pages: number of pages to check
89e004ea 3303 *
24513264 3304 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3305 *
3306 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3307 */
24513264 3308void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3309{
925b7673 3310 struct lruvec *lruvec;
24513264
HD
3311 struct zone *zone = NULL;
3312 int pgscanned = 0;
3313 int pgrescued = 0;
3314 int i;
89e004ea 3315
24513264
HD
3316 for (i = 0; i < nr_pages; i++) {
3317 struct page *page = pages[i];
3318 struct zone *pagezone;
89e004ea 3319
24513264
HD
3320 pgscanned++;
3321 pagezone = page_zone(page);
3322 if (pagezone != zone) {
3323 if (zone)
3324 spin_unlock_irq(&zone->lru_lock);
3325 zone = pagezone;
3326 spin_lock_irq(&zone->lru_lock);
3327 }
89e004ea 3328
24513264
HD
3329 if (!PageLRU(page) || !PageUnevictable(page))
3330 continue;
89e004ea 3331
24513264
HD
3332 if (page_evictable(page, NULL)) {
3333 enum lru_list lru = page_lru_base_type(page);
3334
3335 VM_BUG_ON(PageActive(page));
3336 ClearPageUnevictable(page);
3337 __dec_zone_state(zone, NR_UNEVICTABLE);
3338 lruvec = mem_cgroup_lru_move_lists(zone, page,
3339 LRU_UNEVICTABLE, lru);
3340 list_move(&page->lru, &lruvec->lists[lru]);
3341 __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3342 pgrescued++;
89e004ea 3343 }
24513264 3344 }
89e004ea 3345
24513264
HD
3346 if (zone) {
3347 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3348 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3349 spin_unlock_irq(&zone->lru_lock);
89e004ea 3350 }
89e004ea 3351}
85046579 3352#endif /* CONFIG_SHMEM */
af936a16 3353
264e56d8 3354static void warn_scan_unevictable_pages(void)
af936a16 3355{
264e56d8 3356 printk_once(KERN_WARNING
25bd91bd 3357 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3358 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3359 "one, please send an email to linux-mm@kvack.org.\n",
3360 current->comm);
af936a16
LS
3361}
3362
3363/*
3364 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3365 * all nodes' unevictable lists for evictable pages
3366 */
3367unsigned long scan_unevictable_pages;
3368
3369int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3370 void __user *buffer,
af936a16
LS
3371 size_t *length, loff_t *ppos)
3372{
264e56d8 3373 warn_scan_unevictable_pages();
8d65af78 3374 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3375 scan_unevictable_pages = 0;
3376 return 0;
3377}
3378
e4455abb 3379#ifdef CONFIG_NUMA
af936a16
LS
3380/*
3381 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3382 * a specified node's per zone unevictable lists for evictable pages.
3383 */
3384
10fbcf4c
KS
3385static ssize_t read_scan_unevictable_node(struct device *dev,
3386 struct device_attribute *attr,
af936a16
LS
3387 char *buf)
3388{
264e56d8 3389 warn_scan_unevictable_pages();
af936a16
LS
3390 return sprintf(buf, "0\n"); /* always zero; should fit... */
3391}
3392
10fbcf4c
KS
3393static ssize_t write_scan_unevictable_node(struct device *dev,
3394 struct device_attribute *attr,
af936a16
LS
3395 const char *buf, size_t count)
3396{
264e56d8 3397 warn_scan_unevictable_pages();
af936a16
LS
3398 return 1;
3399}
3400
3401
10fbcf4c 3402static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3403 read_scan_unevictable_node,
3404 write_scan_unevictable_node);
3405
3406int scan_unevictable_register_node(struct node *node)
3407{
10fbcf4c 3408 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3409}
3410
3411void scan_unevictable_unregister_node(struct node *node)
3412{
10fbcf4c 3413 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3414}
e4455abb 3415#endif