]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/vmscan.c
ipc/sem.c: synchronize semop and semctl with IPC_RMID
[mirror_ubuntu-bionic-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
70ddf637 22#include <linux/vmpressure.h>
e129b5c2 23#include <linux/vmstat.h>
1da177e4
LT
24#include <linux/file.h>
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29#include <linux/mm_inline.h>
1da177e4
LT
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
3e7d3449 35#include <linux/compaction.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
248a0301 38#include <linux/delay.h>
3218ae14 39#include <linux/kthread.h>
7dfb7103 40#include <linux/freezer.h>
66e1707b 41#include <linux/memcontrol.h>
873b4771 42#include <linux/delayacct.h>
af936a16 43#include <linux/sysctl.h>
929bea7c 44#include <linux/oom.h>
268bb0ce 45#include <linux/prefetch.h>
1da177e4
LT
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
117aad1e 51#include <linux/balloon_compaction.h>
1da177e4 52
0f8053a5
NP
53#include "internal.h"
54
33906bc5
MG
55#define CREATE_TRACE_POINTS
56#include <trace/events/vmscan.h>
57
1da177e4 58struct scan_control {
1da177e4
LT
59 /* Incremented by the number of inactive pages that were scanned */
60 unsigned long nr_scanned;
61
a79311c1
RR
62 /* Number of pages freed so far during a call to shrink_zones() */
63 unsigned long nr_reclaimed;
64
22fba335
KM
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
7b51755c
KM
68 unsigned long hibernation_mode;
69
1da177e4 70 /* This context's GFP mask */
6daa0e28 71 gfp_t gfp_mask;
1da177e4
LT
72
73 int may_writepage;
74
a6dc60f8
JW
75 /* Can mapped pages be reclaimed? */
76 int may_unmap;
f1fd1067 77
2e2e4259
KM
78 /* Can pages be swapped as part of reclaim? */
79 int may_swap;
80
5ad333eb 81 int order;
66e1707b 82
9e3b2f8c
KK
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
f16015fb
JW
86 /*
87 * The memory cgroup that hit its limit and as a result is the
88 * primary target of this reclaim invocation.
89 */
90 struct mem_cgroup *target_mem_cgroup;
66e1707b 91
327c0e96
KH
92 /*
93 * Nodemask of nodes allowed by the caller. If NULL, all nodes
94 * are scanned.
95 */
96 nodemask_t *nodemask;
1da177e4
LT
97};
98
1da177e4
LT
99#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100
101#ifdef ARCH_HAS_PREFETCH
102#define prefetch_prev_lru_page(_page, _base, _field) \
103 do { \
104 if ((_page)->lru.prev != _base) { \
105 struct page *prev; \
106 \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetch(&prev->_field); \
109 } \
110 } while (0)
111#else
112#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113#endif
114
115#ifdef ARCH_HAS_PREFETCHW
116#define prefetchw_prev_lru_page(_page, _base, _field) \
117 do { \
118 if ((_page)->lru.prev != _base) { \
119 struct page *prev; \
120 \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetchw(&prev->_field); \
123 } \
124 } while (0)
125#else
126#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127#endif
128
129/*
130 * From 0 .. 100. Higher means more swappy.
131 */
132int vm_swappiness = 60;
b21e0b90 133unsigned long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
134
135static LIST_HEAD(shrinker_list);
136static DECLARE_RWSEM(shrinker_rwsem);
137
c255a458 138#ifdef CONFIG_MEMCG
89b5fae5
JW
139static bool global_reclaim(struct scan_control *sc)
140{
f16015fb 141 return !sc->target_mem_cgroup;
89b5fae5 142}
91a45470 143#else
89b5fae5
JW
144static bool global_reclaim(struct scan_control *sc)
145{
146 return true;
147}
91a45470
KH
148#endif
149
6e543d57
LD
150unsigned long zone_reclaimable_pages(struct zone *zone)
151{
152 int nr;
153
154 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
155 zone_page_state(zone, NR_INACTIVE_FILE);
156
157 if (get_nr_swap_pages() > 0)
158 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
159 zone_page_state(zone, NR_INACTIVE_ANON);
160
161 return nr;
162}
163
164bool zone_reclaimable(struct zone *zone)
165{
166 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
167}
168
4d7dcca2 169static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 170{
c3c787e8 171 if (!mem_cgroup_disabled())
4d7dcca2 172 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 173
074291fe 174 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
175}
176
1da177e4 177/*
1d3d4437 178 * Add a shrinker callback to be called from the vm.
1da177e4 179 */
1d3d4437 180int register_shrinker(struct shrinker *shrinker)
1da177e4 181{
1d3d4437
GC
182 size_t size = sizeof(*shrinker->nr_deferred);
183
184 /*
185 * If we only have one possible node in the system anyway, save
186 * ourselves the trouble and disable NUMA aware behavior. This way we
187 * will save memory and some small loop time later.
188 */
189 if (nr_node_ids == 1)
190 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
191
192 if (shrinker->flags & SHRINKER_NUMA_AWARE)
193 size *= nr_node_ids;
194
195 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
196 if (!shrinker->nr_deferred)
197 return -ENOMEM;
198
8e1f936b
RR
199 down_write(&shrinker_rwsem);
200 list_add_tail(&shrinker->list, &shrinker_list);
201 up_write(&shrinker_rwsem);
1d3d4437 202 return 0;
1da177e4 203}
8e1f936b 204EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
205
206/*
207 * Remove one
208 */
8e1f936b 209void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
210{
211 down_write(&shrinker_rwsem);
212 list_del(&shrinker->list);
213 up_write(&shrinker_rwsem);
1da177e4 214}
8e1f936b 215EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
216
217#define SHRINK_BATCH 128
1d3d4437
GC
218
219static unsigned long
220shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
221 unsigned long nr_pages_scanned, unsigned long lru_pages)
222{
223 unsigned long freed = 0;
224 unsigned long long delta;
225 long total_scan;
226 long max_pass;
227 long nr;
228 long new_nr;
229 int nid = shrinkctl->nid;
230 long batch_size = shrinker->batch ? shrinker->batch
231 : SHRINK_BATCH;
232
a0b02131 233 max_pass = shrinker->count_objects(shrinker, shrinkctl);
1d3d4437
GC
234 if (max_pass == 0)
235 return 0;
236
237 /*
238 * copy the current shrinker scan count into a local variable
239 * and zero it so that other concurrent shrinker invocations
240 * don't also do this scanning work.
241 */
242 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
243
244 total_scan = nr;
245 delta = (4 * nr_pages_scanned) / shrinker->seeks;
246 delta *= max_pass;
247 do_div(delta, lru_pages + 1);
248 total_scan += delta;
249 if (total_scan < 0) {
250 printk(KERN_ERR
251 "shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 252 shrinker->scan_objects, total_scan);
1d3d4437
GC
253 total_scan = max_pass;
254 }
255
256 /*
257 * We need to avoid excessive windup on filesystem shrinkers
258 * due to large numbers of GFP_NOFS allocations causing the
259 * shrinkers to return -1 all the time. This results in a large
260 * nr being built up so when a shrink that can do some work
261 * comes along it empties the entire cache due to nr >>>
262 * max_pass. This is bad for sustaining a working set in
263 * memory.
264 *
265 * Hence only allow the shrinker to scan the entire cache when
266 * a large delta change is calculated directly.
267 */
268 if (delta < max_pass / 4)
269 total_scan = min(total_scan, max_pass / 2);
270
271 /*
272 * Avoid risking looping forever due to too large nr value:
273 * never try to free more than twice the estimate number of
274 * freeable entries.
275 */
276 if (total_scan > max_pass * 2)
277 total_scan = max_pass * 2;
278
279 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
280 nr_pages_scanned, lru_pages,
281 max_pass, delta, total_scan);
282
283 while (total_scan >= batch_size) {
a0b02131 284 unsigned long ret;
1d3d4437 285
a0b02131
DC
286 shrinkctl->nr_to_scan = batch_size;
287 ret = shrinker->scan_objects(shrinker, shrinkctl);
288 if (ret == SHRINK_STOP)
289 break;
290 freed += ret;
1d3d4437
GC
291
292 count_vm_events(SLABS_SCANNED, batch_size);
293 total_scan -= batch_size;
294
295 cond_resched();
296 }
297
298 /*
299 * move the unused scan count back into the shrinker in a
300 * manner that handles concurrent updates. If we exhausted the
301 * scan, there is no need to do an update.
302 */
303 if (total_scan > 0)
304 new_nr = atomic_long_add_return(total_scan,
305 &shrinker->nr_deferred[nid]);
306 else
307 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
308
309 trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
310 return freed;
1495f230
YH
311}
312
1da177e4
LT
313/*
314 * Call the shrink functions to age shrinkable caches
315 *
316 * Here we assume it costs one seek to replace a lru page and that it also
317 * takes a seek to recreate a cache object. With this in mind we age equal
318 * percentages of the lru and ageable caches. This should balance the seeks
319 * generated by these structures.
320 *
183ff22b 321 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
322 * slab to avoid swapping.
323 *
324 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
325 *
326 * `lru_pages' represents the number of on-LRU pages in all the zones which
327 * are eligible for the caller's allocation attempt. It is used for balancing
328 * slab reclaim versus page reclaim.
b15e0905 329 *
330 * Returns the number of slab objects which we shrunk.
1da177e4 331 */
24f7c6b9 332unsigned long shrink_slab(struct shrink_control *shrinkctl,
1495f230 333 unsigned long nr_pages_scanned,
a09ed5e0 334 unsigned long lru_pages)
1da177e4
LT
335{
336 struct shrinker *shrinker;
24f7c6b9 337 unsigned long freed = 0;
1da177e4 338
1495f230
YH
339 if (nr_pages_scanned == 0)
340 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 341
f06590bd 342 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
343 /*
344 * If we would return 0, our callers would understand that we
345 * have nothing else to shrink and give up trying. By returning
346 * 1 we keep it going and assume we'll be able to shrink next
347 * time.
348 */
349 freed = 1;
f06590bd
MK
350 goto out;
351 }
1da177e4
LT
352
353 list_for_each_entry(shrinker, &shrinker_list, list) {
1d3d4437
GC
354 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
355 if (!node_online(shrinkctl->nid))
356 continue;
1da177e4 357
1d3d4437
GC
358 if (!(shrinker->flags & SHRINKER_NUMA_AWARE) &&
359 (shrinkctl->nid != 0))
1da177e4 360 break;
1da177e4 361
1d3d4437
GC
362 freed += shrink_slab_node(shrinkctl, shrinker,
363 nr_pages_scanned, lru_pages);
1da177e4 364
1da177e4 365 }
1da177e4
LT
366 }
367 up_read(&shrinker_rwsem);
f06590bd
MK
368out:
369 cond_resched();
24f7c6b9 370 return freed;
1da177e4
LT
371}
372
1da177e4
LT
373static inline int is_page_cache_freeable(struct page *page)
374{
ceddc3a5
JW
375 /*
376 * A freeable page cache page is referenced only by the caller
377 * that isolated the page, the page cache radix tree and
378 * optional buffer heads at page->private.
379 */
edcf4748 380 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
381}
382
7d3579e8
KM
383static int may_write_to_queue(struct backing_dev_info *bdi,
384 struct scan_control *sc)
1da177e4 385{
930d9152 386 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
387 return 1;
388 if (!bdi_write_congested(bdi))
389 return 1;
390 if (bdi == current->backing_dev_info)
391 return 1;
392 return 0;
393}
394
395/*
396 * We detected a synchronous write error writing a page out. Probably
397 * -ENOSPC. We need to propagate that into the address_space for a subsequent
398 * fsync(), msync() or close().
399 *
400 * The tricky part is that after writepage we cannot touch the mapping: nothing
401 * prevents it from being freed up. But we have a ref on the page and once
402 * that page is locked, the mapping is pinned.
403 *
404 * We're allowed to run sleeping lock_page() here because we know the caller has
405 * __GFP_FS.
406 */
407static void handle_write_error(struct address_space *mapping,
408 struct page *page, int error)
409{
7eaceacc 410 lock_page(page);
3e9f45bd
GC
411 if (page_mapping(page) == mapping)
412 mapping_set_error(mapping, error);
1da177e4
LT
413 unlock_page(page);
414}
415
04e62a29
CL
416/* possible outcome of pageout() */
417typedef enum {
418 /* failed to write page out, page is locked */
419 PAGE_KEEP,
420 /* move page to the active list, page is locked */
421 PAGE_ACTIVATE,
422 /* page has been sent to the disk successfully, page is unlocked */
423 PAGE_SUCCESS,
424 /* page is clean and locked */
425 PAGE_CLEAN,
426} pageout_t;
427
1da177e4 428/*
1742f19f
AM
429 * pageout is called by shrink_page_list() for each dirty page.
430 * Calls ->writepage().
1da177e4 431 */
c661b078 432static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 433 struct scan_control *sc)
1da177e4
LT
434{
435 /*
436 * If the page is dirty, only perform writeback if that write
437 * will be non-blocking. To prevent this allocation from being
438 * stalled by pagecache activity. But note that there may be
439 * stalls if we need to run get_block(). We could test
440 * PagePrivate for that.
441 *
6aceb53b 442 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
443 * this page's queue, we can perform writeback even if that
444 * will block.
445 *
446 * If the page is swapcache, write it back even if that would
447 * block, for some throttling. This happens by accident, because
448 * swap_backing_dev_info is bust: it doesn't reflect the
449 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
450 */
451 if (!is_page_cache_freeable(page))
452 return PAGE_KEEP;
453 if (!mapping) {
454 /*
455 * Some data journaling orphaned pages can have
456 * page->mapping == NULL while being dirty with clean buffers.
457 */
266cf658 458 if (page_has_private(page)) {
1da177e4
LT
459 if (try_to_free_buffers(page)) {
460 ClearPageDirty(page);
d40cee24 461 printk("%s: orphaned page\n", __func__);
1da177e4
LT
462 return PAGE_CLEAN;
463 }
464 }
465 return PAGE_KEEP;
466 }
467 if (mapping->a_ops->writepage == NULL)
468 return PAGE_ACTIVATE;
0e093d99 469 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
470 return PAGE_KEEP;
471
472 if (clear_page_dirty_for_io(page)) {
473 int res;
474 struct writeback_control wbc = {
475 .sync_mode = WB_SYNC_NONE,
476 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
477 .range_start = 0,
478 .range_end = LLONG_MAX,
1da177e4
LT
479 .for_reclaim = 1,
480 };
481
482 SetPageReclaim(page);
483 res = mapping->a_ops->writepage(page, &wbc);
484 if (res < 0)
485 handle_write_error(mapping, page, res);
994fc28c 486 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
487 ClearPageReclaim(page);
488 return PAGE_ACTIVATE;
489 }
c661b078 490
1da177e4
LT
491 if (!PageWriteback(page)) {
492 /* synchronous write or broken a_ops? */
493 ClearPageReclaim(page);
494 }
23b9da55 495 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 496 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
497 return PAGE_SUCCESS;
498 }
499
500 return PAGE_CLEAN;
501}
502
a649fd92 503/*
e286781d
NP
504 * Same as remove_mapping, but if the page is removed from the mapping, it
505 * gets returned with a refcount of 0.
a649fd92 506 */
e286781d 507static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 508{
28e4d965
NP
509 BUG_ON(!PageLocked(page));
510 BUG_ON(mapping != page_mapping(page));
49d2e9cc 511
19fd6231 512 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 513 /*
0fd0e6b0
NP
514 * The non racy check for a busy page.
515 *
516 * Must be careful with the order of the tests. When someone has
517 * a ref to the page, it may be possible that they dirty it then
518 * drop the reference. So if PageDirty is tested before page_count
519 * here, then the following race may occur:
520 *
521 * get_user_pages(&page);
522 * [user mapping goes away]
523 * write_to(page);
524 * !PageDirty(page) [good]
525 * SetPageDirty(page);
526 * put_page(page);
527 * !page_count(page) [good, discard it]
528 *
529 * [oops, our write_to data is lost]
530 *
531 * Reversing the order of the tests ensures such a situation cannot
532 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
533 * load is not satisfied before that of page->_count.
534 *
535 * Note that if SetPageDirty is always performed via set_page_dirty,
536 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 537 */
e286781d 538 if (!page_freeze_refs(page, 2))
49d2e9cc 539 goto cannot_free;
e286781d
NP
540 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
541 if (unlikely(PageDirty(page))) {
542 page_unfreeze_refs(page, 2);
49d2e9cc 543 goto cannot_free;
e286781d 544 }
49d2e9cc
CL
545
546 if (PageSwapCache(page)) {
547 swp_entry_t swap = { .val = page_private(page) };
548 __delete_from_swap_cache(page);
19fd6231 549 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 550 swapcache_free(swap, page);
e286781d 551 } else {
6072d13c
LT
552 void (*freepage)(struct page *);
553
554 freepage = mapping->a_ops->freepage;
555
e64a782f 556 __delete_from_page_cache(page);
19fd6231 557 spin_unlock_irq(&mapping->tree_lock);
e767e056 558 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
559
560 if (freepage != NULL)
561 freepage(page);
49d2e9cc
CL
562 }
563
49d2e9cc
CL
564 return 1;
565
566cannot_free:
19fd6231 567 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
568 return 0;
569}
570
e286781d
NP
571/*
572 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
573 * someone else has a ref on the page, abort and return 0. If it was
574 * successfully detached, return 1. Assumes the caller has a single ref on
575 * this page.
576 */
577int remove_mapping(struct address_space *mapping, struct page *page)
578{
579 if (__remove_mapping(mapping, page)) {
580 /*
581 * Unfreezing the refcount with 1 rather than 2 effectively
582 * drops the pagecache ref for us without requiring another
583 * atomic operation.
584 */
585 page_unfreeze_refs(page, 1);
586 return 1;
587 }
588 return 0;
589}
590
894bc310
LS
591/**
592 * putback_lru_page - put previously isolated page onto appropriate LRU list
593 * @page: page to be put back to appropriate lru list
594 *
595 * Add previously isolated @page to appropriate LRU list.
596 * Page may still be unevictable for other reasons.
597 *
598 * lru_lock must not be held, interrupts must be enabled.
599 */
894bc310
LS
600void putback_lru_page(struct page *page)
601{
0ec3b74c 602 bool is_unevictable;
bbfd28ee 603 int was_unevictable = PageUnevictable(page);
894bc310
LS
604
605 VM_BUG_ON(PageLRU(page));
606
607redo:
608 ClearPageUnevictable(page);
609
39b5f29a 610 if (page_evictable(page)) {
894bc310
LS
611 /*
612 * For evictable pages, we can use the cache.
613 * In event of a race, worst case is we end up with an
614 * unevictable page on [in]active list.
615 * We know how to handle that.
616 */
0ec3b74c 617 is_unevictable = false;
c53954a0 618 lru_cache_add(page);
894bc310
LS
619 } else {
620 /*
621 * Put unevictable pages directly on zone's unevictable
622 * list.
623 */
0ec3b74c 624 is_unevictable = true;
894bc310 625 add_page_to_unevictable_list(page);
6a7b9548 626 /*
21ee9f39
MK
627 * When racing with an mlock or AS_UNEVICTABLE clearing
628 * (page is unlocked) make sure that if the other thread
629 * does not observe our setting of PG_lru and fails
24513264 630 * isolation/check_move_unevictable_pages,
21ee9f39 631 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
632 * the page back to the evictable list.
633 *
21ee9f39 634 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
635 */
636 smp_mb();
894bc310 637 }
894bc310
LS
638
639 /*
640 * page's status can change while we move it among lru. If an evictable
641 * page is on unevictable list, it never be freed. To avoid that,
642 * check after we added it to the list, again.
643 */
0ec3b74c 644 if (is_unevictable && page_evictable(page)) {
894bc310
LS
645 if (!isolate_lru_page(page)) {
646 put_page(page);
647 goto redo;
648 }
649 /* This means someone else dropped this page from LRU
650 * So, it will be freed or putback to LRU again. There is
651 * nothing to do here.
652 */
653 }
654
0ec3b74c 655 if (was_unevictable && !is_unevictable)
bbfd28ee 656 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 657 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
658 count_vm_event(UNEVICTABLE_PGCULLED);
659
894bc310
LS
660 put_page(page); /* drop ref from isolate */
661}
662
dfc8d636
JW
663enum page_references {
664 PAGEREF_RECLAIM,
665 PAGEREF_RECLAIM_CLEAN,
64574746 666 PAGEREF_KEEP,
dfc8d636
JW
667 PAGEREF_ACTIVATE,
668};
669
670static enum page_references page_check_references(struct page *page,
671 struct scan_control *sc)
672{
64574746 673 int referenced_ptes, referenced_page;
dfc8d636 674 unsigned long vm_flags;
dfc8d636 675
c3ac9a8a
JW
676 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
677 &vm_flags);
64574746 678 referenced_page = TestClearPageReferenced(page);
dfc8d636 679
dfc8d636
JW
680 /*
681 * Mlock lost the isolation race with us. Let try_to_unmap()
682 * move the page to the unevictable list.
683 */
684 if (vm_flags & VM_LOCKED)
685 return PAGEREF_RECLAIM;
686
64574746 687 if (referenced_ptes) {
e4898273 688 if (PageSwapBacked(page))
64574746
JW
689 return PAGEREF_ACTIVATE;
690 /*
691 * All mapped pages start out with page table
692 * references from the instantiating fault, so we need
693 * to look twice if a mapped file page is used more
694 * than once.
695 *
696 * Mark it and spare it for another trip around the
697 * inactive list. Another page table reference will
698 * lead to its activation.
699 *
700 * Note: the mark is set for activated pages as well
701 * so that recently deactivated but used pages are
702 * quickly recovered.
703 */
704 SetPageReferenced(page);
705
34dbc67a 706 if (referenced_page || referenced_ptes > 1)
64574746
JW
707 return PAGEREF_ACTIVATE;
708
c909e993
KK
709 /*
710 * Activate file-backed executable pages after first usage.
711 */
712 if (vm_flags & VM_EXEC)
713 return PAGEREF_ACTIVATE;
714
64574746
JW
715 return PAGEREF_KEEP;
716 }
dfc8d636
JW
717
718 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 719 if (referenced_page && !PageSwapBacked(page))
64574746
JW
720 return PAGEREF_RECLAIM_CLEAN;
721
722 return PAGEREF_RECLAIM;
dfc8d636
JW
723}
724
e2be15f6
MG
725/* Check if a page is dirty or under writeback */
726static void page_check_dirty_writeback(struct page *page,
727 bool *dirty, bool *writeback)
728{
b4597226
MG
729 struct address_space *mapping;
730
e2be15f6
MG
731 /*
732 * Anonymous pages are not handled by flushers and must be written
733 * from reclaim context. Do not stall reclaim based on them
734 */
735 if (!page_is_file_cache(page)) {
736 *dirty = false;
737 *writeback = false;
738 return;
739 }
740
741 /* By default assume that the page flags are accurate */
742 *dirty = PageDirty(page);
743 *writeback = PageWriteback(page);
b4597226
MG
744
745 /* Verify dirty/writeback state if the filesystem supports it */
746 if (!page_has_private(page))
747 return;
748
749 mapping = page_mapping(page);
750 if (mapping && mapping->a_ops->is_dirty_writeback)
751 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
752}
753
1da177e4 754/*
1742f19f 755 * shrink_page_list() returns the number of reclaimed pages
1da177e4 756 */
1742f19f 757static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 758 struct zone *zone,
f84f6e2b 759 struct scan_control *sc,
02c6de8d 760 enum ttu_flags ttu_flags,
8e950282 761 unsigned long *ret_nr_dirty,
d43006d5 762 unsigned long *ret_nr_unqueued_dirty,
8e950282 763 unsigned long *ret_nr_congested,
02c6de8d 764 unsigned long *ret_nr_writeback,
b1a6f21e 765 unsigned long *ret_nr_immediate,
02c6de8d 766 bool force_reclaim)
1da177e4
LT
767{
768 LIST_HEAD(ret_pages);
abe4c3b5 769 LIST_HEAD(free_pages);
1da177e4 770 int pgactivate = 0;
d43006d5 771 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
772 unsigned long nr_dirty = 0;
773 unsigned long nr_congested = 0;
05ff5137 774 unsigned long nr_reclaimed = 0;
92df3a72 775 unsigned long nr_writeback = 0;
b1a6f21e 776 unsigned long nr_immediate = 0;
1da177e4
LT
777
778 cond_resched();
779
69980e31 780 mem_cgroup_uncharge_start();
1da177e4
LT
781 while (!list_empty(page_list)) {
782 struct address_space *mapping;
783 struct page *page;
784 int may_enter_fs;
02c6de8d 785 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 786 bool dirty, writeback;
1da177e4
LT
787
788 cond_resched();
789
790 page = lru_to_page(page_list);
791 list_del(&page->lru);
792
529ae9aa 793 if (!trylock_page(page))
1da177e4
LT
794 goto keep;
795
725d704e 796 VM_BUG_ON(PageActive(page));
6a18adb3 797 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
798
799 sc->nr_scanned++;
80e43426 800
39b5f29a 801 if (unlikely(!page_evictable(page)))
b291f000 802 goto cull_mlocked;
894bc310 803
a6dc60f8 804 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
805 goto keep_locked;
806
1da177e4
LT
807 /* Double the slab pressure for mapped and swapcache pages */
808 if (page_mapped(page) || PageSwapCache(page))
809 sc->nr_scanned++;
810
c661b078
AW
811 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
812 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
813
e2be15f6
MG
814 /*
815 * The number of dirty pages determines if a zone is marked
816 * reclaim_congested which affects wait_iff_congested. kswapd
817 * will stall and start writing pages if the tail of the LRU
818 * is all dirty unqueued pages.
819 */
820 page_check_dirty_writeback(page, &dirty, &writeback);
821 if (dirty || writeback)
822 nr_dirty++;
823
824 if (dirty && !writeback)
825 nr_unqueued_dirty++;
826
d04e8acd
MG
827 /*
828 * Treat this page as congested if the underlying BDI is or if
829 * pages are cycling through the LRU so quickly that the
830 * pages marked for immediate reclaim are making it to the
831 * end of the LRU a second time.
832 */
e2be15f6 833 mapping = page_mapping(page);
d04e8acd
MG
834 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
835 (writeback && PageReclaim(page)))
e2be15f6
MG
836 nr_congested++;
837
283aba9f
MG
838 /*
839 * If a page at the tail of the LRU is under writeback, there
840 * are three cases to consider.
841 *
842 * 1) If reclaim is encountering an excessive number of pages
843 * under writeback and this page is both under writeback and
844 * PageReclaim then it indicates that pages are being queued
845 * for IO but are being recycled through the LRU before the
846 * IO can complete. Waiting on the page itself risks an
847 * indefinite stall if it is impossible to writeback the
848 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
849 * note that the LRU is being scanned too quickly and the
850 * caller can stall after page list has been processed.
283aba9f
MG
851 *
852 * 2) Global reclaim encounters a page, memcg encounters a
853 * page that is not marked for immediate reclaim or
854 * the caller does not have __GFP_IO. In this case mark
855 * the page for immediate reclaim and continue scanning.
856 *
857 * __GFP_IO is checked because a loop driver thread might
858 * enter reclaim, and deadlock if it waits on a page for
859 * which it is needed to do the write (loop masks off
860 * __GFP_IO|__GFP_FS for this reason); but more thought
861 * would probably show more reasons.
862 *
863 * Don't require __GFP_FS, since we're not going into the
864 * FS, just waiting on its writeback completion. Worryingly,
865 * ext4 gfs2 and xfs allocate pages with
866 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
867 * may_enter_fs here is liable to OOM on them.
868 *
869 * 3) memcg encounters a page that is not already marked
870 * PageReclaim. memcg does not have any dirty pages
871 * throttling so we could easily OOM just because too many
872 * pages are in writeback and there is nothing else to
873 * reclaim. Wait for the writeback to complete.
874 */
c661b078 875 if (PageWriteback(page)) {
283aba9f
MG
876 /* Case 1 above */
877 if (current_is_kswapd() &&
878 PageReclaim(page) &&
879 zone_is_reclaim_writeback(zone)) {
b1a6f21e
MG
880 nr_immediate++;
881 goto keep_locked;
283aba9f
MG
882
883 /* Case 2 above */
884 } else if (global_reclaim(sc) ||
c3b94f44
HD
885 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
886 /*
887 * This is slightly racy - end_page_writeback()
888 * might have just cleared PageReclaim, then
889 * setting PageReclaim here end up interpreted
890 * as PageReadahead - but that does not matter
891 * enough to care. What we do want is for this
892 * page to have PageReclaim set next time memcg
893 * reclaim reaches the tests above, so it will
894 * then wait_on_page_writeback() to avoid OOM;
895 * and it's also appropriate in global reclaim.
896 */
897 SetPageReclaim(page);
e62e384e 898 nr_writeback++;
283aba9f 899
c3b94f44 900 goto keep_locked;
283aba9f
MG
901
902 /* Case 3 above */
903 } else {
904 wait_on_page_writeback(page);
e62e384e 905 }
c661b078 906 }
1da177e4 907
02c6de8d
MK
908 if (!force_reclaim)
909 references = page_check_references(page, sc);
910
dfc8d636
JW
911 switch (references) {
912 case PAGEREF_ACTIVATE:
1da177e4 913 goto activate_locked;
64574746
JW
914 case PAGEREF_KEEP:
915 goto keep_locked;
dfc8d636
JW
916 case PAGEREF_RECLAIM:
917 case PAGEREF_RECLAIM_CLEAN:
918 ; /* try to reclaim the page below */
919 }
1da177e4 920
1da177e4
LT
921 /*
922 * Anonymous process memory has backing store?
923 * Try to allocate it some swap space here.
924 */
b291f000 925 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
926 if (!(sc->gfp_mask & __GFP_IO))
927 goto keep_locked;
5bc7b8ac 928 if (!add_to_swap(page, page_list))
1da177e4 929 goto activate_locked;
63eb6b93 930 may_enter_fs = 1;
1da177e4 931
e2be15f6
MG
932 /* Adding to swap updated mapping */
933 mapping = page_mapping(page);
934 }
1da177e4
LT
935
936 /*
937 * The page is mapped into the page tables of one or more
938 * processes. Try to unmap it here.
939 */
940 if (page_mapped(page) && mapping) {
02c6de8d 941 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
942 case SWAP_FAIL:
943 goto activate_locked;
944 case SWAP_AGAIN:
945 goto keep_locked;
b291f000
NP
946 case SWAP_MLOCK:
947 goto cull_mlocked;
1da177e4
LT
948 case SWAP_SUCCESS:
949 ; /* try to free the page below */
950 }
951 }
952
953 if (PageDirty(page)) {
ee72886d
MG
954 /*
955 * Only kswapd can writeback filesystem pages to
d43006d5
MG
956 * avoid risk of stack overflow but only writeback
957 * if many dirty pages have been encountered.
ee72886d 958 */
f84f6e2b 959 if (page_is_file_cache(page) &&
9e3b2f8c 960 (!current_is_kswapd() ||
d43006d5 961 !zone_is_reclaim_dirty(zone))) {
49ea7eb6
MG
962 /*
963 * Immediately reclaim when written back.
964 * Similar in principal to deactivate_page()
965 * except we already have the page isolated
966 * and know it's dirty
967 */
968 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
969 SetPageReclaim(page);
970
ee72886d
MG
971 goto keep_locked;
972 }
973
dfc8d636 974 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 975 goto keep_locked;
4dd4b920 976 if (!may_enter_fs)
1da177e4 977 goto keep_locked;
52a8363e 978 if (!sc->may_writepage)
1da177e4
LT
979 goto keep_locked;
980
981 /* Page is dirty, try to write it out here */
7d3579e8 982 switch (pageout(page, mapping, sc)) {
1da177e4
LT
983 case PAGE_KEEP:
984 goto keep_locked;
985 case PAGE_ACTIVATE:
986 goto activate_locked;
987 case PAGE_SUCCESS:
7d3579e8 988 if (PageWriteback(page))
41ac1999 989 goto keep;
7d3579e8 990 if (PageDirty(page))
1da177e4 991 goto keep;
7d3579e8 992
1da177e4
LT
993 /*
994 * A synchronous write - probably a ramdisk. Go
995 * ahead and try to reclaim the page.
996 */
529ae9aa 997 if (!trylock_page(page))
1da177e4
LT
998 goto keep;
999 if (PageDirty(page) || PageWriteback(page))
1000 goto keep_locked;
1001 mapping = page_mapping(page);
1002 case PAGE_CLEAN:
1003 ; /* try to free the page below */
1004 }
1005 }
1006
1007 /*
1008 * If the page has buffers, try to free the buffer mappings
1009 * associated with this page. If we succeed we try to free
1010 * the page as well.
1011 *
1012 * We do this even if the page is PageDirty().
1013 * try_to_release_page() does not perform I/O, but it is
1014 * possible for a page to have PageDirty set, but it is actually
1015 * clean (all its buffers are clean). This happens if the
1016 * buffers were written out directly, with submit_bh(). ext3
894bc310 1017 * will do this, as well as the blockdev mapping.
1da177e4
LT
1018 * try_to_release_page() will discover that cleanness and will
1019 * drop the buffers and mark the page clean - it can be freed.
1020 *
1021 * Rarely, pages can have buffers and no ->mapping. These are
1022 * the pages which were not successfully invalidated in
1023 * truncate_complete_page(). We try to drop those buffers here
1024 * and if that worked, and the page is no longer mapped into
1025 * process address space (page_count == 1) it can be freed.
1026 * Otherwise, leave the page on the LRU so it is swappable.
1027 */
266cf658 1028 if (page_has_private(page)) {
1da177e4
LT
1029 if (!try_to_release_page(page, sc->gfp_mask))
1030 goto activate_locked;
e286781d
NP
1031 if (!mapping && page_count(page) == 1) {
1032 unlock_page(page);
1033 if (put_page_testzero(page))
1034 goto free_it;
1035 else {
1036 /*
1037 * rare race with speculative reference.
1038 * the speculative reference will free
1039 * this page shortly, so we may
1040 * increment nr_reclaimed here (and
1041 * leave it off the LRU).
1042 */
1043 nr_reclaimed++;
1044 continue;
1045 }
1046 }
1da177e4
LT
1047 }
1048
e286781d 1049 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 1050 goto keep_locked;
1da177e4 1051
a978d6f5
NP
1052 /*
1053 * At this point, we have no other references and there is
1054 * no way to pick any more up (removed from LRU, removed
1055 * from pagecache). Can use non-atomic bitops now (and
1056 * we obviously don't have to worry about waking up a process
1057 * waiting on the page lock, because there are no references.
1058 */
1059 __clear_page_locked(page);
e286781d 1060free_it:
05ff5137 1061 nr_reclaimed++;
abe4c3b5
MG
1062
1063 /*
1064 * Is there need to periodically free_page_list? It would
1065 * appear not as the counts should be low
1066 */
1067 list_add(&page->lru, &free_pages);
1da177e4
LT
1068 continue;
1069
b291f000 1070cull_mlocked:
63d6c5ad
HD
1071 if (PageSwapCache(page))
1072 try_to_free_swap(page);
b291f000
NP
1073 unlock_page(page);
1074 putback_lru_page(page);
1075 continue;
1076
1da177e4 1077activate_locked:
68a22394
RR
1078 /* Not a candidate for swapping, so reclaim swap space. */
1079 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1080 try_to_free_swap(page);
894bc310 1081 VM_BUG_ON(PageActive(page));
1da177e4
LT
1082 SetPageActive(page);
1083 pgactivate++;
1084keep_locked:
1085 unlock_page(page);
1086keep:
1087 list_add(&page->lru, &ret_pages);
b291f000 1088 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 1089 }
abe4c3b5 1090
cc59850e 1091 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 1092
1da177e4 1093 list_splice(&ret_pages, page_list);
f8891e5e 1094 count_vm_events(PGACTIVATE, pgactivate);
69980e31 1095 mem_cgroup_uncharge_end();
8e950282
MG
1096 *ret_nr_dirty += nr_dirty;
1097 *ret_nr_congested += nr_congested;
d43006d5 1098 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1099 *ret_nr_writeback += nr_writeback;
b1a6f21e 1100 *ret_nr_immediate += nr_immediate;
05ff5137 1101 return nr_reclaimed;
1da177e4
LT
1102}
1103
02c6de8d
MK
1104unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1105 struct list_head *page_list)
1106{
1107 struct scan_control sc = {
1108 .gfp_mask = GFP_KERNEL,
1109 .priority = DEF_PRIORITY,
1110 .may_unmap = 1,
1111 };
8e950282 1112 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1113 struct page *page, *next;
1114 LIST_HEAD(clean_pages);
1115
1116 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e
RA
1117 if (page_is_file_cache(page) && !PageDirty(page) &&
1118 !isolated_balloon_page(page)) {
02c6de8d
MK
1119 ClearPageActive(page);
1120 list_move(&page->lru, &clean_pages);
1121 }
1122 }
1123
1124 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1125 TTU_UNMAP|TTU_IGNORE_ACCESS,
1126 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d
MK
1127 list_splice(&clean_pages, page_list);
1128 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1129 return ret;
1130}
1131
5ad333eb
AW
1132/*
1133 * Attempt to remove the specified page from its LRU. Only take this page
1134 * if it is of the appropriate PageActive status. Pages which are being
1135 * freed elsewhere are also ignored.
1136 *
1137 * page: page to consider
1138 * mode: one of the LRU isolation modes defined above
1139 *
1140 * returns 0 on success, -ve errno on failure.
1141 */
f3fd4a61 1142int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1143{
1144 int ret = -EINVAL;
1145
1146 /* Only take pages on the LRU. */
1147 if (!PageLRU(page))
1148 return ret;
1149
e46a2879
MK
1150 /* Compaction should not handle unevictable pages but CMA can do so */
1151 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1152 return ret;
1153
5ad333eb 1154 ret = -EBUSY;
08e552c6 1155
c8244935
MG
1156 /*
1157 * To minimise LRU disruption, the caller can indicate that it only
1158 * wants to isolate pages it will be able to operate on without
1159 * blocking - clean pages for the most part.
1160 *
1161 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1162 * is used by reclaim when it is cannot write to backing storage
1163 *
1164 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1165 * that it is possible to migrate without blocking
1166 */
1167 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1168 /* All the caller can do on PageWriteback is block */
1169 if (PageWriteback(page))
1170 return ret;
1171
1172 if (PageDirty(page)) {
1173 struct address_space *mapping;
1174
1175 /* ISOLATE_CLEAN means only clean pages */
1176 if (mode & ISOLATE_CLEAN)
1177 return ret;
1178
1179 /*
1180 * Only pages without mappings or that have a
1181 * ->migratepage callback are possible to migrate
1182 * without blocking
1183 */
1184 mapping = page_mapping(page);
1185 if (mapping && !mapping->a_ops->migratepage)
1186 return ret;
1187 }
1188 }
39deaf85 1189
f80c0673
MK
1190 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1191 return ret;
1192
5ad333eb
AW
1193 if (likely(get_page_unless_zero(page))) {
1194 /*
1195 * Be careful not to clear PageLRU until after we're
1196 * sure the page is not being freed elsewhere -- the
1197 * page release code relies on it.
1198 */
1199 ClearPageLRU(page);
1200 ret = 0;
1201 }
1202
1203 return ret;
1204}
1205
1da177e4
LT
1206/*
1207 * zone->lru_lock is heavily contended. Some of the functions that
1208 * shrink the lists perform better by taking out a batch of pages
1209 * and working on them outside the LRU lock.
1210 *
1211 * For pagecache intensive workloads, this function is the hottest
1212 * spot in the kernel (apart from copy_*_user functions).
1213 *
1214 * Appropriate locks must be held before calling this function.
1215 *
1216 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1217 * @lruvec: The LRU vector to pull pages from.
1da177e4 1218 * @dst: The temp list to put pages on to.
f626012d 1219 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1220 * @sc: The scan_control struct for this reclaim session
5ad333eb 1221 * @mode: One of the LRU isolation modes
3cb99451 1222 * @lru: LRU list id for isolating
1da177e4
LT
1223 *
1224 * returns how many pages were moved onto *@dst.
1225 */
69e05944 1226static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1227 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1228 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1229 isolate_mode_t mode, enum lru_list lru)
1da177e4 1230{
75b00af7 1231 struct list_head *src = &lruvec->lists[lru];
69e05944 1232 unsigned long nr_taken = 0;
c9b02d97 1233 unsigned long scan;
1da177e4 1234
c9b02d97 1235 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1236 struct page *page;
fa9add64 1237 int nr_pages;
5ad333eb 1238
1da177e4
LT
1239 page = lru_to_page(src);
1240 prefetchw_prev_lru_page(page, src, flags);
1241
725d704e 1242 VM_BUG_ON(!PageLRU(page));
8d438f96 1243
f3fd4a61 1244 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1245 case 0:
fa9add64
HD
1246 nr_pages = hpage_nr_pages(page);
1247 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1248 list_move(&page->lru, dst);
fa9add64 1249 nr_taken += nr_pages;
5ad333eb
AW
1250 break;
1251
1252 case -EBUSY:
1253 /* else it is being freed elsewhere */
1254 list_move(&page->lru, src);
1255 continue;
46453a6e 1256
5ad333eb
AW
1257 default:
1258 BUG();
1259 }
1da177e4
LT
1260 }
1261
f626012d 1262 *nr_scanned = scan;
75b00af7
HD
1263 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1264 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1265 return nr_taken;
1266}
1267
62695a84
NP
1268/**
1269 * isolate_lru_page - tries to isolate a page from its LRU list
1270 * @page: page to isolate from its LRU list
1271 *
1272 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1273 * vmstat statistic corresponding to whatever LRU list the page was on.
1274 *
1275 * Returns 0 if the page was removed from an LRU list.
1276 * Returns -EBUSY if the page was not on an LRU list.
1277 *
1278 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1279 * the active list, it will have PageActive set. If it was found on
1280 * the unevictable list, it will have the PageUnevictable bit set. That flag
1281 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1282 *
1283 * The vmstat statistic corresponding to the list on which the page was
1284 * found will be decremented.
1285 *
1286 * Restrictions:
1287 * (1) Must be called with an elevated refcount on the page. This is a
1288 * fundamentnal difference from isolate_lru_pages (which is called
1289 * without a stable reference).
1290 * (2) the lru_lock must not be held.
1291 * (3) interrupts must be enabled.
1292 */
1293int isolate_lru_page(struct page *page)
1294{
1295 int ret = -EBUSY;
1296
0c917313
KK
1297 VM_BUG_ON(!page_count(page));
1298
62695a84
NP
1299 if (PageLRU(page)) {
1300 struct zone *zone = page_zone(page);
fa9add64 1301 struct lruvec *lruvec;
62695a84
NP
1302
1303 spin_lock_irq(&zone->lru_lock);
fa9add64 1304 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1305 if (PageLRU(page)) {
894bc310 1306 int lru = page_lru(page);
0c917313 1307 get_page(page);
62695a84 1308 ClearPageLRU(page);
fa9add64
HD
1309 del_page_from_lru_list(page, lruvec, lru);
1310 ret = 0;
62695a84
NP
1311 }
1312 spin_unlock_irq(&zone->lru_lock);
1313 }
1314 return ret;
1315}
1316
35cd7815 1317/*
d37dd5dc
FW
1318 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1319 * then get resheduled. When there are massive number of tasks doing page
1320 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1321 * the LRU list will go small and be scanned faster than necessary, leading to
1322 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1323 */
1324static int too_many_isolated(struct zone *zone, int file,
1325 struct scan_control *sc)
1326{
1327 unsigned long inactive, isolated;
1328
1329 if (current_is_kswapd())
1330 return 0;
1331
89b5fae5 1332 if (!global_reclaim(sc))
35cd7815
RR
1333 return 0;
1334
1335 if (file) {
1336 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1337 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1338 } else {
1339 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1340 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1341 }
1342
3cf23841
FW
1343 /*
1344 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1345 * won't get blocked by normal direct-reclaimers, forming a circular
1346 * deadlock.
1347 */
1348 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1349 inactive >>= 3;
1350
35cd7815
RR
1351 return isolated > inactive;
1352}
1353
66635629 1354static noinline_for_stack void
75b00af7 1355putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1356{
27ac81d8
KK
1357 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1358 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1359 LIST_HEAD(pages_to_free);
66635629 1360
66635629
MG
1361 /*
1362 * Put back any unfreeable pages.
1363 */
66635629 1364 while (!list_empty(page_list)) {
3f79768f 1365 struct page *page = lru_to_page(page_list);
66635629 1366 int lru;
3f79768f 1367
66635629
MG
1368 VM_BUG_ON(PageLRU(page));
1369 list_del(&page->lru);
39b5f29a 1370 if (unlikely(!page_evictable(page))) {
66635629
MG
1371 spin_unlock_irq(&zone->lru_lock);
1372 putback_lru_page(page);
1373 spin_lock_irq(&zone->lru_lock);
1374 continue;
1375 }
fa9add64
HD
1376
1377 lruvec = mem_cgroup_page_lruvec(page, zone);
1378
7a608572 1379 SetPageLRU(page);
66635629 1380 lru = page_lru(page);
fa9add64
HD
1381 add_page_to_lru_list(page, lruvec, lru);
1382
66635629
MG
1383 if (is_active_lru(lru)) {
1384 int file = is_file_lru(lru);
9992af10
RR
1385 int numpages = hpage_nr_pages(page);
1386 reclaim_stat->recent_rotated[file] += numpages;
66635629 1387 }
2bcf8879
HD
1388 if (put_page_testzero(page)) {
1389 __ClearPageLRU(page);
1390 __ClearPageActive(page);
fa9add64 1391 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1392
1393 if (unlikely(PageCompound(page))) {
1394 spin_unlock_irq(&zone->lru_lock);
1395 (*get_compound_page_dtor(page))(page);
1396 spin_lock_irq(&zone->lru_lock);
1397 } else
1398 list_add(&page->lru, &pages_to_free);
66635629
MG
1399 }
1400 }
66635629 1401
3f79768f
HD
1402 /*
1403 * To save our caller's stack, now use input list for pages to free.
1404 */
1405 list_splice(&pages_to_free, page_list);
66635629
MG
1406}
1407
1da177e4 1408/*
1742f19f
AM
1409 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1410 * of reclaimed pages
1da177e4 1411 */
66635629 1412static noinline_for_stack unsigned long
1a93be0e 1413shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1414 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1415{
1416 LIST_HEAD(page_list);
e247dbce 1417 unsigned long nr_scanned;
05ff5137 1418 unsigned long nr_reclaimed = 0;
e247dbce 1419 unsigned long nr_taken;
8e950282
MG
1420 unsigned long nr_dirty = 0;
1421 unsigned long nr_congested = 0;
e2be15f6 1422 unsigned long nr_unqueued_dirty = 0;
92df3a72 1423 unsigned long nr_writeback = 0;
b1a6f21e 1424 unsigned long nr_immediate = 0;
f3fd4a61 1425 isolate_mode_t isolate_mode = 0;
3cb99451 1426 int file = is_file_lru(lru);
1a93be0e
KK
1427 struct zone *zone = lruvec_zone(lruvec);
1428 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1429
35cd7815 1430 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1431 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1432
1433 /* We are about to die and free our memory. Return now. */
1434 if (fatal_signal_pending(current))
1435 return SWAP_CLUSTER_MAX;
1436 }
1437
1da177e4 1438 lru_add_drain();
f80c0673
MK
1439
1440 if (!sc->may_unmap)
61317289 1441 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1442 if (!sc->may_writepage)
61317289 1443 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1444
1da177e4 1445 spin_lock_irq(&zone->lru_lock);
b35ea17b 1446
5dc35979
KK
1447 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1448 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1449
1450 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1451 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1452
89b5fae5 1453 if (global_reclaim(sc)) {
e247dbce
KM
1454 zone->pages_scanned += nr_scanned;
1455 if (current_is_kswapd())
75b00af7 1456 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1457 else
75b00af7 1458 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1459 }
d563c050 1460 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1461
d563c050 1462 if (nr_taken == 0)
66635629 1463 return 0;
5ad333eb 1464
02c6de8d 1465 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1466 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1467 &nr_writeback, &nr_immediate,
1468 false);
c661b078 1469
3f79768f
HD
1470 spin_lock_irq(&zone->lru_lock);
1471
95d918fc 1472 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1473
904249aa
YH
1474 if (global_reclaim(sc)) {
1475 if (current_is_kswapd())
1476 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1477 nr_reclaimed);
1478 else
1479 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1480 nr_reclaimed);
1481 }
a74609fa 1482
27ac81d8 1483 putback_inactive_pages(lruvec, &page_list);
3f79768f 1484
95d918fc 1485 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1486
1487 spin_unlock_irq(&zone->lru_lock);
1488
1489 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1490
92df3a72
MG
1491 /*
1492 * If reclaim is isolating dirty pages under writeback, it implies
1493 * that the long-lived page allocation rate is exceeding the page
1494 * laundering rate. Either the global limits are not being effective
1495 * at throttling processes due to the page distribution throughout
1496 * zones or there is heavy usage of a slow backing device. The
1497 * only option is to throttle from reclaim context which is not ideal
1498 * as there is no guarantee the dirtying process is throttled in the
1499 * same way balance_dirty_pages() manages.
1500 *
8e950282
MG
1501 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1502 * of pages under pages flagged for immediate reclaim and stall if any
1503 * are encountered in the nr_immediate check below.
92df3a72 1504 */
918fc718 1505 if (nr_writeback && nr_writeback == nr_taken)
283aba9f 1506 zone_set_flag(zone, ZONE_WRITEBACK);
92df3a72 1507
d43006d5 1508 /*
b1a6f21e
MG
1509 * memcg will stall in page writeback so only consider forcibly
1510 * stalling for global reclaim
d43006d5 1511 */
b1a6f21e 1512 if (global_reclaim(sc)) {
8e950282
MG
1513 /*
1514 * Tag a zone as congested if all the dirty pages scanned were
1515 * backed by a congested BDI and wait_iff_congested will stall.
1516 */
1517 if (nr_dirty && nr_dirty == nr_congested)
1518 zone_set_flag(zone, ZONE_CONGESTED);
1519
b1a6f21e
MG
1520 /*
1521 * If dirty pages are scanned that are not queued for IO, it
1522 * implies that flushers are not keeping up. In this case, flag
1523 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1524 * pages from reclaim context. It will forcibly stall in the
1525 * next check.
1526 */
1527 if (nr_unqueued_dirty == nr_taken)
1528 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1529
1530 /*
1531 * In addition, if kswapd scans pages marked marked for
1532 * immediate reclaim and under writeback (nr_immediate), it
1533 * implies that pages are cycling through the LRU faster than
1534 * they are written so also forcibly stall.
1535 */
1536 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1537 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1538 }
d43006d5 1539
8e950282
MG
1540 /*
1541 * Stall direct reclaim for IO completions if underlying BDIs or zone
1542 * is congested. Allow kswapd to continue until it starts encountering
1543 * unqueued dirty pages or cycling through the LRU too quickly.
1544 */
1545 if (!sc->hibernation_mode && !current_is_kswapd())
1546 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1547
e11da5b4
MG
1548 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1549 zone_idx(zone),
1550 nr_scanned, nr_reclaimed,
9e3b2f8c 1551 sc->priority,
23b9da55 1552 trace_shrink_flags(file));
05ff5137 1553 return nr_reclaimed;
1da177e4
LT
1554}
1555
1556/*
1557 * This moves pages from the active list to the inactive list.
1558 *
1559 * We move them the other way if the page is referenced by one or more
1560 * processes, from rmap.
1561 *
1562 * If the pages are mostly unmapped, the processing is fast and it is
1563 * appropriate to hold zone->lru_lock across the whole operation. But if
1564 * the pages are mapped, the processing is slow (page_referenced()) so we
1565 * should drop zone->lru_lock around each page. It's impossible to balance
1566 * this, so instead we remove the pages from the LRU while processing them.
1567 * It is safe to rely on PG_active against the non-LRU pages in here because
1568 * nobody will play with that bit on a non-LRU page.
1569 *
1570 * The downside is that we have to touch page->_count against each page.
1571 * But we had to alter page->flags anyway.
1572 */
1cfb419b 1573
fa9add64 1574static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1575 struct list_head *list,
2bcf8879 1576 struct list_head *pages_to_free,
3eb4140f
WF
1577 enum lru_list lru)
1578{
fa9add64 1579 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1580 unsigned long pgmoved = 0;
3eb4140f 1581 struct page *page;
fa9add64 1582 int nr_pages;
3eb4140f 1583
3eb4140f
WF
1584 while (!list_empty(list)) {
1585 page = lru_to_page(list);
fa9add64 1586 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f
WF
1587
1588 VM_BUG_ON(PageLRU(page));
1589 SetPageLRU(page);
1590
fa9add64
HD
1591 nr_pages = hpage_nr_pages(page);
1592 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1593 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1594 pgmoved += nr_pages;
3eb4140f 1595
2bcf8879
HD
1596 if (put_page_testzero(page)) {
1597 __ClearPageLRU(page);
1598 __ClearPageActive(page);
fa9add64 1599 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1600
1601 if (unlikely(PageCompound(page))) {
1602 spin_unlock_irq(&zone->lru_lock);
1603 (*get_compound_page_dtor(page))(page);
1604 spin_lock_irq(&zone->lru_lock);
1605 } else
1606 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1607 }
1608 }
1609 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1610 if (!is_active_lru(lru))
1611 __count_vm_events(PGDEACTIVATE, pgmoved);
1612}
1cfb419b 1613
f626012d 1614static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1615 struct lruvec *lruvec,
f16015fb 1616 struct scan_control *sc,
9e3b2f8c 1617 enum lru_list lru)
1da177e4 1618{
44c241f1 1619 unsigned long nr_taken;
f626012d 1620 unsigned long nr_scanned;
6fe6b7e3 1621 unsigned long vm_flags;
1da177e4 1622 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1623 LIST_HEAD(l_active);
b69408e8 1624 LIST_HEAD(l_inactive);
1da177e4 1625 struct page *page;
1a93be0e 1626 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1627 unsigned long nr_rotated = 0;
f3fd4a61 1628 isolate_mode_t isolate_mode = 0;
3cb99451 1629 int file = is_file_lru(lru);
1a93be0e 1630 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1631
1632 lru_add_drain();
f80c0673
MK
1633
1634 if (!sc->may_unmap)
61317289 1635 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1636 if (!sc->may_writepage)
61317289 1637 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1638
1da177e4 1639 spin_lock_irq(&zone->lru_lock);
925b7673 1640
5dc35979
KK
1641 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1642 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1643 if (global_reclaim(sc))
f626012d 1644 zone->pages_scanned += nr_scanned;
89b5fae5 1645
b7c46d15 1646 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1647
f626012d 1648 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1649 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1650 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1651 spin_unlock_irq(&zone->lru_lock);
1652
1da177e4
LT
1653 while (!list_empty(&l_hold)) {
1654 cond_resched();
1655 page = lru_to_page(&l_hold);
1656 list_del(&page->lru);
7e9cd484 1657
39b5f29a 1658 if (unlikely(!page_evictable(page))) {
894bc310
LS
1659 putback_lru_page(page);
1660 continue;
1661 }
1662
cc715d99
MG
1663 if (unlikely(buffer_heads_over_limit)) {
1664 if (page_has_private(page) && trylock_page(page)) {
1665 if (page_has_private(page))
1666 try_to_release_page(page, 0);
1667 unlock_page(page);
1668 }
1669 }
1670
c3ac9a8a
JW
1671 if (page_referenced(page, 0, sc->target_mem_cgroup,
1672 &vm_flags)) {
9992af10 1673 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1674 /*
1675 * Identify referenced, file-backed active pages and
1676 * give them one more trip around the active list. So
1677 * that executable code get better chances to stay in
1678 * memory under moderate memory pressure. Anon pages
1679 * are not likely to be evicted by use-once streaming
1680 * IO, plus JVM can create lots of anon VM_EXEC pages,
1681 * so we ignore them here.
1682 */
41e20983 1683 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1684 list_add(&page->lru, &l_active);
1685 continue;
1686 }
1687 }
7e9cd484 1688
5205e56e 1689 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1690 list_add(&page->lru, &l_inactive);
1691 }
1692
b555749a 1693 /*
8cab4754 1694 * Move pages back to the lru list.
b555749a 1695 */
2a1dc509 1696 spin_lock_irq(&zone->lru_lock);
556adecb 1697 /*
8cab4754
WF
1698 * Count referenced pages from currently used mappings as rotated,
1699 * even though only some of them are actually re-activated. This
1700 * helps balance scan pressure between file and anonymous pages in
1701 * get_scan_ratio.
7e9cd484 1702 */
b7c46d15 1703 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1704
fa9add64
HD
1705 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1706 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1707 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1708 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1709
1710 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1711}
1712
74e3f3c3 1713#ifdef CONFIG_SWAP
14797e23 1714static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1715{
1716 unsigned long active, inactive;
1717
1718 active = zone_page_state(zone, NR_ACTIVE_ANON);
1719 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1720
1721 if (inactive * zone->inactive_ratio < active)
1722 return 1;
1723
1724 return 0;
1725}
1726
14797e23
KM
1727/**
1728 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1729 * @lruvec: LRU vector to check
14797e23
KM
1730 *
1731 * Returns true if the zone does not have enough inactive anon pages,
1732 * meaning some active anon pages need to be deactivated.
1733 */
c56d5c7d 1734static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1735{
74e3f3c3
MK
1736 /*
1737 * If we don't have swap space, anonymous page deactivation
1738 * is pointless.
1739 */
1740 if (!total_swap_pages)
1741 return 0;
1742
c3c787e8 1743 if (!mem_cgroup_disabled())
c56d5c7d 1744 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1745
c56d5c7d 1746 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1747}
74e3f3c3 1748#else
c56d5c7d 1749static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1750{
1751 return 0;
1752}
1753#endif
14797e23 1754
56e49d21
RR
1755/**
1756 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1757 * @lruvec: LRU vector to check
56e49d21
RR
1758 *
1759 * When the system is doing streaming IO, memory pressure here
1760 * ensures that active file pages get deactivated, until more
1761 * than half of the file pages are on the inactive list.
1762 *
1763 * Once we get to that situation, protect the system's working
1764 * set from being evicted by disabling active file page aging.
1765 *
1766 * This uses a different ratio than the anonymous pages, because
1767 * the page cache uses a use-once replacement algorithm.
1768 */
c56d5c7d 1769static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1770{
e3790144
JW
1771 unsigned long inactive;
1772 unsigned long active;
1773
1774 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1775 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1776
e3790144 1777 return active > inactive;
56e49d21
RR
1778}
1779
75b00af7 1780static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1781{
75b00af7 1782 if (is_file_lru(lru))
c56d5c7d 1783 return inactive_file_is_low(lruvec);
b39415b2 1784 else
c56d5c7d 1785 return inactive_anon_is_low(lruvec);
b39415b2
RR
1786}
1787
4f98a2fe 1788static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1789 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1790{
b39415b2 1791 if (is_active_lru(lru)) {
75b00af7 1792 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1793 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1794 return 0;
1795 }
1796
1a93be0e 1797 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1798}
1799
3d58ab5c 1800static int vmscan_swappiness(struct scan_control *sc)
1f4c025b 1801{
89b5fae5 1802 if (global_reclaim(sc))
1f4c025b 1803 return vm_swappiness;
3d58ab5c 1804 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1f4c025b
KH
1805}
1806
9a265114
JW
1807enum scan_balance {
1808 SCAN_EQUAL,
1809 SCAN_FRACT,
1810 SCAN_ANON,
1811 SCAN_FILE,
1812};
1813
4f98a2fe
RR
1814/*
1815 * Determine how aggressively the anon and file LRU lists should be
1816 * scanned. The relative value of each set of LRU lists is determined
1817 * by looking at the fraction of the pages scanned we did rotate back
1818 * onto the active list instead of evict.
1819 *
be7bd59d
WL
1820 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1821 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1822 */
90126375 1823static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
9e3b2f8c 1824 unsigned long *nr)
4f98a2fe 1825{
9a265114
JW
1826 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1827 u64 fraction[2];
1828 u64 denominator = 0; /* gcc */
1829 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1830 unsigned long anon_prio, file_prio;
9a265114
JW
1831 enum scan_balance scan_balance;
1832 unsigned long anon, file, free;
1833 bool force_scan = false;
4f98a2fe 1834 unsigned long ap, fp;
4111304d 1835 enum lru_list lru;
246e87a9 1836
f11c0ca5
JW
1837 /*
1838 * If the zone or memcg is small, nr[l] can be 0. This
1839 * results in no scanning on this priority and a potential
1840 * priority drop. Global direct reclaim can go to the next
1841 * zone and tends to have no problems. Global kswapd is for
1842 * zone balancing and it needs to scan a minimum amount. When
1843 * reclaiming for a memcg, a priority drop can cause high
1844 * latencies, so it's better to scan a minimum amount there as
1845 * well.
1846 */
6e543d57 1847 if (current_is_kswapd() && !zone_reclaimable(zone))
a4d3e9e7 1848 force_scan = true;
89b5fae5 1849 if (!global_reclaim(sc))
a4d3e9e7 1850 force_scan = true;
76a33fc3
SL
1851
1852 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1853 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1854 scan_balance = SCAN_FILE;
76a33fc3
SL
1855 goto out;
1856 }
4f98a2fe 1857
10316b31
JW
1858 /*
1859 * Global reclaim will swap to prevent OOM even with no
1860 * swappiness, but memcg users want to use this knob to
1861 * disable swapping for individual groups completely when
1862 * using the memory controller's swap limit feature would be
1863 * too expensive.
1864 */
1865 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
9a265114 1866 scan_balance = SCAN_FILE;
10316b31
JW
1867 goto out;
1868 }
1869
1870 /*
1871 * Do not apply any pressure balancing cleverness when the
1872 * system is close to OOM, scan both anon and file equally
1873 * (unless the swappiness setting disagrees with swapping).
1874 */
1875 if (!sc->priority && vmscan_swappiness(sc)) {
9a265114 1876 scan_balance = SCAN_EQUAL;
10316b31
JW
1877 goto out;
1878 }
1879
4d7dcca2
HD
1880 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1881 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1882 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1883 get_lru_size(lruvec, LRU_INACTIVE_FILE);
a4d3e9e7 1884
11d16c25
JW
1885 /*
1886 * If it's foreseeable that reclaiming the file cache won't be
1887 * enough to get the zone back into a desirable shape, we have
1888 * to swap. Better start now and leave the - probably heavily
1889 * thrashing - remaining file pages alone.
1890 */
89b5fae5 1891 if (global_reclaim(sc)) {
11d16c25 1892 free = zone_page_state(zone, NR_FREE_PAGES);
90126375 1893 if (unlikely(file + free <= high_wmark_pages(zone))) {
9a265114 1894 scan_balance = SCAN_ANON;
76a33fc3 1895 goto out;
eeee9a8c 1896 }
4f98a2fe
RR
1897 }
1898
7c5bd705
JW
1899 /*
1900 * There is enough inactive page cache, do not reclaim
1901 * anything from the anonymous working set right now.
1902 */
1903 if (!inactive_file_is_low(lruvec)) {
9a265114 1904 scan_balance = SCAN_FILE;
7c5bd705
JW
1905 goto out;
1906 }
1907
9a265114
JW
1908 scan_balance = SCAN_FRACT;
1909
58c37f6e
KM
1910 /*
1911 * With swappiness at 100, anonymous and file have the same priority.
1912 * This scanning priority is essentially the inverse of IO cost.
1913 */
3d58ab5c 1914 anon_prio = vmscan_swappiness(sc);
75b00af7 1915 file_prio = 200 - anon_prio;
58c37f6e 1916
4f98a2fe
RR
1917 /*
1918 * OK, so we have swap space and a fair amount of page cache
1919 * pages. We use the recently rotated / recently scanned
1920 * ratios to determine how valuable each cache is.
1921 *
1922 * Because workloads change over time (and to avoid overflow)
1923 * we keep these statistics as a floating average, which ends
1924 * up weighing recent references more than old ones.
1925 *
1926 * anon in [0], file in [1]
1927 */
90126375 1928 spin_lock_irq(&zone->lru_lock);
6e901571 1929 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1930 reclaim_stat->recent_scanned[0] /= 2;
1931 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1932 }
1933
6e901571 1934 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1935 reclaim_stat->recent_scanned[1] /= 2;
1936 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1937 }
1938
4f98a2fe 1939 /*
00d8089c
RR
1940 * The amount of pressure on anon vs file pages is inversely
1941 * proportional to the fraction of recently scanned pages on
1942 * each list that were recently referenced and in active use.
4f98a2fe 1943 */
fe35004f 1944 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1945 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1946
fe35004f 1947 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1948 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 1949 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1950
76a33fc3
SL
1951 fraction[0] = ap;
1952 fraction[1] = fp;
1953 denominator = ap + fp + 1;
1954out:
4111304d
HD
1955 for_each_evictable_lru(lru) {
1956 int file = is_file_lru(lru);
d778df51 1957 unsigned long size;
76a33fc3 1958 unsigned long scan;
6e08a369 1959
d778df51 1960 size = get_lru_size(lruvec, lru);
10316b31 1961 scan = size >> sc->priority;
9a265114 1962
10316b31
JW
1963 if (!scan && force_scan)
1964 scan = min(size, SWAP_CLUSTER_MAX);
9a265114
JW
1965
1966 switch (scan_balance) {
1967 case SCAN_EQUAL:
1968 /* Scan lists relative to size */
1969 break;
1970 case SCAN_FRACT:
1971 /*
1972 * Scan types proportional to swappiness and
1973 * their relative recent reclaim efficiency.
1974 */
1975 scan = div64_u64(scan * fraction[file], denominator);
1976 break;
1977 case SCAN_FILE:
1978 case SCAN_ANON:
1979 /* Scan one type exclusively */
1980 if ((scan_balance == SCAN_FILE) != file)
1981 scan = 0;
1982 break;
1983 default:
1984 /* Look ma, no brain */
1985 BUG();
1986 }
4111304d 1987 nr[lru] = scan;
76a33fc3 1988 }
6e08a369 1989}
4f98a2fe 1990
9b4f98cd
JW
1991/*
1992 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1993 */
1994static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1995{
1996 unsigned long nr[NR_LRU_LISTS];
e82e0561 1997 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
1998 unsigned long nr_to_scan;
1999 enum lru_list lru;
2000 unsigned long nr_reclaimed = 0;
2001 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2002 struct blk_plug plug;
e82e0561 2003 bool scan_adjusted = false;
9b4f98cd
JW
2004
2005 get_scan_count(lruvec, sc, nr);
2006
e82e0561
MG
2007 /* Record the original scan target for proportional adjustments later */
2008 memcpy(targets, nr, sizeof(nr));
2009
9b4f98cd
JW
2010 blk_start_plug(&plug);
2011 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2012 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2013 unsigned long nr_anon, nr_file, percentage;
2014 unsigned long nr_scanned;
2015
9b4f98cd
JW
2016 for_each_evictable_lru(lru) {
2017 if (nr[lru]) {
2018 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2019 nr[lru] -= nr_to_scan;
2020
2021 nr_reclaimed += shrink_list(lru, nr_to_scan,
2022 lruvec, sc);
2023 }
2024 }
e82e0561
MG
2025
2026 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2027 continue;
2028
9b4f98cd 2029 /*
e82e0561
MG
2030 * For global direct reclaim, reclaim only the number of pages
2031 * requested. Less care is taken to scan proportionally as it
2032 * is more important to minimise direct reclaim stall latency
2033 * than it is to properly age the LRU lists.
9b4f98cd 2034 */
e82e0561 2035 if (global_reclaim(sc) && !current_is_kswapd())
9b4f98cd 2036 break;
e82e0561
MG
2037
2038 /*
2039 * For kswapd and memcg, reclaim at least the number of pages
2040 * requested. Ensure that the anon and file LRUs shrink
2041 * proportionally what was requested by get_scan_count(). We
2042 * stop reclaiming one LRU and reduce the amount scanning
2043 * proportional to the original scan target.
2044 */
2045 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2046 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2047
2048 if (nr_file > nr_anon) {
2049 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2050 targets[LRU_ACTIVE_ANON] + 1;
2051 lru = LRU_BASE;
2052 percentage = nr_anon * 100 / scan_target;
2053 } else {
2054 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2055 targets[LRU_ACTIVE_FILE] + 1;
2056 lru = LRU_FILE;
2057 percentage = nr_file * 100 / scan_target;
2058 }
2059
2060 /* Stop scanning the smaller of the LRU */
2061 nr[lru] = 0;
2062 nr[lru + LRU_ACTIVE] = 0;
2063
2064 /*
2065 * Recalculate the other LRU scan count based on its original
2066 * scan target and the percentage scanning already complete
2067 */
2068 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2069 nr_scanned = targets[lru] - nr[lru];
2070 nr[lru] = targets[lru] * (100 - percentage) / 100;
2071 nr[lru] -= min(nr[lru], nr_scanned);
2072
2073 lru += LRU_ACTIVE;
2074 nr_scanned = targets[lru] - nr[lru];
2075 nr[lru] = targets[lru] * (100 - percentage) / 100;
2076 nr[lru] -= min(nr[lru], nr_scanned);
2077
2078 scan_adjusted = true;
9b4f98cd
JW
2079 }
2080 blk_finish_plug(&plug);
2081 sc->nr_reclaimed += nr_reclaimed;
2082
2083 /*
2084 * Even if we did not try to evict anon pages at all, we want to
2085 * rebalance the anon lru active/inactive ratio.
2086 */
2087 if (inactive_anon_is_low(lruvec))
2088 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2089 sc, LRU_ACTIVE_ANON);
2090
2091 throttle_vm_writeout(sc->gfp_mask);
2092}
2093
23b9da55 2094/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2095static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2096{
d84da3f9 2097 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2098 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2099 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2100 return true;
2101
2102 return false;
2103}
2104
3e7d3449 2105/*
23b9da55
MG
2106 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2107 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2108 * true if more pages should be reclaimed such that when the page allocator
2109 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2110 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2111 */
9b4f98cd 2112static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2113 unsigned long nr_reclaimed,
2114 unsigned long nr_scanned,
2115 struct scan_control *sc)
2116{
2117 unsigned long pages_for_compaction;
2118 unsigned long inactive_lru_pages;
2119
2120 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2121 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2122 return false;
2123
2876592f
MG
2124 /* Consider stopping depending on scan and reclaim activity */
2125 if (sc->gfp_mask & __GFP_REPEAT) {
2126 /*
2127 * For __GFP_REPEAT allocations, stop reclaiming if the
2128 * full LRU list has been scanned and we are still failing
2129 * to reclaim pages. This full LRU scan is potentially
2130 * expensive but a __GFP_REPEAT caller really wants to succeed
2131 */
2132 if (!nr_reclaimed && !nr_scanned)
2133 return false;
2134 } else {
2135 /*
2136 * For non-__GFP_REPEAT allocations which can presumably
2137 * fail without consequence, stop if we failed to reclaim
2138 * any pages from the last SWAP_CLUSTER_MAX number of
2139 * pages that were scanned. This will return to the
2140 * caller faster at the risk reclaim/compaction and
2141 * the resulting allocation attempt fails
2142 */
2143 if (!nr_reclaimed)
2144 return false;
2145 }
3e7d3449
MG
2146
2147 /*
2148 * If we have not reclaimed enough pages for compaction and the
2149 * inactive lists are large enough, continue reclaiming
2150 */
2151 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2152 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2153 if (get_nr_swap_pages() > 0)
9b4f98cd 2154 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2155 if (sc->nr_reclaimed < pages_for_compaction &&
2156 inactive_lru_pages > pages_for_compaction)
2157 return true;
2158
2159 /* If compaction would go ahead or the allocation would succeed, stop */
9b4f98cd 2160 switch (compaction_suitable(zone, sc->order)) {
3e7d3449
MG
2161 case COMPACT_PARTIAL:
2162 case COMPACT_CONTINUE:
2163 return false;
2164 default:
2165 return true;
2166 }
2167}
2168
0608f43d 2169static void shrink_zone(struct zone *zone, struct scan_control *sc)
1da177e4 2170{
f0fdc5e8 2171 unsigned long nr_reclaimed, nr_scanned;
1da177e4 2172
9b4f98cd
JW
2173 do {
2174 struct mem_cgroup *root = sc->target_mem_cgroup;
2175 struct mem_cgroup_reclaim_cookie reclaim = {
2176 .zone = zone,
2177 .priority = sc->priority,
2178 };
694fbc0f 2179 struct mem_cgroup *memcg;
3e7d3449 2180
9b4f98cd
JW
2181 nr_reclaimed = sc->nr_reclaimed;
2182 nr_scanned = sc->nr_scanned;
1da177e4 2183
694fbc0f
AM
2184 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2185 do {
9b4f98cd 2186 struct lruvec *lruvec;
5660048c 2187
9b4f98cd 2188 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
f9be23d6 2189
9b4f98cd 2190 shrink_lruvec(lruvec, sc);
f16015fb 2191
9b4f98cd 2192 /*
a394cb8e
MH
2193 * Direct reclaim and kswapd have to scan all memory
2194 * cgroups to fulfill the overall scan target for the
9b4f98cd 2195 * zone.
a394cb8e
MH
2196 *
2197 * Limit reclaim, on the other hand, only cares about
2198 * nr_to_reclaim pages to be reclaimed and it will
2199 * retry with decreasing priority if one round over the
2200 * whole hierarchy is not sufficient.
9b4f98cd 2201 */
a394cb8e
MH
2202 if (!global_reclaim(sc) &&
2203 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2204 mem_cgroup_iter_break(root, memcg);
2205 break;
2206 }
694fbc0f
AM
2207 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2208 } while (memcg);
70ddf637
AV
2209
2210 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2211 sc->nr_scanned - nr_scanned,
2212 sc->nr_reclaimed - nr_reclaimed);
2213
9b4f98cd
JW
2214 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2215 sc->nr_scanned - nr_scanned, sc));
f16015fb
JW
2216}
2217
fe4b1b24
MG
2218/* Returns true if compaction should go ahead for a high-order request */
2219static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2220{
2221 unsigned long balance_gap, watermark;
2222 bool watermark_ok;
2223
2224 /* Do not consider compaction for orders reclaim is meant to satisfy */
2225 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2226 return false;
2227
2228 /*
2229 * Compaction takes time to run and there are potentially other
2230 * callers using the pages just freed. Continue reclaiming until
2231 * there is a buffer of free pages available to give compaction
2232 * a reasonable chance of completing and allocating the page
2233 */
2234 balance_gap = min(low_wmark_pages(zone),
b40da049 2235 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
fe4b1b24
MG
2236 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2237 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2238 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2239
2240 /*
2241 * If compaction is deferred, reclaim up to a point where
2242 * compaction will have a chance of success when re-enabled
2243 */
aff62249 2244 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
2245 return watermark_ok;
2246
2247 /* If compaction is not ready to start, keep reclaiming */
2248 if (!compaction_suitable(zone, sc->order))
2249 return false;
2250
2251 return watermark_ok;
2252}
2253
1da177e4
LT
2254/*
2255 * This is the direct reclaim path, for page-allocating processes. We only
2256 * try to reclaim pages from zones which will satisfy the caller's allocation
2257 * request.
2258 *
41858966
MG
2259 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2260 * Because:
1da177e4
LT
2261 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2262 * allocation or
41858966
MG
2263 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2264 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2265 * zone defense algorithm.
1da177e4 2266 *
1da177e4
LT
2267 * If a zone is deemed to be full of pinned pages then just give it a light
2268 * scan then give up on it.
e0c23279
MG
2269 *
2270 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 2271 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
2272 * the caller that it should consider retrying the allocation instead of
2273 * further reclaim.
1da177e4 2274 */
9e3b2f8c 2275static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2276{
dd1a239f 2277 struct zoneref *z;
54a6eb5c 2278 struct zone *zone;
0608f43d
AM
2279 unsigned long nr_soft_reclaimed;
2280 unsigned long nr_soft_scanned;
0cee34fd 2281 bool aborted_reclaim = false;
1cfb419b 2282
cc715d99
MG
2283 /*
2284 * If the number of buffer_heads in the machine exceeds the maximum
2285 * allowed level, force direct reclaim to scan the highmem zone as
2286 * highmem pages could be pinning lowmem pages storing buffer_heads
2287 */
2288 if (buffer_heads_over_limit)
2289 sc->gfp_mask |= __GFP_HIGHMEM;
2290
d4debc66
MG
2291 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2292 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2293 if (!populated_zone(zone))
1da177e4 2294 continue;
1cfb419b
KH
2295 /*
2296 * Take care memory controller reclaiming has small influence
2297 * to global LRU.
2298 */
89b5fae5 2299 if (global_reclaim(sc)) {
1cfb419b
KH
2300 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2301 continue;
6e543d57
LD
2302 if (sc->priority != DEF_PRIORITY &&
2303 !zone_reclaimable(zone))
1cfb419b 2304 continue; /* Let kswapd poll it */
d84da3f9 2305 if (IS_ENABLED(CONFIG_COMPACTION)) {
e0887c19 2306 /*
e0c23279
MG
2307 * If we already have plenty of memory free for
2308 * compaction in this zone, don't free any more.
2309 * Even though compaction is invoked for any
2310 * non-zero order, only frequent costly order
2311 * reclamation is disruptive enough to become a
c7cfa37b
CA
2312 * noticeable problem, like transparent huge
2313 * page allocations.
e0887c19 2314 */
fe4b1b24 2315 if (compaction_ready(zone, sc)) {
0cee34fd 2316 aborted_reclaim = true;
e0887c19 2317 continue;
e0c23279 2318 }
e0887c19 2319 }
0608f43d
AM
2320 /*
2321 * This steals pages from memory cgroups over softlimit
2322 * and returns the number of reclaimed pages and
2323 * scanned pages. This works for global memory pressure
2324 * and balancing, not for a memcg's limit.
2325 */
2326 nr_soft_scanned = 0;
2327 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2328 sc->order, sc->gfp_mask,
2329 &nr_soft_scanned);
2330 sc->nr_reclaimed += nr_soft_reclaimed;
2331 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2332 /* need some check for avoid more shrink_zone() */
1cfb419b 2333 }
408d8544 2334
9e3b2f8c 2335 shrink_zone(zone, sc);
1da177e4 2336 }
e0c23279 2337
0cee34fd 2338 return aborted_reclaim;
d1908362
MK
2339}
2340
929bea7c 2341/* All zones in zonelist are unreclaimable? */
d1908362
MK
2342static bool all_unreclaimable(struct zonelist *zonelist,
2343 struct scan_control *sc)
2344{
2345 struct zoneref *z;
2346 struct zone *zone;
d1908362
MK
2347
2348 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2349 gfp_zone(sc->gfp_mask), sc->nodemask) {
2350 if (!populated_zone(zone))
2351 continue;
2352 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2353 continue;
6e543d57 2354 if (zone_reclaimable(zone))
929bea7c 2355 return false;
d1908362
MK
2356 }
2357
929bea7c 2358 return true;
1da177e4 2359}
4f98a2fe 2360
1da177e4
LT
2361/*
2362 * This is the main entry point to direct page reclaim.
2363 *
2364 * If a full scan of the inactive list fails to free enough memory then we
2365 * are "out of memory" and something needs to be killed.
2366 *
2367 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2368 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2369 * caller can't do much about. We kick the writeback threads and take explicit
2370 * naps in the hope that some of these pages can be written. But if the
2371 * allocating task holds filesystem locks which prevent writeout this might not
2372 * work, and the allocation attempt will fail.
a41f24ea
NA
2373 *
2374 * returns: 0, if no pages reclaimed
2375 * else, the number of pages reclaimed
1da177e4 2376 */
dac1d27b 2377static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2378 struct scan_control *sc,
2379 struct shrink_control *shrink)
1da177e4 2380{
69e05944 2381 unsigned long total_scanned = 0;
1da177e4 2382 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2383 struct zoneref *z;
54a6eb5c 2384 struct zone *zone;
22fba335 2385 unsigned long writeback_threshold;
0cee34fd 2386 bool aborted_reclaim;
1da177e4 2387
873b4771
KK
2388 delayacct_freepages_start();
2389
89b5fae5 2390 if (global_reclaim(sc))
1cfb419b 2391 count_vm_event(ALLOCSTALL);
1da177e4 2392
9e3b2f8c 2393 do {
70ddf637
AV
2394 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2395 sc->priority);
66e1707b 2396 sc->nr_scanned = 0;
9e3b2f8c 2397 aborted_reclaim = shrink_zones(zonelist, sc);
e0c23279 2398
66e1707b 2399 /*
5a1c9cbc
MG
2400 * Don't shrink slabs when reclaiming memory from over limit
2401 * cgroups but do shrink slab at least once when aborting
2402 * reclaim for compaction to avoid unevenly scanning file/anon
2403 * LRU pages over slab pages.
66e1707b 2404 */
89b5fae5 2405 if (global_reclaim(sc)) {
c6a8a8c5 2406 unsigned long lru_pages = 0;
0ce3d744
DC
2407
2408 nodes_clear(shrink->nodes_to_scan);
d4debc66
MG
2409 for_each_zone_zonelist(zone, z, zonelist,
2410 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2411 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2412 continue;
2413
2414 lru_pages += zone_reclaimable_pages(zone);
0ce3d744
DC
2415 node_set(zone_to_nid(zone),
2416 shrink->nodes_to_scan);
c6a8a8c5
KM
2417 }
2418
1495f230 2419 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2420 if (reclaim_state) {
a79311c1 2421 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2422 reclaim_state->reclaimed_slab = 0;
2423 }
1da177e4 2424 }
66e1707b 2425 total_scanned += sc->nr_scanned;
bb21c7ce 2426 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2427 goto out;
1da177e4 2428
0e50ce3b
MK
2429 /*
2430 * If we're getting trouble reclaiming, start doing
2431 * writepage even in laptop mode.
2432 */
2433 if (sc->priority < DEF_PRIORITY - 2)
2434 sc->may_writepage = 1;
2435
1da177e4
LT
2436 /*
2437 * Try to write back as many pages as we just scanned. This
2438 * tends to cause slow streaming writers to write data to the
2439 * disk smoothly, at the dirtying rate, which is nice. But
2440 * that's undesirable in laptop mode, where we *want* lumpy
2441 * writeout. So in laptop mode, write out the whole world.
2442 */
22fba335
KM
2443 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2444 if (total_scanned > writeback_threshold) {
0e175a18
CW
2445 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2446 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2447 sc->may_writepage = 1;
1da177e4 2448 }
5a1c9cbc 2449 } while (--sc->priority >= 0 && !aborted_reclaim);
bb21c7ce 2450
1da177e4 2451out:
873b4771
KK
2452 delayacct_freepages_end();
2453
bb21c7ce
KM
2454 if (sc->nr_reclaimed)
2455 return sc->nr_reclaimed;
2456
929bea7c
KM
2457 /*
2458 * As hibernation is going on, kswapd is freezed so that it can't mark
2459 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2460 * check.
2461 */
2462 if (oom_killer_disabled)
2463 return 0;
2464
0cee34fd
MG
2465 /* Aborted reclaim to try compaction? don't OOM, then */
2466 if (aborted_reclaim)
7335084d
MG
2467 return 1;
2468
bb21c7ce 2469 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2470 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2471 return 1;
2472
2473 return 0;
1da177e4
LT
2474}
2475
5515061d
MG
2476static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2477{
2478 struct zone *zone;
2479 unsigned long pfmemalloc_reserve = 0;
2480 unsigned long free_pages = 0;
2481 int i;
2482 bool wmark_ok;
2483
2484 for (i = 0; i <= ZONE_NORMAL; i++) {
2485 zone = &pgdat->node_zones[i];
2486 pfmemalloc_reserve += min_wmark_pages(zone);
2487 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2488 }
2489
2490 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2491
2492 /* kswapd must be awake if processes are being throttled */
2493 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2494 pgdat->classzone_idx = min(pgdat->classzone_idx,
2495 (enum zone_type)ZONE_NORMAL);
2496 wake_up_interruptible(&pgdat->kswapd_wait);
2497 }
2498
2499 return wmark_ok;
2500}
2501
2502/*
2503 * Throttle direct reclaimers if backing storage is backed by the network
2504 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2505 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2506 * when the low watermark is reached.
2507 *
2508 * Returns true if a fatal signal was delivered during throttling. If this
2509 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2510 */
50694c28 2511static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2512 nodemask_t *nodemask)
2513{
2514 struct zone *zone;
2515 int high_zoneidx = gfp_zone(gfp_mask);
2516 pg_data_t *pgdat;
2517
2518 /*
2519 * Kernel threads should not be throttled as they may be indirectly
2520 * responsible for cleaning pages necessary for reclaim to make forward
2521 * progress. kjournald for example may enter direct reclaim while
2522 * committing a transaction where throttling it could forcing other
2523 * processes to block on log_wait_commit().
2524 */
2525 if (current->flags & PF_KTHREAD)
50694c28
MG
2526 goto out;
2527
2528 /*
2529 * If a fatal signal is pending, this process should not throttle.
2530 * It should return quickly so it can exit and free its memory
2531 */
2532 if (fatal_signal_pending(current))
2533 goto out;
5515061d
MG
2534
2535 /* Check if the pfmemalloc reserves are ok */
2536 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2537 pgdat = zone->zone_pgdat;
2538 if (pfmemalloc_watermark_ok(pgdat))
50694c28 2539 goto out;
5515061d 2540
68243e76
MG
2541 /* Account for the throttling */
2542 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2543
5515061d
MG
2544 /*
2545 * If the caller cannot enter the filesystem, it's possible that it
2546 * is due to the caller holding an FS lock or performing a journal
2547 * transaction in the case of a filesystem like ext[3|4]. In this case,
2548 * it is not safe to block on pfmemalloc_wait as kswapd could be
2549 * blocked waiting on the same lock. Instead, throttle for up to a
2550 * second before continuing.
2551 */
2552 if (!(gfp_mask & __GFP_FS)) {
2553 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2554 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2555
2556 goto check_pending;
5515061d
MG
2557 }
2558
2559 /* Throttle until kswapd wakes the process */
2560 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2561 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2562
2563check_pending:
2564 if (fatal_signal_pending(current))
2565 return true;
2566
2567out:
2568 return false;
5515061d
MG
2569}
2570
dac1d27b 2571unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2572 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2573{
33906bc5 2574 unsigned long nr_reclaimed;
66e1707b 2575 struct scan_control sc = {
21caf2fc 2576 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
66e1707b 2577 .may_writepage = !laptop_mode,
22fba335 2578 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2579 .may_unmap = 1,
2e2e4259 2580 .may_swap = 1,
66e1707b 2581 .order = order,
9e3b2f8c 2582 .priority = DEF_PRIORITY,
f16015fb 2583 .target_mem_cgroup = NULL,
327c0e96 2584 .nodemask = nodemask,
66e1707b 2585 };
a09ed5e0
YH
2586 struct shrink_control shrink = {
2587 .gfp_mask = sc.gfp_mask,
2588 };
66e1707b 2589
5515061d 2590 /*
50694c28
MG
2591 * Do not enter reclaim if fatal signal was delivered while throttled.
2592 * 1 is returned so that the page allocator does not OOM kill at this
2593 * point.
5515061d 2594 */
50694c28 2595 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2596 return 1;
2597
33906bc5
MG
2598 trace_mm_vmscan_direct_reclaim_begin(order,
2599 sc.may_writepage,
2600 gfp_mask);
2601
a09ed5e0 2602 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2603
2604 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2605
2606 return nr_reclaimed;
66e1707b
BS
2607}
2608
c255a458 2609#ifdef CONFIG_MEMCG
66e1707b 2610
72835c86 2611unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2612 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2613 struct zone *zone,
2614 unsigned long *nr_scanned)
4e416953
BS
2615{
2616 struct scan_control sc = {
0ae5e89c 2617 .nr_scanned = 0,
b8f5c566 2618 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2619 .may_writepage = !laptop_mode,
2620 .may_unmap = 1,
2621 .may_swap = !noswap,
4e416953 2622 .order = 0,
9e3b2f8c 2623 .priority = 0,
72835c86 2624 .target_mem_cgroup = memcg,
4e416953 2625 };
f9be23d6 2626 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
0ae5e89c 2627
4e416953
BS
2628 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2629 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2630
9e3b2f8c 2631 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2632 sc.may_writepage,
2633 sc.gfp_mask);
2634
4e416953
BS
2635 /*
2636 * NOTE: Although we can get the priority field, using it
2637 * here is not a good idea, since it limits the pages we can scan.
2638 * if we don't reclaim here, the shrink_zone from balance_pgdat
2639 * will pick up pages from other mem cgroup's as well. We hack
2640 * the priority and make it zero.
2641 */
f9be23d6 2642 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
2643
2644 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2645
0ae5e89c 2646 *nr_scanned = sc.nr_scanned;
4e416953
BS
2647 return sc.nr_reclaimed;
2648}
2649
72835c86 2650unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2651 gfp_t gfp_mask,
185efc0f 2652 bool noswap)
66e1707b 2653{
4e416953 2654 struct zonelist *zonelist;
bdce6d9e 2655 unsigned long nr_reclaimed;
889976db 2656 int nid;
66e1707b 2657 struct scan_control sc = {
66e1707b 2658 .may_writepage = !laptop_mode,
a6dc60f8 2659 .may_unmap = 1,
2e2e4259 2660 .may_swap = !noswap,
22fba335 2661 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2662 .order = 0,
9e3b2f8c 2663 .priority = DEF_PRIORITY,
72835c86 2664 .target_mem_cgroup = memcg,
327c0e96 2665 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2666 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2667 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2668 };
2669 struct shrink_control shrink = {
2670 .gfp_mask = sc.gfp_mask,
66e1707b 2671 };
66e1707b 2672
889976db
YH
2673 /*
2674 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2675 * take care of from where we get pages. So the node where we start the
2676 * scan does not need to be the current node.
2677 */
72835c86 2678 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2679
2680 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2681
2682 trace_mm_vmscan_memcg_reclaim_begin(0,
2683 sc.may_writepage,
2684 sc.gfp_mask);
2685
a09ed5e0 2686 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2687
2688 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2689
2690 return nr_reclaimed;
66e1707b
BS
2691}
2692#endif
2693
9e3b2f8c 2694static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2695{
b95a2f2d 2696 struct mem_cgroup *memcg;
f16015fb 2697
b95a2f2d
JW
2698 if (!total_swap_pages)
2699 return;
2700
2701 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2702 do {
c56d5c7d 2703 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2704
c56d5c7d 2705 if (inactive_anon_is_low(lruvec))
1a93be0e 2706 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2707 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2708
2709 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2710 } while (memcg);
f16015fb
JW
2711}
2712
60cefed4
JW
2713static bool zone_balanced(struct zone *zone, int order,
2714 unsigned long balance_gap, int classzone_idx)
2715{
2716 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2717 balance_gap, classzone_idx, 0))
2718 return false;
2719
d84da3f9
KS
2720 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2721 !compaction_suitable(zone, order))
60cefed4
JW
2722 return false;
2723
2724 return true;
2725}
2726
1741c877 2727/*
4ae0a48b
ZC
2728 * pgdat_balanced() is used when checking if a node is balanced.
2729 *
2730 * For order-0, all zones must be balanced!
2731 *
2732 * For high-order allocations only zones that meet watermarks and are in a
2733 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2734 * total of balanced pages must be at least 25% of the zones allowed by
2735 * classzone_idx for the node to be considered balanced. Forcing all zones to
2736 * be balanced for high orders can cause excessive reclaim when there are
2737 * imbalanced zones.
1741c877
MG
2738 * The choice of 25% is due to
2739 * o a 16M DMA zone that is balanced will not balance a zone on any
2740 * reasonable sized machine
2741 * o On all other machines, the top zone must be at least a reasonable
25985edc 2742 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2743 * would need to be at least 256M for it to be balance a whole node.
2744 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2745 * to balance a node on its own. These seemed like reasonable ratios.
2746 */
4ae0a48b 2747static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2748{
b40da049 2749 unsigned long managed_pages = 0;
4ae0a48b 2750 unsigned long balanced_pages = 0;
1741c877
MG
2751 int i;
2752
4ae0a48b
ZC
2753 /* Check the watermark levels */
2754 for (i = 0; i <= classzone_idx; i++) {
2755 struct zone *zone = pgdat->node_zones + i;
1741c877 2756
4ae0a48b
ZC
2757 if (!populated_zone(zone))
2758 continue;
2759
b40da049 2760 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2761
2762 /*
2763 * A special case here:
2764 *
2765 * balance_pgdat() skips over all_unreclaimable after
2766 * DEF_PRIORITY. Effectively, it considers them balanced so
2767 * they must be considered balanced here as well!
2768 */
6e543d57 2769 if (!zone_reclaimable(zone)) {
b40da049 2770 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2771 continue;
2772 }
2773
2774 if (zone_balanced(zone, order, 0, i))
b40da049 2775 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2776 else if (!order)
2777 return false;
2778 }
2779
2780 if (order)
b40da049 2781 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
2782 else
2783 return true;
1741c877
MG
2784}
2785
5515061d
MG
2786/*
2787 * Prepare kswapd for sleeping. This verifies that there are no processes
2788 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2789 *
2790 * Returns true if kswapd is ready to sleep
2791 */
2792static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2793 int classzone_idx)
f50de2d3 2794{
f50de2d3
MG
2795 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2796 if (remaining)
5515061d
MG
2797 return false;
2798
2799 /*
2800 * There is a potential race between when kswapd checks its watermarks
2801 * and a process gets throttled. There is also a potential race if
2802 * processes get throttled, kswapd wakes, a large process exits therby
2803 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2804 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2805 * so wake them now if necessary. If necessary, processes will wake
2806 * kswapd and get throttled again
2807 */
2808 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2809 wake_up(&pgdat->pfmemalloc_wait);
2810 return false;
2811 }
f50de2d3 2812
4ae0a48b 2813 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
2814}
2815
75485363
MG
2816/*
2817 * kswapd shrinks the zone by the number of pages required to reach
2818 * the high watermark.
b8e83b94
MG
2819 *
2820 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
2821 * reclaim or if the lack of progress was due to pages under writeback.
2822 * This is used to determine if the scanning priority needs to be raised.
75485363 2823 */
b8e83b94 2824static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 2825 int classzone_idx,
75485363 2826 struct scan_control *sc,
2ab44f43
MG
2827 unsigned long lru_pages,
2828 unsigned long *nr_attempted)
75485363 2829{
7c954f6d
MG
2830 int testorder = sc->order;
2831 unsigned long balance_gap;
75485363
MG
2832 struct reclaim_state *reclaim_state = current->reclaim_state;
2833 struct shrink_control shrink = {
2834 .gfp_mask = sc->gfp_mask,
2835 };
7c954f6d 2836 bool lowmem_pressure;
75485363
MG
2837
2838 /* Reclaim above the high watermark. */
2839 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
2840
2841 /*
2842 * Kswapd reclaims only single pages with compaction enabled. Trying
2843 * too hard to reclaim until contiguous free pages have become
2844 * available can hurt performance by evicting too much useful data
2845 * from memory. Do not reclaim more than needed for compaction.
2846 */
2847 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2848 compaction_suitable(zone, sc->order) !=
2849 COMPACT_SKIPPED)
2850 testorder = 0;
2851
2852 /*
2853 * We put equal pressure on every zone, unless one zone has way too
2854 * many pages free already. The "too many pages" is defined as the
2855 * high wmark plus a "gap" where the gap is either the low
2856 * watermark or 1% of the zone, whichever is smaller.
2857 */
2858 balance_gap = min(low_wmark_pages(zone),
2859 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2860 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2861
2862 /*
2863 * If there is no low memory pressure or the zone is balanced then no
2864 * reclaim is necessary
2865 */
2866 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2867 if (!lowmem_pressure && zone_balanced(zone, testorder,
2868 balance_gap, classzone_idx))
2869 return true;
2870
75485363 2871 shrink_zone(zone, sc);
0ce3d744
DC
2872 nodes_clear(shrink.nodes_to_scan);
2873 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
75485363
MG
2874
2875 reclaim_state->reclaimed_slab = 0;
6e543d57 2876 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
75485363
MG
2877 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2878
2ab44f43
MG
2879 /* Account for the number of pages attempted to reclaim */
2880 *nr_attempted += sc->nr_to_reclaim;
2881
283aba9f
MG
2882 zone_clear_flag(zone, ZONE_WRITEBACK);
2883
7c954f6d
MG
2884 /*
2885 * If a zone reaches its high watermark, consider it to be no longer
2886 * congested. It's possible there are dirty pages backed by congested
2887 * BDIs but as pressure is relieved, speculatively avoid congestion
2888 * waits.
2889 */
6e543d57 2890 if (zone_reclaimable(zone) &&
7c954f6d
MG
2891 zone_balanced(zone, testorder, 0, classzone_idx)) {
2892 zone_clear_flag(zone, ZONE_CONGESTED);
2893 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2894 }
2895
b8e83b94 2896 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
2897}
2898
1da177e4
LT
2899/*
2900 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2901 * they are all at high_wmark_pages(zone).
1da177e4 2902 *
0abdee2b 2903 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2904 *
2905 * There is special handling here for zones which are full of pinned pages.
2906 * This can happen if the pages are all mlocked, or if they are all used by
2907 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2908 * What we do is to detect the case where all pages in the zone have been
2909 * scanned twice and there has been zero successful reclaim. Mark the zone as
2910 * dead and from now on, only perform a short scan. Basically we're polling
2911 * the zone for when the problem goes away.
2912 *
2913 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2914 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2915 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2916 * lower zones regardless of the number of free pages in the lower zones. This
2917 * interoperates with the page allocator fallback scheme to ensure that aging
2918 * of pages is balanced across the zones.
1da177e4 2919 */
99504748 2920static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2921 int *classzone_idx)
1da177e4 2922{
1da177e4 2923 int i;
99504748 2924 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0608f43d
AM
2925 unsigned long nr_soft_reclaimed;
2926 unsigned long nr_soft_scanned;
179e9639
AM
2927 struct scan_control sc = {
2928 .gfp_mask = GFP_KERNEL,
b8e83b94 2929 .priority = DEF_PRIORITY,
a6dc60f8 2930 .may_unmap = 1,
2e2e4259 2931 .may_swap = 1,
b8e83b94 2932 .may_writepage = !laptop_mode,
5ad333eb 2933 .order = order,
f16015fb 2934 .target_mem_cgroup = NULL,
179e9639 2935 };
f8891e5e 2936 count_vm_event(PAGEOUTRUN);
1da177e4 2937
9e3b2f8c 2938 do {
1da177e4 2939 unsigned long lru_pages = 0;
2ab44f43 2940 unsigned long nr_attempted = 0;
b8e83b94 2941 bool raise_priority = true;
2ab44f43 2942 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
2943
2944 sc.nr_reclaimed = 0;
1da177e4 2945
d6277db4
RW
2946 /*
2947 * Scan in the highmem->dma direction for the highest
2948 * zone which needs scanning
2949 */
2950 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2951 struct zone *zone = pgdat->node_zones + i;
1da177e4 2952
d6277db4
RW
2953 if (!populated_zone(zone))
2954 continue;
1da177e4 2955
6e543d57
LD
2956 if (sc.priority != DEF_PRIORITY &&
2957 !zone_reclaimable(zone))
d6277db4 2958 continue;
1da177e4 2959
556adecb
RR
2960 /*
2961 * Do some background aging of the anon list, to give
2962 * pages a chance to be referenced before reclaiming.
2963 */
9e3b2f8c 2964 age_active_anon(zone, &sc);
556adecb 2965
cc715d99
MG
2966 /*
2967 * If the number of buffer_heads in the machine
2968 * exceeds the maximum allowed level and this node
2969 * has a highmem zone, force kswapd to reclaim from
2970 * it to relieve lowmem pressure.
2971 */
2972 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2973 end_zone = i;
2974 break;
2975 }
2976
60cefed4 2977 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 2978 end_zone = i;
e1dbeda6 2979 break;
439423f6 2980 } else {
d43006d5
MG
2981 /*
2982 * If balanced, clear the dirty and congested
2983 * flags
2984 */
439423f6 2985 zone_clear_flag(zone, ZONE_CONGESTED);
d43006d5 2986 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
1da177e4 2987 }
1da177e4 2988 }
dafcb73e 2989
b8e83b94 2990 if (i < 0)
e1dbeda6
AM
2991 goto out;
2992
1da177e4
LT
2993 for (i = 0; i <= end_zone; i++) {
2994 struct zone *zone = pgdat->node_zones + i;
2995
2ab44f43
MG
2996 if (!populated_zone(zone))
2997 continue;
2998
adea02a1 2999 lru_pages += zone_reclaimable_pages(zone);
2ab44f43
MG
3000
3001 /*
3002 * If any zone is currently balanced then kswapd will
3003 * not call compaction as it is expected that the
3004 * necessary pages are already available.
3005 */
3006 if (pgdat_needs_compaction &&
3007 zone_watermark_ok(zone, order,
3008 low_wmark_pages(zone),
3009 *classzone_idx, 0))
3010 pgdat_needs_compaction = false;
1da177e4
LT
3011 }
3012
b7ea3c41
MG
3013 /*
3014 * If we're getting trouble reclaiming, start doing writepage
3015 * even in laptop mode.
3016 */
3017 if (sc.priority < DEF_PRIORITY - 2)
3018 sc.may_writepage = 1;
3019
1da177e4
LT
3020 /*
3021 * Now scan the zone in the dma->highmem direction, stopping
3022 * at the last zone which needs scanning.
3023 *
3024 * We do this because the page allocator works in the opposite
3025 * direction. This prevents the page allocator from allocating
3026 * pages behind kswapd's direction of progress, which would
3027 * cause too much scanning of the lower zones.
3028 */
3029 for (i = 0; i <= end_zone; i++) {
3030 struct zone *zone = pgdat->node_zones + i;
3031
f3fe6512 3032 if (!populated_zone(zone))
1da177e4
LT
3033 continue;
3034
6e543d57
LD
3035 if (sc.priority != DEF_PRIORITY &&
3036 !zone_reclaimable(zone))
1da177e4
LT
3037 continue;
3038
1da177e4 3039 sc.nr_scanned = 0;
4e416953 3040
0608f43d
AM
3041 nr_soft_scanned = 0;
3042 /*
3043 * Call soft limit reclaim before calling shrink_zone.
3044 */
3045 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3046 order, sc.gfp_mask,
3047 &nr_soft_scanned);
3048 sc.nr_reclaimed += nr_soft_reclaimed;
3049
32a4330d 3050 /*
7c954f6d
MG
3051 * There should be no need to raise the scanning
3052 * priority if enough pages are already being scanned
3053 * that that high watermark would be met at 100%
3054 * efficiency.
fe2c2a10 3055 */
7c954f6d
MG
3056 if (kswapd_shrink_zone(zone, end_zone, &sc,
3057 lru_pages, &nr_attempted))
3058 raise_priority = false;
1da177e4 3059 }
5515061d
MG
3060
3061 /*
3062 * If the low watermark is met there is no need for processes
3063 * to be throttled on pfmemalloc_wait as they should not be
3064 * able to safely make forward progress. Wake them
3065 */
3066 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3067 pfmemalloc_watermark_ok(pgdat))
3068 wake_up(&pgdat->pfmemalloc_wait);
3069
1da177e4 3070 /*
b8e83b94
MG
3071 * Fragmentation may mean that the system cannot be rebalanced
3072 * for high-order allocations in all zones. If twice the
3073 * allocation size has been reclaimed and the zones are still
3074 * not balanced then recheck the watermarks at order-0 to
3075 * prevent kswapd reclaiming excessively. Assume that a
3076 * process requested a high-order can direct reclaim/compact.
1da177e4 3077 */
b8e83b94
MG
3078 if (order && sc.nr_reclaimed >= 2UL << order)
3079 order = sc.order = 0;
8357376d 3080
b8e83b94
MG
3081 /* Check if kswapd should be suspending */
3082 if (try_to_freeze() || kthread_should_stop())
3083 break;
8357376d 3084
2ab44f43
MG
3085 /*
3086 * Compact if necessary and kswapd is reclaiming at least the
3087 * high watermark number of pages as requsted
3088 */
3089 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3090 compact_pgdat(pgdat, order);
3091
73ce02e9 3092 /*
b8e83b94
MG
3093 * Raise priority if scanning rate is too low or there was no
3094 * progress in reclaiming pages
73ce02e9 3095 */
b8e83b94
MG
3096 if (raise_priority || !sc.nr_reclaimed)
3097 sc.priority--;
9aa41348 3098 } while (sc.priority >= 1 &&
b8e83b94 3099 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3100
b8e83b94 3101out:
0abdee2b 3102 /*
5515061d 3103 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3104 * makes a decision on the order we were last reclaiming at. However,
3105 * if another caller entered the allocator slow path while kswapd
3106 * was awake, order will remain at the higher level
3107 */
dc83edd9 3108 *classzone_idx = end_zone;
0abdee2b 3109 return order;
1da177e4
LT
3110}
3111
dc83edd9 3112static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3113{
3114 long remaining = 0;
3115 DEFINE_WAIT(wait);
3116
3117 if (freezing(current) || kthread_should_stop())
3118 return;
3119
3120 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3121
3122 /* Try to sleep for a short interval */
5515061d 3123 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3124 remaining = schedule_timeout(HZ/10);
3125 finish_wait(&pgdat->kswapd_wait, &wait);
3126 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3127 }
3128
3129 /*
3130 * After a short sleep, check if it was a premature sleep. If not, then
3131 * go fully to sleep until explicitly woken up.
3132 */
5515061d 3133 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3134 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3135
3136 /*
3137 * vmstat counters are not perfectly accurate and the estimated
3138 * value for counters such as NR_FREE_PAGES can deviate from the
3139 * true value by nr_online_cpus * threshold. To avoid the zone
3140 * watermarks being breached while under pressure, we reduce the
3141 * per-cpu vmstat threshold while kswapd is awake and restore
3142 * them before going back to sleep.
3143 */
3144 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3145
62997027
MG
3146 /*
3147 * Compaction records what page blocks it recently failed to
3148 * isolate pages from and skips them in the future scanning.
3149 * When kswapd is going to sleep, it is reasonable to assume
3150 * that pages and compaction may succeed so reset the cache.
3151 */
3152 reset_isolation_suitable(pgdat);
3153
1c7e7f6c
AK
3154 if (!kthread_should_stop())
3155 schedule();
3156
f0bc0a60
KM
3157 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3158 } else {
3159 if (remaining)
3160 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3161 else
3162 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3163 }
3164 finish_wait(&pgdat->kswapd_wait, &wait);
3165}
3166
1da177e4
LT
3167/*
3168 * The background pageout daemon, started as a kernel thread
4f98a2fe 3169 * from the init process.
1da177e4
LT
3170 *
3171 * This basically trickles out pages so that we have _some_
3172 * free memory available even if there is no other activity
3173 * that frees anything up. This is needed for things like routing
3174 * etc, where we otherwise might have all activity going on in
3175 * asynchronous contexts that cannot page things out.
3176 *
3177 * If there are applications that are active memory-allocators
3178 * (most normal use), this basically shouldn't matter.
3179 */
3180static int kswapd(void *p)
3181{
215ddd66 3182 unsigned long order, new_order;
d2ebd0f6 3183 unsigned balanced_order;
215ddd66 3184 int classzone_idx, new_classzone_idx;
d2ebd0f6 3185 int balanced_classzone_idx;
1da177e4
LT
3186 pg_data_t *pgdat = (pg_data_t*)p;
3187 struct task_struct *tsk = current;
f0bc0a60 3188
1da177e4
LT
3189 struct reclaim_state reclaim_state = {
3190 .reclaimed_slab = 0,
3191 };
a70f7302 3192 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3193
cf40bd16
NP
3194 lockdep_set_current_reclaim_state(GFP_KERNEL);
3195
174596a0 3196 if (!cpumask_empty(cpumask))
c5f59f08 3197 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3198 current->reclaim_state = &reclaim_state;
3199
3200 /*
3201 * Tell the memory management that we're a "memory allocator",
3202 * and that if we need more memory we should get access to it
3203 * regardless (see "__alloc_pages()"). "kswapd" should
3204 * never get caught in the normal page freeing logic.
3205 *
3206 * (Kswapd normally doesn't need memory anyway, but sometimes
3207 * you need a small amount of memory in order to be able to
3208 * page out something else, and this flag essentially protects
3209 * us from recursively trying to free more memory as we're
3210 * trying to free the first piece of memory in the first place).
3211 */
930d9152 3212 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3213 set_freezable();
1da177e4 3214
215ddd66 3215 order = new_order = 0;
d2ebd0f6 3216 balanced_order = 0;
215ddd66 3217 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3218 balanced_classzone_idx = classzone_idx;
1da177e4 3219 for ( ; ; ) {
6f6313d4 3220 bool ret;
3e1d1d28 3221
215ddd66
MG
3222 /*
3223 * If the last balance_pgdat was unsuccessful it's unlikely a
3224 * new request of a similar or harder type will succeed soon
3225 * so consider going to sleep on the basis we reclaimed at
3226 */
d2ebd0f6
AS
3227 if (balanced_classzone_idx >= new_classzone_idx &&
3228 balanced_order == new_order) {
215ddd66
MG
3229 new_order = pgdat->kswapd_max_order;
3230 new_classzone_idx = pgdat->classzone_idx;
3231 pgdat->kswapd_max_order = 0;
3232 pgdat->classzone_idx = pgdat->nr_zones - 1;
3233 }
3234
99504748 3235 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3236 /*
3237 * Don't sleep if someone wants a larger 'order'
99504748 3238 * allocation or has tigher zone constraints
1da177e4
LT
3239 */
3240 order = new_order;
99504748 3241 classzone_idx = new_classzone_idx;
1da177e4 3242 } else {
d2ebd0f6
AS
3243 kswapd_try_to_sleep(pgdat, balanced_order,
3244 balanced_classzone_idx);
1da177e4 3245 order = pgdat->kswapd_max_order;
99504748 3246 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3247 new_order = order;
3248 new_classzone_idx = classzone_idx;
4d40502e 3249 pgdat->kswapd_max_order = 0;
215ddd66 3250 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3251 }
1da177e4 3252
8fe23e05
DR
3253 ret = try_to_freeze();
3254 if (kthread_should_stop())
3255 break;
3256
3257 /*
3258 * We can speed up thawing tasks if we don't call balance_pgdat
3259 * after returning from the refrigerator
3260 */
33906bc5
MG
3261 if (!ret) {
3262 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3263 balanced_classzone_idx = classzone_idx;
3264 balanced_order = balance_pgdat(pgdat, order,
3265 &balanced_classzone_idx);
33906bc5 3266 }
1da177e4 3267 }
b0a8cc58
TY
3268
3269 current->reclaim_state = NULL;
1da177e4
LT
3270 return 0;
3271}
3272
3273/*
3274 * A zone is low on free memory, so wake its kswapd task to service it.
3275 */
99504748 3276void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3277{
3278 pg_data_t *pgdat;
3279
f3fe6512 3280 if (!populated_zone(zone))
1da177e4
LT
3281 return;
3282
88f5acf8 3283 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 3284 return;
88f5acf8 3285 pgdat = zone->zone_pgdat;
99504748 3286 if (pgdat->kswapd_max_order < order) {
1da177e4 3287 pgdat->kswapd_max_order = order;
99504748
MG
3288 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3289 }
8d0986e2 3290 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3291 return;
892f795d 3292 if (zone_balanced(zone, order, 0, 0))
88f5acf8
MG
3293 return;
3294
3295 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3296 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3297}
3298
adea02a1
WF
3299/*
3300 * The reclaimable count would be mostly accurate.
3301 * The less reclaimable pages may be
3302 * - mlocked pages, which will be moved to unevictable list when encountered
3303 * - mapped pages, which may require several travels to be reclaimed
3304 * - dirty pages, which is not "instantly" reclaimable
3305 */
3306unsigned long global_reclaimable_pages(void)
4f98a2fe 3307{
adea02a1
WF
3308 int nr;
3309
3310 nr = global_page_state(NR_ACTIVE_FILE) +
3311 global_page_state(NR_INACTIVE_FILE);
3312
ec8acf20 3313 if (get_nr_swap_pages() > 0)
adea02a1
WF
3314 nr += global_page_state(NR_ACTIVE_ANON) +
3315 global_page_state(NR_INACTIVE_ANON);
3316
3317 return nr;
3318}
3319
c6f37f12 3320#ifdef CONFIG_HIBERNATION
1da177e4 3321/*
7b51755c 3322 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3323 * freed pages.
3324 *
3325 * Rather than trying to age LRUs the aim is to preserve the overall
3326 * LRU order by reclaiming preferentially
3327 * inactive > active > active referenced > active mapped
1da177e4 3328 */
7b51755c 3329unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3330{
d6277db4 3331 struct reclaim_state reclaim_state;
d6277db4 3332 struct scan_control sc = {
7b51755c
KM
3333 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3334 .may_swap = 1,
3335 .may_unmap = 1,
d6277db4 3336 .may_writepage = 1,
7b51755c
KM
3337 .nr_to_reclaim = nr_to_reclaim,
3338 .hibernation_mode = 1,
7b51755c 3339 .order = 0,
9e3b2f8c 3340 .priority = DEF_PRIORITY,
1da177e4 3341 };
a09ed5e0
YH
3342 struct shrink_control shrink = {
3343 .gfp_mask = sc.gfp_mask,
3344 };
3345 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3346 struct task_struct *p = current;
3347 unsigned long nr_reclaimed;
1da177e4 3348
7b51755c
KM
3349 p->flags |= PF_MEMALLOC;
3350 lockdep_set_current_reclaim_state(sc.gfp_mask);
3351 reclaim_state.reclaimed_slab = 0;
3352 p->reclaim_state = &reclaim_state;
d6277db4 3353
a09ed5e0 3354 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 3355
7b51755c
KM
3356 p->reclaim_state = NULL;
3357 lockdep_clear_current_reclaim_state();
3358 p->flags &= ~PF_MEMALLOC;
d6277db4 3359
7b51755c 3360 return nr_reclaimed;
1da177e4 3361}
c6f37f12 3362#endif /* CONFIG_HIBERNATION */
1da177e4 3363
1da177e4
LT
3364/* It's optimal to keep kswapds on the same CPUs as their memory, but
3365 not required for correctness. So if the last cpu in a node goes
3366 away, we get changed to run anywhere: as the first one comes back,
3367 restore their cpu bindings. */
fcb35a9b
GKH
3368static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3369 void *hcpu)
1da177e4 3370{
58c0a4a7 3371 int nid;
1da177e4 3372
8bb78442 3373 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3374 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3375 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3376 const struct cpumask *mask;
3377
3378 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3379
3e597945 3380 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3381 /* One of our CPUs online: restore mask */
c5f59f08 3382 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3383 }
3384 }
3385 return NOTIFY_OK;
3386}
1da177e4 3387
3218ae14
YG
3388/*
3389 * This kswapd start function will be called by init and node-hot-add.
3390 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3391 */
3392int kswapd_run(int nid)
3393{
3394 pg_data_t *pgdat = NODE_DATA(nid);
3395 int ret = 0;
3396
3397 if (pgdat->kswapd)
3398 return 0;
3399
3400 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3401 if (IS_ERR(pgdat->kswapd)) {
3402 /* failure at boot is fatal */
3403 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3404 pr_err("Failed to start kswapd on node %d\n", nid);
3405 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3406 pgdat->kswapd = NULL;
3218ae14
YG
3407 }
3408 return ret;
3409}
3410
8fe23e05 3411/*
d8adde17
JL
3412 * Called by memory hotplug when all memory in a node is offlined. Caller must
3413 * hold lock_memory_hotplug().
8fe23e05
DR
3414 */
3415void kswapd_stop(int nid)
3416{
3417 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3418
d8adde17 3419 if (kswapd) {
8fe23e05 3420 kthread_stop(kswapd);
d8adde17
JL
3421 NODE_DATA(nid)->kswapd = NULL;
3422 }
8fe23e05
DR
3423}
3424
1da177e4
LT
3425static int __init kswapd_init(void)
3426{
3218ae14 3427 int nid;
69e05944 3428
1da177e4 3429 swap_setup();
48fb2e24 3430 for_each_node_state(nid, N_MEMORY)
3218ae14 3431 kswapd_run(nid);
1da177e4
LT
3432 hotcpu_notifier(cpu_callback, 0);
3433 return 0;
3434}
3435
3436module_init(kswapd_init)
9eeff239
CL
3437
3438#ifdef CONFIG_NUMA
3439/*
3440 * Zone reclaim mode
3441 *
3442 * If non-zero call zone_reclaim when the number of free pages falls below
3443 * the watermarks.
9eeff239
CL
3444 */
3445int zone_reclaim_mode __read_mostly;
3446
1b2ffb78 3447#define RECLAIM_OFF 0
7d03431c 3448#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3449#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3450#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3451
a92f7126
CL
3452/*
3453 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3454 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3455 * a zone.
3456 */
3457#define ZONE_RECLAIM_PRIORITY 4
3458
9614634f
CL
3459/*
3460 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3461 * occur.
3462 */
3463int sysctl_min_unmapped_ratio = 1;
3464
0ff38490
CL
3465/*
3466 * If the number of slab pages in a zone grows beyond this percentage then
3467 * slab reclaim needs to occur.
3468 */
3469int sysctl_min_slab_ratio = 5;
3470
90afa5de
MG
3471static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3472{
3473 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3474 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3475 zone_page_state(zone, NR_ACTIVE_FILE);
3476
3477 /*
3478 * It's possible for there to be more file mapped pages than
3479 * accounted for by the pages on the file LRU lists because
3480 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3481 */
3482 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3483}
3484
3485/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3486static long zone_pagecache_reclaimable(struct zone *zone)
3487{
3488 long nr_pagecache_reclaimable;
3489 long delta = 0;
3490
3491 /*
3492 * If RECLAIM_SWAP is set, then all file pages are considered
3493 * potentially reclaimable. Otherwise, we have to worry about
3494 * pages like swapcache and zone_unmapped_file_pages() provides
3495 * a better estimate
3496 */
3497 if (zone_reclaim_mode & RECLAIM_SWAP)
3498 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3499 else
3500 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3501
3502 /* If we can't clean pages, remove dirty pages from consideration */
3503 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3504 delta += zone_page_state(zone, NR_FILE_DIRTY);
3505
3506 /* Watch for any possible underflows due to delta */
3507 if (unlikely(delta > nr_pagecache_reclaimable))
3508 delta = nr_pagecache_reclaimable;
3509
3510 return nr_pagecache_reclaimable - delta;
3511}
3512
9eeff239
CL
3513/*
3514 * Try to free up some pages from this zone through reclaim.
3515 */
179e9639 3516static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3517{
7fb2d46d 3518 /* Minimum pages needed in order to stay on node */
69e05944 3519 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3520 struct task_struct *p = current;
3521 struct reclaim_state reclaim_state;
179e9639
AM
3522 struct scan_control sc = {
3523 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3524 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3525 .may_swap = 1,
62b726c1 3526 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3527 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3528 .order = order,
9e3b2f8c 3529 .priority = ZONE_RECLAIM_PRIORITY,
179e9639 3530 };
a09ed5e0
YH
3531 struct shrink_control shrink = {
3532 .gfp_mask = sc.gfp_mask,
3533 };
15748048 3534 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3535
9eeff239 3536 cond_resched();
d4f7796e
CL
3537 /*
3538 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3539 * and we also need to be able to write out pages for RECLAIM_WRITE
3540 * and RECLAIM_SWAP.
3541 */
3542 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3543 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3544 reclaim_state.reclaimed_slab = 0;
3545 p->reclaim_state = &reclaim_state;
c84db23c 3546
90afa5de 3547 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3548 /*
3549 * Free memory by calling shrink zone with increasing
3550 * priorities until we have enough memory freed.
3551 */
0ff38490 3552 do {
9e3b2f8c
KK
3553 shrink_zone(zone, &sc);
3554 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3555 }
c84db23c 3556
15748048
KM
3557 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3558 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3559 /*
7fb2d46d 3560 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3561 * many pages were freed in this zone. So we take the current
3562 * number of slab pages and shake the slab until it is reduced
3563 * by the same nr_pages that we used for reclaiming unmapped
3564 * pages.
2a16e3f4 3565 */
0ce3d744
DC
3566 nodes_clear(shrink.nodes_to_scan);
3567 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
4dc4b3d9
KM
3568 for (;;) {
3569 unsigned long lru_pages = zone_reclaimable_pages(zone);
3570
3571 /* No reclaimable slab or very low memory pressure */
1495f230 3572 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3573 break;
3574
3575 /* Freed enough memory */
3576 nr_slab_pages1 = zone_page_state(zone,
3577 NR_SLAB_RECLAIMABLE);
3578 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3579 break;
3580 }
83e33a47
CL
3581
3582 /*
3583 * Update nr_reclaimed by the number of slab pages we
3584 * reclaimed from this zone.
3585 */
15748048
KM
3586 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3587 if (nr_slab_pages1 < nr_slab_pages0)
3588 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3589 }
3590
9eeff239 3591 p->reclaim_state = NULL;
d4f7796e 3592 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3593 lockdep_clear_current_reclaim_state();
a79311c1 3594 return sc.nr_reclaimed >= nr_pages;
9eeff239 3595}
179e9639
AM
3596
3597int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3598{
179e9639 3599 int node_id;
d773ed6b 3600 int ret;
179e9639
AM
3601
3602 /*
0ff38490
CL
3603 * Zone reclaim reclaims unmapped file backed pages and
3604 * slab pages if we are over the defined limits.
34aa1330 3605 *
9614634f
CL
3606 * A small portion of unmapped file backed pages is needed for
3607 * file I/O otherwise pages read by file I/O will be immediately
3608 * thrown out if the zone is overallocated. So we do not reclaim
3609 * if less than a specified percentage of the zone is used by
3610 * unmapped file backed pages.
179e9639 3611 */
90afa5de
MG
3612 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3613 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3614 return ZONE_RECLAIM_FULL;
179e9639 3615
6e543d57 3616 if (!zone_reclaimable(zone))
fa5e084e 3617 return ZONE_RECLAIM_FULL;
d773ed6b 3618
179e9639 3619 /*
d773ed6b 3620 * Do not scan if the allocation should not be delayed.
179e9639 3621 */
d773ed6b 3622 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3623 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3624
3625 /*
3626 * Only run zone reclaim on the local zone or on zones that do not
3627 * have associated processors. This will favor the local processor
3628 * over remote processors and spread off node memory allocations
3629 * as wide as possible.
3630 */
89fa3024 3631 node_id = zone_to_nid(zone);
37c0708d 3632 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3633 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3634
3635 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3636 return ZONE_RECLAIM_NOSCAN;
3637
d773ed6b
DR
3638 ret = __zone_reclaim(zone, gfp_mask, order);
3639 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3640
24cf7251
MG
3641 if (!ret)
3642 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3643
d773ed6b 3644 return ret;
179e9639 3645}
9eeff239 3646#endif
894bc310 3647
894bc310
LS
3648/*
3649 * page_evictable - test whether a page is evictable
3650 * @page: the page to test
894bc310
LS
3651 *
3652 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3653 * lists vs unevictable list.
894bc310
LS
3654 *
3655 * Reasons page might not be evictable:
ba9ddf49 3656 * (1) page's mapping marked unevictable
b291f000 3657 * (2) page is part of an mlocked VMA
ba9ddf49 3658 *
894bc310 3659 */
39b5f29a 3660int page_evictable(struct page *page)
894bc310 3661{
39b5f29a 3662 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3663}
89e004ea 3664
85046579 3665#ifdef CONFIG_SHMEM
89e004ea 3666/**
24513264
HD
3667 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3668 * @pages: array of pages to check
3669 * @nr_pages: number of pages to check
89e004ea 3670 *
24513264 3671 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3672 *
3673 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3674 */
24513264 3675void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3676{
925b7673 3677 struct lruvec *lruvec;
24513264
HD
3678 struct zone *zone = NULL;
3679 int pgscanned = 0;
3680 int pgrescued = 0;
3681 int i;
89e004ea 3682
24513264
HD
3683 for (i = 0; i < nr_pages; i++) {
3684 struct page *page = pages[i];
3685 struct zone *pagezone;
89e004ea 3686
24513264
HD
3687 pgscanned++;
3688 pagezone = page_zone(page);
3689 if (pagezone != zone) {
3690 if (zone)
3691 spin_unlock_irq(&zone->lru_lock);
3692 zone = pagezone;
3693 spin_lock_irq(&zone->lru_lock);
3694 }
fa9add64 3695 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3696
24513264
HD
3697 if (!PageLRU(page) || !PageUnevictable(page))
3698 continue;
89e004ea 3699
39b5f29a 3700 if (page_evictable(page)) {
24513264
HD
3701 enum lru_list lru = page_lru_base_type(page);
3702
3703 VM_BUG_ON(PageActive(page));
3704 ClearPageUnevictable(page);
fa9add64
HD
3705 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3706 add_page_to_lru_list(page, lruvec, lru);
24513264 3707 pgrescued++;
89e004ea 3708 }
24513264 3709 }
89e004ea 3710
24513264
HD
3711 if (zone) {
3712 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3713 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3714 spin_unlock_irq(&zone->lru_lock);
89e004ea 3715 }
89e004ea 3716}
85046579 3717#endif /* CONFIG_SHMEM */
af936a16 3718
264e56d8 3719static void warn_scan_unevictable_pages(void)
af936a16 3720{
264e56d8 3721 printk_once(KERN_WARNING
25bd91bd 3722 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3723 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3724 "one, please send an email to linux-mm@kvack.org.\n",
3725 current->comm);
af936a16
LS
3726}
3727
3728/*
3729 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3730 * all nodes' unevictable lists for evictable pages
3731 */
3732unsigned long scan_unevictable_pages;
3733
3734int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3735 void __user *buffer,
af936a16
LS
3736 size_t *length, loff_t *ppos)
3737{
264e56d8 3738 warn_scan_unevictable_pages();
8d65af78 3739 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3740 scan_unevictable_pages = 0;
3741 return 0;
3742}
3743
e4455abb 3744#ifdef CONFIG_NUMA
af936a16
LS
3745/*
3746 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3747 * a specified node's per zone unevictable lists for evictable pages.
3748 */
3749
10fbcf4c
KS
3750static ssize_t read_scan_unevictable_node(struct device *dev,
3751 struct device_attribute *attr,
af936a16
LS
3752 char *buf)
3753{
264e56d8 3754 warn_scan_unevictable_pages();
af936a16
LS
3755 return sprintf(buf, "0\n"); /* always zero; should fit... */
3756}
3757
10fbcf4c
KS
3758static ssize_t write_scan_unevictable_node(struct device *dev,
3759 struct device_attribute *attr,
af936a16
LS
3760 const char *buf, size_t count)
3761{
264e56d8 3762 warn_scan_unevictable_pages();
af936a16
LS
3763 return 1;
3764}
3765
3766
10fbcf4c 3767static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3768 read_scan_unevictable_node,
3769 write_scan_unevictable_node);
3770
3771int scan_unevictable_register_node(struct node *node)
3772{
10fbcf4c 3773 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3774}
3775
3776void scan_unevictable_unregister_node(struct node *node)
3777{
10fbcf4c 3778 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3779}
e4455abb 3780#endif