]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmscan.c
mm: send one IPI per CPU to TLB flush all entries after unmapping pages
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4
LT
16#include <linux/mm.h>
17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
268bb0ce 47#include <linux/prefetch.h>
b1de0d13 48#include <linux/printk.h>
1da177e4
LT
49
50#include <asm/tlbflush.h>
51#include <asm/div64.h>
52
53#include <linux/swapops.h>
117aad1e 54#include <linux/balloon_compaction.h>
1da177e4 55
0f8053a5
NP
56#include "internal.h"
57
33906bc5
MG
58#define CREATE_TRACE_POINTS
59#include <trace/events/vmscan.h>
60
1da177e4 61struct scan_control {
22fba335
KM
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
64
1da177e4 65 /* This context's GFP mask */
6daa0e28 66 gfp_t gfp_mask;
1da177e4 67
ee814fe2 68 /* Allocation order */
5ad333eb 69 int order;
66e1707b 70
ee814fe2
JW
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
9e3b2f8c 76
f16015fb
JW
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
66e1707b 82
ee814fe2
JW
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 unsigned int may_writepage:1;
87
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
90
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
93
241994ed
JW
94 /* Can cgroups be reclaimed below their normal consumption range? */
95 unsigned int may_thrash:1;
96
ee814fe2
JW
97 unsigned int hibernation_mode:1;
98
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready:1;
101
102 /* Incremented by the number of inactive pages that were scanned */
103 unsigned long nr_scanned;
104
105 /* Number of pages freed so far during a call to shrink_zones() */
106 unsigned long nr_reclaimed;
1da177e4
LT
107};
108
1da177e4
LT
109#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
110
111#ifdef ARCH_HAS_PREFETCH
112#define prefetch_prev_lru_page(_page, _base, _field) \
113 do { \
114 if ((_page)->lru.prev != _base) { \
115 struct page *prev; \
116 \
117 prev = lru_to_page(&(_page->lru)); \
118 prefetch(&prev->_field); \
119 } \
120 } while (0)
121#else
122#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
123#endif
124
125#ifdef ARCH_HAS_PREFETCHW
126#define prefetchw_prev_lru_page(_page, _base, _field) \
127 do { \
128 if ((_page)->lru.prev != _base) { \
129 struct page *prev; \
130 \
131 prev = lru_to_page(&(_page->lru)); \
132 prefetchw(&prev->_field); \
133 } \
134 } while (0)
135#else
136#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
137#endif
138
139/*
140 * From 0 .. 100. Higher means more swappy.
141 */
142int vm_swappiness = 60;
d0480be4
WSH
143/*
144 * The total number of pages which are beyond the high watermark within all
145 * zones.
146 */
147unsigned long vm_total_pages;
1da177e4
LT
148
149static LIST_HEAD(shrinker_list);
150static DECLARE_RWSEM(shrinker_rwsem);
151
c255a458 152#ifdef CONFIG_MEMCG
89b5fae5
JW
153static bool global_reclaim(struct scan_control *sc)
154{
f16015fb 155 return !sc->target_mem_cgroup;
89b5fae5 156}
97c9341f
TH
157
158/**
159 * sane_reclaim - is the usual dirty throttling mechanism operational?
160 * @sc: scan_control in question
161 *
162 * The normal page dirty throttling mechanism in balance_dirty_pages() is
163 * completely broken with the legacy memcg and direct stalling in
164 * shrink_page_list() is used for throttling instead, which lacks all the
165 * niceties such as fairness, adaptive pausing, bandwidth proportional
166 * allocation and configurability.
167 *
168 * This function tests whether the vmscan currently in progress can assume
169 * that the normal dirty throttling mechanism is operational.
170 */
171static bool sane_reclaim(struct scan_control *sc)
172{
173 struct mem_cgroup *memcg = sc->target_mem_cgroup;
174
175 if (!memcg)
176 return true;
177#ifdef CONFIG_CGROUP_WRITEBACK
178 if (cgroup_on_dfl(mem_cgroup_css(memcg)->cgroup))
179 return true;
180#endif
181 return false;
182}
91a45470 183#else
89b5fae5
JW
184static bool global_reclaim(struct scan_control *sc)
185{
186 return true;
187}
97c9341f
TH
188
189static bool sane_reclaim(struct scan_control *sc)
190{
191 return true;
192}
91a45470
KH
193#endif
194
a1c3bfb2 195static unsigned long zone_reclaimable_pages(struct zone *zone)
6e543d57
LD
196{
197 int nr;
198
199 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
200 zone_page_state(zone, NR_INACTIVE_FILE);
201
202 if (get_nr_swap_pages() > 0)
203 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
204 zone_page_state(zone, NR_INACTIVE_ANON);
205
206 return nr;
207}
208
209bool zone_reclaimable(struct zone *zone)
210{
0d5d823a
MG
211 return zone_page_state(zone, NR_PAGES_SCANNED) <
212 zone_reclaimable_pages(zone) * 6;
6e543d57
LD
213}
214
4d7dcca2 215static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 216{
c3c787e8 217 if (!mem_cgroup_disabled())
4d7dcca2 218 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 219
074291fe 220 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
221}
222
1da177e4 223/*
1d3d4437 224 * Add a shrinker callback to be called from the vm.
1da177e4 225 */
1d3d4437 226int register_shrinker(struct shrinker *shrinker)
1da177e4 227{
1d3d4437
GC
228 size_t size = sizeof(*shrinker->nr_deferred);
229
230 /*
231 * If we only have one possible node in the system anyway, save
232 * ourselves the trouble and disable NUMA aware behavior. This way we
233 * will save memory and some small loop time later.
234 */
235 if (nr_node_ids == 1)
236 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
237
238 if (shrinker->flags & SHRINKER_NUMA_AWARE)
239 size *= nr_node_ids;
240
241 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
242 if (!shrinker->nr_deferred)
243 return -ENOMEM;
244
8e1f936b
RR
245 down_write(&shrinker_rwsem);
246 list_add_tail(&shrinker->list, &shrinker_list);
247 up_write(&shrinker_rwsem);
1d3d4437 248 return 0;
1da177e4 249}
8e1f936b 250EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
251
252/*
253 * Remove one
254 */
8e1f936b 255void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
256{
257 down_write(&shrinker_rwsem);
258 list_del(&shrinker->list);
259 up_write(&shrinker_rwsem);
ae393321 260 kfree(shrinker->nr_deferred);
1da177e4 261}
8e1f936b 262EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
263
264#define SHRINK_BATCH 128
1d3d4437 265
cb731d6c
VD
266static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
267 struct shrinker *shrinker,
268 unsigned long nr_scanned,
269 unsigned long nr_eligible)
1d3d4437
GC
270{
271 unsigned long freed = 0;
272 unsigned long long delta;
273 long total_scan;
d5bc5fd3 274 long freeable;
1d3d4437
GC
275 long nr;
276 long new_nr;
277 int nid = shrinkctl->nid;
278 long batch_size = shrinker->batch ? shrinker->batch
279 : SHRINK_BATCH;
280
d5bc5fd3
VD
281 freeable = shrinker->count_objects(shrinker, shrinkctl);
282 if (freeable == 0)
1d3d4437
GC
283 return 0;
284
285 /*
286 * copy the current shrinker scan count into a local variable
287 * and zero it so that other concurrent shrinker invocations
288 * don't also do this scanning work.
289 */
290 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
291
292 total_scan = nr;
6b4f7799 293 delta = (4 * nr_scanned) / shrinker->seeks;
d5bc5fd3 294 delta *= freeable;
6b4f7799 295 do_div(delta, nr_eligible + 1);
1d3d4437
GC
296 total_scan += delta;
297 if (total_scan < 0) {
8612c663 298 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 299 shrinker->scan_objects, total_scan);
d5bc5fd3 300 total_scan = freeable;
1d3d4437
GC
301 }
302
303 /*
304 * We need to avoid excessive windup on filesystem shrinkers
305 * due to large numbers of GFP_NOFS allocations causing the
306 * shrinkers to return -1 all the time. This results in a large
307 * nr being built up so when a shrink that can do some work
308 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 309 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
310 * memory.
311 *
312 * Hence only allow the shrinker to scan the entire cache when
313 * a large delta change is calculated directly.
314 */
d5bc5fd3
VD
315 if (delta < freeable / 4)
316 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
317
318 /*
319 * Avoid risking looping forever due to too large nr value:
320 * never try to free more than twice the estimate number of
321 * freeable entries.
322 */
d5bc5fd3
VD
323 if (total_scan > freeable * 2)
324 total_scan = freeable * 2;
1d3d4437
GC
325
326 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
6b4f7799
JW
327 nr_scanned, nr_eligible,
328 freeable, delta, total_scan);
1d3d4437 329
0b1fb40a
VD
330 /*
331 * Normally, we should not scan less than batch_size objects in one
332 * pass to avoid too frequent shrinker calls, but if the slab has less
333 * than batch_size objects in total and we are really tight on memory,
334 * we will try to reclaim all available objects, otherwise we can end
335 * up failing allocations although there are plenty of reclaimable
336 * objects spread over several slabs with usage less than the
337 * batch_size.
338 *
339 * We detect the "tight on memory" situations by looking at the total
340 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 341 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
342 * scanning at high prio and therefore should try to reclaim as much as
343 * possible.
344 */
345 while (total_scan >= batch_size ||
d5bc5fd3 346 total_scan >= freeable) {
a0b02131 347 unsigned long ret;
0b1fb40a 348 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 349
0b1fb40a 350 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
351 ret = shrinker->scan_objects(shrinker, shrinkctl);
352 if (ret == SHRINK_STOP)
353 break;
354 freed += ret;
1d3d4437 355
0b1fb40a
VD
356 count_vm_events(SLABS_SCANNED, nr_to_scan);
357 total_scan -= nr_to_scan;
1d3d4437
GC
358
359 cond_resched();
360 }
361
362 /*
363 * move the unused scan count back into the shrinker in a
364 * manner that handles concurrent updates. If we exhausted the
365 * scan, there is no need to do an update.
366 */
367 if (total_scan > 0)
368 new_nr = atomic_long_add_return(total_scan,
369 &shrinker->nr_deferred[nid]);
370 else
371 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
372
df9024a8 373 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 374 return freed;
1495f230
YH
375}
376
6b4f7799 377/**
cb731d6c 378 * shrink_slab - shrink slab caches
6b4f7799
JW
379 * @gfp_mask: allocation context
380 * @nid: node whose slab caches to target
cb731d6c 381 * @memcg: memory cgroup whose slab caches to target
6b4f7799
JW
382 * @nr_scanned: pressure numerator
383 * @nr_eligible: pressure denominator
1da177e4 384 *
6b4f7799 385 * Call the shrink functions to age shrinkable caches.
1da177e4 386 *
6b4f7799
JW
387 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
388 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 389 *
cb731d6c
VD
390 * @memcg specifies the memory cgroup to target. If it is not NULL,
391 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
392 * objects from the memory cgroup specified. Otherwise all shrinkers
393 * are called, and memcg aware shrinkers are supposed to scan the
394 * global list then.
395 *
6b4f7799
JW
396 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
397 * the available objects should be scanned. Page reclaim for example
398 * passes the number of pages scanned and the number of pages on the
399 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
400 * when it encountered mapped pages. The ratio is further biased by
401 * the ->seeks setting of the shrink function, which indicates the
402 * cost to recreate an object relative to that of an LRU page.
b15e0905 403 *
6b4f7799 404 * Returns the number of reclaimed slab objects.
1da177e4 405 */
cb731d6c
VD
406static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
407 struct mem_cgroup *memcg,
408 unsigned long nr_scanned,
409 unsigned long nr_eligible)
1da177e4
LT
410{
411 struct shrinker *shrinker;
24f7c6b9 412 unsigned long freed = 0;
1da177e4 413
cb731d6c
VD
414 if (memcg && !memcg_kmem_is_active(memcg))
415 return 0;
416
6b4f7799
JW
417 if (nr_scanned == 0)
418 nr_scanned = SWAP_CLUSTER_MAX;
1da177e4 419
f06590bd 420 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
421 /*
422 * If we would return 0, our callers would understand that we
423 * have nothing else to shrink and give up trying. By returning
424 * 1 we keep it going and assume we'll be able to shrink next
425 * time.
426 */
427 freed = 1;
f06590bd
MK
428 goto out;
429 }
1da177e4
LT
430
431 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
432 struct shrink_control sc = {
433 .gfp_mask = gfp_mask,
434 .nid = nid,
cb731d6c 435 .memcg = memcg,
6b4f7799 436 };
ec97097b 437
cb731d6c
VD
438 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
439 continue;
440
6b4f7799
JW
441 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
442 sc.nid = 0;
1da177e4 443
cb731d6c 444 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
1da177e4 445 }
6b4f7799 446
1da177e4 447 up_read(&shrinker_rwsem);
f06590bd
MK
448out:
449 cond_resched();
24f7c6b9 450 return freed;
1da177e4
LT
451}
452
cb731d6c
VD
453void drop_slab_node(int nid)
454{
455 unsigned long freed;
456
457 do {
458 struct mem_cgroup *memcg = NULL;
459
460 freed = 0;
461 do {
462 freed += shrink_slab(GFP_KERNEL, nid, memcg,
463 1000, 1000);
464 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
465 } while (freed > 10);
466}
467
468void drop_slab(void)
469{
470 int nid;
471
472 for_each_online_node(nid)
473 drop_slab_node(nid);
474}
475
1da177e4
LT
476static inline int is_page_cache_freeable(struct page *page)
477{
ceddc3a5
JW
478 /*
479 * A freeable page cache page is referenced only by the caller
480 * that isolated the page, the page cache radix tree and
481 * optional buffer heads at page->private.
482 */
edcf4748 483 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
484}
485
703c2708 486static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 487{
930d9152 488 if (current->flags & PF_SWAPWRITE)
1da177e4 489 return 1;
703c2708 490 if (!inode_write_congested(inode))
1da177e4 491 return 1;
703c2708 492 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
493 return 1;
494 return 0;
495}
496
497/*
498 * We detected a synchronous write error writing a page out. Probably
499 * -ENOSPC. We need to propagate that into the address_space for a subsequent
500 * fsync(), msync() or close().
501 *
502 * The tricky part is that after writepage we cannot touch the mapping: nothing
503 * prevents it from being freed up. But we have a ref on the page and once
504 * that page is locked, the mapping is pinned.
505 *
506 * We're allowed to run sleeping lock_page() here because we know the caller has
507 * __GFP_FS.
508 */
509static void handle_write_error(struct address_space *mapping,
510 struct page *page, int error)
511{
7eaceacc 512 lock_page(page);
3e9f45bd
GC
513 if (page_mapping(page) == mapping)
514 mapping_set_error(mapping, error);
1da177e4
LT
515 unlock_page(page);
516}
517
04e62a29
CL
518/* possible outcome of pageout() */
519typedef enum {
520 /* failed to write page out, page is locked */
521 PAGE_KEEP,
522 /* move page to the active list, page is locked */
523 PAGE_ACTIVATE,
524 /* page has been sent to the disk successfully, page is unlocked */
525 PAGE_SUCCESS,
526 /* page is clean and locked */
527 PAGE_CLEAN,
528} pageout_t;
529
1da177e4 530/*
1742f19f
AM
531 * pageout is called by shrink_page_list() for each dirty page.
532 * Calls ->writepage().
1da177e4 533 */
c661b078 534static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 535 struct scan_control *sc)
1da177e4
LT
536{
537 /*
538 * If the page is dirty, only perform writeback if that write
539 * will be non-blocking. To prevent this allocation from being
540 * stalled by pagecache activity. But note that there may be
541 * stalls if we need to run get_block(). We could test
542 * PagePrivate for that.
543 *
8174202b 544 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
545 * this page's queue, we can perform writeback even if that
546 * will block.
547 *
548 * If the page is swapcache, write it back even if that would
549 * block, for some throttling. This happens by accident, because
550 * swap_backing_dev_info is bust: it doesn't reflect the
551 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
552 */
553 if (!is_page_cache_freeable(page))
554 return PAGE_KEEP;
555 if (!mapping) {
556 /*
557 * Some data journaling orphaned pages can have
558 * page->mapping == NULL while being dirty with clean buffers.
559 */
266cf658 560 if (page_has_private(page)) {
1da177e4
LT
561 if (try_to_free_buffers(page)) {
562 ClearPageDirty(page);
b1de0d13 563 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
564 return PAGE_CLEAN;
565 }
566 }
567 return PAGE_KEEP;
568 }
569 if (mapping->a_ops->writepage == NULL)
570 return PAGE_ACTIVATE;
703c2708 571 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
572 return PAGE_KEEP;
573
574 if (clear_page_dirty_for_io(page)) {
575 int res;
576 struct writeback_control wbc = {
577 .sync_mode = WB_SYNC_NONE,
578 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
579 .range_start = 0,
580 .range_end = LLONG_MAX,
1da177e4
LT
581 .for_reclaim = 1,
582 };
583
584 SetPageReclaim(page);
585 res = mapping->a_ops->writepage(page, &wbc);
586 if (res < 0)
587 handle_write_error(mapping, page, res);
994fc28c 588 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
589 ClearPageReclaim(page);
590 return PAGE_ACTIVATE;
591 }
c661b078 592
1da177e4
LT
593 if (!PageWriteback(page)) {
594 /* synchronous write or broken a_ops? */
595 ClearPageReclaim(page);
596 }
23b9da55 597 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 598 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
599 return PAGE_SUCCESS;
600 }
601
602 return PAGE_CLEAN;
603}
604
a649fd92 605/*
e286781d
NP
606 * Same as remove_mapping, but if the page is removed from the mapping, it
607 * gets returned with a refcount of 0.
a649fd92 608 */
a528910e
JW
609static int __remove_mapping(struct address_space *mapping, struct page *page,
610 bool reclaimed)
49d2e9cc 611{
c4843a75
GT
612 unsigned long flags;
613 struct mem_cgroup *memcg;
614
28e4d965
NP
615 BUG_ON(!PageLocked(page));
616 BUG_ON(mapping != page_mapping(page));
49d2e9cc 617
c4843a75
GT
618 memcg = mem_cgroup_begin_page_stat(page);
619 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 620 /*
0fd0e6b0
NP
621 * The non racy check for a busy page.
622 *
623 * Must be careful with the order of the tests. When someone has
624 * a ref to the page, it may be possible that they dirty it then
625 * drop the reference. So if PageDirty is tested before page_count
626 * here, then the following race may occur:
627 *
628 * get_user_pages(&page);
629 * [user mapping goes away]
630 * write_to(page);
631 * !PageDirty(page) [good]
632 * SetPageDirty(page);
633 * put_page(page);
634 * !page_count(page) [good, discard it]
635 *
636 * [oops, our write_to data is lost]
637 *
638 * Reversing the order of the tests ensures such a situation cannot
639 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
640 * load is not satisfied before that of page->_count.
641 *
642 * Note that if SetPageDirty is always performed via set_page_dirty,
643 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 644 */
e286781d 645 if (!page_freeze_refs(page, 2))
49d2e9cc 646 goto cannot_free;
e286781d
NP
647 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
648 if (unlikely(PageDirty(page))) {
649 page_unfreeze_refs(page, 2);
49d2e9cc 650 goto cannot_free;
e286781d 651 }
49d2e9cc
CL
652
653 if (PageSwapCache(page)) {
654 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 655 mem_cgroup_swapout(page, swap);
49d2e9cc 656 __delete_from_swap_cache(page);
c4843a75
GT
657 spin_unlock_irqrestore(&mapping->tree_lock, flags);
658 mem_cgroup_end_page_stat(memcg);
0a31bc97 659 swapcache_free(swap);
e286781d 660 } else {
6072d13c 661 void (*freepage)(struct page *);
a528910e 662 void *shadow = NULL;
6072d13c
LT
663
664 freepage = mapping->a_ops->freepage;
a528910e
JW
665 /*
666 * Remember a shadow entry for reclaimed file cache in
667 * order to detect refaults, thus thrashing, later on.
668 *
669 * But don't store shadows in an address space that is
670 * already exiting. This is not just an optizimation,
671 * inode reclaim needs to empty out the radix tree or
672 * the nodes are lost. Don't plant shadows behind its
673 * back.
674 */
675 if (reclaimed && page_is_file_cache(page) &&
676 !mapping_exiting(mapping))
677 shadow = workingset_eviction(mapping, page);
c4843a75
GT
678 __delete_from_page_cache(page, shadow, memcg);
679 spin_unlock_irqrestore(&mapping->tree_lock, flags);
680 mem_cgroup_end_page_stat(memcg);
6072d13c
LT
681
682 if (freepage != NULL)
683 freepage(page);
49d2e9cc
CL
684 }
685
49d2e9cc
CL
686 return 1;
687
688cannot_free:
c4843a75
GT
689 spin_unlock_irqrestore(&mapping->tree_lock, flags);
690 mem_cgroup_end_page_stat(memcg);
49d2e9cc
CL
691 return 0;
692}
693
e286781d
NP
694/*
695 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
696 * someone else has a ref on the page, abort and return 0. If it was
697 * successfully detached, return 1. Assumes the caller has a single ref on
698 * this page.
699 */
700int remove_mapping(struct address_space *mapping, struct page *page)
701{
a528910e 702 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
703 /*
704 * Unfreezing the refcount with 1 rather than 2 effectively
705 * drops the pagecache ref for us without requiring another
706 * atomic operation.
707 */
708 page_unfreeze_refs(page, 1);
709 return 1;
710 }
711 return 0;
712}
713
894bc310
LS
714/**
715 * putback_lru_page - put previously isolated page onto appropriate LRU list
716 * @page: page to be put back to appropriate lru list
717 *
718 * Add previously isolated @page to appropriate LRU list.
719 * Page may still be unevictable for other reasons.
720 *
721 * lru_lock must not be held, interrupts must be enabled.
722 */
894bc310
LS
723void putback_lru_page(struct page *page)
724{
0ec3b74c 725 bool is_unevictable;
bbfd28ee 726 int was_unevictable = PageUnevictable(page);
894bc310 727
309381fe 728 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
729
730redo:
731 ClearPageUnevictable(page);
732
39b5f29a 733 if (page_evictable(page)) {
894bc310
LS
734 /*
735 * For evictable pages, we can use the cache.
736 * In event of a race, worst case is we end up with an
737 * unevictable page on [in]active list.
738 * We know how to handle that.
739 */
0ec3b74c 740 is_unevictable = false;
c53954a0 741 lru_cache_add(page);
894bc310
LS
742 } else {
743 /*
744 * Put unevictable pages directly on zone's unevictable
745 * list.
746 */
0ec3b74c 747 is_unevictable = true;
894bc310 748 add_page_to_unevictable_list(page);
6a7b9548 749 /*
21ee9f39
MK
750 * When racing with an mlock or AS_UNEVICTABLE clearing
751 * (page is unlocked) make sure that if the other thread
752 * does not observe our setting of PG_lru and fails
24513264 753 * isolation/check_move_unevictable_pages,
21ee9f39 754 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
755 * the page back to the evictable list.
756 *
21ee9f39 757 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
758 */
759 smp_mb();
894bc310 760 }
894bc310
LS
761
762 /*
763 * page's status can change while we move it among lru. If an evictable
764 * page is on unevictable list, it never be freed. To avoid that,
765 * check after we added it to the list, again.
766 */
0ec3b74c 767 if (is_unevictable && page_evictable(page)) {
894bc310
LS
768 if (!isolate_lru_page(page)) {
769 put_page(page);
770 goto redo;
771 }
772 /* This means someone else dropped this page from LRU
773 * So, it will be freed or putback to LRU again. There is
774 * nothing to do here.
775 */
776 }
777
0ec3b74c 778 if (was_unevictable && !is_unevictable)
bbfd28ee 779 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 780 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
781 count_vm_event(UNEVICTABLE_PGCULLED);
782
894bc310
LS
783 put_page(page); /* drop ref from isolate */
784}
785
dfc8d636
JW
786enum page_references {
787 PAGEREF_RECLAIM,
788 PAGEREF_RECLAIM_CLEAN,
64574746 789 PAGEREF_KEEP,
dfc8d636
JW
790 PAGEREF_ACTIVATE,
791};
792
793static enum page_references page_check_references(struct page *page,
794 struct scan_control *sc)
795{
64574746 796 int referenced_ptes, referenced_page;
dfc8d636 797 unsigned long vm_flags;
dfc8d636 798
c3ac9a8a
JW
799 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
800 &vm_flags);
64574746 801 referenced_page = TestClearPageReferenced(page);
dfc8d636 802
dfc8d636
JW
803 /*
804 * Mlock lost the isolation race with us. Let try_to_unmap()
805 * move the page to the unevictable list.
806 */
807 if (vm_flags & VM_LOCKED)
808 return PAGEREF_RECLAIM;
809
64574746 810 if (referenced_ptes) {
e4898273 811 if (PageSwapBacked(page))
64574746
JW
812 return PAGEREF_ACTIVATE;
813 /*
814 * All mapped pages start out with page table
815 * references from the instantiating fault, so we need
816 * to look twice if a mapped file page is used more
817 * than once.
818 *
819 * Mark it and spare it for another trip around the
820 * inactive list. Another page table reference will
821 * lead to its activation.
822 *
823 * Note: the mark is set for activated pages as well
824 * so that recently deactivated but used pages are
825 * quickly recovered.
826 */
827 SetPageReferenced(page);
828
34dbc67a 829 if (referenced_page || referenced_ptes > 1)
64574746
JW
830 return PAGEREF_ACTIVATE;
831
c909e993
KK
832 /*
833 * Activate file-backed executable pages after first usage.
834 */
835 if (vm_flags & VM_EXEC)
836 return PAGEREF_ACTIVATE;
837
64574746
JW
838 return PAGEREF_KEEP;
839 }
dfc8d636
JW
840
841 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 842 if (referenced_page && !PageSwapBacked(page))
64574746
JW
843 return PAGEREF_RECLAIM_CLEAN;
844
845 return PAGEREF_RECLAIM;
dfc8d636
JW
846}
847
e2be15f6
MG
848/* Check if a page is dirty or under writeback */
849static void page_check_dirty_writeback(struct page *page,
850 bool *dirty, bool *writeback)
851{
b4597226
MG
852 struct address_space *mapping;
853
e2be15f6
MG
854 /*
855 * Anonymous pages are not handled by flushers and must be written
856 * from reclaim context. Do not stall reclaim based on them
857 */
858 if (!page_is_file_cache(page)) {
859 *dirty = false;
860 *writeback = false;
861 return;
862 }
863
864 /* By default assume that the page flags are accurate */
865 *dirty = PageDirty(page);
866 *writeback = PageWriteback(page);
b4597226
MG
867
868 /* Verify dirty/writeback state if the filesystem supports it */
869 if (!page_has_private(page))
870 return;
871
872 mapping = page_mapping(page);
873 if (mapping && mapping->a_ops->is_dirty_writeback)
874 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
875}
876
1da177e4 877/*
1742f19f 878 * shrink_page_list() returns the number of reclaimed pages
1da177e4 879 */
1742f19f 880static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 881 struct zone *zone,
f84f6e2b 882 struct scan_control *sc,
02c6de8d 883 enum ttu_flags ttu_flags,
8e950282 884 unsigned long *ret_nr_dirty,
d43006d5 885 unsigned long *ret_nr_unqueued_dirty,
8e950282 886 unsigned long *ret_nr_congested,
02c6de8d 887 unsigned long *ret_nr_writeback,
b1a6f21e 888 unsigned long *ret_nr_immediate,
02c6de8d 889 bool force_reclaim)
1da177e4
LT
890{
891 LIST_HEAD(ret_pages);
abe4c3b5 892 LIST_HEAD(free_pages);
1da177e4 893 int pgactivate = 0;
d43006d5 894 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
895 unsigned long nr_dirty = 0;
896 unsigned long nr_congested = 0;
05ff5137 897 unsigned long nr_reclaimed = 0;
92df3a72 898 unsigned long nr_writeback = 0;
b1a6f21e 899 unsigned long nr_immediate = 0;
1da177e4
LT
900
901 cond_resched();
902
1da177e4
LT
903 while (!list_empty(page_list)) {
904 struct address_space *mapping;
905 struct page *page;
906 int may_enter_fs;
02c6de8d 907 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 908 bool dirty, writeback;
1da177e4
LT
909
910 cond_resched();
911
912 page = lru_to_page(page_list);
913 list_del(&page->lru);
914
529ae9aa 915 if (!trylock_page(page))
1da177e4
LT
916 goto keep;
917
309381fe
SL
918 VM_BUG_ON_PAGE(PageActive(page), page);
919 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1da177e4
LT
920
921 sc->nr_scanned++;
80e43426 922
39b5f29a 923 if (unlikely(!page_evictable(page)))
b291f000 924 goto cull_mlocked;
894bc310 925
a6dc60f8 926 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
927 goto keep_locked;
928
1da177e4
LT
929 /* Double the slab pressure for mapped and swapcache pages */
930 if (page_mapped(page) || PageSwapCache(page))
931 sc->nr_scanned++;
932
c661b078
AW
933 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
934 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
935
e2be15f6
MG
936 /*
937 * The number of dirty pages determines if a zone is marked
938 * reclaim_congested which affects wait_iff_congested. kswapd
939 * will stall and start writing pages if the tail of the LRU
940 * is all dirty unqueued pages.
941 */
942 page_check_dirty_writeback(page, &dirty, &writeback);
943 if (dirty || writeback)
944 nr_dirty++;
945
946 if (dirty && !writeback)
947 nr_unqueued_dirty++;
948
d04e8acd
MG
949 /*
950 * Treat this page as congested if the underlying BDI is or if
951 * pages are cycling through the LRU so quickly that the
952 * pages marked for immediate reclaim are making it to the
953 * end of the LRU a second time.
954 */
e2be15f6 955 mapping = page_mapping(page);
1da58ee2 956 if (((dirty || writeback) && mapping &&
703c2708 957 inode_write_congested(mapping->host)) ||
d04e8acd 958 (writeback && PageReclaim(page)))
e2be15f6
MG
959 nr_congested++;
960
283aba9f
MG
961 /*
962 * If a page at the tail of the LRU is under writeback, there
963 * are three cases to consider.
964 *
965 * 1) If reclaim is encountering an excessive number of pages
966 * under writeback and this page is both under writeback and
967 * PageReclaim then it indicates that pages are being queued
968 * for IO but are being recycled through the LRU before the
969 * IO can complete. Waiting on the page itself risks an
970 * indefinite stall if it is impossible to writeback the
971 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
972 * note that the LRU is being scanned too quickly and the
973 * caller can stall after page list has been processed.
283aba9f 974 *
97c9341f 975 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
976 * not marked for immediate reclaim, or the caller does not
977 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
978 * not to fs). In this case mark the page for immediate
97c9341f 979 * reclaim and continue scanning.
283aba9f 980 *
ecf5fc6e
MH
981 * Require may_enter_fs because we would wait on fs, which
982 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
983 * enter reclaim, and deadlock if it waits on a page for
984 * which it is needed to do the write (loop masks off
985 * __GFP_IO|__GFP_FS for this reason); but more thought
986 * would probably show more reasons.
987 *
97c9341f 988 * 3) Legacy memcg encounters a page that is not already marked
283aba9f
MG
989 * PageReclaim. memcg does not have any dirty pages
990 * throttling so we could easily OOM just because too many
991 * pages are in writeback and there is nothing else to
992 * reclaim. Wait for the writeback to complete.
993 */
c661b078 994 if (PageWriteback(page)) {
283aba9f
MG
995 /* Case 1 above */
996 if (current_is_kswapd() &&
997 PageReclaim(page) &&
57054651 998 test_bit(ZONE_WRITEBACK, &zone->flags)) {
b1a6f21e
MG
999 nr_immediate++;
1000 goto keep_locked;
283aba9f
MG
1001
1002 /* Case 2 above */
97c9341f 1003 } else if (sane_reclaim(sc) ||
ecf5fc6e 1004 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1005 /*
1006 * This is slightly racy - end_page_writeback()
1007 * might have just cleared PageReclaim, then
1008 * setting PageReclaim here end up interpreted
1009 * as PageReadahead - but that does not matter
1010 * enough to care. What we do want is for this
1011 * page to have PageReclaim set next time memcg
1012 * reclaim reaches the tests above, so it will
1013 * then wait_on_page_writeback() to avoid OOM;
1014 * and it's also appropriate in global reclaim.
1015 */
1016 SetPageReclaim(page);
e62e384e 1017 nr_writeback++;
283aba9f 1018
c3b94f44 1019 goto keep_locked;
283aba9f
MG
1020
1021 /* Case 3 above */
1022 } else {
1023 wait_on_page_writeback(page);
e62e384e 1024 }
c661b078 1025 }
1da177e4 1026
02c6de8d
MK
1027 if (!force_reclaim)
1028 references = page_check_references(page, sc);
1029
dfc8d636
JW
1030 switch (references) {
1031 case PAGEREF_ACTIVATE:
1da177e4 1032 goto activate_locked;
64574746
JW
1033 case PAGEREF_KEEP:
1034 goto keep_locked;
dfc8d636
JW
1035 case PAGEREF_RECLAIM:
1036 case PAGEREF_RECLAIM_CLEAN:
1037 ; /* try to reclaim the page below */
1038 }
1da177e4 1039
1da177e4
LT
1040 /*
1041 * Anonymous process memory has backing store?
1042 * Try to allocate it some swap space here.
1043 */
b291f000 1044 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
1045 if (!(sc->gfp_mask & __GFP_IO))
1046 goto keep_locked;
5bc7b8ac 1047 if (!add_to_swap(page, page_list))
1da177e4 1048 goto activate_locked;
63eb6b93 1049 may_enter_fs = 1;
1da177e4 1050
e2be15f6
MG
1051 /* Adding to swap updated mapping */
1052 mapping = page_mapping(page);
1053 }
1da177e4
LT
1054
1055 /*
1056 * The page is mapped into the page tables of one or more
1057 * processes. Try to unmap it here.
1058 */
1059 if (page_mapped(page) && mapping) {
72b252ae
MG
1060 switch (try_to_unmap(page,
1061 ttu_flags|TTU_BATCH_FLUSH)) {
1da177e4
LT
1062 case SWAP_FAIL:
1063 goto activate_locked;
1064 case SWAP_AGAIN:
1065 goto keep_locked;
b291f000
NP
1066 case SWAP_MLOCK:
1067 goto cull_mlocked;
1da177e4
LT
1068 case SWAP_SUCCESS:
1069 ; /* try to free the page below */
1070 }
1071 }
1072
1073 if (PageDirty(page)) {
ee72886d
MG
1074 /*
1075 * Only kswapd can writeback filesystem pages to
d43006d5
MG
1076 * avoid risk of stack overflow but only writeback
1077 * if many dirty pages have been encountered.
ee72886d 1078 */
f84f6e2b 1079 if (page_is_file_cache(page) &&
9e3b2f8c 1080 (!current_is_kswapd() ||
57054651 1081 !test_bit(ZONE_DIRTY, &zone->flags))) {
49ea7eb6
MG
1082 /*
1083 * Immediately reclaim when written back.
1084 * Similar in principal to deactivate_page()
1085 * except we already have the page isolated
1086 * and know it's dirty
1087 */
1088 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1089 SetPageReclaim(page);
1090
ee72886d
MG
1091 goto keep_locked;
1092 }
1093
dfc8d636 1094 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1095 goto keep_locked;
4dd4b920 1096 if (!may_enter_fs)
1da177e4 1097 goto keep_locked;
52a8363e 1098 if (!sc->may_writepage)
1da177e4
LT
1099 goto keep_locked;
1100
1101 /* Page is dirty, try to write it out here */
7d3579e8 1102 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1103 case PAGE_KEEP:
1104 goto keep_locked;
1105 case PAGE_ACTIVATE:
1106 goto activate_locked;
1107 case PAGE_SUCCESS:
7d3579e8 1108 if (PageWriteback(page))
41ac1999 1109 goto keep;
7d3579e8 1110 if (PageDirty(page))
1da177e4 1111 goto keep;
7d3579e8 1112
1da177e4
LT
1113 /*
1114 * A synchronous write - probably a ramdisk. Go
1115 * ahead and try to reclaim the page.
1116 */
529ae9aa 1117 if (!trylock_page(page))
1da177e4
LT
1118 goto keep;
1119 if (PageDirty(page) || PageWriteback(page))
1120 goto keep_locked;
1121 mapping = page_mapping(page);
1122 case PAGE_CLEAN:
1123 ; /* try to free the page below */
1124 }
1125 }
1126
1127 /*
1128 * If the page has buffers, try to free the buffer mappings
1129 * associated with this page. If we succeed we try to free
1130 * the page as well.
1131 *
1132 * We do this even if the page is PageDirty().
1133 * try_to_release_page() does not perform I/O, but it is
1134 * possible for a page to have PageDirty set, but it is actually
1135 * clean (all its buffers are clean). This happens if the
1136 * buffers were written out directly, with submit_bh(). ext3
894bc310 1137 * will do this, as well as the blockdev mapping.
1da177e4
LT
1138 * try_to_release_page() will discover that cleanness and will
1139 * drop the buffers and mark the page clean - it can be freed.
1140 *
1141 * Rarely, pages can have buffers and no ->mapping. These are
1142 * the pages which were not successfully invalidated in
1143 * truncate_complete_page(). We try to drop those buffers here
1144 * and if that worked, and the page is no longer mapped into
1145 * process address space (page_count == 1) it can be freed.
1146 * Otherwise, leave the page on the LRU so it is swappable.
1147 */
266cf658 1148 if (page_has_private(page)) {
1da177e4
LT
1149 if (!try_to_release_page(page, sc->gfp_mask))
1150 goto activate_locked;
e286781d
NP
1151 if (!mapping && page_count(page) == 1) {
1152 unlock_page(page);
1153 if (put_page_testzero(page))
1154 goto free_it;
1155 else {
1156 /*
1157 * rare race with speculative reference.
1158 * the speculative reference will free
1159 * this page shortly, so we may
1160 * increment nr_reclaimed here (and
1161 * leave it off the LRU).
1162 */
1163 nr_reclaimed++;
1164 continue;
1165 }
1166 }
1da177e4
LT
1167 }
1168
a528910e 1169 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1170 goto keep_locked;
1da177e4 1171
a978d6f5
NP
1172 /*
1173 * At this point, we have no other references and there is
1174 * no way to pick any more up (removed from LRU, removed
1175 * from pagecache). Can use non-atomic bitops now (and
1176 * we obviously don't have to worry about waking up a process
1177 * waiting on the page lock, because there are no references.
1178 */
1179 __clear_page_locked(page);
e286781d 1180free_it:
05ff5137 1181 nr_reclaimed++;
abe4c3b5
MG
1182
1183 /*
1184 * Is there need to periodically free_page_list? It would
1185 * appear not as the counts should be low
1186 */
1187 list_add(&page->lru, &free_pages);
1da177e4
LT
1188 continue;
1189
b291f000 1190cull_mlocked:
63d6c5ad
HD
1191 if (PageSwapCache(page))
1192 try_to_free_swap(page);
b291f000
NP
1193 unlock_page(page);
1194 putback_lru_page(page);
1195 continue;
1196
1da177e4 1197activate_locked:
68a22394
RR
1198 /* Not a candidate for swapping, so reclaim swap space. */
1199 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1200 try_to_free_swap(page);
309381fe 1201 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1202 SetPageActive(page);
1203 pgactivate++;
1204keep_locked:
1205 unlock_page(page);
1206keep:
1207 list_add(&page->lru, &ret_pages);
309381fe 1208 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1209 }
abe4c3b5 1210
747db954 1211 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1212 try_to_unmap_flush();
b745bc85 1213 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1214
1da177e4 1215 list_splice(&ret_pages, page_list);
f8891e5e 1216 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1217
8e950282
MG
1218 *ret_nr_dirty += nr_dirty;
1219 *ret_nr_congested += nr_congested;
d43006d5 1220 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1221 *ret_nr_writeback += nr_writeback;
b1a6f21e 1222 *ret_nr_immediate += nr_immediate;
05ff5137 1223 return nr_reclaimed;
1da177e4
LT
1224}
1225
02c6de8d
MK
1226unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1227 struct list_head *page_list)
1228{
1229 struct scan_control sc = {
1230 .gfp_mask = GFP_KERNEL,
1231 .priority = DEF_PRIORITY,
1232 .may_unmap = 1,
1233 };
8e950282 1234 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1235 struct page *page, *next;
1236 LIST_HEAD(clean_pages);
1237
1238 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e
RA
1239 if (page_is_file_cache(page) && !PageDirty(page) &&
1240 !isolated_balloon_page(page)) {
02c6de8d
MK
1241 ClearPageActive(page);
1242 list_move(&page->lru, &clean_pages);
1243 }
1244 }
1245
1246 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1247 TTU_UNMAP|TTU_IGNORE_ACCESS,
1248 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d 1249 list_splice(&clean_pages, page_list);
83da7510 1250 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1251 return ret;
1252}
1253
5ad333eb
AW
1254/*
1255 * Attempt to remove the specified page from its LRU. Only take this page
1256 * if it is of the appropriate PageActive status. Pages which are being
1257 * freed elsewhere are also ignored.
1258 *
1259 * page: page to consider
1260 * mode: one of the LRU isolation modes defined above
1261 *
1262 * returns 0 on success, -ve errno on failure.
1263 */
f3fd4a61 1264int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1265{
1266 int ret = -EINVAL;
1267
1268 /* Only take pages on the LRU. */
1269 if (!PageLRU(page))
1270 return ret;
1271
e46a2879
MK
1272 /* Compaction should not handle unevictable pages but CMA can do so */
1273 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1274 return ret;
1275
5ad333eb 1276 ret = -EBUSY;
08e552c6 1277
c8244935
MG
1278 /*
1279 * To minimise LRU disruption, the caller can indicate that it only
1280 * wants to isolate pages it will be able to operate on without
1281 * blocking - clean pages for the most part.
1282 *
1283 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1284 * is used by reclaim when it is cannot write to backing storage
1285 *
1286 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1287 * that it is possible to migrate without blocking
1288 */
1289 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1290 /* All the caller can do on PageWriteback is block */
1291 if (PageWriteback(page))
1292 return ret;
1293
1294 if (PageDirty(page)) {
1295 struct address_space *mapping;
1296
1297 /* ISOLATE_CLEAN means only clean pages */
1298 if (mode & ISOLATE_CLEAN)
1299 return ret;
1300
1301 /*
1302 * Only pages without mappings or that have a
1303 * ->migratepage callback are possible to migrate
1304 * without blocking
1305 */
1306 mapping = page_mapping(page);
1307 if (mapping && !mapping->a_ops->migratepage)
1308 return ret;
1309 }
1310 }
39deaf85 1311
f80c0673
MK
1312 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1313 return ret;
1314
5ad333eb
AW
1315 if (likely(get_page_unless_zero(page))) {
1316 /*
1317 * Be careful not to clear PageLRU until after we're
1318 * sure the page is not being freed elsewhere -- the
1319 * page release code relies on it.
1320 */
1321 ClearPageLRU(page);
1322 ret = 0;
1323 }
1324
1325 return ret;
1326}
1327
1da177e4
LT
1328/*
1329 * zone->lru_lock is heavily contended. Some of the functions that
1330 * shrink the lists perform better by taking out a batch of pages
1331 * and working on them outside the LRU lock.
1332 *
1333 * For pagecache intensive workloads, this function is the hottest
1334 * spot in the kernel (apart from copy_*_user functions).
1335 *
1336 * Appropriate locks must be held before calling this function.
1337 *
1338 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1339 * @lruvec: The LRU vector to pull pages from.
1da177e4 1340 * @dst: The temp list to put pages on to.
f626012d 1341 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1342 * @sc: The scan_control struct for this reclaim session
5ad333eb 1343 * @mode: One of the LRU isolation modes
3cb99451 1344 * @lru: LRU list id for isolating
1da177e4
LT
1345 *
1346 * returns how many pages were moved onto *@dst.
1347 */
69e05944 1348static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1349 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1350 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1351 isolate_mode_t mode, enum lru_list lru)
1da177e4 1352{
75b00af7 1353 struct list_head *src = &lruvec->lists[lru];
69e05944 1354 unsigned long nr_taken = 0;
c9b02d97 1355 unsigned long scan;
1da177e4 1356
c9b02d97 1357 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1358 struct page *page;
fa9add64 1359 int nr_pages;
5ad333eb 1360
1da177e4
LT
1361 page = lru_to_page(src);
1362 prefetchw_prev_lru_page(page, src, flags);
1363
309381fe 1364 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1365
f3fd4a61 1366 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1367 case 0:
fa9add64
HD
1368 nr_pages = hpage_nr_pages(page);
1369 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1370 list_move(&page->lru, dst);
fa9add64 1371 nr_taken += nr_pages;
5ad333eb
AW
1372 break;
1373
1374 case -EBUSY:
1375 /* else it is being freed elsewhere */
1376 list_move(&page->lru, src);
1377 continue;
46453a6e 1378
5ad333eb
AW
1379 default:
1380 BUG();
1381 }
1da177e4
LT
1382 }
1383
f626012d 1384 *nr_scanned = scan;
75b00af7
HD
1385 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1386 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1387 return nr_taken;
1388}
1389
62695a84
NP
1390/**
1391 * isolate_lru_page - tries to isolate a page from its LRU list
1392 * @page: page to isolate from its LRU list
1393 *
1394 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1395 * vmstat statistic corresponding to whatever LRU list the page was on.
1396 *
1397 * Returns 0 if the page was removed from an LRU list.
1398 * Returns -EBUSY if the page was not on an LRU list.
1399 *
1400 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1401 * the active list, it will have PageActive set. If it was found on
1402 * the unevictable list, it will have the PageUnevictable bit set. That flag
1403 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1404 *
1405 * The vmstat statistic corresponding to the list on which the page was
1406 * found will be decremented.
1407 *
1408 * Restrictions:
1409 * (1) Must be called with an elevated refcount on the page. This is a
1410 * fundamentnal difference from isolate_lru_pages (which is called
1411 * without a stable reference).
1412 * (2) the lru_lock must not be held.
1413 * (3) interrupts must be enabled.
1414 */
1415int isolate_lru_page(struct page *page)
1416{
1417 int ret = -EBUSY;
1418
309381fe 1419 VM_BUG_ON_PAGE(!page_count(page), page);
0c917313 1420
62695a84
NP
1421 if (PageLRU(page)) {
1422 struct zone *zone = page_zone(page);
fa9add64 1423 struct lruvec *lruvec;
62695a84
NP
1424
1425 spin_lock_irq(&zone->lru_lock);
fa9add64 1426 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1427 if (PageLRU(page)) {
894bc310 1428 int lru = page_lru(page);
0c917313 1429 get_page(page);
62695a84 1430 ClearPageLRU(page);
fa9add64
HD
1431 del_page_from_lru_list(page, lruvec, lru);
1432 ret = 0;
62695a84
NP
1433 }
1434 spin_unlock_irq(&zone->lru_lock);
1435 }
1436 return ret;
1437}
1438
35cd7815 1439/*
d37dd5dc
FW
1440 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1441 * then get resheduled. When there are massive number of tasks doing page
1442 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1443 * the LRU list will go small and be scanned faster than necessary, leading to
1444 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1445 */
1446static int too_many_isolated(struct zone *zone, int file,
1447 struct scan_control *sc)
1448{
1449 unsigned long inactive, isolated;
1450
1451 if (current_is_kswapd())
1452 return 0;
1453
97c9341f 1454 if (!sane_reclaim(sc))
35cd7815
RR
1455 return 0;
1456
1457 if (file) {
1458 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1459 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1460 } else {
1461 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1462 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1463 }
1464
3cf23841
FW
1465 /*
1466 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1467 * won't get blocked by normal direct-reclaimers, forming a circular
1468 * deadlock.
1469 */
1470 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1471 inactive >>= 3;
1472
35cd7815
RR
1473 return isolated > inactive;
1474}
1475
66635629 1476static noinline_for_stack void
75b00af7 1477putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1478{
27ac81d8
KK
1479 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1480 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1481 LIST_HEAD(pages_to_free);
66635629 1482
66635629
MG
1483 /*
1484 * Put back any unfreeable pages.
1485 */
66635629 1486 while (!list_empty(page_list)) {
3f79768f 1487 struct page *page = lru_to_page(page_list);
66635629 1488 int lru;
3f79768f 1489
309381fe 1490 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1491 list_del(&page->lru);
39b5f29a 1492 if (unlikely(!page_evictable(page))) {
66635629
MG
1493 spin_unlock_irq(&zone->lru_lock);
1494 putback_lru_page(page);
1495 spin_lock_irq(&zone->lru_lock);
1496 continue;
1497 }
fa9add64
HD
1498
1499 lruvec = mem_cgroup_page_lruvec(page, zone);
1500
7a608572 1501 SetPageLRU(page);
66635629 1502 lru = page_lru(page);
fa9add64
HD
1503 add_page_to_lru_list(page, lruvec, lru);
1504
66635629
MG
1505 if (is_active_lru(lru)) {
1506 int file = is_file_lru(lru);
9992af10
RR
1507 int numpages = hpage_nr_pages(page);
1508 reclaim_stat->recent_rotated[file] += numpages;
66635629 1509 }
2bcf8879
HD
1510 if (put_page_testzero(page)) {
1511 __ClearPageLRU(page);
1512 __ClearPageActive(page);
fa9add64 1513 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1514
1515 if (unlikely(PageCompound(page))) {
1516 spin_unlock_irq(&zone->lru_lock);
747db954 1517 mem_cgroup_uncharge(page);
2bcf8879
HD
1518 (*get_compound_page_dtor(page))(page);
1519 spin_lock_irq(&zone->lru_lock);
1520 } else
1521 list_add(&page->lru, &pages_to_free);
66635629
MG
1522 }
1523 }
66635629 1524
3f79768f
HD
1525 /*
1526 * To save our caller's stack, now use input list for pages to free.
1527 */
1528 list_splice(&pages_to_free, page_list);
66635629
MG
1529}
1530
399ba0b9
N
1531/*
1532 * If a kernel thread (such as nfsd for loop-back mounts) services
1533 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1534 * In that case we should only throttle if the backing device it is
1535 * writing to is congested. In other cases it is safe to throttle.
1536 */
1537static int current_may_throttle(void)
1538{
1539 return !(current->flags & PF_LESS_THROTTLE) ||
1540 current->backing_dev_info == NULL ||
1541 bdi_write_congested(current->backing_dev_info);
1542}
1543
1da177e4 1544/*
1742f19f
AM
1545 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1546 * of reclaimed pages
1da177e4 1547 */
66635629 1548static noinline_for_stack unsigned long
1a93be0e 1549shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1550 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1551{
1552 LIST_HEAD(page_list);
e247dbce 1553 unsigned long nr_scanned;
05ff5137 1554 unsigned long nr_reclaimed = 0;
e247dbce 1555 unsigned long nr_taken;
8e950282
MG
1556 unsigned long nr_dirty = 0;
1557 unsigned long nr_congested = 0;
e2be15f6 1558 unsigned long nr_unqueued_dirty = 0;
92df3a72 1559 unsigned long nr_writeback = 0;
b1a6f21e 1560 unsigned long nr_immediate = 0;
f3fd4a61 1561 isolate_mode_t isolate_mode = 0;
3cb99451 1562 int file = is_file_lru(lru);
1a93be0e
KK
1563 struct zone *zone = lruvec_zone(lruvec);
1564 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1565
35cd7815 1566 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1567 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1568
1569 /* We are about to die and free our memory. Return now. */
1570 if (fatal_signal_pending(current))
1571 return SWAP_CLUSTER_MAX;
1572 }
1573
1da177e4 1574 lru_add_drain();
f80c0673
MK
1575
1576 if (!sc->may_unmap)
61317289 1577 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1578 if (!sc->may_writepage)
61317289 1579 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1580
1da177e4 1581 spin_lock_irq(&zone->lru_lock);
b35ea17b 1582
5dc35979
KK
1583 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1584 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1585
1586 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1587 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1588
89b5fae5 1589 if (global_reclaim(sc)) {
0d5d823a 1590 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
e247dbce 1591 if (current_is_kswapd())
75b00af7 1592 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1593 else
75b00af7 1594 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1595 }
d563c050 1596 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1597
d563c050 1598 if (nr_taken == 0)
66635629 1599 return 0;
5ad333eb 1600
02c6de8d 1601 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1602 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1603 &nr_writeback, &nr_immediate,
1604 false);
c661b078 1605
3f79768f
HD
1606 spin_lock_irq(&zone->lru_lock);
1607
95d918fc 1608 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1609
904249aa
YH
1610 if (global_reclaim(sc)) {
1611 if (current_is_kswapd())
1612 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1613 nr_reclaimed);
1614 else
1615 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1616 nr_reclaimed);
1617 }
a74609fa 1618
27ac81d8 1619 putback_inactive_pages(lruvec, &page_list);
3f79768f 1620
95d918fc 1621 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1622
1623 spin_unlock_irq(&zone->lru_lock);
1624
747db954 1625 mem_cgroup_uncharge_list(&page_list);
b745bc85 1626 free_hot_cold_page_list(&page_list, true);
e11da5b4 1627
92df3a72
MG
1628 /*
1629 * If reclaim is isolating dirty pages under writeback, it implies
1630 * that the long-lived page allocation rate is exceeding the page
1631 * laundering rate. Either the global limits are not being effective
1632 * at throttling processes due to the page distribution throughout
1633 * zones or there is heavy usage of a slow backing device. The
1634 * only option is to throttle from reclaim context which is not ideal
1635 * as there is no guarantee the dirtying process is throttled in the
1636 * same way balance_dirty_pages() manages.
1637 *
8e950282
MG
1638 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1639 * of pages under pages flagged for immediate reclaim and stall if any
1640 * are encountered in the nr_immediate check below.
92df3a72 1641 */
918fc718 1642 if (nr_writeback && nr_writeback == nr_taken)
57054651 1643 set_bit(ZONE_WRITEBACK, &zone->flags);
92df3a72 1644
d43006d5 1645 /*
97c9341f
TH
1646 * Legacy memcg will stall in page writeback so avoid forcibly
1647 * stalling here.
d43006d5 1648 */
97c9341f 1649 if (sane_reclaim(sc)) {
8e950282
MG
1650 /*
1651 * Tag a zone as congested if all the dirty pages scanned were
1652 * backed by a congested BDI and wait_iff_congested will stall.
1653 */
1654 if (nr_dirty && nr_dirty == nr_congested)
57054651 1655 set_bit(ZONE_CONGESTED, &zone->flags);
8e950282 1656
b1a6f21e
MG
1657 /*
1658 * If dirty pages are scanned that are not queued for IO, it
1659 * implies that flushers are not keeping up. In this case, flag
57054651
JW
1660 * the zone ZONE_DIRTY and kswapd will start writing pages from
1661 * reclaim context.
b1a6f21e
MG
1662 */
1663 if (nr_unqueued_dirty == nr_taken)
57054651 1664 set_bit(ZONE_DIRTY, &zone->flags);
b1a6f21e
MG
1665
1666 /*
b738d764
LT
1667 * If kswapd scans pages marked marked for immediate
1668 * reclaim and under writeback (nr_immediate), it implies
1669 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1670 * they are written so also forcibly stall.
1671 */
b738d764 1672 if (nr_immediate && current_may_throttle())
b1a6f21e 1673 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1674 }
d43006d5 1675
8e950282
MG
1676 /*
1677 * Stall direct reclaim for IO completions if underlying BDIs or zone
1678 * is congested. Allow kswapd to continue until it starts encountering
1679 * unqueued dirty pages or cycling through the LRU too quickly.
1680 */
399ba0b9
N
1681 if (!sc->hibernation_mode && !current_is_kswapd() &&
1682 current_may_throttle())
8e950282
MG
1683 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1684
e11da5b4
MG
1685 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1686 zone_idx(zone),
1687 nr_scanned, nr_reclaimed,
9e3b2f8c 1688 sc->priority,
23b9da55 1689 trace_shrink_flags(file));
05ff5137 1690 return nr_reclaimed;
1da177e4
LT
1691}
1692
1693/*
1694 * This moves pages from the active list to the inactive list.
1695 *
1696 * We move them the other way if the page is referenced by one or more
1697 * processes, from rmap.
1698 *
1699 * If the pages are mostly unmapped, the processing is fast and it is
1700 * appropriate to hold zone->lru_lock across the whole operation. But if
1701 * the pages are mapped, the processing is slow (page_referenced()) so we
1702 * should drop zone->lru_lock around each page. It's impossible to balance
1703 * this, so instead we remove the pages from the LRU while processing them.
1704 * It is safe to rely on PG_active against the non-LRU pages in here because
1705 * nobody will play with that bit on a non-LRU page.
1706 *
1707 * The downside is that we have to touch page->_count against each page.
1708 * But we had to alter page->flags anyway.
1709 */
1cfb419b 1710
fa9add64 1711static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1712 struct list_head *list,
2bcf8879 1713 struct list_head *pages_to_free,
3eb4140f
WF
1714 enum lru_list lru)
1715{
fa9add64 1716 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1717 unsigned long pgmoved = 0;
3eb4140f 1718 struct page *page;
fa9add64 1719 int nr_pages;
3eb4140f 1720
3eb4140f
WF
1721 while (!list_empty(list)) {
1722 page = lru_to_page(list);
fa9add64 1723 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f 1724
309381fe 1725 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1726 SetPageLRU(page);
1727
fa9add64
HD
1728 nr_pages = hpage_nr_pages(page);
1729 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1730 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1731 pgmoved += nr_pages;
3eb4140f 1732
2bcf8879
HD
1733 if (put_page_testzero(page)) {
1734 __ClearPageLRU(page);
1735 __ClearPageActive(page);
fa9add64 1736 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1737
1738 if (unlikely(PageCompound(page))) {
1739 spin_unlock_irq(&zone->lru_lock);
747db954 1740 mem_cgroup_uncharge(page);
2bcf8879
HD
1741 (*get_compound_page_dtor(page))(page);
1742 spin_lock_irq(&zone->lru_lock);
1743 } else
1744 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1745 }
1746 }
1747 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1748 if (!is_active_lru(lru))
1749 __count_vm_events(PGDEACTIVATE, pgmoved);
1750}
1cfb419b 1751
f626012d 1752static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1753 struct lruvec *lruvec,
f16015fb 1754 struct scan_control *sc,
9e3b2f8c 1755 enum lru_list lru)
1da177e4 1756{
44c241f1 1757 unsigned long nr_taken;
f626012d 1758 unsigned long nr_scanned;
6fe6b7e3 1759 unsigned long vm_flags;
1da177e4 1760 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1761 LIST_HEAD(l_active);
b69408e8 1762 LIST_HEAD(l_inactive);
1da177e4 1763 struct page *page;
1a93be0e 1764 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1765 unsigned long nr_rotated = 0;
f3fd4a61 1766 isolate_mode_t isolate_mode = 0;
3cb99451 1767 int file = is_file_lru(lru);
1a93be0e 1768 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1769
1770 lru_add_drain();
f80c0673
MK
1771
1772 if (!sc->may_unmap)
61317289 1773 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1774 if (!sc->may_writepage)
61317289 1775 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1776
1da177e4 1777 spin_lock_irq(&zone->lru_lock);
925b7673 1778
5dc35979
KK
1779 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1780 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1781 if (global_reclaim(sc))
0d5d823a 1782 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
89b5fae5 1783
b7c46d15 1784 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1785
f626012d 1786 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1787 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1788 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1789 spin_unlock_irq(&zone->lru_lock);
1790
1da177e4
LT
1791 while (!list_empty(&l_hold)) {
1792 cond_resched();
1793 page = lru_to_page(&l_hold);
1794 list_del(&page->lru);
7e9cd484 1795
39b5f29a 1796 if (unlikely(!page_evictable(page))) {
894bc310
LS
1797 putback_lru_page(page);
1798 continue;
1799 }
1800
cc715d99
MG
1801 if (unlikely(buffer_heads_over_limit)) {
1802 if (page_has_private(page) && trylock_page(page)) {
1803 if (page_has_private(page))
1804 try_to_release_page(page, 0);
1805 unlock_page(page);
1806 }
1807 }
1808
c3ac9a8a
JW
1809 if (page_referenced(page, 0, sc->target_mem_cgroup,
1810 &vm_flags)) {
9992af10 1811 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1812 /*
1813 * Identify referenced, file-backed active pages and
1814 * give them one more trip around the active list. So
1815 * that executable code get better chances to stay in
1816 * memory under moderate memory pressure. Anon pages
1817 * are not likely to be evicted by use-once streaming
1818 * IO, plus JVM can create lots of anon VM_EXEC pages,
1819 * so we ignore them here.
1820 */
41e20983 1821 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1822 list_add(&page->lru, &l_active);
1823 continue;
1824 }
1825 }
7e9cd484 1826
5205e56e 1827 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1828 list_add(&page->lru, &l_inactive);
1829 }
1830
b555749a 1831 /*
8cab4754 1832 * Move pages back to the lru list.
b555749a 1833 */
2a1dc509 1834 spin_lock_irq(&zone->lru_lock);
556adecb 1835 /*
8cab4754
WF
1836 * Count referenced pages from currently used mappings as rotated,
1837 * even though only some of them are actually re-activated. This
1838 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 1839 * get_scan_count.
7e9cd484 1840 */
b7c46d15 1841 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1842
fa9add64
HD
1843 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1844 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1845 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1846 spin_unlock_irq(&zone->lru_lock);
2bcf8879 1847
747db954 1848 mem_cgroup_uncharge_list(&l_hold);
b745bc85 1849 free_hot_cold_page_list(&l_hold, true);
1da177e4
LT
1850}
1851
74e3f3c3 1852#ifdef CONFIG_SWAP
14797e23 1853static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1854{
1855 unsigned long active, inactive;
1856
1857 active = zone_page_state(zone, NR_ACTIVE_ANON);
1858 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1859
1860 if (inactive * zone->inactive_ratio < active)
1861 return 1;
1862
1863 return 0;
1864}
1865
14797e23
KM
1866/**
1867 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1868 * @lruvec: LRU vector to check
14797e23
KM
1869 *
1870 * Returns true if the zone does not have enough inactive anon pages,
1871 * meaning some active anon pages need to be deactivated.
1872 */
c56d5c7d 1873static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1874{
74e3f3c3
MK
1875 /*
1876 * If we don't have swap space, anonymous page deactivation
1877 * is pointless.
1878 */
1879 if (!total_swap_pages)
1880 return 0;
1881
c3c787e8 1882 if (!mem_cgroup_disabled())
c56d5c7d 1883 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1884
c56d5c7d 1885 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1886}
74e3f3c3 1887#else
c56d5c7d 1888static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1889{
1890 return 0;
1891}
1892#endif
14797e23 1893
56e49d21
RR
1894/**
1895 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1896 * @lruvec: LRU vector to check
56e49d21
RR
1897 *
1898 * When the system is doing streaming IO, memory pressure here
1899 * ensures that active file pages get deactivated, until more
1900 * than half of the file pages are on the inactive list.
1901 *
1902 * Once we get to that situation, protect the system's working
1903 * set from being evicted by disabling active file page aging.
1904 *
1905 * This uses a different ratio than the anonymous pages, because
1906 * the page cache uses a use-once replacement algorithm.
1907 */
c56d5c7d 1908static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1909{
e3790144
JW
1910 unsigned long inactive;
1911 unsigned long active;
1912
1913 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1914 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1915
e3790144 1916 return active > inactive;
56e49d21
RR
1917}
1918
75b00af7 1919static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1920{
75b00af7 1921 if (is_file_lru(lru))
c56d5c7d 1922 return inactive_file_is_low(lruvec);
b39415b2 1923 else
c56d5c7d 1924 return inactive_anon_is_low(lruvec);
b39415b2
RR
1925}
1926
4f98a2fe 1927static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1928 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1929{
b39415b2 1930 if (is_active_lru(lru)) {
75b00af7 1931 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1932 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1933 return 0;
1934 }
1935
1a93be0e 1936 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1937}
1938
9a265114
JW
1939enum scan_balance {
1940 SCAN_EQUAL,
1941 SCAN_FRACT,
1942 SCAN_ANON,
1943 SCAN_FILE,
1944};
1945
4f98a2fe
RR
1946/*
1947 * Determine how aggressively the anon and file LRU lists should be
1948 * scanned. The relative value of each set of LRU lists is determined
1949 * by looking at the fraction of the pages scanned we did rotate back
1950 * onto the active list instead of evict.
1951 *
be7bd59d
WL
1952 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1953 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1954 */
02695175 1955static void get_scan_count(struct lruvec *lruvec, int swappiness,
6b4f7799
JW
1956 struct scan_control *sc, unsigned long *nr,
1957 unsigned long *lru_pages)
4f98a2fe 1958{
9a265114
JW
1959 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1960 u64 fraction[2];
1961 u64 denominator = 0; /* gcc */
1962 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1963 unsigned long anon_prio, file_prio;
9a265114 1964 enum scan_balance scan_balance;
0bf1457f 1965 unsigned long anon, file;
9a265114 1966 bool force_scan = false;
4f98a2fe 1967 unsigned long ap, fp;
4111304d 1968 enum lru_list lru;
6f04f48d
SS
1969 bool some_scanned;
1970 int pass;
246e87a9 1971
f11c0ca5
JW
1972 /*
1973 * If the zone or memcg is small, nr[l] can be 0. This
1974 * results in no scanning on this priority and a potential
1975 * priority drop. Global direct reclaim can go to the next
1976 * zone and tends to have no problems. Global kswapd is for
1977 * zone balancing and it needs to scan a minimum amount. When
1978 * reclaiming for a memcg, a priority drop can cause high
1979 * latencies, so it's better to scan a minimum amount there as
1980 * well.
1981 */
90cbc250
VD
1982 if (current_is_kswapd()) {
1983 if (!zone_reclaimable(zone))
1984 force_scan = true;
1985 if (!mem_cgroup_lruvec_online(lruvec))
1986 force_scan = true;
1987 }
89b5fae5 1988 if (!global_reclaim(sc))
a4d3e9e7 1989 force_scan = true;
76a33fc3
SL
1990
1991 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1992 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1993 scan_balance = SCAN_FILE;
76a33fc3
SL
1994 goto out;
1995 }
4f98a2fe 1996
10316b31
JW
1997 /*
1998 * Global reclaim will swap to prevent OOM even with no
1999 * swappiness, but memcg users want to use this knob to
2000 * disable swapping for individual groups completely when
2001 * using the memory controller's swap limit feature would be
2002 * too expensive.
2003 */
02695175 2004 if (!global_reclaim(sc) && !swappiness) {
9a265114 2005 scan_balance = SCAN_FILE;
10316b31
JW
2006 goto out;
2007 }
2008
2009 /*
2010 * Do not apply any pressure balancing cleverness when the
2011 * system is close to OOM, scan both anon and file equally
2012 * (unless the swappiness setting disagrees with swapping).
2013 */
02695175 2014 if (!sc->priority && swappiness) {
9a265114 2015 scan_balance = SCAN_EQUAL;
10316b31
JW
2016 goto out;
2017 }
2018
62376251
JW
2019 /*
2020 * Prevent the reclaimer from falling into the cache trap: as
2021 * cache pages start out inactive, every cache fault will tip
2022 * the scan balance towards the file LRU. And as the file LRU
2023 * shrinks, so does the window for rotation from references.
2024 * This means we have a runaway feedback loop where a tiny
2025 * thrashing file LRU becomes infinitely more attractive than
2026 * anon pages. Try to detect this based on file LRU size.
2027 */
2028 if (global_reclaim(sc)) {
2ab051e1
JM
2029 unsigned long zonefile;
2030 unsigned long zonefree;
2031
2032 zonefree = zone_page_state(zone, NR_FREE_PAGES);
2033 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2034 zone_page_state(zone, NR_INACTIVE_FILE);
62376251 2035
2ab051e1 2036 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
62376251
JW
2037 scan_balance = SCAN_ANON;
2038 goto out;
2039 }
2040 }
2041
7c5bd705
JW
2042 /*
2043 * There is enough inactive page cache, do not reclaim
2044 * anything from the anonymous working set right now.
2045 */
2046 if (!inactive_file_is_low(lruvec)) {
9a265114 2047 scan_balance = SCAN_FILE;
7c5bd705
JW
2048 goto out;
2049 }
2050
9a265114
JW
2051 scan_balance = SCAN_FRACT;
2052
58c37f6e
KM
2053 /*
2054 * With swappiness at 100, anonymous and file have the same priority.
2055 * This scanning priority is essentially the inverse of IO cost.
2056 */
02695175 2057 anon_prio = swappiness;
75b00af7 2058 file_prio = 200 - anon_prio;
58c37f6e 2059
4f98a2fe
RR
2060 /*
2061 * OK, so we have swap space and a fair amount of page cache
2062 * pages. We use the recently rotated / recently scanned
2063 * ratios to determine how valuable each cache is.
2064 *
2065 * Because workloads change over time (and to avoid overflow)
2066 * we keep these statistics as a floating average, which ends
2067 * up weighing recent references more than old ones.
2068 *
2069 * anon in [0], file in [1]
2070 */
2ab051e1
JM
2071
2072 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2073 get_lru_size(lruvec, LRU_INACTIVE_ANON);
2074 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2075 get_lru_size(lruvec, LRU_INACTIVE_FILE);
2076
90126375 2077 spin_lock_irq(&zone->lru_lock);
6e901571 2078 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2079 reclaim_stat->recent_scanned[0] /= 2;
2080 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2081 }
2082
6e901571 2083 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2084 reclaim_stat->recent_scanned[1] /= 2;
2085 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2086 }
2087
4f98a2fe 2088 /*
00d8089c
RR
2089 * The amount of pressure on anon vs file pages is inversely
2090 * proportional to the fraction of recently scanned pages on
2091 * each list that were recently referenced and in active use.
4f98a2fe 2092 */
fe35004f 2093 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2094 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2095
fe35004f 2096 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2097 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 2098 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 2099
76a33fc3
SL
2100 fraction[0] = ap;
2101 fraction[1] = fp;
2102 denominator = ap + fp + 1;
2103out:
6f04f48d
SS
2104 some_scanned = false;
2105 /* Only use force_scan on second pass. */
2106 for (pass = 0; !some_scanned && pass < 2; pass++) {
6b4f7799 2107 *lru_pages = 0;
6f04f48d
SS
2108 for_each_evictable_lru(lru) {
2109 int file = is_file_lru(lru);
2110 unsigned long size;
2111 unsigned long scan;
6e08a369 2112
6f04f48d
SS
2113 size = get_lru_size(lruvec, lru);
2114 scan = size >> sc->priority;
9a265114 2115
6f04f48d
SS
2116 if (!scan && pass && force_scan)
2117 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2118
6f04f48d
SS
2119 switch (scan_balance) {
2120 case SCAN_EQUAL:
2121 /* Scan lists relative to size */
2122 break;
2123 case SCAN_FRACT:
2124 /*
2125 * Scan types proportional to swappiness and
2126 * their relative recent reclaim efficiency.
2127 */
2128 scan = div64_u64(scan * fraction[file],
2129 denominator);
2130 break;
2131 case SCAN_FILE:
2132 case SCAN_ANON:
2133 /* Scan one type exclusively */
6b4f7799
JW
2134 if ((scan_balance == SCAN_FILE) != file) {
2135 size = 0;
6f04f48d 2136 scan = 0;
6b4f7799 2137 }
6f04f48d
SS
2138 break;
2139 default:
2140 /* Look ma, no brain */
2141 BUG();
2142 }
6b4f7799
JW
2143
2144 *lru_pages += size;
6f04f48d 2145 nr[lru] = scan;
6b4f7799 2146
9a265114 2147 /*
6f04f48d
SS
2148 * Skip the second pass and don't force_scan,
2149 * if we found something to scan.
9a265114 2150 */
6f04f48d 2151 some_scanned |= !!scan;
9a265114 2152 }
76a33fc3 2153 }
6e08a369 2154}
4f98a2fe 2155
72b252ae
MG
2156#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2157static void init_tlb_ubc(void)
2158{
2159 /*
2160 * This deliberately does not clear the cpumask as it's expensive
2161 * and unnecessary. If there happens to be data in there then the
2162 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2163 * then will be cleared.
2164 */
2165 current->tlb_ubc.flush_required = false;
2166}
2167#else
2168static inline void init_tlb_ubc(void)
2169{
2170}
2171#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2172
9b4f98cd
JW
2173/*
2174 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2175 */
02695175 2176static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
6b4f7799 2177 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd
JW
2178{
2179 unsigned long nr[NR_LRU_LISTS];
e82e0561 2180 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2181 unsigned long nr_to_scan;
2182 enum lru_list lru;
2183 unsigned long nr_reclaimed = 0;
2184 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2185 struct blk_plug plug;
1a501907 2186 bool scan_adjusted;
9b4f98cd 2187
6b4f7799 2188 get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
9b4f98cd 2189
e82e0561
MG
2190 /* Record the original scan target for proportional adjustments later */
2191 memcpy(targets, nr, sizeof(nr));
2192
1a501907
MG
2193 /*
2194 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2195 * event that can occur when there is little memory pressure e.g.
2196 * multiple streaming readers/writers. Hence, we do not abort scanning
2197 * when the requested number of pages are reclaimed when scanning at
2198 * DEF_PRIORITY on the assumption that the fact we are direct
2199 * reclaiming implies that kswapd is not keeping up and it is best to
2200 * do a batch of work at once. For memcg reclaim one check is made to
2201 * abort proportional reclaim if either the file or anon lru has already
2202 * dropped to zero at the first pass.
2203 */
2204 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2205 sc->priority == DEF_PRIORITY);
2206
72b252ae
MG
2207 init_tlb_ubc();
2208
9b4f98cd
JW
2209 blk_start_plug(&plug);
2210 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2211 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2212 unsigned long nr_anon, nr_file, percentage;
2213 unsigned long nr_scanned;
2214
9b4f98cd
JW
2215 for_each_evictable_lru(lru) {
2216 if (nr[lru]) {
2217 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2218 nr[lru] -= nr_to_scan;
2219
2220 nr_reclaimed += shrink_list(lru, nr_to_scan,
2221 lruvec, sc);
2222 }
2223 }
e82e0561
MG
2224
2225 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2226 continue;
2227
e82e0561
MG
2228 /*
2229 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2230 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2231 * proportionally what was requested by get_scan_count(). We
2232 * stop reclaiming one LRU and reduce the amount scanning
2233 * proportional to the original scan target.
2234 */
2235 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2236 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2237
1a501907
MG
2238 /*
2239 * It's just vindictive to attack the larger once the smaller
2240 * has gone to zero. And given the way we stop scanning the
2241 * smaller below, this makes sure that we only make one nudge
2242 * towards proportionality once we've got nr_to_reclaim.
2243 */
2244 if (!nr_file || !nr_anon)
2245 break;
2246
e82e0561
MG
2247 if (nr_file > nr_anon) {
2248 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2249 targets[LRU_ACTIVE_ANON] + 1;
2250 lru = LRU_BASE;
2251 percentage = nr_anon * 100 / scan_target;
2252 } else {
2253 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2254 targets[LRU_ACTIVE_FILE] + 1;
2255 lru = LRU_FILE;
2256 percentage = nr_file * 100 / scan_target;
2257 }
2258
2259 /* Stop scanning the smaller of the LRU */
2260 nr[lru] = 0;
2261 nr[lru + LRU_ACTIVE] = 0;
2262
2263 /*
2264 * Recalculate the other LRU scan count based on its original
2265 * scan target and the percentage scanning already complete
2266 */
2267 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2268 nr_scanned = targets[lru] - nr[lru];
2269 nr[lru] = targets[lru] * (100 - percentage) / 100;
2270 nr[lru] -= min(nr[lru], nr_scanned);
2271
2272 lru += LRU_ACTIVE;
2273 nr_scanned = targets[lru] - nr[lru];
2274 nr[lru] = targets[lru] * (100 - percentage) / 100;
2275 nr[lru] -= min(nr[lru], nr_scanned);
2276
2277 scan_adjusted = true;
9b4f98cd
JW
2278 }
2279 blk_finish_plug(&plug);
2280 sc->nr_reclaimed += nr_reclaimed;
2281
2282 /*
2283 * Even if we did not try to evict anon pages at all, we want to
2284 * rebalance the anon lru active/inactive ratio.
2285 */
2286 if (inactive_anon_is_low(lruvec))
2287 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2288 sc, LRU_ACTIVE_ANON);
2289
2290 throttle_vm_writeout(sc->gfp_mask);
2291}
2292
23b9da55 2293/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2294static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2295{
d84da3f9 2296 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2297 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2298 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2299 return true;
2300
2301 return false;
2302}
2303
3e7d3449 2304/*
23b9da55
MG
2305 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2306 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2307 * true if more pages should be reclaimed such that when the page allocator
2308 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2309 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2310 */
9b4f98cd 2311static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2312 unsigned long nr_reclaimed,
2313 unsigned long nr_scanned,
2314 struct scan_control *sc)
2315{
2316 unsigned long pages_for_compaction;
2317 unsigned long inactive_lru_pages;
2318
2319 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2320 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2321 return false;
2322
2876592f
MG
2323 /* Consider stopping depending on scan and reclaim activity */
2324 if (sc->gfp_mask & __GFP_REPEAT) {
2325 /*
2326 * For __GFP_REPEAT allocations, stop reclaiming if the
2327 * full LRU list has been scanned and we are still failing
2328 * to reclaim pages. This full LRU scan is potentially
2329 * expensive but a __GFP_REPEAT caller really wants to succeed
2330 */
2331 if (!nr_reclaimed && !nr_scanned)
2332 return false;
2333 } else {
2334 /*
2335 * For non-__GFP_REPEAT allocations which can presumably
2336 * fail without consequence, stop if we failed to reclaim
2337 * any pages from the last SWAP_CLUSTER_MAX number of
2338 * pages that were scanned. This will return to the
2339 * caller faster at the risk reclaim/compaction and
2340 * the resulting allocation attempt fails
2341 */
2342 if (!nr_reclaimed)
2343 return false;
2344 }
3e7d3449
MG
2345
2346 /*
2347 * If we have not reclaimed enough pages for compaction and the
2348 * inactive lists are large enough, continue reclaiming
2349 */
2350 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2351 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2352 if (get_nr_swap_pages() > 0)
9b4f98cd 2353 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2354 if (sc->nr_reclaimed < pages_for_compaction &&
2355 inactive_lru_pages > pages_for_compaction)
2356 return true;
2357
2358 /* If compaction would go ahead or the allocation would succeed, stop */
ebff3980 2359 switch (compaction_suitable(zone, sc->order, 0, 0)) {
3e7d3449
MG
2360 case COMPACT_PARTIAL:
2361 case COMPACT_CONTINUE:
2362 return false;
2363 default:
2364 return true;
2365 }
2366}
2367
6b4f7799
JW
2368static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2369 bool is_classzone)
1da177e4 2370{
cb731d6c 2371 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2372 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2373 bool reclaimable = false;
1da177e4 2374
9b4f98cd
JW
2375 do {
2376 struct mem_cgroup *root = sc->target_mem_cgroup;
2377 struct mem_cgroup_reclaim_cookie reclaim = {
2378 .zone = zone,
2379 .priority = sc->priority,
2380 };
6b4f7799 2381 unsigned long zone_lru_pages = 0;
694fbc0f 2382 struct mem_cgroup *memcg;
3e7d3449 2383
9b4f98cd
JW
2384 nr_reclaimed = sc->nr_reclaimed;
2385 nr_scanned = sc->nr_scanned;
1da177e4 2386
694fbc0f
AM
2387 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2388 do {
6b4f7799 2389 unsigned long lru_pages;
cb731d6c 2390 unsigned long scanned;
9b4f98cd 2391 struct lruvec *lruvec;
02695175 2392 int swappiness;
5660048c 2393
241994ed
JW
2394 if (mem_cgroup_low(root, memcg)) {
2395 if (!sc->may_thrash)
2396 continue;
2397 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2398 }
2399
9b4f98cd 2400 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2401 swappiness = mem_cgroup_swappiness(memcg);
cb731d6c 2402 scanned = sc->nr_scanned;
f9be23d6 2403
6b4f7799
JW
2404 shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2405 zone_lru_pages += lru_pages;
f16015fb 2406
cb731d6c
VD
2407 if (memcg && is_classzone)
2408 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2409 memcg, sc->nr_scanned - scanned,
2410 lru_pages);
2411
9b4f98cd 2412 /*
a394cb8e
MH
2413 * Direct reclaim and kswapd have to scan all memory
2414 * cgroups to fulfill the overall scan target for the
9b4f98cd 2415 * zone.
a394cb8e
MH
2416 *
2417 * Limit reclaim, on the other hand, only cares about
2418 * nr_to_reclaim pages to be reclaimed and it will
2419 * retry with decreasing priority if one round over the
2420 * whole hierarchy is not sufficient.
9b4f98cd 2421 */
a394cb8e
MH
2422 if (!global_reclaim(sc) &&
2423 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2424 mem_cgroup_iter_break(root, memcg);
2425 break;
2426 }
241994ed 2427 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2428
6b4f7799
JW
2429 /*
2430 * Shrink the slab caches in the same proportion that
2431 * the eligible LRU pages were scanned.
2432 */
cb731d6c
VD
2433 if (global_reclaim(sc) && is_classzone)
2434 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2435 sc->nr_scanned - nr_scanned,
2436 zone_lru_pages);
2437
2438 if (reclaim_state) {
2439 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2440 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2441 }
2442
70ddf637
AV
2443 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2444 sc->nr_scanned - nr_scanned,
2445 sc->nr_reclaimed - nr_reclaimed);
2446
2344d7e4
JW
2447 if (sc->nr_reclaimed - nr_reclaimed)
2448 reclaimable = true;
2449
9b4f98cd
JW
2450 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2451 sc->nr_scanned - nr_scanned, sc));
2344d7e4
JW
2452
2453 return reclaimable;
f16015fb
JW
2454}
2455
53853e2d
VB
2456/*
2457 * Returns true if compaction should go ahead for a high-order request, or
2458 * the high-order allocation would succeed without compaction.
2459 */
0b06496a 2460static inline bool compaction_ready(struct zone *zone, int order)
fe4b1b24
MG
2461{
2462 unsigned long balance_gap, watermark;
2463 bool watermark_ok;
2464
fe4b1b24
MG
2465 /*
2466 * Compaction takes time to run and there are potentially other
2467 * callers using the pages just freed. Continue reclaiming until
2468 * there is a buffer of free pages available to give compaction
2469 * a reasonable chance of completing and allocating the page
2470 */
4be89a34
JZ
2471 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2472 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
0b06496a 2473 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
fe4b1b24
MG
2474 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2475
2476 /*
2477 * If compaction is deferred, reclaim up to a point where
2478 * compaction will have a chance of success when re-enabled
2479 */
0b06496a 2480 if (compaction_deferred(zone, order))
fe4b1b24
MG
2481 return watermark_ok;
2482
53853e2d
VB
2483 /*
2484 * If compaction is not ready to start and allocation is not likely
2485 * to succeed without it, then keep reclaiming.
2486 */
ebff3980 2487 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
fe4b1b24
MG
2488 return false;
2489
2490 return watermark_ok;
2491}
2492
1da177e4
LT
2493/*
2494 * This is the direct reclaim path, for page-allocating processes. We only
2495 * try to reclaim pages from zones which will satisfy the caller's allocation
2496 * request.
2497 *
41858966
MG
2498 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2499 * Because:
1da177e4
LT
2500 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2501 * allocation or
41858966
MG
2502 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2503 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2504 * zone defense algorithm.
1da177e4 2505 *
1da177e4
LT
2506 * If a zone is deemed to be full of pinned pages then just give it a light
2507 * scan then give up on it.
2344d7e4
JW
2508 *
2509 * Returns true if a zone was reclaimable.
1da177e4 2510 */
2344d7e4 2511static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2512{
dd1a239f 2513 struct zoneref *z;
54a6eb5c 2514 struct zone *zone;
0608f43d
AM
2515 unsigned long nr_soft_reclaimed;
2516 unsigned long nr_soft_scanned;
619d0d76 2517 gfp_t orig_mask;
9bbc04ee 2518 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2344d7e4 2519 bool reclaimable = false;
1cfb419b 2520
cc715d99
MG
2521 /*
2522 * If the number of buffer_heads in the machine exceeds the maximum
2523 * allowed level, force direct reclaim to scan the highmem zone as
2524 * highmem pages could be pinning lowmem pages storing buffer_heads
2525 */
619d0d76 2526 orig_mask = sc->gfp_mask;
cc715d99
MG
2527 if (buffer_heads_over_limit)
2528 sc->gfp_mask |= __GFP_HIGHMEM;
2529
d4debc66 2530 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6b4f7799
JW
2531 requested_highidx, sc->nodemask) {
2532 enum zone_type classzone_idx;
2533
f3fe6512 2534 if (!populated_zone(zone))
1da177e4 2535 continue;
6b4f7799
JW
2536
2537 classzone_idx = requested_highidx;
2538 while (!populated_zone(zone->zone_pgdat->node_zones +
2539 classzone_idx))
2540 classzone_idx--;
2541
1cfb419b
KH
2542 /*
2543 * Take care memory controller reclaiming has small influence
2544 * to global LRU.
2545 */
89b5fae5 2546 if (global_reclaim(sc)) {
344736f2
VD
2547 if (!cpuset_zone_allowed(zone,
2548 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2549 continue;
65ec02cb 2550
6e543d57
LD
2551 if (sc->priority != DEF_PRIORITY &&
2552 !zone_reclaimable(zone))
1cfb419b 2553 continue; /* Let kswapd poll it */
0b06496a
JW
2554
2555 /*
2556 * If we already have plenty of memory free for
2557 * compaction in this zone, don't free any more.
2558 * Even though compaction is invoked for any
2559 * non-zero order, only frequent costly order
2560 * reclamation is disruptive enough to become a
2561 * noticeable problem, like transparent huge
2562 * page allocations.
2563 */
2564 if (IS_ENABLED(CONFIG_COMPACTION) &&
2565 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2566 zonelist_zone_idx(z) <= requested_highidx &&
2567 compaction_ready(zone, sc->order)) {
2568 sc->compaction_ready = true;
2569 continue;
e0887c19 2570 }
0b06496a 2571
0608f43d
AM
2572 /*
2573 * This steals pages from memory cgroups over softlimit
2574 * and returns the number of reclaimed pages and
2575 * scanned pages. This works for global memory pressure
2576 * and balancing, not for a memcg's limit.
2577 */
2578 nr_soft_scanned = 0;
2579 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2580 sc->order, sc->gfp_mask,
2581 &nr_soft_scanned);
2582 sc->nr_reclaimed += nr_soft_reclaimed;
2583 sc->nr_scanned += nr_soft_scanned;
2344d7e4
JW
2584 if (nr_soft_reclaimed)
2585 reclaimable = true;
ac34a1a3 2586 /* need some check for avoid more shrink_zone() */
1cfb419b 2587 }
408d8544 2588
6b4f7799 2589 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2344d7e4
JW
2590 reclaimable = true;
2591
2592 if (global_reclaim(sc) &&
2593 !reclaimable && zone_reclaimable(zone))
2594 reclaimable = true;
1da177e4 2595 }
e0c23279 2596
619d0d76
WY
2597 /*
2598 * Restore to original mask to avoid the impact on the caller if we
2599 * promoted it to __GFP_HIGHMEM.
2600 */
2601 sc->gfp_mask = orig_mask;
d1908362 2602
2344d7e4 2603 return reclaimable;
1da177e4 2604}
4f98a2fe 2605
1da177e4
LT
2606/*
2607 * This is the main entry point to direct page reclaim.
2608 *
2609 * If a full scan of the inactive list fails to free enough memory then we
2610 * are "out of memory" and something needs to be killed.
2611 *
2612 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2613 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2614 * caller can't do much about. We kick the writeback threads and take explicit
2615 * naps in the hope that some of these pages can be written. But if the
2616 * allocating task holds filesystem locks which prevent writeout this might not
2617 * work, and the allocation attempt will fail.
a41f24ea
NA
2618 *
2619 * returns: 0, if no pages reclaimed
2620 * else, the number of pages reclaimed
1da177e4 2621 */
dac1d27b 2622static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2623 struct scan_control *sc)
1da177e4 2624{
241994ed 2625 int initial_priority = sc->priority;
69e05944 2626 unsigned long total_scanned = 0;
22fba335 2627 unsigned long writeback_threshold;
2344d7e4 2628 bool zones_reclaimable;
241994ed 2629retry:
873b4771
KK
2630 delayacct_freepages_start();
2631
89b5fae5 2632 if (global_reclaim(sc))
1cfb419b 2633 count_vm_event(ALLOCSTALL);
1da177e4 2634
9e3b2f8c 2635 do {
70ddf637
AV
2636 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2637 sc->priority);
66e1707b 2638 sc->nr_scanned = 0;
2344d7e4 2639 zones_reclaimable = shrink_zones(zonelist, sc);
c6a8a8c5 2640
66e1707b 2641 total_scanned += sc->nr_scanned;
bb21c7ce 2642 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2643 break;
2644
2645 if (sc->compaction_ready)
2646 break;
1da177e4 2647
0e50ce3b
MK
2648 /*
2649 * If we're getting trouble reclaiming, start doing
2650 * writepage even in laptop mode.
2651 */
2652 if (sc->priority < DEF_PRIORITY - 2)
2653 sc->may_writepage = 1;
2654
1da177e4
LT
2655 /*
2656 * Try to write back as many pages as we just scanned. This
2657 * tends to cause slow streaming writers to write data to the
2658 * disk smoothly, at the dirtying rate, which is nice. But
2659 * that's undesirable in laptop mode, where we *want* lumpy
2660 * writeout. So in laptop mode, write out the whole world.
2661 */
22fba335
KM
2662 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2663 if (total_scanned > writeback_threshold) {
0e175a18
CW
2664 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2665 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2666 sc->may_writepage = 1;
1da177e4 2667 }
0b06496a 2668 } while (--sc->priority >= 0);
bb21c7ce 2669
873b4771
KK
2670 delayacct_freepages_end();
2671
bb21c7ce
KM
2672 if (sc->nr_reclaimed)
2673 return sc->nr_reclaimed;
2674
0cee34fd 2675 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2676 if (sc->compaction_ready)
7335084d
MG
2677 return 1;
2678
241994ed
JW
2679 /* Untapped cgroup reserves? Don't OOM, retry. */
2680 if (!sc->may_thrash) {
2681 sc->priority = initial_priority;
2682 sc->may_thrash = 1;
2683 goto retry;
2684 }
2685
2344d7e4
JW
2686 /* Any of the zones still reclaimable? Don't OOM. */
2687 if (zones_reclaimable)
bb21c7ce
KM
2688 return 1;
2689
2690 return 0;
1da177e4
LT
2691}
2692
5515061d
MG
2693static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2694{
2695 struct zone *zone;
2696 unsigned long pfmemalloc_reserve = 0;
2697 unsigned long free_pages = 0;
2698 int i;
2699 bool wmark_ok;
2700
2701 for (i = 0; i <= ZONE_NORMAL; i++) {
2702 zone = &pgdat->node_zones[i];
f012a84a
NA
2703 if (!populated_zone(zone) ||
2704 zone_reclaimable_pages(zone) == 0)
675becce
MG
2705 continue;
2706
5515061d
MG
2707 pfmemalloc_reserve += min_wmark_pages(zone);
2708 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2709 }
2710
675becce
MG
2711 /* If there are no reserves (unexpected config) then do not throttle */
2712 if (!pfmemalloc_reserve)
2713 return true;
2714
5515061d
MG
2715 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2716
2717 /* kswapd must be awake if processes are being throttled */
2718 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2719 pgdat->classzone_idx = min(pgdat->classzone_idx,
2720 (enum zone_type)ZONE_NORMAL);
2721 wake_up_interruptible(&pgdat->kswapd_wait);
2722 }
2723
2724 return wmark_ok;
2725}
2726
2727/*
2728 * Throttle direct reclaimers if backing storage is backed by the network
2729 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2730 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2731 * when the low watermark is reached.
2732 *
2733 * Returns true if a fatal signal was delivered during throttling. If this
2734 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2735 */
50694c28 2736static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2737 nodemask_t *nodemask)
2738{
675becce 2739 struct zoneref *z;
5515061d 2740 struct zone *zone;
675becce 2741 pg_data_t *pgdat = NULL;
5515061d
MG
2742
2743 /*
2744 * Kernel threads should not be throttled as they may be indirectly
2745 * responsible for cleaning pages necessary for reclaim to make forward
2746 * progress. kjournald for example may enter direct reclaim while
2747 * committing a transaction where throttling it could forcing other
2748 * processes to block on log_wait_commit().
2749 */
2750 if (current->flags & PF_KTHREAD)
50694c28
MG
2751 goto out;
2752
2753 /*
2754 * If a fatal signal is pending, this process should not throttle.
2755 * It should return quickly so it can exit and free its memory
2756 */
2757 if (fatal_signal_pending(current))
2758 goto out;
5515061d 2759
675becce
MG
2760 /*
2761 * Check if the pfmemalloc reserves are ok by finding the first node
2762 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2763 * GFP_KERNEL will be required for allocating network buffers when
2764 * swapping over the network so ZONE_HIGHMEM is unusable.
2765 *
2766 * Throttling is based on the first usable node and throttled processes
2767 * wait on a queue until kswapd makes progress and wakes them. There
2768 * is an affinity then between processes waking up and where reclaim
2769 * progress has been made assuming the process wakes on the same node.
2770 * More importantly, processes running on remote nodes will not compete
2771 * for remote pfmemalloc reserves and processes on different nodes
2772 * should make reasonable progress.
2773 */
2774 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2775 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2776 if (zone_idx(zone) > ZONE_NORMAL)
2777 continue;
2778
2779 /* Throttle based on the first usable node */
2780 pgdat = zone->zone_pgdat;
2781 if (pfmemalloc_watermark_ok(pgdat))
2782 goto out;
2783 break;
2784 }
2785
2786 /* If no zone was usable by the allocation flags then do not throttle */
2787 if (!pgdat)
50694c28 2788 goto out;
5515061d 2789
68243e76
MG
2790 /* Account for the throttling */
2791 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2792
5515061d
MG
2793 /*
2794 * If the caller cannot enter the filesystem, it's possible that it
2795 * is due to the caller holding an FS lock or performing a journal
2796 * transaction in the case of a filesystem like ext[3|4]. In this case,
2797 * it is not safe to block on pfmemalloc_wait as kswapd could be
2798 * blocked waiting on the same lock. Instead, throttle for up to a
2799 * second before continuing.
2800 */
2801 if (!(gfp_mask & __GFP_FS)) {
2802 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2803 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2804
2805 goto check_pending;
5515061d
MG
2806 }
2807
2808 /* Throttle until kswapd wakes the process */
2809 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2810 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2811
2812check_pending:
2813 if (fatal_signal_pending(current))
2814 return true;
2815
2816out:
2817 return false;
5515061d
MG
2818}
2819
dac1d27b 2820unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2821 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2822{
33906bc5 2823 unsigned long nr_reclaimed;
66e1707b 2824 struct scan_control sc = {
ee814fe2 2825 .nr_to_reclaim = SWAP_CLUSTER_MAX,
21caf2fc 2826 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
ee814fe2
JW
2827 .order = order,
2828 .nodemask = nodemask,
2829 .priority = DEF_PRIORITY,
66e1707b 2830 .may_writepage = !laptop_mode,
a6dc60f8 2831 .may_unmap = 1,
2e2e4259 2832 .may_swap = 1,
66e1707b
BS
2833 };
2834
5515061d 2835 /*
50694c28
MG
2836 * Do not enter reclaim if fatal signal was delivered while throttled.
2837 * 1 is returned so that the page allocator does not OOM kill at this
2838 * point.
5515061d 2839 */
50694c28 2840 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2841 return 1;
2842
33906bc5
MG
2843 trace_mm_vmscan_direct_reclaim_begin(order,
2844 sc.may_writepage,
2845 gfp_mask);
2846
3115cd91 2847 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2848
2849 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2850
2851 return nr_reclaimed;
66e1707b
BS
2852}
2853
c255a458 2854#ifdef CONFIG_MEMCG
66e1707b 2855
72835c86 2856unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2857 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2858 struct zone *zone,
2859 unsigned long *nr_scanned)
4e416953
BS
2860{
2861 struct scan_control sc = {
b8f5c566 2862 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 2863 .target_mem_cgroup = memcg,
4e416953
BS
2864 .may_writepage = !laptop_mode,
2865 .may_unmap = 1,
2866 .may_swap = !noswap,
4e416953 2867 };
f9be23d6 2868 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2869 int swappiness = mem_cgroup_swappiness(memcg);
6b4f7799 2870 unsigned long lru_pages;
0ae5e89c 2871
4e416953
BS
2872 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2873 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2874
9e3b2f8c 2875 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2876 sc.may_writepage,
2877 sc.gfp_mask);
2878
4e416953
BS
2879 /*
2880 * NOTE: Although we can get the priority field, using it
2881 * here is not a good idea, since it limits the pages we can scan.
2882 * if we don't reclaim here, the shrink_zone from balance_pgdat
2883 * will pick up pages from other mem cgroup's as well. We hack
2884 * the priority and make it zero.
2885 */
6b4f7799 2886 shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
bdce6d9e
KM
2887
2888 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2889
0ae5e89c 2890 *nr_scanned = sc.nr_scanned;
4e416953
BS
2891 return sc.nr_reclaimed;
2892}
2893
72835c86 2894unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 2895 unsigned long nr_pages,
a7885eb8 2896 gfp_t gfp_mask,
b70a2a21 2897 bool may_swap)
66e1707b 2898{
4e416953 2899 struct zonelist *zonelist;
bdce6d9e 2900 unsigned long nr_reclaimed;
889976db 2901 int nid;
66e1707b 2902 struct scan_control sc = {
b70a2a21 2903 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
a09ed5e0
YH
2904 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2905 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
ee814fe2
JW
2906 .target_mem_cgroup = memcg,
2907 .priority = DEF_PRIORITY,
2908 .may_writepage = !laptop_mode,
2909 .may_unmap = 1,
b70a2a21 2910 .may_swap = may_swap,
a09ed5e0 2911 };
66e1707b 2912
889976db
YH
2913 /*
2914 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2915 * take care of from where we get pages. So the node where we start the
2916 * scan does not need to be the current node.
2917 */
72835c86 2918 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2919
2920 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2921
2922 trace_mm_vmscan_memcg_reclaim_begin(0,
2923 sc.may_writepage,
2924 sc.gfp_mask);
2925
3115cd91 2926 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
bdce6d9e
KM
2927
2928 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2929
2930 return nr_reclaimed;
66e1707b
BS
2931}
2932#endif
2933
9e3b2f8c 2934static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2935{
b95a2f2d 2936 struct mem_cgroup *memcg;
f16015fb 2937
b95a2f2d
JW
2938 if (!total_swap_pages)
2939 return;
2940
2941 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2942 do {
c56d5c7d 2943 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2944
c56d5c7d 2945 if (inactive_anon_is_low(lruvec))
1a93be0e 2946 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2947 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2948
2949 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2950 } while (memcg);
f16015fb
JW
2951}
2952
60cefed4
JW
2953static bool zone_balanced(struct zone *zone, int order,
2954 unsigned long balance_gap, int classzone_idx)
2955{
2956 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2957 balance_gap, classzone_idx, 0))
2958 return false;
2959
ebff3980
VB
2960 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2961 order, 0, classzone_idx) == COMPACT_SKIPPED)
60cefed4
JW
2962 return false;
2963
2964 return true;
2965}
2966
1741c877 2967/*
4ae0a48b
ZC
2968 * pgdat_balanced() is used when checking if a node is balanced.
2969 *
2970 * For order-0, all zones must be balanced!
2971 *
2972 * For high-order allocations only zones that meet watermarks and are in a
2973 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2974 * total of balanced pages must be at least 25% of the zones allowed by
2975 * classzone_idx for the node to be considered balanced. Forcing all zones to
2976 * be balanced for high orders can cause excessive reclaim when there are
2977 * imbalanced zones.
1741c877
MG
2978 * The choice of 25% is due to
2979 * o a 16M DMA zone that is balanced will not balance a zone on any
2980 * reasonable sized machine
2981 * o On all other machines, the top zone must be at least a reasonable
25985edc 2982 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2983 * would need to be at least 256M for it to be balance a whole node.
2984 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2985 * to balance a node on its own. These seemed like reasonable ratios.
2986 */
4ae0a48b 2987static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2988{
b40da049 2989 unsigned long managed_pages = 0;
4ae0a48b 2990 unsigned long balanced_pages = 0;
1741c877
MG
2991 int i;
2992
4ae0a48b
ZC
2993 /* Check the watermark levels */
2994 for (i = 0; i <= classzone_idx; i++) {
2995 struct zone *zone = pgdat->node_zones + i;
1741c877 2996
4ae0a48b
ZC
2997 if (!populated_zone(zone))
2998 continue;
2999
b40da049 3000 managed_pages += zone->managed_pages;
4ae0a48b
ZC
3001
3002 /*
3003 * A special case here:
3004 *
3005 * balance_pgdat() skips over all_unreclaimable after
3006 * DEF_PRIORITY. Effectively, it considers them balanced so
3007 * they must be considered balanced here as well!
3008 */
6e543d57 3009 if (!zone_reclaimable(zone)) {
b40da049 3010 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
3011 continue;
3012 }
3013
3014 if (zone_balanced(zone, order, 0, i))
b40da049 3015 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
3016 else if (!order)
3017 return false;
3018 }
3019
3020 if (order)
b40da049 3021 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
3022 else
3023 return true;
1741c877
MG
3024}
3025
5515061d
MG
3026/*
3027 * Prepare kswapd for sleeping. This verifies that there are no processes
3028 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3029 *
3030 * Returns true if kswapd is ready to sleep
3031 */
3032static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 3033 int classzone_idx)
f50de2d3 3034{
f50de2d3
MG
3035 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3036 if (remaining)
5515061d
MG
3037 return false;
3038
3039 /*
9e5e3661
VB
3040 * The throttled processes are normally woken up in balance_pgdat() as
3041 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3042 * race between when kswapd checks the watermarks and a process gets
3043 * throttled. There is also a potential race if processes get
3044 * throttled, kswapd wakes, a large process exits thereby balancing the
3045 * zones, which causes kswapd to exit balance_pgdat() before reaching
3046 * the wake up checks. If kswapd is going to sleep, no process should
3047 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3048 * the wake up is premature, processes will wake kswapd and get
3049 * throttled again. The difference from wake ups in balance_pgdat() is
3050 * that here we are under prepare_to_wait().
5515061d 3051 */
9e5e3661
VB
3052 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3053 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3054
4ae0a48b 3055 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
3056}
3057
75485363
MG
3058/*
3059 * kswapd shrinks the zone by the number of pages required to reach
3060 * the high watermark.
b8e83b94
MG
3061 *
3062 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3063 * reclaim or if the lack of progress was due to pages under writeback.
3064 * This is used to determine if the scanning priority needs to be raised.
75485363 3065 */
b8e83b94 3066static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 3067 int classzone_idx,
75485363 3068 struct scan_control *sc,
2ab44f43 3069 unsigned long *nr_attempted)
75485363 3070{
7c954f6d
MG
3071 int testorder = sc->order;
3072 unsigned long balance_gap;
7c954f6d 3073 bool lowmem_pressure;
75485363
MG
3074
3075 /* Reclaim above the high watermark. */
3076 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
3077
3078 /*
3079 * Kswapd reclaims only single pages with compaction enabled. Trying
3080 * too hard to reclaim until contiguous free pages have become
3081 * available can hurt performance by evicting too much useful data
3082 * from memory. Do not reclaim more than needed for compaction.
3083 */
3084 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
ebff3980
VB
3085 compaction_suitable(zone, sc->order, 0, classzone_idx)
3086 != COMPACT_SKIPPED)
7c954f6d
MG
3087 testorder = 0;
3088
3089 /*
3090 * We put equal pressure on every zone, unless one zone has way too
3091 * many pages free already. The "too many pages" is defined as the
3092 * high wmark plus a "gap" where the gap is either the low
3093 * watermark or 1% of the zone, whichever is smaller.
3094 */
4be89a34
JZ
3095 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3096 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
7c954f6d
MG
3097
3098 /*
3099 * If there is no low memory pressure or the zone is balanced then no
3100 * reclaim is necessary
3101 */
3102 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3103 if (!lowmem_pressure && zone_balanced(zone, testorder,
3104 balance_gap, classzone_idx))
3105 return true;
3106
6b4f7799 3107 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
75485363 3108
2ab44f43
MG
3109 /* Account for the number of pages attempted to reclaim */
3110 *nr_attempted += sc->nr_to_reclaim;
3111
57054651 3112 clear_bit(ZONE_WRITEBACK, &zone->flags);
283aba9f 3113
7c954f6d
MG
3114 /*
3115 * If a zone reaches its high watermark, consider it to be no longer
3116 * congested. It's possible there are dirty pages backed by congested
3117 * BDIs but as pressure is relieved, speculatively avoid congestion
3118 * waits.
3119 */
6e543d57 3120 if (zone_reclaimable(zone) &&
7c954f6d 3121 zone_balanced(zone, testorder, 0, classzone_idx)) {
57054651
JW
3122 clear_bit(ZONE_CONGESTED, &zone->flags);
3123 clear_bit(ZONE_DIRTY, &zone->flags);
7c954f6d
MG
3124 }
3125
b8e83b94 3126 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3127}
3128
1da177e4
LT
3129/*
3130 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 3131 * they are all at high_wmark_pages(zone).
1da177e4 3132 *
0abdee2b 3133 * Returns the final order kswapd was reclaiming at
1da177e4
LT
3134 *
3135 * There is special handling here for zones which are full of pinned pages.
3136 * This can happen if the pages are all mlocked, or if they are all used by
3137 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3138 * What we do is to detect the case where all pages in the zone have been
3139 * scanned twice and there has been zero successful reclaim. Mark the zone as
3140 * dead and from now on, only perform a short scan. Basically we're polling
3141 * the zone for when the problem goes away.
3142 *
3143 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
3144 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3145 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3146 * lower zones regardless of the number of free pages in the lower zones. This
3147 * interoperates with the page allocator fallback scheme to ensure that aging
3148 * of pages is balanced across the zones.
1da177e4 3149 */
99504748 3150static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 3151 int *classzone_idx)
1da177e4 3152{
1da177e4 3153 int i;
99504748 3154 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0608f43d
AM
3155 unsigned long nr_soft_reclaimed;
3156 unsigned long nr_soft_scanned;
179e9639
AM
3157 struct scan_control sc = {
3158 .gfp_mask = GFP_KERNEL,
ee814fe2 3159 .order = order,
b8e83b94 3160 .priority = DEF_PRIORITY,
ee814fe2 3161 .may_writepage = !laptop_mode,
a6dc60f8 3162 .may_unmap = 1,
2e2e4259 3163 .may_swap = 1,
179e9639 3164 };
f8891e5e 3165 count_vm_event(PAGEOUTRUN);
1da177e4 3166
9e3b2f8c 3167 do {
2ab44f43 3168 unsigned long nr_attempted = 0;
b8e83b94 3169 bool raise_priority = true;
2ab44f43 3170 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
3171
3172 sc.nr_reclaimed = 0;
1da177e4 3173
d6277db4
RW
3174 /*
3175 * Scan in the highmem->dma direction for the highest
3176 * zone which needs scanning
3177 */
3178 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3179 struct zone *zone = pgdat->node_zones + i;
1da177e4 3180
d6277db4
RW
3181 if (!populated_zone(zone))
3182 continue;
1da177e4 3183
6e543d57
LD
3184 if (sc.priority != DEF_PRIORITY &&
3185 !zone_reclaimable(zone))
d6277db4 3186 continue;
1da177e4 3187
556adecb
RR
3188 /*
3189 * Do some background aging of the anon list, to give
3190 * pages a chance to be referenced before reclaiming.
3191 */
9e3b2f8c 3192 age_active_anon(zone, &sc);
556adecb 3193
cc715d99
MG
3194 /*
3195 * If the number of buffer_heads in the machine
3196 * exceeds the maximum allowed level and this node
3197 * has a highmem zone, force kswapd to reclaim from
3198 * it to relieve lowmem pressure.
3199 */
3200 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3201 end_zone = i;
3202 break;
3203 }
3204
60cefed4 3205 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 3206 end_zone = i;
e1dbeda6 3207 break;
439423f6 3208 } else {
d43006d5
MG
3209 /*
3210 * If balanced, clear the dirty and congested
3211 * flags
3212 */
57054651
JW
3213 clear_bit(ZONE_CONGESTED, &zone->flags);
3214 clear_bit(ZONE_DIRTY, &zone->flags);
1da177e4 3215 }
1da177e4 3216 }
dafcb73e 3217
b8e83b94 3218 if (i < 0)
e1dbeda6
AM
3219 goto out;
3220
1da177e4
LT
3221 for (i = 0; i <= end_zone; i++) {
3222 struct zone *zone = pgdat->node_zones + i;
3223
2ab44f43
MG
3224 if (!populated_zone(zone))
3225 continue;
3226
2ab44f43
MG
3227 /*
3228 * If any zone is currently balanced then kswapd will
3229 * not call compaction as it is expected that the
3230 * necessary pages are already available.
3231 */
3232 if (pgdat_needs_compaction &&
3233 zone_watermark_ok(zone, order,
3234 low_wmark_pages(zone),
3235 *classzone_idx, 0))
3236 pgdat_needs_compaction = false;
1da177e4
LT
3237 }
3238
b7ea3c41
MG
3239 /*
3240 * If we're getting trouble reclaiming, start doing writepage
3241 * even in laptop mode.
3242 */
3243 if (sc.priority < DEF_PRIORITY - 2)
3244 sc.may_writepage = 1;
3245
1da177e4
LT
3246 /*
3247 * Now scan the zone in the dma->highmem direction, stopping
3248 * at the last zone which needs scanning.
3249 *
3250 * We do this because the page allocator works in the opposite
3251 * direction. This prevents the page allocator from allocating
3252 * pages behind kswapd's direction of progress, which would
3253 * cause too much scanning of the lower zones.
3254 */
3255 for (i = 0; i <= end_zone; i++) {
3256 struct zone *zone = pgdat->node_zones + i;
3257
f3fe6512 3258 if (!populated_zone(zone))
1da177e4
LT
3259 continue;
3260
6e543d57
LD
3261 if (sc.priority != DEF_PRIORITY &&
3262 !zone_reclaimable(zone))
1da177e4
LT
3263 continue;
3264
1da177e4 3265 sc.nr_scanned = 0;
4e416953 3266
0608f43d
AM
3267 nr_soft_scanned = 0;
3268 /*
3269 * Call soft limit reclaim before calling shrink_zone.
3270 */
3271 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3272 order, sc.gfp_mask,
3273 &nr_soft_scanned);
3274 sc.nr_reclaimed += nr_soft_reclaimed;
3275
32a4330d 3276 /*
7c954f6d
MG
3277 * There should be no need to raise the scanning
3278 * priority if enough pages are already being scanned
3279 * that that high watermark would be met at 100%
3280 * efficiency.
fe2c2a10 3281 */
6b4f7799
JW
3282 if (kswapd_shrink_zone(zone, end_zone,
3283 &sc, &nr_attempted))
7c954f6d 3284 raise_priority = false;
1da177e4 3285 }
5515061d
MG
3286
3287 /*
3288 * If the low watermark is met there is no need for processes
3289 * to be throttled on pfmemalloc_wait as they should not be
3290 * able to safely make forward progress. Wake them
3291 */
3292 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3293 pfmemalloc_watermark_ok(pgdat))
cfc51155 3294 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3295
1da177e4 3296 /*
b8e83b94
MG
3297 * Fragmentation may mean that the system cannot be rebalanced
3298 * for high-order allocations in all zones. If twice the
3299 * allocation size has been reclaimed and the zones are still
3300 * not balanced then recheck the watermarks at order-0 to
3301 * prevent kswapd reclaiming excessively. Assume that a
3302 * process requested a high-order can direct reclaim/compact.
1da177e4 3303 */
b8e83b94
MG
3304 if (order && sc.nr_reclaimed >= 2UL << order)
3305 order = sc.order = 0;
8357376d 3306
b8e83b94
MG
3307 /* Check if kswapd should be suspending */
3308 if (try_to_freeze() || kthread_should_stop())
3309 break;
8357376d 3310
2ab44f43
MG
3311 /*
3312 * Compact if necessary and kswapd is reclaiming at least the
3313 * high watermark number of pages as requsted
3314 */
3315 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3316 compact_pgdat(pgdat, order);
3317
73ce02e9 3318 /*
b8e83b94
MG
3319 * Raise priority if scanning rate is too low or there was no
3320 * progress in reclaiming pages
73ce02e9 3321 */
b8e83b94
MG
3322 if (raise_priority || !sc.nr_reclaimed)
3323 sc.priority--;
9aa41348 3324 } while (sc.priority >= 1 &&
b8e83b94 3325 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3326
b8e83b94 3327out:
0abdee2b 3328 /*
5515061d 3329 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3330 * makes a decision on the order we were last reclaiming at. However,
3331 * if another caller entered the allocator slow path while kswapd
3332 * was awake, order will remain at the higher level
3333 */
dc83edd9 3334 *classzone_idx = end_zone;
0abdee2b 3335 return order;
1da177e4
LT
3336}
3337
dc83edd9 3338static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3339{
3340 long remaining = 0;
3341 DEFINE_WAIT(wait);
3342
3343 if (freezing(current) || kthread_should_stop())
3344 return;
3345
3346 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3347
3348 /* Try to sleep for a short interval */
5515061d 3349 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3350 remaining = schedule_timeout(HZ/10);
3351 finish_wait(&pgdat->kswapd_wait, &wait);
3352 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3353 }
3354
3355 /*
3356 * After a short sleep, check if it was a premature sleep. If not, then
3357 * go fully to sleep until explicitly woken up.
3358 */
5515061d 3359 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3360 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3361
3362 /*
3363 * vmstat counters are not perfectly accurate and the estimated
3364 * value for counters such as NR_FREE_PAGES can deviate from the
3365 * true value by nr_online_cpus * threshold. To avoid the zone
3366 * watermarks being breached while under pressure, we reduce the
3367 * per-cpu vmstat threshold while kswapd is awake and restore
3368 * them before going back to sleep.
3369 */
3370 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3371
62997027
MG
3372 /*
3373 * Compaction records what page blocks it recently failed to
3374 * isolate pages from and skips them in the future scanning.
3375 * When kswapd is going to sleep, it is reasonable to assume
3376 * that pages and compaction may succeed so reset the cache.
3377 */
3378 reset_isolation_suitable(pgdat);
3379
1c7e7f6c
AK
3380 if (!kthread_should_stop())
3381 schedule();
3382
f0bc0a60
KM
3383 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3384 } else {
3385 if (remaining)
3386 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3387 else
3388 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3389 }
3390 finish_wait(&pgdat->kswapd_wait, &wait);
3391}
3392
1da177e4
LT
3393/*
3394 * The background pageout daemon, started as a kernel thread
4f98a2fe 3395 * from the init process.
1da177e4
LT
3396 *
3397 * This basically trickles out pages so that we have _some_
3398 * free memory available even if there is no other activity
3399 * that frees anything up. This is needed for things like routing
3400 * etc, where we otherwise might have all activity going on in
3401 * asynchronous contexts that cannot page things out.
3402 *
3403 * If there are applications that are active memory-allocators
3404 * (most normal use), this basically shouldn't matter.
3405 */
3406static int kswapd(void *p)
3407{
215ddd66 3408 unsigned long order, new_order;
d2ebd0f6 3409 unsigned balanced_order;
215ddd66 3410 int classzone_idx, new_classzone_idx;
d2ebd0f6 3411 int balanced_classzone_idx;
1da177e4
LT
3412 pg_data_t *pgdat = (pg_data_t*)p;
3413 struct task_struct *tsk = current;
f0bc0a60 3414
1da177e4
LT
3415 struct reclaim_state reclaim_state = {
3416 .reclaimed_slab = 0,
3417 };
a70f7302 3418 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3419
cf40bd16
NP
3420 lockdep_set_current_reclaim_state(GFP_KERNEL);
3421
174596a0 3422 if (!cpumask_empty(cpumask))
c5f59f08 3423 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3424 current->reclaim_state = &reclaim_state;
3425
3426 /*
3427 * Tell the memory management that we're a "memory allocator",
3428 * and that if we need more memory we should get access to it
3429 * regardless (see "__alloc_pages()"). "kswapd" should
3430 * never get caught in the normal page freeing logic.
3431 *
3432 * (Kswapd normally doesn't need memory anyway, but sometimes
3433 * you need a small amount of memory in order to be able to
3434 * page out something else, and this flag essentially protects
3435 * us from recursively trying to free more memory as we're
3436 * trying to free the first piece of memory in the first place).
3437 */
930d9152 3438 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3439 set_freezable();
1da177e4 3440
215ddd66 3441 order = new_order = 0;
d2ebd0f6 3442 balanced_order = 0;
215ddd66 3443 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3444 balanced_classzone_idx = classzone_idx;
1da177e4 3445 for ( ; ; ) {
6f6313d4 3446 bool ret;
3e1d1d28 3447
215ddd66
MG
3448 /*
3449 * If the last balance_pgdat was unsuccessful it's unlikely a
3450 * new request of a similar or harder type will succeed soon
3451 * so consider going to sleep on the basis we reclaimed at
3452 */
d2ebd0f6
AS
3453 if (balanced_classzone_idx >= new_classzone_idx &&
3454 balanced_order == new_order) {
215ddd66
MG
3455 new_order = pgdat->kswapd_max_order;
3456 new_classzone_idx = pgdat->classzone_idx;
3457 pgdat->kswapd_max_order = 0;
3458 pgdat->classzone_idx = pgdat->nr_zones - 1;
3459 }
3460
99504748 3461 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3462 /*
3463 * Don't sleep if someone wants a larger 'order'
99504748 3464 * allocation or has tigher zone constraints
1da177e4
LT
3465 */
3466 order = new_order;
99504748 3467 classzone_idx = new_classzone_idx;
1da177e4 3468 } else {
d2ebd0f6
AS
3469 kswapd_try_to_sleep(pgdat, balanced_order,
3470 balanced_classzone_idx);
1da177e4 3471 order = pgdat->kswapd_max_order;
99504748 3472 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3473 new_order = order;
3474 new_classzone_idx = classzone_idx;
4d40502e 3475 pgdat->kswapd_max_order = 0;
215ddd66 3476 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3477 }
1da177e4 3478
8fe23e05
DR
3479 ret = try_to_freeze();
3480 if (kthread_should_stop())
3481 break;
3482
3483 /*
3484 * We can speed up thawing tasks if we don't call balance_pgdat
3485 * after returning from the refrigerator
3486 */
33906bc5
MG
3487 if (!ret) {
3488 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3489 balanced_classzone_idx = classzone_idx;
3490 balanced_order = balance_pgdat(pgdat, order,
3491 &balanced_classzone_idx);
33906bc5 3492 }
1da177e4 3493 }
b0a8cc58 3494
71abdc15 3495 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3496 current->reclaim_state = NULL;
71abdc15
JW
3497 lockdep_clear_current_reclaim_state();
3498
1da177e4
LT
3499 return 0;
3500}
3501
3502/*
3503 * A zone is low on free memory, so wake its kswapd task to service it.
3504 */
99504748 3505void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3506{
3507 pg_data_t *pgdat;
3508
f3fe6512 3509 if (!populated_zone(zone))
1da177e4
LT
3510 return;
3511
344736f2 3512 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3513 return;
88f5acf8 3514 pgdat = zone->zone_pgdat;
99504748 3515 if (pgdat->kswapd_max_order < order) {
1da177e4 3516 pgdat->kswapd_max_order = order;
99504748
MG
3517 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3518 }
8d0986e2 3519 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3520 return;
892f795d 3521 if (zone_balanced(zone, order, 0, 0))
88f5acf8
MG
3522 return;
3523
3524 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3525 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3526}
3527
c6f37f12 3528#ifdef CONFIG_HIBERNATION
1da177e4 3529/*
7b51755c 3530 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3531 * freed pages.
3532 *
3533 * Rather than trying to age LRUs the aim is to preserve the overall
3534 * LRU order by reclaiming preferentially
3535 * inactive > active > active referenced > active mapped
1da177e4 3536 */
7b51755c 3537unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3538{
d6277db4 3539 struct reclaim_state reclaim_state;
d6277db4 3540 struct scan_control sc = {
ee814fe2 3541 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3542 .gfp_mask = GFP_HIGHUSER_MOVABLE,
ee814fe2 3543 .priority = DEF_PRIORITY,
d6277db4 3544 .may_writepage = 1,
ee814fe2
JW
3545 .may_unmap = 1,
3546 .may_swap = 1,
7b51755c 3547 .hibernation_mode = 1,
1da177e4 3548 };
a09ed5e0 3549 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3550 struct task_struct *p = current;
3551 unsigned long nr_reclaimed;
1da177e4 3552
7b51755c
KM
3553 p->flags |= PF_MEMALLOC;
3554 lockdep_set_current_reclaim_state(sc.gfp_mask);
3555 reclaim_state.reclaimed_slab = 0;
3556 p->reclaim_state = &reclaim_state;
d6277db4 3557
3115cd91 3558 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3559
7b51755c
KM
3560 p->reclaim_state = NULL;
3561 lockdep_clear_current_reclaim_state();
3562 p->flags &= ~PF_MEMALLOC;
d6277db4 3563
7b51755c 3564 return nr_reclaimed;
1da177e4 3565}
c6f37f12 3566#endif /* CONFIG_HIBERNATION */
1da177e4 3567
1da177e4
LT
3568/* It's optimal to keep kswapds on the same CPUs as their memory, but
3569 not required for correctness. So if the last cpu in a node goes
3570 away, we get changed to run anywhere: as the first one comes back,
3571 restore their cpu bindings. */
fcb35a9b
GKH
3572static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3573 void *hcpu)
1da177e4 3574{
58c0a4a7 3575 int nid;
1da177e4 3576
8bb78442 3577 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3578 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3579 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3580 const struct cpumask *mask;
3581
3582 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3583
3e597945 3584 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3585 /* One of our CPUs online: restore mask */
c5f59f08 3586 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3587 }
3588 }
3589 return NOTIFY_OK;
3590}
1da177e4 3591
3218ae14
YG
3592/*
3593 * This kswapd start function will be called by init and node-hot-add.
3594 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3595 */
3596int kswapd_run(int nid)
3597{
3598 pg_data_t *pgdat = NODE_DATA(nid);
3599 int ret = 0;
3600
3601 if (pgdat->kswapd)
3602 return 0;
3603
3604 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3605 if (IS_ERR(pgdat->kswapd)) {
3606 /* failure at boot is fatal */
3607 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3608 pr_err("Failed to start kswapd on node %d\n", nid);
3609 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3610 pgdat->kswapd = NULL;
3218ae14
YG
3611 }
3612 return ret;
3613}
3614
8fe23e05 3615/*
d8adde17 3616 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3617 * hold mem_hotplug_begin/end().
8fe23e05
DR
3618 */
3619void kswapd_stop(int nid)
3620{
3621 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3622
d8adde17 3623 if (kswapd) {
8fe23e05 3624 kthread_stop(kswapd);
d8adde17
JL
3625 NODE_DATA(nid)->kswapd = NULL;
3626 }
8fe23e05
DR
3627}
3628
1da177e4
LT
3629static int __init kswapd_init(void)
3630{
3218ae14 3631 int nid;
69e05944 3632
1da177e4 3633 swap_setup();
48fb2e24 3634 for_each_node_state(nid, N_MEMORY)
3218ae14 3635 kswapd_run(nid);
1da177e4
LT
3636 hotcpu_notifier(cpu_callback, 0);
3637 return 0;
3638}
3639
3640module_init(kswapd_init)
9eeff239
CL
3641
3642#ifdef CONFIG_NUMA
3643/*
3644 * Zone reclaim mode
3645 *
3646 * If non-zero call zone_reclaim when the number of free pages falls below
3647 * the watermarks.
9eeff239
CL
3648 */
3649int zone_reclaim_mode __read_mostly;
3650
1b2ffb78 3651#define RECLAIM_OFF 0
7d03431c 3652#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3653#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3654#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3655
a92f7126
CL
3656/*
3657 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3658 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3659 * a zone.
3660 */
3661#define ZONE_RECLAIM_PRIORITY 4
3662
9614634f
CL
3663/*
3664 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3665 * occur.
3666 */
3667int sysctl_min_unmapped_ratio = 1;
3668
0ff38490
CL
3669/*
3670 * If the number of slab pages in a zone grows beyond this percentage then
3671 * slab reclaim needs to occur.
3672 */
3673int sysctl_min_slab_ratio = 5;
3674
90afa5de
MG
3675static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3676{
3677 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3678 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3679 zone_page_state(zone, NR_ACTIVE_FILE);
3680
3681 /*
3682 * It's possible for there to be more file mapped pages than
3683 * accounted for by the pages on the file LRU lists because
3684 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3685 */
3686 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3687}
3688
3689/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3690static long zone_pagecache_reclaimable(struct zone *zone)
3691{
3692 long nr_pagecache_reclaimable;
3693 long delta = 0;
3694
3695 /*
95bbc0c7 3696 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de
MG
3697 * potentially reclaimable. Otherwise, we have to worry about
3698 * pages like swapcache and zone_unmapped_file_pages() provides
3699 * a better estimate
3700 */
95bbc0c7 3701 if (zone_reclaim_mode & RECLAIM_UNMAP)
90afa5de
MG
3702 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3703 else
3704 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3705
3706 /* If we can't clean pages, remove dirty pages from consideration */
3707 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3708 delta += zone_page_state(zone, NR_FILE_DIRTY);
3709
3710 /* Watch for any possible underflows due to delta */
3711 if (unlikely(delta > nr_pagecache_reclaimable))
3712 delta = nr_pagecache_reclaimable;
3713
3714 return nr_pagecache_reclaimable - delta;
3715}
3716
9eeff239
CL
3717/*
3718 * Try to free up some pages from this zone through reclaim.
3719 */
179e9639 3720static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3721{
7fb2d46d 3722 /* Minimum pages needed in order to stay on node */
69e05944 3723 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3724 struct task_struct *p = current;
3725 struct reclaim_state reclaim_state;
179e9639 3726 struct scan_control sc = {
62b726c1 3727 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3728 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3729 .order = order,
9e3b2f8c 3730 .priority = ZONE_RECLAIM_PRIORITY,
ee814fe2 3731 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
95bbc0c7 3732 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 3733 .may_swap = 1,
179e9639 3734 };
9eeff239 3735
9eeff239 3736 cond_resched();
d4f7796e 3737 /*
95bbc0c7 3738 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 3739 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 3740 * and RECLAIM_UNMAP.
d4f7796e
CL
3741 */
3742 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3743 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3744 reclaim_state.reclaimed_slab = 0;
3745 p->reclaim_state = &reclaim_state;
c84db23c 3746
90afa5de 3747 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3748 /*
3749 * Free memory by calling shrink zone with increasing
3750 * priorities until we have enough memory freed.
3751 */
0ff38490 3752 do {
6b4f7799 3753 shrink_zone(zone, &sc, true);
9e3b2f8c 3754 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3755 }
c84db23c 3756
9eeff239 3757 p->reclaim_state = NULL;
d4f7796e 3758 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3759 lockdep_clear_current_reclaim_state();
a79311c1 3760 return sc.nr_reclaimed >= nr_pages;
9eeff239 3761}
179e9639
AM
3762
3763int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3764{
179e9639 3765 int node_id;
d773ed6b 3766 int ret;
179e9639
AM
3767
3768 /*
0ff38490
CL
3769 * Zone reclaim reclaims unmapped file backed pages and
3770 * slab pages if we are over the defined limits.
34aa1330 3771 *
9614634f
CL
3772 * A small portion of unmapped file backed pages is needed for
3773 * file I/O otherwise pages read by file I/O will be immediately
3774 * thrown out if the zone is overallocated. So we do not reclaim
3775 * if less than a specified percentage of the zone is used by
3776 * unmapped file backed pages.
179e9639 3777 */
90afa5de
MG
3778 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3779 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3780 return ZONE_RECLAIM_FULL;
179e9639 3781
6e543d57 3782 if (!zone_reclaimable(zone))
fa5e084e 3783 return ZONE_RECLAIM_FULL;
d773ed6b 3784
179e9639 3785 /*
d773ed6b 3786 * Do not scan if the allocation should not be delayed.
179e9639 3787 */
d773ed6b 3788 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3789 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3790
3791 /*
3792 * Only run zone reclaim on the local zone or on zones that do not
3793 * have associated processors. This will favor the local processor
3794 * over remote processors and spread off node memory allocations
3795 * as wide as possible.
3796 */
89fa3024 3797 node_id = zone_to_nid(zone);
37c0708d 3798 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3799 return ZONE_RECLAIM_NOSCAN;
d773ed6b 3800
57054651 3801 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
fa5e084e
MG
3802 return ZONE_RECLAIM_NOSCAN;
3803
d773ed6b 3804 ret = __zone_reclaim(zone, gfp_mask, order);
57054651 3805 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
d773ed6b 3806
24cf7251
MG
3807 if (!ret)
3808 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3809
d773ed6b 3810 return ret;
179e9639 3811}
9eeff239 3812#endif
894bc310 3813
894bc310
LS
3814/*
3815 * page_evictable - test whether a page is evictable
3816 * @page: the page to test
894bc310
LS
3817 *
3818 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3819 * lists vs unevictable list.
894bc310
LS
3820 *
3821 * Reasons page might not be evictable:
ba9ddf49 3822 * (1) page's mapping marked unevictable
b291f000 3823 * (2) page is part of an mlocked VMA
ba9ddf49 3824 *
894bc310 3825 */
39b5f29a 3826int page_evictable(struct page *page)
894bc310 3827{
39b5f29a 3828 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3829}
89e004ea 3830
85046579 3831#ifdef CONFIG_SHMEM
89e004ea 3832/**
24513264
HD
3833 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3834 * @pages: array of pages to check
3835 * @nr_pages: number of pages to check
89e004ea 3836 *
24513264 3837 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3838 *
3839 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3840 */
24513264 3841void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3842{
925b7673 3843 struct lruvec *lruvec;
24513264
HD
3844 struct zone *zone = NULL;
3845 int pgscanned = 0;
3846 int pgrescued = 0;
3847 int i;
89e004ea 3848
24513264
HD
3849 for (i = 0; i < nr_pages; i++) {
3850 struct page *page = pages[i];
3851 struct zone *pagezone;
89e004ea 3852
24513264
HD
3853 pgscanned++;
3854 pagezone = page_zone(page);
3855 if (pagezone != zone) {
3856 if (zone)
3857 spin_unlock_irq(&zone->lru_lock);
3858 zone = pagezone;
3859 spin_lock_irq(&zone->lru_lock);
3860 }
fa9add64 3861 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3862
24513264
HD
3863 if (!PageLRU(page) || !PageUnevictable(page))
3864 continue;
89e004ea 3865
39b5f29a 3866 if (page_evictable(page)) {
24513264
HD
3867 enum lru_list lru = page_lru_base_type(page);
3868
309381fe 3869 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3870 ClearPageUnevictable(page);
fa9add64
HD
3871 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3872 add_page_to_lru_list(page, lruvec, lru);
24513264 3873 pgrescued++;
89e004ea 3874 }
24513264 3875 }
89e004ea 3876
24513264
HD
3877 if (zone) {
3878 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3879 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3880 spin_unlock_irq(&zone->lru_lock);
89e004ea 3881 }
89e004ea 3882}
85046579 3883#endif /* CONFIG_SHMEM */