]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/vmscan.c
mm/memcontrol.c: keep local VM counters in sync with the hierarchical ones
[mirror_ubuntu-kernels.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
b1de0d13
MH
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
1da177e4 17#include <linux/mm.h>
5b3cc15a 18#include <linux/sched/mm.h>
1da177e4 19#include <linux/module.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/kernel_stat.h>
22#include <linux/swap.h>
23#include <linux/pagemap.h>
24#include <linux/init.h>
25#include <linux/highmem.h>
70ddf637 26#include <linux/vmpressure.h>
e129b5c2 27#include <linux/vmstat.h>
1da177e4
LT
28#include <linux/file.h>
29#include <linux/writeback.h>
30#include <linux/blkdev.h>
31#include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33#include <linux/mm_inline.h>
1da177e4
LT
34#include <linux/backing-dev.h>
35#include <linux/rmap.h>
36#include <linux/topology.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
3e7d3449 39#include <linux/compaction.h>
1da177e4
LT
40#include <linux/notifier.h>
41#include <linux/rwsem.h>
248a0301 42#include <linux/delay.h>
3218ae14 43#include <linux/kthread.h>
7dfb7103 44#include <linux/freezer.h>
66e1707b 45#include <linux/memcontrol.h>
873b4771 46#include <linux/delayacct.h>
af936a16 47#include <linux/sysctl.h>
929bea7c 48#include <linux/oom.h>
64e3d12f 49#include <linux/pagevec.h>
268bb0ce 50#include <linux/prefetch.h>
b1de0d13 51#include <linux/printk.h>
f9fe48be 52#include <linux/dax.h>
eb414681 53#include <linux/psi.h>
1da177e4
LT
54
55#include <asm/tlbflush.h>
56#include <asm/div64.h>
57
58#include <linux/swapops.h>
117aad1e 59#include <linux/balloon_compaction.h>
1da177e4 60
0f8053a5
NP
61#include "internal.h"
62
33906bc5
MG
63#define CREATE_TRACE_POINTS
64#include <trace/events/vmscan.h>
65
1da177e4 66struct scan_control {
22fba335
KM
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
69
ee814fe2
JW
70 /*
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 * are scanned.
73 */
74 nodemask_t *nodemask;
9e3b2f8c 75
f16015fb
JW
76 /*
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
79 */
80 struct mem_cgroup *target_mem_cgroup;
66e1707b 81
1276ad68 82 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
83 unsigned int may_writepage:1;
84
85 /* Can mapped pages be reclaimed? */
86 unsigned int may_unmap:1;
87
88 /* Can pages be swapped as part of reclaim? */
89 unsigned int may_swap:1;
90
1c30844d
MG
91 /* e.g. boosted watermark reclaim leaves slabs alone */
92 unsigned int may_shrinkslab:1;
93
d6622f63
YX
94 /*
95 * Cgroups are not reclaimed below their configured memory.low,
96 * unless we threaten to OOM. If any cgroups are skipped due to
97 * memory.low and nothing was reclaimed, go back for memory.low.
98 */
99 unsigned int memcg_low_reclaim:1;
100 unsigned int memcg_low_skipped:1;
241994ed 101
ee814fe2
JW
102 unsigned int hibernation_mode:1;
103
104 /* One of the zones is ready for compaction */
105 unsigned int compaction_ready:1;
106
bb451fdf
GT
107 /* Allocation order */
108 s8 order;
109
110 /* Scan (total_size >> priority) pages at once */
111 s8 priority;
112
113 /* The highest zone to isolate pages for reclaim from */
114 s8 reclaim_idx;
115
116 /* This context's GFP mask */
117 gfp_t gfp_mask;
118
ee814fe2
JW
119 /* Incremented by the number of inactive pages that were scanned */
120 unsigned long nr_scanned;
121
122 /* Number of pages freed so far during a call to shrink_zones() */
123 unsigned long nr_reclaimed;
d108c772
AR
124
125 struct {
126 unsigned int dirty;
127 unsigned int unqueued_dirty;
128 unsigned int congested;
129 unsigned int writeback;
130 unsigned int immediate;
131 unsigned int file_taken;
132 unsigned int taken;
133 } nr;
1da177e4
LT
134};
135
1da177e4
LT
136#ifdef ARCH_HAS_PREFETCH
137#define prefetch_prev_lru_page(_page, _base, _field) \
138 do { \
139 if ((_page)->lru.prev != _base) { \
140 struct page *prev; \
141 \
142 prev = lru_to_page(&(_page->lru)); \
143 prefetch(&prev->_field); \
144 } \
145 } while (0)
146#else
147#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
148#endif
149
150#ifdef ARCH_HAS_PREFETCHW
151#define prefetchw_prev_lru_page(_page, _base, _field) \
152 do { \
153 if ((_page)->lru.prev != _base) { \
154 struct page *prev; \
155 \
156 prev = lru_to_page(&(_page->lru)); \
157 prefetchw(&prev->_field); \
158 } \
159 } while (0)
160#else
161#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
162#endif
163
164/*
165 * From 0 .. 100. Higher means more swappy.
166 */
167int vm_swappiness = 60;
d0480be4
WSH
168/*
169 * The total number of pages which are beyond the high watermark within all
170 * zones.
171 */
172unsigned long vm_total_pages;
1da177e4
LT
173
174static LIST_HEAD(shrinker_list);
175static DECLARE_RWSEM(shrinker_rwsem);
176
b4c2b231 177#ifdef CONFIG_MEMCG_KMEM
7e010df5
KT
178
179/*
180 * We allow subsystems to populate their shrinker-related
181 * LRU lists before register_shrinker_prepared() is called
182 * for the shrinker, since we don't want to impose
183 * restrictions on their internal registration order.
184 * In this case shrink_slab_memcg() may find corresponding
185 * bit is set in the shrinkers map.
186 *
187 * This value is used by the function to detect registering
188 * shrinkers and to skip do_shrink_slab() calls for them.
189 */
190#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
191
b4c2b231
KT
192static DEFINE_IDR(shrinker_idr);
193static int shrinker_nr_max;
194
195static int prealloc_memcg_shrinker(struct shrinker *shrinker)
196{
197 int id, ret = -ENOMEM;
198
199 down_write(&shrinker_rwsem);
200 /* This may call shrinker, so it must use down_read_trylock() */
7e010df5 201 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
b4c2b231
KT
202 if (id < 0)
203 goto unlock;
204
0a4465d3
KT
205 if (id >= shrinker_nr_max) {
206 if (memcg_expand_shrinker_maps(id)) {
207 idr_remove(&shrinker_idr, id);
208 goto unlock;
209 }
210
b4c2b231 211 shrinker_nr_max = id + 1;
0a4465d3 212 }
b4c2b231
KT
213 shrinker->id = id;
214 ret = 0;
215unlock:
216 up_write(&shrinker_rwsem);
217 return ret;
218}
219
220static void unregister_memcg_shrinker(struct shrinker *shrinker)
221{
222 int id = shrinker->id;
223
224 BUG_ON(id < 0);
225
226 down_write(&shrinker_rwsem);
227 idr_remove(&shrinker_idr, id);
228 up_write(&shrinker_rwsem);
229}
230#else /* CONFIG_MEMCG_KMEM */
231static int prealloc_memcg_shrinker(struct shrinker *shrinker)
232{
233 return 0;
234}
235
236static void unregister_memcg_shrinker(struct shrinker *shrinker)
237{
238}
239#endif /* CONFIG_MEMCG_KMEM */
240
c255a458 241#ifdef CONFIG_MEMCG
89b5fae5
JW
242static bool global_reclaim(struct scan_control *sc)
243{
f16015fb 244 return !sc->target_mem_cgroup;
89b5fae5 245}
97c9341f
TH
246
247/**
248 * sane_reclaim - is the usual dirty throttling mechanism operational?
249 * @sc: scan_control in question
250 *
251 * The normal page dirty throttling mechanism in balance_dirty_pages() is
252 * completely broken with the legacy memcg and direct stalling in
253 * shrink_page_list() is used for throttling instead, which lacks all the
254 * niceties such as fairness, adaptive pausing, bandwidth proportional
255 * allocation and configurability.
256 *
257 * This function tests whether the vmscan currently in progress can assume
258 * that the normal dirty throttling mechanism is operational.
259 */
260static bool sane_reclaim(struct scan_control *sc)
261{
262 struct mem_cgroup *memcg = sc->target_mem_cgroup;
263
264 if (!memcg)
265 return true;
266#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 267 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
268 return true;
269#endif
270 return false;
271}
e3c1ac58
AR
272
273static void set_memcg_congestion(pg_data_t *pgdat,
274 struct mem_cgroup *memcg,
275 bool congested)
276{
277 struct mem_cgroup_per_node *mn;
278
279 if (!memcg)
280 return;
281
282 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
283 WRITE_ONCE(mn->congested, congested);
284}
285
286static bool memcg_congested(pg_data_t *pgdat,
287 struct mem_cgroup *memcg)
288{
289 struct mem_cgroup_per_node *mn;
290
291 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
292 return READ_ONCE(mn->congested);
293
294}
91a45470 295#else
89b5fae5
JW
296static bool global_reclaim(struct scan_control *sc)
297{
298 return true;
299}
97c9341f
TH
300
301static bool sane_reclaim(struct scan_control *sc)
302{
303 return true;
304}
e3c1ac58
AR
305
306static inline void set_memcg_congestion(struct pglist_data *pgdat,
307 struct mem_cgroup *memcg, bool congested)
308{
309}
310
311static inline bool memcg_congested(struct pglist_data *pgdat,
312 struct mem_cgroup *memcg)
313{
314 return false;
315
316}
91a45470
KH
317#endif
318
5a1c84b4
MG
319/*
320 * This misses isolated pages which are not accounted for to save counters.
321 * As the data only determines if reclaim or compaction continues, it is
322 * not expected that isolated pages will be a dominating factor.
323 */
324unsigned long zone_reclaimable_pages(struct zone *zone)
325{
326 unsigned long nr;
327
328 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
329 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
330 if (get_nr_swap_pages() > 0)
331 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
332 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
333
334 return nr;
335}
336
fd538803
MH
337/**
338 * lruvec_lru_size - Returns the number of pages on the given LRU list.
339 * @lruvec: lru vector
340 * @lru: lru to use
341 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
342 */
343unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 344{
fd538803
MH
345 unsigned long lru_size;
346 int zid;
347
c3c787e8 348 if (!mem_cgroup_disabled())
205b20cc 349 lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
fd538803
MH
350 else
351 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
a3d8e054 352
fd538803
MH
353 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
354 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
355 unsigned long size;
c9f299d9 356
fd538803
MH
357 if (!managed_zone(zone))
358 continue;
359
360 if (!mem_cgroup_disabled())
361 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
362 else
363 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
364 NR_ZONE_LRU_BASE + lru);
365 lru_size -= min(size, lru_size);
366 }
367
368 return lru_size;
b4536f0c 369
b4536f0c
MH
370}
371
1da177e4 372/*
1d3d4437 373 * Add a shrinker callback to be called from the vm.
1da177e4 374 */
8e04944f 375int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 376{
b9726c26 377 unsigned int size = sizeof(*shrinker->nr_deferred);
1d3d4437 378
1d3d4437
GC
379 if (shrinker->flags & SHRINKER_NUMA_AWARE)
380 size *= nr_node_ids;
381
382 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
383 if (!shrinker->nr_deferred)
384 return -ENOMEM;
b4c2b231
KT
385
386 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
387 if (prealloc_memcg_shrinker(shrinker))
388 goto free_deferred;
389 }
390
8e04944f 391 return 0;
b4c2b231
KT
392
393free_deferred:
394 kfree(shrinker->nr_deferred);
395 shrinker->nr_deferred = NULL;
396 return -ENOMEM;
8e04944f
TH
397}
398
399void free_prealloced_shrinker(struct shrinker *shrinker)
400{
b4c2b231
KT
401 if (!shrinker->nr_deferred)
402 return;
403
404 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
405 unregister_memcg_shrinker(shrinker);
406
8e04944f
TH
407 kfree(shrinker->nr_deferred);
408 shrinker->nr_deferred = NULL;
409}
1d3d4437 410
8e04944f
TH
411void register_shrinker_prepared(struct shrinker *shrinker)
412{
8e1f936b
RR
413 down_write(&shrinker_rwsem);
414 list_add_tail(&shrinker->list, &shrinker_list);
7e010df5 415#ifdef CONFIG_MEMCG_KMEM
8df4a44c
KT
416 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
417 idr_replace(&shrinker_idr, shrinker, shrinker->id);
7e010df5 418#endif
8e1f936b 419 up_write(&shrinker_rwsem);
8e04944f
TH
420}
421
422int register_shrinker(struct shrinker *shrinker)
423{
424 int err = prealloc_shrinker(shrinker);
425
426 if (err)
427 return err;
428 register_shrinker_prepared(shrinker);
1d3d4437 429 return 0;
1da177e4 430}
8e1f936b 431EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
432
433/*
434 * Remove one
435 */
8e1f936b 436void unregister_shrinker(struct shrinker *shrinker)
1da177e4 437{
bb422a73
TH
438 if (!shrinker->nr_deferred)
439 return;
b4c2b231
KT
440 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
441 unregister_memcg_shrinker(shrinker);
1da177e4
LT
442 down_write(&shrinker_rwsem);
443 list_del(&shrinker->list);
444 up_write(&shrinker_rwsem);
ae393321 445 kfree(shrinker->nr_deferred);
bb422a73 446 shrinker->nr_deferred = NULL;
1da177e4 447}
8e1f936b 448EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
449
450#define SHRINK_BATCH 128
1d3d4437 451
cb731d6c 452static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 453 struct shrinker *shrinker, int priority)
1d3d4437
GC
454{
455 unsigned long freed = 0;
456 unsigned long long delta;
457 long total_scan;
d5bc5fd3 458 long freeable;
1d3d4437
GC
459 long nr;
460 long new_nr;
461 int nid = shrinkctl->nid;
462 long batch_size = shrinker->batch ? shrinker->batch
463 : SHRINK_BATCH;
5f33a080 464 long scanned = 0, next_deferred;
1d3d4437 465
ac7fb3ad
KT
466 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
467 nid = 0;
468
d5bc5fd3 469 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
470 if (freeable == 0 || freeable == SHRINK_EMPTY)
471 return freeable;
1d3d4437
GC
472
473 /*
474 * copy the current shrinker scan count into a local variable
475 * and zero it so that other concurrent shrinker invocations
476 * don't also do this scanning work.
477 */
478 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
479
480 total_scan = nr;
4b85afbd
JW
481 if (shrinker->seeks) {
482 delta = freeable >> priority;
483 delta *= 4;
484 do_div(delta, shrinker->seeks);
485 } else {
486 /*
487 * These objects don't require any IO to create. Trim
488 * them aggressively under memory pressure to keep
489 * them from causing refetches in the IO caches.
490 */
491 delta = freeable / 2;
492 }
172b06c3 493
1d3d4437
GC
494 total_scan += delta;
495 if (total_scan < 0) {
d75f773c 496 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
a0b02131 497 shrinker->scan_objects, total_scan);
d5bc5fd3 498 total_scan = freeable;
5f33a080
SL
499 next_deferred = nr;
500 } else
501 next_deferred = total_scan;
1d3d4437
GC
502
503 /*
504 * We need to avoid excessive windup on filesystem shrinkers
505 * due to large numbers of GFP_NOFS allocations causing the
506 * shrinkers to return -1 all the time. This results in a large
507 * nr being built up so when a shrink that can do some work
508 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 509 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
510 * memory.
511 *
512 * Hence only allow the shrinker to scan the entire cache when
513 * a large delta change is calculated directly.
514 */
d5bc5fd3
VD
515 if (delta < freeable / 4)
516 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
517
518 /*
519 * Avoid risking looping forever due to too large nr value:
520 * never try to free more than twice the estimate number of
521 * freeable entries.
522 */
d5bc5fd3
VD
523 if (total_scan > freeable * 2)
524 total_scan = freeable * 2;
1d3d4437
GC
525
526 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 527 freeable, delta, total_scan, priority);
1d3d4437 528
0b1fb40a
VD
529 /*
530 * Normally, we should not scan less than batch_size objects in one
531 * pass to avoid too frequent shrinker calls, but if the slab has less
532 * than batch_size objects in total and we are really tight on memory,
533 * we will try to reclaim all available objects, otherwise we can end
534 * up failing allocations although there are plenty of reclaimable
535 * objects spread over several slabs with usage less than the
536 * batch_size.
537 *
538 * We detect the "tight on memory" situations by looking at the total
539 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 540 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
541 * scanning at high prio and therefore should try to reclaim as much as
542 * possible.
543 */
544 while (total_scan >= batch_size ||
d5bc5fd3 545 total_scan >= freeable) {
a0b02131 546 unsigned long ret;
0b1fb40a 547 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 548
0b1fb40a 549 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 550 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
551 ret = shrinker->scan_objects(shrinker, shrinkctl);
552 if (ret == SHRINK_STOP)
553 break;
554 freed += ret;
1d3d4437 555
d460acb5
CW
556 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
557 total_scan -= shrinkctl->nr_scanned;
558 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
559
560 cond_resched();
561 }
562
5f33a080
SL
563 if (next_deferred >= scanned)
564 next_deferred -= scanned;
565 else
566 next_deferred = 0;
1d3d4437
GC
567 /*
568 * move the unused scan count back into the shrinker in a
569 * manner that handles concurrent updates. If we exhausted the
570 * scan, there is no need to do an update.
571 */
5f33a080
SL
572 if (next_deferred > 0)
573 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
574 &shrinker->nr_deferred[nid]);
575 else
576 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
577
df9024a8 578 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 579 return freed;
1495f230
YH
580}
581
b0dedc49
KT
582#ifdef CONFIG_MEMCG_KMEM
583static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
584 struct mem_cgroup *memcg, int priority)
585{
586 struct memcg_shrinker_map *map;
b8e57efa
KT
587 unsigned long ret, freed = 0;
588 int i;
b0dedc49
KT
589
590 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
591 return 0;
592
593 if (!down_read_trylock(&shrinker_rwsem))
594 return 0;
595
596 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
597 true);
598 if (unlikely(!map))
599 goto unlock;
600
601 for_each_set_bit(i, map->map, shrinker_nr_max) {
602 struct shrink_control sc = {
603 .gfp_mask = gfp_mask,
604 .nid = nid,
605 .memcg = memcg,
606 };
607 struct shrinker *shrinker;
608
609 shrinker = idr_find(&shrinker_idr, i);
7e010df5
KT
610 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
611 if (!shrinker)
612 clear_bit(i, map->map);
b0dedc49
KT
613 continue;
614 }
615
b0dedc49 616 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6
KT
617 if (ret == SHRINK_EMPTY) {
618 clear_bit(i, map->map);
619 /*
620 * After the shrinker reported that it had no objects to
621 * free, but before we cleared the corresponding bit in
622 * the memcg shrinker map, a new object might have been
623 * added. To make sure, we have the bit set in this
624 * case, we invoke the shrinker one more time and reset
625 * the bit if it reports that it is not empty anymore.
626 * The memory barrier here pairs with the barrier in
627 * memcg_set_shrinker_bit():
628 *
629 * list_lru_add() shrink_slab_memcg()
630 * list_add_tail() clear_bit()
631 * <MB> <MB>
632 * set_bit() do_shrink_slab()
633 */
634 smp_mb__after_atomic();
635 ret = do_shrink_slab(&sc, shrinker, priority);
636 if (ret == SHRINK_EMPTY)
637 ret = 0;
638 else
639 memcg_set_shrinker_bit(memcg, nid, i);
640 }
b0dedc49
KT
641 freed += ret;
642
643 if (rwsem_is_contended(&shrinker_rwsem)) {
644 freed = freed ? : 1;
645 break;
646 }
647 }
648unlock:
649 up_read(&shrinker_rwsem);
650 return freed;
651}
652#else /* CONFIG_MEMCG_KMEM */
653static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
654 struct mem_cgroup *memcg, int priority)
655{
656 return 0;
657}
658#endif /* CONFIG_MEMCG_KMEM */
659
6b4f7799 660/**
cb731d6c 661 * shrink_slab - shrink slab caches
6b4f7799
JW
662 * @gfp_mask: allocation context
663 * @nid: node whose slab caches to target
cb731d6c 664 * @memcg: memory cgroup whose slab caches to target
9092c71b 665 * @priority: the reclaim priority
1da177e4 666 *
6b4f7799 667 * Call the shrink functions to age shrinkable caches.
1da177e4 668 *
6b4f7799
JW
669 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
670 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 671 *
aeed1d32
VD
672 * @memcg specifies the memory cgroup to target. Unaware shrinkers
673 * are called only if it is the root cgroup.
cb731d6c 674 *
9092c71b
JB
675 * @priority is sc->priority, we take the number of objects and >> by priority
676 * in order to get the scan target.
b15e0905 677 *
6b4f7799 678 * Returns the number of reclaimed slab objects.
1da177e4 679 */
cb731d6c
VD
680static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
681 struct mem_cgroup *memcg,
9092c71b 682 int priority)
1da177e4 683{
b8e57efa 684 unsigned long ret, freed = 0;
1da177e4
LT
685 struct shrinker *shrinker;
686
aeed1d32 687 if (!mem_cgroup_is_root(memcg))
b0dedc49 688 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 689
e830c63a 690 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 691 goto out;
1da177e4
LT
692
693 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
694 struct shrink_control sc = {
695 .gfp_mask = gfp_mask,
696 .nid = nid,
cb731d6c 697 .memcg = memcg,
6b4f7799 698 };
ec97097b 699
9b996468
KT
700 ret = do_shrink_slab(&sc, shrinker, priority);
701 if (ret == SHRINK_EMPTY)
702 ret = 0;
703 freed += ret;
e496612c
MK
704 /*
705 * Bail out if someone want to register a new shrinker to
706 * prevent the regsitration from being stalled for long periods
707 * by parallel ongoing shrinking.
708 */
709 if (rwsem_is_contended(&shrinker_rwsem)) {
710 freed = freed ? : 1;
711 break;
712 }
1da177e4 713 }
6b4f7799 714
1da177e4 715 up_read(&shrinker_rwsem);
f06590bd
MK
716out:
717 cond_resched();
24f7c6b9 718 return freed;
1da177e4
LT
719}
720
cb731d6c
VD
721void drop_slab_node(int nid)
722{
723 unsigned long freed;
724
725 do {
726 struct mem_cgroup *memcg = NULL;
727
728 freed = 0;
aeed1d32 729 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 730 do {
9092c71b 731 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c
VD
732 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
733 } while (freed > 10);
734}
735
736void drop_slab(void)
737{
738 int nid;
739
740 for_each_online_node(nid)
741 drop_slab_node(nid);
742}
743
1da177e4
LT
744static inline int is_page_cache_freeable(struct page *page)
745{
ceddc3a5
JW
746 /*
747 * A freeable page cache page is referenced only by the caller
67891fff
MW
748 * that isolated the page, the page cache and optional buffer
749 * heads at page->private.
ceddc3a5 750 */
67891fff 751 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
bd4c82c2 752 HPAGE_PMD_NR : 1;
67891fff 753 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
1da177e4
LT
754}
755
703c2708 756static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 757{
930d9152 758 if (current->flags & PF_SWAPWRITE)
1da177e4 759 return 1;
703c2708 760 if (!inode_write_congested(inode))
1da177e4 761 return 1;
703c2708 762 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
763 return 1;
764 return 0;
765}
766
767/*
768 * We detected a synchronous write error writing a page out. Probably
769 * -ENOSPC. We need to propagate that into the address_space for a subsequent
770 * fsync(), msync() or close().
771 *
772 * The tricky part is that after writepage we cannot touch the mapping: nothing
773 * prevents it from being freed up. But we have a ref on the page and once
774 * that page is locked, the mapping is pinned.
775 *
776 * We're allowed to run sleeping lock_page() here because we know the caller has
777 * __GFP_FS.
778 */
779static void handle_write_error(struct address_space *mapping,
780 struct page *page, int error)
781{
7eaceacc 782 lock_page(page);
3e9f45bd
GC
783 if (page_mapping(page) == mapping)
784 mapping_set_error(mapping, error);
1da177e4
LT
785 unlock_page(page);
786}
787
04e62a29
CL
788/* possible outcome of pageout() */
789typedef enum {
790 /* failed to write page out, page is locked */
791 PAGE_KEEP,
792 /* move page to the active list, page is locked */
793 PAGE_ACTIVATE,
794 /* page has been sent to the disk successfully, page is unlocked */
795 PAGE_SUCCESS,
796 /* page is clean and locked */
797 PAGE_CLEAN,
798} pageout_t;
799
1da177e4 800/*
1742f19f
AM
801 * pageout is called by shrink_page_list() for each dirty page.
802 * Calls ->writepage().
1da177e4 803 */
c661b078 804static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 805 struct scan_control *sc)
1da177e4
LT
806{
807 /*
808 * If the page is dirty, only perform writeback if that write
809 * will be non-blocking. To prevent this allocation from being
810 * stalled by pagecache activity. But note that there may be
811 * stalls if we need to run get_block(). We could test
812 * PagePrivate for that.
813 *
8174202b 814 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
815 * this page's queue, we can perform writeback even if that
816 * will block.
817 *
818 * If the page is swapcache, write it back even if that would
819 * block, for some throttling. This happens by accident, because
820 * swap_backing_dev_info is bust: it doesn't reflect the
821 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
822 */
823 if (!is_page_cache_freeable(page))
824 return PAGE_KEEP;
825 if (!mapping) {
826 /*
827 * Some data journaling orphaned pages can have
828 * page->mapping == NULL while being dirty with clean buffers.
829 */
266cf658 830 if (page_has_private(page)) {
1da177e4
LT
831 if (try_to_free_buffers(page)) {
832 ClearPageDirty(page);
b1de0d13 833 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
834 return PAGE_CLEAN;
835 }
836 }
837 return PAGE_KEEP;
838 }
839 if (mapping->a_ops->writepage == NULL)
840 return PAGE_ACTIVATE;
703c2708 841 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
842 return PAGE_KEEP;
843
844 if (clear_page_dirty_for_io(page)) {
845 int res;
846 struct writeback_control wbc = {
847 .sync_mode = WB_SYNC_NONE,
848 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
849 .range_start = 0,
850 .range_end = LLONG_MAX,
1da177e4
LT
851 .for_reclaim = 1,
852 };
853
854 SetPageReclaim(page);
855 res = mapping->a_ops->writepage(page, &wbc);
856 if (res < 0)
857 handle_write_error(mapping, page, res);
994fc28c 858 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
859 ClearPageReclaim(page);
860 return PAGE_ACTIVATE;
861 }
c661b078 862
1da177e4
LT
863 if (!PageWriteback(page)) {
864 /* synchronous write or broken a_ops? */
865 ClearPageReclaim(page);
866 }
3aa23851 867 trace_mm_vmscan_writepage(page);
c4a25635 868 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
869 return PAGE_SUCCESS;
870 }
871
872 return PAGE_CLEAN;
873}
874
a649fd92 875/*
e286781d
NP
876 * Same as remove_mapping, but if the page is removed from the mapping, it
877 * gets returned with a refcount of 0.
a649fd92 878 */
a528910e
JW
879static int __remove_mapping(struct address_space *mapping, struct page *page,
880 bool reclaimed)
49d2e9cc 881{
c4843a75 882 unsigned long flags;
bd4c82c2 883 int refcount;
c4843a75 884
28e4d965
NP
885 BUG_ON(!PageLocked(page));
886 BUG_ON(mapping != page_mapping(page));
49d2e9cc 887
b93b0163 888 xa_lock_irqsave(&mapping->i_pages, flags);
49d2e9cc 889 /*
0fd0e6b0
NP
890 * The non racy check for a busy page.
891 *
892 * Must be careful with the order of the tests. When someone has
893 * a ref to the page, it may be possible that they dirty it then
894 * drop the reference. So if PageDirty is tested before page_count
895 * here, then the following race may occur:
896 *
897 * get_user_pages(&page);
898 * [user mapping goes away]
899 * write_to(page);
900 * !PageDirty(page) [good]
901 * SetPageDirty(page);
902 * put_page(page);
903 * !page_count(page) [good, discard it]
904 *
905 * [oops, our write_to data is lost]
906 *
907 * Reversing the order of the tests ensures such a situation cannot
908 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 909 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
910 *
911 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 912 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 913 */
bd4c82c2
HY
914 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
915 refcount = 1 + HPAGE_PMD_NR;
916 else
917 refcount = 2;
918 if (!page_ref_freeze(page, refcount))
49d2e9cc 919 goto cannot_free;
1c4c3b99 920 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
e286781d 921 if (unlikely(PageDirty(page))) {
bd4c82c2 922 page_ref_unfreeze(page, refcount);
49d2e9cc 923 goto cannot_free;
e286781d 924 }
49d2e9cc
CL
925
926 if (PageSwapCache(page)) {
927 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 928 mem_cgroup_swapout(page, swap);
4e17ec25 929 __delete_from_swap_cache(page, swap);
b93b0163 930 xa_unlock_irqrestore(&mapping->i_pages, flags);
75f6d6d2 931 put_swap_page(page, swap);
e286781d 932 } else {
6072d13c 933 void (*freepage)(struct page *);
a528910e 934 void *shadow = NULL;
6072d13c
LT
935
936 freepage = mapping->a_ops->freepage;
a528910e
JW
937 /*
938 * Remember a shadow entry for reclaimed file cache in
939 * order to detect refaults, thus thrashing, later on.
940 *
941 * But don't store shadows in an address space that is
942 * already exiting. This is not just an optizimation,
943 * inode reclaim needs to empty out the radix tree or
944 * the nodes are lost. Don't plant shadows behind its
945 * back.
f9fe48be
RZ
946 *
947 * We also don't store shadows for DAX mappings because the
948 * only page cache pages found in these are zero pages
949 * covering holes, and because we don't want to mix DAX
950 * exceptional entries and shadow exceptional entries in the
b93b0163 951 * same address_space.
a528910e
JW
952 */
953 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 954 !mapping_exiting(mapping) && !dax_mapping(mapping))
a7ca12f9 955 shadow = workingset_eviction(page);
62cccb8c 956 __delete_from_page_cache(page, shadow);
b93b0163 957 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c
LT
958
959 if (freepage != NULL)
960 freepage(page);
49d2e9cc
CL
961 }
962
49d2e9cc
CL
963 return 1;
964
965cannot_free:
b93b0163 966 xa_unlock_irqrestore(&mapping->i_pages, flags);
49d2e9cc
CL
967 return 0;
968}
969
e286781d
NP
970/*
971 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
972 * someone else has a ref on the page, abort and return 0. If it was
973 * successfully detached, return 1. Assumes the caller has a single ref on
974 * this page.
975 */
976int remove_mapping(struct address_space *mapping, struct page *page)
977{
a528910e 978 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
979 /*
980 * Unfreezing the refcount with 1 rather than 2 effectively
981 * drops the pagecache ref for us without requiring another
982 * atomic operation.
983 */
fe896d18 984 page_ref_unfreeze(page, 1);
e286781d
NP
985 return 1;
986 }
987 return 0;
988}
989
894bc310
LS
990/**
991 * putback_lru_page - put previously isolated page onto appropriate LRU list
992 * @page: page to be put back to appropriate lru list
993 *
994 * Add previously isolated @page to appropriate LRU list.
995 * Page may still be unevictable for other reasons.
996 *
997 * lru_lock must not be held, interrupts must be enabled.
998 */
894bc310
LS
999void putback_lru_page(struct page *page)
1000{
9c4e6b1a 1001 lru_cache_add(page);
894bc310
LS
1002 put_page(page); /* drop ref from isolate */
1003}
1004
dfc8d636
JW
1005enum page_references {
1006 PAGEREF_RECLAIM,
1007 PAGEREF_RECLAIM_CLEAN,
64574746 1008 PAGEREF_KEEP,
dfc8d636
JW
1009 PAGEREF_ACTIVATE,
1010};
1011
1012static enum page_references page_check_references(struct page *page,
1013 struct scan_control *sc)
1014{
64574746 1015 int referenced_ptes, referenced_page;
dfc8d636 1016 unsigned long vm_flags;
dfc8d636 1017
c3ac9a8a
JW
1018 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1019 &vm_flags);
64574746 1020 referenced_page = TestClearPageReferenced(page);
dfc8d636 1021
dfc8d636
JW
1022 /*
1023 * Mlock lost the isolation race with us. Let try_to_unmap()
1024 * move the page to the unevictable list.
1025 */
1026 if (vm_flags & VM_LOCKED)
1027 return PAGEREF_RECLAIM;
1028
64574746 1029 if (referenced_ptes) {
e4898273 1030 if (PageSwapBacked(page))
64574746
JW
1031 return PAGEREF_ACTIVATE;
1032 /*
1033 * All mapped pages start out with page table
1034 * references from the instantiating fault, so we need
1035 * to look twice if a mapped file page is used more
1036 * than once.
1037 *
1038 * Mark it and spare it for another trip around the
1039 * inactive list. Another page table reference will
1040 * lead to its activation.
1041 *
1042 * Note: the mark is set for activated pages as well
1043 * so that recently deactivated but used pages are
1044 * quickly recovered.
1045 */
1046 SetPageReferenced(page);
1047
34dbc67a 1048 if (referenced_page || referenced_ptes > 1)
64574746
JW
1049 return PAGEREF_ACTIVATE;
1050
c909e993
KK
1051 /*
1052 * Activate file-backed executable pages after first usage.
1053 */
1054 if (vm_flags & VM_EXEC)
1055 return PAGEREF_ACTIVATE;
1056
64574746
JW
1057 return PAGEREF_KEEP;
1058 }
dfc8d636
JW
1059
1060 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 1061 if (referenced_page && !PageSwapBacked(page))
64574746
JW
1062 return PAGEREF_RECLAIM_CLEAN;
1063
1064 return PAGEREF_RECLAIM;
dfc8d636
JW
1065}
1066
e2be15f6
MG
1067/* Check if a page is dirty or under writeback */
1068static void page_check_dirty_writeback(struct page *page,
1069 bool *dirty, bool *writeback)
1070{
b4597226
MG
1071 struct address_space *mapping;
1072
e2be15f6
MG
1073 /*
1074 * Anonymous pages are not handled by flushers and must be written
1075 * from reclaim context. Do not stall reclaim based on them
1076 */
802a3a92
SL
1077 if (!page_is_file_cache(page) ||
1078 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
1079 *dirty = false;
1080 *writeback = false;
1081 return;
1082 }
1083
1084 /* By default assume that the page flags are accurate */
1085 *dirty = PageDirty(page);
1086 *writeback = PageWriteback(page);
b4597226
MG
1087
1088 /* Verify dirty/writeback state if the filesystem supports it */
1089 if (!page_has_private(page))
1090 return;
1091
1092 mapping = page_mapping(page);
1093 if (mapping && mapping->a_ops->is_dirty_writeback)
1094 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
1095}
1096
1da177e4 1097/*
1742f19f 1098 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1099 */
1742f19f 1100static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 1101 struct pglist_data *pgdat,
f84f6e2b 1102 struct scan_control *sc,
02c6de8d 1103 enum ttu_flags ttu_flags,
3c710c1a 1104 struct reclaim_stat *stat,
02c6de8d 1105 bool force_reclaim)
1da177e4
LT
1106{
1107 LIST_HEAD(ret_pages);
abe4c3b5 1108 LIST_HEAD(free_pages);
3c710c1a 1109 unsigned nr_reclaimed = 0;
886cf190 1110 unsigned pgactivate = 0;
1da177e4 1111
060f005f 1112 memset(stat, 0, sizeof(*stat));
1da177e4
LT
1113 cond_resched();
1114
1da177e4
LT
1115 while (!list_empty(page_list)) {
1116 struct address_space *mapping;
1117 struct page *page;
1118 int may_enter_fs;
02c6de8d 1119 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 1120 bool dirty, writeback;
98879b3b 1121 unsigned int nr_pages;
1da177e4
LT
1122
1123 cond_resched();
1124
1125 page = lru_to_page(page_list);
1126 list_del(&page->lru);
1127
529ae9aa 1128 if (!trylock_page(page))
1da177e4
LT
1129 goto keep;
1130
309381fe 1131 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4 1132
98879b3b
YS
1133 nr_pages = 1 << compound_order(page);
1134
1135 /* Account the number of base pages even though THP */
1136 sc->nr_scanned += nr_pages;
80e43426 1137
39b5f29a 1138 if (unlikely(!page_evictable(page)))
ad6b6704 1139 goto activate_locked;
894bc310 1140
a6dc60f8 1141 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1142 goto keep_locked;
1143
c661b078
AW
1144 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1145 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1146
e2be15f6 1147 /*
894befec 1148 * The number of dirty pages determines if a node is marked
e2be15f6
MG
1149 * reclaim_congested which affects wait_iff_congested. kswapd
1150 * will stall and start writing pages if the tail of the LRU
1151 * is all dirty unqueued pages.
1152 */
1153 page_check_dirty_writeback(page, &dirty, &writeback);
1154 if (dirty || writeback)
060f005f 1155 stat->nr_dirty++;
e2be15f6
MG
1156
1157 if (dirty && !writeback)
060f005f 1158 stat->nr_unqueued_dirty++;
e2be15f6 1159
d04e8acd
MG
1160 /*
1161 * Treat this page as congested if the underlying BDI is or if
1162 * pages are cycling through the LRU so quickly that the
1163 * pages marked for immediate reclaim are making it to the
1164 * end of the LRU a second time.
1165 */
e2be15f6 1166 mapping = page_mapping(page);
1da58ee2 1167 if (((dirty || writeback) && mapping &&
703c2708 1168 inode_write_congested(mapping->host)) ||
d04e8acd 1169 (writeback && PageReclaim(page)))
060f005f 1170 stat->nr_congested++;
e2be15f6 1171
283aba9f
MG
1172 /*
1173 * If a page at the tail of the LRU is under writeback, there
1174 * are three cases to consider.
1175 *
1176 * 1) If reclaim is encountering an excessive number of pages
1177 * under writeback and this page is both under writeback and
1178 * PageReclaim then it indicates that pages are being queued
1179 * for IO but are being recycled through the LRU before the
1180 * IO can complete. Waiting on the page itself risks an
1181 * indefinite stall if it is impossible to writeback the
1182 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1183 * note that the LRU is being scanned too quickly and the
1184 * caller can stall after page list has been processed.
283aba9f 1185 *
97c9341f 1186 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1187 * not marked for immediate reclaim, or the caller does not
1188 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1189 * not to fs). In this case mark the page for immediate
97c9341f 1190 * reclaim and continue scanning.
283aba9f 1191 *
ecf5fc6e
MH
1192 * Require may_enter_fs because we would wait on fs, which
1193 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1194 * enter reclaim, and deadlock if it waits on a page for
1195 * which it is needed to do the write (loop masks off
1196 * __GFP_IO|__GFP_FS for this reason); but more thought
1197 * would probably show more reasons.
1198 *
7fadc820 1199 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1200 * PageReclaim. memcg does not have any dirty pages
1201 * throttling so we could easily OOM just because too many
1202 * pages are in writeback and there is nothing else to
1203 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1204 *
1205 * In cases 1) and 2) we activate the pages to get them out of
1206 * the way while we continue scanning for clean pages on the
1207 * inactive list and refilling from the active list. The
1208 * observation here is that waiting for disk writes is more
1209 * expensive than potentially causing reloads down the line.
1210 * Since they're marked for immediate reclaim, they won't put
1211 * memory pressure on the cache working set any longer than it
1212 * takes to write them to disk.
283aba9f 1213 */
c661b078 1214 if (PageWriteback(page)) {
283aba9f
MG
1215 /* Case 1 above */
1216 if (current_is_kswapd() &&
1217 PageReclaim(page) &&
599d0c95 1218 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
060f005f 1219 stat->nr_immediate++;
c55e8d03 1220 goto activate_locked;
283aba9f
MG
1221
1222 /* Case 2 above */
97c9341f 1223 } else if (sane_reclaim(sc) ||
ecf5fc6e 1224 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1225 /*
1226 * This is slightly racy - end_page_writeback()
1227 * might have just cleared PageReclaim, then
1228 * setting PageReclaim here end up interpreted
1229 * as PageReadahead - but that does not matter
1230 * enough to care. What we do want is for this
1231 * page to have PageReclaim set next time memcg
1232 * reclaim reaches the tests above, so it will
1233 * then wait_on_page_writeback() to avoid OOM;
1234 * and it's also appropriate in global reclaim.
1235 */
1236 SetPageReclaim(page);
060f005f 1237 stat->nr_writeback++;
c55e8d03 1238 goto activate_locked;
283aba9f
MG
1239
1240 /* Case 3 above */
1241 } else {
7fadc820 1242 unlock_page(page);
283aba9f 1243 wait_on_page_writeback(page);
7fadc820
HD
1244 /* then go back and try same page again */
1245 list_add_tail(&page->lru, page_list);
1246 continue;
e62e384e 1247 }
c661b078 1248 }
1da177e4 1249
02c6de8d
MK
1250 if (!force_reclaim)
1251 references = page_check_references(page, sc);
1252
dfc8d636
JW
1253 switch (references) {
1254 case PAGEREF_ACTIVATE:
1da177e4 1255 goto activate_locked;
64574746 1256 case PAGEREF_KEEP:
98879b3b 1257 stat->nr_ref_keep += nr_pages;
64574746 1258 goto keep_locked;
dfc8d636
JW
1259 case PAGEREF_RECLAIM:
1260 case PAGEREF_RECLAIM_CLEAN:
1261 ; /* try to reclaim the page below */
1262 }
1da177e4 1263
1da177e4
LT
1264 /*
1265 * Anonymous process memory has backing store?
1266 * Try to allocate it some swap space here.
802a3a92 1267 * Lazyfree page could be freed directly
1da177e4 1268 */
bd4c82c2
HY
1269 if (PageAnon(page) && PageSwapBacked(page)) {
1270 if (!PageSwapCache(page)) {
1271 if (!(sc->gfp_mask & __GFP_IO))
1272 goto keep_locked;
1273 if (PageTransHuge(page)) {
1274 /* cannot split THP, skip it */
1275 if (!can_split_huge_page(page, NULL))
1276 goto activate_locked;
1277 /*
1278 * Split pages without a PMD map right
1279 * away. Chances are some or all of the
1280 * tail pages can be freed without IO.
1281 */
1282 if (!compound_mapcount(page) &&
1283 split_huge_page_to_list(page,
1284 page_list))
1285 goto activate_locked;
1286 }
1287 if (!add_to_swap(page)) {
1288 if (!PageTransHuge(page))
98879b3b 1289 goto activate_locked_split;
bd4c82c2
HY
1290 /* Fallback to swap normal pages */
1291 if (split_huge_page_to_list(page,
1292 page_list))
1293 goto activate_locked;
fe490cc0
HY
1294#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1295 count_vm_event(THP_SWPOUT_FALLBACK);
1296#endif
bd4c82c2 1297 if (!add_to_swap(page))
98879b3b 1298 goto activate_locked_split;
bd4c82c2 1299 }
0f074658 1300
bd4c82c2 1301 may_enter_fs = 1;
1da177e4 1302
bd4c82c2
HY
1303 /* Adding to swap updated mapping */
1304 mapping = page_mapping(page);
1305 }
7751b2da
KS
1306 } else if (unlikely(PageTransHuge(page))) {
1307 /* Split file THP */
1308 if (split_huge_page_to_list(page, page_list))
1309 goto keep_locked;
e2be15f6 1310 }
1da177e4 1311
98879b3b
YS
1312 /*
1313 * THP may get split above, need minus tail pages and update
1314 * nr_pages to avoid accounting tail pages twice.
1315 *
1316 * The tail pages that are added into swap cache successfully
1317 * reach here.
1318 */
1319 if ((nr_pages > 1) && !PageTransHuge(page)) {
1320 sc->nr_scanned -= (nr_pages - 1);
1321 nr_pages = 1;
1322 }
1323
1da177e4
LT
1324 /*
1325 * The page is mapped into the page tables of one or more
1326 * processes. Try to unmap it here.
1327 */
802a3a92 1328 if (page_mapped(page)) {
bd4c82c2
HY
1329 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1330
1331 if (unlikely(PageTransHuge(page)))
1332 flags |= TTU_SPLIT_HUGE_PMD;
1333 if (!try_to_unmap(page, flags)) {
98879b3b 1334 stat->nr_unmap_fail += nr_pages;
1da177e4 1335 goto activate_locked;
1da177e4
LT
1336 }
1337 }
1338
1339 if (PageDirty(page)) {
ee72886d 1340 /*
4eda4823
JW
1341 * Only kswapd can writeback filesystem pages
1342 * to avoid risk of stack overflow. But avoid
1343 * injecting inefficient single-page IO into
1344 * flusher writeback as much as possible: only
1345 * write pages when we've encountered many
1346 * dirty pages, and when we've already scanned
1347 * the rest of the LRU for clean pages and see
1348 * the same dirty pages again (PageReclaim).
ee72886d 1349 */
f84f6e2b 1350 if (page_is_file_cache(page) &&
4eda4823
JW
1351 (!current_is_kswapd() || !PageReclaim(page) ||
1352 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1353 /*
1354 * Immediately reclaim when written back.
1355 * Similar in principal to deactivate_page()
1356 * except we already have the page isolated
1357 * and know it's dirty
1358 */
c4a25635 1359 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1360 SetPageReclaim(page);
1361
c55e8d03 1362 goto activate_locked;
ee72886d
MG
1363 }
1364
dfc8d636 1365 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1366 goto keep_locked;
4dd4b920 1367 if (!may_enter_fs)
1da177e4 1368 goto keep_locked;
52a8363e 1369 if (!sc->may_writepage)
1da177e4
LT
1370 goto keep_locked;
1371
d950c947
MG
1372 /*
1373 * Page is dirty. Flush the TLB if a writable entry
1374 * potentially exists to avoid CPU writes after IO
1375 * starts and then write it out here.
1376 */
1377 try_to_unmap_flush_dirty();
7d3579e8 1378 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1379 case PAGE_KEEP:
1380 goto keep_locked;
1381 case PAGE_ACTIVATE:
1382 goto activate_locked;
1383 case PAGE_SUCCESS:
7d3579e8 1384 if (PageWriteback(page))
41ac1999 1385 goto keep;
7d3579e8 1386 if (PageDirty(page))
1da177e4 1387 goto keep;
7d3579e8 1388
1da177e4
LT
1389 /*
1390 * A synchronous write - probably a ramdisk. Go
1391 * ahead and try to reclaim the page.
1392 */
529ae9aa 1393 if (!trylock_page(page))
1da177e4
LT
1394 goto keep;
1395 if (PageDirty(page) || PageWriteback(page))
1396 goto keep_locked;
1397 mapping = page_mapping(page);
1398 case PAGE_CLEAN:
1399 ; /* try to free the page below */
1400 }
1401 }
1402
1403 /*
1404 * If the page has buffers, try to free the buffer mappings
1405 * associated with this page. If we succeed we try to free
1406 * the page as well.
1407 *
1408 * We do this even if the page is PageDirty().
1409 * try_to_release_page() does not perform I/O, but it is
1410 * possible for a page to have PageDirty set, but it is actually
1411 * clean (all its buffers are clean). This happens if the
1412 * buffers were written out directly, with submit_bh(). ext3
894bc310 1413 * will do this, as well as the blockdev mapping.
1da177e4
LT
1414 * try_to_release_page() will discover that cleanness and will
1415 * drop the buffers and mark the page clean - it can be freed.
1416 *
1417 * Rarely, pages can have buffers and no ->mapping. These are
1418 * the pages which were not successfully invalidated in
1419 * truncate_complete_page(). We try to drop those buffers here
1420 * and if that worked, and the page is no longer mapped into
1421 * process address space (page_count == 1) it can be freed.
1422 * Otherwise, leave the page on the LRU so it is swappable.
1423 */
266cf658 1424 if (page_has_private(page)) {
1da177e4
LT
1425 if (!try_to_release_page(page, sc->gfp_mask))
1426 goto activate_locked;
e286781d
NP
1427 if (!mapping && page_count(page) == 1) {
1428 unlock_page(page);
1429 if (put_page_testzero(page))
1430 goto free_it;
1431 else {
1432 /*
1433 * rare race with speculative reference.
1434 * the speculative reference will free
1435 * this page shortly, so we may
1436 * increment nr_reclaimed here (and
1437 * leave it off the LRU).
1438 */
1439 nr_reclaimed++;
1440 continue;
1441 }
1442 }
1da177e4
LT
1443 }
1444
802a3a92
SL
1445 if (PageAnon(page) && !PageSwapBacked(page)) {
1446 /* follow __remove_mapping for reference */
1447 if (!page_ref_freeze(page, 1))
1448 goto keep_locked;
1449 if (PageDirty(page)) {
1450 page_ref_unfreeze(page, 1);
1451 goto keep_locked;
1452 }
1da177e4 1453
802a3a92 1454 count_vm_event(PGLAZYFREED);
2262185c 1455 count_memcg_page_event(page, PGLAZYFREED);
802a3a92
SL
1456 } else if (!mapping || !__remove_mapping(mapping, page, true))
1457 goto keep_locked;
9a1ea439
HD
1458
1459 unlock_page(page);
e286781d 1460free_it:
98879b3b
YS
1461 /*
1462 * THP may get swapped out in a whole, need account
1463 * all base pages.
1464 */
1465 nr_reclaimed += nr_pages;
abe4c3b5
MG
1466
1467 /*
1468 * Is there need to periodically free_page_list? It would
1469 * appear not as the counts should be low
1470 */
bd4c82c2
HY
1471 if (unlikely(PageTransHuge(page))) {
1472 mem_cgroup_uncharge(page);
1473 (*get_compound_page_dtor(page))(page);
1474 } else
1475 list_add(&page->lru, &free_pages);
1da177e4
LT
1476 continue;
1477
98879b3b
YS
1478activate_locked_split:
1479 /*
1480 * The tail pages that are failed to add into swap cache
1481 * reach here. Fixup nr_scanned and nr_pages.
1482 */
1483 if (nr_pages > 1) {
1484 sc->nr_scanned -= (nr_pages - 1);
1485 nr_pages = 1;
1486 }
1da177e4 1487activate_locked:
68a22394 1488 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1489 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1490 PageMlocked(page)))
a2c43eed 1491 try_to_free_swap(page);
309381fe 1492 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704 1493 if (!PageMlocked(page)) {
886cf190 1494 int type = page_is_file_cache(page);
ad6b6704 1495 SetPageActive(page);
98879b3b 1496 stat->nr_activate[type] += nr_pages;
2262185c 1497 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1498 }
1da177e4
LT
1499keep_locked:
1500 unlock_page(page);
1501keep:
1502 list_add(&page->lru, &ret_pages);
309381fe 1503 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1504 }
abe4c3b5 1505
98879b3b
YS
1506 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1507
747db954 1508 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1509 try_to_unmap_flush();
2d4894b5 1510 free_unref_page_list(&free_pages);
abe4c3b5 1511
1da177e4 1512 list_splice(&ret_pages, page_list);
886cf190 1513 count_vm_events(PGACTIVATE, pgactivate);
060f005f 1514
05ff5137 1515 return nr_reclaimed;
1da177e4
LT
1516}
1517
02c6de8d
MK
1518unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1519 struct list_head *page_list)
1520{
1521 struct scan_control sc = {
1522 .gfp_mask = GFP_KERNEL,
1523 .priority = DEF_PRIORITY,
1524 .may_unmap = 1,
1525 };
060f005f 1526 struct reclaim_stat dummy_stat;
3c710c1a 1527 unsigned long ret;
02c6de8d
MK
1528 struct page *page, *next;
1529 LIST_HEAD(clean_pages);
1530
1531 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1532 if (page_is_file_cache(page) && !PageDirty(page) &&
a58f2cef 1533 !__PageMovable(page) && !PageUnevictable(page)) {
02c6de8d
MK
1534 ClearPageActive(page);
1535 list_move(&page->lru, &clean_pages);
1536 }
1537 }
1538
599d0c95 1539 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
060f005f 1540 TTU_IGNORE_ACCESS, &dummy_stat, true);
02c6de8d 1541 list_splice(&clean_pages, page_list);
599d0c95 1542 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1543 return ret;
1544}
1545
5ad333eb
AW
1546/*
1547 * Attempt to remove the specified page from its LRU. Only take this page
1548 * if it is of the appropriate PageActive status. Pages which are being
1549 * freed elsewhere are also ignored.
1550 *
1551 * page: page to consider
1552 * mode: one of the LRU isolation modes defined above
1553 *
1554 * returns 0 on success, -ve errno on failure.
1555 */
f3fd4a61 1556int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1557{
1558 int ret = -EINVAL;
1559
1560 /* Only take pages on the LRU. */
1561 if (!PageLRU(page))
1562 return ret;
1563
e46a2879
MK
1564 /* Compaction should not handle unevictable pages but CMA can do so */
1565 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1566 return ret;
1567
5ad333eb 1568 ret = -EBUSY;
08e552c6 1569
c8244935
MG
1570 /*
1571 * To minimise LRU disruption, the caller can indicate that it only
1572 * wants to isolate pages it will be able to operate on without
1573 * blocking - clean pages for the most part.
1574 *
c8244935
MG
1575 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1576 * that it is possible to migrate without blocking
1577 */
1276ad68 1578 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1579 /* All the caller can do on PageWriteback is block */
1580 if (PageWriteback(page))
1581 return ret;
1582
1583 if (PageDirty(page)) {
1584 struct address_space *mapping;
69d763fc 1585 bool migrate_dirty;
c8244935 1586
c8244935
MG
1587 /*
1588 * Only pages without mappings or that have a
1589 * ->migratepage callback are possible to migrate
69d763fc
MG
1590 * without blocking. However, we can be racing with
1591 * truncation so it's necessary to lock the page
1592 * to stabilise the mapping as truncation holds
1593 * the page lock until after the page is removed
1594 * from the page cache.
c8244935 1595 */
69d763fc
MG
1596 if (!trylock_page(page))
1597 return ret;
1598
c8244935 1599 mapping = page_mapping(page);
145e1a71 1600 migrate_dirty = !mapping || mapping->a_ops->migratepage;
69d763fc
MG
1601 unlock_page(page);
1602 if (!migrate_dirty)
c8244935
MG
1603 return ret;
1604 }
1605 }
39deaf85 1606
f80c0673
MK
1607 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1608 return ret;
1609
5ad333eb
AW
1610 if (likely(get_page_unless_zero(page))) {
1611 /*
1612 * Be careful not to clear PageLRU until after we're
1613 * sure the page is not being freed elsewhere -- the
1614 * page release code relies on it.
1615 */
1616 ClearPageLRU(page);
1617 ret = 0;
1618 }
1619
1620 return ret;
1621}
1622
7ee36a14
MG
1623
1624/*
1625 * Update LRU sizes after isolating pages. The LRU size updates must
1626 * be complete before mem_cgroup_update_lru_size due to a santity check.
1627 */
1628static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1629 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1630{
7ee36a14
MG
1631 int zid;
1632
7ee36a14
MG
1633 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1634 if (!nr_zone_taken[zid])
1635 continue;
1636
1637 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1638#ifdef CONFIG_MEMCG
b4536f0c 1639 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1640#endif
b4536f0c
MH
1641 }
1642
7ee36a14
MG
1643}
1644
f4b7e272
AR
1645/**
1646 * pgdat->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1647 * shrink the lists perform better by taking out a batch of pages
1648 * and working on them outside the LRU lock.
1649 *
1650 * For pagecache intensive workloads, this function is the hottest
1651 * spot in the kernel (apart from copy_*_user functions).
1652 *
1653 * Appropriate locks must be held before calling this function.
1654 *
791b48b6 1655 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1656 * @lruvec: The LRU vector to pull pages from.
1da177e4 1657 * @dst: The temp list to put pages on to.
f626012d 1658 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1659 * @sc: The scan_control struct for this reclaim session
5ad333eb 1660 * @mode: One of the LRU isolation modes
3cb99451 1661 * @lru: LRU list id for isolating
1da177e4
LT
1662 *
1663 * returns how many pages were moved onto *@dst.
1664 */
69e05944 1665static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1666 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1667 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 1668 enum lru_list lru)
1da177e4 1669{
75b00af7 1670 struct list_head *src = &lruvec->lists[lru];
69e05944 1671 unsigned long nr_taken = 0;
599d0c95 1672 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1673 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1674 unsigned long skipped = 0;
791b48b6 1675 unsigned long scan, total_scan, nr_pages;
b2e18757 1676 LIST_HEAD(pages_skipped);
a9e7c39f 1677 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1da177e4 1678
98879b3b 1679 total_scan = 0;
791b48b6 1680 scan = 0;
98879b3b 1681 while (scan < nr_to_scan && !list_empty(src)) {
5ad333eb 1682 struct page *page;
5ad333eb 1683
1da177e4
LT
1684 page = lru_to_page(src);
1685 prefetchw_prev_lru_page(page, src, flags);
1686
309381fe 1687 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1688
98879b3b
YS
1689 nr_pages = 1 << compound_order(page);
1690 total_scan += nr_pages;
1691
b2e18757
MG
1692 if (page_zonenum(page) > sc->reclaim_idx) {
1693 list_move(&page->lru, &pages_skipped);
98879b3b 1694 nr_skipped[page_zonenum(page)] += nr_pages;
b2e18757
MG
1695 continue;
1696 }
1697
791b48b6
MK
1698 /*
1699 * Do not count skipped pages because that makes the function
1700 * return with no isolated pages if the LRU mostly contains
1701 * ineligible pages. This causes the VM to not reclaim any
1702 * pages, triggering a premature OOM.
98879b3b
YS
1703 *
1704 * Account all tail pages of THP. This would not cause
1705 * premature OOM since __isolate_lru_page() returns -EBUSY
1706 * only when the page is being freed somewhere else.
791b48b6 1707 */
98879b3b 1708 scan += nr_pages;
f3fd4a61 1709 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1710 case 0:
599d0c95
MG
1711 nr_taken += nr_pages;
1712 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1713 list_move(&page->lru, dst);
5ad333eb
AW
1714 break;
1715
1716 case -EBUSY:
1717 /* else it is being freed elsewhere */
1718 list_move(&page->lru, src);
1719 continue;
46453a6e 1720
5ad333eb
AW
1721 default:
1722 BUG();
1723 }
1da177e4
LT
1724 }
1725
b2e18757
MG
1726 /*
1727 * Splice any skipped pages to the start of the LRU list. Note that
1728 * this disrupts the LRU order when reclaiming for lower zones but
1729 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1730 * scanning would soon rescan the same pages to skip and put the
1731 * system at risk of premature OOM.
1732 */
7cc30fcf
MG
1733 if (!list_empty(&pages_skipped)) {
1734 int zid;
1735
3db65812 1736 list_splice(&pages_skipped, src);
7cc30fcf
MG
1737 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1738 if (!nr_skipped[zid])
1739 continue;
1740
1741 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1742 skipped += nr_skipped[zid];
7cc30fcf
MG
1743 }
1744 }
791b48b6 1745 *nr_scanned = total_scan;
1265e3a6 1746 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 1747 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 1748 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1749 return nr_taken;
1750}
1751
62695a84
NP
1752/**
1753 * isolate_lru_page - tries to isolate a page from its LRU list
1754 * @page: page to isolate from its LRU list
1755 *
1756 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1757 * vmstat statistic corresponding to whatever LRU list the page was on.
1758 *
1759 * Returns 0 if the page was removed from an LRU list.
1760 * Returns -EBUSY if the page was not on an LRU list.
1761 *
1762 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1763 * the active list, it will have PageActive set. If it was found on
1764 * the unevictable list, it will have the PageUnevictable bit set. That flag
1765 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1766 *
1767 * The vmstat statistic corresponding to the list on which the page was
1768 * found will be decremented.
1769 *
1770 * Restrictions:
a5d09bed 1771 *
62695a84
NP
1772 * (1) Must be called with an elevated refcount on the page. This is a
1773 * fundamentnal difference from isolate_lru_pages (which is called
1774 * without a stable reference).
1775 * (2) the lru_lock must not be held.
1776 * (3) interrupts must be enabled.
1777 */
1778int isolate_lru_page(struct page *page)
1779{
1780 int ret = -EBUSY;
1781
309381fe 1782 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1783 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1784
62695a84 1785 if (PageLRU(page)) {
f4b7e272 1786 pg_data_t *pgdat = page_pgdat(page);
fa9add64 1787 struct lruvec *lruvec;
62695a84 1788
f4b7e272
AR
1789 spin_lock_irq(&pgdat->lru_lock);
1790 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0c917313 1791 if (PageLRU(page)) {
894bc310 1792 int lru = page_lru(page);
0c917313 1793 get_page(page);
62695a84 1794 ClearPageLRU(page);
fa9add64
HD
1795 del_page_from_lru_list(page, lruvec, lru);
1796 ret = 0;
62695a84 1797 }
f4b7e272 1798 spin_unlock_irq(&pgdat->lru_lock);
62695a84
NP
1799 }
1800 return ret;
1801}
1802
35cd7815 1803/*
d37dd5dc
FW
1804 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1805 * then get resheduled. When there are massive number of tasks doing page
1806 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1807 * the LRU list will go small and be scanned faster than necessary, leading to
1808 * unnecessary swapping, thrashing and OOM.
35cd7815 1809 */
599d0c95 1810static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1811 struct scan_control *sc)
1812{
1813 unsigned long inactive, isolated;
1814
1815 if (current_is_kswapd())
1816 return 0;
1817
97c9341f 1818 if (!sane_reclaim(sc))
35cd7815
RR
1819 return 0;
1820
1821 if (file) {
599d0c95
MG
1822 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1823 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1824 } else {
599d0c95
MG
1825 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1826 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1827 }
1828
3cf23841
FW
1829 /*
1830 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1831 * won't get blocked by normal direct-reclaimers, forming a circular
1832 * deadlock.
1833 */
d0164adc 1834 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1835 inactive >>= 3;
1836
35cd7815
RR
1837 return isolated > inactive;
1838}
1839
a222f341
KT
1840/*
1841 * This moves pages from @list to corresponding LRU list.
1842 *
1843 * We move them the other way if the page is referenced by one or more
1844 * processes, from rmap.
1845 *
1846 * If the pages are mostly unmapped, the processing is fast and it is
1847 * appropriate to hold zone_lru_lock across the whole operation. But if
1848 * the pages are mapped, the processing is slow (page_referenced()) so we
1849 * should drop zone_lru_lock around each page. It's impossible to balance
1850 * this, so instead we remove the pages from the LRU while processing them.
1851 * It is safe to rely on PG_active against the non-LRU pages in here because
1852 * nobody will play with that bit on a non-LRU page.
1853 *
1854 * The downside is that we have to touch page->_refcount against each page.
1855 * But we had to alter page->flags anyway.
1856 *
1857 * Returns the number of pages moved to the given lruvec.
1858 */
1859
1860static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1861 struct list_head *list)
66635629 1862{
599d0c95 1863 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
a222f341 1864 int nr_pages, nr_moved = 0;
3f79768f 1865 LIST_HEAD(pages_to_free);
a222f341
KT
1866 struct page *page;
1867 enum lru_list lru;
66635629 1868
a222f341
KT
1869 while (!list_empty(list)) {
1870 page = lru_to_page(list);
309381fe 1871 VM_BUG_ON_PAGE(PageLRU(page), page);
39b5f29a 1872 if (unlikely(!page_evictable(page))) {
a222f341 1873 list_del(&page->lru);
599d0c95 1874 spin_unlock_irq(&pgdat->lru_lock);
66635629 1875 putback_lru_page(page);
599d0c95 1876 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1877 continue;
1878 }
599d0c95 1879 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1880
7a608572 1881 SetPageLRU(page);
66635629 1882 lru = page_lru(page);
a222f341
KT
1883
1884 nr_pages = hpage_nr_pages(page);
1885 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1886 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1887
2bcf8879
HD
1888 if (put_page_testzero(page)) {
1889 __ClearPageLRU(page);
1890 __ClearPageActive(page);
fa9add64 1891 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1892
1893 if (unlikely(PageCompound(page))) {
599d0c95 1894 spin_unlock_irq(&pgdat->lru_lock);
747db954 1895 mem_cgroup_uncharge(page);
2bcf8879 1896 (*get_compound_page_dtor(page))(page);
599d0c95 1897 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1898 } else
1899 list_add(&page->lru, &pages_to_free);
a222f341
KT
1900 } else {
1901 nr_moved += nr_pages;
66635629
MG
1902 }
1903 }
66635629 1904
3f79768f
HD
1905 /*
1906 * To save our caller's stack, now use input list for pages to free.
1907 */
a222f341
KT
1908 list_splice(&pages_to_free, list);
1909
1910 return nr_moved;
66635629
MG
1911}
1912
399ba0b9
N
1913/*
1914 * If a kernel thread (such as nfsd for loop-back mounts) services
1915 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1916 * In that case we should only throttle if the backing device it is
1917 * writing to is congested. In other cases it is safe to throttle.
1918 */
1919static int current_may_throttle(void)
1920{
1921 return !(current->flags & PF_LESS_THROTTLE) ||
1922 current->backing_dev_info == NULL ||
1923 bdi_write_congested(current->backing_dev_info);
1924}
1925
1da177e4 1926/*
b2e18757 1927 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1928 * of reclaimed pages
1da177e4 1929 */
66635629 1930static noinline_for_stack unsigned long
1a93be0e 1931shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1932 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1933{
1934 LIST_HEAD(page_list);
e247dbce 1935 unsigned long nr_scanned;
05ff5137 1936 unsigned long nr_reclaimed = 0;
e247dbce 1937 unsigned long nr_taken;
060f005f 1938 struct reclaim_stat stat;
3cb99451 1939 int file = is_file_lru(lru);
f46b7912 1940 enum vm_event_item item;
599d0c95 1941 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1942 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
db73ee0d 1943 bool stalled = false;
78dc583d 1944
599d0c95 1945 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
1946 if (stalled)
1947 return 0;
1948
1949 /* wait a bit for the reclaimer. */
1950 msleep(100);
1951 stalled = true;
35cd7815
RR
1952
1953 /* We are about to die and free our memory. Return now. */
1954 if (fatal_signal_pending(current))
1955 return SWAP_CLUSTER_MAX;
1956 }
1957
1da177e4 1958 lru_add_drain();
f80c0673 1959
599d0c95 1960 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1961
5dc35979 1962 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 1963 &nr_scanned, sc, lru);
95d918fc 1964
599d0c95 1965 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1966 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1967
f46b7912
KT
1968 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1969 if (global_reclaim(sc))
1970 __count_vm_events(item, nr_scanned);
1971 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
599d0c95 1972 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1973
d563c050 1974 if (nr_taken == 0)
66635629 1975 return 0;
5ad333eb 1976
a128ca71 1977 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
3c710c1a 1978 &stat, false);
c661b078 1979
599d0c95 1980 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1981
f46b7912
KT
1982 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1983 if (global_reclaim(sc))
1984 __count_vm_events(item, nr_reclaimed);
1985 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
b17f18af
KT
1986 reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
1987 reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
a74609fa 1988
a222f341 1989 move_pages_to_lru(lruvec, &page_list);
3f79768f 1990
599d0c95 1991 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1992
599d0c95 1993 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1994
747db954 1995 mem_cgroup_uncharge_list(&page_list);
2d4894b5 1996 free_unref_page_list(&page_list);
e11da5b4 1997
1c610d5f
AR
1998 /*
1999 * If dirty pages are scanned that are not queued for IO, it
2000 * implies that flushers are not doing their job. This can
2001 * happen when memory pressure pushes dirty pages to the end of
2002 * the LRU before the dirty limits are breached and the dirty
2003 * data has expired. It can also happen when the proportion of
2004 * dirty pages grows not through writes but through memory
2005 * pressure reclaiming all the clean cache. And in some cases,
2006 * the flushers simply cannot keep up with the allocation
2007 * rate. Nudge the flusher threads in case they are asleep.
2008 */
2009 if (stat.nr_unqueued_dirty == nr_taken)
2010 wakeup_flusher_threads(WB_REASON_VMSCAN);
2011
d108c772
AR
2012 sc->nr.dirty += stat.nr_dirty;
2013 sc->nr.congested += stat.nr_congested;
2014 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2015 sc->nr.writeback += stat.nr_writeback;
2016 sc->nr.immediate += stat.nr_immediate;
2017 sc->nr.taken += nr_taken;
2018 if (file)
2019 sc->nr.file_taken += nr_taken;
8e950282 2020
599d0c95 2021 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2022 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2023 return nr_reclaimed;
1da177e4
LT
2024}
2025
f626012d 2026static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2027 struct lruvec *lruvec,
f16015fb 2028 struct scan_control *sc,
9e3b2f8c 2029 enum lru_list lru)
1da177e4 2030{
44c241f1 2031 unsigned long nr_taken;
f626012d 2032 unsigned long nr_scanned;
6fe6b7e3 2033 unsigned long vm_flags;
1da177e4 2034 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2035 LIST_HEAD(l_active);
b69408e8 2036 LIST_HEAD(l_inactive);
1da177e4 2037 struct page *page;
1a93be0e 2038 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
9d998b4f
MH
2039 unsigned nr_deactivate, nr_activate;
2040 unsigned nr_rotated = 0;
3cb99451 2041 int file = is_file_lru(lru);
599d0c95 2042 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2043
2044 lru_add_drain();
f80c0673 2045
599d0c95 2046 spin_lock_irq(&pgdat->lru_lock);
925b7673 2047
5dc35979 2048 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2049 &nr_scanned, sc, lru);
89b5fae5 2050
599d0c95 2051 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 2052 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 2053
599d0c95 2054 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2055 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2056
599d0c95 2057 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 2058
1da177e4
LT
2059 while (!list_empty(&l_hold)) {
2060 cond_resched();
2061 page = lru_to_page(&l_hold);
2062 list_del(&page->lru);
7e9cd484 2063
39b5f29a 2064 if (unlikely(!page_evictable(page))) {
894bc310
LS
2065 putback_lru_page(page);
2066 continue;
2067 }
2068
cc715d99
MG
2069 if (unlikely(buffer_heads_over_limit)) {
2070 if (page_has_private(page) && trylock_page(page)) {
2071 if (page_has_private(page))
2072 try_to_release_page(page, 0);
2073 unlock_page(page);
2074 }
2075 }
2076
c3ac9a8a
JW
2077 if (page_referenced(page, 0, sc->target_mem_cgroup,
2078 &vm_flags)) {
9992af10 2079 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
2080 /*
2081 * Identify referenced, file-backed active pages and
2082 * give them one more trip around the active list. So
2083 * that executable code get better chances to stay in
2084 * memory under moderate memory pressure. Anon pages
2085 * are not likely to be evicted by use-once streaming
2086 * IO, plus JVM can create lots of anon VM_EXEC pages,
2087 * so we ignore them here.
2088 */
41e20983 2089 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
2090 list_add(&page->lru, &l_active);
2091 continue;
2092 }
2093 }
7e9cd484 2094
5205e56e 2095 ClearPageActive(page); /* we are de-activating */
1899ad18 2096 SetPageWorkingset(page);
1da177e4
LT
2097 list_add(&page->lru, &l_inactive);
2098 }
2099
b555749a 2100 /*
8cab4754 2101 * Move pages back to the lru list.
b555749a 2102 */
599d0c95 2103 spin_lock_irq(&pgdat->lru_lock);
556adecb 2104 /*
8cab4754
WF
2105 * Count referenced pages from currently used mappings as rotated,
2106 * even though only some of them are actually re-activated. This
2107 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 2108 * get_scan_count.
7e9cd484 2109 */
b7c46d15 2110 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 2111
a222f341
KT
2112 nr_activate = move_pages_to_lru(lruvec, &l_active);
2113 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
f372d89e
KT
2114 /* Keep all free pages in l_active list */
2115 list_splice(&l_inactive, &l_active);
9851ac13
KT
2116
2117 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2118 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2119
599d0c95
MG
2120 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2121 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 2122
f372d89e
KT
2123 mem_cgroup_uncharge_list(&l_active);
2124 free_unref_page_list(&l_active);
9d998b4f
MH
2125 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2126 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2127}
2128
59dc76b0
RR
2129/*
2130 * The inactive anon list should be small enough that the VM never has
2131 * to do too much work.
14797e23 2132 *
59dc76b0
RR
2133 * The inactive file list should be small enough to leave most memory
2134 * to the established workingset on the scan-resistant active list,
2135 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2136 *
59dc76b0
RR
2137 * Both inactive lists should also be large enough that each inactive
2138 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2139 *
2a2e4885
JW
2140 * If that fails and refaulting is observed, the inactive list grows.
2141 *
59dc76b0 2142 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2143 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2144 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2145 *
59dc76b0
RR
2146 * total target max
2147 * memory ratio inactive
2148 * -------------------------------------
2149 * 10MB 1 5MB
2150 * 100MB 1 50MB
2151 * 1GB 3 250MB
2152 * 10GB 10 0.9GB
2153 * 100GB 31 3GB
2154 * 1TB 101 10GB
2155 * 10TB 320 32GB
56e49d21 2156 */
f8d1a311 2157static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2c012a4a 2158 struct scan_control *sc, bool trace)
56e49d21 2159{
fd538803 2160 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2a2e4885
JW
2161 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2162 enum lru_list inactive_lru = file * LRU_FILE;
2163 unsigned long inactive, active;
2164 unsigned long inactive_ratio;
2165 unsigned long refaults;
59dc76b0 2166 unsigned long gb;
e3790144 2167
59dc76b0
RR
2168 /*
2169 * If we don't have swap space, anonymous page deactivation
2170 * is pointless.
2171 */
2172 if (!file && !total_swap_pages)
2173 return false;
56e49d21 2174
fd538803
MH
2175 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2176 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
f8d1a311 2177
2a2e4885
JW
2178 /*
2179 * When refaults are being observed, it means a new workingset
2180 * is being established. Disable active list protection to get
2181 * rid of the stale workingset quickly.
2182 */
205b20cc 2183 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2c012a4a 2184 if (file && lruvec->refaults != refaults) {
2a2e4885
JW
2185 inactive_ratio = 0;
2186 } else {
2187 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2188 if (gb)
2189 inactive_ratio = int_sqrt(10 * gb);
2190 else
2191 inactive_ratio = 1;
2192 }
59dc76b0 2193
2c012a4a 2194 if (trace)
2a2e4885
JW
2195 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2196 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2197 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2198 inactive_ratio, file);
fd538803 2199
59dc76b0 2200 return inactive * inactive_ratio < active;
b39415b2
RR
2201}
2202
4f98a2fe 2203static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
3b991208 2204 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 2205{
b39415b2 2206 if (is_active_lru(lru)) {
3b991208 2207 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
1a93be0e 2208 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
2209 return 0;
2210 }
2211
1a93be0e 2212 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
2213}
2214
9a265114
JW
2215enum scan_balance {
2216 SCAN_EQUAL,
2217 SCAN_FRACT,
2218 SCAN_ANON,
2219 SCAN_FILE,
2220};
2221
4f98a2fe
RR
2222/*
2223 * Determine how aggressively the anon and file LRU lists should be
2224 * scanned. The relative value of each set of LRU lists is determined
2225 * by looking at the fraction of the pages scanned we did rotate back
2226 * onto the active list instead of evict.
2227 *
be7bd59d
WL
2228 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2229 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2230 */
33377678 2231static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
2232 struct scan_control *sc, unsigned long *nr,
2233 unsigned long *lru_pages)
4f98a2fe 2234{
33377678 2235 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2236 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2237 u64 fraction[2];
2238 u64 denominator = 0; /* gcc */
599d0c95 2239 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2240 unsigned long anon_prio, file_prio;
9a265114 2241 enum scan_balance scan_balance;
0bf1457f 2242 unsigned long anon, file;
4f98a2fe 2243 unsigned long ap, fp;
4111304d 2244 enum lru_list lru;
76a33fc3
SL
2245
2246 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2247 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2248 scan_balance = SCAN_FILE;
76a33fc3
SL
2249 goto out;
2250 }
4f98a2fe 2251
10316b31
JW
2252 /*
2253 * Global reclaim will swap to prevent OOM even with no
2254 * swappiness, but memcg users want to use this knob to
2255 * disable swapping for individual groups completely when
2256 * using the memory controller's swap limit feature would be
2257 * too expensive.
2258 */
02695175 2259 if (!global_reclaim(sc) && !swappiness) {
9a265114 2260 scan_balance = SCAN_FILE;
10316b31
JW
2261 goto out;
2262 }
2263
2264 /*
2265 * Do not apply any pressure balancing cleverness when the
2266 * system is close to OOM, scan both anon and file equally
2267 * (unless the swappiness setting disagrees with swapping).
2268 */
02695175 2269 if (!sc->priority && swappiness) {
9a265114 2270 scan_balance = SCAN_EQUAL;
10316b31
JW
2271 goto out;
2272 }
2273
62376251
JW
2274 /*
2275 * Prevent the reclaimer from falling into the cache trap: as
2276 * cache pages start out inactive, every cache fault will tip
2277 * the scan balance towards the file LRU. And as the file LRU
2278 * shrinks, so does the window for rotation from references.
2279 * This means we have a runaway feedback loop where a tiny
2280 * thrashing file LRU becomes infinitely more attractive than
2281 * anon pages. Try to detect this based on file LRU size.
2282 */
2283 if (global_reclaim(sc)) {
599d0c95
MG
2284 unsigned long pgdatfile;
2285 unsigned long pgdatfree;
2286 int z;
2287 unsigned long total_high_wmark = 0;
2ab051e1 2288
599d0c95
MG
2289 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2290 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2291 node_page_state(pgdat, NR_INACTIVE_FILE);
2292
2293 for (z = 0; z < MAX_NR_ZONES; z++) {
2294 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2295 if (!managed_zone(zone))
599d0c95
MG
2296 continue;
2297
2298 total_high_wmark += high_wmark_pages(zone);
2299 }
62376251 2300
599d0c95 2301 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
06226226
DR
2302 /*
2303 * Force SCAN_ANON if there are enough inactive
2304 * anonymous pages on the LRU in eligible zones.
2305 * Otherwise, the small LRU gets thrashed.
2306 */
3b991208 2307 if (!inactive_list_is_low(lruvec, false, sc, false) &&
06226226
DR
2308 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2309 >> sc->priority) {
2310 scan_balance = SCAN_ANON;
2311 goto out;
2312 }
62376251
JW
2313 }
2314 }
2315
7c5bd705 2316 /*
316bda0e
VD
2317 * If there is enough inactive page cache, i.e. if the size of the
2318 * inactive list is greater than that of the active list *and* the
2319 * inactive list actually has some pages to scan on this priority, we
2320 * do not reclaim anything from the anonymous working set right now.
2321 * Without the second condition we could end up never scanning an
2322 * lruvec even if it has plenty of old anonymous pages unless the
2323 * system is under heavy pressure.
7c5bd705 2324 */
3b991208 2325 if (!inactive_list_is_low(lruvec, true, sc, false) &&
71ab6cfe 2326 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
9a265114 2327 scan_balance = SCAN_FILE;
7c5bd705
JW
2328 goto out;
2329 }
2330
9a265114
JW
2331 scan_balance = SCAN_FRACT;
2332
58c37f6e
KM
2333 /*
2334 * With swappiness at 100, anonymous and file have the same priority.
2335 * This scanning priority is essentially the inverse of IO cost.
2336 */
02695175 2337 anon_prio = swappiness;
75b00af7 2338 file_prio = 200 - anon_prio;
58c37f6e 2339
4f98a2fe
RR
2340 /*
2341 * OK, so we have swap space and a fair amount of page cache
2342 * pages. We use the recently rotated / recently scanned
2343 * ratios to determine how valuable each cache is.
2344 *
2345 * Because workloads change over time (and to avoid overflow)
2346 * we keep these statistics as a floating average, which ends
2347 * up weighing recent references more than old ones.
2348 *
2349 * anon in [0], file in [1]
2350 */
2ab051e1 2351
fd538803
MH
2352 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2353 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2354 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2355 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2ab051e1 2356
599d0c95 2357 spin_lock_irq(&pgdat->lru_lock);
6e901571 2358 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2359 reclaim_stat->recent_scanned[0] /= 2;
2360 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2361 }
2362
6e901571 2363 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2364 reclaim_stat->recent_scanned[1] /= 2;
2365 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2366 }
2367
4f98a2fe 2368 /*
00d8089c
RR
2369 * The amount of pressure on anon vs file pages is inversely
2370 * proportional to the fraction of recently scanned pages on
2371 * each list that were recently referenced and in active use.
4f98a2fe 2372 */
fe35004f 2373 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2374 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2375
fe35004f 2376 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2377 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2378 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2379
76a33fc3
SL
2380 fraction[0] = ap;
2381 fraction[1] = fp;
2382 denominator = ap + fp + 1;
2383out:
688035f7
JW
2384 *lru_pages = 0;
2385 for_each_evictable_lru(lru) {
2386 int file = is_file_lru(lru);
2387 unsigned long size;
2388 unsigned long scan;
6b4f7799 2389
688035f7
JW
2390 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2391 scan = size >> sc->priority;
2392 /*
2393 * If the cgroup's already been deleted, make sure to
2394 * scrape out the remaining cache.
2395 */
2396 if (!scan && !mem_cgroup_online(memcg))
2397 scan = min(size, SWAP_CLUSTER_MAX);
6b4f7799 2398
688035f7
JW
2399 switch (scan_balance) {
2400 case SCAN_EQUAL:
2401 /* Scan lists relative to size */
2402 break;
2403 case SCAN_FRACT:
9a265114 2404 /*
688035f7
JW
2405 * Scan types proportional to swappiness and
2406 * their relative recent reclaim efficiency.
68600f62
RG
2407 * Make sure we don't miss the last page
2408 * because of a round-off error.
9a265114 2409 */
68600f62
RG
2410 scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2411 denominator);
688035f7
JW
2412 break;
2413 case SCAN_FILE:
2414 case SCAN_ANON:
2415 /* Scan one type exclusively */
2416 if ((scan_balance == SCAN_FILE) != file) {
2417 size = 0;
2418 scan = 0;
2419 }
2420 break;
2421 default:
2422 /* Look ma, no brain */
2423 BUG();
9a265114 2424 }
688035f7
JW
2425
2426 *lru_pages += size;
2427 nr[lru] = scan;
76a33fc3 2428 }
6e08a369 2429}
4f98a2fe 2430
9b4f98cd 2431/*
a9dd0a83 2432 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
9b4f98cd 2433 */
a9dd0a83 2434static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
33377678 2435 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2436{
ef8f2327 2437 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
9b4f98cd 2438 unsigned long nr[NR_LRU_LISTS];
e82e0561 2439 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2440 unsigned long nr_to_scan;
2441 enum lru_list lru;
2442 unsigned long nr_reclaimed = 0;
2443 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2444 struct blk_plug plug;
1a501907 2445 bool scan_adjusted;
9b4f98cd 2446
33377678 2447 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2448
e82e0561
MG
2449 /* Record the original scan target for proportional adjustments later */
2450 memcpy(targets, nr, sizeof(nr));
2451
1a501907
MG
2452 /*
2453 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2454 * event that can occur when there is little memory pressure e.g.
2455 * multiple streaming readers/writers. Hence, we do not abort scanning
2456 * when the requested number of pages are reclaimed when scanning at
2457 * DEF_PRIORITY on the assumption that the fact we are direct
2458 * reclaiming implies that kswapd is not keeping up and it is best to
2459 * do a batch of work at once. For memcg reclaim one check is made to
2460 * abort proportional reclaim if either the file or anon lru has already
2461 * dropped to zero at the first pass.
2462 */
2463 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2464 sc->priority == DEF_PRIORITY);
2465
9b4f98cd
JW
2466 blk_start_plug(&plug);
2467 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2468 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2469 unsigned long nr_anon, nr_file, percentage;
2470 unsigned long nr_scanned;
2471
9b4f98cd
JW
2472 for_each_evictable_lru(lru) {
2473 if (nr[lru]) {
2474 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2475 nr[lru] -= nr_to_scan;
2476
2477 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2478 lruvec, sc);
9b4f98cd
JW
2479 }
2480 }
e82e0561 2481
bd041733
MH
2482 cond_resched();
2483
e82e0561
MG
2484 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2485 continue;
2486
e82e0561
MG
2487 /*
2488 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2489 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2490 * proportionally what was requested by get_scan_count(). We
2491 * stop reclaiming one LRU and reduce the amount scanning
2492 * proportional to the original scan target.
2493 */
2494 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2495 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2496
1a501907
MG
2497 /*
2498 * It's just vindictive to attack the larger once the smaller
2499 * has gone to zero. And given the way we stop scanning the
2500 * smaller below, this makes sure that we only make one nudge
2501 * towards proportionality once we've got nr_to_reclaim.
2502 */
2503 if (!nr_file || !nr_anon)
2504 break;
2505
e82e0561
MG
2506 if (nr_file > nr_anon) {
2507 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2508 targets[LRU_ACTIVE_ANON] + 1;
2509 lru = LRU_BASE;
2510 percentage = nr_anon * 100 / scan_target;
2511 } else {
2512 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2513 targets[LRU_ACTIVE_FILE] + 1;
2514 lru = LRU_FILE;
2515 percentage = nr_file * 100 / scan_target;
2516 }
2517
2518 /* Stop scanning the smaller of the LRU */
2519 nr[lru] = 0;
2520 nr[lru + LRU_ACTIVE] = 0;
2521
2522 /*
2523 * Recalculate the other LRU scan count based on its original
2524 * scan target and the percentage scanning already complete
2525 */
2526 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2527 nr_scanned = targets[lru] - nr[lru];
2528 nr[lru] = targets[lru] * (100 - percentage) / 100;
2529 nr[lru] -= min(nr[lru], nr_scanned);
2530
2531 lru += LRU_ACTIVE;
2532 nr_scanned = targets[lru] - nr[lru];
2533 nr[lru] = targets[lru] * (100 - percentage) / 100;
2534 nr[lru] -= min(nr[lru], nr_scanned);
2535
2536 scan_adjusted = true;
9b4f98cd
JW
2537 }
2538 blk_finish_plug(&plug);
2539 sc->nr_reclaimed += nr_reclaimed;
2540
2541 /*
2542 * Even if we did not try to evict anon pages at all, we want to
2543 * rebalance the anon lru active/inactive ratio.
2544 */
3b991208 2545 if (inactive_list_is_low(lruvec, false, sc, true))
9b4f98cd
JW
2546 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2547 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2548}
2549
23b9da55 2550/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2551static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2552{
d84da3f9 2553 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2554 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2555 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2556 return true;
2557
2558 return false;
2559}
2560
3e7d3449 2561/*
23b9da55
MG
2562 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2563 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2564 * true if more pages should be reclaimed such that when the page allocator
2565 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2566 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2567 */
a9dd0a83 2568static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449
MG
2569 unsigned long nr_reclaimed,
2570 unsigned long nr_scanned,
2571 struct scan_control *sc)
2572{
2573 unsigned long pages_for_compaction;
2574 unsigned long inactive_lru_pages;
a9dd0a83 2575 int z;
3e7d3449
MG
2576
2577 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2578 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2579 return false;
2580
2876592f 2581 /* Consider stopping depending on scan and reclaim activity */
dcda9b04 2582 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2876592f 2583 /*
dcda9b04 2584 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2876592f
MG
2585 * full LRU list has been scanned and we are still failing
2586 * to reclaim pages. This full LRU scan is potentially
dcda9b04 2587 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2876592f
MG
2588 */
2589 if (!nr_reclaimed && !nr_scanned)
2590 return false;
2591 } else {
2592 /*
dcda9b04 2593 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2876592f
MG
2594 * fail without consequence, stop if we failed to reclaim
2595 * any pages from the last SWAP_CLUSTER_MAX number of
2596 * pages that were scanned. This will return to the
2597 * caller faster at the risk reclaim/compaction and
2598 * the resulting allocation attempt fails
2599 */
2600 if (!nr_reclaimed)
2601 return false;
2602 }
3e7d3449
MG
2603
2604 /*
2605 * If we have not reclaimed enough pages for compaction and the
2606 * inactive lists are large enough, continue reclaiming
2607 */
9861a62c 2608 pages_for_compaction = compact_gap(sc->order);
a9dd0a83 2609 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
ec8acf20 2610 if (get_nr_swap_pages() > 0)
a9dd0a83 2611 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3e7d3449
MG
2612 if (sc->nr_reclaimed < pages_for_compaction &&
2613 inactive_lru_pages > pages_for_compaction)
2614 return true;
2615
2616 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2617 for (z = 0; z <= sc->reclaim_idx; z++) {
2618 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2619 if (!managed_zone(zone))
a9dd0a83
MG
2620 continue;
2621
2622 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2623 case COMPACT_SUCCESS:
a9dd0a83
MG
2624 case COMPACT_CONTINUE:
2625 return false;
2626 default:
2627 /* check next zone */
2628 ;
2629 }
3e7d3449 2630 }
a9dd0a83 2631 return true;
3e7d3449
MG
2632}
2633
e3c1ac58
AR
2634static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2635{
2636 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2637 (memcg && memcg_congested(pgdat, memcg));
2638}
2639
970a39a3 2640static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2641{
cb731d6c 2642 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2643 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2644 bool reclaimable = false;
1da177e4 2645
9b4f98cd
JW
2646 do {
2647 struct mem_cgroup *root = sc->target_mem_cgroup;
2648 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 2649 .pgdat = pgdat,
9b4f98cd
JW
2650 .priority = sc->priority,
2651 };
a9dd0a83 2652 unsigned long node_lru_pages = 0;
694fbc0f 2653 struct mem_cgroup *memcg;
3e7d3449 2654
d108c772
AR
2655 memset(&sc->nr, 0, sizeof(sc->nr));
2656
9b4f98cd
JW
2657 nr_reclaimed = sc->nr_reclaimed;
2658 nr_scanned = sc->nr_scanned;
1da177e4 2659
694fbc0f
AM
2660 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2661 do {
6b4f7799 2662 unsigned long lru_pages;
8e8ae645 2663 unsigned long reclaimed;
cb731d6c 2664 unsigned long scanned;
5660048c 2665
bf8d5d52
RG
2666 switch (mem_cgroup_protected(root, memcg)) {
2667 case MEMCG_PROT_MIN:
2668 /*
2669 * Hard protection.
2670 * If there is no reclaimable memory, OOM.
2671 */
2672 continue;
2673 case MEMCG_PROT_LOW:
2674 /*
2675 * Soft protection.
2676 * Respect the protection only as long as
2677 * there is an unprotected supply
2678 * of reclaimable memory from other cgroups.
2679 */
d6622f63
YX
2680 if (!sc->memcg_low_reclaim) {
2681 sc->memcg_low_skipped = 1;
241994ed 2682 continue;
d6622f63 2683 }
e27be240 2684 memcg_memory_event(memcg, MEMCG_LOW);
bf8d5d52
RG
2685 break;
2686 case MEMCG_PROT_NONE:
2687 break;
241994ed
JW
2688 }
2689
8e8ae645 2690 reclaimed = sc->nr_reclaimed;
cb731d6c 2691 scanned = sc->nr_scanned;
a9dd0a83
MG
2692 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2693 node_lru_pages += lru_pages;
f16015fb 2694
1c30844d
MG
2695 if (sc->may_shrinkslab) {
2696 shrink_slab(sc->gfp_mask, pgdat->node_id,
aeed1d32 2697 memcg, sc->priority);
1c30844d 2698 }
cb731d6c 2699
8e8ae645
JW
2700 /* Record the group's reclaim efficiency */
2701 vmpressure(sc->gfp_mask, memcg, false,
2702 sc->nr_scanned - scanned,
2703 sc->nr_reclaimed - reclaimed);
2704
9b4f98cd 2705 /*
2bb0f34f
YS
2706 * Kswapd have to scan all memory cgroups to fulfill
2707 * the overall scan target for the node.
a394cb8e
MH
2708 *
2709 * Limit reclaim, on the other hand, only cares about
2710 * nr_to_reclaim pages to be reclaimed and it will
2711 * retry with decreasing priority if one round over the
2712 * whole hierarchy is not sufficient.
9b4f98cd 2713 */
2bb0f34f 2714 if (!current_is_kswapd() &&
a394cb8e 2715 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2716 mem_cgroup_iter_break(root, memcg);
2717 break;
2718 }
241994ed 2719 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2720
cb731d6c
VD
2721 if (reclaim_state) {
2722 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2723 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2724 }
2725
8e8ae645
JW
2726 /* Record the subtree's reclaim efficiency */
2727 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2728 sc->nr_scanned - nr_scanned,
2729 sc->nr_reclaimed - nr_reclaimed);
2730
2344d7e4
JW
2731 if (sc->nr_reclaimed - nr_reclaimed)
2732 reclaimable = true;
2733
e3c1ac58
AR
2734 if (current_is_kswapd()) {
2735 /*
2736 * If reclaim is isolating dirty pages under writeback,
2737 * it implies that the long-lived page allocation rate
2738 * is exceeding the page laundering rate. Either the
2739 * global limits are not being effective at throttling
2740 * processes due to the page distribution throughout
2741 * zones or there is heavy usage of a slow backing
2742 * device. The only option is to throttle from reclaim
2743 * context which is not ideal as there is no guarantee
2744 * the dirtying process is throttled in the same way
2745 * balance_dirty_pages() manages.
2746 *
2747 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2748 * count the number of pages under pages flagged for
2749 * immediate reclaim and stall if any are encountered
2750 * in the nr_immediate check below.
2751 */
2752 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2753 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 2754
d108c772
AR
2755 /*
2756 * Tag a node as congested if all the dirty pages
2757 * scanned were backed by a congested BDI and
2758 * wait_iff_congested will stall.
2759 */
2760 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2761 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2762
2763 /* Allow kswapd to start writing pages during reclaim.*/
2764 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2765 set_bit(PGDAT_DIRTY, &pgdat->flags);
2766
2767 /*
2768 * If kswapd scans pages marked marked for immediate
2769 * reclaim and under writeback (nr_immediate), it
2770 * implies that pages are cycling through the LRU
2771 * faster than they are written so also forcibly stall.
2772 */
2773 if (sc->nr.immediate)
2774 congestion_wait(BLK_RW_ASYNC, HZ/10);
2775 }
2776
e3c1ac58
AR
2777 /*
2778 * Legacy memcg will stall in page writeback so avoid forcibly
2779 * stalling in wait_iff_congested().
2780 */
2781 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2782 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2783 set_memcg_congestion(pgdat, root, true);
2784
d108c772
AR
2785 /*
2786 * Stall direct reclaim for IO completions if underlying BDIs
2787 * and node is congested. Allow kswapd to continue until it
2788 * starts encountering unqueued dirty pages or cycling through
2789 * the LRU too quickly.
2790 */
2791 if (!sc->hibernation_mode && !current_is_kswapd() &&
e3c1ac58
AR
2792 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2793 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
d108c772 2794
a9dd0a83 2795 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
9b4f98cd 2796 sc->nr_scanned - nr_scanned, sc));
2344d7e4 2797
c73322d0
JW
2798 /*
2799 * Kswapd gives up on balancing particular nodes after too
2800 * many failures to reclaim anything from them and goes to
2801 * sleep. On reclaim progress, reset the failure counter. A
2802 * successful direct reclaim run will revive a dormant kswapd.
2803 */
2804 if (reclaimable)
2805 pgdat->kswapd_failures = 0;
2806
2344d7e4 2807 return reclaimable;
f16015fb
JW
2808}
2809
53853e2d 2810/*
fdd4c614
VB
2811 * Returns true if compaction should go ahead for a costly-order request, or
2812 * the allocation would already succeed without compaction. Return false if we
2813 * should reclaim first.
53853e2d 2814 */
4f588331 2815static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2816{
31483b6a 2817 unsigned long watermark;
fdd4c614 2818 enum compact_result suitable;
fe4b1b24 2819
fdd4c614
VB
2820 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2821 if (suitable == COMPACT_SUCCESS)
2822 /* Allocation should succeed already. Don't reclaim. */
2823 return true;
2824 if (suitable == COMPACT_SKIPPED)
2825 /* Compaction cannot yet proceed. Do reclaim. */
2826 return false;
fe4b1b24 2827
53853e2d 2828 /*
fdd4c614
VB
2829 * Compaction is already possible, but it takes time to run and there
2830 * are potentially other callers using the pages just freed. So proceed
2831 * with reclaim to make a buffer of free pages available to give
2832 * compaction a reasonable chance of completing and allocating the page.
2833 * Note that we won't actually reclaim the whole buffer in one attempt
2834 * as the target watermark in should_continue_reclaim() is lower. But if
2835 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2836 */
fdd4c614 2837 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2838
fdd4c614 2839 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2840}
2841
1da177e4
LT
2842/*
2843 * This is the direct reclaim path, for page-allocating processes. We only
2844 * try to reclaim pages from zones which will satisfy the caller's allocation
2845 * request.
2846 *
1da177e4
LT
2847 * If a zone is deemed to be full of pinned pages then just give it a light
2848 * scan then give up on it.
2849 */
0a0337e0 2850static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2851{
dd1a239f 2852 struct zoneref *z;
54a6eb5c 2853 struct zone *zone;
0608f43d
AM
2854 unsigned long nr_soft_reclaimed;
2855 unsigned long nr_soft_scanned;
619d0d76 2856 gfp_t orig_mask;
79dafcdc 2857 pg_data_t *last_pgdat = NULL;
1cfb419b 2858
cc715d99
MG
2859 /*
2860 * If the number of buffer_heads in the machine exceeds the maximum
2861 * allowed level, force direct reclaim to scan the highmem zone as
2862 * highmem pages could be pinning lowmem pages storing buffer_heads
2863 */
619d0d76 2864 orig_mask = sc->gfp_mask;
b2e18757 2865 if (buffer_heads_over_limit) {
cc715d99 2866 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2867 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2868 }
cc715d99 2869
d4debc66 2870 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2871 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2872 /*
2873 * Take care memory controller reclaiming has small influence
2874 * to global LRU.
2875 */
89b5fae5 2876 if (global_reclaim(sc)) {
344736f2
VD
2877 if (!cpuset_zone_allowed(zone,
2878 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2879 continue;
65ec02cb 2880
0b06496a
JW
2881 /*
2882 * If we already have plenty of memory free for
2883 * compaction in this zone, don't free any more.
2884 * Even though compaction is invoked for any
2885 * non-zero order, only frequent costly order
2886 * reclamation is disruptive enough to become a
2887 * noticeable problem, like transparent huge
2888 * page allocations.
2889 */
2890 if (IS_ENABLED(CONFIG_COMPACTION) &&
2891 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2892 compaction_ready(zone, sc)) {
0b06496a
JW
2893 sc->compaction_ready = true;
2894 continue;
e0887c19 2895 }
0b06496a 2896
79dafcdc
MG
2897 /*
2898 * Shrink each node in the zonelist once. If the
2899 * zonelist is ordered by zone (not the default) then a
2900 * node may be shrunk multiple times but in that case
2901 * the user prefers lower zones being preserved.
2902 */
2903 if (zone->zone_pgdat == last_pgdat)
2904 continue;
2905
0608f43d
AM
2906 /*
2907 * This steals pages from memory cgroups over softlimit
2908 * and returns the number of reclaimed pages and
2909 * scanned pages. This works for global memory pressure
2910 * and balancing, not for a memcg's limit.
2911 */
2912 nr_soft_scanned = 0;
ef8f2327 2913 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2914 sc->order, sc->gfp_mask,
2915 &nr_soft_scanned);
2916 sc->nr_reclaimed += nr_soft_reclaimed;
2917 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2918 /* need some check for avoid more shrink_zone() */
1cfb419b 2919 }
408d8544 2920
79dafcdc
MG
2921 /* See comment about same check for global reclaim above */
2922 if (zone->zone_pgdat == last_pgdat)
2923 continue;
2924 last_pgdat = zone->zone_pgdat;
970a39a3 2925 shrink_node(zone->zone_pgdat, sc);
1da177e4 2926 }
e0c23279 2927
619d0d76
WY
2928 /*
2929 * Restore to original mask to avoid the impact on the caller if we
2930 * promoted it to __GFP_HIGHMEM.
2931 */
2932 sc->gfp_mask = orig_mask;
1da177e4 2933}
4f98a2fe 2934
2a2e4885
JW
2935static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2936{
2937 struct mem_cgroup *memcg;
2938
2939 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2940 do {
2941 unsigned long refaults;
2942 struct lruvec *lruvec;
2943
2a2e4885 2944 lruvec = mem_cgroup_lruvec(pgdat, memcg);
205b20cc 2945 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2a2e4885
JW
2946 lruvec->refaults = refaults;
2947 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2948}
2949
1da177e4
LT
2950/*
2951 * This is the main entry point to direct page reclaim.
2952 *
2953 * If a full scan of the inactive list fails to free enough memory then we
2954 * are "out of memory" and something needs to be killed.
2955 *
2956 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2957 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2958 * caller can't do much about. We kick the writeback threads and take explicit
2959 * naps in the hope that some of these pages can be written. But if the
2960 * allocating task holds filesystem locks which prevent writeout this might not
2961 * work, and the allocation attempt will fail.
a41f24ea
NA
2962 *
2963 * returns: 0, if no pages reclaimed
2964 * else, the number of pages reclaimed
1da177e4 2965 */
dac1d27b 2966static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2967 struct scan_control *sc)
1da177e4 2968{
241994ed 2969 int initial_priority = sc->priority;
2a2e4885
JW
2970 pg_data_t *last_pgdat;
2971 struct zoneref *z;
2972 struct zone *zone;
241994ed 2973retry:
873b4771
KK
2974 delayacct_freepages_start();
2975
89b5fae5 2976 if (global_reclaim(sc))
7cc30fcf 2977 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 2978
9e3b2f8c 2979 do {
70ddf637
AV
2980 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2981 sc->priority);
66e1707b 2982 sc->nr_scanned = 0;
0a0337e0 2983 shrink_zones(zonelist, sc);
c6a8a8c5 2984
bb21c7ce 2985 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2986 break;
2987
2988 if (sc->compaction_ready)
2989 break;
1da177e4 2990
0e50ce3b
MK
2991 /*
2992 * If we're getting trouble reclaiming, start doing
2993 * writepage even in laptop mode.
2994 */
2995 if (sc->priority < DEF_PRIORITY - 2)
2996 sc->may_writepage = 1;
0b06496a 2997 } while (--sc->priority >= 0);
bb21c7ce 2998
2a2e4885
JW
2999 last_pgdat = NULL;
3000 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3001 sc->nodemask) {
3002 if (zone->zone_pgdat == last_pgdat)
3003 continue;
3004 last_pgdat = zone->zone_pgdat;
3005 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
e3c1ac58 3006 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2a2e4885
JW
3007 }
3008
873b4771
KK
3009 delayacct_freepages_end();
3010
bb21c7ce
KM
3011 if (sc->nr_reclaimed)
3012 return sc->nr_reclaimed;
3013
0cee34fd 3014 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3015 if (sc->compaction_ready)
7335084d
MG
3016 return 1;
3017
241994ed 3018 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3019 if (sc->memcg_low_skipped) {
241994ed 3020 sc->priority = initial_priority;
d6622f63
YX
3021 sc->memcg_low_reclaim = 1;
3022 sc->memcg_low_skipped = 0;
241994ed
JW
3023 goto retry;
3024 }
3025
bb21c7ce 3026 return 0;
1da177e4
LT
3027}
3028
c73322d0 3029static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3030{
3031 struct zone *zone;
3032 unsigned long pfmemalloc_reserve = 0;
3033 unsigned long free_pages = 0;
3034 int i;
3035 bool wmark_ok;
3036
c73322d0
JW
3037 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3038 return true;
3039
5515061d
MG
3040 for (i = 0; i <= ZONE_NORMAL; i++) {
3041 zone = &pgdat->node_zones[i];
d450abd8
JW
3042 if (!managed_zone(zone))
3043 continue;
3044
3045 if (!zone_reclaimable_pages(zone))
675becce
MG
3046 continue;
3047
5515061d
MG
3048 pfmemalloc_reserve += min_wmark_pages(zone);
3049 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3050 }
3051
675becce
MG
3052 /* If there are no reserves (unexpected config) then do not throttle */
3053 if (!pfmemalloc_reserve)
3054 return true;
3055
5515061d
MG
3056 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3057
3058 /* kswapd must be awake if processes are being throttled */
3059 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 3060 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
3061 (enum zone_type)ZONE_NORMAL);
3062 wake_up_interruptible(&pgdat->kswapd_wait);
3063 }
3064
3065 return wmark_ok;
3066}
3067
3068/*
3069 * Throttle direct reclaimers if backing storage is backed by the network
3070 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3071 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3072 * when the low watermark is reached.
3073 *
3074 * Returns true if a fatal signal was delivered during throttling. If this
3075 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3076 */
50694c28 3077static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3078 nodemask_t *nodemask)
3079{
675becce 3080 struct zoneref *z;
5515061d 3081 struct zone *zone;
675becce 3082 pg_data_t *pgdat = NULL;
5515061d
MG
3083
3084 /*
3085 * Kernel threads should not be throttled as they may be indirectly
3086 * responsible for cleaning pages necessary for reclaim to make forward
3087 * progress. kjournald for example may enter direct reclaim while
3088 * committing a transaction where throttling it could forcing other
3089 * processes to block on log_wait_commit().
3090 */
3091 if (current->flags & PF_KTHREAD)
50694c28
MG
3092 goto out;
3093
3094 /*
3095 * If a fatal signal is pending, this process should not throttle.
3096 * It should return quickly so it can exit and free its memory
3097 */
3098 if (fatal_signal_pending(current))
3099 goto out;
5515061d 3100
675becce
MG
3101 /*
3102 * Check if the pfmemalloc reserves are ok by finding the first node
3103 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3104 * GFP_KERNEL will be required for allocating network buffers when
3105 * swapping over the network so ZONE_HIGHMEM is unusable.
3106 *
3107 * Throttling is based on the first usable node and throttled processes
3108 * wait on a queue until kswapd makes progress and wakes them. There
3109 * is an affinity then between processes waking up and where reclaim
3110 * progress has been made assuming the process wakes on the same node.
3111 * More importantly, processes running on remote nodes will not compete
3112 * for remote pfmemalloc reserves and processes on different nodes
3113 * should make reasonable progress.
3114 */
3115 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3116 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3117 if (zone_idx(zone) > ZONE_NORMAL)
3118 continue;
3119
3120 /* Throttle based on the first usable node */
3121 pgdat = zone->zone_pgdat;
c73322d0 3122 if (allow_direct_reclaim(pgdat))
675becce
MG
3123 goto out;
3124 break;
3125 }
3126
3127 /* If no zone was usable by the allocation flags then do not throttle */
3128 if (!pgdat)
50694c28 3129 goto out;
5515061d 3130
68243e76
MG
3131 /* Account for the throttling */
3132 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3133
5515061d
MG
3134 /*
3135 * If the caller cannot enter the filesystem, it's possible that it
3136 * is due to the caller holding an FS lock or performing a journal
3137 * transaction in the case of a filesystem like ext[3|4]. In this case,
3138 * it is not safe to block on pfmemalloc_wait as kswapd could be
3139 * blocked waiting on the same lock. Instead, throttle for up to a
3140 * second before continuing.
3141 */
3142 if (!(gfp_mask & __GFP_FS)) {
3143 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3144 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
3145
3146 goto check_pending;
5515061d
MG
3147 }
3148
3149 /* Throttle until kswapd wakes the process */
3150 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 3151 allow_direct_reclaim(pgdat));
50694c28
MG
3152
3153check_pending:
3154 if (fatal_signal_pending(current))
3155 return true;
3156
3157out:
3158 return false;
5515061d
MG
3159}
3160
dac1d27b 3161unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3162 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3163{
33906bc5 3164 unsigned long nr_reclaimed;
66e1707b 3165 struct scan_control sc = {
ee814fe2 3166 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3167 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3168 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3169 .order = order,
3170 .nodemask = nodemask,
3171 .priority = DEF_PRIORITY,
66e1707b 3172 .may_writepage = !laptop_mode,
a6dc60f8 3173 .may_unmap = 1,
2e2e4259 3174 .may_swap = 1,
1c30844d 3175 .may_shrinkslab = 1,
66e1707b
BS
3176 };
3177
bb451fdf
GT
3178 /*
3179 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3180 * Confirm they are large enough for max values.
3181 */
3182 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3183 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3184 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3185
5515061d 3186 /*
50694c28
MG
3187 * Do not enter reclaim if fatal signal was delivered while throttled.
3188 * 1 is returned so that the page allocator does not OOM kill at this
3189 * point.
5515061d 3190 */
f2f43e56 3191 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3192 return 1;
3193
3481c37f 3194 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3195
3115cd91 3196 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3197
3198 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3199
3200 return nr_reclaimed;
66e1707b
BS
3201}
3202
c255a458 3203#ifdef CONFIG_MEMCG
66e1707b 3204
a9dd0a83 3205unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3206 gfp_t gfp_mask, bool noswap,
ef8f2327 3207 pg_data_t *pgdat,
0ae5e89c 3208 unsigned long *nr_scanned)
4e416953
BS
3209{
3210 struct scan_control sc = {
b8f5c566 3211 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3212 .target_mem_cgroup = memcg,
4e416953
BS
3213 .may_writepage = !laptop_mode,
3214 .may_unmap = 1,
b2e18757 3215 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3216 .may_swap = !noswap,
1c30844d 3217 .may_shrinkslab = 1,
4e416953 3218 };
6b4f7799 3219 unsigned long lru_pages;
0ae5e89c 3220
4e416953
BS
3221 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3222 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3223
9e3b2f8c 3224 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3225 sc.gfp_mask);
bdce6d9e 3226
4e416953
BS
3227 /*
3228 * NOTE: Although we can get the priority field, using it
3229 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3230 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3231 * will pick up pages from other mem cgroup's as well. We hack
3232 * the priority and make it zero.
3233 */
ef8f2327 3234 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
bdce6d9e
KM
3235
3236 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3237
0ae5e89c 3238 *nr_scanned = sc.nr_scanned;
4e416953
BS
3239 return sc.nr_reclaimed;
3240}
3241
72835c86 3242unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3243 unsigned long nr_pages,
a7885eb8 3244 gfp_t gfp_mask,
b70a2a21 3245 bool may_swap)
66e1707b 3246{
4e416953 3247 struct zonelist *zonelist;
bdce6d9e 3248 unsigned long nr_reclaimed;
eb414681 3249 unsigned long pflags;
889976db 3250 int nid;
499118e9 3251 unsigned int noreclaim_flag;
66e1707b 3252 struct scan_control sc = {
b70a2a21 3253 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3254 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3255 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3256 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3257 .target_mem_cgroup = memcg,
3258 .priority = DEF_PRIORITY,
3259 .may_writepage = !laptop_mode,
3260 .may_unmap = 1,
b70a2a21 3261 .may_swap = may_swap,
1c30844d 3262 .may_shrinkslab = 1,
a09ed5e0 3263 };
66e1707b 3264
889976db
YH
3265 /*
3266 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3267 * take care of from where we get pages. So the node where we start the
3268 * scan does not need to be the current node.
3269 */
72835c86 3270 nid = mem_cgroup_select_victim_node(memcg);
889976db 3271
c9634cf0 3272 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
bdce6d9e 3273
3481c37f 3274 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
bdce6d9e 3275
eb414681 3276 psi_memstall_enter(&pflags);
499118e9 3277 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3278
3115cd91 3279 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3280
499118e9 3281 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3282 psi_memstall_leave(&pflags);
bdce6d9e
KM
3283
3284 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3285
3286 return nr_reclaimed;
66e1707b
BS
3287}
3288#endif
3289
1d82de61 3290static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3291 struct scan_control *sc)
f16015fb 3292{
b95a2f2d 3293 struct mem_cgroup *memcg;
f16015fb 3294
b95a2f2d
JW
3295 if (!total_swap_pages)
3296 return;
3297
3298 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3299 do {
ef8f2327 3300 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
b95a2f2d 3301
3b991208 3302 if (inactive_list_is_low(lruvec, false, sc, true))
1a93be0e 3303 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3304 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3305
3306 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3307 } while (memcg);
f16015fb
JW
3308}
3309
1c30844d
MG
3310static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3311{
3312 int i;
3313 struct zone *zone;
3314
3315 /*
3316 * Check for watermark boosts top-down as the higher zones
3317 * are more likely to be boosted. Both watermarks and boosts
3318 * should not be checked at the time time as reclaim would
3319 * start prematurely when there is no boosting and a lower
3320 * zone is balanced.
3321 */
3322 for (i = classzone_idx; i >= 0; i--) {
3323 zone = pgdat->node_zones + i;
3324 if (!managed_zone(zone))
3325 continue;
3326
3327 if (zone->watermark_boost)
3328 return true;
3329 }
3330
3331 return false;
3332}
3333
e716f2eb
MG
3334/*
3335 * Returns true if there is an eligible zone balanced for the request order
3336 * and classzone_idx
3337 */
3338static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
60cefed4 3339{
e716f2eb
MG
3340 int i;
3341 unsigned long mark = -1;
3342 struct zone *zone;
60cefed4 3343
1c30844d
MG
3344 /*
3345 * Check watermarks bottom-up as lower zones are more likely to
3346 * meet watermarks.
3347 */
e716f2eb
MG
3348 for (i = 0; i <= classzone_idx; i++) {
3349 zone = pgdat->node_zones + i;
6256c6b4 3350
e716f2eb
MG
3351 if (!managed_zone(zone))
3352 continue;
3353
3354 mark = high_wmark_pages(zone);
3355 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3356 return true;
3357 }
3358
3359 /*
3360 * If a node has no populated zone within classzone_idx, it does not
3361 * need balancing by definition. This can happen if a zone-restricted
3362 * allocation tries to wake a remote kswapd.
3363 */
3364 if (mark == -1)
3365 return true;
3366
3367 return false;
60cefed4
JW
3368}
3369
631b6e08
MG
3370/* Clear pgdat state for congested, dirty or under writeback. */
3371static void clear_pgdat_congested(pg_data_t *pgdat)
3372{
3373 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3374 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3375 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3376}
3377
5515061d
MG
3378/*
3379 * Prepare kswapd for sleeping. This verifies that there are no processes
3380 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3381 *
3382 * Returns true if kswapd is ready to sleep
3383 */
d9f21d42 3384static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3385{
5515061d 3386 /*
9e5e3661 3387 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3388 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3389 * race between when kswapd checks the watermarks and a process gets
3390 * throttled. There is also a potential race if processes get
3391 * throttled, kswapd wakes, a large process exits thereby balancing the
3392 * zones, which causes kswapd to exit balance_pgdat() before reaching
3393 * the wake up checks. If kswapd is going to sleep, no process should
3394 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3395 * the wake up is premature, processes will wake kswapd and get
3396 * throttled again. The difference from wake ups in balance_pgdat() is
3397 * that here we are under prepare_to_wait().
5515061d 3398 */
9e5e3661
VB
3399 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3400 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3401
c73322d0
JW
3402 /* Hopeless node, leave it to direct reclaim */
3403 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3404 return true;
3405
e716f2eb
MG
3406 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3407 clear_pgdat_congested(pgdat);
3408 return true;
1d82de61
MG
3409 }
3410
333b0a45 3411 return false;
f50de2d3
MG
3412}
3413
75485363 3414/*
1d82de61
MG
3415 * kswapd shrinks a node of pages that are at or below the highest usable
3416 * zone that is currently unbalanced.
b8e83b94
MG
3417 *
3418 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3419 * reclaim or if the lack of progress was due to pages under writeback.
3420 * This is used to determine if the scanning priority needs to be raised.
75485363 3421 */
1d82de61 3422static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3423 struct scan_control *sc)
75485363 3424{
1d82de61
MG
3425 struct zone *zone;
3426 int z;
75485363 3427
1d82de61
MG
3428 /* Reclaim a number of pages proportional to the number of zones */
3429 sc->nr_to_reclaim = 0;
970a39a3 3430 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3431 zone = pgdat->node_zones + z;
6aa303de 3432 if (!managed_zone(zone))
1d82de61 3433 continue;
7c954f6d 3434
1d82de61
MG
3435 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3436 }
7c954f6d
MG
3437
3438 /*
1d82de61
MG
3439 * Historically care was taken to put equal pressure on all zones but
3440 * now pressure is applied based on node LRU order.
7c954f6d 3441 */
970a39a3 3442 shrink_node(pgdat, sc);
283aba9f 3443
7c954f6d 3444 /*
1d82de61
MG
3445 * Fragmentation may mean that the system cannot be rebalanced for
3446 * high-order allocations. If twice the allocation size has been
3447 * reclaimed then recheck watermarks only at order-0 to prevent
3448 * excessive reclaim. Assume that a process requested a high-order
3449 * can direct reclaim/compact.
7c954f6d 3450 */
9861a62c 3451 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3452 sc->order = 0;
7c954f6d 3453
b8e83b94 3454 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3455}
3456
1da177e4 3457/*
1d82de61
MG
3458 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3459 * that are eligible for use by the caller until at least one zone is
3460 * balanced.
1da177e4 3461 *
1d82de61 3462 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3463 *
3464 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3465 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 3466 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
3467 * or lower is eligible for reclaim until at least one usable zone is
3468 * balanced.
1da177e4 3469 */
accf6242 3470static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3471{
1da177e4 3472 int i;
0608f43d
AM
3473 unsigned long nr_soft_reclaimed;
3474 unsigned long nr_soft_scanned;
eb414681 3475 unsigned long pflags;
1c30844d
MG
3476 unsigned long nr_boost_reclaim;
3477 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3478 bool boosted;
1d82de61 3479 struct zone *zone;
179e9639
AM
3480 struct scan_control sc = {
3481 .gfp_mask = GFP_KERNEL,
ee814fe2 3482 .order = order,
a6dc60f8 3483 .may_unmap = 1,
179e9639 3484 };
93781325 3485
eb414681 3486 psi_memstall_enter(&pflags);
93781325
OS
3487 __fs_reclaim_acquire();
3488
f8891e5e 3489 count_vm_event(PAGEOUTRUN);
1da177e4 3490
1c30844d
MG
3491 /*
3492 * Account for the reclaim boost. Note that the zone boost is left in
3493 * place so that parallel allocations that are near the watermark will
3494 * stall or direct reclaim until kswapd is finished.
3495 */
3496 nr_boost_reclaim = 0;
3497 for (i = 0; i <= classzone_idx; i++) {
3498 zone = pgdat->node_zones + i;
3499 if (!managed_zone(zone))
3500 continue;
3501
3502 nr_boost_reclaim += zone->watermark_boost;
3503 zone_boosts[i] = zone->watermark_boost;
3504 }
3505 boosted = nr_boost_reclaim;
3506
3507restart:
3508 sc.priority = DEF_PRIORITY;
9e3b2f8c 3509 do {
c73322d0 3510 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 3511 bool raise_priority = true;
1c30844d 3512 bool balanced;
93781325 3513 bool ret;
b8e83b94 3514
84c7a777 3515 sc.reclaim_idx = classzone_idx;
1da177e4 3516
86c79f6b 3517 /*
84c7a777
MG
3518 * If the number of buffer_heads exceeds the maximum allowed
3519 * then consider reclaiming from all zones. This has a dual
3520 * purpose -- on 64-bit systems it is expected that
3521 * buffer_heads are stripped during active rotation. On 32-bit
3522 * systems, highmem pages can pin lowmem memory and shrinking
3523 * buffers can relieve lowmem pressure. Reclaim may still not
3524 * go ahead if all eligible zones for the original allocation
3525 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3526 */
3527 if (buffer_heads_over_limit) {
3528 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3529 zone = pgdat->node_zones + i;
6aa303de 3530 if (!managed_zone(zone))
86c79f6b 3531 continue;
cc715d99 3532
970a39a3 3533 sc.reclaim_idx = i;
e1dbeda6 3534 break;
1da177e4 3535 }
1da177e4 3536 }
dafcb73e 3537
86c79f6b 3538 /*
1c30844d
MG
3539 * If the pgdat is imbalanced then ignore boosting and preserve
3540 * the watermarks for a later time and restart. Note that the
3541 * zone watermarks will be still reset at the end of balancing
3542 * on the grounds that the normal reclaim should be enough to
3543 * re-evaluate if boosting is required when kswapd next wakes.
3544 */
3545 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3546 if (!balanced && nr_boost_reclaim) {
3547 nr_boost_reclaim = 0;
3548 goto restart;
3549 }
3550
3551 /*
3552 * If boosting is not active then only reclaim if there are no
3553 * eligible zones. Note that sc.reclaim_idx is not used as
3554 * buffer_heads_over_limit may have adjusted it.
86c79f6b 3555 */
1c30844d 3556 if (!nr_boost_reclaim && balanced)
e716f2eb 3557 goto out;
e1dbeda6 3558
1c30844d
MG
3559 /* Limit the priority of boosting to avoid reclaim writeback */
3560 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3561 raise_priority = false;
3562
3563 /*
3564 * Do not writeback or swap pages for boosted reclaim. The
3565 * intent is to relieve pressure not issue sub-optimal IO
3566 * from reclaim context. If no pages are reclaimed, the
3567 * reclaim will be aborted.
3568 */
3569 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3570 sc.may_swap = !nr_boost_reclaim;
3571 sc.may_shrinkslab = !nr_boost_reclaim;
3572
1d82de61
MG
3573 /*
3574 * Do some background aging of the anon list, to give
3575 * pages a chance to be referenced before reclaiming. All
3576 * pages are rotated regardless of classzone as this is
3577 * about consistent aging.
3578 */
ef8f2327 3579 age_active_anon(pgdat, &sc);
1d82de61 3580
b7ea3c41
MG
3581 /*
3582 * If we're getting trouble reclaiming, start doing writepage
3583 * even in laptop mode.
3584 */
047d72c3 3585 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3586 sc.may_writepage = 1;
3587
1d82de61
MG
3588 /* Call soft limit reclaim before calling shrink_node. */
3589 sc.nr_scanned = 0;
3590 nr_soft_scanned = 0;
ef8f2327 3591 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3592 sc.gfp_mask, &nr_soft_scanned);
3593 sc.nr_reclaimed += nr_soft_reclaimed;
3594
1da177e4 3595 /*
1d82de61
MG
3596 * There should be no need to raise the scanning priority if
3597 * enough pages are already being scanned that that high
3598 * watermark would be met at 100% efficiency.
1da177e4 3599 */
970a39a3 3600 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3601 raise_priority = false;
5515061d
MG
3602
3603 /*
3604 * If the low watermark is met there is no need for processes
3605 * to be throttled on pfmemalloc_wait as they should not be
3606 * able to safely make forward progress. Wake them
3607 */
3608 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3609 allow_direct_reclaim(pgdat))
cfc51155 3610 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3611
b8e83b94 3612 /* Check if kswapd should be suspending */
93781325
OS
3613 __fs_reclaim_release();
3614 ret = try_to_freeze();
3615 __fs_reclaim_acquire();
3616 if (ret || kthread_should_stop())
b8e83b94 3617 break;
8357376d 3618
73ce02e9 3619 /*
b8e83b94
MG
3620 * Raise priority if scanning rate is too low or there was no
3621 * progress in reclaiming pages
73ce02e9 3622 */
c73322d0 3623 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
3624 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3625
3626 /*
3627 * If reclaim made no progress for a boost, stop reclaim as
3628 * IO cannot be queued and it could be an infinite loop in
3629 * extreme circumstances.
3630 */
3631 if (nr_boost_reclaim && !nr_reclaimed)
3632 break;
3633
c73322d0 3634 if (raise_priority || !nr_reclaimed)
b8e83b94 3635 sc.priority--;
1d82de61 3636 } while (sc.priority >= 1);
1da177e4 3637
c73322d0
JW
3638 if (!sc.nr_reclaimed)
3639 pgdat->kswapd_failures++;
3640
b8e83b94 3641out:
1c30844d
MG
3642 /* If reclaim was boosted, account for the reclaim done in this pass */
3643 if (boosted) {
3644 unsigned long flags;
3645
3646 for (i = 0; i <= classzone_idx; i++) {
3647 if (!zone_boosts[i])
3648 continue;
3649
3650 /* Increments are under the zone lock */
3651 zone = pgdat->node_zones + i;
3652 spin_lock_irqsave(&zone->lock, flags);
3653 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3654 spin_unlock_irqrestore(&zone->lock, flags);
3655 }
3656
3657 /*
3658 * As there is now likely space, wakeup kcompact to defragment
3659 * pageblocks.
3660 */
3661 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3662 }
3663
2a2e4885 3664 snapshot_refaults(NULL, pgdat);
93781325 3665 __fs_reclaim_release();
eb414681 3666 psi_memstall_leave(&pflags);
0abdee2b 3667 /*
1d82de61
MG
3668 * Return the order kswapd stopped reclaiming at as
3669 * prepare_kswapd_sleep() takes it into account. If another caller
3670 * entered the allocator slow path while kswapd was awake, order will
3671 * remain at the higher level.
0abdee2b 3672 */
1d82de61 3673 return sc.order;
1da177e4
LT
3674}
3675
e716f2eb 3676/*
dffcac2c
SB
3677 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3678 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3679 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3680 * after previous reclaim attempt (node is still unbalanced). In that case
3681 * return the zone index of the previous kswapd reclaim cycle.
e716f2eb
MG
3682 */
3683static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
dffcac2c 3684 enum zone_type prev_classzone_idx)
e716f2eb
MG
3685{
3686 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
dffcac2c
SB
3687 return prev_classzone_idx;
3688 return pgdat->kswapd_classzone_idx;
e716f2eb
MG
3689}
3690
38087d9b
MG
3691static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3692 unsigned int classzone_idx)
f0bc0a60
KM
3693{
3694 long remaining = 0;
3695 DEFINE_WAIT(wait);
3696
3697 if (freezing(current) || kthread_should_stop())
3698 return;
3699
3700 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3701
333b0a45
SG
3702 /*
3703 * Try to sleep for a short interval. Note that kcompactd will only be
3704 * woken if it is possible to sleep for a short interval. This is
3705 * deliberate on the assumption that if reclaim cannot keep an
3706 * eligible zone balanced that it's also unlikely that compaction will
3707 * succeed.
3708 */
d9f21d42 3709 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3710 /*
3711 * Compaction records what page blocks it recently failed to
3712 * isolate pages from and skips them in the future scanning.
3713 * When kswapd is going to sleep, it is reasonable to assume
3714 * that pages and compaction may succeed so reset the cache.
3715 */
3716 reset_isolation_suitable(pgdat);
3717
3718 /*
3719 * We have freed the memory, now we should compact it to make
3720 * allocation of the requested order possible.
3721 */
38087d9b 3722 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3723
f0bc0a60 3724 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3725
3726 /*
3727 * If woken prematurely then reset kswapd_classzone_idx and
3728 * order. The values will either be from a wakeup request or
3729 * the previous request that slept prematurely.
3730 */
3731 if (remaining) {
e716f2eb 3732 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b
MG
3733 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3734 }
3735
f0bc0a60
KM
3736 finish_wait(&pgdat->kswapd_wait, &wait);
3737 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3738 }
3739
3740 /*
3741 * After a short sleep, check if it was a premature sleep. If not, then
3742 * go fully to sleep until explicitly woken up.
3743 */
d9f21d42
MG
3744 if (!remaining &&
3745 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3746 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3747
3748 /*
3749 * vmstat counters are not perfectly accurate and the estimated
3750 * value for counters such as NR_FREE_PAGES can deviate from the
3751 * true value by nr_online_cpus * threshold. To avoid the zone
3752 * watermarks being breached while under pressure, we reduce the
3753 * per-cpu vmstat threshold while kswapd is awake and restore
3754 * them before going back to sleep.
3755 */
3756 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3757
3758 if (!kthread_should_stop())
3759 schedule();
3760
f0bc0a60
KM
3761 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3762 } else {
3763 if (remaining)
3764 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3765 else
3766 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3767 }
3768 finish_wait(&pgdat->kswapd_wait, &wait);
3769}
3770
1da177e4
LT
3771/*
3772 * The background pageout daemon, started as a kernel thread
4f98a2fe 3773 * from the init process.
1da177e4
LT
3774 *
3775 * This basically trickles out pages so that we have _some_
3776 * free memory available even if there is no other activity
3777 * that frees anything up. This is needed for things like routing
3778 * etc, where we otherwise might have all activity going on in
3779 * asynchronous contexts that cannot page things out.
3780 *
3781 * If there are applications that are active memory-allocators
3782 * (most normal use), this basically shouldn't matter.
3783 */
3784static int kswapd(void *p)
3785{
e716f2eb
MG
3786 unsigned int alloc_order, reclaim_order;
3787 unsigned int classzone_idx = MAX_NR_ZONES - 1;
1da177e4
LT
3788 pg_data_t *pgdat = (pg_data_t*)p;
3789 struct task_struct *tsk = current;
f0bc0a60 3790
1da177e4
LT
3791 struct reclaim_state reclaim_state = {
3792 .reclaimed_slab = 0,
3793 };
a70f7302 3794 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3795
174596a0 3796 if (!cpumask_empty(cpumask))
c5f59f08 3797 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3798 current->reclaim_state = &reclaim_state;
3799
3800 /*
3801 * Tell the memory management that we're a "memory allocator",
3802 * and that if we need more memory we should get access to it
3803 * regardless (see "__alloc_pages()"). "kswapd" should
3804 * never get caught in the normal page freeing logic.
3805 *
3806 * (Kswapd normally doesn't need memory anyway, but sometimes
3807 * you need a small amount of memory in order to be able to
3808 * page out something else, and this flag essentially protects
3809 * us from recursively trying to free more memory as we're
3810 * trying to free the first piece of memory in the first place).
3811 */
930d9152 3812 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3813 set_freezable();
1da177e4 3814
e716f2eb
MG
3815 pgdat->kswapd_order = 0;
3816 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3817 for ( ; ; ) {
6f6313d4 3818 bool ret;
3e1d1d28 3819
e716f2eb
MG
3820 alloc_order = reclaim_order = pgdat->kswapd_order;
3821 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3822
38087d9b
MG
3823kswapd_try_sleep:
3824 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3825 classzone_idx);
215ddd66 3826
38087d9b
MG
3827 /* Read the new order and classzone_idx */
3828 alloc_order = reclaim_order = pgdat->kswapd_order;
dffcac2c 3829 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b 3830 pgdat->kswapd_order = 0;
e716f2eb 3831 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3832
8fe23e05
DR
3833 ret = try_to_freeze();
3834 if (kthread_should_stop())
3835 break;
3836
3837 /*
3838 * We can speed up thawing tasks if we don't call balance_pgdat
3839 * after returning from the refrigerator
3840 */
38087d9b
MG
3841 if (ret)
3842 continue;
3843
3844 /*
3845 * Reclaim begins at the requested order but if a high-order
3846 * reclaim fails then kswapd falls back to reclaiming for
3847 * order-0. If that happens, kswapd will consider sleeping
3848 * for the order it finished reclaiming at (reclaim_order)
3849 * but kcompactd is woken to compact for the original
3850 * request (alloc_order).
3851 */
e5146b12
MG
3852 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3853 alloc_order);
38087d9b
MG
3854 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3855 if (reclaim_order < alloc_order)
3856 goto kswapd_try_sleep;
1da177e4 3857 }
b0a8cc58 3858
71abdc15 3859 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3860 current->reclaim_state = NULL;
71abdc15 3861
1da177e4
LT
3862 return 0;
3863}
3864
3865/*
5ecd9d40
DR
3866 * A zone is low on free memory or too fragmented for high-order memory. If
3867 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3868 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3869 * has failed or is not needed, still wake up kcompactd if only compaction is
3870 * needed.
1da177e4 3871 */
5ecd9d40
DR
3872void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3873 enum zone_type classzone_idx)
1da177e4
LT
3874{
3875 pg_data_t *pgdat;
3876
6aa303de 3877 if (!managed_zone(zone))
1da177e4
LT
3878 return;
3879
5ecd9d40 3880 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 3881 return;
88f5acf8 3882 pgdat = zone->zone_pgdat;
dffcac2c
SB
3883
3884 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3885 pgdat->kswapd_classzone_idx = classzone_idx;
3886 else
3887 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3888 classzone_idx);
38087d9b 3889 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3890 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3891 return;
e1a55637 3892
5ecd9d40
DR
3893 /* Hopeless node, leave it to direct reclaim if possible */
3894 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
1c30844d
MG
3895 (pgdat_balanced(pgdat, order, classzone_idx) &&
3896 !pgdat_watermark_boosted(pgdat, classzone_idx))) {
5ecd9d40
DR
3897 /*
3898 * There may be plenty of free memory available, but it's too
3899 * fragmented for high-order allocations. Wake up kcompactd
3900 * and rely on compaction_suitable() to determine if it's
3901 * needed. If it fails, it will defer subsequent attempts to
3902 * ratelimit its work.
3903 */
3904 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3905 wakeup_kcompactd(pgdat, order, classzone_idx);
e716f2eb 3906 return;
5ecd9d40 3907 }
88f5acf8 3908
5ecd9d40
DR
3909 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3910 gfp_flags);
8d0986e2 3911 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3912}
3913
c6f37f12 3914#ifdef CONFIG_HIBERNATION
1da177e4 3915/*
7b51755c 3916 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3917 * freed pages.
3918 *
3919 * Rather than trying to age LRUs the aim is to preserve the overall
3920 * LRU order by reclaiming preferentially
3921 * inactive > active > active referenced > active mapped
1da177e4 3922 */
7b51755c 3923unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3924{
d6277db4 3925 struct reclaim_state reclaim_state;
d6277db4 3926 struct scan_control sc = {
ee814fe2 3927 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3928 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3929 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3930 .priority = DEF_PRIORITY,
d6277db4 3931 .may_writepage = 1,
ee814fe2
JW
3932 .may_unmap = 1,
3933 .may_swap = 1,
7b51755c 3934 .hibernation_mode = 1,
1da177e4 3935 };
a09ed5e0 3936 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3937 struct task_struct *p = current;
3938 unsigned long nr_reclaimed;
499118e9 3939 unsigned int noreclaim_flag;
1da177e4 3940
d92a8cfc 3941 fs_reclaim_acquire(sc.gfp_mask);
93781325 3942 noreclaim_flag = memalloc_noreclaim_save();
7b51755c
KM
3943 reclaim_state.reclaimed_slab = 0;
3944 p->reclaim_state = &reclaim_state;
d6277db4 3945
3115cd91 3946 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3947
7b51755c 3948 p->reclaim_state = NULL;
499118e9 3949 memalloc_noreclaim_restore(noreclaim_flag);
93781325 3950 fs_reclaim_release(sc.gfp_mask);
d6277db4 3951
7b51755c 3952 return nr_reclaimed;
1da177e4 3953}
c6f37f12 3954#endif /* CONFIG_HIBERNATION */
1da177e4 3955
1da177e4
LT
3956/* It's optimal to keep kswapds on the same CPUs as their memory, but
3957 not required for correctness. So if the last cpu in a node goes
3958 away, we get changed to run anywhere: as the first one comes back,
3959 restore their cpu bindings. */
517bbed9 3960static int kswapd_cpu_online(unsigned int cpu)
1da177e4 3961{
58c0a4a7 3962 int nid;
1da177e4 3963
517bbed9
SAS
3964 for_each_node_state(nid, N_MEMORY) {
3965 pg_data_t *pgdat = NODE_DATA(nid);
3966 const struct cpumask *mask;
a70f7302 3967
517bbed9 3968 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3969
517bbed9
SAS
3970 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3971 /* One of our CPUs online: restore mask */
3972 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4 3973 }
517bbed9 3974 return 0;
1da177e4 3975}
1da177e4 3976
3218ae14
YG
3977/*
3978 * This kswapd start function will be called by init and node-hot-add.
3979 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3980 */
3981int kswapd_run(int nid)
3982{
3983 pg_data_t *pgdat = NODE_DATA(nid);
3984 int ret = 0;
3985
3986 if (pgdat->kswapd)
3987 return 0;
3988
3989 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3990 if (IS_ERR(pgdat->kswapd)) {
3991 /* failure at boot is fatal */
c6202adf 3992 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
3993 pr_err("Failed to start kswapd on node %d\n", nid);
3994 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3995 pgdat->kswapd = NULL;
3218ae14
YG
3996 }
3997 return ret;
3998}
3999
8fe23e05 4000/*
d8adde17 4001 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 4002 * hold mem_hotplug_begin/end().
8fe23e05
DR
4003 */
4004void kswapd_stop(int nid)
4005{
4006 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4007
d8adde17 4008 if (kswapd) {
8fe23e05 4009 kthread_stop(kswapd);
d8adde17
JL
4010 NODE_DATA(nid)->kswapd = NULL;
4011 }
8fe23e05
DR
4012}
4013
1da177e4
LT
4014static int __init kswapd_init(void)
4015{
517bbed9 4016 int nid, ret;
69e05944 4017
1da177e4 4018 swap_setup();
48fb2e24 4019 for_each_node_state(nid, N_MEMORY)
3218ae14 4020 kswapd_run(nid);
517bbed9
SAS
4021 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4022 "mm/vmscan:online", kswapd_cpu_online,
4023 NULL);
4024 WARN_ON(ret < 0);
1da177e4
LT
4025 return 0;
4026}
4027
4028module_init(kswapd_init)
9eeff239
CL
4029
4030#ifdef CONFIG_NUMA
4031/*
a5f5f91d 4032 * Node reclaim mode
9eeff239 4033 *
a5f5f91d 4034 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4035 * the watermarks.
9eeff239 4036 */
a5f5f91d 4037int node_reclaim_mode __read_mostly;
9eeff239 4038
1b2ffb78 4039#define RECLAIM_OFF 0
7d03431c 4040#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 4041#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 4042#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 4043
a92f7126 4044/*
a5f5f91d 4045 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4046 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4047 * a zone.
4048 */
a5f5f91d 4049#define NODE_RECLAIM_PRIORITY 4
a92f7126 4050
9614634f 4051/*
a5f5f91d 4052 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4053 * occur.
4054 */
4055int sysctl_min_unmapped_ratio = 1;
4056
0ff38490
CL
4057/*
4058 * If the number of slab pages in a zone grows beyond this percentage then
4059 * slab reclaim needs to occur.
4060 */
4061int sysctl_min_slab_ratio = 5;
4062
11fb9989 4063static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4064{
11fb9989
MG
4065 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4066 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4067 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4068
4069 /*
4070 * It's possible for there to be more file mapped pages than
4071 * accounted for by the pages on the file LRU lists because
4072 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4073 */
4074 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4075}
4076
4077/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4078static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4079{
d031a157
AM
4080 unsigned long nr_pagecache_reclaimable;
4081 unsigned long delta = 0;
90afa5de
MG
4082
4083 /*
95bbc0c7 4084 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4085 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4086 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4087 * a better estimate
4088 */
a5f5f91d
MG
4089 if (node_reclaim_mode & RECLAIM_UNMAP)
4090 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4091 else
a5f5f91d 4092 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4093
4094 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4095 if (!(node_reclaim_mode & RECLAIM_WRITE))
4096 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4097
4098 /* Watch for any possible underflows due to delta */
4099 if (unlikely(delta > nr_pagecache_reclaimable))
4100 delta = nr_pagecache_reclaimable;
4101
4102 return nr_pagecache_reclaimable - delta;
4103}
4104
9eeff239 4105/*
a5f5f91d 4106 * Try to free up some pages from this node through reclaim.
9eeff239 4107 */
a5f5f91d 4108static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4109{
7fb2d46d 4110 /* Minimum pages needed in order to stay on node */
69e05944 4111 const unsigned long nr_pages = 1 << order;
9eeff239
CL
4112 struct task_struct *p = current;
4113 struct reclaim_state reclaim_state;
499118e9 4114 unsigned int noreclaim_flag;
179e9639 4115 struct scan_control sc = {
62b726c1 4116 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4117 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4118 .order = order,
a5f5f91d
MG
4119 .priority = NODE_RECLAIM_PRIORITY,
4120 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4121 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4122 .may_swap = 1,
f2f43e56 4123 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4124 };
9eeff239 4125
132bb8cf
YS
4126 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4127 sc.gfp_mask);
4128
9eeff239 4129 cond_resched();
93781325 4130 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4131 /*
95bbc0c7 4132 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4133 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 4134 * and RECLAIM_UNMAP.
d4f7796e 4135 */
499118e9
VB
4136 noreclaim_flag = memalloc_noreclaim_save();
4137 p->flags |= PF_SWAPWRITE;
9eeff239
CL
4138 reclaim_state.reclaimed_slab = 0;
4139 p->reclaim_state = &reclaim_state;
c84db23c 4140
a5f5f91d 4141 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 4142 /*
894befec 4143 * Free memory by calling shrink node with increasing
0ff38490
CL
4144 * priorities until we have enough memory freed.
4145 */
0ff38490 4146 do {
970a39a3 4147 shrink_node(pgdat, &sc);
9e3b2f8c 4148 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4149 }
c84db23c 4150
9eeff239 4151 p->reclaim_state = NULL;
499118e9
VB
4152 current->flags &= ~PF_SWAPWRITE;
4153 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4154 fs_reclaim_release(sc.gfp_mask);
132bb8cf
YS
4155
4156 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4157
a79311c1 4158 return sc.nr_reclaimed >= nr_pages;
9eeff239 4159}
179e9639 4160
a5f5f91d 4161int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4162{
d773ed6b 4163 int ret;
179e9639
AM
4164
4165 /*
a5f5f91d 4166 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4167 * slab pages if we are over the defined limits.
34aa1330 4168 *
9614634f
CL
4169 * A small portion of unmapped file backed pages is needed for
4170 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4171 * thrown out if the node is overallocated. So we do not reclaim
4172 * if less than a specified percentage of the node is used by
9614634f 4173 * unmapped file backed pages.
179e9639 4174 */
a5f5f91d 4175 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
385386cf 4176 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
a5f5f91d 4177 return NODE_RECLAIM_FULL;
179e9639
AM
4178
4179 /*
d773ed6b 4180 * Do not scan if the allocation should not be delayed.
179e9639 4181 */
d0164adc 4182 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4183 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4184
4185 /*
a5f5f91d 4186 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4187 * have associated processors. This will favor the local processor
4188 * over remote processors and spread off node memory allocations
4189 * as wide as possible.
4190 */
a5f5f91d
MG
4191 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4192 return NODE_RECLAIM_NOSCAN;
d773ed6b 4193
a5f5f91d
MG
4194 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4195 return NODE_RECLAIM_NOSCAN;
fa5e084e 4196
a5f5f91d
MG
4197 ret = __node_reclaim(pgdat, gfp_mask, order);
4198 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4199
24cf7251
MG
4200 if (!ret)
4201 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4202
d773ed6b 4203 return ret;
179e9639 4204}
9eeff239 4205#endif
894bc310 4206
894bc310
LS
4207/*
4208 * page_evictable - test whether a page is evictable
4209 * @page: the page to test
894bc310
LS
4210 *
4211 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 4212 * lists vs unevictable list.
894bc310
LS
4213 *
4214 * Reasons page might not be evictable:
ba9ddf49 4215 * (1) page's mapping marked unevictable
b291f000 4216 * (2) page is part of an mlocked VMA
ba9ddf49 4217 *
894bc310 4218 */
39b5f29a 4219int page_evictable(struct page *page)
894bc310 4220{
e92bb4dd
HY
4221 int ret;
4222
4223 /* Prevent address_space of inode and swap cache from being freed */
4224 rcu_read_lock();
4225 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4226 rcu_read_unlock();
4227 return ret;
894bc310 4228}
89e004ea
LS
4229
4230/**
64e3d12f
KHY
4231 * check_move_unevictable_pages - check pages for evictability and move to
4232 * appropriate zone lru list
4233 * @pvec: pagevec with lru pages to check
89e004ea 4234 *
64e3d12f
KHY
4235 * Checks pages for evictability, if an evictable page is in the unevictable
4236 * lru list, moves it to the appropriate evictable lru list. This function
4237 * should be only used for lru pages.
89e004ea 4238 */
64e3d12f 4239void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4240{
925b7673 4241 struct lruvec *lruvec;
785b99fe 4242 struct pglist_data *pgdat = NULL;
24513264
HD
4243 int pgscanned = 0;
4244 int pgrescued = 0;
4245 int i;
89e004ea 4246
64e3d12f
KHY
4247 for (i = 0; i < pvec->nr; i++) {
4248 struct page *page = pvec->pages[i];
785b99fe 4249 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 4250
24513264 4251 pgscanned++;
785b99fe
MG
4252 if (pagepgdat != pgdat) {
4253 if (pgdat)
4254 spin_unlock_irq(&pgdat->lru_lock);
4255 pgdat = pagepgdat;
4256 spin_lock_irq(&pgdat->lru_lock);
24513264 4257 }
785b99fe 4258 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 4259
24513264
HD
4260 if (!PageLRU(page) || !PageUnevictable(page))
4261 continue;
89e004ea 4262
39b5f29a 4263 if (page_evictable(page)) {
24513264
HD
4264 enum lru_list lru = page_lru_base_type(page);
4265
309381fe 4266 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 4267 ClearPageUnevictable(page);
fa9add64
HD
4268 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4269 add_page_to_lru_list(page, lruvec, lru);
24513264 4270 pgrescued++;
89e004ea 4271 }
24513264 4272 }
89e004ea 4273
785b99fe 4274 if (pgdat) {
24513264
HD
4275 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4276 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 4277 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 4278 }
89e004ea 4279}
64e3d12f 4280EXPORT_SYMBOL_GPL(check_move_unevictable_pages);