]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmscan.c
mm, vmscan: by default have direct reclaim only shrink once per node
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4
LT
16#include <linux/mm.h>
17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
268bb0ce 47#include <linux/prefetch.h>
b1de0d13 48#include <linux/printk.h>
f9fe48be 49#include <linux/dax.h>
1da177e4
LT
50
51#include <asm/tlbflush.h>
52#include <asm/div64.h>
53
54#include <linux/swapops.h>
117aad1e 55#include <linux/balloon_compaction.h>
1da177e4 56
0f8053a5
NP
57#include "internal.h"
58
33906bc5
MG
59#define CREATE_TRACE_POINTS
60#include <trace/events/vmscan.h>
61
1da177e4 62struct scan_control {
22fba335
KM
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
1da177e4 66 /* This context's GFP mask */
6daa0e28 67 gfp_t gfp_mask;
1da177e4 68
ee814fe2 69 /* Allocation order */
5ad333eb 70 int order;
66e1707b 71
ee814fe2
JW
72 /*
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 * are scanned.
75 */
76 nodemask_t *nodemask;
9e3b2f8c 77
f16015fb
JW
78 /*
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
81 */
82 struct mem_cgroup *target_mem_cgroup;
66e1707b 83
ee814fe2
JW
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
86
b2e18757
MG
87 /* The highest zone to isolate pages for reclaim from */
88 enum zone_type reclaim_idx;
89
ee814fe2
JW
90 unsigned int may_writepage:1;
91
92 /* Can mapped pages be reclaimed? */
93 unsigned int may_unmap:1;
94
95 /* Can pages be swapped as part of reclaim? */
96 unsigned int may_swap:1;
97
241994ed
JW
98 /* Can cgroups be reclaimed below their normal consumption range? */
99 unsigned int may_thrash:1;
100
ee814fe2
JW
101 unsigned int hibernation_mode:1;
102
103 /* One of the zones is ready for compaction */
104 unsigned int compaction_ready:1;
105
106 /* Incremented by the number of inactive pages that were scanned */
107 unsigned long nr_scanned;
108
109 /* Number of pages freed so far during a call to shrink_zones() */
110 unsigned long nr_reclaimed;
1da177e4
LT
111};
112
1da177e4
LT
113#ifdef ARCH_HAS_PREFETCH
114#define prefetch_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetch(&prev->_field); \
121 } \
122 } while (0)
123#else
124#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127#ifdef ARCH_HAS_PREFETCHW
128#define prefetchw_prev_lru_page(_page, _base, _field) \
129 do { \
130 if ((_page)->lru.prev != _base) { \
131 struct page *prev; \
132 \
133 prev = lru_to_page(&(_page->lru)); \
134 prefetchw(&prev->_field); \
135 } \
136 } while (0)
137#else
138#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
139#endif
140
141/*
142 * From 0 .. 100. Higher means more swappy.
143 */
144int vm_swappiness = 60;
d0480be4
WSH
145/*
146 * The total number of pages which are beyond the high watermark within all
147 * zones.
148 */
149unsigned long vm_total_pages;
1da177e4
LT
150
151static LIST_HEAD(shrinker_list);
152static DECLARE_RWSEM(shrinker_rwsem);
153
c255a458 154#ifdef CONFIG_MEMCG
89b5fae5
JW
155static bool global_reclaim(struct scan_control *sc)
156{
f16015fb 157 return !sc->target_mem_cgroup;
89b5fae5 158}
97c9341f
TH
159
160/**
161 * sane_reclaim - is the usual dirty throttling mechanism operational?
162 * @sc: scan_control in question
163 *
164 * The normal page dirty throttling mechanism in balance_dirty_pages() is
165 * completely broken with the legacy memcg and direct stalling in
166 * shrink_page_list() is used for throttling instead, which lacks all the
167 * niceties such as fairness, adaptive pausing, bandwidth proportional
168 * allocation and configurability.
169 *
170 * This function tests whether the vmscan currently in progress can assume
171 * that the normal dirty throttling mechanism is operational.
172 */
173static bool sane_reclaim(struct scan_control *sc)
174{
175 struct mem_cgroup *memcg = sc->target_mem_cgroup;
176
177 if (!memcg)
178 return true;
179#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 180 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
181 return true;
182#endif
183 return false;
184}
91a45470 185#else
89b5fae5
JW
186static bool global_reclaim(struct scan_control *sc)
187{
188 return true;
189}
97c9341f
TH
190
191static bool sane_reclaim(struct scan_control *sc)
192{
193 return true;
194}
91a45470
KH
195#endif
196
599d0c95
MG
197/*
198 * This misses isolated pages which are not accounted for to save counters.
199 * As the data only determines if reclaim or compaction continues, it is
200 * not expected that isolated pages will be a dominating factor.
201 */
0a0337e0 202unsigned long zone_reclaimable_pages(struct zone *zone)
6e543d57 203{
d031a157 204 unsigned long nr;
6e543d57 205
599d0c95
MG
206 nr = zone_page_state_snapshot(zone, NR_ZONE_LRU_FILE);
207 if (get_nr_swap_pages() > 0)
208 nr += zone_page_state_snapshot(zone, NR_ZONE_LRU_ANON);
209
210 return nr;
211}
212
213unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
214{
215 unsigned long nr;
216
217 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
218 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
219 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
6e543d57
LD
220
221 if (get_nr_swap_pages() > 0)
599d0c95
MG
222 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
223 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
224 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
6e543d57
LD
225
226 return nr;
227}
228
599d0c95 229bool pgdat_reclaimable(struct pglist_data *pgdat)
6e543d57 230{
599d0c95
MG
231 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
232 pgdat_reclaimable_pages(pgdat) * 6;
6e543d57
LD
233}
234
23047a96 235unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 236{
c3c787e8 237 if (!mem_cgroup_disabled())
4d7dcca2 238 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 239
599d0c95 240 return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
241}
242
1da177e4 243/*
1d3d4437 244 * Add a shrinker callback to be called from the vm.
1da177e4 245 */
1d3d4437 246int register_shrinker(struct shrinker *shrinker)
1da177e4 247{
1d3d4437
GC
248 size_t size = sizeof(*shrinker->nr_deferred);
249
1d3d4437
GC
250 if (shrinker->flags & SHRINKER_NUMA_AWARE)
251 size *= nr_node_ids;
252
253 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
254 if (!shrinker->nr_deferred)
255 return -ENOMEM;
256
8e1f936b
RR
257 down_write(&shrinker_rwsem);
258 list_add_tail(&shrinker->list, &shrinker_list);
259 up_write(&shrinker_rwsem);
1d3d4437 260 return 0;
1da177e4 261}
8e1f936b 262EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
263
264/*
265 * Remove one
266 */
8e1f936b 267void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
268{
269 down_write(&shrinker_rwsem);
270 list_del(&shrinker->list);
271 up_write(&shrinker_rwsem);
ae393321 272 kfree(shrinker->nr_deferred);
1da177e4 273}
8e1f936b 274EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
275
276#define SHRINK_BATCH 128
1d3d4437 277
cb731d6c
VD
278static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
279 struct shrinker *shrinker,
280 unsigned long nr_scanned,
281 unsigned long nr_eligible)
1d3d4437
GC
282{
283 unsigned long freed = 0;
284 unsigned long long delta;
285 long total_scan;
d5bc5fd3 286 long freeable;
1d3d4437
GC
287 long nr;
288 long new_nr;
289 int nid = shrinkctl->nid;
290 long batch_size = shrinker->batch ? shrinker->batch
291 : SHRINK_BATCH;
292
d5bc5fd3
VD
293 freeable = shrinker->count_objects(shrinker, shrinkctl);
294 if (freeable == 0)
1d3d4437
GC
295 return 0;
296
297 /*
298 * copy the current shrinker scan count into a local variable
299 * and zero it so that other concurrent shrinker invocations
300 * don't also do this scanning work.
301 */
302 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
303
304 total_scan = nr;
6b4f7799 305 delta = (4 * nr_scanned) / shrinker->seeks;
d5bc5fd3 306 delta *= freeable;
6b4f7799 307 do_div(delta, nr_eligible + 1);
1d3d4437
GC
308 total_scan += delta;
309 if (total_scan < 0) {
8612c663 310 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 311 shrinker->scan_objects, total_scan);
d5bc5fd3 312 total_scan = freeable;
1d3d4437
GC
313 }
314
315 /*
316 * We need to avoid excessive windup on filesystem shrinkers
317 * due to large numbers of GFP_NOFS allocations causing the
318 * shrinkers to return -1 all the time. This results in a large
319 * nr being built up so when a shrink that can do some work
320 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 321 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
322 * memory.
323 *
324 * Hence only allow the shrinker to scan the entire cache when
325 * a large delta change is calculated directly.
326 */
d5bc5fd3
VD
327 if (delta < freeable / 4)
328 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
329
330 /*
331 * Avoid risking looping forever due to too large nr value:
332 * never try to free more than twice the estimate number of
333 * freeable entries.
334 */
d5bc5fd3
VD
335 if (total_scan > freeable * 2)
336 total_scan = freeable * 2;
1d3d4437
GC
337
338 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
6b4f7799
JW
339 nr_scanned, nr_eligible,
340 freeable, delta, total_scan);
1d3d4437 341
0b1fb40a
VD
342 /*
343 * Normally, we should not scan less than batch_size objects in one
344 * pass to avoid too frequent shrinker calls, but if the slab has less
345 * than batch_size objects in total and we are really tight on memory,
346 * we will try to reclaim all available objects, otherwise we can end
347 * up failing allocations although there are plenty of reclaimable
348 * objects spread over several slabs with usage less than the
349 * batch_size.
350 *
351 * We detect the "tight on memory" situations by looking at the total
352 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 353 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
354 * scanning at high prio and therefore should try to reclaim as much as
355 * possible.
356 */
357 while (total_scan >= batch_size ||
d5bc5fd3 358 total_scan >= freeable) {
a0b02131 359 unsigned long ret;
0b1fb40a 360 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 361
0b1fb40a 362 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
363 ret = shrinker->scan_objects(shrinker, shrinkctl);
364 if (ret == SHRINK_STOP)
365 break;
366 freed += ret;
1d3d4437 367
0b1fb40a
VD
368 count_vm_events(SLABS_SCANNED, nr_to_scan);
369 total_scan -= nr_to_scan;
1d3d4437
GC
370
371 cond_resched();
372 }
373
374 /*
375 * move the unused scan count back into the shrinker in a
376 * manner that handles concurrent updates. If we exhausted the
377 * scan, there is no need to do an update.
378 */
379 if (total_scan > 0)
380 new_nr = atomic_long_add_return(total_scan,
381 &shrinker->nr_deferred[nid]);
382 else
383 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
384
df9024a8 385 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 386 return freed;
1495f230
YH
387}
388
6b4f7799 389/**
cb731d6c 390 * shrink_slab - shrink slab caches
6b4f7799
JW
391 * @gfp_mask: allocation context
392 * @nid: node whose slab caches to target
cb731d6c 393 * @memcg: memory cgroup whose slab caches to target
6b4f7799
JW
394 * @nr_scanned: pressure numerator
395 * @nr_eligible: pressure denominator
1da177e4 396 *
6b4f7799 397 * Call the shrink functions to age shrinkable caches.
1da177e4 398 *
6b4f7799
JW
399 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
400 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 401 *
cb731d6c
VD
402 * @memcg specifies the memory cgroup to target. If it is not NULL,
403 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
0fc9f58a
VD
404 * objects from the memory cgroup specified. Otherwise, only unaware
405 * shrinkers are called.
cb731d6c 406 *
6b4f7799
JW
407 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
408 * the available objects should be scanned. Page reclaim for example
409 * passes the number of pages scanned and the number of pages on the
410 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
411 * when it encountered mapped pages. The ratio is further biased by
412 * the ->seeks setting of the shrink function, which indicates the
413 * cost to recreate an object relative to that of an LRU page.
b15e0905 414 *
6b4f7799 415 * Returns the number of reclaimed slab objects.
1da177e4 416 */
cb731d6c
VD
417static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
418 struct mem_cgroup *memcg,
419 unsigned long nr_scanned,
420 unsigned long nr_eligible)
1da177e4
LT
421{
422 struct shrinker *shrinker;
24f7c6b9 423 unsigned long freed = 0;
1da177e4 424
0fc9f58a 425 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
cb731d6c
VD
426 return 0;
427
6b4f7799
JW
428 if (nr_scanned == 0)
429 nr_scanned = SWAP_CLUSTER_MAX;
1da177e4 430
f06590bd 431 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
432 /*
433 * If we would return 0, our callers would understand that we
434 * have nothing else to shrink and give up trying. By returning
435 * 1 we keep it going and assume we'll be able to shrink next
436 * time.
437 */
438 freed = 1;
f06590bd
MK
439 goto out;
440 }
1da177e4
LT
441
442 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
443 struct shrink_control sc = {
444 .gfp_mask = gfp_mask,
445 .nid = nid,
cb731d6c 446 .memcg = memcg,
6b4f7799 447 };
ec97097b 448
0fc9f58a
VD
449 /*
450 * If kernel memory accounting is disabled, we ignore
451 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
452 * passing NULL for memcg.
453 */
454 if (memcg_kmem_enabled() &&
455 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
cb731d6c
VD
456 continue;
457
6b4f7799
JW
458 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
459 sc.nid = 0;
1da177e4 460
cb731d6c 461 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
1da177e4 462 }
6b4f7799 463
1da177e4 464 up_read(&shrinker_rwsem);
f06590bd
MK
465out:
466 cond_resched();
24f7c6b9 467 return freed;
1da177e4
LT
468}
469
cb731d6c
VD
470void drop_slab_node(int nid)
471{
472 unsigned long freed;
473
474 do {
475 struct mem_cgroup *memcg = NULL;
476
477 freed = 0;
478 do {
479 freed += shrink_slab(GFP_KERNEL, nid, memcg,
480 1000, 1000);
481 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
482 } while (freed > 10);
483}
484
485void drop_slab(void)
486{
487 int nid;
488
489 for_each_online_node(nid)
490 drop_slab_node(nid);
491}
492
1da177e4
LT
493static inline int is_page_cache_freeable(struct page *page)
494{
ceddc3a5
JW
495 /*
496 * A freeable page cache page is referenced only by the caller
497 * that isolated the page, the page cache radix tree and
498 * optional buffer heads at page->private.
499 */
edcf4748 500 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
501}
502
703c2708 503static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 504{
930d9152 505 if (current->flags & PF_SWAPWRITE)
1da177e4 506 return 1;
703c2708 507 if (!inode_write_congested(inode))
1da177e4 508 return 1;
703c2708 509 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
510 return 1;
511 return 0;
512}
513
514/*
515 * We detected a synchronous write error writing a page out. Probably
516 * -ENOSPC. We need to propagate that into the address_space for a subsequent
517 * fsync(), msync() or close().
518 *
519 * The tricky part is that after writepage we cannot touch the mapping: nothing
520 * prevents it from being freed up. But we have a ref on the page and once
521 * that page is locked, the mapping is pinned.
522 *
523 * We're allowed to run sleeping lock_page() here because we know the caller has
524 * __GFP_FS.
525 */
526static void handle_write_error(struct address_space *mapping,
527 struct page *page, int error)
528{
7eaceacc 529 lock_page(page);
3e9f45bd
GC
530 if (page_mapping(page) == mapping)
531 mapping_set_error(mapping, error);
1da177e4
LT
532 unlock_page(page);
533}
534
04e62a29
CL
535/* possible outcome of pageout() */
536typedef enum {
537 /* failed to write page out, page is locked */
538 PAGE_KEEP,
539 /* move page to the active list, page is locked */
540 PAGE_ACTIVATE,
541 /* page has been sent to the disk successfully, page is unlocked */
542 PAGE_SUCCESS,
543 /* page is clean and locked */
544 PAGE_CLEAN,
545} pageout_t;
546
1da177e4 547/*
1742f19f
AM
548 * pageout is called by shrink_page_list() for each dirty page.
549 * Calls ->writepage().
1da177e4 550 */
c661b078 551static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 552 struct scan_control *sc)
1da177e4
LT
553{
554 /*
555 * If the page is dirty, only perform writeback if that write
556 * will be non-blocking. To prevent this allocation from being
557 * stalled by pagecache activity. But note that there may be
558 * stalls if we need to run get_block(). We could test
559 * PagePrivate for that.
560 *
8174202b 561 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
562 * this page's queue, we can perform writeback even if that
563 * will block.
564 *
565 * If the page is swapcache, write it back even if that would
566 * block, for some throttling. This happens by accident, because
567 * swap_backing_dev_info is bust: it doesn't reflect the
568 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
569 */
570 if (!is_page_cache_freeable(page))
571 return PAGE_KEEP;
572 if (!mapping) {
573 /*
574 * Some data journaling orphaned pages can have
575 * page->mapping == NULL while being dirty with clean buffers.
576 */
266cf658 577 if (page_has_private(page)) {
1da177e4
LT
578 if (try_to_free_buffers(page)) {
579 ClearPageDirty(page);
b1de0d13 580 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
581 return PAGE_CLEAN;
582 }
583 }
584 return PAGE_KEEP;
585 }
586 if (mapping->a_ops->writepage == NULL)
587 return PAGE_ACTIVATE;
703c2708 588 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
589 return PAGE_KEEP;
590
591 if (clear_page_dirty_for_io(page)) {
592 int res;
593 struct writeback_control wbc = {
594 .sync_mode = WB_SYNC_NONE,
595 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
596 .range_start = 0,
597 .range_end = LLONG_MAX,
1da177e4
LT
598 .for_reclaim = 1,
599 };
600
601 SetPageReclaim(page);
602 res = mapping->a_ops->writepage(page, &wbc);
603 if (res < 0)
604 handle_write_error(mapping, page, res);
994fc28c 605 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
606 ClearPageReclaim(page);
607 return PAGE_ACTIVATE;
608 }
c661b078 609
1da177e4
LT
610 if (!PageWriteback(page)) {
611 /* synchronous write or broken a_ops? */
612 ClearPageReclaim(page);
613 }
3aa23851 614 trace_mm_vmscan_writepage(page);
e129b5c2 615 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
616 return PAGE_SUCCESS;
617 }
618
619 return PAGE_CLEAN;
620}
621
a649fd92 622/*
e286781d
NP
623 * Same as remove_mapping, but if the page is removed from the mapping, it
624 * gets returned with a refcount of 0.
a649fd92 625 */
a528910e
JW
626static int __remove_mapping(struct address_space *mapping, struct page *page,
627 bool reclaimed)
49d2e9cc 628{
c4843a75 629 unsigned long flags;
c4843a75 630
28e4d965
NP
631 BUG_ON(!PageLocked(page));
632 BUG_ON(mapping != page_mapping(page));
49d2e9cc 633
c4843a75 634 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 635 /*
0fd0e6b0
NP
636 * The non racy check for a busy page.
637 *
638 * Must be careful with the order of the tests. When someone has
639 * a ref to the page, it may be possible that they dirty it then
640 * drop the reference. So if PageDirty is tested before page_count
641 * here, then the following race may occur:
642 *
643 * get_user_pages(&page);
644 * [user mapping goes away]
645 * write_to(page);
646 * !PageDirty(page) [good]
647 * SetPageDirty(page);
648 * put_page(page);
649 * !page_count(page) [good, discard it]
650 *
651 * [oops, our write_to data is lost]
652 *
653 * Reversing the order of the tests ensures such a situation cannot
654 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 655 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
656 *
657 * Note that if SetPageDirty is always performed via set_page_dirty,
658 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 659 */
fe896d18 660 if (!page_ref_freeze(page, 2))
49d2e9cc 661 goto cannot_free;
e286781d
NP
662 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
663 if (unlikely(PageDirty(page))) {
fe896d18 664 page_ref_unfreeze(page, 2);
49d2e9cc 665 goto cannot_free;
e286781d 666 }
49d2e9cc
CL
667
668 if (PageSwapCache(page)) {
669 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 670 mem_cgroup_swapout(page, swap);
49d2e9cc 671 __delete_from_swap_cache(page);
c4843a75 672 spin_unlock_irqrestore(&mapping->tree_lock, flags);
0a31bc97 673 swapcache_free(swap);
e286781d 674 } else {
6072d13c 675 void (*freepage)(struct page *);
a528910e 676 void *shadow = NULL;
6072d13c
LT
677
678 freepage = mapping->a_ops->freepage;
a528910e
JW
679 /*
680 * Remember a shadow entry for reclaimed file cache in
681 * order to detect refaults, thus thrashing, later on.
682 *
683 * But don't store shadows in an address space that is
684 * already exiting. This is not just an optizimation,
685 * inode reclaim needs to empty out the radix tree or
686 * the nodes are lost. Don't plant shadows behind its
687 * back.
f9fe48be
RZ
688 *
689 * We also don't store shadows for DAX mappings because the
690 * only page cache pages found in these are zero pages
691 * covering holes, and because we don't want to mix DAX
692 * exceptional entries and shadow exceptional entries in the
693 * same page_tree.
a528910e
JW
694 */
695 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 696 !mapping_exiting(mapping) && !dax_mapping(mapping))
a528910e 697 shadow = workingset_eviction(mapping, page);
62cccb8c 698 __delete_from_page_cache(page, shadow);
c4843a75 699 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
700
701 if (freepage != NULL)
702 freepage(page);
49d2e9cc
CL
703 }
704
49d2e9cc
CL
705 return 1;
706
707cannot_free:
c4843a75 708 spin_unlock_irqrestore(&mapping->tree_lock, flags);
49d2e9cc
CL
709 return 0;
710}
711
e286781d
NP
712/*
713 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
714 * someone else has a ref on the page, abort and return 0. If it was
715 * successfully detached, return 1. Assumes the caller has a single ref on
716 * this page.
717 */
718int remove_mapping(struct address_space *mapping, struct page *page)
719{
a528910e 720 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
721 /*
722 * Unfreezing the refcount with 1 rather than 2 effectively
723 * drops the pagecache ref for us without requiring another
724 * atomic operation.
725 */
fe896d18 726 page_ref_unfreeze(page, 1);
e286781d
NP
727 return 1;
728 }
729 return 0;
730}
731
894bc310
LS
732/**
733 * putback_lru_page - put previously isolated page onto appropriate LRU list
734 * @page: page to be put back to appropriate lru list
735 *
736 * Add previously isolated @page to appropriate LRU list.
737 * Page may still be unevictable for other reasons.
738 *
739 * lru_lock must not be held, interrupts must be enabled.
740 */
894bc310
LS
741void putback_lru_page(struct page *page)
742{
0ec3b74c 743 bool is_unevictable;
bbfd28ee 744 int was_unevictable = PageUnevictable(page);
894bc310 745
309381fe 746 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
747
748redo:
749 ClearPageUnevictable(page);
750
39b5f29a 751 if (page_evictable(page)) {
894bc310
LS
752 /*
753 * For evictable pages, we can use the cache.
754 * In event of a race, worst case is we end up with an
755 * unevictable page on [in]active list.
756 * We know how to handle that.
757 */
0ec3b74c 758 is_unevictable = false;
c53954a0 759 lru_cache_add(page);
894bc310
LS
760 } else {
761 /*
762 * Put unevictable pages directly on zone's unevictable
763 * list.
764 */
0ec3b74c 765 is_unevictable = true;
894bc310 766 add_page_to_unevictable_list(page);
6a7b9548 767 /*
21ee9f39
MK
768 * When racing with an mlock or AS_UNEVICTABLE clearing
769 * (page is unlocked) make sure that if the other thread
770 * does not observe our setting of PG_lru and fails
24513264 771 * isolation/check_move_unevictable_pages,
21ee9f39 772 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
773 * the page back to the evictable list.
774 *
21ee9f39 775 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
776 */
777 smp_mb();
894bc310 778 }
894bc310
LS
779
780 /*
781 * page's status can change while we move it among lru. If an evictable
782 * page is on unevictable list, it never be freed. To avoid that,
783 * check after we added it to the list, again.
784 */
0ec3b74c 785 if (is_unevictable && page_evictable(page)) {
894bc310
LS
786 if (!isolate_lru_page(page)) {
787 put_page(page);
788 goto redo;
789 }
790 /* This means someone else dropped this page from LRU
791 * So, it will be freed or putback to LRU again. There is
792 * nothing to do here.
793 */
794 }
795
0ec3b74c 796 if (was_unevictable && !is_unevictable)
bbfd28ee 797 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 798 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
799 count_vm_event(UNEVICTABLE_PGCULLED);
800
894bc310
LS
801 put_page(page); /* drop ref from isolate */
802}
803
dfc8d636
JW
804enum page_references {
805 PAGEREF_RECLAIM,
806 PAGEREF_RECLAIM_CLEAN,
64574746 807 PAGEREF_KEEP,
dfc8d636
JW
808 PAGEREF_ACTIVATE,
809};
810
811static enum page_references page_check_references(struct page *page,
812 struct scan_control *sc)
813{
64574746 814 int referenced_ptes, referenced_page;
dfc8d636 815 unsigned long vm_flags;
dfc8d636 816
c3ac9a8a
JW
817 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
818 &vm_flags);
64574746 819 referenced_page = TestClearPageReferenced(page);
dfc8d636 820
dfc8d636
JW
821 /*
822 * Mlock lost the isolation race with us. Let try_to_unmap()
823 * move the page to the unevictable list.
824 */
825 if (vm_flags & VM_LOCKED)
826 return PAGEREF_RECLAIM;
827
64574746 828 if (referenced_ptes) {
e4898273 829 if (PageSwapBacked(page))
64574746
JW
830 return PAGEREF_ACTIVATE;
831 /*
832 * All mapped pages start out with page table
833 * references from the instantiating fault, so we need
834 * to look twice if a mapped file page is used more
835 * than once.
836 *
837 * Mark it and spare it for another trip around the
838 * inactive list. Another page table reference will
839 * lead to its activation.
840 *
841 * Note: the mark is set for activated pages as well
842 * so that recently deactivated but used pages are
843 * quickly recovered.
844 */
845 SetPageReferenced(page);
846
34dbc67a 847 if (referenced_page || referenced_ptes > 1)
64574746
JW
848 return PAGEREF_ACTIVATE;
849
c909e993
KK
850 /*
851 * Activate file-backed executable pages after first usage.
852 */
853 if (vm_flags & VM_EXEC)
854 return PAGEREF_ACTIVATE;
855
64574746
JW
856 return PAGEREF_KEEP;
857 }
dfc8d636
JW
858
859 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 860 if (referenced_page && !PageSwapBacked(page))
64574746
JW
861 return PAGEREF_RECLAIM_CLEAN;
862
863 return PAGEREF_RECLAIM;
dfc8d636
JW
864}
865
e2be15f6
MG
866/* Check if a page is dirty or under writeback */
867static void page_check_dirty_writeback(struct page *page,
868 bool *dirty, bool *writeback)
869{
b4597226
MG
870 struct address_space *mapping;
871
e2be15f6
MG
872 /*
873 * Anonymous pages are not handled by flushers and must be written
874 * from reclaim context. Do not stall reclaim based on them
875 */
876 if (!page_is_file_cache(page)) {
877 *dirty = false;
878 *writeback = false;
879 return;
880 }
881
882 /* By default assume that the page flags are accurate */
883 *dirty = PageDirty(page);
884 *writeback = PageWriteback(page);
b4597226
MG
885
886 /* Verify dirty/writeback state if the filesystem supports it */
887 if (!page_has_private(page))
888 return;
889
890 mapping = page_mapping(page);
891 if (mapping && mapping->a_ops->is_dirty_writeback)
892 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
893}
894
1da177e4 895/*
1742f19f 896 * shrink_page_list() returns the number of reclaimed pages
1da177e4 897 */
1742f19f 898static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 899 struct pglist_data *pgdat,
f84f6e2b 900 struct scan_control *sc,
02c6de8d 901 enum ttu_flags ttu_flags,
8e950282 902 unsigned long *ret_nr_dirty,
d43006d5 903 unsigned long *ret_nr_unqueued_dirty,
8e950282 904 unsigned long *ret_nr_congested,
02c6de8d 905 unsigned long *ret_nr_writeback,
b1a6f21e 906 unsigned long *ret_nr_immediate,
02c6de8d 907 bool force_reclaim)
1da177e4
LT
908{
909 LIST_HEAD(ret_pages);
abe4c3b5 910 LIST_HEAD(free_pages);
1da177e4 911 int pgactivate = 0;
d43006d5 912 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
913 unsigned long nr_dirty = 0;
914 unsigned long nr_congested = 0;
05ff5137 915 unsigned long nr_reclaimed = 0;
92df3a72 916 unsigned long nr_writeback = 0;
b1a6f21e 917 unsigned long nr_immediate = 0;
1da177e4
LT
918
919 cond_resched();
920
1da177e4
LT
921 while (!list_empty(page_list)) {
922 struct address_space *mapping;
923 struct page *page;
924 int may_enter_fs;
02c6de8d 925 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 926 bool dirty, writeback;
854e9ed0
MK
927 bool lazyfree = false;
928 int ret = SWAP_SUCCESS;
1da177e4
LT
929
930 cond_resched();
931
932 page = lru_to_page(page_list);
933 list_del(&page->lru);
934
529ae9aa 935 if (!trylock_page(page))
1da177e4
LT
936 goto keep;
937
309381fe 938 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
939
940 sc->nr_scanned++;
80e43426 941
39b5f29a 942 if (unlikely(!page_evictable(page)))
b291f000 943 goto cull_mlocked;
894bc310 944
a6dc60f8 945 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
946 goto keep_locked;
947
1da177e4
LT
948 /* Double the slab pressure for mapped and swapcache pages */
949 if (page_mapped(page) || PageSwapCache(page))
950 sc->nr_scanned++;
951
c661b078
AW
952 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
953 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
954
e2be15f6
MG
955 /*
956 * The number of dirty pages determines if a zone is marked
957 * reclaim_congested which affects wait_iff_congested. kswapd
958 * will stall and start writing pages if the tail of the LRU
959 * is all dirty unqueued pages.
960 */
961 page_check_dirty_writeback(page, &dirty, &writeback);
962 if (dirty || writeback)
963 nr_dirty++;
964
965 if (dirty && !writeback)
966 nr_unqueued_dirty++;
967
d04e8acd
MG
968 /*
969 * Treat this page as congested if the underlying BDI is or if
970 * pages are cycling through the LRU so quickly that the
971 * pages marked for immediate reclaim are making it to the
972 * end of the LRU a second time.
973 */
e2be15f6 974 mapping = page_mapping(page);
1da58ee2 975 if (((dirty || writeback) && mapping &&
703c2708 976 inode_write_congested(mapping->host)) ||
d04e8acd 977 (writeback && PageReclaim(page)))
e2be15f6
MG
978 nr_congested++;
979
283aba9f
MG
980 /*
981 * If a page at the tail of the LRU is under writeback, there
982 * are three cases to consider.
983 *
984 * 1) If reclaim is encountering an excessive number of pages
985 * under writeback and this page is both under writeback and
986 * PageReclaim then it indicates that pages are being queued
987 * for IO but are being recycled through the LRU before the
988 * IO can complete. Waiting on the page itself risks an
989 * indefinite stall if it is impossible to writeback the
990 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
991 * note that the LRU is being scanned too quickly and the
992 * caller can stall after page list has been processed.
283aba9f 993 *
97c9341f 994 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
995 * not marked for immediate reclaim, or the caller does not
996 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
997 * not to fs). In this case mark the page for immediate
97c9341f 998 * reclaim and continue scanning.
283aba9f 999 *
ecf5fc6e
MH
1000 * Require may_enter_fs because we would wait on fs, which
1001 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1002 * enter reclaim, and deadlock if it waits on a page for
1003 * which it is needed to do the write (loop masks off
1004 * __GFP_IO|__GFP_FS for this reason); but more thought
1005 * would probably show more reasons.
1006 *
7fadc820 1007 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1008 * PageReclaim. memcg does not have any dirty pages
1009 * throttling so we could easily OOM just because too many
1010 * pages are in writeback and there is nothing else to
1011 * reclaim. Wait for the writeback to complete.
1012 */
c661b078 1013 if (PageWriteback(page)) {
283aba9f
MG
1014 /* Case 1 above */
1015 if (current_is_kswapd() &&
1016 PageReclaim(page) &&
599d0c95 1017 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
b1a6f21e
MG
1018 nr_immediate++;
1019 goto keep_locked;
283aba9f
MG
1020
1021 /* Case 2 above */
97c9341f 1022 } else if (sane_reclaim(sc) ||
ecf5fc6e 1023 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1024 /*
1025 * This is slightly racy - end_page_writeback()
1026 * might have just cleared PageReclaim, then
1027 * setting PageReclaim here end up interpreted
1028 * as PageReadahead - but that does not matter
1029 * enough to care. What we do want is for this
1030 * page to have PageReclaim set next time memcg
1031 * reclaim reaches the tests above, so it will
1032 * then wait_on_page_writeback() to avoid OOM;
1033 * and it's also appropriate in global reclaim.
1034 */
1035 SetPageReclaim(page);
e62e384e 1036 nr_writeback++;
c3b94f44 1037 goto keep_locked;
283aba9f
MG
1038
1039 /* Case 3 above */
1040 } else {
7fadc820 1041 unlock_page(page);
283aba9f 1042 wait_on_page_writeback(page);
7fadc820
HD
1043 /* then go back and try same page again */
1044 list_add_tail(&page->lru, page_list);
1045 continue;
e62e384e 1046 }
c661b078 1047 }
1da177e4 1048
02c6de8d
MK
1049 if (!force_reclaim)
1050 references = page_check_references(page, sc);
1051
dfc8d636
JW
1052 switch (references) {
1053 case PAGEREF_ACTIVATE:
1da177e4 1054 goto activate_locked;
64574746
JW
1055 case PAGEREF_KEEP:
1056 goto keep_locked;
dfc8d636
JW
1057 case PAGEREF_RECLAIM:
1058 case PAGEREF_RECLAIM_CLEAN:
1059 ; /* try to reclaim the page below */
1060 }
1da177e4 1061
1da177e4
LT
1062 /*
1063 * Anonymous process memory has backing store?
1064 * Try to allocate it some swap space here.
1065 */
b291f000 1066 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
1067 if (!(sc->gfp_mask & __GFP_IO))
1068 goto keep_locked;
5bc7b8ac 1069 if (!add_to_swap(page, page_list))
1da177e4 1070 goto activate_locked;
854e9ed0 1071 lazyfree = true;
63eb6b93 1072 may_enter_fs = 1;
1da177e4 1073
e2be15f6
MG
1074 /* Adding to swap updated mapping */
1075 mapping = page_mapping(page);
7751b2da
KS
1076 } else if (unlikely(PageTransHuge(page))) {
1077 /* Split file THP */
1078 if (split_huge_page_to_list(page, page_list))
1079 goto keep_locked;
e2be15f6 1080 }
1da177e4 1081
7751b2da
KS
1082 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1083
1da177e4
LT
1084 /*
1085 * The page is mapped into the page tables of one or more
1086 * processes. Try to unmap it here.
1087 */
1088 if (page_mapped(page) && mapping) {
854e9ed0
MK
1089 switch (ret = try_to_unmap(page, lazyfree ?
1090 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1091 (ttu_flags | TTU_BATCH_FLUSH))) {
1da177e4
LT
1092 case SWAP_FAIL:
1093 goto activate_locked;
1094 case SWAP_AGAIN:
1095 goto keep_locked;
b291f000
NP
1096 case SWAP_MLOCK:
1097 goto cull_mlocked;
854e9ed0
MK
1098 case SWAP_LZFREE:
1099 goto lazyfree;
1da177e4
LT
1100 case SWAP_SUCCESS:
1101 ; /* try to free the page below */
1102 }
1103 }
1104
1105 if (PageDirty(page)) {
ee72886d
MG
1106 /*
1107 * Only kswapd can writeback filesystem pages to
d43006d5
MG
1108 * avoid risk of stack overflow but only writeback
1109 * if many dirty pages have been encountered.
ee72886d 1110 */
f84f6e2b 1111 if (page_is_file_cache(page) &&
9e3b2f8c 1112 (!current_is_kswapd() ||
599d0c95 1113 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1114 /*
1115 * Immediately reclaim when written back.
1116 * Similar in principal to deactivate_page()
1117 * except we already have the page isolated
1118 * and know it's dirty
1119 */
1120 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1121 SetPageReclaim(page);
1122
ee72886d
MG
1123 goto keep_locked;
1124 }
1125
dfc8d636 1126 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1127 goto keep_locked;
4dd4b920 1128 if (!may_enter_fs)
1da177e4 1129 goto keep_locked;
52a8363e 1130 if (!sc->may_writepage)
1da177e4
LT
1131 goto keep_locked;
1132
d950c947
MG
1133 /*
1134 * Page is dirty. Flush the TLB if a writable entry
1135 * potentially exists to avoid CPU writes after IO
1136 * starts and then write it out here.
1137 */
1138 try_to_unmap_flush_dirty();
7d3579e8 1139 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1140 case PAGE_KEEP:
1141 goto keep_locked;
1142 case PAGE_ACTIVATE:
1143 goto activate_locked;
1144 case PAGE_SUCCESS:
7d3579e8 1145 if (PageWriteback(page))
41ac1999 1146 goto keep;
7d3579e8 1147 if (PageDirty(page))
1da177e4 1148 goto keep;
7d3579e8 1149
1da177e4
LT
1150 /*
1151 * A synchronous write - probably a ramdisk. Go
1152 * ahead and try to reclaim the page.
1153 */
529ae9aa 1154 if (!trylock_page(page))
1da177e4
LT
1155 goto keep;
1156 if (PageDirty(page) || PageWriteback(page))
1157 goto keep_locked;
1158 mapping = page_mapping(page);
1159 case PAGE_CLEAN:
1160 ; /* try to free the page below */
1161 }
1162 }
1163
1164 /*
1165 * If the page has buffers, try to free the buffer mappings
1166 * associated with this page. If we succeed we try to free
1167 * the page as well.
1168 *
1169 * We do this even if the page is PageDirty().
1170 * try_to_release_page() does not perform I/O, but it is
1171 * possible for a page to have PageDirty set, but it is actually
1172 * clean (all its buffers are clean). This happens if the
1173 * buffers were written out directly, with submit_bh(). ext3
894bc310 1174 * will do this, as well as the blockdev mapping.
1da177e4
LT
1175 * try_to_release_page() will discover that cleanness and will
1176 * drop the buffers and mark the page clean - it can be freed.
1177 *
1178 * Rarely, pages can have buffers and no ->mapping. These are
1179 * the pages which were not successfully invalidated in
1180 * truncate_complete_page(). We try to drop those buffers here
1181 * and if that worked, and the page is no longer mapped into
1182 * process address space (page_count == 1) it can be freed.
1183 * Otherwise, leave the page on the LRU so it is swappable.
1184 */
266cf658 1185 if (page_has_private(page)) {
1da177e4
LT
1186 if (!try_to_release_page(page, sc->gfp_mask))
1187 goto activate_locked;
e286781d
NP
1188 if (!mapping && page_count(page) == 1) {
1189 unlock_page(page);
1190 if (put_page_testzero(page))
1191 goto free_it;
1192 else {
1193 /*
1194 * rare race with speculative reference.
1195 * the speculative reference will free
1196 * this page shortly, so we may
1197 * increment nr_reclaimed here (and
1198 * leave it off the LRU).
1199 */
1200 nr_reclaimed++;
1201 continue;
1202 }
1203 }
1da177e4
LT
1204 }
1205
854e9ed0 1206lazyfree:
a528910e 1207 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1208 goto keep_locked;
1da177e4 1209
a978d6f5
NP
1210 /*
1211 * At this point, we have no other references and there is
1212 * no way to pick any more up (removed from LRU, removed
1213 * from pagecache). Can use non-atomic bitops now (and
1214 * we obviously don't have to worry about waking up a process
1215 * waiting on the page lock, because there are no references.
1216 */
48c935ad 1217 __ClearPageLocked(page);
e286781d 1218free_it:
854e9ed0
MK
1219 if (ret == SWAP_LZFREE)
1220 count_vm_event(PGLAZYFREED);
1221
05ff5137 1222 nr_reclaimed++;
abe4c3b5
MG
1223
1224 /*
1225 * Is there need to periodically free_page_list? It would
1226 * appear not as the counts should be low
1227 */
1228 list_add(&page->lru, &free_pages);
1da177e4
LT
1229 continue;
1230
b291f000 1231cull_mlocked:
63d6c5ad
HD
1232 if (PageSwapCache(page))
1233 try_to_free_swap(page);
b291f000 1234 unlock_page(page);
c54839a7 1235 list_add(&page->lru, &ret_pages);
b291f000
NP
1236 continue;
1237
1da177e4 1238activate_locked:
68a22394 1239 /* Not a candidate for swapping, so reclaim swap space. */
5ccc5aba 1240 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
a2c43eed 1241 try_to_free_swap(page);
309381fe 1242 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1243 SetPageActive(page);
1244 pgactivate++;
1245keep_locked:
1246 unlock_page(page);
1247keep:
1248 list_add(&page->lru, &ret_pages);
309381fe 1249 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1250 }
abe4c3b5 1251
747db954 1252 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1253 try_to_unmap_flush();
b745bc85 1254 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1255
1da177e4 1256 list_splice(&ret_pages, page_list);
f8891e5e 1257 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1258
8e950282
MG
1259 *ret_nr_dirty += nr_dirty;
1260 *ret_nr_congested += nr_congested;
d43006d5 1261 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1262 *ret_nr_writeback += nr_writeback;
b1a6f21e 1263 *ret_nr_immediate += nr_immediate;
05ff5137 1264 return nr_reclaimed;
1da177e4
LT
1265}
1266
02c6de8d
MK
1267unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1268 struct list_head *page_list)
1269{
1270 struct scan_control sc = {
1271 .gfp_mask = GFP_KERNEL,
1272 .priority = DEF_PRIORITY,
1273 .may_unmap = 1,
1274 };
8e950282 1275 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1276 struct page *page, *next;
1277 LIST_HEAD(clean_pages);
1278
1279 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1280 if (page_is_file_cache(page) && !PageDirty(page) &&
b1123ea6 1281 !__PageMovable(page)) {
02c6de8d
MK
1282 ClearPageActive(page);
1283 list_move(&page->lru, &clean_pages);
1284 }
1285 }
1286
599d0c95 1287 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
8e950282
MG
1288 TTU_UNMAP|TTU_IGNORE_ACCESS,
1289 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d 1290 list_splice(&clean_pages, page_list);
599d0c95 1291 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1292 return ret;
1293}
1294
5ad333eb
AW
1295/*
1296 * Attempt to remove the specified page from its LRU. Only take this page
1297 * if it is of the appropriate PageActive status. Pages which are being
1298 * freed elsewhere are also ignored.
1299 *
1300 * page: page to consider
1301 * mode: one of the LRU isolation modes defined above
1302 *
1303 * returns 0 on success, -ve errno on failure.
1304 */
f3fd4a61 1305int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1306{
1307 int ret = -EINVAL;
1308
1309 /* Only take pages on the LRU. */
1310 if (!PageLRU(page))
1311 return ret;
1312
e46a2879
MK
1313 /* Compaction should not handle unevictable pages but CMA can do so */
1314 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1315 return ret;
1316
5ad333eb 1317 ret = -EBUSY;
08e552c6 1318
c8244935
MG
1319 /*
1320 * To minimise LRU disruption, the caller can indicate that it only
1321 * wants to isolate pages it will be able to operate on without
1322 * blocking - clean pages for the most part.
1323 *
1324 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1325 * is used by reclaim when it is cannot write to backing storage
1326 *
1327 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1328 * that it is possible to migrate without blocking
1329 */
1330 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1331 /* All the caller can do on PageWriteback is block */
1332 if (PageWriteback(page))
1333 return ret;
1334
1335 if (PageDirty(page)) {
1336 struct address_space *mapping;
1337
1338 /* ISOLATE_CLEAN means only clean pages */
1339 if (mode & ISOLATE_CLEAN)
1340 return ret;
1341
1342 /*
1343 * Only pages without mappings or that have a
1344 * ->migratepage callback are possible to migrate
1345 * without blocking
1346 */
1347 mapping = page_mapping(page);
1348 if (mapping && !mapping->a_ops->migratepage)
1349 return ret;
1350 }
1351 }
39deaf85 1352
f80c0673
MK
1353 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1354 return ret;
1355
5ad333eb
AW
1356 if (likely(get_page_unless_zero(page))) {
1357 /*
1358 * Be careful not to clear PageLRU until after we're
1359 * sure the page is not being freed elsewhere -- the
1360 * page release code relies on it.
1361 */
1362 ClearPageLRU(page);
1363 ret = 0;
1364 }
1365
1366 return ret;
1367}
1368
1da177e4 1369/*
a52633d8 1370 * zone_lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1371 * shrink the lists perform better by taking out a batch of pages
1372 * and working on them outside the LRU lock.
1373 *
1374 * For pagecache intensive workloads, this function is the hottest
1375 * spot in the kernel (apart from copy_*_user functions).
1376 *
1377 * Appropriate locks must be held before calling this function.
1378 *
1379 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1380 * @lruvec: The LRU vector to pull pages from.
1da177e4 1381 * @dst: The temp list to put pages on to.
f626012d 1382 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1383 * @sc: The scan_control struct for this reclaim session
5ad333eb 1384 * @mode: One of the LRU isolation modes
3cb99451 1385 * @lru: LRU list id for isolating
1da177e4
LT
1386 *
1387 * returns how many pages were moved onto *@dst.
1388 */
69e05944 1389static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1390 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1391 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1392 isolate_mode_t mode, enum lru_list lru)
1da177e4 1393{
75b00af7 1394 struct list_head *src = &lruvec->lists[lru];
69e05944 1395 unsigned long nr_taken = 0;
599d0c95
MG
1396 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1397 unsigned long scan, nr_pages;
b2e18757 1398 LIST_HEAD(pages_skipped);
1da177e4 1399
0b802f10
VD
1400 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1401 !list_empty(src); scan++) {
5ad333eb 1402 struct page *page;
5ad333eb 1403
1da177e4
LT
1404 page = lru_to_page(src);
1405 prefetchw_prev_lru_page(page, src, flags);
1406
309381fe 1407 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1408
b2e18757
MG
1409 if (page_zonenum(page) > sc->reclaim_idx) {
1410 list_move(&page->lru, &pages_skipped);
1411 continue;
1412 }
1413
f3fd4a61 1414 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1415 case 0:
599d0c95
MG
1416 nr_pages = hpage_nr_pages(page);
1417 nr_taken += nr_pages;
1418 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1419 list_move(&page->lru, dst);
5ad333eb
AW
1420 break;
1421
1422 case -EBUSY:
1423 /* else it is being freed elsewhere */
1424 list_move(&page->lru, src);
1425 continue;
46453a6e 1426
5ad333eb
AW
1427 default:
1428 BUG();
1429 }
1da177e4
LT
1430 }
1431
b2e18757
MG
1432 /*
1433 * Splice any skipped pages to the start of the LRU list. Note that
1434 * this disrupts the LRU order when reclaiming for lower zones but
1435 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1436 * scanning would soon rescan the same pages to skip and put the
1437 * system at risk of premature OOM.
1438 */
1439 if (!list_empty(&pages_skipped))
1440 list_splice(&pages_skipped, src);
f626012d 1441 *nr_scanned = scan;
75b00af7
HD
1442 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1443 nr_taken, mode, is_file_lru(lru));
599d0c95
MG
1444 for (scan = 0; scan < MAX_NR_ZONES; scan++) {
1445 nr_pages = nr_zone_taken[scan];
1446 if (!nr_pages)
1447 continue;
1448
1449 update_lru_size(lruvec, lru, scan, -nr_pages);
1450 }
1da177e4
LT
1451 return nr_taken;
1452}
1453
62695a84
NP
1454/**
1455 * isolate_lru_page - tries to isolate a page from its LRU list
1456 * @page: page to isolate from its LRU list
1457 *
1458 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1459 * vmstat statistic corresponding to whatever LRU list the page was on.
1460 *
1461 * Returns 0 if the page was removed from an LRU list.
1462 * Returns -EBUSY if the page was not on an LRU list.
1463 *
1464 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1465 * the active list, it will have PageActive set. If it was found on
1466 * the unevictable list, it will have the PageUnevictable bit set. That flag
1467 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1468 *
1469 * The vmstat statistic corresponding to the list on which the page was
1470 * found will be decremented.
1471 *
1472 * Restrictions:
1473 * (1) Must be called with an elevated refcount on the page. This is a
1474 * fundamentnal difference from isolate_lru_pages (which is called
1475 * without a stable reference).
1476 * (2) the lru_lock must not be held.
1477 * (3) interrupts must be enabled.
1478 */
1479int isolate_lru_page(struct page *page)
1480{
1481 int ret = -EBUSY;
1482
309381fe 1483 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1484 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1485
62695a84
NP
1486 if (PageLRU(page)) {
1487 struct zone *zone = page_zone(page);
fa9add64 1488 struct lruvec *lruvec;
62695a84 1489
a52633d8 1490 spin_lock_irq(zone_lru_lock(zone));
599d0c95 1491 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0c917313 1492 if (PageLRU(page)) {
894bc310 1493 int lru = page_lru(page);
0c917313 1494 get_page(page);
62695a84 1495 ClearPageLRU(page);
fa9add64
HD
1496 del_page_from_lru_list(page, lruvec, lru);
1497 ret = 0;
62695a84 1498 }
a52633d8 1499 spin_unlock_irq(zone_lru_lock(zone));
62695a84
NP
1500 }
1501 return ret;
1502}
1503
35cd7815 1504/*
d37dd5dc
FW
1505 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1506 * then get resheduled. When there are massive number of tasks doing page
1507 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1508 * the LRU list will go small and be scanned faster than necessary, leading to
1509 * unnecessary swapping, thrashing and OOM.
35cd7815 1510 */
599d0c95 1511static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1512 struct scan_control *sc)
1513{
1514 unsigned long inactive, isolated;
1515
1516 if (current_is_kswapd())
1517 return 0;
1518
97c9341f 1519 if (!sane_reclaim(sc))
35cd7815
RR
1520 return 0;
1521
1522 if (file) {
599d0c95
MG
1523 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1524 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1525 } else {
599d0c95
MG
1526 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1527 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1528 }
1529
3cf23841
FW
1530 /*
1531 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1532 * won't get blocked by normal direct-reclaimers, forming a circular
1533 * deadlock.
1534 */
d0164adc 1535 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1536 inactive >>= 3;
1537
35cd7815
RR
1538 return isolated > inactive;
1539}
1540
66635629 1541static noinline_for_stack void
75b00af7 1542putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1543{
27ac81d8 1544 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
599d0c95 1545 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3f79768f 1546 LIST_HEAD(pages_to_free);
66635629 1547
66635629
MG
1548 /*
1549 * Put back any unfreeable pages.
1550 */
66635629 1551 while (!list_empty(page_list)) {
3f79768f 1552 struct page *page = lru_to_page(page_list);
66635629 1553 int lru;
3f79768f 1554
309381fe 1555 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1556 list_del(&page->lru);
39b5f29a 1557 if (unlikely(!page_evictable(page))) {
599d0c95 1558 spin_unlock_irq(&pgdat->lru_lock);
66635629 1559 putback_lru_page(page);
599d0c95 1560 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1561 continue;
1562 }
fa9add64 1563
599d0c95 1564 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1565
7a608572 1566 SetPageLRU(page);
66635629 1567 lru = page_lru(page);
fa9add64
HD
1568 add_page_to_lru_list(page, lruvec, lru);
1569
66635629
MG
1570 if (is_active_lru(lru)) {
1571 int file = is_file_lru(lru);
9992af10
RR
1572 int numpages = hpage_nr_pages(page);
1573 reclaim_stat->recent_rotated[file] += numpages;
66635629 1574 }
2bcf8879
HD
1575 if (put_page_testzero(page)) {
1576 __ClearPageLRU(page);
1577 __ClearPageActive(page);
fa9add64 1578 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1579
1580 if (unlikely(PageCompound(page))) {
599d0c95 1581 spin_unlock_irq(&pgdat->lru_lock);
747db954 1582 mem_cgroup_uncharge(page);
2bcf8879 1583 (*get_compound_page_dtor(page))(page);
599d0c95 1584 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1585 } else
1586 list_add(&page->lru, &pages_to_free);
66635629
MG
1587 }
1588 }
66635629 1589
3f79768f
HD
1590 /*
1591 * To save our caller's stack, now use input list for pages to free.
1592 */
1593 list_splice(&pages_to_free, page_list);
66635629
MG
1594}
1595
399ba0b9
N
1596/*
1597 * If a kernel thread (such as nfsd for loop-back mounts) services
1598 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1599 * In that case we should only throttle if the backing device it is
1600 * writing to is congested. In other cases it is safe to throttle.
1601 */
1602static int current_may_throttle(void)
1603{
1604 return !(current->flags & PF_LESS_THROTTLE) ||
1605 current->backing_dev_info == NULL ||
1606 bdi_write_congested(current->backing_dev_info);
1607}
1608
1da177e4 1609/*
b2e18757 1610 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1611 * of reclaimed pages
1da177e4 1612 */
66635629 1613static noinline_for_stack unsigned long
1a93be0e 1614shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1615 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1616{
1617 LIST_HEAD(page_list);
e247dbce 1618 unsigned long nr_scanned;
05ff5137 1619 unsigned long nr_reclaimed = 0;
e247dbce 1620 unsigned long nr_taken;
8e950282
MG
1621 unsigned long nr_dirty = 0;
1622 unsigned long nr_congested = 0;
e2be15f6 1623 unsigned long nr_unqueued_dirty = 0;
92df3a72 1624 unsigned long nr_writeback = 0;
b1a6f21e 1625 unsigned long nr_immediate = 0;
f3fd4a61 1626 isolate_mode_t isolate_mode = 0;
3cb99451 1627 int file = is_file_lru(lru);
599d0c95 1628 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1629 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1630
599d0c95 1631 while (unlikely(too_many_isolated(pgdat, file, sc))) {
58355c78 1632 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1633
1634 /* We are about to die and free our memory. Return now. */
1635 if (fatal_signal_pending(current))
1636 return SWAP_CLUSTER_MAX;
1637 }
1638
1da177e4 1639 lru_add_drain();
f80c0673
MK
1640
1641 if (!sc->may_unmap)
61317289 1642 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1643 if (!sc->may_writepage)
61317289 1644 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1645
599d0c95 1646 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1647
5dc35979
KK
1648 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1649 &nr_scanned, sc, isolate_mode, lru);
95d918fc 1650
599d0c95 1651 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1652 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1653
89b5fae5 1654 if (global_reclaim(sc)) {
599d0c95 1655 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
e247dbce 1656 if (current_is_kswapd())
599d0c95 1657 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
e247dbce 1658 else
599d0c95 1659 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
e247dbce 1660 }
599d0c95 1661 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1662
d563c050 1663 if (nr_taken == 0)
66635629 1664 return 0;
5ad333eb 1665
599d0c95 1666 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
8e950282
MG
1667 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1668 &nr_writeback, &nr_immediate,
1669 false);
c661b078 1670
599d0c95 1671 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1672
904249aa
YH
1673 if (global_reclaim(sc)) {
1674 if (current_is_kswapd())
599d0c95 1675 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
904249aa 1676 else
599d0c95 1677 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
904249aa 1678 }
a74609fa 1679
27ac81d8 1680 putback_inactive_pages(lruvec, &page_list);
3f79768f 1681
599d0c95 1682 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1683
599d0c95 1684 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1685
747db954 1686 mem_cgroup_uncharge_list(&page_list);
b745bc85 1687 free_hot_cold_page_list(&page_list, true);
e11da5b4 1688
92df3a72
MG
1689 /*
1690 * If reclaim is isolating dirty pages under writeback, it implies
1691 * that the long-lived page allocation rate is exceeding the page
1692 * laundering rate. Either the global limits are not being effective
1693 * at throttling processes due to the page distribution throughout
1694 * zones or there is heavy usage of a slow backing device. The
1695 * only option is to throttle from reclaim context which is not ideal
1696 * as there is no guarantee the dirtying process is throttled in the
1697 * same way balance_dirty_pages() manages.
1698 *
8e950282
MG
1699 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1700 * of pages under pages flagged for immediate reclaim and stall if any
1701 * are encountered in the nr_immediate check below.
92df3a72 1702 */
918fc718 1703 if (nr_writeback && nr_writeback == nr_taken)
599d0c95 1704 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
92df3a72 1705
d43006d5 1706 /*
97c9341f
TH
1707 * Legacy memcg will stall in page writeback so avoid forcibly
1708 * stalling here.
d43006d5 1709 */
97c9341f 1710 if (sane_reclaim(sc)) {
8e950282
MG
1711 /*
1712 * Tag a zone as congested if all the dirty pages scanned were
1713 * backed by a congested BDI and wait_iff_congested will stall.
1714 */
1715 if (nr_dirty && nr_dirty == nr_congested)
599d0c95 1716 set_bit(PGDAT_CONGESTED, &pgdat->flags);
8e950282 1717
b1a6f21e
MG
1718 /*
1719 * If dirty pages are scanned that are not queued for IO, it
1720 * implies that flushers are not keeping up. In this case, flag
599d0c95 1721 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
57054651 1722 * reclaim context.
b1a6f21e
MG
1723 */
1724 if (nr_unqueued_dirty == nr_taken)
599d0c95 1725 set_bit(PGDAT_DIRTY, &pgdat->flags);
b1a6f21e
MG
1726
1727 /*
b738d764
LT
1728 * If kswapd scans pages marked marked for immediate
1729 * reclaim and under writeback (nr_immediate), it implies
1730 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1731 * they are written so also forcibly stall.
1732 */
b738d764 1733 if (nr_immediate && current_may_throttle())
b1a6f21e 1734 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1735 }
d43006d5 1736
8e950282
MG
1737 /*
1738 * Stall direct reclaim for IO completions if underlying BDIs or zone
1739 * is congested. Allow kswapd to continue until it starts encountering
1740 * unqueued dirty pages or cycling through the LRU too quickly.
1741 */
399ba0b9
N
1742 if (!sc->hibernation_mode && !current_is_kswapd() &&
1743 current_may_throttle())
599d0c95 1744 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
8e950282 1745
599d0c95
MG
1746 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1747 nr_scanned, nr_reclaimed,
ba5e9579 1748 sc->priority, file);
05ff5137 1749 return nr_reclaimed;
1da177e4
LT
1750}
1751
1752/*
1753 * This moves pages from the active list to the inactive list.
1754 *
1755 * We move them the other way if the page is referenced by one or more
1756 * processes, from rmap.
1757 *
1758 * If the pages are mostly unmapped, the processing is fast and it is
a52633d8 1759 * appropriate to hold zone_lru_lock across the whole operation. But if
1da177e4 1760 * the pages are mapped, the processing is slow (page_referenced()) so we
a52633d8 1761 * should drop zone_lru_lock around each page. It's impossible to balance
1da177e4
LT
1762 * this, so instead we remove the pages from the LRU while processing them.
1763 * It is safe to rely on PG_active against the non-LRU pages in here because
1764 * nobody will play with that bit on a non-LRU page.
1765 *
0139aa7b 1766 * The downside is that we have to touch page->_refcount against each page.
1da177e4
LT
1767 * But we had to alter page->flags anyway.
1768 */
1cfb419b 1769
fa9add64 1770static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1771 struct list_head *list,
2bcf8879 1772 struct list_head *pages_to_free,
3eb4140f
WF
1773 enum lru_list lru)
1774{
599d0c95 1775 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3eb4140f 1776 unsigned long pgmoved = 0;
3eb4140f 1777 struct page *page;
fa9add64 1778 int nr_pages;
3eb4140f 1779
3eb4140f
WF
1780 while (!list_empty(list)) {
1781 page = lru_to_page(list);
599d0c95 1782 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3eb4140f 1783
309381fe 1784 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1785 SetPageLRU(page);
1786
fa9add64 1787 nr_pages = hpage_nr_pages(page);
599d0c95 1788 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
925b7673 1789 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1790 pgmoved += nr_pages;
3eb4140f 1791
2bcf8879
HD
1792 if (put_page_testzero(page)) {
1793 __ClearPageLRU(page);
1794 __ClearPageActive(page);
fa9add64 1795 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1796
1797 if (unlikely(PageCompound(page))) {
599d0c95 1798 spin_unlock_irq(&pgdat->lru_lock);
747db954 1799 mem_cgroup_uncharge(page);
2bcf8879 1800 (*get_compound_page_dtor(page))(page);
599d0c95 1801 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1802 } else
1803 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1804 }
1805 }
9d5e6a9f 1806
3eb4140f
WF
1807 if (!is_active_lru(lru))
1808 __count_vm_events(PGDEACTIVATE, pgmoved);
1809}
1cfb419b 1810
f626012d 1811static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1812 struct lruvec *lruvec,
f16015fb 1813 struct scan_control *sc,
9e3b2f8c 1814 enum lru_list lru)
1da177e4 1815{
44c241f1 1816 unsigned long nr_taken;
f626012d 1817 unsigned long nr_scanned;
6fe6b7e3 1818 unsigned long vm_flags;
1da177e4 1819 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1820 LIST_HEAD(l_active);
b69408e8 1821 LIST_HEAD(l_inactive);
1da177e4 1822 struct page *page;
1a93be0e 1823 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1824 unsigned long nr_rotated = 0;
f3fd4a61 1825 isolate_mode_t isolate_mode = 0;
3cb99451 1826 int file = is_file_lru(lru);
599d0c95 1827 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
1828
1829 lru_add_drain();
f80c0673
MK
1830
1831 if (!sc->may_unmap)
61317289 1832 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1833 if (!sc->may_writepage)
61317289 1834 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1835
599d0c95 1836 spin_lock_irq(&pgdat->lru_lock);
925b7673 1837
5dc35979
KK
1838 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1839 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1840
599d0c95 1841 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 1842 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1843
9d5e6a9f 1844 if (global_reclaim(sc))
599d0c95
MG
1845 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1846 __count_vm_events(PGREFILL, nr_scanned);
9d5e6a9f 1847
599d0c95 1848 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 1849
1da177e4
LT
1850 while (!list_empty(&l_hold)) {
1851 cond_resched();
1852 page = lru_to_page(&l_hold);
1853 list_del(&page->lru);
7e9cd484 1854
39b5f29a 1855 if (unlikely(!page_evictable(page))) {
894bc310
LS
1856 putback_lru_page(page);
1857 continue;
1858 }
1859
cc715d99
MG
1860 if (unlikely(buffer_heads_over_limit)) {
1861 if (page_has_private(page) && trylock_page(page)) {
1862 if (page_has_private(page))
1863 try_to_release_page(page, 0);
1864 unlock_page(page);
1865 }
1866 }
1867
c3ac9a8a
JW
1868 if (page_referenced(page, 0, sc->target_mem_cgroup,
1869 &vm_flags)) {
9992af10 1870 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1871 /*
1872 * Identify referenced, file-backed active pages and
1873 * give them one more trip around the active list. So
1874 * that executable code get better chances to stay in
1875 * memory under moderate memory pressure. Anon pages
1876 * are not likely to be evicted by use-once streaming
1877 * IO, plus JVM can create lots of anon VM_EXEC pages,
1878 * so we ignore them here.
1879 */
41e20983 1880 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1881 list_add(&page->lru, &l_active);
1882 continue;
1883 }
1884 }
7e9cd484 1885
5205e56e 1886 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1887 list_add(&page->lru, &l_inactive);
1888 }
1889
b555749a 1890 /*
8cab4754 1891 * Move pages back to the lru list.
b555749a 1892 */
599d0c95 1893 spin_lock_irq(&pgdat->lru_lock);
556adecb 1894 /*
8cab4754
WF
1895 * Count referenced pages from currently used mappings as rotated,
1896 * even though only some of them are actually re-activated. This
1897 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 1898 * get_scan_count.
7e9cd484 1899 */
b7c46d15 1900 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1901
fa9add64
HD
1902 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1903 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
599d0c95
MG
1904 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1905 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 1906
747db954 1907 mem_cgroup_uncharge_list(&l_hold);
b745bc85 1908 free_hot_cold_page_list(&l_hold, true);
1da177e4
LT
1909}
1910
59dc76b0
RR
1911/*
1912 * The inactive anon list should be small enough that the VM never has
1913 * to do too much work.
14797e23 1914 *
59dc76b0
RR
1915 * The inactive file list should be small enough to leave most memory
1916 * to the established workingset on the scan-resistant active list,
1917 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 1918 *
59dc76b0
RR
1919 * Both inactive lists should also be large enough that each inactive
1920 * page has a chance to be referenced again before it is reclaimed.
56e49d21 1921 *
59dc76b0
RR
1922 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
1923 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
1924 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 1925 *
59dc76b0
RR
1926 * total target max
1927 * memory ratio inactive
1928 * -------------------------------------
1929 * 10MB 1 5MB
1930 * 100MB 1 50MB
1931 * 1GB 3 250MB
1932 * 10GB 10 0.9GB
1933 * 100GB 31 3GB
1934 * 1TB 101 10GB
1935 * 10TB 320 32GB
56e49d21 1936 */
59dc76b0 1937static bool inactive_list_is_low(struct lruvec *lruvec, bool file)
56e49d21 1938{
59dc76b0 1939 unsigned long inactive_ratio;
e3790144
JW
1940 unsigned long inactive;
1941 unsigned long active;
59dc76b0 1942 unsigned long gb;
e3790144 1943
59dc76b0
RR
1944 /*
1945 * If we don't have swap space, anonymous page deactivation
1946 * is pointless.
1947 */
1948 if (!file && !total_swap_pages)
1949 return false;
56e49d21 1950
59dc76b0
RR
1951 inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
1952 active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
56e49d21 1953
59dc76b0
RR
1954 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1955 if (gb)
1956 inactive_ratio = int_sqrt(10 * gb);
b39415b2 1957 else
59dc76b0
RR
1958 inactive_ratio = 1;
1959
1960 return inactive * inactive_ratio < active;
b39415b2
RR
1961}
1962
4f98a2fe 1963static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1964 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1965{
b39415b2 1966 if (is_active_lru(lru)) {
59dc76b0 1967 if (inactive_list_is_low(lruvec, is_file_lru(lru)))
1a93be0e 1968 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1969 return 0;
1970 }
1971
1a93be0e 1972 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1973}
1974
9a265114
JW
1975enum scan_balance {
1976 SCAN_EQUAL,
1977 SCAN_FRACT,
1978 SCAN_ANON,
1979 SCAN_FILE,
1980};
1981
4f98a2fe
RR
1982/*
1983 * Determine how aggressively the anon and file LRU lists should be
1984 * scanned. The relative value of each set of LRU lists is determined
1985 * by looking at the fraction of the pages scanned we did rotate back
1986 * onto the active list instead of evict.
1987 *
be7bd59d
WL
1988 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1989 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1990 */
33377678 1991static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
1992 struct scan_control *sc, unsigned long *nr,
1993 unsigned long *lru_pages)
4f98a2fe 1994{
33377678 1995 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
1996 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1997 u64 fraction[2];
1998 u64 denominator = 0; /* gcc */
599d0c95 1999 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2000 unsigned long anon_prio, file_prio;
9a265114 2001 enum scan_balance scan_balance;
0bf1457f 2002 unsigned long anon, file;
9a265114 2003 bool force_scan = false;
4f98a2fe 2004 unsigned long ap, fp;
4111304d 2005 enum lru_list lru;
6f04f48d
SS
2006 bool some_scanned;
2007 int pass;
246e87a9 2008
f11c0ca5
JW
2009 /*
2010 * If the zone or memcg is small, nr[l] can be 0. This
2011 * results in no scanning on this priority and a potential
2012 * priority drop. Global direct reclaim can go to the next
2013 * zone and tends to have no problems. Global kswapd is for
2014 * zone balancing and it needs to scan a minimum amount. When
2015 * reclaiming for a memcg, a priority drop can cause high
2016 * latencies, so it's better to scan a minimum amount there as
2017 * well.
2018 */
90cbc250 2019 if (current_is_kswapd()) {
599d0c95 2020 if (!pgdat_reclaimable(pgdat))
90cbc250 2021 force_scan = true;
eb01aaab 2022 if (!mem_cgroup_online(memcg))
90cbc250
VD
2023 force_scan = true;
2024 }
89b5fae5 2025 if (!global_reclaim(sc))
a4d3e9e7 2026 force_scan = true;
76a33fc3
SL
2027
2028 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2029 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2030 scan_balance = SCAN_FILE;
76a33fc3
SL
2031 goto out;
2032 }
4f98a2fe 2033
10316b31
JW
2034 /*
2035 * Global reclaim will swap to prevent OOM even with no
2036 * swappiness, but memcg users want to use this knob to
2037 * disable swapping for individual groups completely when
2038 * using the memory controller's swap limit feature would be
2039 * too expensive.
2040 */
02695175 2041 if (!global_reclaim(sc) && !swappiness) {
9a265114 2042 scan_balance = SCAN_FILE;
10316b31
JW
2043 goto out;
2044 }
2045
2046 /*
2047 * Do not apply any pressure balancing cleverness when the
2048 * system is close to OOM, scan both anon and file equally
2049 * (unless the swappiness setting disagrees with swapping).
2050 */
02695175 2051 if (!sc->priority && swappiness) {
9a265114 2052 scan_balance = SCAN_EQUAL;
10316b31
JW
2053 goto out;
2054 }
2055
62376251
JW
2056 /*
2057 * Prevent the reclaimer from falling into the cache trap: as
2058 * cache pages start out inactive, every cache fault will tip
2059 * the scan balance towards the file LRU. And as the file LRU
2060 * shrinks, so does the window for rotation from references.
2061 * This means we have a runaway feedback loop where a tiny
2062 * thrashing file LRU becomes infinitely more attractive than
2063 * anon pages. Try to detect this based on file LRU size.
2064 */
2065 if (global_reclaim(sc)) {
599d0c95
MG
2066 unsigned long pgdatfile;
2067 unsigned long pgdatfree;
2068 int z;
2069 unsigned long total_high_wmark = 0;
2ab051e1 2070
599d0c95
MG
2071 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2072 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2073 node_page_state(pgdat, NR_INACTIVE_FILE);
2074
2075 for (z = 0; z < MAX_NR_ZONES; z++) {
2076 struct zone *zone = &pgdat->node_zones[z];
2077 if (!populated_zone(zone))
2078 continue;
2079
2080 total_high_wmark += high_wmark_pages(zone);
2081 }
62376251 2082
599d0c95 2083 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
62376251
JW
2084 scan_balance = SCAN_ANON;
2085 goto out;
2086 }
2087 }
2088
7c5bd705 2089 /*
316bda0e
VD
2090 * If there is enough inactive page cache, i.e. if the size of the
2091 * inactive list is greater than that of the active list *and* the
2092 * inactive list actually has some pages to scan on this priority, we
2093 * do not reclaim anything from the anonymous working set right now.
2094 * Without the second condition we could end up never scanning an
2095 * lruvec even if it has plenty of old anonymous pages unless the
2096 * system is under heavy pressure.
7c5bd705 2097 */
59dc76b0 2098 if (!inactive_list_is_low(lruvec, true) &&
23047a96 2099 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
9a265114 2100 scan_balance = SCAN_FILE;
7c5bd705
JW
2101 goto out;
2102 }
2103
9a265114
JW
2104 scan_balance = SCAN_FRACT;
2105
58c37f6e
KM
2106 /*
2107 * With swappiness at 100, anonymous and file have the same priority.
2108 * This scanning priority is essentially the inverse of IO cost.
2109 */
02695175 2110 anon_prio = swappiness;
75b00af7 2111 file_prio = 200 - anon_prio;
58c37f6e 2112
4f98a2fe
RR
2113 /*
2114 * OK, so we have swap space and a fair amount of page cache
2115 * pages. We use the recently rotated / recently scanned
2116 * ratios to determine how valuable each cache is.
2117 *
2118 * Because workloads change over time (and to avoid overflow)
2119 * we keep these statistics as a floating average, which ends
2120 * up weighing recent references more than old ones.
2121 *
2122 * anon in [0], file in [1]
2123 */
2ab051e1 2124
23047a96
JW
2125 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
2126 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
2127 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
2128 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2ab051e1 2129
599d0c95 2130 spin_lock_irq(&pgdat->lru_lock);
6e901571 2131 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2132 reclaim_stat->recent_scanned[0] /= 2;
2133 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2134 }
2135
6e901571 2136 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2137 reclaim_stat->recent_scanned[1] /= 2;
2138 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2139 }
2140
4f98a2fe 2141 /*
00d8089c
RR
2142 * The amount of pressure on anon vs file pages is inversely
2143 * proportional to the fraction of recently scanned pages on
2144 * each list that were recently referenced and in active use.
4f98a2fe 2145 */
fe35004f 2146 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2147 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2148
fe35004f 2149 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2150 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2151 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2152
76a33fc3
SL
2153 fraction[0] = ap;
2154 fraction[1] = fp;
2155 denominator = ap + fp + 1;
2156out:
6f04f48d
SS
2157 some_scanned = false;
2158 /* Only use force_scan on second pass. */
2159 for (pass = 0; !some_scanned && pass < 2; pass++) {
6b4f7799 2160 *lru_pages = 0;
6f04f48d
SS
2161 for_each_evictable_lru(lru) {
2162 int file = is_file_lru(lru);
2163 unsigned long size;
2164 unsigned long scan;
6e08a369 2165
23047a96 2166 size = lruvec_lru_size(lruvec, lru);
6f04f48d 2167 scan = size >> sc->priority;
9a265114 2168
6f04f48d
SS
2169 if (!scan && pass && force_scan)
2170 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2171
6f04f48d
SS
2172 switch (scan_balance) {
2173 case SCAN_EQUAL:
2174 /* Scan lists relative to size */
2175 break;
2176 case SCAN_FRACT:
2177 /*
2178 * Scan types proportional to swappiness and
2179 * their relative recent reclaim efficiency.
2180 */
2181 scan = div64_u64(scan * fraction[file],
2182 denominator);
2183 break;
2184 case SCAN_FILE:
2185 case SCAN_ANON:
2186 /* Scan one type exclusively */
6b4f7799
JW
2187 if ((scan_balance == SCAN_FILE) != file) {
2188 size = 0;
6f04f48d 2189 scan = 0;
6b4f7799 2190 }
6f04f48d
SS
2191 break;
2192 default:
2193 /* Look ma, no brain */
2194 BUG();
2195 }
6b4f7799
JW
2196
2197 *lru_pages += size;
6f04f48d 2198 nr[lru] = scan;
6b4f7799 2199
9a265114 2200 /*
6f04f48d
SS
2201 * Skip the second pass and don't force_scan,
2202 * if we found something to scan.
9a265114 2203 */
6f04f48d 2204 some_scanned |= !!scan;
9a265114 2205 }
76a33fc3 2206 }
6e08a369 2207}
4f98a2fe 2208
72b252ae
MG
2209#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2210static void init_tlb_ubc(void)
2211{
2212 /*
2213 * This deliberately does not clear the cpumask as it's expensive
2214 * and unnecessary. If there happens to be data in there then the
2215 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2216 * then will be cleared.
2217 */
2218 current->tlb_ubc.flush_required = false;
2219}
2220#else
2221static inline void init_tlb_ubc(void)
2222{
2223}
2224#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2225
9b4f98cd
JW
2226/*
2227 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2228 */
33377678
VD
2229static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg,
2230 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2231{
33377678 2232 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
9b4f98cd 2233 unsigned long nr[NR_LRU_LISTS];
e82e0561 2234 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2235 unsigned long nr_to_scan;
2236 enum lru_list lru;
2237 unsigned long nr_reclaimed = 0;
2238 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2239 struct blk_plug plug;
1a501907 2240 bool scan_adjusted;
9b4f98cd 2241
33377678 2242 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2243
e82e0561
MG
2244 /* Record the original scan target for proportional adjustments later */
2245 memcpy(targets, nr, sizeof(nr));
2246
1a501907
MG
2247 /*
2248 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2249 * event that can occur when there is little memory pressure e.g.
2250 * multiple streaming readers/writers. Hence, we do not abort scanning
2251 * when the requested number of pages are reclaimed when scanning at
2252 * DEF_PRIORITY on the assumption that the fact we are direct
2253 * reclaiming implies that kswapd is not keeping up and it is best to
2254 * do a batch of work at once. For memcg reclaim one check is made to
2255 * abort proportional reclaim if either the file or anon lru has already
2256 * dropped to zero at the first pass.
2257 */
2258 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2259 sc->priority == DEF_PRIORITY);
2260
72b252ae
MG
2261 init_tlb_ubc();
2262
9b4f98cd
JW
2263 blk_start_plug(&plug);
2264 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2265 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2266 unsigned long nr_anon, nr_file, percentage;
2267 unsigned long nr_scanned;
2268
9b4f98cd
JW
2269 for_each_evictable_lru(lru) {
2270 if (nr[lru]) {
2271 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2272 nr[lru] -= nr_to_scan;
2273
2274 nr_reclaimed += shrink_list(lru, nr_to_scan,
2275 lruvec, sc);
2276 }
2277 }
e82e0561
MG
2278
2279 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2280 continue;
2281
e82e0561
MG
2282 /*
2283 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2284 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2285 * proportionally what was requested by get_scan_count(). We
2286 * stop reclaiming one LRU and reduce the amount scanning
2287 * proportional to the original scan target.
2288 */
2289 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2290 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2291
1a501907
MG
2292 /*
2293 * It's just vindictive to attack the larger once the smaller
2294 * has gone to zero. And given the way we stop scanning the
2295 * smaller below, this makes sure that we only make one nudge
2296 * towards proportionality once we've got nr_to_reclaim.
2297 */
2298 if (!nr_file || !nr_anon)
2299 break;
2300
e82e0561
MG
2301 if (nr_file > nr_anon) {
2302 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2303 targets[LRU_ACTIVE_ANON] + 1;
2304 lru = LRU_BASE;
2305 percentage = nr_anon * 100 / scan_target;
2306 } else {
2307 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2308 targets[LRU_ACTIVE_FILE] + 1;
2309 lru = LRU_FILE;
2310 percentage = nr_file * 100 / scan_target;
2311 }
2312
2313 /* Stop scanning the smaller of the LRU */
2314 nr[lru] = 0;
2315 nr[lru + LRU_ACTIVE] = 0;
2316
2317 /*
2318 * Recalculate the other LRU scan count based on its original
2319 * scan target and the percentage scanning already complete
2320 */
2321 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2322 nr_scanned = targets[lru] - nr[lru];
2323 nr[lru] = targets[lru] * (100 - percentage) / 100;
2324 nr[lru] -= min(nr[lru], nr_scanned);
2325
2326 lru += LRU_ACTIVE;
2327 nr_scanned = targets[lru] - nr[lru];
2328 nr[lru] = targets[lru] * (100 - percentage) / 100;
2329 nr[lru] -= min(nr[lru], nr_scanned);
2330
2331 scan_adjusted = true;
9b4f98cd
JW
2332 }
2333 blk_finish_plug(&plug);
2334 sc->nr_reclaimed += nr_reclaimed;
2335
2336 /*
2337 * Even if we did not try to evict anon pages at all, we want to
2338 * rebalance the anon lru active/inactive ratio.
2339 */
59dc76b0 2340 if (inactive_list_is_low(lruvec, false))
9b4f98cd
JW
2341 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2342 sc, LRU_ACTIVE_ANON);
2343
2344 throttle_vm_writeout(sc->gfp_mask);
2345}
2346
23b9da55 2347/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2348static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2349{
d84da3f9 2350 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2351 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2352 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2353 return true;
2354
2355 return false;
2356}
2357
3e7d3449 2358/*
23b9da55
MG
2359 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2360 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2361 * true if more pages should be reclaimed such that when the page allocator
2362 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2363 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2364 */
9b4f98cd 2365static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2366 unsigned long nr_reclaimed,
2367 unsigned long nr_scanned,
2368 struct scan_control *sc)
2369{
2370 unsigned long pages_for_compaction;
2371 unsigned long inactive_lru_pages;
2372
2373 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2374 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2375 return false;
2376
2876592f
MG
2377 /* Consider stopping depending on scan and reclaim activity */
2378 if (sc->gfp_mask & __GFP_REPEAT) {
2379 /*
2380 * For __GFP_REPEAT allocations, stop reclaiming if the
2381 * full LRU list has been scanned and we are still failing
2382 * to reclaim pages. This full LRU scan is potentially
2383 * expensive but a __GFP_REPEAT caller really wants to succeed
2384 */
2385 if (!nr_reclaimed && !nr_scanned)
2386 return false;
2387 } else {
2388 /*
2389 * For non-__GFP_REPEAT allocations which can presumably
2390 * fail without consequence, stop if we failed to reclaim
2391 * any pages from the last SWAP_CLUSTER_MAX number of
2392 * pages that were scanned. This will return to the
2393 * caller faster at the risk reclaim/compaction and
2394 * the resulting allocation attempt fails
2395 */
2396 if (!nr_reclaimed)
2397 return false;
2398 }
3e7d3449
MG
2399
2400 /*
2401 * If we have not reclaimed enough pages for compaction and the
2402 * inactive lists are large enough, continue reclaiming
2403 */
2404 pages_for_compaction = (2UL << sc->order);
599d0c95 2405 inactive_lru_pages = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE);
ec8acf20 2406 if (get_nr_swap_pages() > 0)
599d0c95 2407 inactive_lru_pages += node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
3e7d3449
MG
2408 if (sc->nr_reclaimed < pages_for_compaction &&
2409 inactive_lru_pages > pages_for_compaction)
2410 return true;
2411
2412 /* If compaction would go ahead or the allocation would succeed, stop */
ebff3980 2413 switch (compaction_suitable(zone, sc->order, 0, 0)) {
3e7d3449
MG
2414 case COMPACT_PARTIAL:
2415 case COMPACT_CONTINUE:
2416 return false;
2417 default:
2418 return true;
2419 }
2420}
2421
b2e18757
MG
2422static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc,
2423 enum zone_type classzone_idx)
1da177e4 2424{
cb731d6c 2425 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2426 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2427 bool reclaimable = false;
b2e18757 2428 struct zone *zone = &pgdat->node_zones[classzone_idx];
1da177e4 2429
9b4f98cd
JW
2430 do {
2431 struct mem_cgroup *root = sc->target_mem_cgroup;
2432 struct mem_cgroup_reclaim_cookie reclaim = {
2433 .zone = zone,
2434 .priority = sc->priority,
2435 };
6b4f7799 2436 unsigned long zone_lru_pages = 0;
694fbc0f 2437 struct mem_cgroup *memcg;
3e7d3449 2438
9b4f98cd
JW
2439 nr_reclaimed = sc->nr_reclaimed;
2440 nr_scanned = sc->nr_scanned;
1da177e4 2441
694fbc0f
AM
2442 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2443 do {
6b4f7799 2444 unsigned long lru_pages;
8e8ae645 2445 unsigned long reclaimed;
cb731d6c 2446 unsigned long scanned;
5660048c 2447
241994ed
JW
2448 if (mem_cgroup_low(root, memcg)) {
2449 if (!sc->may_thrash)
2450 continue;
2451 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2452 }
2453
8e8ae645 2454 reclaimed = sc->nr_reclaimed;
cb731d6c 2455 scanned = sc->nr_scanned;
f9be23d6 2456
33377678 2457 shrink_zone_memcg(zone, memcg, sc, &lru_pages);
6b4f7799 2458 zone_lru_pages += lru_pages;
f16015fb 2459
b2e18757 2460 if (!global_reclaim(sc))
cb731d6c
VD
2461 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2462 memcg, sc->nr_scanned - scanned,
2463 lru_pages);
2464
8e8ae645
JW
2465 /* Record the group's reclaim efficiency */
2466 vmpressure(sc->gfp_mask, memcg, false,
2467 sc->nr_scanned - scanned,
2468 sc->nr_reclaimed - reclaimed);
2469
9b4f98cd 2470 /*
a394cb8e
MH
2471 * Direct reclaim and kswapd have to scan all memory
2472 * cgroups to fulfill the overall scan target for the
9b4f98cd 2473 * zone.
a394cb8e
MH
2474 *
2475 * Limit reclaim, on the other hand, only cares about
2476 * nr_to_reclaim pages to be reclaimed and it will
2477 * retry with decreasing priority if one round over the
2478 * whole hierarchy is not sufficient.
9b4f98cd 2479 */
a394cb8e
MH
2480 if (!global_reclaim(sc) &&
2481 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2482 mem_cgroup_iter_break(root, memcg);
2483 break;
2484 }
241994ed 2485 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2486
6b4f7799
JW
2487 /*
2488 * Shrink the slab caches in the same proportion that
2489 * the eligible LRU pages were scanned.
2490 */
b2e18757 2491 if (global_reclaim(sc))
cb731d6c
VD
2492 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2493 sc->nr_scanned - nr_scanned,
2494 zone_lru_pages);
2495
2496 if (reclaim_state) {
2497 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2498 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2499 }
2500
8e8ae645
JW
2501 /* Record the subtree's reclaim efficiency */
2502 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2503 sc->nr_scanned - nr_scanned,
2504 sc->nr_reclaimed - nr_reclaimed);
2505
2344d7e4
JW
2506 if (sc->nr_reclaimed - nr_reclaimed)
2507 reclaimable = true;
2508
9b4f98cd
JW
2509 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2510 sc->nr_scanned - nr_scanned, sc));
2344d7e4
JW
2511
2512 return reclaimable;
f16015fb
JW
2513}
2514
53853e2d
VB
2515/*
2516 * Returns true if compaction should go ahead for a high-order request, or
2517 * the high-order allocation would succeed without compaction.
2518 */
b6459cc1 2519static inline bool compaction_ready(struct zone *zone, int order, int classzone_idx)
fe4b1b24 2520{
31483b6a 2521 unsigned long watermark;
fe4b1b24
MG
2522 bool watermark_ok;
2523
fe4b1b24
MG
2524 /*
2525 * Compaction takes time to run and there are potentially other
2526 * callers using the pages just freed. Continue reclaiming until
2527 * there is a buffer of free pages available to give compaction
2528 * a reasonable chance of completing and allocating the page
2529 */
31483b6a 2530 watermark = high_wmark_pages(zone) + (2UL << order);
b6459cc1 2531 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, classzone_idx);
fe4b1b24
MG
2532
2533 /*
2534 * If compaction is deferred, reclaim up to a point where
2535 * compaction will have a chance of success when re-enabled
2536 */
0b06496a 2537 if (compaction_deferred(zone, order))
fe4b1b24
MG
2538 return watermark_ok;
2539
53853e2d
VB
2540 /*
2541 * If compaction is not ready to start and allocation is not likely
2542 * to succeed without it, then keep reclaiming.
2543 */
b6459cc1 2544 if (compaction_suitable(zone, order, 0, classzone_idx) == COMPACT_SKIPPED)
fe4b1b24
MG
2545 return false;
2546
2547 return watermark_ok;
2548}
2549
1da177e4
LT
2550/*
2551 * This is the direct reclaim path, for page-allocating processes. We only
2552 * try to reclaim pages from zones which will satisfy the caller's allocation
2553 * request.
2554 *
1da177e4
LT
2555 * If a zone is deemed to be full of pinned pages then just give it a light
2556 * scan then give up on it.
2557 */
0a0337e0 2558static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2559{
dd1a239f 2560 struct zoneref *z;
54a6eb5c 2561 struct zone *zone;
0608f43d
AM
2562 unsigned long nr_soft_reclaimed;
2563 unsigned long nr_soft_scanned;
619d0d76 2564 gfp_t orig_mask;
b2e18757 2565 enum zone_type classzone_idx;
79dafcdc 2566 pg_data_t *last_pgdat = NULL;
1cfb419b 2567
cc715d99
MG
2568 /*
2569 * If the number of buffer_heads in the machine exceeds the maximum
2570 * allowed level, force direct reclaim to scan the highmem zone as
2571 * highmem pages could be pinning lowmem pages storing buffer_heads
2572 */
619d0d76 2573 orig_mask = sc->gfp_mask;
b2e18757 2574 if (buffer_heads_over_limit) {
cc715d99 2575 sc->gfp_mask |= __GFP_HIGHMEM;
b2e18757
MG
2576 sc->reclaim_idx = classzone_idx = gfp_zone(sc->gfp_mask);
2577 }
cc715d99 2578
d4debc66 2579 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2580 sc->reclaim_idx, sc->nodemask) {
f3fe6512 2581 if (!populated_zone(zone))
1da177e4 2582 continue;
6b4f7799 2583
b2e18757
MG
2584 /*
2585 * Note that reclaim_idx does not change as it is the highest
2586 * zone reclaimed from which for empty zones is a no-op but
2587 * classzone_idx is used by shrink_node to test if the slabs
2588 * should be shrunk on a given node.
2589 */
2590 classzone_idx = sc->reclaim_idx;
6b4f7799
JW
2591 while (!populated_zone(zone->zone_pgdat->node_zones +
2592 classzone_idx))
2593 classzone_idx--;
2594
1cfb419b
KH
2595 /*
2596 * Take care memory controller reclaiming has small influence
2597 * to global LRU.
2598 */
89b5fae5 2599 if (global_reclaim(sc)) {
344736f2
VD
2600 if (!cpuset_zone_allowed(zone,
2601 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2602 continue;
65ec02cb 2603
6e543d57 2604 if (sc->priority != DEF_PRIORITY &&
599d0c95 2605 !pgdat_reclaimable(zone->zone_pgdat))
1cfb419b 2606 continue; /* Let kswapd poll it */
0b06496a
JW
2607
2608 /*
2609 * If we already have plenty of memory free for
2610 * compaction in this zone, don't free any more.
2611 * Even though compaction is invoked for any
2612 * non-zero order, only frequent costly order
2613 * reclamation is disruptive enough to become a
2614 * noticeable problem, like transparent huge
2615 * page allocations.
2616 */
2617 if (IS_ENABLED(CONFIG_COMPACTION) &&
2618 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
b2e18757
MG
2619 zonelist_zone_idx(z) <= classzone_idx &&
2620 compaction_ready(zone, sc->order, classzone_idx)) {
0b06496a
JW
2621 sc->compaction_ready = true;
2622 continue;
e0887c19 2623 }
0b06496a 2624
79dafcdc
MG
2625 /*
2626 * Shrink each node in the zonelist once. If the
2627 * zonelist is ordered by zone (not the default) then a
2628 * node may be shrunk multiple times but in that case
2629 * the user prefers lower zones being preserved.
2630 */
2631 if (zone->zone_pgdat == last_pgdat)
2632 continue;
2633
0608f43d
AM
2634 /*
2635 * This steals pages from memory cgroups over softlimit
2636 * and returns the number of reclaimed pages and
2637 * scanned pages. This works for global memory pressure
2638 * and balancing, not for a memcg's limit.
2639 */
2640 nr_soft_scanned = 0;
2641 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2642 sc->order, sc->gfp_mask,
2643 &nr_soft_scanned);
2644 sc->nr_reclaimed += nr_soft_reclaimed;
2645 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2646 /* need some check for avoid more shrink_zone() */
1cfb419b 2647 }
408d8544 2648
79dafcdc
MG
2649 /* See comment about same check for global reclaim above */
2650 if (zone->zone_pgdat == last_pgdat)
2651 continue;
2652 last_pgdat = zone->zone_pgdat;
b2e18757 2653 shrink_node(zone->zone_pgdat, sc, classzone_idx);
1da177e4 2654 }
e0c23279 2655
619d0d76
WY
2656 /*
2657 * Restore to original mask to avoid the impact on the caller if we
2658 * promoted it to __GFP_HIGHMEM.
2659 */
2660 sc->gfp_mask = orig_mask;
1da177e4 2661}
4f98a2fe 2662
1da177e4
LT
2663/*
2664 * This is the main entry point to direct page reclaim.
2665 *
2666 * If a full scan of the inactive list fails to free enough memory then we
2667 * are "out of memory" and something needs to be killed.
2668 *
2669 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2670 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2671 * caller can't do much about. We kick the writeback threads and take explicit
2672 * naps in the hope that some of these pages can be written. But if the
2673 * allocating task holds filesystem locks which prevent writeout this might not
2674 * work, and the allocation attempt will fail.
a41f24ea
NA
2675 *
2676 * returns: 0, if no pages reclaimed
2677 * else, the number of pages reclaimed
1da177e4 2678 */
dac1d27b 2679static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2680 struct scan_control *sc)
1da177e4 2681{
241994ed 2682 int initial_priority = sc->priority;
69e05944 2683 unsigned long total_scanned = 0;
22fba335 2684 unsigned long writeback_threshold;
241994ed 2685retry:
873b4771
KK
2686 delayacct_freepages_start();
2687
89b5fae5 2688 if (global_reclaim(sc))
1cfb419b 2689 count_vm_event(ALLOCSTALL);
1da177e4 2690
9e3b2f8c 2691 do {
70ddf637
AV
2692 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2693 sc->priority);
66e1707b 2694 sc->nr_scanned = 0;
0a0337e0 2695 shrink_zones(zonelist, sc);
c6a8a8c5 2696
66e1707b 2697 total_scanned += sc->nr_scanned;
bb21c7ce 2698 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2699 break;
2700
2701 if (sc->compaction_ready)
2702 break;
1da177e4 2703
0e50ce3b
MK
2704 /*
2705 * If we're getting trouble reclaiming, start doing
2706 * writepage even in laptop mode.
2707 */
2708 if (sc->priority < DEF_PRIORITY - 2)
2709 sc->may_writepage = 1;
2710
1da177e4
LT
2711 /*
2712 * Try to write back as many pages as we just scanned. This
2713 * tends to cause slow streaming writers to write data to the
2714 * disk smoothly, at the dirtying rate, which is nice. But
2715 * that's undesirable in laptop mode, where we *want* lumpy
2716 * writeout. So in laptop mode, write out the whole world.
2717 */
22fba335
KM
2718 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2719 if (total_scanned > writeback_threshold) {
0e175a18
CW
2720 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2721 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2722 sc->may_writepage = 1;
1da177e4 2723 }
0b06496a 2724 } while (--sc->priority >= 0);
bb21c7ce 2725
873b4771
KK
2726 delayacct_freepages_end();
2727
bb21c7ce
KM
2728 if (sc->nr_reclaimed)
2729 return sc->nr_reclaimed;
2730
0cee34fd 2731 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2732 if (sc->compaction_ready)
7335084d
MG
2733 return 1;
2734
241994ed
JW
2735 /* Untapped cgroup reserves? Don't OOM, retry. */
2736 if (!sc->may_thrash) {
2737 sc->priority = initial_priority;
2738 sc->may_thrash = 1;
2739 goto retry;
2740 }
2741
bb21c7ce 2742 return 0;
1da177e4
LT
2743}
2744
5515061d
MG
2745static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2746{
2747 struct zone *zone;
2748 unsigned long pfmemalloc_reserve = 0;
2749 unsigned long free_pages = 0;
2750 int i;
2751 bool wmark_ok;
2752
2753 for (i = 0; i <= ZONE_NORMAL; i++) {
2754 zone = &pgdat->node_zones[i];
f012a84a 2755 if (!populated_zone(zone) ||
599d0c95 2756 pgdat_reclaimable_pages(pgdat) == 0)
675becce
MG
2757 continue;
2758
5515061d
MG
2759 pfmemalloc_reserve += min_wmark_pages(zone);
2760 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2761 }
2762
675becce
MG
2763 /* If there are no reserves (unexpected config) then do not throttle */
2764 if (!pfmemalloc_reserve)
2765 return true;
2766
5515061d
MG
2767 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2768
2769 /* kswapd must be awake if processes are being throttled */
2770 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 2771 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
2772 (enum zone_type)ZONE_NORMAL);
2773 wake_up_interruptible(&pgdat->kswapd_wait);
2774 }
2775
2776 return wmark_ok;
2777}
2778
2779/*
2780 * Throttle direct reclaimers if backing storage is backed by the network
2781 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2782 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2783 * when the low watermark is reached.
2784 *
2785 * Returns true if a fatal signal was delivered during throttling. If this
2786 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2787 */
50694c28 2788static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2789 nodemask_t *nodemask)
2790{
675becce 2791 struct zoneref *z;
5515061d 2792 struct zone *zone;
675becce 2793 pg_data_t *pgdat = NULL;
5515061d
MG
2794
2795 /*
2796 * Kernel threads should not be throttled as they may be indirectly
2797 * responsible for cleaning pages necessary for reclaim to make forward
2798 * progress. kjournald for example may enter direct reclaim while
2799 * committing a transaction where throttling it could forcing other
2800 * processes to block on log_wait_commit().
2801 */
2802 if (current->flags & PF_KTHREAD)
50694c28
MG
2803 goto out;
2804
2805 /*
2806 * If a fatal signal is pending, this process should not throttle.
2807 * It should return quickly so it can exit and free its memory
2808 */
2809 if (fatal_signal_pending(current))
2810 goto out;
5515061d 2811
675becce
MG
2812 /*
2813 * Check if the pfmemalloc reserves are ok by finding the first node
2814 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2815 * GFP_KERNEL will be required for allocating network buffers when
2816 * swapping over the network so ZONE_HIGHMEM is unusable.
2817 *
2818 * Throttling is based on the first usable node and throttled processes
2819 * wait on a queue until kswapd makes progress and wakes them. There
2820 * is an affinity then between processes waking up and where reclaim
2821 * progress has been made assuming the process wakes on the same node.
2822 * More importantly, processes running on remote nodes will not compete
2823 * for remote pfmemalloc reserves and processes on different nodes
2824 * should make reasonable progress.
2825 */
2826 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2827 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2828 if (zone_idx(zone) > ZONE_NORMAL)
2829 continue;
2830
2831 /* Throttle based on the first usable node */
2832 pgdat = zone->zone_pgdat;
2833 if (pfmemalloc_watermark_ok(pgdat))
2834 goto out;
2835 break;
2836 }
2837
2838 /* If no zone was usable by the allocation flags then do not throttle */
2839 if (!pgdat)
50694c28 2840 goto out;
5515061d 2841
68243e76
MG
2842 /* Account for the throttling */
2843 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2844
5515061d
MG
2845 /*
2846 * If the caller cannot enter the filesystem, it's possible that it
2847 * is due to the caller holding an FS lock or performing a journal
2848 * transaction in the case of a filesystem like ext[3|4]. In this case,
2849 * it is not safe to block on pfmemalloc_wait as kswapd could be
2850 * blocked waiting on the same lock. Instead, throttle for up to a
2851 * second before continuing.
2852 */
2853 if (!(gfp_mask & __GFP_FS)) {
2854 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2855 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2856
2857 goto check_pending;
5515061d
MG
2858 }
2859
2860 /* Throttle until kswapd wakes the process */
2861 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2862 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2863
2864check_pending:
2865 if (fatal_signal_pending(current))
2866 return true;
2867
2868out:
2869 return false;
5515061d
MG
2870}
2871
dac1d27b 2872unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2873 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2874{
33906bc5 2875 unsigned long nr_reclaimed;
66e1707b 2876 struct scan_control sc = {
ee814fe2 2877 .nr_to_reclaim = SWAP_CLUSTER_MAX,
21caf2fc 2878 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
b2e18757 2879 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
2880 .order = order,
2881 .nodemask = nodemask,
2882 .priority = DEF_PRIORITY,
66e1707b 2883 .may_writepage = !laptop_mode,
a6dc60f8 2884 .may_unmap = 1,
2e2e4259 2885 .may_swap = 1,
66e1707b
BS
2886 };
2887
5515061d 2888 /*
50694c28
MG
2889 * Do not enter reclaim if fatal signal was delivered while throttled.
2890 * 1 is returned so that the page allocator does not OOM kill at this
2891 * point.
5515061d 2892 */
50694c28 2893 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2894 return 1;
2895
33906bc5
MG
2896 trace_mm_vmscan_direct_reclaim_begin(order,
2897 sc.may_writepage,
2898 gfp_mask);
2899
3115cd91 2900 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2901
2902 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2903
2904 return nr_reclaimed;
66e1707b
BS
2905}
2906
c255a458 2907#ifdef CONFIG_MEMCG
66e1707b 2908
72835c86 2909unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2910 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2911 struct zone *zone,
2912 unsigned long *nr_scanned)
4e416953
BS
2913{
2914 struct scan_control sc = {
b8f5c566 2915 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 2916 .target_mem_cgroup = memcg,
4e416953
BS
2917 .may_writepage = !laptop_mode,
2918 .may_unmap = 1,
b2e18757 2919 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 2920 .may_swap = !noswap,
4e416953 2921 };
6b4f7799 2922 unsigned long lru_pages;
0ae5e89c 2923
4e416953
BS
2924 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2925 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2926
9e3b2f8c 2927 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2928 sc.may_writepage,
2929 sc.gfp_mask);
2930
4e416953
BS
2931 /*
2932 * NOTE: Although we can get the priority field, using it
2933 * here is not a good idea, since it limits the pages we can scan.
2934 * if we don't reclaim here, the shrink_zone from balance_pgdat
2935 * will pick up pages from other mem cgroup's as well. We hack
2936 * the priority and make it zero.
2937 */
33377678 2938 shrink_zone_memcg(zone, memcg, &sc, &lru_pages);
bdce6d9e
KM
2939
2940 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2941
0ae5e89c 2942 *nr_scanned = sc.nr_scanned;
4e416953
BS
2943 return sc.nr_reclaimed;
2944}
2945
72835c86 2946unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 2947 unsigned long nr_pages,
a7885eb8 2948 gfp_t gfp_mask,
b70a2a21 2949 bool may_swap)
66e1707b 2950{
4e416953 2951 struct zonelist *zonelist;
bdce6d9e 2952 unsigned long nr_reclaimed;
889976db 2953 int nid;
66e1707b 2954 struct scan_control sc = {
b70a2a21 2955 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
a09ed5e0
YH
2956 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2957 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 2958 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
2959 .target_mem_cgroup = memcg,
2960 .priority = DEF_PRIORITY,
2961 .may_writepage = !laptop_mode,
2962 .may_unmap = 1,
b70a2a21 2963 .may_swap = may_swap,
a09ed5e0 2964 };
66e1707b 2965
889976db
YH
2966 /*
2967 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2968 * take care of from where we get pages. So the node where we start the
2969 * scan does not need to be the current node.
2970 */
72835c86 2971 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2972
2973 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2974
2975 trace_mm_vmscan_memcg_reclaim_begin(0,
2976 sc.may_writepage,
2977 sc.gfp_mask);
2978
3115cd91 2979 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
bdce6d9e
KM
2980
2981 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2982
2983 return nr_reclaimed;
66e1707b
BS
2984}
2985#endif
2986
1d82de61
MG
2987static void age_active_anon(struct pglist_data *pgdat,
2988 struct zone *zone, struct scan_control *sc)
f16015fb 2989{
b95a2f2d 2990 struct mem_cgroup *memcg;
f16015fb 2991
b95a2f2d
JW
2992 if (!total_swap_pages)
2993 return;
2994
2995 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2996 do {
c56d5c7d 2997 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2998
59dc76b0 2999 if (inactive_list_is_low(lruvec, false))
1a93be0e 3000 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3001 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3002
3003 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3004 } while (memcg);
f16015fb
JW
3005}
3006
31483b6a 3007static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
60cefed4 3008{
31483b6a 3009 unsigned long mark = high_wmark_pages(zone);
60cefed4 3010
accf6242 3011 return zone_watermark_ok_safe(zone, order, mark, classzone_idx);
60cefed4
JW
3012}
3013
5515061d
MG
3014/*
3015 * Prepare kswapd for sleeping. This verifies that there are no processes
3016 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3017 *
3018 * Returns true if kswapd is ready to sleep
3019 */
3020static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 3021 int classzone_idx)
f50de2d3 3022{
1d82de61
MG
3023 int i;
3024
f50de2d3
MG
3025 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3026 if (remaining)
5515061d
MG
3027 return false;
3028
3029 /*
9e5e3661
VB
3030 * The throttled processes are normally woken up in balance_pgdat() as
3031 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3032 * race between when kswapd checks the watermarks and a process gets
3033 * throttled. There is also a potential race if processes get
3034 * throttled, kswapd wakes, a large process exits thereby balancing the
3035 * zones, which causes kswapd to exit balance_pgdat() before reaching
3036 * the wake up checks. If kswapd is going to sleep, no process should
3037 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3038 * the wake up is premature, processes will wake kswapd and get
3039 * throttled again. The difference from wake ups in balance_pgdat() is
3040 * that here we are under prepare_to_wait().
5515061d 3041 */
9e5e3661
VB
3042 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3043 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3044
1d82de61
MG
3045 for (i = 0; i <= classzone_idx; i++) {
3046 struct zone *zone = pgdat->node_zones + i;
3047
3048 if (!populated_zone(zone))
3049 continue;
3050
38087d9b
MG
3051 if (!zone_balanced(zone, order, classzone_idx))
3052 return false;
1d82de61
MG
3053 }
3054
38087d9b 3055 return true;
f50de2d3
MG
3056}
3057
75485363 3058/*
1d82de61
MG
3059 * kswapd shrinks a node of pages that are at or below the highest usable
3060 * zone that is currently unbalanced.
b8e83b94
MG
3061 *
3062 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3063 * reclaim or if the lack of progress was due to pages under writeback.
3064 * This is used to determine if the scanning priority needs to be raised.
75485363 3065 */
1d82de61 3066static bool kswapd_shrink_node(pg_data_t *pgdat,
7c954f6d 3067 int classzone_idx,
accf6242 3068 struct scan_control *sc)
75485363 3069{
1d82de61
MG
3070 struct zone *zone;
3071 int z;
75485363 3072
1d82de61
MG
3073 /* Reclaim a number of pages proportional to the number of zones */
3074 sc->nr_to_reclaim = 0;
3075 for (z = 0; z <= classzone_idx; z++) {
3076 zone = pgdat->node_zones + z;
3077 if (!populated_zone(zone))
3078 continue;
7c954f6d 3079
1d82de61
MG
3080 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3081 }
7c954f6d
MG
3082
3083 /*
1d82de61
MG
3084 * Historically care was taken to put equal pressure on all zones but
3085 * now pressure is applied based on node LRU order.
7c954f6d 3086 */
1d82de61 3087 shrink_node(pgdat, sc, classzone_idx);
283aba9f 3088
7c954f6d 3089 /*
1d82de61
MG
3090 * Fragmentation may mean that the system cannot be rebalanced for
3091 * high-order allocations. If twice the allocation size has been
3092 * reclaimed then recheck watermarks only at order-0 to prevent
3093 * excessive reclaim. Assume that a process requested a high-order
3094 * can direct reclaim/compact.
7c954f6d 3095 */
1d82de61
MG
3096 if (sc->order && sc->nr_reclaimed >= 2UL << sc->order)
3097 sc->order = 0;
7c954f6d 3098
b8e83b94 3099 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3100}
3101
1da177e4 3102/*
1d82de61
MG
3103 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3104 * that are eligible for use by the caller until at least one zone is
3105 * balanced.
1da177e4 3106 *
1d82de61 3107 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3108 *
3109 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3110 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1d82de61
MG
3111 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3112 * or lower is eligible for reclaim until at least one usable zone is
3113 * balanced.
1da177e4 3114 */
accf6242 3115static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3116{
1da177e4 3117 int i;
0608f43d
AM
3118 unsigned long nr_soft_reclaimed;
3119 unsigned long nr_soft_scanned;
1d82de61 3120 struct zone *zone;
179e9639
AM
3121 struct scan_control sc = {
3122 .gfp_mask = GFP_KERNEL,
ee814fe2 3123 .order = order,
b8e83b94 3124 .priority = DEF_PRIORITY,
ee814fe2 3125 .may_writepage = !laptop_mode,
a6dc60f8 3126 .may_unmap = 1,
2e2e4259 3127 .may_swap = 1,
1d82de61 3128 .reclaim_idx = classzone_idx,
179e9639 3129 };
f8891e5e 3130 count_vm_event(PAGEOUTRUN);
1da177e4 3131
9e3b2f8c 3132 do {
b8e83b94
MG
3133 bool raise_priority = true;
3134
3135 sc.nr_reclaimed = 0;
1da177e4 3136
f7b60926
MG
3137 /* Scan from the highest requested zone to dma */
3138 for (i = classzone_idx; i >= 0; i--) {
1d82de61 3139 zone = pgdat->node_zones + i;
d6277db4
RW
3140 if (!populated_zone(zone))
3141 continue;
1da177e4 3142
cc715d99
MG
3143 /*
3144 * If the number of buffer_heads in the machine
3145 * exceeds the maximum allowed level and this node
3146 * has a highmem zone, force kswapd to reclaim from
3147 * it to relieve lowmem pressure.
3148 */
3149 if (buffer_heads_over_limit && is_highmem_idx(i)) {
1d82de61 3150 classzone_idx = i;
cc715d99
MG
3151 break;
3152 }
3153
31483b6a 3154 if (!zone_balanced(zone, order, 0)) {
1d82de61 3155 classzone_idx = i;
e1dbeda6 3156 break;
439423f6 3157 } else {
d43006d5 3158 /*
1d82de61
MG
3159 * If any eligible zone is balanced then the
3160 * node is not considered congested or dirty.
d43006d5 3161 */
599d0c95
MG
3162 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3163 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
1da177e4 3164 }
1da177e4 3165 }
dafcb73e 3166
b8e83b94 3167 if (i < 0)
e1dbeda6
AM
3168 goto out;
3169
1d82de61
MG
3170 /*
3171 * Do some background aging of the anon list, to give
3172 * pages a chance to be referenced before reclaiming. All
3173 * pages are rotated regardless of classzone as this is
3174 * about consistent aging.
3175 */
3176 age_active_anon(pgdat, &pgdat->node_zones[MAX_NR_ZONES - 1], &sc);
3177
b7ea3c41
MG
3178 /*
3179 * If we're getting trouble reclaiming, start doing writepage
3180 * even in laptop mode.
3181 */
1d82de61 3182 if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
b7ea3c41
MG
3183 sc.may_writepage = 1;
3184
1d82de61
MG
3185 /* Call soft limit reclaim before calling shrink_node. */
3186 sc.nr_scanned = 0;
3187 nr_soft_scanned = 0;
3188 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, sc.order,
3189 sc.gfp_mask, &nr_soft_scanned);
3190 sc.nr_reclaimed += nr_soft_reclaimed;
3191
1da177e4 3192 /*
1d82de61
MG
3193 * There should be no need to raise the scanning priority if
3194 * enough pages are already being scanned that that high
3195 * watermark would be met at 100% efficiency.
1da177e4 3196 */
1d82de61
MG
3197 if (kswapd_shrink_node(pgdat, classzone_idx, &sc))
3198 raise_priority = false;
5515061d
MG
3199
3200 /*
3201 * If the low watermark is met there is no need for processes
3202 * to be throttled on pfmemalloc_wait as they should not be
3203 * able to safely make forward progress. Wake them
3204 */
3205 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3206 pfmemalloc_watermark_ok(pgdat))
cfc51155 3207 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3208
b8e83b94
MG
3209 /* Check if kswapd should be suspending */
3210 if (try_to_freeze() || kthread_should_stop())
3211 break;
8357376d 3212
1d82de61
MG
3213 /*
3214 * Stop reclaiming if any eligible zone is balanced and clear
3215 * node writeback or congested.
3216 */
3217 for (i = 0; i <= classzone_idx; i++) {
3218 zone = pgdat->node_zones + i;
3219 if (!populated_zone(zone))
3220 continue;
3221
31483b6a 3222 if (zone_balanced(zone, sc.order, classzone_idx)) {
1d82de61
MG
3223 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3224 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3225 goto out;
3226 }
3227 }
3228
73ce02e9 3229 /*
b8e83b94
MG
3230 * Raise priority if scanning rate is too low or there was no
3231 * progress in reclaiming pages
73ce02e9 3232 */
b8e83b94
MG
3233 if (raise_priority || !sc.nr_reclaimed)
3234 sc.priority--;
1d82de61 3235 } while (sc.priority >= 1);
1da177e4 3236
b8e83b94 3237out:
0abdee2b 3238 /*
1d82de61
MG
3239 * Return the order kswapd stopped reclaiming at as
3240 * prepare_kswapd_sleep() takes it into account. If another caller
3241 * entered the allocator slow path while kswapd was awake, order will
3242 * remain at the higher level.
0abdee2b 3243 */
1d82de61 3244 return sc.order;
1da177e4
LT
3245}
3246
38087d9b
MG
3247static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3248 unsigned int classzone_idx)
f0bc0a60
KM
3249{
3250 long remaining = 0;
3251 DEFINE_WAIT(wait);
3252
3253 if (freezing(current) || kthread_should_stop())
3254 return;
3255
3256 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3257
3258 /* Try to sleep for a short interval */
38087d9b 3259 if (prepare_kswapd_sleep(pgdat, reclaim_order, remaining, classzone_idx)) {
fd901c95
VB
3260 /*
3261 * Compaction records what page blocks it recently failed to
3262 * isolate pages from and skips them in the future scanning.
3263 * When kswapd is going to sleep, it is reasonable to assume
3264 * that pages and compaction may succeed so reset the cache.
3265 */
3266 reset_isolation_suitable(pgdat);
3267
3268 /*
3269 * We have freed the memory, now we should compact it to make
3270 * allocation of the requested order possible.
3271 */
38087d9b 3272 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3273
f0bc0a60 3274 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3275
3276 /*
3277 * If woken prematurely then reset kswapd_classzone_idx and
3278 * order. The values will either be from a wakeup request or
3279 * the previous request that slept prematurely.
3280 */
3281 if (remaining) {
3282 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3283 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3284 }
3285
f0bc0a60
KM
3286 finish_wait(&pgdat->kswapd_wait, &wait);
3287 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3288 }
3289
3290 /*
3291 * After a short sleep, check if it was a premature sleep. If not, then
3292 * go fully to sleep until explicitly woken up.
3293 */
38087d9b 3294 if (prepare_kswapd_sleep(pgdat, reclaim_order, remaining, classzone_idx)) {
f0bc0a60
KM
3295 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3296
3297 /*
3298 * vmstat counters are not perfectly accurate and the estimated
3299 * value for counters such as NR_FREE_PAGES can deviate from the
3300 * true value by nr_online_cpus * threshold. To avoid the zone
3301 * watermarks being breached while under pressure, we reduce the
3302 * per-cpu vmstat threshold while kswapd is awake and restore
3303 * them before going back to sleep.
3304 */
3305 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3306
3307 if (!kthread_should_stop())
3308 schedule();
3309
f0bc0a60
KM
3310 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3311 } else {
3312 if (remaining)
3313 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3314 else
3315 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3316 }
3317 finish_wait(&pgdat->kswapd_wait, &wait);
3318}
3319
1da177e4
LT
3320/*
3321 * The background pageout daemon, started as a kernel thread
4f98a2fe 3322 * from the init process.
1da177e4
LT
3323 *
3324 * This basically trickles out pages so that we have _some_
3325 * free memory available even if there is no other activity
3326 * that frees anything up. This is needed for things like routing
3327 * etc, where we otherwise might have all activity going on in
3328 * asynchronous contexts that cannot page things out.
3329 *
3330 * If there are applications that are active memory-allocators
3331 * (most normal use), this basically shouldn't matter.
3332 */
3333static int kswapd(void *p)
3334{
38087d9b 3335 unsigned int alloc_order, reclaim_order, classzone_idx;
1da177e4
LT
3336 pg_data_t *pgdat = (pg_data_t*)p;
3337 struct task_struct *tsk = current;
f0bc0a60 3338
1da177e4
LT
3339 struct reclaim_state reclaim_state = {
3340 .reclaimed_slab = 0,
3341 };
a70f7302 3342 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3343
cf40bd16
NP
3344 lockdep_set_current_reclaim_state(GFP_KERNEL);
3345
174596a0 3346 if (!cpumask_empty(cpumask))
c5f59f08 3347 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3348 current->reclaim_state = &reclaim_state;
3349
3350 /*
3351 * Tell the memory management that we're a "memory allocator",
3352 * and that if we need more memory we should get access to it
3353 * regardless (see "__alloc_pages()"). "kswapd" should
3354 * never get caught in the normal page freeing logic.
3355 *
3356 * (Kswapd normally doesn't need memory anyway, but sometimes
3357 * you need a small amount of memory in order to be able to
3358 * page out something else, and this flag essentially protects
3359 * us from recursively trying to free more memory as we're
3360 * trying to free the first piece of memory in the first place).
3361 */
930d9152 3362 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3363 set_freezable();
1da177e4 3364
38087d9b
MG
3365 pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3366 pgdat->kswapd_classzone_idx = classzone_idx = 0;
1da177e4 3367 for ( ; ; ) {
6f6313d4 3368 bool ret;
3e1d1d28 3369
38087d9b
MG
3370kswapd_try_sleep:
3371 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3372 classzone_idx);
215ddd66 3373
38087d9b
MG
3374 /* Read the new order and classzone_idx */
3375 alloc_order = reclaim_order = pgdat->kswapd_order;
3376 classzone_idx = pgdat->kswapd_classzone_idx;
3377 pgdat->kswapd_order = 0;
3378 pgdat->kswapd_classzone_idx = 0;
1da177e4 3379
8fe23e05
DR
3380 ret = try_to_freeze();
3381 if (kthread_should_stop())
3382 break;
3383
3384 /*
3385 * We can speed up thawing tasks if we don't call balance_pgdat
3386 * after returning from the refrigerator
3387 */
38087d9b
MG
3388 if (ret)
3389 continue;
3390
3391 /*
3392 * Reclaim begins at the requested order but if a high-order
3393 * reclaim fails then kswapd falls back to reclaiming for
3394 * order-0. If that happens, kswapd will consider sleeping
3395 * for the order it finished reclaiming at (reclaim_order)
3396 * but kcompactd is woken to compact for the original
3397 * request (alloc_order).
3398 */
3399 trace_mm_vmscan_kswapd_wake(pgdat->node_id, alloc_order);
3400 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3401 if (reclaim_order < alloc_order)
3402 goto kswapd_try_sleep;
1d82de61 3403
38087d9b
MG
3404 alloc_order = reclaim_order = pgdat->kswapd_order;
3405 classzone_idx = pgdat->kswapd_classzone_idx;
1da177e4 3406 }
b0a8cc58 3407
71abdc15 3408 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3409 current->reclaim_state = NULL;
71abdc15
JW
3410 lockdep_clear_current_reclaim_state();
3411
1da177e4
LT
3412 return 0;
3413}
3414
3415/*
3416 * A zone is low on free memory, so wake its kswapd task to service it.
3417 */
99504748 3418void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3419{
3420 pg_data_t *pgdat;
3421
f3fe6512 3422 if (!populated_zone(zone))
1da177e4
LT
3423 return;
3424
344736f2 3425 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3426 return;
88f5acf8 3427 pgdat = zone->zone_pgdat;
38087d9b
MG
3428 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3429 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3430 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3431 return;
31483b6a 3432 if (zone_balanced(zone, order, 0))
88f5acf8
MG
3433 return;
3434
3435 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3436 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3437}
3438
c6f37f12 3439#ifdef CONFIG_HIBERNATION
1da177e4 3440/*
7b51755c 3441 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3442 * freed pages.
3443 *
3444 * Rather than trying to age LRUs the aim is to preserve the overall
3445 * LRU order by reclaiming preferentially
3446 * inactive > active > active referenced > active mapped
1da177e4 3447 */
7b51755c 3448unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3449{
d6277db4 3450 struct reclaim_state reclaim_state;
d6277db4 3451 struct scan_control sc = {
ee814fe2 3452 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3453 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3454 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3455 .priority = DEF_PRIORITY,
d6277db4 3456 .may_writepage = 1,
ee814fe2
JW
3457 .may_unmap = 1,
3458 .may_swap = 1,
7b51755c 3459 .hibernation_mode = 1,
1da177e4 3460 };
a09ed5e0 3461 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3462 struct task_struct *p = current;
3463 unsigned long nr_reclaimed;
1da177e4 3464
7b51755c
KM
3465 p->flags |= PF_MEMALLOC;
3466 lockdep_set_current_reclaim_state(sc.gfp_mask);
3467 reclaim_state.reclaimed_slab = 0;
3468 p->reclaim_state = &reclaim_state;
d6277db4 3469
3115cd91 3470 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3471
7b51755c
KM
3472 p->reclaim_state = NULL;
3473 lockdep_clear_current_reclaim_state();
3474 p->flags &= ~PF_MEMALLOC;
d6277db4 3475
7b51755c 3476 return nr_reclaimed;
1da177e4 3477}
c6f37f12 3478#endif /* CONFIG_HIBERNATION */
1da177e4 3479
1da177e4
LT
3480/* It's optimal to keep kswapds on the same CPUs as their memory, but
3481 not required for correctness. So if the last cpu in a node goes
3482 away, we get changed to run anywhere: as the first one comes back,
3483 restore their cpu bindings. */
fcb35a9b
GKH
3484static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3485 void *hcpu)
1da177e4 3486{
58c0a4a7 3487 int nid;
1da177e4 3488
8bb78442 3489 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3490 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3491 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3492 const struct cpumask *mask;
3493
3494 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3495
3e597945 3496 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3497 /* One of our CPUs online: restore mask */
c5f59f08 3498 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3499 }
3500 }
3501 return NOTIFY_OK;
3502}
1da177e4 3503
3218ae14
YG
3504/*
3505 * This kswapd start function will be called by init and node-hot-add.
3506 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3507 */
3508int kswapd_run(int nid)
3509{
3510 pg_data_t *pgdat = NODE_DATA(nid);
3511 int ret = 0;
3512
3513 if (pgdat->kswapd)
3514 return 0;
3515
3516 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3517 if (IS_ERR(pgdat->kswapd)) {
3518 /* failure at boot is fatal */
3519 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3520 pr_err("Failed to start kswapd on node %d\n", nid);
3521 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3522 pgdat->kswapd = NULL;
3218ae14
YG
3523 }
3524 return ret;
3525}
3526
8fe23e05 3527/*
d8adde17 3528 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3529 * hold mem_hotplug_begin/end().
8fe23e05
DR
3530 */
3531void kswapd_stop(int nid)
3532{
3533 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3534
d8adde17 3535 if (kswapd) {
8fe23e05 3536 kthread_stop(kswapd);
d8adde17
JL
3537 NODE_DATA(nid)->kswapd = NULL;
3538 }
8fe23e05
DR
3539}
3540
1da177e4
LT
3541static int __init kswapd_init(void)
3542{
3218ae14 3543 int nid;
69e05944 3544
1da177e4 3545 swap_setup();
48fb2e24 3546 for_each_node_state(nid, N_MEMORY)
3218ae14 3547 kswapd_run(nid);
1da177e4
LT
3548 hotcpu_notifier(cpu_callback, 0);
3549 return 0;
3550}
3551
3552module_init(kswapd_init)
9eeff239
CL
3553
3554#ifdef CONFIG_NUMA
3555/*
3556 * Zone reclaim mode
3557 *
3558 * If non-zero call zone_reclaim when the number of free pages falls below
3559 * the watermarks.
9eeff239
CL
3560 */
3561int zone_reclaim_mode __read_mostly;
3562
1b2ffb78 3563#define RECLAIM_OFF 0
7d03431c 3564#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3565#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3566#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3567
a92f7126
CL
3568/*
3569 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3570 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3571 * a zone.
3572 */
3573#define ZONE_RECLAIM_PRIORITY 4
3574
9614634f
CL
3575/*
3576 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3577 * occur.
3578 */
3579int sysctl_min_unmapped_ratio = 1;
3580
0ff38490
CL
3581/*
3582 * If the number of slab pages in a zone grows beyond this percentage then
3583 * slab reclaim needs to occur.
3584 */
3585int sysctl_min_slab_ratio = 5;
3586
90afa5de
MG
3587static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3588{
3589 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
599d0c95
MG
3590 unsigned long file_lru = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
3591 node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE);
90afa5de
MG
3592
3593 /*
3594 * It's possible for there to be more file mapped pages than
3595 * accounted for by the pages on the file LRU lists because
3596 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3597 */
3598 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3599}
3600
3601/* Work out how many page cache pages we can reclaim in this reclaim_mode */
d031a157 3602static unsigned long zone_pagecache_reclaimable(struct zone *zone)
90afa5de 3603{
d031a157
AM
3604 unsigned long nr_pagecache_reclaimable;
3605 unsigned long delta = 0;
90afa5de
MG
3606
3607 /*
95bbc0c7 3608 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de
MG
3609 * potentially reclaimable. Otherwise, we have to worry about
3610 * pages like swapcache and zone_unmapped_file_pages() provides
3611 * a better estimate
3612 */
95bbc0c7 3613 if (zone_reclaim_mode & RECLAIM_UNMAP)
90afa5de
MG
3614 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3615 else
3616 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3617
3618 /* If we can't clean pages, remove dirty pages from consideration */
3619 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3620 delta += zone_page_state(zone, NR_FILE_DIRTY);
3621
3622 /* Watch for any possible underflows due to delta */
3623 if (unlikely(delta > nr_pagecache_reclaimable))
3624 delta = nr_pagecache_reclaimable;
3625
3626 return nr_pagecache_reclaimable - delta;
3627}
3628
9eeff239
CL
3629/*
3630 * Try to free up some pages from this zone through reclaim.
3631 */
179e9639 3632static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3633{
7fb2d46d 3634 /* Minimum pages needed in order to stay on node */
69e05944 3635 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3636 struct task_struct *p = current;
3637 struct reclaim_state reclaim_state;
179e9639 3638 struct scan_control sc = {
62b726c1 3639 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3640 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3641 .order = order,
9e3b2f8c 3642 .priority = ZONE_RECLAIM_PRIORITY,
ee814fe2 3643 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
95bbc0c7 3644 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 3645 .may_swap = 1,
b2e18757 3646 .reclaim_idx = zone_idx(zone),
179e9639 3647 };
9eeff239 3648
9eeff239 3649 cond_resched();
d4f7796e 3650 /*
95bbc0c7 3651 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 3652 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 3653 * and RECLAIM_UNMAP.
d4f7796e
CL
3654 */
3655 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3656 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3657 reclaim_state.reclaimed_slab = 0;
3658 p->reclaim_state = &reclaim_state;
c84db23c 3659
90afa5de 3660 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3661 /*
3662 * Free memory by calling shrink zone with increasing
3663 * priorities until we have enough memory freed.
3664 */
0ff38490 3665 do {
b2e18757 3666 shrink_node(zone->zone_pgdat, &sc, zone_idx(zone));
9e3b2f8c 3667 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3668 }
c84db23c 3669
9eeff239 3670 p->reclaim_state = NULL;
d4f7796e 3671 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3672 lockdep_clear_current_reclaim_state();
a79311c1 3673 return sc.nr_reclaimed >= nr_pages;
9eeff239 3674}
179e9639
AM
3675
3676int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3677{
179e9639 3678 int node_id;
d773ed6b 3679 int ret;
179e9639
AM
3680
3681 /*
0ff38490
CL
3682 * Zone reclaim reclaims unmapped file backed pages and
3683 * slab pages if we are over the defined limits.
34aa1330 3684 *
9614634f
CL
3685 * A small portion of unmapped file backed pages is needed for
3686 * file I/O otherwise pages read by file I/O will be immediately
3687 * thrown out if the zone is overallocated. So we do not reclaim
3688 * if less than a specified percentage of the zone is used by
3689 * unmapped file backed pages.
179e9639 3690 */
90afa5de
MG
3691 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3692 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3693 return ZONE_RECLAIM_FULL;
179e9639 3694
599d0c95 3695 if (!pgdat_reclaimable(zone->zone_pgdat))
fa5e084e 3696 return ZONE_RECLAIM_FULL;
d773ed6b 3697
179e9639 3698 /*
d773ed6b 3699 * Do not scan if the allocation should not be delayed.
179e9639 3700 */
d0164adc 3701 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
fa5e084e 3702 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3703
3704 /*
3705 * Only run zone reclaim on the local zone or on zones that do not
3706 * have associated processors. This will favor the local processor
3707 * over remote processors and spread off node memory allocations
3708 * as wide as possible.
3709 */
89fa3024 3710 node_id = zone_to_nid(zone);
37c0708d 3711 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3712 return ZONE_RECLAIM_NOSCAN;
d773ed6b 3713
57054651 3714 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
fa5e084e
MG
3715 return ZONE_RECLAIM_NOSCAN;
3716
d773ed6b 3717 ret = __zone_reclaim(zone, gfp_mask, order);
57054651 3718 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
d773ed6b 3719
24cf7251
MG
3720 if (!ret)
3721 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3722
d773ed6b 3723 return ret;
179e9639 3724}
9eeff239 3725#endif
894bc310 3726
894bc310
LS
3727/*
3728 * page_evictable - test whether a page is evictable
3729 * @page: the page to test
894bc310
LS
3730 *
3731 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3732 * lists vs unevictable list.
894bc310
LS
3733 *
3734 * Reasons page might not be evictable:
ba9ddf49 3735 * (1) page's mapping marked unevictable
b291f000 3736 * (2) page is part of an mlocked VMA
ba9ddf49 3737 *
894bc310 3738 */
39b5f29a 3739int page_evictable(struct page *page)
894bc310 3740{
39b5f29a 3741 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3742}
89e004ea 3743
85046579 3744#ifdef CONFIG_SHMEM
89e004ea 3745/**
24513264
HD
3746 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3747 * @pages: array of pages to check
3748 * @nr_pages: number of pages to check
89e004ea 3749 *
24513264 3750 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3751 *
3752 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3753 */
24513264 3754void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3755{
925b7673 3756 struct lruvec *lruvec;
24513264
HD
3757 struct zone *zone = NULL;
3758 int pgscanned = 0;
3759 int pgrescued = 0;
3760 int i;
89e004ea 3761
24513264
HD
3762 for (i = 0; i < nr_pages; i++) {
3763 struct page *page = pages[i];
3764 struct zone *pagezone;
89e004ea 3765
24513264
HD
3766 pgscanned++;
3767 pagezone = page_zone(page);
3768 if (pagezone != zone) {
3769 if (zone)
a52633d8 3770 spin_unlock_irq(zone_lru_lock(zone));
24513264 3771 zone = pagezone;
a52633d8 3772 spin_lock_irq(zone_lru_lock(zone));
24513264 3773 }
599d0c95 3774 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
89e004ea 3775
24513264
HD
3776 if (!PageLRU(page) || !PageUnevictable(page))
3777 continue;
89e004ea 3778
39b5f29a 3779 if (page_evictable(page)) {
24513264
HD
3780 enum lru_list lru = page_lru_base_type(page);
3781
309381fe 3782 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3783 ClearPageUnevictable(page);
fa9add64
HD
3784 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3785 add_page_to_lru_list(page, lruvec, lru);
24513264 3786 pgrescued++;
89e004ea 3787 }
24513264 3788 }
89e004ea 3789
24513264
HD
3790 if (zone) {
3791 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3792 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
a52633d8 3793 spin_unlock_irq(zone_lru_lock(zone));
89e004ea 3794 }
89e004ea 3795}
85046579 3796#endif /* CONFIG_SHMEM */