]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmscan.c
Unevictable LRU Page Statistics
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
1da177e4
LT
42
43#include <asm/tlbflush.h>
44#include <asm/div64.h>
45
46#include <linux/swapops.h>
47
0f8053a5
NP
48#include "internal.h"
49
1da177e4 50struct scan_control {
1da177e4
LT
51 /* Incremented by the number of inactive pages that were scanned */
52 unsigned long nr_scanned;
53
1da177e4 54 /* This context's GFP mask */
6daa0e28 55 gfp_t gfp_mask;
1da177e4
LT
56
57 int may_writepage;
58
f1fd1067
CL
59 /* Can pages be swapped as part of reclaim? */
60 int may_swap;
61
1da177e4
LT
62 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
63 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
64 * In this context, it doesn't matter that we scan the
65 * whole list at once. */
66 int swap_cluster_max;
d6277db4
RW
67
68 int swappiness;
408d8544
NP
69
70 int all_unreclaimable;
5ad333eb
AW
71
72 int order;
66e1707b
BS
73
74 /* Which cgroup do we reclaim from */
75 struct mem_cgroup *mem_cgroup;
76
77 /* Pluggable isolate pages callback */
78 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
79 unsigned long *scanned, int order, int mode,
80 struct zone *z, struct mem_cgroup *mem_cont,
4f98a2fe 81 int active, int file);
1da177e4
LT
82};
83
1da177e4
LT
84#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
85
86#ifdef ARCH_HAS_PREFETCH
87#define prefetch_prev_lru_page(_page, _base, _field) \
88 do { \
89 if ((_page)->lru.prev != _base) { \
90 struct page *prev; \
91 \
92 prev = lru_to_page(&(_page->lru)); \
93 prefetch(&prev->_field); \
94 } \
95 } while (0)
96#else
97#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
98#endif
99
100#ifdef ARCH_HAS_PREFETCHW
101#define prefetchw_prev_lru_page(_page, _base, _field) \
102 do { \
103 if ((_page)->lru.prev != _base) { \
104 struct page *prev; \
105 \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetchw(&prev->_field); \
108 } \
109 } while (0)
110#else
111#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
112#endif
113
114/*
115 * From 0 .. 100. Higher means more swappy.
116 */
117int vm_swappiness = 60;
bd1e22b8 118long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
119
120static LIST_HEAD(shrinker_list);
121static DECLARE_RWSEM(shrinker_rwsem);
122
00f0b825 123#ifdef CONFIG_CGROUP_MEM_RES_CTLR
91a45470
KH
124#define scan_global_lru(sc) (!(sc)->mem_cgroup)
125#else
126#define scan_global_lru(sc) (1)
127#endif
128
1da177e4
LT
129/*
130 * Add a shrinker callback to be called from the vm
131 */
8e1f936b 132void register_shrinker(struct shrinker *shrinker)
1da177e4 133{
8e1f936b
RR
134 shrinker->nr = 0;
135 down_write(&shrinker_rwsem);
136 list_add_tail(&shrinker->list, &shrinker_list);
137 up_write(&shrinker_rwsem);
1da177e4 138}
8e1f936b 139EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
140
141/*
142 * Remove one
143 */
8e1f936b 144void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
145{
146 down_write(&shrinker_rwsem);
147 list_del(&shrinker->list);
148 up_write(&shrinker_rwsem);
1da177e4 149}
8e1f936b 150EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
151
152#define SHRINK_BATCH 128
153/*
154 * Call the shrink functions to age shrinkable caches
155 *
156 * Here we assume it costs one seek to replace a lru page and that it also
157 * takes a seek to recreate a cache object. With this in mind we age equal
158 * percentages of the lru and ageable caches. This should balance the seeks
159 * generated by these structures.
160 *
183ff22b 161 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
162 * slab to avoid swapping.
163 *
164 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
165 *
166 * `lru_pages' represents the number of on-LRU pages in all the zones which
167 * are eligible for the caller's allocation attempt. It is used for balancing
168 * slab reclaim versus page reclaim.
b15e0905 169 *
170 * Returns the number of slab objects which we shrunk.
1da177e4 171 */
69e05944
AM
172unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
173 unsigned long lru_pages)
1da177e4
LT
174{
175 struct shrinker *shrinker;
69e05944 176 unsigned long ret = 0;
1da177e4
LT
177
178 if (scanned == 0)
179 scanned = SWAP_CLUSTER_MAX;
180
181 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 182 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
183
184 list_for_each_entry(shrinker, &shrinker_list, list) {
185 unsigned long long delta;
186 unsigned long total_scan;
8e1f936b 187 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
1da177e4
LT
188
189 delta = (4 * scanned) / shrinker->seeks;
ea164d73 190 delta *= max_pass;
1da177e4
LT
191 do_div(delta, lru_pages + 1);
192 shrinker->nr += delta;
ea164d73
AA
193 if (shrinker->nr < 0) {
194 printk(KERN_ERR "%s: nr=%ld\n",
d40cee24 195 __func__, shrinker->nr);
ea164d73
AA
196 shrinker->nr = max_pass;
197 }
198
199 /*
200 * Avoid risking looping forever due to too large nr value:
201 * never try to free more than twice the estimate number of
202 * freeable entries.
203 */
204 if (shrinker->nr > max_pass * 2)
205 shrinker->nr = max_pass * 2;
1da177e4
LT
206
207 total_scan = shrinker->nr;
208 shrinker->nr = 0;
209
210 while (total_scan >= SHRINK_BATCH) {
211 long this_scan = SHRINK_BATCH;
212 int shrink_ret;
b15e0905 213 int nr_before;
1da177e4 214
8e1f936b
RR
215 nr_before = (*shrinker->shrink)(0, gfp_mask);
216 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
1da177e4
LT
217 if (shrink_ret == -1)
218 break;
b15e0905 219 if (shrink_ret < nr_before)
220 ret += nr_before - shrink_ret;
f8891e5e 221 count_vm_events(SLABS_SCANNED, this_scan);
1da177e4
LT
222 total_scan -= this_scan;
223
224 cond_resched();
225 }
226
227 shrinker->nr += total_scan;
228 }
229 up_read(&shrinker_rwsem);
b15e0905 230 return ret;
1da177e4
LT
231}
232
233/* Called without lock on whether page is mapped, so answer is unstable */
234static inline int page_mapping_inuse(struct page *page)
235{
236 struct address_space *mapping;
237
238 /* Page is in somebody's page tables. */
239 if (page_mapped(page))
240 return 1;
241
242 /* Be more reluctant to reclaim swapcache than pagecache */
243 if (PageSwapCache(page))
244 return 1;
245
246 mapping = page_mapping(page);
247 if (!mapping)
248 return 0;
249
250 /* File is mmap'd by somebody? */
251 return mapping_mapped(mapping);
252}
253
254static inline int is_page_cache_freeable(struct page *page)
255{
256 return page_count(page) - !!PagePrivate(page) == 2;
257}
258
259static int may_write_to_queue(struct backing_dev_info *bdi)
260{
930d9152 261 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
262 return 1;
263 if (!bdi_write_congested(bdi))
264 return 1;
265 if (bdi == current->backing_dev_info)
266 return 1;
267 return 0;
268}
269
270/*
271 * We detected a synchronous write error writing a page out. Probably
272 * -ENOSPC. We need to propagate that into the address_space for a subsequent
273 * fsync(), msync() or close().
274 *
275 * The tricky part is that after writepage we cannot touch the mapping: nothing
276 * prevents it from being freed up. But we have a ref on the page and once
277 * that page is locked, the mapping is pinned.
278 *
279 * We're allowed to run sleeping lock_page() here because we know the caller has
280 * __GFP_FS.
281 */
282static void handle_write_error(struct address_space *mapping,
283 struct page *page, int error)
284{
285 lock_page(page);
3e9f45bd
GC
286 if (page_mapping(page) == mapping)
287 mapping_set_error(mapping, error);
1da177e4
LT
288 unlock_page(page);
289}
290
c661b078
AW
291/* Request for sync pageout. */
292enum pageout_io {
293 PAGEOUT_IO_ASYNC,
294 PAGEOUT_IO_SYNC,
295};
296
04e62a29
CL
297/* possible outcome of pageout() */
298typedef enum {
299 /* failed to write page out, page is locked */
300 PAGE_KEEP,
301 /* move page to the active list, page is locked */
302 PAGE_ACTIVATE,
303 /* page has been sent to the disk successfully, page is unlocked */
304 PAGE_SUCCESS,
305 /* page is clean and locked */
306 PAGE_CLEAN,
307} pageout_t;
308
1da177e4 309/*
1742f19f
AM
310 * pageout is called by shrink_page_list() for each dirty page.
311 * Calls ->writepage().
1da177e4 312 */
c661b078
AW
313static pageout_t pageout(struct page *page, struct address_space *mapping,
314 enum pageout_io sync_writeback)
1da177e4
LT
315{
316 /*
317 * If the page is dirty, only perform writeback if that write
318 * will be non-blocking. To prevent this allocation from being
319 * stalled by pagecache activity. But note that there may be
320 * stalls if we need to run get_block(). We could test
321 * PagePrivate for that.
322 *
323 * If this process is currently in generic_file_write() against
324 * this page's queue, we can perform writeback even if that
325 * will block.
326 *
327 * If the page is swapcache, write it back even if that would
328 * block, for some throttling. This happens by accident, because
329 * swap_backing_dev_info is bust: it doesn't reflect the
330 * congestion state of the swapdevs. Easy to fix, if needed.
331 * See swapfile.c:page_queue_congested().
332 */
333 if (!is_page_cache_freeable(page))
334 return PAGE_KEEP;
335 if (!mapping) {
336 /*
337 * Some data journaling orphaned pages can have
338 * page->mapping == NULL while being dirty with clean buffers.
339 */
323aca6c 340 if (PagePrivate(page)) {
1da177e4
LT
341 if (try_to_free_buffers(page)) {
342 ClearPageDirty(page);
d40cee24 343 printk("%s: orphaned page\n", __func__);
1da177e4
LT
344 return PAGE_CLEAN;
345 }
346 }
347 return PAGE_KEEP;
348 }
349 if (mapping->a_ops->writepage == NULL)
350 return PAGE_ACTIVATE;
351 if (!may_write_to_queue(mapping->backing_dev_info))
352 return PAGE_KEEP;
353
354 if (clear_page_dirty_for_io(page)) {
355 int res;
356 struct writeback_control wbc = {
357 .sync_mode = WB_SYNC_NONE,
358 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
359 .range_start = 0,
360 .range_end = LLONG_MAX,
1da177e4
LT
361 .nonblocking = 1,
362 .for_reclaim = 1,
363 };
364
365 SetPageReclaim(page);
366 res = mapping->a_ops->writepage(page, &wbc);
367 if (res < 0)
368 handle_write_error(mapping, page, res);
994fc28c 369 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
370 ClearPageReclaim(page);
371 return PAGE_ACTIVATE;
372 }
c661b078
AW
373
374 /*
375 * Wait on writeback if requested to. This happens when
376 * direct reclaiming a large contiguous area and the
377 * first attempt to free a range of pages fails.
378 */
379 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
380 wait_on_page_writeback(page);
381
1da177e4
LT
382 if (!PageWriteback(page)) {
383 /* synchronous write or broken a_ops? */
384 ClearPageReclaim(page);
385 }
e129b5c2 386 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
387 return PAGE_SUCCESS;
388 }
389
390 return PAGE_CLEAN;
391}
392
a649fd92 393/*
e286781d
NP
394 * Same as remove_mapping, but if the page is removed from the mapping, it
395 * gets returned with a refcount of 0.
a649fd92 396 */
e286781d 397static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 398{
28e4d965
NP
399 BUG_ON(!PageLocked(page));
400 BUG_ON(mapping != page_mapping(page));
49d2e9cc 401
19fd6231 402 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 403 /*
0fd0e6b0
NP
404 * The non racy check for a busy page.
405 *
406 * Must be careful with the order of the tests. When someone has
407 * a ref to the page, it may be possible that they dirty it then
408 * drop the reference. So if PageDirty is tested before page_count
409 * here, then the following race may occur:
410 *
411 * get_user_pages(&page);
412 * [user mapping goes away]
413 * write_to(page);
414 * !PageDirty(page) [good]
415 * SetPageDirty(page);
416 * put_page(page);
417 * !page_count(page) [good, discard it]
418 *
419 * [oops, our write_to data is lost]
420 *
421 * Reversing the order of the tests ensures such a situation cannot
422 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
423 * load is not satisfied before that of page->_count.
424 *
425 * Note that if SetPageDirty is always performed via set_page_dirty,
426 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 427 */
e286781d 428 if (!page_freeze_refs(page, 2))
49d2e9cc 429 goto cannot_free;
e286781d
NP
430 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
431 if (unlikely(PageDirty(page))) {
432 page_unfreeze_refs(page, 2);
49d2e9cc 433 goto cannot_free;
e286781d 434 }
49d2e9cc
CL
435
436 if (PageSwapCache(page)) {
437 swp_entry_t swap = { .val = page_private(page) };
438 __delete_from_swap_cache(page);
19fd6231 439 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc 440 swap_free(swap);
e286781d
NP
441 } else {
442 __remove_from_page_cache(page);
19fd6231 443 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
444 }
445
49d2e9cc
CL
446 return 1;
447
448cannot_free:
19fd6231 449 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
450 return 0;
451}
452
e286781d
NP
453/*
454 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
455 * someone else has a ref on the page, abort and return 0. If it was
456 * successfully detached, return 1. Assumes the caller has a single ref on
457 * this page.
458 */
459int remove_mapping(struct address_space *mapping, struct page *page)
460{
461 if (__remove_mapping(mapping, page)) {
462 /*
463 * Unfreezing the refcount with 1 rather than 2 effectively
464 * drops the pagecache ref for us without requiring another
465 * atomic operation.
466 */
467 page_unfreeze_refs(page, 1);
468 return 1;
469 }
470 return 0;
471}
472
894bc310
LS
473/**
474 * putback_lru_page - put previously isolated page onto appropriate LRU list
475 * @page: page to be put back to appropriate lru list
476 *
477 * Add previously isolated @page to appropriate LRU list.
478 * Page may still be unevictable for other reasons.
479 *
480 * lru_lock must not be held, interrupts must be enabled.
481 */
482#ifdef CONFIG_UNEVICTABLE_LRU
483void putback_lru_page(struct page *page)
484{
485 int lru;
486 int active = !!TestClearPageActive(page);
bbfd28ee 487 int was_unevictable = PageUnevictable(page);
894bc310
LS
488
489 VM_BUG_ON(PageLRU(page));
490
491redo:
492 ClearPageUnevictable(page);
493
494 if (page_evictable(page, NULL)) {
495 /*
496 * For evictable pages, we can use the cache.
497 * In event of a race, worst case is we end up with an
498 * unevictable page on [in]active list.
499 * We know how to handle that.
500 */
501 lru = active + page_is_file_cache(page);
502 lru_cache_add_lru(page, lru);
503 } else {
504 /*
505 * Put unevictable pages directly on zone's unevictable
506 * list.
507 */
508 lru = LRU_UNEVICTABLE;
509 add_page_to_unevictable_list(page);
510 }
511 mem_cgroup_move_lists(page, lru);
512
513 /*
514 * page's status can change while we move it among lru. If an evictable
515 * page is on unevictable list, it never be freed. To avoid that,
516 * check after we added it to the list, again.
517 */
518 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
519 if (!isolate_lru_page(page)) {
520 put_page(page);
521 goto redo;
522 }
523 /* This means someone else dropped this page from LRU
524 * So, it will be freed or putback to LRU again. There is
525 * nothing to do here.
526 */
527 }
528
bbfd28ee
LS
529 if (was_unevictable && lru != LRU_UNEVICTABLE)
530 count_vm_event(UNEVICTABLE_PGRESCUED);
531 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
532 count_vm_event(UNEVICTABLE_PGCULLED);
533
894bc310
LS
534 put_page(page); /* drop ref from isolate */
535}
536
537#else /* CONFIG_UNEVICTABLE_LRU */
538
539void putback_lru_page(struct page *page)
540{
541 int lru;
542 VM_BUG_ON(PageLRU(page));
543
544 lru = !!TestClearPageActive(page) + page_is_file_cache(page);
545 lru_cache_add_lru(page, lru);
546 mem_cgroup_move_lists(page, lru);
547 put_page(page);
548}
549#endif /* CONFIG_UNEVICTABLE_LRU */
550
551
1da177e4 552/*
1742f19f 553 * shrink_page_list() returns the number of reclaimed pages
1da177e4 554 */
1742f19f 555static unsigned long shrink_page_list(struct list_head *page_list,
c661b078
AW
556 struct scan_control *sc,
557 enum pageout_io sync_writeback)
1da177e4
LT
558{
559 LIST_HEAD(ret_pages);
560 struct pagevec freed_pvec;
561 int pgactivate = 0;
05ff5137 562 unsigned long nr_reclaimed = 0;
1da177e4
LT
563
564 cond_resched();
565
566 pagevec_init(&freed_pvec, 1);
567 while (!list_empty(page_list)) {
568 struct address_space *mapping;
569 struct page *page;
570 int may_enter_fs;
571 int referenced;
572
573 cond_resched();
574
575 page = lru_to_page(page_list);
576 list_del(&page->lru);
577
529ae9aa 578 if (!trylock_page(page))
1da177e4
LT
579 goto keep;
580
725d704e 581 VM_BUG_ON(PageActive(page));
1da177e4
LT
582
583 sc->nr_scanned++;
80e43426 584
894bc310
LS
585 if (unlikely(!page_evictable(page, NULL))) {
586 unlock_page(page);
587 putback_lru_page(page);
588 continue;
589 }
590
80e43426
CL
591 if (!sc->may_swap && page_mapped(page))
592 goto keep_locked;
593
1da177e4
LT
594 /* Double the slab pressure for mapped and swapcache pages */
595 if (page_mapped(page) || PageSwapCache(page))
596 sc->nr_scanned++;
597
c661b078
AW
598 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
599 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
600
601 if (PageWriteback(page)) {
602 /*
603 * Synchronous reclaim is performed in two passes,
604 * first an asynchronous pass over the list to
605 * start parallel writeback, and a second synchronous
606 * pass to wait for the IO to complete. Wait here
607 * for any page for which writeback has already
608 * started.
609 */
610 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
611 wait_on_page_writeback(page);
4dd4b920 612 else
c661b078
AW
613 goto keep_locked;
614 }
1da177e4 615
bed7161a 616 referenced = page_referenced(page, 1, sc->mem_cgroup);
1da177e4 617 /* In active use or really unfreeable? Activate it. */
5ad333eb
AW
618 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
619 referenced && page_mapping_inuse(page))
1da177e4
LT
620 goto activate_locked;
621
622#ifdef CONFIG_SWAP
623 /*
624 * Anonymous process memory has backing store?
625 * Try to allocate it some swap space here.
626 */
6e5ef1a9 627 if (PageAnon(page) && !PageSwapCache(page))
1480a540 628 if (!add_to_swap(page, GFP_ATOMIC))
1da177e4 629 goto activate_locked;
1da177e4
LT
630#endif /* CONFIG_SWAP */
631
632 mapping = page_mapping(page);
1da177e4
LT
633
634 /*
635 * The page is mapped into the page tables of one or more
636 * processes. Try to unmap it here.
637 */
638 if (page_mapped(page) && mapping) {
a48d07af 639 switch (try_to_unmap(page, 0)) {
1da177e4
LT
640 case SWAP_FAIL:
641 goto activate_locked;
642 case SWAP_AGAIN:
643 goto keep_locked;
644 case SWAP_SUCCESS:
645 ; /* try to free the page below */
646 }
647 }
648
649 if (PageDirty(page)) {
5ad333eb 650 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
1da177e4 651 goto keep_locked;
4dd4b920 652 if (!may_enter_fs)
1da177e4 653 goto keep_locked;
52a8363e 654 if (!sc->may_writepage)
1da177e4
LT
655 goto keep_locked;
656
657 /* Page is dirty, try to write it out here */
c661b078 658 switch (pageout(page, mapping, sync_writeback)) {
1da177e4
LT
659 case PAGE_KEEP:
660 goto keep_locked;
661 case PAGE_ACTIVATE:
662 goto activate_locked;
663 case PAGE_SUCCESS:
4dd4b920 664 if (PageWriteback(page) || PageDirty(page))
1da177e4
LT
665 goto keep;
666 /*
667 * A synchronous write - probably a ramdisk. Go
668 * ahead and try to reclaim the page.
669 */
529ae9aa 670 if (!trylock_page(page))
1da177e4
LT
671 goto keep;
672 if (PageDirty(page) || PageWriteback(page))
673 goto keep_locked;
674 mapping = page_mapping(page);
675 case PAGE_CLEAN:
676 ; /* try to free the page below */
677 }
678 }
679
680 /*
681 * If the page has buffers, try to free the buffer mappings
682 * associated with this page. If we succeed we try to free
683 * the page as well.
684 *
685 * We do this even if the page is PageDirty().
686 * try_to_release_page() does not perform I/O, but it is
687 * possible for a page to have PageDirty set, but it is actually
688 * clean (all its buffers are clean). This happens if the
689 * buffers were written out directly, with submit_bh(). ext3
894bc310 690 * will do this, as well as the blockdev mapping.
1da177e4
LT
691 * try_to_release_page() will discover that cleanness and will
692 * drop the buffers and mark the page clean - it can be freed.
693 *
694 * Rarely, pages can have buffers and no ->mapping. These are
695 * the pages which were not successfully invalidated in
696 * truncate_complete_page(). We try to drop those buffers here
697 * and if that worked, and the page is no longer mapped into
698 * process address space (page_count == 1) it can be freed.
699 * Otherwise, leave the page on the LRU so it is swappable.
700 */
701 if (PagePrivate(page)) {
702 if (!try_to_release_page(page, sc->gfp_mask))
703 goto activate_locked;
e286781d
NP
704 if (!mapping && page_count(page) == 1) {
705 unlock_page(page);
706 if (put_page_testzero(page))
707 goto free_it;
708 else {
709 /*
710 * rare race with speculative reference.
711 * the speculative reference will free
712 * this page shortly, so we may
713 * increment nr_reclaimed here (and
714 * leave it off the LRU).
715 */
716 nr_reclaimed++;
717 continue;
718 }
719 }
1da177e4
LT
720 }
721
e286781d 722 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 723 goto keep_locked;
1da177e4 724
1da177e4 725 unlock_page(page);
e286781d 726free_it:
05ff5137 727 nr_reclaimed++;
e286781d
NP
728 if (!pagevec_add(&freed_pvec, page)) {
729 __pagevec_free(&freed_pvec);
730 pagevec_reinit(&freed_pvec);
731 }
1da177e4
LT
732 continue;
733
734activate_locked:
68a22394
RR
735 /* Not a candidate for swapping, so reclaim swap space. */
736 if (PageSwapCache(page) && vm_swap_full())
737 remove_exclusive_swap_page_ref(page);
894bc310 738 VM_BUG_ON(PageActive(page));
1da177e4
LT
739 SetPageActive(page);
740 pgactivate++;
741keep_locked:
742 unlock_page(page);
743keep:
744 list_add(&page->lru, &ret_pages);
725d704e 745 VM_BUG_ON(PageLRU(page));
1da177e4
LT
746 }
747 list_splice(&ret_pages, page_list);
748 if (pagevec_count(&freed_pvec))
e286781d 749 __pagevec_free(&freed_pvec);
f8891e5e 750 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 751 return nr_reclaimed;
1da177e4
LT
752}
753
5ad333eb
AW
754/* LRU Isolation modes. */
755#define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
756#define ISOLATE_ACTIVE 1 /* Isolate active pages. */
757#define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
758
759/*
760 * Attempt to remove the specified page from its LRU. Only take this page
761 * if it is of the appropriate PageActive status. Pages which are being
762 * freed elsewhere are also ignored.
763 *
764 * page: page to consider
765 * mode: one of the LRU isolation modes defined above
766 *
767 * returns 0 on success, -ve errno on failure.
768 */
4f98a2fe 769int __isolate_lru_page(struct page *page, int mode, int file)
5ad333eb
AW
770{
771 int ret = -EINVAL;
772
773 /* Only take pages on the LRU. */
774 if (!PageLRU(page))
775 return ret;
776
777 /*
778 * When checking the active state, we need to be sure we are
779 * dealing with comparible boolean values. Take the logical not
780 * of each.
781 */
782 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
783 return ret;
784
4f98a2fe
RR
785 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
786 return ret;
787
894bc310
LS
788 /*
789 * When this function is being called for lumpy reclaim, we
790 * initially look into all LRU pages, active, inactive and
791 * unevictable; only give shrink_page_list evictable pages.
792 */
793 if (PageUnevictable(page))
794 return ret;
795
5ad333eb
AW
796 ret = -EBUSY;
797 if (likely(get_page_unless_zero(page))) {
798 /*
799 * Be careful not to clear PageLRU until after we're
800 * sure the page is not being freed elsewhere -- the
801 * page release code relies on it.
802 */
803 ClearPageLRU(page);
804 ret = 0;
805 }
806
807 return ret;
808}
809
1da177e4
LT
810/*
811 * zone->lru_lock is heavily contended. Some of the functions that
812 * shrink the lists perform better by taking out a batch of pages
813 * and working on them outside the LRU lock.
814 *
815 * For pagecache intensive workloads, this function is the hottest
816 * spot in the kernel (apart from copy_*_user functions).
817 *
818 * Appropriate locks must be held before calling this function.
819 *
820 * @nr_to_scan: The number of pages to look through on the list.
821 * @src: The LRU list to pull pages off.
822 * @dst: The temp list to put pages on to.
823 * @scanned: The number of pages that were scanned.
5ad333eb
AW
824 * @order: The caller's attempted allocation order
825 * @mode: One of the LRU isolation modes
4f98a2fe 826 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
827 *
828 * returns how many pages were moved onto *@dst.
829 */
69e05944
AM
830static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
831 struct list_head *src, struct list_head *dst,
4f98a2fe 832 unsigned long *scanned, int order, int mode, int file)
1da177e4 833{
69e05944 834 unsigned long nr_taken = 0;
c9b02d97 835 unsigned long scan;
1da177e4 836
c9b02d97 837 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
838 struct page *page;
839 unsigned long pfn;
840 unsigned long end_pfn;
841 unsigned long page_pfn;
842 int zone_id;
843
1da177e4
LT
844 page = lru_to_page(src);
845 prefetchw_prev_lru_page(page, src, flags);
846
725d704e 847 VM_BUG_ON(!PageLRU(page));
8d438f96 848
4f98a2fe 849 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
850 case 0:
851 list_move(&page->lru, dst);
7c8ee9a8 852 nr_taken++;
5ad333eb
AW
853 break;
854
855 case -EBUSY:
856 /* else it is being freed elsewhere */
857 list_move(&page->lru, src);
858 continue;
46453a6e 859
5ad333eb
AW
860 default:
861 BUG();
862 }
863
864 if (!order)
865 continue;
866
867 /*
868 * Attempt to take all pages in the order aligned region
869 * surrounding the tag page. Only take those pages of
870 * the same active state as that tag page. We may safely
871 * round the target page pfn down to the requested order
872 * as the mem_map is guarenteed valid out to MAX_ORDER,
873 * where that page is in a different zone we will detect
874 * it from its zone id and abort this block scan.
875 */
876 zone_id = page_zone_id(page);
877 page_pfn = page_to_pfn(page);
878 pfn = page_pfn & ~((1 << order) - 1);
879 end_pfn = pfn + (1 << order);
880 for (; pfn < end_pfn; pfn++) {
881 struct page *cursor_page;
882
883 /* The target page is in the block, ignore it. */
884 if (unlikely(pfn == page_pfn))
885 continue;
886
887 /* Avoid holes within the zone. */
888 if (unlikely(!pfn_valid_within(pfn)))
889 break;
890
891 cursor_page = pfn_to_page(pfn);
4f98a2fe 892
5ad333eb
AW
893 /* Check that we have not crossed a zone boundary. */
894 if (unlikely(page_zone_id(cursor_page) != zone_id))
895 continue;
4f98a2fe 896 switch (__isolate_lru_page(cursor_page, mode, file)) {
5ad333eb
AW
897 case 0:
898 list_move(&cursor_page->lru, dst);
899 nr_taken++;
900 scan++;
901 break;
902
903 case -EBUSY:
904 /* else it is being freed elsewhere */
905 list_move(&cursor_page->lru, src);
906 default:
894bc310 907 break; /* ! on LRU or wrong list */
5ad333eb
AW
908 }
909 }
1da177e4
LT
910 }
911
912 *scanned = scan;
913 return nr_taken;
914}
915
66e1707b
BS
916static unsigned long isolate_pages_global(unsigned long nr,
917 struct list_head *dst,
918 unsigned long *scanned, int order,
919 int mode, struct zone *z,
920 struct mem_cgroup *mem_cont,
4f98a2fe 921 int active, int file)
66e1707b 922{
4f98a2fe 923 int lru = LRU_BASE;
66e1707b 924 if (active)
4f98a2fe
RR
925 lru += LRU_ACTIVE;
926 if (file)
927 lru += LRU_FILE;
928 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
929 mode, !!file);
66e1707b
BS
930}
931
5ad333eb
AW
932/*
933 * clear_active_flags() is a helper for shrink_active_list(), clearing
934 * any active bits from the pages in the list.
935 */
4f98a2fe
RR
936static unsigned long clear_active_flags(struct list_head *page_list,
937 unsigned int *count)
5ad333eb
AW
938{
939 int nr_active = 0;
4f98a2fe 940 int lru;
5ad333eb
AW
941 struct page *page;
942
4f98a2fe
RR
943 list_for_each_entry(page, page_list, lru) {
944 lru = page_is_file_cache(page);
5ad333eb 945 if (PageActive(page)) {
4f98a2fe 946 lru += LRU_ACTIVE;
5ad333eb
AW
947 ClearPageActive(page);
948 nr_active++;
949 }
4f98a2fe
RR
950 count[lru]++;
951 }
5ad333eb
AW
952
953 return nr_active;
954}
955
62695a84
NP
956/**
957 * isolate_lru_page - tries to isolate a page from its LRU list
958 * @page: page to isolate from its LRU list
959 *
960 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
961 * vmstat statistic corresponding to whatever LRU list the page was on.
962 *
963 * Returns 0 if the page was removed from an LRU list.
964 * Returns -EBUSY if the page was not on an LRU list.
965 *
966 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
967 * the active list, it will have PageActive set. If it was found on
968 * the unevictable list, it will have the PageUnevictable bit set. That flag
969 * may need to be cleared by the caller before letting the page go.
62695a84
NP
970 *
971 * The vmstat statistic corresponding to the list on which the page was
972 * found will be decremented.
973 *
974 * Restrictions:
975 * (1) Must be called with an elevated refcount on the page. This is a
976 * fundamentnal difference from isolate_lru_pages (which is called
977 * without a stable reference).
978 * (2) the lru_lock must not be held.
979 * (3) interrupts must be enabled.
980 */
981int isolate_lru_page(struct page *page)
982{
983 int ret = -EBUSY;
984
985 if (PageLRU(page)) {
986 struct zone *zone = page_zone(page);
987
988 spin_lock_irq(&zone->lru_lock);
989 if (PageLRU(page) && get_page_unless_zero(page)) {
894bc310 990 int lru = page_lru(page);
62695a84
NP
991 ret = 0;
992 ClearPageLRU(page);
4f98a2fe 993
4f98a2fe 994 del_page_from_lru_list(zone, page, lru);
62695a84
NP
995 }
996 spin_unlock_irq(&zone->lru_lock);
997 }
998 return ret;
999}
1000
1da177e4 1001/*
1742f19f
AM
1002 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1003 * of reclaimed pages
1da177e4 1004 */
1742f19f 1005static unsigned long shrink_inactive_list(unsigned long max_scan,
33c120ed
RR
1006 struct zone *zone, struct scan_control *sc,
1007 int priority, int file)
1da177e4
LT
1008{
1009 LIST_HEAD(page_list);
1010 struct pagevec pvec;
69e05944 1011 unsigned long nr_scanned = 0;
05ff5137 1012 unsigned long nr_reclaimed = 0;
1da177e4
LT
1013
1014 pagevec_init(&pvec, 1);
1015
1016 lru_add_drain();
1017 spin_lock_irq(&zone->lru_lock);
69e05944 1018 do {
1da177e4 1019 struct page *page;
69e05944
AM
1020 unsigned long nr_taken;
1021 unsigned long nr_scan;
1022 unsigned long nr_freed;
5ad333eb 1023 unsigned long nr_active;
4f98a2fe 1024 unsigned int count[NR_LRU_LISTS] = { 0, };
33c120ed
RR
1025 int mode = ISOLATE_INACTIVE;
1026
1027 /*
1028 * If we need a large contiguous chunk of memory, or have
1029 * trouble getting a small set of contiguous pages, we
1030 * will reclaim both active and inactive pages.
1031 *
1032 * We use the same threshold as pageout congestion_wait below.
1033 */
1034 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1035 mode = ISOLATE_BOTH;
1036 else if (sc->order && priority < DEF_PRIORITY - 2)
1037 mode = ISOLATE_BOTH;
1da177e4 1038
66e1707b 1039 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
4f98a2fe
RR
1040 &page_list, &nr_scan, sc->order, mode,
1041 zone, sc->mem_cgroup, 0, file);
1042 nr_active = clear_active_flags(&page_list, count);
e9187bdc 1043 __count_vm_events(PGDEACTIVATE, nr_active);
5ad333eb 1044
4f98a2fe
RR
1045 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1046 -count[LRU_ACTIVE_FILE]);
1047 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1048 -count[LRU_INACTIVE_FILE]);
1049 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1050 -count[LRU_ACTIVE_ANON]);
1051 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1052 -count[LRU_INACTIVE_ANON]);
1053
1054 if (scan_global_lru(sc)) {
1cfb419b 1055 zone->pages_scanned += nr_scan;
4f98a2fe
RR
1056 zone->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1057 zone->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1058 zone->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1059 zone->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1060 }
1da177e4
LT
1061 spin_unlock_irq(&zone->lru_lock);
1062
69e05944 1063 nr_scanned += nr_scan;
c661b078
AW
1064 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1065
1066 /*
1067 * If we are direct reclaiming for contiguous pages and we do
1068 * not reclaim everything in the list, try again and wait
1069 * for IO to complete. This will stall high-order allocations
1070 * but that should be acceptable to the caller
1071 */
1072 if (nr_freed < nr_taken && !current_is_kswapd() &&
1073 sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1074 congestion_wait(WRITE, HZ/10);
1075
1076 /*
1077 * The attempt at page out may have made some
1078 * of the pages active, mark them inactive again.
1079 */
4f98a2fe 1080 nr_active = clear_active_flags(&page_list, count);
c661b078
AW
1081 count_vm_events(PGDEACTIVATE, nr_active);
1082
1083 nr_freed += shrink_page_list(&page_list, sc,
1084 PAGEOUT_IO_SYNC);
1085 }
1086
05ff5137 1087 nr_reclaimed += nr_freed;
a74609fa
NP
1088 local_irq_disable();
1089 if (current_is_kswapd()) {
f8891e5e
CL
1090 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1091 __count_vm_events(KSWAPD_STEAL, nr_freed);
1cfb419b 1092 } else if (scan_global_lru(sc))
f8891e5e 1093 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1cfb419b 1094
918d3f90 1095 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
a74609fa 1096
fb8d14e1
WF
1097 if (nr_taken == 0)
1098 goto done;
1099
a74609fa 1100 spin_lock(&zone->lru_lock);
1da177e4
LT
1101 /*
1102 * Put back any unfreeable pages.
1103 */
1104 while (!list_empty(&page_list)) {
894bc310 1105 int lru;
1da177e4 1106 page = lru_to_page(&page_list);
725d704e 1107 VM_BUG_ON(PageLRU(page));
1da177e4 1108 list_del(&page->lru);
894bc310
LS
1109 if (unlikely(!page_evictable(page, NULL))) {
1110 spin_unlock_irq(&zone->lru_lock);
1111 putback_lru_page(page);
1112 spin_lock_irq(&zone->lru_lock);
1113 continue;
1114 }
1115 SetPageLRU(page);
1116 lru = page_lru(page);
1117 add_page_to_lru_list(zone, page, lru);
1118 mem_cgroup_move_lists(page, lru);
4f98a2fe
RR
1119 if (PageActive(page) && scan_global_lru(sc)) {
1120 int file = !!page_is_file_cache(page);
1121 zone->recent_rotated[file]++;
1122 }
1da177e4
LT
1123 if (!pagevec_add(&pvec, page)) {
1124 spin_unlock_irq(&zone->lru_lock);
1125 __pagevec_release(&pvec);
1126 spin_lock_irq(&zone->lru_lock);
1127 }
1128 }
69e05944 1129 } while (nr_scanned < max_scan);
fb8d14e1 1130 spin_unlock(&zone->lru_lock);
1da177e4 1131done:
fb8d14e1 1132 local_irq_enable();
1da177e4 1133 pagevec_release(&pvec);
05ff5137 1134 return nr_reclaimed;
1da177e4
LT
1135}
1136
3bb1a852
MB
1137/*
1138 * We are about to scan this zone at a certain priority level. If that priority
1139 * level is smaller (ie: more urgent) than the previous priority, then note
1140 * that priority level within the zone. This is done so that when the next
1141 * process comes in to scan this zone, it will immediately start out at this
1142 * priority level rather than having to build up its own scanning priority.
1143 * Here, this priority affects only the reclaim-mapped threshold.
1144 */
1145static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1146{
1147 if (priority < zone->prev_priority)
1148 zone->prev_priority = priority;
1149}
1150
4ff1ffb4
NP
1151static inline int zone_is_near_oom(struct zone *zone)
1152{
4f98a2fe 1153 return zone->pages_scanned >= (zone_lru_pages(zone) * 3);
1cfb419b
KH
1154}
1155
1da177e4
LT
1156/*
1157 * This moves pages from the active list to the inactive list.
1158 *
1159 * We move them the other way if the page is referenced by one or more
1160 * processes, from rmap.
1161 *
1162 * If the pages are mostly unmapped, the processing is fast and it is
1163 * appropriate to hold zone->lru_lock across the whole operation. But if
1164 * the pages are mapped, the processing is slow (page_referenced()) so we
1165 * should drop zone->lru_lock around each page. It's impossible to balance
1166 * this, so instead we remove the pages from the LRU while processing them.
1167 * It is safe to rely on PG_active against the non-LRU pages in here because
1168 * nobody will play with that bit on a non-LRU page.
1169 *
1170 * The downside is that we have to touch page->_count against each page.
1171 * But we had to alter page->flags anyway.
1172 */
1cfb419b
KH
1173
1174
1742f19f 1175static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1176 struct scan_control *sc, int priority, int file)
1da177e4 1177{
69e05944 1178 unsigned long pgmoved;
1da177e4 1179 int pgdeactivate = 0;
69e05944 1180 unsigned long pgscanned;
1da177e4 1181 LIST_HEAD(l_hold); /* The pages which were snipped off */
b69408e8 1182 LIST_HEAD(l_inactive);
1da177e4
LT
1183 struct page *page;
1184 struct pagevec pvec;
4f98a2fe 1185 enum lru_list lru;
1da177e4
LT
1186
1187 lru_add_drain();
1188 spin_lock_irq(&zone->lru_lock);
66e1707b
BS
1189 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1190 ISOLATE_ACTIVE, zone,
4f98a2fe 1191 sc->mem_cgroup, 1, file);
1cfb419b
KH
1192 /*
1193 * zone->pages_scanned is used for detect zone's oom
1194 * mem_cgroup remembers nr_scan by itself.
1195 */
4f98a2fe 1196 if (scan_global_lru(sc)) {
1cfb419b 1197 zone->pages_scanned += pgscanned;
4f98a2fe
RR
1198 zone->recent_scanned[!!file] += pgmoved;
1199 }
1cfb419b 1200
4f98a2fe
RR
1201 if (file)
1202 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1203 else
1204 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1da177e4
LT
1205 spin_unlock_irq(&zone->lru_lock);
1206
556adecb 1207 pgmoved = 0;
1da177e4
LT
1208 while (!list_empty(&l_hold)) {
1209 cond_resched();
1210 page = lru_to_page(&l_hold);
1211 list_del(&page->lru);
7e9cd484 1212
894bc310
LS
1213 if (unlikely(!page_evictable(page, NULL))) {
1214 putback_lru_page(page);
1215 continue;
1216 }
1217
7e9cd484
RR
1218 /* page_referenced clears PageReferenced */
1219 if (page_mapping_inuse(page) &&
1220 page_referenced(page, 0, sc->mem_cgroup))
1221 pgmoved++;
1222
1da177e4
LT
1223 list_add(&page->lru, &l_inactive);
1224 }
1225
556adecb 1226 /*
7e9cd484
RR
1227 * Count referenced pages from currently used mappings as
1228 * rotated, even though they are moved to the inactive list.
1229 * This helps balance scan pressure between file and anonymous
1230 * pages in get_scan_ratio.
1231 */
556adecb
RR
1232 zone->recent_rotated[!!file] += pgmoved;
1233
4f98a2fe 1234 /*
7e9cd484 1235 * Move the pages to the [file or anon] inactive list.
4f98a2fe 1236 */
1da177e4 1237 pagevec_init(&pvec, 1);
7e9cd484 1238
1da177e4 1239 pgmoved = 0;
4f98a2fe 1240 lru = LRU_BASE + file * LRU_FILE;
1da177e4
LT
1241 spin_lock_irq(&zone->lru_lock);
1242 while (!list_empty(&l_inactive)) {
1243 page = lru_to_page(&l_inactive);
1244 prefetchw_prev_lru_page(page, &l_inactive, flags);
725d704e 1245 VM_BUG_ON(PageLRU(page));
8d438f96 1246 SetPageLRU(page);
725d704e 1247 VM_BUG_ON(!PageActive(page));
4c84cacf
NP
1248 ClearPageActive(page);
1249
4f98a2fe 1250 list_move(&page->lru, &zone->lru[lru].list);
894bc310 1251 mem_cgroup_move_lists(page, lru);
1da177e4
LT
1252 pgmoved++;
1253 if (!pagevec_add(&pvec, page)) {
4f98a2fe 1254 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1da177e4
LT
1255 spin_unlock_irq(&zone->lru_lock);
1256 pgdeactivate += pgmoved;
1257 pgmoved = 0;
1258 if (buffer_heads_over_limit)
1259 pagevec_strip(&pvec);
1260 __pagevec_release(&pvec);
1261 spin_lock_irq(&zone->lru_lock);
1262 }
1263 }
4f98a2fe 1264 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1da177e4
LT
1265 pgdeactivate += pgmoved;
1266 if (buffer_heads_over_limit) {
1267 spin_unlock_irq(&zone->lru_lock);
1268 pagevec_strip(&pvec);
1269 spin_lock_irq(&zone->lru_lock);
1270 }
f8891e5e
CL
1271 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1272 __count_vm_events(PGDEACTIVATE, pgdeactivate);
1273 spin_unlock_irq(&zone->lru_lock);
68a22394
RR
1274 if (vm_swap_full())
1275 pagevec_swap_free(&pvec);
1da177e4 1276
a74609fa 1277 pagevec_release(&pvec);
1da177e4
LT
1278}
1279
4f98a2fe 1280static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1281 struct zone *zone, struct scan_control *sc, int priority)
1282{
4f98a2fe
RR
1283 int file = is_file_lru(lru);
1284
556adecb
RR
1285 if (lru == LRU_ACTIVE_FILE) {
1286 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1287 return 0;
1288 }
1289
1290 if (lru == LRU_ACTIVE_ANON &&
1291 (!scan_global_lru(sc) || inactive_anon_is_low(zone))) {
4f98a2fe 1292 shrink_active_list(nr_to_scan, zone, sc, priority, file);
b69408e8
CL
1293 return 0;
1294 }
33c120ed 1295 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1296}
1297
1298/*
1299 * Determine how aggressively the anon and file LRU lists should be
1300 * scanned. The relative value of each set of LRU lists is determined
1301 * by looking at the fraction of the pages scanned we did rotate back
1302 * onto the active list instead of evict.
1303 *
1304 * percent[0] specifies how much pressure to put on ram/swap backed
1305 * memory, while percent[1] determines pressure on the file LRUs.
1306 */
1307static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1308 unsigned long *percent)
1309{
1310 unsigned long anon, file, free;
1311 unsigned long anon_prio, file_prio;
1312 unsigned long ap, fp;
1313
1314 anon = zone_page_state(zone, NR_ACTIVE_ANON) +
1315 zone_page_state(zone, NR_INACTIVE_ANON);
1316 file = zone_page_state(zone, NR_ACTIVE_FILE) +
1317 zone_page_state(zone, NR_INACTIVE_FILE);
1318 free = zone_page_state(zone, NR_FREE_PAGES);
1319
1320 /* If we have no swap space, do not bother scanning anon pages. */
1321 if (nr_swap_pages <= 0) {
1322 percent[0] = 0;
1323 percent[1] = 100;
1324 return;
1325 }
1326
1327 /* If we have very few page cache pages, force-scan anon pages. */
1328 if (unlikely(file + free <= zone->pages_high)) {
1329 percent[0] = 100;
1330 percent[1] = 0;
1331 return;
1332 }
1333
1334 /*
1335 * OK, so we have swap space and a fair amount of page cache
1336 * pages. We use the recently rotated / recently scanned
1337 * ratios to determine how valuable each cache is.
1338 *
1339 * Because workloads change over time (and to avoid overflow)
1340 * we keep these statistics as a floating average, which ends
1341 * up weighing recent references more than old ones.
1342 *
1343 * anon in [0], file in [1]
1344 */
1345 if (unlikely(zone->recent_scanned[0] > anon / 4)) {
1346 spin_lock_irq(&zone->lru_lock);
1347 zone->recent_scanned[0] /= 2;
1348 zone->recent_rotated[0] /= 2;
1349 spin_unlock_irq(&zone->lru_lock);
1350 }
1351
1352 if (unlikely(zone->recent_scanned[1] > file / 4)) {
1353 spin_lock_irq(&zone->lru_lock);
1354 zone->recent_scanned[1] /= 2;
1355 zone->recent_rotated[1] /= 2;
1356 spin_unlock_irq(&zone->lru_lock);
1357 }
1358
1359 /*
1360 * With swappiness at 100, anonymous and file have the same priority.
1361 * This scanning priority is essentially the inverse of IO cost.
1362 */
1363 anon_prio = sc->swappiness;
1364 file_prio = 200 - sc->swappiness;
1365
1366 /*
1367 * anon recent_rotated[0]
1368 * %anon = 100 * ----------- / ----------------- * IO cost
1369 * anon + file rotate_sum
1370 */
1371 ap = (anon_prio + 1) * (zone->recent_scanned[0] + 1);
1372 ap /= zone->recent_rotated[0] + 1;
1373
1374 fp = (file_prio + 1) * (zone->recent_scanned[1] + 1);
1375 fp /= zone->recent_rotated[1] + 1;
1376
1377 /* Normalize to percentages */
1378 percent[0] = 100 * ap / (ap + fp + 1);
1379 percent[1] = 100 - percent[0];
b69408e8
CL
1380}
1381
4f98a2fe 1382
1da177e4
LT
1383/*
1384 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1385 */
05ff5137
AM
1386static unsigned long shrink_zone(int priority, struct zone *zone,
1387 struct scan_control *sc)
1da177e4 1388{
b69408e8 1389 unsigned long nr[NR_LRU_LISTS];
8695949a 1390 unsigned long nr_to_scan;
05ff5137 1391 unsigned long nr_reclaimed = 0;
4f98a2fe 1392 unsigned long percent[2]; /* anon @ 0; file @ 1 */
b69408e8 1393 enum lru_list l;
1da177e4 1394
4f98a2fe
RR
1395 get_scan_ratio(zone, sc, percent);
1396
894bc310 1397 for_each_evictable_lru(l) {
4f98a2fe
RR
1398 if (scan_global_lru(sc)) {
1399 int file = is_file_lru(l);
1400 int scan;
1401 /*
1402 * Add one to nr_to_scan just to make sure that the
1403 * kernel will slowly sift through each list.
1404 */
1405 scan = zone_page_state(zone, NR_LRU_BASE + l);
1406 if (priority) {
1407 scan >>= priority;
1408 scan = (scan * percent[file]) / 100;
1409 }
1410 zone->lru[l].nr_scan += scan + 1;
b69408e8
CL
1411 nr[l] = zone->lru[l].nr_scan;
1412 if (nr[l] >= sc->swap_cluster_max)
1413 zone->lru[l].nr_scan = 0;
1414 else
1415 nr[l] = 0;
4f98a2fe
RR
1416 } else {
1417 /*
1418 * This reclaim occurs not because zone memory shortage
1419 * but because memory controller hits its limit.
1420 * Don't modify zone reclaim related data.
1421 */
1422 nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone,
1423 priority, l);
b69408e8 1424 }
1cfb419b 1425 }
1da177e4 1426
556adecb
RR
1427 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1428 nr[LRU_INACTIVE_FILE]) {
894bc310 1429 for_each_evictable_lru(l) {
b69408e8
CL
1430 if (nr[l]) {
1431 nr_to_scan = min(nr[l],
1da177e4 1432 (unsigned long)sc->swap_cluster_max);
b69408e8 1433 nr[l] -= nr_to_scan;
1da177e4 1434
b69408e8
CL
1435 nr_reclaimed += shrink_list(l, nr_to_scan,
1436 zone, sc, priority);
1437 }
1da177e4
LT
1438 }
1439 }
1440
556adecb
RR
1441 /*
1442 * Even if we did not try to evict anon pages at all, we want to
1443 * rebalance the anon lru active/inactive ratio.
1444 */
1445 if (!scan_global_lru(sc) || inactive_anon_is_low(zone))
1446 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1447 else if (!scan_global_lru(sc))
1448 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1449
232ea4d6 1450 throttle_vm_writeout(sc->gfp_mask);
05ff5137 1451 return nr_reclaimed;
1da177e4
LT
1452}
1453
1454/*
1455 * This is the direct reclaim path, for page-allocating processes. We only
1456 * try to reclaim pages from zones which will satisfy the caller's allocation
1457 * request.
1458 *
1459 * We reclaim from a zone even if that zone is over pages_high. Because:
1460 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1461 * allocation or
1462 * b) The zones may be over pages_high but they must go *over* pages_high to
1463 * satisfy the `incremental min' zone defense algorithm.
1464 *
1465 * Returns the number of reclaimed pages.
1466 *
1467 * If a zone is deemed to be full of pinned pages then just give it a light
1468 * scan then give up on it.
1469 */
dac1d27b 1470static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 1471 struct scan_control *sc)
1da177e4 1472{
54a6eb5c 1473 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
05ff5137 1474 unsigned long nr_reclaimed = 0;
dd1a239f 1475 struct zoneref *z;
54a6eb5c 1476 struct zone *zone;
1cfb419b 1477
408d8544 1478 sc->all_unreclaimable = 1;
54a6eb5c 1479 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
f3fe6512 1480 if (!populated_zone(zone))
1da177e4 1481 continue;
1cfb419b
KH
1482 /*
1483 * Take care memory controller reclaiming has small influence
1484 * to global LRU.
1485 */
1486 if (scan_global_lru(sc)) {
1487 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1488 continue;
1489 note_zone_scanning_priority(zone, priority);
1da177e4 1490
1cfb419b
KH
1491 if (zone_is_all_unreclaimable(zone) &&
1492 priority != DEF_PRIORITY)
1493 continue; /* Let kswapd poll it */
1494 sc->all_unreclaimable = 0;
1495 } else {
1496 /*
1497 * Ignore cpuset limitation here. We just want to reduce
1498 * # of used pages by us regardless of memory shortage.
1499 */
1500 sc->all_unreclaimable = 0;
1501 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1502 priority);
1503 }
408d8544 1504
05ff5137 1505 nr_reclaimed += shrink_zone(priority, zone, sc);
1da177e4 1506 }
1cfb419b 1507
05ff5137 1508 return nr_reclaimed;
1da177e4 1509}
4f98a2fe 1510
1da177e4
LT
1511/*
1512 * This is the main entry point to direct page reclaim.
1513 *
1514 * If a full scan of the inactive list fails to free enough memory then we
1515 * are "out of memory" and something needs to be killed.
1516 *
1517 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1518 * high - the zone may be full of dirty or under-writeback pages, which this
1519 * caller can't do much about. We kick pdflush and take explicit naps in the
1520 * hope that some of these pages can be written. But if the allocating task
1521 * holds filesystem locks which prevent writeout this might not work, and the
1522 * allocation attempt will fail.
a41f24ea
NA
1523 *
1524 * returns: 0, if no pages reclaimed
1525 * else, the number of pages reclaimed
1da177e4 1526 */
dac1d27b 1527static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
dd1a239f 1528 struct scan_control *sc)
1da177e4
LT
1529{
1530 int priority;
c700be3d 1531 unsigned long ret = 0;
69e05944 1532 unsigned long total_scanned = 0;
05ff5137 1533 unsigned long nr_reclaimed = 0;
1da177e4 1534 struct reclaim_state *reclaim_state = current->reclaim_state;
1da177e4 1535 unsigned long lru_pages = 0;
dd1a239f 1536 struct zoneref *z;
54a6eb5c 1537 struct zone *zone;
dd1a239f 1538 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1da177e4 1539
873b4771
KK
1540 delayacct_freepages_start();
1541
1cfb419b
KH
1542 if (scan_global_lru(sc))
1543 count_vm_event(ALLOCSTALL);
1544 /*
1545 * mem_cgroup will not do shrink_slab.
1546 */
1547 if (scan_global_lru(sc)) {
54a6eb5c 1548 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1da177e4 1549
1cfb419b
KH
1550 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1551 continue;
1da177e4 1552
4f98a2fe 1553 lru_pages += zone_lru_pages(zone);
1cfb419b 1554 }
1da177e4
LT
1555 }
1556
1557 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 1558 sc->nr_scanned = 0;
f7b7fd8f
RR
1559 if (!priority)
1560 disable_swap_token();
dac1d27b 1561 nr_reclaimed += shrink_zones(priority, zonelist, sc);
66e1707b
BS
1562 /*
1563 * Don't shrink slabs when reclaiming memory from
1564 * over limit cgroups
1565 */
91a45470 1566 if (scan_global_lru(sc)) {
dd1a239f 1567 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
91a45470
KH
1568 if (reclaim_state) {
1569 nr_reclaimed += reclaim_state->reclaimed_slab;
1570 reclaim_state->reclaimed_slab = 0;
1571 }
1da177e4 1572 }
66e1707b
BS
1573 total_scanned += sc->nr_scanned;
1574 if (nr_reclaimed >= sc->swap_cluster_max) {
a41f24ea 1575 ret = nr_reclaimed;
1da177e4
LT
1576 goto out;
1577 }
1578
1579 /*
1580 * Try to write back as many pages as we just scanned. This
1581 * tends to cause slow streaming writers to write data to the
1582 * disk smoothly, at the dirtying rate, which is nice. But
1583 * that's undesirable in laptop mode, where we *want* lumpy
1584 * writeout. So in laptop mode, write out the whole world.
1585 */
66e1707b
BS
1586 if (total_scanned > sc->swap_cluster_max +
1587 sc->swap_cluster_max / 2) {
687a21ce 1588 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
66e1707b 1589 sc->may_writepage = 1;
1da177e4
LT
1590 }
1591
1592 /* Take a nap, wait for some writeback to complete */
4dd4b920 1593 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
3fcfab16 1594 congestion_wait(WRITE, HZ/10);
1da177e4 1595 }
87547ee9 1596 /* top priority shrink_zones still had more to do? don't OOM, then */
91a45470 1597 if (!sc->all_unreclaimable && scan_global_lru(sc))
a41f24ea 1598 ret = nr_reclaimed;
1da177e4 1599out:
3bb1a852
MB
1600 /*
1601 * Now that we've scanned all the zones at this priority level, note
1602 * that level within the zone so that the next thread which performs
1603 * scanning of this zone will immediately start out at this priority
1604 * level. This affects only the decision whether or not to bring
1605 * mapped pages onto the inactive list.
1606 */
1607 if (priority < 0)
1608 priority = 0;
1da177e4 1609
1cfb419b 1610 if (scan_global_lru(sc)) {
54a6eb5c 1611 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1cfb419b
KH
1612
1613 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1614 continue;
1615
1616 zone->prev_priority = priority;
1617 }
1618 } else
1619 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1da177e4 1620
873b4771
KK
1621 delayacct_freepages_end();
1622
1da177e4
LT
1623 return ret;
1624}
1625
dac1d27b
MG
1626unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1627 gfp_t gfp_mask)
66e1707b
BS
1628{
1629 struct scan_control sc = {
1630 .gfp_mask = gfp_mask,
1631 .may_writepage = !laptop_mode,
1632 .swap_cluster_max = SWAP_CLUSTER_MAX,
1633 .may_swap = 1,
1634 .swappiness = vm_swappiness,
1635 .order = order,
1636 .mem_cgroup = NULL,
1637 .isolate_pages = isolate_pages_global,
1638 };
1639
dd1a239f 1640 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1641}
1642
00f0b825 1643#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 1644
e1a1cd59
BS
1645unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1646 gfp_t gfp_mask)
66e1707b
BS
1647{
1648 struct scan_control sc = {
66e1707b
BS
1649 .may_writepage = !laptop_mode,
1650 .may_swap = 1,
1651 .swap_cluster_max = SWAP_CLUSTER_MAX,
1652 .swappiness = vm_swappiness,
1653 .order = 0,
1654 .mem_cgroup = mem_cont,
1655 .isolate_pages = mem_cgroup_isolate_pages,
1656 };
dac1d27b 1657 struct zonelist *zonelist;
66e1707b 1658
dd1a239f
MG
1659 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1660 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1661 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1662 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1663}
1664#endif
1665
1da177e4
LT
1666/*
1667 * For kswapd, balance_pgdat() will work across all this node's zones until
1668 * they are all at pages_high.
1669 *
1da177e4
LT
1670 * Returns the number of pages which were actually freed.
1671 *
1672 * There is special handling here for zones which are full of pinned pages.
1673 * This can happen if the pages are all mlocked, or if they are all used by
1674 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1675 * What we do is to detect the case where all pages in the zone have been
1676 * scanned twice and there has been zero successful reclaim. Mark the zone as
1677 * dead and from now on, only perform a short scan. Basically we're polling
1678 * the zone for when the problem goes away.
1679 *
1680 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1681 * zones which have free_pages > pages_high, but once a zone is found to have
1682 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1683 * of the number of free pages in the lower zones. This interoperates with
1684 * the page allocator fallback scheme to ensure that aging of pages is balanced
1685 * across the zones.
1686 */
d6277db4 1687static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1da177e4 1688{
1da177e4
LT
1689 int all_zones_ok;
1690 int priority;
1691 int i;
69e05944 1692 unsigned long total_scanned;
05ff5137 1693 unsigned long nr_reclaimed;
1da177e4 1694 struct reclaim_state *reclaim_state = current->reclaim_state;
179e9639
AM
1695 struct scan_control sc = {
1696 .gfp_mask = GFP_KERNEL,
1697 .may_swap = 1,
d6277db4
RW
1698 .swap_cluster_max = SWAP_CLUSTER_MAX,
1699 .swappiness = vm_swappiness,
5ad333eb 1700 .order = order,
66e1707b
BS
1701 .mem_cgroup = NULL,
1702 .isolate_pages = isolate_pages_global,
179e9639 1703 };
3bb1a852
MB
1704 /*
1705 * temp_priority is used to remember the scanning priority at which
1706 * this zone was successfully refilled to free_pages == pages_high.
1707 */
1708 int temp_priority[MAX_NR_ZONES];
1da177e4
LT
1709
1710loop_again:
1711 total_scanned = 0;
05ff5137 1712 nr_reclaimed = 0;
c0bbbc73 1713 sc.may_writepage = !laptop_mode;
f8891e5e 1714 count_vm_event(PAGEOUTRUN);
1da177e4 1715
3bb1a852
MB
1716 for (i = 0; i < pgdat->nr_zones; i++)
1717 temp_priority[i] = DEF_PRIORITY;
1da177e4
LT
1718
1719 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1720 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1721 unsigned long lru_pages = 0;
1722
f7b7fd8f
RR
1723 /* The swap token gets in the way of swapout... */
1724 if (!priority)
1725 disable_swap_token();
1726
1da177e4
LT
1727 all_zones_ok = 1;
1728
d6277db4
RW
1729 /*
1730 * Scan in the highmem->dma direction for the highest
1731 * zone which needs scanning
1732 */
1733 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1734 struct zone *zone = pgdat->node_zones + i;
1da177e4 1735
d6277db4
RW
1736 if (!populated_zone(zone))
1737 continue;
1da177e4 1738
e815af95
DR
1739 if (zone_is_all_unreclaimable(zone) &&
1740 priority != DEF_PRIORITY)
d6277db4 1741 continue;
1da177e4 1742
556adecb
RR
1743 /*
1744 * Do some background aging of the anon list, to give
1745 * pages a chance to be referenced before reclaiming.
1746 */
1747 if (inactive_anon_is_low(zone))
1748 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1749 &sc, priority, 0);
1750
d6277db4
RW
1751 if (!zone_watermark_ok(zone, order, zone->pages_high,
1752 0, 0)) {
1753 end_zone = i;
e1dbeda6 1754 break;
1da177e4 1755 }
1da177e4 1756 }
e1dbeda6
AM
1757 if (i < 0)
1758 goto out;
1759
1da177e4
LT
1760 for (i = 0; i <= end_zone; i++) {
1761 struct zone *zone = pgdat->node_zones + i;
1762
4f98a2fe 1763 lru_pages += zone_lru_pages(zone);
1da177e4
LT
1764 }
1765
1766 /*
1767 * Now scan the zone in the dma->highmem direction, stopping
1768 * at the last zone which needs scanning.
1769 *
1770 * We do this because the page allocator works in the opposite
1771 * direction. This prevents the page allocator from allocating
1772 * pages behind kswapd's direction of progress, which would
1773 * cause too much scanning of the lower zones.
1774 */
1775 for (i = 0; i <= end_zone; i++) {
1776 struct zone *zone = pgdat->node_zones + i;
b15e0905 1777 int nr_slab;
1da177e4 1778
f3fe6512 1779 if (!populated_zone(zone))
1da177e4
LT
1780 continue;
1781
e815af95
DR
1782 if (zone_is_all_unreclaimable(zone) &&
1783 priority != DEF_PRIORITY)
1da177e4
LT
1784 continue;
1785
d6277db4
RW
1786 if (!zone_watermark_ok(zone, order, zone->pages_high,
1787 end_zone, 0))
1788 all_zones_ok = 0;
3bb1a852 1789 temp_priority[i] = priority;
1da177e4 1790 sc.nr_scanned = 0;
3bb1a852 1791 note_zone_scanning_priority(zone, priority);
32a4330d
RR
1792 /*
1793 * We put equal pressure on every zone, unless one
1794 * zone has way too many pages free already.
1795 */
1796 if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1797 end_zone, 0))
1798 nr_reclaimed += shrink_zone(priority, zone, &sc);
1da177e4 1799 reclaim_state->reclaimed_slab = 0;
b15e0905 1800 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1801 lru_pages);
05ff5137 1802 nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4 1803 total_scanned += sc.nr_scanned;
e815af95 1804 if (zone_is_all_unreclaimable(zone))
1da177e4 1805 continue;
b15e0905 1806 if (nr_slab == 0 && zone->pages_scanned >=
4f98a2fe 1807 (zone_lru_pages(zone) * 6))
e815af95
DR
1808 zone_set_flag(zone,
1809 ZONE_ALL_UNRECLAIMABLE);
1da177e4
LT
1810 /*
1811 * If we've done a decent amount of scanning and
1812 * the reclaim ratio is low, start doing writepage
1813 * even in laptop mode
1814 */
1815 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
05ff5137 1816 total_scanned > nr_reclaimed + nr_reclaimed / 2)
1da177e4
LT
1817 sc.may_writepage = 1;
1818 }
1da177e4
LT
1819 if (all_zones_ok)
1820 break; /* kswapd: all done */
1821 /*
1822 * OK, kswapd is getting into trouble. Take a nap, then take
1823 * another pass across the zones.
1824 */
4dd4b920 1825 if (total_scanned && priority < DEF_PRIORITY - 2)
3fcfab16 1826 congestion_wait(WRITE, HZ/10);
1da177e4
LT
1827
1828 /*
1829 * We do this so kswapd doesn't build up large priorities for
1830 * example when it is freeing in parallel with allocators. It
1831 * matches the direct reclaim path behaviour in terms of impact
1832 * on zone->*_priority.
1833 */
d6277db4 1834 if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
1835 break;
1836 }
1837out:
3bb1a852
MB
1838 /*
1839 * Note within each zone the priority level at which this zone was
1840 * brought into a happy state. So that the next thread which scans this
1841 * zone will start out at that priority level.
1842 */
1da177e4
LT
1843 for (i = 0; i < pgdat->nr_zones; i++) {
1844 struct zone *zone = pgdat->node_zones + i;
1845
3bb1a852 1846 zone->prev_priority = temp_priority[i];
1da177e4
LT
1847 }
1848 if (!all_zones_ok) {
1849 cond_resched();
8357376d
RW
1850
1851 try_to_freeze();
1852
1da177e4
LT
1853 goto loop_again;
1854 }
1855
05ff5137 1856 return nr_reclaimed;
1da177e4
LT
1857}
1858
1859/*
1860 * The background pageout daemon, started as a kernel thread
4f98a2fe 1861 * from the init process.
1da177e4
LT
1862 *
1863 * This basically trickles out pages so that we have _some_
1864 * free memory available even if there is no other activity
1865 * that frees anything up. This is needed for things like routing
1866 * etc, where we otherwise might have all activity going on in
1867 * asynchronous contexts that cannot page things out.
1868 *
1869 * If there are applications that are active memory-allocators
1870 * (most normal use), this basically shouldn't matter.
1871 */
1872static int kswapd(void *p)
1873{
1874 unsigned long order;
1875 pg_data_t *pgdat = (pg_data_t*)p;
1876 struct task_struct *tsk = current;
1877 DEFINE_WAIT(wait);
1878 struct reclaim_state reclaim_state = {
1879 .reclaimed_slab = 0,
1880 };
c5f59f08 1881 node_to_cpumask_ptr(cpumask, pgdat->node_id);
1da177e4 1882
c5f59f08
MT
1883 if (!cpus_empty(*cpumask))
1884 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
1885 current->reclaim_state = &reclaim_state;
1886
1887 /*
1888 * Tell the memory management that we're a "memory allocator",
1889 * and that if we need more memory we should get access to it
1890 * regardless (see "__alloc_pages()"). "kswapd" should
1891 * never get caught in the normal page freeing logic.
1892 *
1893 * (Kswapd normally doesn't need memory anyway, but sometimes
1894 * you need a small amount of memory in order to be able to
1895 * page out something else, and this flag essentially protects
1896 * us from recursively trying to free more memory as we're
1897 * trying to free the first piece of memory in the first place).
1898 */
930d9152 1899 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 1900 set_freezable();
1da177e4
LT
1901
1902 order = 0;
1903 for ( ; ; ) {
1904 unsigned long new_order;
3e1d1d28 1905
1da177e4
LT
1906 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1907 new_order = pgdat->kswapd_max_order;
1908 pgdat->kswapd_max_order = 0;
1909 if (order < new_order) {
1910 /*
1911 * Don't sleep if someone wants a larger 'order'
1912 * allocation
1913 */
1914 order = new_order;
1915 } else {
b1296cc4
RW
1916 if (!freezing(current))
1917 schedule();
1918
1da177e4
LT
1919 order = pgdat->kswapd_max_order;
1920 }
1921 finish_wait(&pgdat->kswapd_wait, &wait);
1922
b1296cc4
RW
1923 if (!try_to_freeze()) {
1924 /* We can speed up thawing tasks if we don't call
1925 * balance_pgdat after returning from the refrigerator
1926 */
1927 balance_pgdat(pgdat, order);
1928 }
1da177e4
LT
1929 }
1930 return 0;
1931}
1932
1933/*
1934 * A zone is low on free memory, so wake its kswapd task to service it.
1935 */
1936void wakeup_kswapd(struct zone *zone, int order)
1937{
1938 pg_data_t *pgdat;
1939
f3fe6512 1940 if (!populated_zone(zone))
1da177e4
LT
1941 return;
1942
1943 pgdat = zone->zone_pgdat;
7fb1d9fc 1944 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1da177e4
LT
1945 return;
1946 if (pgdat->kswapd_max_order < order)
1947 pgdat->kswapd_max_order = order;
02a0e53d 1948 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 1949 return;
8d0986e2 1950 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 1951 return;
8d0986e2 1952 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
1953}
1954
4f98a2fe
RR
1955unsigned long global_lru_pages(void)
1956{
1957 return global_page_state(NR_ACTIVE_ANON)
1958 + global_page_state(NR_ACTIVE_FILE)
1959 + global_page_state(NR_INACTIVE_ANON)
1960 + global_page_state(NR_INACTIVE_FILE);
1961}
1962
1da177e4
LT
1963#ifdef CONFIG_PM
1964/*
d6277db4
RW
1965 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1966 * from LRU lists system-wide, for given pass and priority, and returns the
1967 * number of reclaimed pages
1968 *
1969 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1970 */
e07aa05b
NC
1971static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1972 int pass, struct scan_control *sc)
d6277db4
RW
1973{
1974 struct zone *zone;
1975 unsigned long nr_to_scan, ret = 0;
b69408e8 1976 enum lru_list l;
d6277db4
RW
1977
1978 for_each_zone(zone) {
1979
1980 if (!populated_zone(zone))
1981 continue;
1982
e815af95 1983 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
d6277db4
RW
1984 continue;
1985
894bc310
LS
1986 for_each_evictable_lru(l) {
1987 /* For pass = 0, we don't shrink the active list */
4f98a2fe
RR
1988 if (pass == 0 &&
1989 (l == LRU_ACTIVE || l == LRU_ACTIVE_FILE))
b69408e8
CL
1990 continue;
1991
1992 zone->lru[l].nr_scan +=
1993 (zone_page_state(zone, NR_LRU_BASE + l)
1994 >> prio) + 1;
1995 if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
1996 zone->lru[l].nr_scan = 0;
c8785385 1997 nr_to_scan = min(nr_pages,
b69408e8
CL
1998 zone_page_state(zone,
1999 NR_LRU_BASE + l));
2000 ret += shrink_list(l, nr_to_scan, zone,
2001 sc, prio);
2002 if (ret >= nr_pages)
2003 return ret;
d6277db4
RW
2004 }
2005 }
d6277db4
RW
2006 }
2007
2008 return ret;
2009}
2010
2011/*
2012 * Try to free `nr_pages' of memory, system-wide, and return the number of
2013 * freed pages.
2014 *
2015 * Rather than trying to age LRUs the aim is to preserve the overall
2016 * LRU order by reclaiming preferentially
2017 * inactive > active > active referenced > active mapped
1da177e4 2018 */
69e05944 2019unsigned long shrink_all_memory(unsigned long nr_pages)
1da177e4 2020{
d6277db4 2021 unsigned long lru_pages, nr_slab;
69e05944 2022 unsigned long ret = 0;
d6277db4
RW
2023 int pass;
2024 struct reclaim_state reclaim_state;
d6277db4
RW
2025 struct scan_control sc = {
2026 .gfp_mask = GFP_KERNEL,
2027 .may_swap = 0,
2028 .swap_cluster_max = nr_pages,
2029 .may_writepage = 1,
2030 .swappiness = vm_swappiness,
66e1707b 2031 .isolate_pages = isolate_pages_global,
1da177e4
LT
2032 };
2033
2034 current->reclaim_state = &reclaim_state;
69e05944 2035
4f98a2fe 2036 lru_pages = global_lru_pages();
972d1a7b 2037 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
d6277db4
RW
2038 /* If slab caches are huge, it's better to hit them first */
2039 while (nr_slab >= lru_pages) {
2040 reclaim_state.reclaimed_slab = 0;
2041 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2042 if (!reclaim_state.reclaimed_slab)
1da177e4 2043 break;
d6277db4
RW
2044
2045 ret += reclaim_state.reclaimed_slab;
2046 if (ret >= nr_pages)
2047 goto out;
2048
2049 nr_slab -= reclaim_state.reclaimed_slab;
1da177e4 2050 }
d6277db4
RW
2051
2052 /*
2053 * We try to shrink LRUs in 5 passes:
2054 * 0 = Reclaim from inactive_list only
2055 * 1 = Reclaim from active list but don't reclaim mapped
2056 * 2 = 2nd pass of type 1
2057 * 3 = Reclaim mapped (normal reclaim)
2058 * 4 = 2nd pass of type 3
2059 */
2060 for (pass = 0; pass < 5; pass++) {
2061 int prio;
2062
d6277db4
RW
2063 /* Force reclaiming mapped pages in the passes #3 and #4 */
2064 if (pass > 2) {
2065 sc.may_swap = 1;
2066 sc.swappiness = 100;
2067 }
2068
2069 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2070 unsigned long nr_to_scan = nr_pages - ret;
2071
d6277db4 2072 sc.nr_scanned = 0;
d6277db4
RW
2073 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
2074 if (ret >= nr_pages)
2075 goto out;
2076
2077 reclaim_state.reclaimed_slab = 0;
76395d37 2078 shrink_slab(sc.nr_scanned, sc.gfp_mask,
4f98a2fe 2079 global_lru_pages());
d6277db4
RW
2080 ret += reclaim_state.reclaimed_slab;
2081 if (ret >= nr_pages)
2082 goto out;
2083
2084 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
3fcfab16 2085 congestion_wait(WRITE, HZ / 10);
d6277db4 2086 }
248a0301 2087 }
d6277db4
RW
2088
2089 /*
2090 * If ret = 0, we could not shrink LRUs, but there may be something
2091 * in slab caches
2092 */
76395d37 2093 if (!ret) {
d6277db4
RW
2094 do {
2095 reclaim_state.reclaimed_slab = 0;
4f98a2fe 2096 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
d6277db4
RW
2097 ret += reclaim_state.reclaimed_slab;
2098 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
76395d37 2099 }
d6277db4
RW
2100
2101out:
1da177e4 2102 current->reclaim_state = NULL;
d6277db4 2103
1da177e4
LT
2104 return ret;
2105}
2106#endif
2107
1da177e4
LT
2108/* It's optimal to keep kswapds on the same CPUs as their memory, but
2109 not required for correctness. So if the last cpu in a node goes
2110 away, we get changed to run anywhere: as the first one comes back,
2111 restore their cpu bindings. */
9c7b216d 2112static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2113 unsigned long action, void *hcpu)
1da177e4 2114{
58c0a4a7 2115 int nid;
1da177e4 2116
8bb78442 2117 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2118 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08
MT
2119 pg_data_t *pgdat = NODE_DATA(nid);
2120 node_to_cpumask_ptr(mask, pgdat->node_id);
2121
2122 if (any_online_cpu(*mask) < nr_cpu_ids)
1da177e4 2123 /* One of our CPUs online: restore mask */
c5f59f08 2124 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2125 }
2126 }
2127 return NOTIFY_OK;
2128}
1da177e4 2129
3218ae14
YG
2130/*
2131 * This kswapd start function will be called by init and node-hot-add.
2132 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2133 */
2134int kswapd_run(int nid)
2135{
2136 pg_data_t *pgdat = NODE_DATA(nid);
2137 int ret = 0;
2138
2139 if (pgdat->kswapd)
2140 return 0;
2141
2142 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2143 if (IS_ERR(pgdat->kswapd)) {
2144 /* failure at boot is fatal */
2145 BUG_ON(system_state == SYSTEM_BOOTING);
2146 printk("Failed to start kswapd on node %d\n",nid);
2147 ret = -1;
2148 }
2149 return ret;
2150}
2151
1da177e4
LT
2152static int __init kswapd_init(void)
2153{
3218ae14 2154 int nid;
69e05944 2155
1da177e4 2156 swap_setup();
9422ffba 2157 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 2158 kswapd_run(nid);
1da177e4
LT
2159 hotcpu_notifier(cpu_callback, 0);
2160 return 0;
2161}
2162
2163module_init(kswapd_init)
9eeff239
CL
2164
2165#ifdef CONFIG_NUMA
2166/*
2167 * Zone reclaim mode
2168 *
2169 * If non-zero call zone_reclaim when the number of free pages falls below
2170 * the watermarks.
9eeff239
CL
2171 */
2172int zone_reclaim_mode __read_mostly;
2173
1b2ffb78 2174#define RECLAIM_OFF 0
7d03431c 2175#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
2176#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2177#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2178
a92f7126
CL
2179/*
2180 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2181 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2182 * a zone.
2183 */
2184#define ZONE_RECLAIM_PRIORITY 4
2185
9614634f
CL
2186/*
2187 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2188 * occur.
2189 */
2190int sysctl_min_unmapped_ratio = 1;
2191
0ff38490
CL
2192/*
2193 * If the number of slab pages in a zone grows beyond this percentage then
2194 * slab reclaim needs to occur.
2195 */
2196int sysctl_min_slab_ratio = 5;
2197
9eeff239
CL
2198/*
2199 * Try to free up some pages from this zone through reclaim.
2200 */
179e9639 2201static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 2202{
7fb2d46d 2203 /* Minimum pages needed in order to stay on node */
69e05944 2204 const unsigned long nr_pages = 1 << order;
9eeff239
CL
2205 struct task_struct *p = current;
2206 struct reclaim_state reclaim_state;
8695949a 2207 int priority;
05ff5137 2208 unsigned long nr_reclaimed = 0;
179e9639
AM
2209 struct scan_control sc = {
2210 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2211 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
69e05944
AM
2212 .swap_cluster_max = max_t(unsigned long, nr_pages,
2213 SWAP_CLUSTER_MAX),
179e9639 2214 .gfp_mask = gfp_mask,
d6277db4 2215 .swappiness = vm_swappiness,
66e1707b 2216 .isolate_pages = isolate_pages_global,
179e9639 2217 };
83e33a47 2218 unsigned long slab_reclaimable;
9eeff239
CL
2219
2220 disable_swap_token();
9eeff239 2221 cond_resched();
d4f7796e
CL
2222 /*
2223 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2224 * and we also need to be able to write out pages for RECLAIM_WRITE
2225 * and RECLAIM_SWAP.
2226 */
2227 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
9eeff239
CL
2228 reclaim_state.reclaimed_slab = 0;
2229 p->reclaim_state = &reclaim_state;
c84db23c 2230
0ff38490
CL
2231 if (zone_page_state(zone, NR_FILE_PAGES) -
2232 zone_page_state(zone, NR_FILE_MAPPED) >
2233 zone->min_unmapped_pages) {
2234 /*
2235 * Free memory by calling shrink zone with increasing
2236 * priorities until we have enough memory freed.
2237 */
2238 priority = ZONE_RECLAIM_PRIORITY;
2239 do {
3bb1a852 2240 note_zone_scanning_priority(zone, priority);
0ff38490
CL
2241 nr_reclaimed += shrink_zone(priority, zone, &sc);
2242 priority--;
2243 } while (priority >= 0 && nr_reclaimed < nr_pages);
2244 }
c84db23c 2245
83e33a47
CL
2246 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2247 if (slab_reclaimable > zone->min_slab_pages) {
2a16e3f4 2248 /*
7fb2d46d 2249 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
2250 * many pages were freed in this zone. So we take the current
2251 * number of slab pages and shake the slab until it is reduced
2252 * by the same nr_pages that we used for reclaiming unmapped
2253 * pages.
2a16e3f4 2254 *
0ff38490
CL
2255 * Note that shrink_slab will free memory on all zones and may
2256 * take a long time.
2a16e3f4 2257 */
0ff38490 2258 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
83e33a47
CL
2259 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2260 slab_reclaimable - nr_pages)
0ff38490 2261 ;
83e33a47
CL
2262
2263 /*
2264 * Update nr_reclaimed by the number of slab pages we
2265 * reclaimed from this zone.
2266 */
2267 nr_reclaimed += slab_reclaimable -
2268 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2a16e3f4
CL
2269 }
2270
9eeff239 2271 p->reclaim_state = NULL;
d4f7796e 2272 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
05ff5137 2273 return nr_reclaimed >= nr_pages;
9eeff239 2274}
179e9639
AM
2275
2276int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2277{
179e9639 2278 int node_id;
d773ed6b 2279 int ret;
179e9639
AM
2280
2281 /*
0ff38490
CL
2282 * Zone reclaim reclaims unmapped file backed pages and
2283 * slab pages if we are over the defined limits.
34aa1330 2284 *
9614634f
CL
2285 * A small portion of unmapped file backed pages is needed for
2286 * file I/O otherwise pages read by file I/O will be immediately
2287 * thrown out if the zone is overallocated. So we do not reclaim
2288 * if less than a specified percentage of the zone is used by
2289 * unmapped file backed pages.
179e9639 2290 */
34aa1330 2291 if (zone_page_state(zone, NR_FILE_PAGES) -
0ff38490
CL
2292 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2293 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2294 <= zone->min_slab_pages)
9614634f 2295 return 0;
179e9639 2296
d773ed6b
DR
2297 if (zone_is_all_unreclaimable(zone))
2298 return 0;
2299
179e9639 2300 /*
d773ed6b 2301 * Do not scan if the allocation should not be delayed.
179e9639 2302 */
d773ed6b 2303 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
179e9639
AM
2304 return 0;
2305
2306 /*
2307 * Only run zone reclaim on the local zone or on zones that do not
2308 * have associated processors. This will favor the local processor
2309 * over remote processors and spread off node memory allocations
2310 * as wide as possible.
2311 */
89fa3024 2312 node_id = zone_to_nid(zone);
37c0708d 2313 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
179e9639 2314 return 0;
d773ed6b
DR
2315
2316 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2317 return 0;
2318 ret = __zone_reclaim(zone, gfp_mask, order);
2319 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2320
2321 return ret;
179e9639 2322}
9eeff239 2323#endif
894bc310
LS
2324
2325#ifdef CONFIG_UNEVICTABLE_LRU
2326/*
2327 * page_evictable - test whether a page is evictable
2328 * @page: the page to test
2329 * @vma: the VMA in which the page is or will be mapped, may be NULL
2330 *
2331 * Test whether page is evictable--i.e., should be placed on active/inactive
2332 * lists vs unevictable list.
2333 *
2334 * Reasons page might not be evictable:
2335 * TODO - later patches
2336 */
2337int page_evictable(struct page *page, struct vm_area_struct *vma)
2338{
2339
2340 /* TODO: test page [!]evictable conditions */
2341
2342 return 1;
2343}
2344#endif