]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmscan.c
[PATCH] Direct Migration V9: upgrade MPOL_MF_MOVE and sys_migrate_pages()
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/file.h>
23#include <linux/writeback.h>
24#include <linux/blkdev.h>
25#include <linux/buffer_head.h> /* for try_to_release_page(),
26 buffer_heads_over_limit */
27#include <linux/mm_inline.h>
28#include <linux/pagevec.h>
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
34#include <linux/notifier.h>
35#include <linux/rwsem.h>
36
37#include <asm/tlbflush.h>
38#include <asm/div64.h>
39
40#include <linux/swapops.h>
41
42/* possible outcome of pageout() */
43typedef enum {
44 /* failed to write page out, page is locked */
45 PAGE_KEEP,
46 /* move page to the active list, page is locked */
47 PAGE_ACTIVATE,
48 /* page has been sent to the disk successfully, page is unlocked */
49 PAGE_SUCCESS,
50 /* page is clean and locked */
51 PAGE_CLEAN,
52} pageout_t;
53
54struct scan_control {
55 /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56 unsigned long nr_to_scan;
57
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
60
61 /* Incremented by the number of pages reclaimed */
62 unsigned long nr_reclaimed;
63
64 unsigned long nr_mapped; /* From page_state */
65
1da177e4
LT
66 /* Ask shrink_caches, or shrink_zone to scan at this priority */
67 unsigned int priority;
68
69 /* This context's GFP mask */
6daa0e28 70 gfp_t gfp_mask;
1da177e4
LT
71
72 int may_writepage;
73
f1fd1067
CL
74 /* Can pages be swapped as part of reclaim? */
75 int may_swap;
76
1da177e4
LT
77 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
78 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
79 * In this context, it doesn't matter that we scan the
80 * whole list at once. */
81 int swap_cluster_max;
82};
83
84/*
85 * The list of shrinker callbacks used by to apply pressure to
86 * ageable caches.
87 */
88struct shrinker {
89 shrinker_t shrinker;
90 struct list_head list;
91 int seeks; /* seeks to recreate an obj */
92 long nr; /* objs pending delete */
93};
94
95#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
96
97#ifdef ARCH_HAS_PREFETCH
98#define prefetch_prev_lru_page(_page, _base, _field) \
99 do { \
100 if ((_page)->lru.prev != _base) { \
101 struct page *prev; \
102 \
103 prev = lru_to_page(&(_page->lru)); \
104 prefetch(&prev->_field); \
105 } \
106 } while (0)
107#else
108#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
109#endif
110
111#ifdef ARCH_HAS_PREFETCHW
112#define prefetchw_prev_lru_page(_page, _base, _field) \
113 do { \
114 if ((_page)->lru.prev != _base) { \
115 struct page *prev; \
116 \
117 prev = lru_to_page(&(_page->lru)); \
118 prefetchw(&prev->_field); \
119 } \
120 } while (0)
121#else
122#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
123#endif
124
125/*
126 * From 0 .. 100. Higher means more swappy.
127 */
128int vm_swappiness = 60;
129static long total_memory;
130
131static LIST_HEAD(shrinker_list);
132static DECLARE_RWSEM(shrinker_rwsem);
133
134/*
135 * Add a shrinker callback to be called from the vm
136 */
137struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
138{
139 struct shrinker *shrinker;
140
141 shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
142 if (shrinker) {
143 shrinker->shrinker = theshrinker;
144 shrinker->seeks = seeks;
145 shrinker->nr = 0;
146 down_write(&shrinker_rwsem);
147 list_add_tail(&shrinker->list, &shrinker_list);
148 up_write(&shrinker_rwsem);
149 }
150 return shrinker;
151}
152EXPORT_SYMBOL(set_shrinker);
153
154/*
155 * Remove one
156 */
157void remove_shrinker(struct shrinker *shrinker)
158{
159 down_write(&shrinker_rwsem);
160 list_del(&shrinker->list);
161 up_write(&shrinker_rwsem);
162 kfree(shrinker);
163}
164EXPORT_SYMBOL(remove_shrinker);
165
166#define SHRINK_BATCH 128
167/*
168 * Call the shrink functions to age shrinkable caches
169 *
170 * Here we assume it costs one seek to replace a lru page and that it also
171 * takes a seek to recreate a cache object. With this in mind we age equal
172 * percentages of the lru and ageable caches. This should balance the seeks
173 * generated by these structures.
174 *
175 * If the vm encounted mapped pages on the LRU it increase the pressure on
176 * slab to avoid swapping.
177 *
178 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
179 *
180 * `lru_pages' represents the number of on-LRU pages in all the zones which
181 * are eligible for the caller's allocation attempt. It is used for balancing
182 * slab reclaim versus page reclaim.
b15e0905 183 *
184 * Returns the number of slab objects which we shrunk.
1da177e4 185 */
9d0243bc 186int shrink_slab(unsigned long scanned, gfp_t gfp_mask, unsigned long lru_pages)
1da177e4
LT
187{
188 struct shrinker *shrinker;
b15e0905 189 int ret = 0;
1da177e4
LT
190
191 if (scanned == 0)
192 scanned = SWAP_CLUSTER_MAX;
193
194 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 195 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
196
197 list_for_each_entry(shrinker, &shrinker_list, list) {
198 unsigned long long delta;
199 unsigned long total_scan;
ea164d73 200 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
1da177e4
LT
201
202 delta = (4 * scanned) / shrinker->seeks;
ea164d73 203 delta *= max_pass;
1da177e4
LT
204 do_div(delta, lru_pages + 1);
205 shrinker->nr += delta;
ea164d73
AA
206 if (shrinker->nr < 0) {
207 printk(KERN_ERR "%s: nr=%ld\n",
208 __FUNCTION__, shrinker->nr);
209 shrinker->nr = max_pass;
210 }
211
212 /*
213 * Avoid risking looping forever due to too large nr value:
214 * never try to free more than twice the estimate number of
215 * freeable entries.
216 */
217 if (shrinker->nr > max_pass * 2)
218 shrinker->nr = max_pass * 2;
1da177e4
LT
219
220 total_scan = shrinker->nr;
221 shrinker->nr = 0;
222
223 while (total_scan >= SHRINK_BATCH) {
224 long this_scan = SHRINK_BATCH;
225 int shrink_ret;
b15e0905 226 int nr_before;
1da177e4 227
b15e0905 228 nr_before = (*shrinker->shrinker)(0, gfp_mask);
1da177e4
LT
229 shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
230 if (shrink_ret == -1)
231 break;
b15e0905 232 if (shrink_ret < nr_before)
233 ret += nr_before - shrink_ret;
1da177e4
LT
234 mod_page_state(slabs_scanned, this_scan);
235 total_scan -= this_scan;
236
237 cond_resched();
238 }
239
240 shrinker->nr += total_scan;
241 }
242 up_read(&shrinker_rwsem);
b15e0905 243 return ret;
1da177e4
LT
244}
245
246/* Called without lock on whether page is mapped, so answer is unstable */
247static inline int page_mapping_inuse(struct page *page)
248{
249 struct address_space *mapping;
250
251 /* Page is in somebody's page tables. */
252 if (page_mapped(page))
253 return 1;
254
255 /* Be more reluctant to reclaim swapcache than pagecache */
256 if (PageSwapCache(page))
257 return 1;
258
259 mapping = page_mapping(page);
260 if (!mapping)
261 return 0;
262
263 /* File is mmap'd by somebody? */
264 return mapping_mapped(mapping);
265}
266
267static inline int is_page_cache_freeable(struct page *page)
268{
269 return page_count(page) - !!PagePrivate(page) == 2;
270}
271
272static int may_write_to_queue(struct backing_dev_info *bdi)
273{
930d9152 274 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
275 return 1;
276 if (!bdi_write_congested(bdi))
277 return 1;
278 if (bdi == current->backing_dev_info)
279 return 1;
280 return 0;
281}
282
283/*
284 * We detected a synchronous write error writing a page out. Probably
285 * -ENOSPC. We need to propagate that into the address_space for a subsequent
286 * fsync(), msync() or close().
287 *
288 * The tricky part is that after writepage we cannot touch the mapping: nothing
289 * prevents it from being freed up. But we have a ref on the page and once
290 * that page is locked, the mapping is pinned.
291 *
292 * We're allowed to run sleeping lock_page() here because we know the caller has
293 * __GFP_FS.
294 */
295static void handle_write_error(struct address_space *mapping,
296 struct page *page, int error)
297{
298 lock_page(page);
299 if (page_mapping(page) == mapping) {
300 if (error == -ENOSPC)
301 set_bit(AS_ENOSPC, &mapping->flags);
302 else
303 set_bit(AS_EIO, &mapping->flags);
304 }
305 unlock_page(page);
306}
307
308/*
309 * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
310 */
311static pageout_t pageout(struct page *page, struct address_space *mapping)
312{
313 /*
314 * If the page is dirty, only perform writeback if that write
315 * will be non-blocking. To prevent this allocation from being
316 * stalled by pagecache activity. But note that there may be
317 * stalls if we need to run get_block(). We could test
318 * PagePrivate for that.
319 *
320 * If this process is currently in generic_file_write() against
321 * this page's queue, we can perform writeback even if that
322 * will block.
323 *
324 * If the page is swapcache, write it back even if that would
325 * block, for some throttling. This happens by accident, because
326 * swap_backing_dev_info is bust: it doesn't reflect the
327 * congestion state of the swapdevs. Easy to fix, if needed.
328 * See swapfile.c:page_queue_congested().
329 */
330 if (!is_page_cache_freeable(page))
331 return PAGE_KEEP;
332 if (!mapping) {
333 /*
334 * Some data journaling orphaned pages can have
335 * page->mapping == NULL while being dirty with clean buffers.
336 */
323aca6c 337 if (PagePrivate(page)) {
1da177e4
LT
338 if (try_to_free_buffers(page)) {
339 ClearPageDirty(page);
340 printk("%s: orphaned page\n", __FUNCTION__);
341 return PAGE_CLEAN;
342 }
343 }
344 return PAGE_KEEP;
345 }
346 if (mapping->a_ops->writepage == NULL)
347 return PAGE_ACTIVATE;
348 if (!may_write_to_queue(mapping->backing_dev_info))
349 return PAGE_KEEP;
350
351 if (clear_page_dirty_for_io(page)) {
352 int res;
353 struct writeback_control wbc = {
354 .sync_mode = WB_SYNC_NONE,
355 .nr_to_write = SWAP_CLUSTER_MAX,
356 .nonblocking = 1,
357 .for_reclaim = 1,
358 };
359
360 SetPageReclaim(page);
361 res = mapping->a_ops->writepage(page, &wbc);
362 if (res < 0)
363 handle_write_error(mapping, page, res);
994fc28c 364 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
365 ClearPageReclaim(page);
366 return PAGE_ACTIVATE;
367 }
368 if (!PageWriteback(page)) {
369 /* synchronous write or broken a_ops? */
370 ClearPageReclaim(page);
371 }
372
373 return PAGE_SUCCESS;
374 }
375
376 return PAGE_CLEAN;
377}
378
49d2e9cc
CL
379static int remove_mapping(struct address_space *mapping, struct page *page)
380{
381 if (!mapping)
382 return 0; /* truncate got there first */
383
384 write_lock_irq(&mapping->tree_lock);
385
386 /*
387 * The non-racy check for busy page. It is critical to check
388 * PageDirty _after_ making sure that the page is freeable and
389 * not in use by anybody. (pagecache + us == 2)
390 */
391 if (unlikely(page_count(page) != 2))
392 goto cannot_free;
393 smp_rmb();
394 if (unlikely(PageDirty(page)))
395 goto cannot_free;
396
397 if (PageSwapCache(page)) {
398 swp_entry_t swap = { .val = page_private(page) };
399 __delete_from_swap_cache(page);
400 write_unlock_irq(&mapping->tree_lock);
401 swap_free(swap);
402 __put_page(page); /* The pagecache ref */
403 return 1;
404 }
405
406 __remove_from_page_cache(page);
407 write_unlock_irq(&mapping->tree_lock);
408 __put_page(page);
409 return 1;
410
411cannot_free:
412 write_unlock_irq(&mapping->tree_lock);
413 return 0;
414}
415
1da177e4
LT
416/*
417 * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
418 */
419static int shrink_list(struct list_head *page_list, struct scan_control *sc)
420{
421 LIST_HEAD(ret_pages);
422 struct pagevec freed_pvec;
423 int pgactivate = 0;
424 int reclaimed = 0;
425
426 cond_resched();
427
428 pagevec_init(&freed_pvec, 1);
429 while (!list_empty(page_list)) {
430 struct address_space *mapping;
431 struct page *page;
432 int may_enter_fs;
433 int referenced;
434
435 cond_resched();
436
437 page = lru_to_page(page_list);
438 list_del(&page->lru);
439
440 if (TestSetPageLocked(page))
441 goto keep;
442
443 BUG_ON(PageActive(page));
444
445 sc->nr_scanned++;
446 /* Double the slab pressure for mapped and swapcache pages */
447 if (page_mapped(page) || PageSwapCache(page))
448 sc->nr_scanned++;
449
450 if (PageWriteback(page))
451 goto keep_locked;
452
f7b7fd8f 453 referenced = page_referenced(page, 1);
1da177e4
LT
454 /* In active use or really unfreeable? Activate it. */
455 if (referenced && page_mapping_inuse(page))
456 goto activate_locked;
457
458#ifdef CONFIG_SWAP
459 /*
460 * Anonymous process memory has backing store?
461 * Try to allocate it some swap space here.
462 */
c340010e 463 if (PageAnon(page) && !PageSwapCache(page)) {
f1fd1067
CL
464 if (!sc->may_swap)
465 goto keep_locked;
1480a540 466 if (!add_to_swap(page, GFP_ATOMIC))
1da177e4
LT
467 goto activate_locked;
468 }
469#endif /* CONFIG_SWAP */
470
471 mapping = page_mapping(page);
472 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
473 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
474
475 /*
476 * The page is mapped into the page tables of one or more
477 * processes. Try to unmap it here.
478 */
479 if (page_mapped(page) && mapping) {
aa3f18b3
CL
480 /*
481 * No unmapping if we do not swap
482 */
483 if (!sc->may_swap)
484 goto keep_locked;
485
a48d07af 486 switch (try_to_unmap(page, 0)) {
1da177e4
LT
487 case SWAP_FAIL:
488 goto activate_locked;
489 case SWAP_AGAIN:
490 goto keep_locked;
491 case SWAP_SUCCESS:
492 ; /* try to free the page below */
493 }
494 }
495
496 if (PageDirty(page)) {
497 if (referenced)
498 goto keep_locked;
499 if (!may_enter_fs)
500 goto keep_locked;
52a8363e 501 if (!sc->may_writepage)
1da177e4
LT
502 goto keep_locked;
503
504 /* Page is dirty, try to write it out here */
505 switch(pageout(page, mapping)) {
506 case PAGE_KEEP:
507 goto keep_locked;
508 case PAGE_ACTIVATE:
509 goto activate_locked;
510 case PAGE_SUCCESS:
511 if (PageWriteback(page) || PageDirty(page))
512 goto keep;
513 /*
514 * A synchronous write - probably a ramdisk. Go
515 * ahead and try to reclaim the page.
516 */
517 if (TestSetPageLocked(page))
518 goto keep;
519 if (PageDirty(page) || PageWriteback(page))
520 goto keep_locked;
521 mapping = page_mapping(page);
522 case PAGE_CLEAN:
523 ; /* try to free the page below */
524 }
525 }
526
527 /*
528 * If the page has buffers, try to free the buffer mappings
529 * associated with this page. If we succeed we try to free
530 * the page as well.
531 *
532 * We do this even if the page is PageDirty().
533 * try_to_release_page() does not perform I/O, but it is
534 * possible for a page to have PageDirty set, but it is actually
535 * clean (all its buffers are clean). This happens if the
536 * buffers were written out directly, with submit_bh(). ext3
537 * will do this, as well as the blockdev mapping.
538 * try_to_release_page() will discover that cleanness and will
539 * drop the buffers and mark the page clean - it can be freed.
540 *
541 * Rarely, pages can have buffers and no ->mapping. These are
542 * the pages which were not successfully invalidated in
543 * truncate_complete_page(). We try to drop those buffers here
544 * and if that worked, and the page is no longer mapped into
545 * process address space (page_count == 1) it can be freed.
546 * Otherwise, leave the page on the LRU so it is swappable.
547 */
548 if (PagePrivate(page)) {
549 if (!try_to_release_page(page, sc->gfp_mask))
550 goto activate_locked;
551 if (!mapping && page_count(page) == 1)
552 goto free_it;
553 }
554
49d2e9cc
CL
555 if (!remove_mapping(mapping, page))
556 goto keep_locked;
1da177e4
LT
557
558free_it:
559 unlock_page(page);
560 reclaimed++;
561 if (!pagevec_add(&freed_pvec, page))
562 __pagevec_release_nonlru(&freed_pvec);
563 continue;
564
565activate_locked:
566 SetPageActive(page);
567 pgactivate++;
568keep_locked:
569 unlock_page(page);
570keep:
571 list_add(&page->lru, &ret_pages);
572 BUG_ON(PageLRU(page));
573 }
574 list_splice(&ret_pages, page_list);
575 if (pagevec_count(&freed_pvec))
576 __pagevec_release_nonlru(&freed_pvec);
577 mod_page_state(pgactivate, pgactivate);
578 sc->nr_reclaimed += reclaimed;
579 return reclaimed;
580}
581
7cbe34cf 582#ifdef CONFIG_MIGRATION
8419c318
CL
583static inline void move_to_lru(struct page *page)
584{
585 list_del(&page->lru);
586 if (PageActive(page)) {
587 /*
588 * lru_cache_add_active checks that
589 * the PG_active bit is off.
590 */
591 ClearPageActive(page);
592 lru_cache_add_active(page);
593 } else {
594 lru_cache_add(page);
595 }
596 put_page(page);
597}
598
599/*
053837fc 600 * Add isolated pages on the list back to the LRU.
8419c318
CL
601 *
602 * returns the number of pages put back.
603 */
604int putback_lru_pages(struct list_head *l)
605{
606 struct page *page;
607 struct page *page2;
608 int count = 0;
609
610 list_for_each_entry_safe(page, page2, l, lru) {
611 move_to_lru(page);
612 count++;
613 }
614 return count;
615}
616
49d2e9cc
CL
617/*
618 * swapout a single page
619 * page is locked upon entry, unlocked on exit
49d2e9cc
CL
620 */
621static int swap_page(struct page *page)
622{
623 struct address_space *mapping = page_mapping(page);
624
625 if (page_mapped(page) && mapping)
a48d07af 626 if (try_to_unmap(page, 0) != SWAP_SUCCESS)
49d2e9cc
CL
627 goto unlock_retry;
628
629 if (PageDirty(page)) {
630 /* Page is dirty, try to write it out here */
631 switch(pageout(page, mapping)) {
632 case PAGE_KEEP:
633 case PAGE_ACTIVATE:
634 goto unlock_retry;
635
636 case PAGE_SUCCESS:
637 goto retry;
638
639 case PAGE_CLEAN:
640 ; /* try to free the page below */
641 }
642 }
643
644 if (PagePrivate(page)) {
645 if (!try_to_release_page(page, GFP_KERNEL) ||
646 (!mapping && page_count(page) == 1))
647 goto unlock_retry;
648 }
649
650 if (remove_mapping(mapping, page)) {
651 /* Success */
652 unlock_page(page);
653 return 0;
654 }
655
656unlock_retry:
657 unlock_page(page);
658
659retry:
d0d96328 660 return -EAGAIN;
49d2e9cc 661}
a48d07af
CL
662
663/*
664 * Page migration was first developed in the context of the memory hotplug
665 * project. The main authors of the migration code are:
666 *
667 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
668 * Hirokazu Takahashi <taka@valinux.co.jp>
669 * Dave Hansen <haveblue@us.ibm.com>
670 * Christoph Lameter <clameter@sgi.com>
671 */
672
673/*
674 * Remove references for a page and establish the new page with the correct
675 * basic settings to be able to stop accesses to the page.
676 */
677static int migrate_page_remove_references(struct page *newpage,
678 struct page *page, int nr_refs)
679{
680 struct address_space *mapping = page_mapping(page);
681 struct page **radix_pointer;
682
683 /*
684 * Avoid doing any of the following work if the page count
685 * indicates that the page is in use or truncate has removed
686 * the page.
687 */
688 if (!mapping || page_mapcount(page) + nr_refs != page_count(page))
689 return 1;
690
691 /*
692 * Establish swap ptes for anonymous pages or destroy pte
693 * maps for files.
694 *
695 * In order to reestablish file backed mappings the fault handlers
696 * will take the radix tree_lock which may then be used to stop
697 * processses from accessing this page until the new page is ready.
698 *
699 * A process accessing via a swap pte (an anonymous page) will take a
700 * page_lock on the old page which will block the process until the
701 * migration attempt is complete. At that time the PageSwapCache bit
702 * will be examined. If the page was migrated then the PageSwapCache
703 * bit will be clear and the operation to retrieve the page will be
704 * retried which will find the new page in the radix tree. Then a new
705 * direct mapping may be generated based on the radix tree contents.
706 *
707 * If the page was not migrated then the PageSwapCache bit
708 * is still set and the operation may continue.
709 */
710 try_to_unmap(page, 1);
711
712 /*
713 * Give up if we were unable to remove all mappings.
714 */
715 if (page_mapcount(page))
716 return 1;
717
718 write_lock_irq(&mapping->tree_lock);
719
720 radix_pointer = (struct page **)radix_tree_lookup_slot(
721 &mapping->page_tree,
722 page_index(page));
723
724 if (!page_mapping(page) || page_count(page) != nr_refs ||
725 *radix_pointer != page) {
726 write_unlock_irq(&mapping->tree_lock);
727 return 1;
728 }
729
730 /*
731 * Now we know that no one else is looking at the page.
732 *
733 * Certain minimal information about a page must be available
734 * in order for other subsystems to properly handle the page if they
735 * find it through the radix tree update before we are finished
736 * copying the page.
737 */
738 get_page(newpage);
739 newpage->index = page->index;
740 newpage->mapping = page->mapping;
741 if (PageSwapCache(page)) {
742 SetPageSwapCache(newpage);
743 set_page_private(newpage, page_private(page));
744 }
745
746 *radix_pointer = newpage;
747 __put_page(page);
748 write_unlock_irq(&mapping->tree_lock);
749
750 return 0;
751}
752
753/*
754 * Copy the page to its new location
755 */
756void migrate_page_copy(struct page *newpage, struct page *page)
757{
758 copy_highpage(newpage, page);
759
760 if (PageError(page))
761 SetPageError(newpage);
762 if (PageReferenced(page))
763 SetPageReferenced(newpage);
764 if (PageUptodate(page))
765 SetPageUptodate(newpage);
766 if (PageActive(page))
767 SetPageActive(newpage);
768 if (PageChecked(page))
769 SetPageChecked(newpage);
770 if (PageMappedToDisk(page))
771 SetPageMappedToDisk(newpage);
772
773 if (PageDirty(page)) {
774 clear_page_dirty_for_io(page);
775 set_page_dirty(newpage);
776 }
777
778 ClearPageSwapCache(page);
779 ClearPageActive(page);
780 ClearPagePrivate(page);
781 set_page_private(page, 0);
782 page->mapping = NULL;
783
784 /*
785 * If any waiters have accumulated on the new page then
786 * wake them up.
787 */
788 if (PageWriteback(newpage))
789 end_page_writeback(newpage);
790}
791
792/*
793 * Common logic to directly migrate a single page suitable for
794 * pages that do not use PagePrivate.
795 *
796 * Pages are locked upon entry and exit.
797 */
798int migrate_page(struct page *newpage, struct page *page)
799{
800 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
801
802 if (migrate_page_remove_references(newpage, page, 2))
803 return -EAGAIN;
804
805 migrate_page_copy(newpage, page);
806
a3351e52
CL
807 /*
808 * Remove auxiliary swap entries and replace
809 * them with real ptes.
810 *
811 * Note that a real pte entry will allow processes that are not
812 * waiting on the page lock to use the new page via the page tables
813 * before the new page is unlocked.
814 */
815 remove_from_swap(newpage);
a48d07af
CL
816 return 0;
817}
818
49d2e9cc
CL
819/*
820 * migrate_pages
821 *
822 * Two lists are passed to this function. The first list
823 * contains the pages isolated from the LRU to be migrated.
824 * The second list contains new pages that the pages isolated
825 * can be moved to. If the second list is NULL then all
826 * pages are swapped out.
827 *
828 * The function returns after 10 attempts or if no pages
829 * are movable anymore because t has become empty
830 * or no retryable pages exist anymore.
831 *
d0d96328 832 * Return: Number of pages not migrated when "to" ran empty.
49d2e9cc 833 */
d4984711
CL
834int migrate_pages(struct list_head *from, struct list_head *to,
835 struct list_head *moved, struct list_head *failed)
49d2e9cc
CL
836{
837 int retry;
49d2e9cc
CL
838 int nr_failed = 0;
839 int pass = 0;
840 struct page *page;
841 struct page *page2;
842 int swapwrite = current->flags & PF_SWAPWRITE;
d0d96328 843 int rc;
49d2e9cc
CL
844
845 if (!swapwrite)
846 current->flags |= PF_SWAPWRITE;
847
848redo:
849 retry = 0;
850
d4984711 851 list_for_each_entry_safe(page, page2, from, lru) {
a48d07af
CL
852 struct page *newpage = NULL;
853 struct address_space *mapping;
854
49d2e9cc
CL
855 cond_resched();
856
d0d96328
CL
857 rc = 0;
858 if (page_count(page) == 1)
ee27497d 859 /* page was freed from under us. So we are done. */
d0d96328
CL
860 goto next;
861
a48d07af
CL
862 if (to && list_empty(to))
863 break;
864
49d2e9cc
CL
865 /*
866 * Skip locked pages during the first two passes to give the
7cbe34cf
CL
867 * functions holding the lock time to release the page. Later we
868 * use lock_page() to have a higher chance of acquiring the
869 * lock.
49d2e9cc 870 */
d0d96328 871 rc = -EAGAIN;
49d2e9cc
CL
872 if (pass > 2)
873 lock_page(page);
874 else
875 if (TestSetPageLocked(page))
d0d96328 876 goto next;
49d2e9cc
CL
877
878 /*
879 * Only wait on writeback if we have already done a pass where
880 * we we may have triggered writeouts for lots of pages.
881 */
7cbe34cf 882 if (pass > 0) {
49d2e9cc 883 wait_on_page_writeback(page);
7cbe34cf 884 } else {
d0d96328
CL
885 if (PageWriteback(page))
886 goto unlock_page;
7cbe34cf 887 }
49d2e9cc 888
d0d96328
CL
889 /*
890 * Anonymous pages must have swap cache references otherwise
891 * the information contained in the page maps cannot be
892 * preserved.
893 */
49d2e9cc 894 if (PageAnon(page) && !PageSwapCache(page)) {
1480a540 895 if (!add_to_swap(page, GFP_KERNEL)) {
d0d96328
CL
896 rc = -ENOMEM;
897 goto unlock_page;
49d2e9cc
CL
898 }
899 }
49d2e9cc 900
a48d07af
CL
901 if (!to) {
902 rc = swap_page(page);
903 goto next;
904 }
905
906 newpage = lru_to_page(to);
907 lock_page(newpage);
908
49d2e9cc 909 /*
a48d07af 910 * Pages are properly locked and writeback is complete.
49d2e9cc
CL
911 * Try to migrate the page.
912 */
a48d07af
CL
913 mapping = page_mapping(page);
914 if (!mapping)
915 goto unlock_both;
916
917 /*
918 * Trigger writeout if page is dirty
919 */
920 if (PageDirty(page)) {
921 switch (pageout(page, mapping)) {
922 case PAGE_KEEP:
923 case PAGE_ACTIVATE:
924 goto unlock_both;
925
926 case PAGE_SUCCESS:
927 unlock_page(newpage);
928 goto next;
929
930 case PAGE_CLEAN:
931 ; /* try to migrate the page below */
932 }
933 }
934 /*
935 * If we have no buffer or can release the buffer
936 * then do a simple migration.
937 */
938 if (!page_has_buffers(page) ||
939 try_to_release_page(page, GFP_KERNEL)) {
940 rc = migrate_page(newpage, page);
941 goto unlock_both;
942 }
943
944 /*
945 * On early passes with mapped pages simply
946 * retry. There may be a lock held for some
947 * buffers that may go away. Later
948 * swap them out.
949 */
950 if (pass > 4) {
951 unlock_page(newpage);
952 newpage = NULL;
953 rc = swap_page(page);
954 goto next;
955 }
956
957unlock_both:
958 unlock_page(newpage);
d0d96328
CL
959
960unlock_page:
961 unlock_page(page);
962
963next:
964 if (rc == -EAGAIN) {
965 retry++;
966 } else if (rc) {
967 /* Permanent failure */
968 list_move(&page->lru, failed);
969 nr_failed++;
970 } else {
a48d07af
CL
971 if (newpage) {
972 /* Successful migration. Return page to LRU */
973 move_to_lru(newpage);
974 }
d4984711 975 list_move(&page->lru, moved);
d4984711 976 }
49d2e9cc
CL
977 }
978 if (retry && pass++ < 10)
979 goto redo;
980
981 if (!swapwrite)
982 current->flags &= ~PF_SWAPWRITE;
983
49d2e9cc
CL
984 return nr_failed + retry;
985}
8419c318 986
8419c318
CL
987/*
988 * Isolate one page from the LRU lists and put it on the
053837fc 989 * indicated list with elevated refcount.
8419c318
CL
990 *
991 * Result:
992 * 0 = page not on LRU list
993 * 1 = page removed from LRU list and added to the specified list.
8419c318
CL
994 */
995int isolate_lru_page(struct page *page)
996{
053837fc 997 int ret = 0;
8419c318 998
053837fc
NP
999 if (PageLRU(page)) {
1000 struct zone *zone = page_zone(page);
1001 spin_lock_irq(&zone->lru_lock);
1002 if (TestClearPageLRU(page)) {
1003 ret = 1;
1004 get_page(page);
1005 if (PageActive(page))
1006 del_page_from_active_list(zone, page);
1007 else
1008 del_page_from_inactive_list(zone, page);
1009 }
1010 spin_unlock_irq(&zone->lru_lock);
8419c318 1011 }
053837fc
NP
1012
1013 return ret;
8419c318 1014}
7cbe34cf 1015#endif
49d2e9cc 1016
1da177e4
LT
1017/*
1018 * zone->lru_lock is heavily contended. Some of the functions that
1019 * shrink the lists perform better by taking out a batch of pages
1020 * and working on them outside the LRU lock.
1021 *
1022 * For pagecache intensive workloads, this function is the hottest
1023 * spot in the kernel (apart from copy_*_user functions).
1024 *
1025 * Appropriate locks must be held before calling this function.
1026 *
1027 * @nr_to_scan: The number of pages to look through on the list.
1028 * @src: The LRU list to pull pages off.
1029 * @dst: The temp list to put pages on to.
1030 * @scanned: The number of pages that were scanned.
1031 *
1032 * returns how many pages were moved onto *@dst.
1033 */
1034static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
1035 struct list_head *dst, int *scanned)
1036{
1037 int nr_taken = 0;
1038 struct page *page;
1039 int scan = 0;
1040
1041 while (scan++ < nr_to_scan && !list_empty(src)) {
1042 page = lru_to_page(src);
1043 prefetchw_prev_lru_page(page, src, flags);
1044
053837fc 1045 if (!TestClearPageLRU(page))
21eac81f 1046 BUG();
053837fc
NP
1047 list_del(&page->lru);
1048 if (get_page_testone(page)) {
1049 /*
1050 * It is being freed elsewhere
1051 */
1052 __put_page(page);
1053 SetPageLRU(page);
1054 list_add(&page->lru, src);
1055 continue;
1056 } else {
1057 list_add(&page->lru, dst);
1058 nr_taken++;
1da177e4
LT
1059 }
1060 }
1061
1062 *scanned = scan;
1063 return nr_taken;
1064}
1065
1066/*
1067 * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
1068 */
1069static void shrink_cache(struct zone *zone, struct scan_control *sc)
1070{
1071 LIST_HEAD(page_list);
1072 struct pagevec pvec;
1073 int max_scan = sc->nr_to_scan;
1074
1075 pagevec_init(&pvec, 1);
1076
1077 lru_add_drain();
1078 spin_lock_irq(&zone->lru_lock);
1079 while (max_scan > 0) {
1080 struct page *page;
1081 int nr_taken;
1082 int nr_scan;
1083 int nr_freed;
1084
1085 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
1086 &zone->inactive_list,
1087 &page_list, &nr_scan);
1088 zone->nr_inactive -= nr_taken;
1089 zone->pages_scanned += nr_scan;
1090 spin_unlock_irq(&zone->lru_lock);
1091
1092 if (nr_taken == 0)
1093 goto done;
1094
1095 max_scan -= nr_scan;
1da177e4 1096 nr_freed = shrink_list(&page_list, sc);
1da177e4 1097
a74609fa
NP
1098 local_irq_disable();
1099 if (current_is_kswapd()) {
1100 __mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
1101 __mod_page_state(kswapd_steal, nr_freed);
1102 } else
1103 __mod_page_state_zone(zone, pgscan_direct, nr_scan);
1104 __mod_page_state_zone(zone, pgsteal, nr_freed);
1105
1106 spin_lock(&zone->lru_lock);
1da177e4
LT
1107 /*
1108 * Put back any unfreeable pages.
1109 */
1110 while (!list_empty(&page_list)) {
1111 page = lru_to_page(&page_list);
1112 if (TestSetPageLRU(page))
1113 BUG();
1114 list_del(&page->lru);
1115 if (PageActive(page))
1116 add_page_to_active_list(zone, page);
1117 else
1118 add_page_to_inactive_list(zone, page);
1119 if (!pagevec_add(&pvec, page)) {
1120 spin_unlock_irq(&zone->lru_lock);
1121 __pagevec_release(&pvec);
1122 spin_lock_irq(&zone->lru_lock);
1123 }
1124 }
1125 }
1126 spin_unlock_irq(&zone->lru_lock);
1127done:
1128 pagevec_release(&pvec);
1129}
1130
1131/*
1132 * This moves pages from the active list to the inactive list.
1133 *
1134 * We move them the other way if the page is referenced by one or more
1135 * processes, from rmap.
1136 *
1137 * If the pages are mostly unmapped, the processing is fast and it is
1138 * appropriate to hold zone->lru_lock across the whole operation. But if
1139 * the pages are mapped, the processing is slow (page_referenced()) so we
1140 * should drop zone->lru_lock around each page. It's impossible to balance
1141 * this, so instead we remove the pages from the LRU while processing them.
1142 * It is safe to rely on PG_active against the non-LRU pages in here because
1143 * nobody will play with that bit on a non-LRU page.
1144 *
1145 * The downside is that we have to touch page->_count against each page.
1146 * But we had to alter page->flags anyway.
1147 */
1148static void
1149refill_inactive_zone(struct zone *zone, struct scan_control *sc)
1150{
1151 int pgmoved;
1152 int pgdeactivate = 0;
1153 int pgscanned;
1154 int nr_pages = sc->nr_to_scan;
1155 LIST_HEAD(l_hold); /* The pages which were snipped off */
1156 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
1157 LIST_HEAD(l_active); /* Pages to go onto the active_list */
1158 struct page *page;
1159 struct pagevec pvec;
1160 int reclaim_mapped = 0;
1161 long mapped_ratio;
1162 long distress;
1163 long swap_tendency;
1164
1165 lru_add_drain();
1166 spin_lock_irq(&zone->lru_lock);
1167 pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
1168 &l_hold, &pgscanned);
1169 zone->pages_scanned += pgscanned;
1170 zone->nr_active -= pgmoved;
1171 spin_unlock_irq(&zone->lru_lock);
1172
1173 /*
1174 * `distress' is a measure of how much trouble we're having reclaiming
1175 * pages. 0 -> no problems. 100 -> great trouble.
1176 */
1177 distress = 100 >> zone->prev_priority;
1178
1179 /*
1180 * The point of this algorithm is to decide when to start reclaiming
1181 * mapped memory instead of just pagecache. Work out how much memory
1182 * is mapped.
1183 */
1184 mapped_ratio = (sc->nr_mapped * 100) / total_memory;
1185
1186 /*
1187 * Now decide how much we really want to unmap some pages. The mapped
1188 * ratio is downgraded - just because there's a lot of mapped memory
1189 * doesn't necessarily mean that page reclaim isn't succeeding.
1190 *
1191 * The distress ratio is important - we don't want to start going oom.
1192 *
1193 * A 100% value of vm_swappiness overrides this algorithm altogether.
1194 */
1195 swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
1196
1197 /*
1198 * Now use this metric to decide whether to start moving mapped memory
1199 * onto the inactive list.
1200 */
1201 if (swap_tendency >= 100)
1202 reclaim_mapped = 1;
1203
1204 while (!list_empty(&l_hold)) {
1205 cond_resched();
1206 page = lru_to_page(&l_hold);
1207 list_del(&page->lru);
1208 if (page_mapped(page)) {
1209 if (!reclaim_mapped ||
1210 (total_swap_pages == 0 && PageAnon(page)) ||
f7b7fd8f 1211 page_referenced(page, 0)) {
1da177e4
LT
1212 list_add(&page->lru, &l_active);
1213 continue;
1214 }
1215 }
1216 list_add(&page->lru, &l_inactive);
1217 }
1218
1219 pagevec_init(&pvec, 1);
1220 pgmoved = 0;
1221 spin_lock_irq(&zone->lru_lock);
1222 while (!list_empty(&l_inactive)) {
1223 page = lru_to_page(&l_inactive);
1224 prefetchw_prev_lru_page(page, &l_inactive, flags);
1225 if (TestSetPageLRU(page))
1226 BUG();
1227 if (!TestClearPageActive(page))
1228 BUG();
1229 list_move(&page->lru, &zone->inactive_list);
1230 pgmoved++;
1231 if (!pagevec_add(&pvec, page)) {
1232 zone->nr_inactive += pgmoved;
1233 spin_unlock_irq(&zone->lru_lock);
1234 pgdeactivate += pgmoved;
1235 pgmoved = 0;
1236 if (buffer_heads_over_limit)
1237 pagevec_strip(&pvec);
1238 __pagevec_release(&pvec);
1239 spin_lock_irq(&zone->lru_lock);
1240 }
1241 }
1242 zone->nr_inactive += pgmoved;
1243 pgdeactivate += pgmoved;
1244 if (buffer_heads_over_limit) {
1245 spin_unlock_irq(&zone->lru_lock);
1246 pagevec_strip(&pvec);
1247 spin_lock_irq(&zone->lru_lock);
1248 }
1249
1250 pgmoved = 0;
1251 while (!list_empty(&l_active)) {
1252 page = lru_to_page(&l_active);
1253 prefetchw_prev_lru_page(page, &l_active, flags);
1254 if (TestSetPageLRU(page))
1255 BUG();
1256 BUG_ON(!PageActive(page));
1257 list_move(&page->lru, &zone->active_list);
1258 pgmoved++;
1259 if (!pagevec_add(&pvec, page)) {
1260 zone->nr_active += pgmoved;
1261 pgmoved = 0;
1262 spin_unlock_irq(&zone->lru_lock);
1263 __pagevec_release(&pvec);
1264 spin_lock_irq(&zone->lru_lock);
1265 }
1266 }
1267 zone->nr_active += pgmoved;
a74609fa
NP
1268 spin_unlock(&zone->lru_lock);
1269
1270 __mod_page_state_zone(zone, pgrefill, pgscanned);
1271 __mod_page_state(pgdeactivate, pgdeactivate);
1272 local_irq_enable();
1da177e4 1273
a74609fa 1274 pagevec_release(&pvec);
1da177e4
LT
1275}
1276
1277/*
1278 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1279 */
1280static void
1281shrink_zone(struct zone *zone, struct scan_control *sc)
1282{
1283 unsigned long nr_active;
1284 unsigned long nr_inactive;
1285
53e9a615
MH
1286 atomic_inc(&zone->reclaim_in_progress);
1287
1da177e4
LT
1288 /*
1289 * Add one to `nr_to_scan' just to make sure that the kernel will
1290 * slowly sift through the active list.
1291 */
1292 zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
1293 nr_active = zone->nr_scan_active;
1294 if (nr_active >= sc->swap_cluster_max)
1295 zone->nr_scan_active = 0;
1296 else
1297 nr_active = 0;
1298
1299 zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
1300 nr_inactive = zone->nr_scan_inactive;
1301 if (nr_inactive >= sc->swap_cluster_max)
1302 zone->nr_scan_inactive = 0;
1303 else
1304 nr_inactive = 0;
1305
1da177e4
LT
1306 while (nr_active || nr_inactive) {
1307 if (nr_active) {
1308 sc->nr_to_scan = min(nr_active,
1309 (unsigned long)sc->swap_cluster_max);
1310 nr_active -= sc->nr_to_scan;
1311 refill_inactive_zone(zone, sc);
1312 }
1313
1314 if (nr_inactive) {
1315 sc->nr_to_scan = min(nr_inactive,
1316 (unsigned long)sc->swap_cluster_max);
1317 nr_inactive -= sc->nr_to_scan;
1318 shrink_cache(zone, sc);
1da177e4
LT
1319 }
1320 }
1321
1322 throttle_vm_writeout();
53e9a615
MH
1323
1324 atomic_dec(&zone->reclaim_in_progress);
1da177e4
LT
1325}
1326
1327/*
1328 * This is the direct reclaim path, for page-allocating processes. We only
1329 * try to reclaim pages from zones which will satisfy the caller's allocation
1330 * request.
1331 *
1332 * We reclaim from a zone even if that zone is over pages_high. Because:
1333 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1334 * allocation or
1335 * b) The zones may be over pages_high but they must go *over* pages_high to
1336 * satisfy the `incremental min' zone defense algorithm.
1337 *
1338 * Returns the number of reclaimed pages.
1339 *
1340 * If a zone is deemed to be full of pinned pages then just give it a light
1341 * scan then give up on it.
1342 */
1343static void
1344shrink_caches(struct zone **zones, struct scan_control *sc)
1345{
1346 int i;
1347
1348 for (i = 0; zones[i] != NULL; i++) {
1349 struct zone *zone = zones[i];
1350
f3fe6512 1351 if (!populated_zone(zone))
1da177e4
LT
1352 continue;
1353
9bf2229f 1354 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1da177e4
LT
1355 continue;
1356
1357 zone->temp_priority = sc->priority;
1358 if (zone->prev_priority > sc->priority)
1359 zone->prev_priority = sc->priority;
1360
1361 if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
1362 continue; /* Let kswapd poll it */
1363
1364 shrink_zone(zone, sc);
1365 }
1366}
1367
1368/*
1369 * This is the main entry point to direct page reclaim.
1370 *
1371 * If a full scan of the inactive list fails to free enough memory then we
1372 * are "out of memory" and something needs to be killed.
1373 *
1374 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1375 * high - the zone may be full of dirty or under-writeback pages, which this
1376 * caller can't do much about. We kick pdflush and take explicit naps in the
1377 * hope that some of these pages can be written. But if the allocating task
1378 * holds filesystem locks which prevent writeout this might not work, and the
1379 * allocation attempt will fail.
1380 */
6daa0e28 1381int try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
1da177e4
LT
1382{
1383 int priority;
1384 int ret = 0;
1385 int total_scanned = 0, total_reclaimed = 0;
1386 struct reclaim_state *reclaim_state = current->reclaim_state;
1387 struct scan_control sc;
1388 unsigned long lru_pages = 0;
1389 int i;
1390
1391 sc.gfp_mask = gfp_mask;
52a8363e 1392 sc.may_writepage = !laptop_mode;
f1fd1067 1393 sc.may_swap = 1;
1da177e4
LT
1394
1395 inc_page_state(allocstall);
1396
1397 for (i = 0; zones[i] != NULL; i++) {
1398 struct zone *zone = zones[i];
1399
9bf2229f 1400 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1da177e4
LT
1401 continue;
1402
1403 zone->temp_priority = DEF_PRIORITY;
1404 lru_pages += zone->nr_active + zone->nr_inactive;
1405 }
1406
1407 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1408 sc.nr_mapped = read_page_state(nr_mapped);
1409 sc.nr_scanned = 0;
1410 sc.nr_reclaimed = 0;
1411 sc.priority = priority;
1412 sc.swap_cluster_max = SWAP_CLUSTER_MAX;
f7b7fd8f
RR
1413 if (!priority)
1414 disable_swap_token();
1da177e4
LT
1415 shrink_caches(zones, &sc);
1416 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1417 if (reclaim_state) {
1418 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1419 reclaim_state->reclaimed_slab = 0;
1420 }
1421 total_scanned += sc.nr_scanned;
1422 total_reclaimed += sc.nr_reclaimed;
1423 if (total_reclaimed >= sc.swap_cluster_max) {
1424 ret = 1;
1425 goto out;
1426 }
1427
1428 /*
1429 * Try to write back as many pages as we just scanned. This
1430 * tends to cause slow streaming writers to write data to the
1431 * disk smoothly, at the dirtying rate, which is nice. But
1432 * that's undesirable in laptop mode, where we *want* lumpy
1433 * writeout. So in laptop mode, write out the whole world.
1434 */
1435 if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
687a21ce 1436 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1da177e4
LT
1437 sc.may_writepage = 1;
1438 }
1439
1440 /* Take a nap, wait for some writeback to complete */
1441 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1442 blk_congestion_wait(WRITE, HZ/10);
1443 }
1444out:
1445 for (i = 0; zones[i] != 0; i++) {
1446 struct zone *zone = zones[i];
1447
9bf2229f 1448 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1da177e4
LT
1449 continue;
1450
1451 zone->prev_priority = zone->temp_priority;
1452 }
1453 return ret;
1454}
1455
1456/*
1457 * For kswapd, balance_pgdat() will work across all this node's zones until
1458 * they are all at pages_high.
1459 *
1460 * If `nr_pages' is non-zero then it is the number of pages which are to be
1461 * reclaimed, regardless of the zone occupancies. This is a software suspend
1462 * special.
1463 *
1464 * Returns the number of pages which were actually freed.
1465 *
1466 * There is special handling here for zones which are full of pinned pages.
1467 * This can happen if the pages are all mlocked, or if they are all used by
1468 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1469 * What we do is to detect the case where all pages in the zone have been
1470 * scanned twice and there has been zero successful reclaim. Mark the zone as
1471 * dead and from now on, only perform a short scan. Basically we're polling
1472 * the zone for when the problem goes away.
1473 *
1474 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1475 * zones which have free_pages > pages_high, but once a zone is found to have
1476 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1477 * of the number of free pages in the lower zones. This interoperates with
1478 * the page allocator fallback scheme to ensure that aging of pages is balanced
1479 * across the zones.
1480 */
1481static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
1482{
1483 int to_free = nr_pages;
1484 int all_zones_ok;
1485 int priority;
1486 int i;
1487 int total_scanned, total_reclaimed;
1488 struct reclaim_state *reclaim_state = current->reclaim_state;
1489 struct scan_control sc;
1490
1491loop_again:
1492 total_scanned = 0;
1493 total_reclaimed = 0;
1494 sc.gfp_mask = GFP_KERNEL;
52a8363e 1495 sc.may_writepage = !laptop_mode;
f1fd1067 1496 sc.may_swap = 1;
1da177e4
LT
1497 sc.nr_mapped = read_page_state(nr_mapped);
1498
1499 inc_page_state(pageoutrun);
1500
1501 for (i = 0; i < pgdat->nr_zones; i++) {
1502 struct zone *zone = pgdat->node_zones + i;
1503
1504 zone->temp_priority = DEF_PRIORITY;
1505 }
1506
1507 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1508 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1509 unsigned long lru_pages = 0;
1510
f7b7fd8f
RR
1511 /* The swap token gets in the way of swapout... */
1512 if (!priority)
1513 disable_swap_token();
1514
1da177e4
LT
1515 all_zones_ok = 1;
1516
1517 if (nr_pages == 0) {
1518 /*
1519 * Scan in the highmem->dma direction for the highest
1520 * zone which needs scanning
1521 */
1522 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1523 struct zone *zone = pgdat->node_zones + i;
1524
f3fe6512 1525 if (!populated_zone(zone))
1da177e4
LT
1526 continue;
1527
1528 if (zone->all_unreclaimable &&
1529 priority != DEF_PRIORITY)
1530 continue;
1531
1532 if (!zone_watermark_ok(zone, order,
7fb1d9fc 1533 zone->pages_high, 0, 0)) {
1da177e4
LT
1534 end_zone = i;
1535 goto scan;
1536 }
1537 }
1538 goto out;
1539 } else {
1540 end_zone = pgdat->nr_zones - 1;
1541 }
1542scan:
1543 for (i = 0; i <= end_zone; i++) {
1544 struct zone *zone = pgdat->node_zones + i;
1545
1546 lru_pages += zone->nr_active + zone->nr_inactive;
1547 }
1548
1549 /*
1550 * Now scan the zone in the dma->highmem direction, stopping
1551 * at the last zone which needs scanning.
1552 *
1553 * We do this because the page allocator works in the opposite
1554 * direction. This prevents the page allocator from allocating
1555 * pages behind kswapd's direction of progress, which would
1556 * cause too much scanning of the lower zones.
1557 */
1558 for (i = 0; i <= end_zone; i++) {
1559 struct zone *zone = pgdat->node_zones + i;
b15e0905 1560 int nr_slab;
1da177e4 1561
f3fe6512 1562 if (!populated_zone(zone))
1da177e4
LT
1563 continue;
1564
1565 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1566 continue;
1567
1568 if (nr_pages == 0) { /* Not software suspend */
1569 if (!zone_watermark_ok(zone, order,
7fb1d9fc 1570 zone->pages_high, end_zone, 0))
1da177e4
LT
1571 all_zones_ok = 0;
1572 }
1573 zone->temp_priority = priority;
1574 if (zone->prev_priority > priority)
1575 zone->prev_priority = priority;
1576 sc.nr_scanned = 0;
1577 sc.nr_reclaimed = 0;
1578 sc.priority = priority;
1579 sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
1e7e5a90 1580 atomic_inc(&zone->reclaim_in_progress);
1da177e4 1581 shrink_zone(zone, &sc);
1e7e5a90 1582 atomic_dec(&zone->reclaim_in_progress);
1da177e4 1583 reclaim_state->reclaimed_slab = 0;
b15e0905 1584 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1585 lru_pages);
1da177e4
LT
1586 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1587 total_reclaimed += sc.nr_reclaimed;
1588 total_scanned += sc.nr_scanned;
1589 if (zone->all_unreclaimable)
1590 continue;
b15e0905 1591 if (nr_slab == 0 && zone->pages_scanned >=
1592 (zone->nr_active + zone->nr_inactive) * 4)
1da177e4
LT
1593 zone->all_unreclaimable = 1;
1594 /*
1595 * If we've done a decent amount of scanning and
1596 * the reclaim ratio is low, start doing writepage
1597 * even in laptop mode
1598 */
1599 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1600 total_scanned > total_reclaimed+total_reclaimed/2)
1601 sc.may_writepage = 1;
1602 }
1603 if (nr_pages && to_free > total_reclaimed)
1604 continue; /* swsusp: need to do more work */
1605 if (all_zones_ok)
1606 break; /* kswapd: all done */
1607 /*
1608 * OK, kswapd is getting into trouble. Take a nap, then take
1609 * another pass across the zones.
1610 */
1611 if (total_scanned && priority < DEF_PRIORITY - 2)
1612 blk_congestion_wait(WRITE, HZ/10);
1613
1614 /*
1615 * We do this so kswapd doesn't build up large priorities for
1616 * example when it is freeing in parallel with allocators. It
1617 * matches the direct reclaim path behaviour in terms of impact
1618 * on zone->*_priority.
1619 */
1620 if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
1621 break;
1622 }
1623out:
1624 for (i = 0; i < pgdat->nr_zones; i++) {
1625 struct zone *zone = pgdat->node_zones + i;
1626
1627 zone->prev_priority = zone->temp_priority;
1628 }
1629 if (!all_zones_ok) {
1630 cond_resched();
1631 goto loop_again;
1632 }
1633
1634 return total_reclaimed;
1635}
1636
1637/*
1638 * The background pageout daemon, started as a kernel thread
1639 * from the init process.
1640 *
1641 * This basically trickles out pages so that we have _some_
1642 * free memory available even if there is no other activity
1643 * that frees anything up. This is needed for things like routing
1644 * etc, where we otherwise might have all activity going on in
1645 * asynchronous contexts that cannot page things out.
1646 *
1647 * If there are applications that are active memory-allocators
1648 * (most normal use), this basically shouldn't matter.
1649 */
1650static int kswapd(void *p)
1651{
1652 unsigned long order;
1653 pg_data_t *pgdat = (pg_data_t*)p;
1654 struct task_struct *tsk = current;
1655 DEFINE_WAIT(wait);
1656 struct reclaim_state reclaim_state = {
1657 .reclaimed_slab = 0,
1658 };
1659 cpumask_t cpumask;
1660
1661 daemonize("kswapd%d", pgdat->node_id);
1662 cpumask = node_to_cpumask(pgdat->node_id);
1663 if (!cpus_empty(cpumask))
1664 set_cpus_allowed(tsk, cpumask);
1665 current->reclaim_state = &reclaim_state;
1666
1667 /*
1668 * Tell the memory management that we're a "memory allocator",
1669 * and that if we need more memory we should get access to it
1670 * regardless (see "__alloc_pages()"). "kswapd" should
1671 * never get caught in the normal page freeing logic.
1672 *
1673 * (Kswapd normally doesn't need memory anyway, but sometimes
1674 * you need a small amount of memory in order to be able to
1675 * page out something else, and this flag essentially protects
1676 * us from recursively trying to free more memory as we're
1677 * trying to free the first piece of memory in the first place).
1678 */
930d9152 1679 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1da177e4
LT
1680
1681 order = 0;
1682 for ( ; ; ) {
1683 unsigned long new_order;
3e1d1d28
CL
1684
1685 try_to_freeze();
1da177e4
LT
1686
1687 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1688 new_order = pgdat->kswapd_max_order;
1689 pgdat->kswapd_max_order = 0;
1690 if (order < new_order) {
1691 /*
1692 * Don't sleep if someone wants a larger 'order'
1693 * allocation
1694 */
1695 order = new_order;
1696 } else {
1697 schedule();
1698 order = pgdat->kswapd_max_order;
1699 }
1700 finish_wait(&pgdat->kswapd_wait, &wait);
1701
1702 balance_pgdat(pgdat, 0, order);
1703 }
1704 return 0;
1705}
1706
1707/*
1708 * A zone is low on free memory, so wake its kswapd task to service it.
1709 */
1710void wakeup_kswapd(struct zone *zone, int order)
1711{
1712 pg_data_t *pgdat;
1713
f3fe6512 1714 if (!populated_zone(zone))
1da177e4
LT
1715 return;
1716
1717 pgdat = zone->zone_pgdat;
7fb1d9fc 1718 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1da177e4
LT
1719 return;
1720 if (pgdat->kswapd_max_order < order)
1721 pgdat->kswapd_max_order = order;
9bf2229f 1722 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1da177e4 1723 return;
8d0986e2 1724 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 1725 return;
8d0986e2 1726 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
1727}
1728
1729#ifdef CONFIG_PM
1730/*
1731 * Try to free `nr_pages' of memory, system-wide. Returns the number of freed
1732 * pages.
1733 */
1734int shrink_all_memory(int nr_pages)
1735{
1736 pg_data_t *pgdat;
1737 int nr_to_free = nr_pages;
1738 int ret = 0;
1739 struct reclaim_state reclaim_state = {
1740 .reclaimed_slab = 0,
1741 };
1742
1743 current->reclaim_state = &reclaim_state;
1744 for_each_pgdat(pgdat) {
1745 int freed;
1746 freed = balance_pgdat(pgdat, nr_to_free, 0);
1747 ret += freed;
1748 nr_to_free -= freed;
1749 if (nr_to_free <= 0)
1750 break;
1751 }
1752 current->reclaim_state = NULL;
1753 return ret;
1754}
1755#endif
1756
1757#ifdef CONFIG_HOTPLUG_CPU
1758/* It's optimal to keep kswapds on the same CPUs as their memory, but
1759 not required for correctness. So if the last cpu in a node goes
1760 away, we get changed to run anywhere: as the first one comes back,
1761 restore their cpu bindings. */
1762static int __devinit cpu_callback(struct notifier_block *nfb,
1763 unsigned long action,
1764 void *hcpu)
1765{
1766 pg_data_t *pgdat;
1767 cpumask_t mask;
1768
1769 if (action == CPU_ONLINE) {
1770 for_each_pgdat(pgdat) {
1771 mask = node_to_cpumask(pgdat->node_id);
1772 if (any_online_cpu(mask) != NR_CPUS)
1773 /* One of our CPUs online: restore mask */
1774 set_cpus_allowed(pgdat->kswapd, mask);
1775 }
1776 }
1777 return NOTIFY_OK;
1778}
1779#endif /* CONFIG_HOTPLUG_CPU */
1780
1781static int __init kswapd_init(void)
1782{
1783 pg_data_t *pgdat;
1784 swap_setup();
1785 for_each_pgdat(pgdat)
1786 pgdat->kswapd
1787 = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1788 total_memory = nr_free_pagecache_pages();
1789 hotcpu_notifier(cpu_callback, 0);
1790 return 0;
1791}
1792
1793module_init(kswapd_init)
9eeff239
CL
1794
1795#ifdef CONFIG_NUMA
1796/*
1797 * Zone reclaim mode
1798 *
1799 * If non-zero call zone_reclaim when the number of free pages falls below
1800 * the watermarks.
1801 *
1802 * In the future we may add flags to the mode. However, the page allocator
1803 * should only have to check that zone_reclaim_mode != 0 before calling
1804 * zone_reclaim().
1805 */
1806int zone_reclaim_mode __read_mostly;
1807
1b2ffb78
CL
1808#define RECLAIM_OFF 0
1809#define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */
1810#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
1811#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2a16e3f4 1812#define RECLAIM_SLAB (1<<3) /* Do a global slab shrink if the zone is out of memory */
1b2ffb78 1813
9eeff239
CL
1814/*
1815 * Mininum time between zone reclaim scans
1816 */
2a11ff06 1817int zone_reclaim_interval __read_mostly = 30*HZ;
a92f7126
CL
1818
1819/*
1820 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1821 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1822 * a zone.
1823 */
1824#define ZONE_RECLAIM_PRIORITY 4
1825
9eeff239
CL
1826/*
1827 * Try to free up some pages from this zone through reclaim.
1828 */
1829int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1830{
89288623 1831 int nr_pages;
9eeff239
CL
1832 struct task_struct *p = current;
1833 struct reclaim_state reclaim_state;
89288623 1834 struct scan_control sc;
42c722d4
CL
1835 cpumask_t mask;
1836 int node_id;
89288623
CL
1837
1838 if (time_before(jiffies,
2a11ff06 1839 zone->last_unsuccessful_zone_reclaim + zone_reclaim_interval))
89288623 1840 return 0;
9eeff239
CL
1841
1842 if (!(gfp_mask & __GFP_WAIT) ||
9eeff239
CL
1843 zone->all_unreclaimable ||
1844 atomic_read(&zone->reclaim_in_progress) > 0)
1845 return 0;
1846
42c722d4
CL
1847 node_id = zone->zone_pgdat->node_id;
1848 mask = node_to_cpumask(node_id);
1849 if (!cpus_empty(mask) && node_id != numa_node_id())
1850 return 0;
1851
1b2ffb78
CL
1852 sc.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE);
1853 sc.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP);
89288623
CL
1854 sc.nr_scanned = 0;
1855 sc.nr_reclaimed = 0;
a92f7126 1856 sc.priority = ZONE_RECLAIM_PRIORITY + 1;
89288623
CL
1857 sc.nr_mapped = read_page_state(nr_mapped);
1858 sc.gfp_mask = gfp_mask;
9eeff239
CL
1859
1860 disable_swap_token();
1861
89288623 1862 nr_pages = 1 << order;
9eeff239
CL
1863 if (nr_pages > SWAP_CLUSTER_MAX)
1864 sc.swap_cluster_max = nr_pages;
1865 else
1866 sc.swap_cluster_max = SWAP_CLUSTER_MAX;
1867
1868 cond_resched();
1869 p->flags |= PF_MEMALLOC;
1870 reclaim_state.reclaimed_slab = 0;
1871 p->reclaim_state = &reclaim_state;
c84db23c 1872
a92f7126
CL
1873 /*
1874 * Free memory by calling shrink zone with increasing priorities
1875 * until we have enough memory freed.
1876 */
1877 do {
1878 sc.priority--;
1879 shrink_zone(zone, &sc);
1880
1881 } while (sc.nr_reclaimed < nr_pages && sc.priority > 0);
c84db23c 1882
2a16e3f4
CL
1883 if (sc.nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) {
1884 /*
1885 * shrink_slab does not currently allow us to determine
1886 * how many pages were freed in the zone. So we just
1887 * shake the slab and then go offnode for a single allocation.
1888 *
1889 * shrink_slab will free memory on all zones and may take
1890 * a long time.
1891 */
1892 shrink_slab(sc.nr_scanned, gfp_mask, order);
1893 sc.nr_reclaimed = 1; /* Avoid getting the off node timeout */
1894 }
1895
9eeff239
CL
1896 p->reclaim_state = NULL;
1897 current->flags &= ~PF_MEMALLOC;
1898
1899 if (sc.nr_reclaimed == 0)
1900 zone->last_unsuccessful_zone_reclaim = jiffies;
1901
c84db23c 1902 return sc.nr_reclaimed >= nr_pages;
9eeff239
CL
1903}
1904#endif
1905