]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/vmscan.c
mm: add link from struct lruvec to struct zone
[mirror_ubuntu-bionic-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
1da177e4
LT
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
3e7d3449 34#include <linux/compaction.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
929bea7c 43#include <linux/oom.h>
268bb0ce 44#include <linux/prefetch.h>
1da177e4
LT
45
46#include <asm/tlbflush.h>
47#include <asm/div64.h>
48
49#include <linux/swapops.h>
50
0f8053a5
NP
51#include "internal.h"
52
33906bc5
MG
53#define CREATE_TRACE_POINTS
54#include <trace/events/vmscan.h>
55
1da177e4 56struct scan_control {
1da177e4
LT
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
59
a79311c1
RR
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
62
22fba335
KM
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
7b51755c
KM
66 unsigned long hibernation_mode;
67
1da177e4 68 /* This context's GFP mask */
6daa0e28 69 gfp_t gfp_mask;
1da177e4
LT
70
71 int may_writepage;
72
a6dc60f8
JW
73 /* Can mapped pages be reclaimed? */
74 int may_unmap;
f1fd1067 75
2e2e4259
KM
76 /* Can pages be swapped as part of reclaim? */
77 int may_swap;
78
5ad333eb 79 int order;
66e1707b 80
9e3b2f8c
KK
81 /* Scan (total_size >> priority) pages at once */
82 int priority;
83
f16015fb
JW
84 /*
85 * The memory cgroup that hit its limit and as a result is the
86 * primary target of this reclaim invocation.
87 */
88 struct mem_cgroup *target_mem_cgroup;
66e1707b 89
327c0e96
KH
90 /*
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
93 */
94 nodemask_t *nodemask;
1da177e4
LT
95};
96
f16015fb
JW
97struct mem_cgroup_zone {
98 struct mem_cgroup *mem_cgroup;
99 struct zone *zone;
100};
101
1da177e4
LT
102#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
103
104#ifdef ARCH_HAS_PREFETCH
105#define prefetch_prev_lru_page(_page, _base, _field) \
106 do { \
107 if ((_page)->lru.prev != _base) { \
108 struct page *prev; \
109 \
110 prev = lru_to_page(&(_page->lru)); \
111 prefetch(&prev->_field); \
112 } \
113 } while (0)
114#else
115#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
116#endif
117
118#ifdef ARCH_HAS_PREFETCHW
119#define prefetchw_prev_lru_page(_page, _base, _field) \
120 do { \
121 if ((_page)->lru.prev != _base) { \
122 struct page *prev; \
123 \
124 prev = lru_to_page(&(_page->lru)); \
125 prefetchw(&prev->_field); \
126 } \
127 } while (0)
128#else
129#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
130#endif
131
132/*
133 * From 0 .. 100. Higher means more swappy.
134 */
135int vm_swappiness = 60;
bd1e22b8 136long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
137
138static LIST_HEAD(shrinker_list);
139static DECLARE_RWSEM(shrinker_rwsem);
140
00f0b825 141#ifdef CONFIG_CGROUP_MEM_RES_CTLR
89b5fae5
JW
142static bool global_reclaim(struct scan_control *sc)
143{
f16015fb 144 return !sc->target_mem_cgroup;
89b5fae5 145}
91a45470 146#else
89b5fae5
JW
147static bool global_reclaim(struct scan_control *sc)
148{
149 return true;
150}
91a45470
KH
151#endif
152
f16015fb 153static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
6e901571 154{
89abfab1 155 return &mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup)->reclaim_stat;
6e901571
KM
156}
157
f16015fb
JW
158static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
159 enum lru_list lru)
c9f299d9 160{
c3c787e8 161 if (!mem_cgroup_disabled())
f16015fb
JW
162 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
163 zone_to_nid(mz->zone),
164 zone_idx(mz->zone),
165 BIT(lru));
a3d8e054 166
f16015fb 167 return zone_page_state(mz->zone, NR_LRU_BASE + lru);
c9f299d9
KM
168}
169
170
1da177e4
LT
171/*
172 * Add a shrinker callback to be called from the vm
173 */
8e1f936b 174void register_shrinker(struct shrinker *shrinker)
1da177e4 175{
83aeeada 176 atomic_long_set(&shrinker->nr_in_batch, 0);
8e1f936b
RR
177 down_write(&shrinker_rwsem);
178 list_add_tail(&shrinker->list, &shrinker_list);
179 up_write(&shrinker_rwsem);
1da177e4 180}
8e1f936b 181EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
182
183/*
184 * Remove one
185 */
8e1f936b 186void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
187{
188 down_write(&shrinker_rwsem);
189 list_del(&shrinker->list);
190 up_write(&shrinker_rwsem);
1da177e4 191}
8e1f936b 192EXPORT_SYMBOL(unregister_shrinker);
1da177e4 193
1495f230
YH
194static inline int do_shrinker_shrink(struct shrinker *shrinker,
195 struct shrink_control *sc,
196 unsigned long nr_to_scan)
197{
198 sc->nr_to_scan = nr_to_scan;
199 return (*shrinker->shrink)(shrinker, sc);
200}
201
1da177e4
LT
202#define SHRINK_BATCH 128
203/*
204 * Call the shrink functions to age shrinkable caches
205 *
206 * Here we assume it costs one seek to replace a lru page and that it also
207 * takes a seek to recreate a cache object. With this in mind we age equal
208 * percentages of the lru and ageable caches. This should balance the seeks
209 * generated by these structures.
210 *
183ff22b 211 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
212 * slab to avoid swapping.
213 *
214 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
215 *
216 * `lru_pages' represents the number of on-LRU pages in all the zones which
217 * are eligible for the caller's allocation attempt. It is used for balancing
218 * slab reclaim versus page reclaim.
b15e0905 219 *
220 * Returns the number of slab objects which we shrunk.
1da177e4 221 */
a09ed5e0 222unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 223 unsigned long nr_pages_scanned,
a09ed5e0 224 unsigned long lru_pages)
1da177e4
LT
225{
226 struct shrinker *shrinker;
69e05944 227 unsigned long ret = 0;
1da177e4 228
1495f230
YH
229 if (nr_pages_scanned == 0)
230 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 231
f06590bd
MK
232 if (!down_read_trylock(&shrinker_rwsem)) {
233 /* Assume we'll be able to shrink next time */
234 ret = 1;
235 goto out;
236 }
1da177e4
LT
237
238 list_for_each_entry(shrinker, &shrinker_list, list) {
239 unsigned long long delta;
635697c6
KK
240 long total_scan;
241 long max_pass;
09576073 242 int shrink_ret = 0;
acf92b48
DC
243 long nr;
244 long new_nr;
e9299f50
DC
245 long batch_size = shrinker->batch ? shrinker->batch
246 : SHRINK_BATCH;
1da177e4 247
635697c6
KK
248 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
249 if (max_pass <= 0)
250 continue;
251
acf92b48
DC
252 /*
253 * copy the current shrinker scan count into a local variable
254 * and zero it so that other concurrent shrinker invocations
255 * don't also do this scanning work.
256 */
83aeeada 257 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
acf92b48
DC
258
259 total_scan = nr;
1495f230 260 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 261 delta *= max_pass;
1da177e4 262 do_div(delta, lru_pages + 1);
acf92b48
DC
263 total_scan += delta;
264 if (total_scan < 0) {
88c3bd70
DR
265 printk(KERN_ERR "shrink_slab: %pF negative objects to "
266 "delete nr=%ld\n",
acf92b48
DC
267 shrinker->shrink, total_scan);
268 total_scan = max_pass;
ea164d73
AA
269 }
270
3567b59a
DC
271 /*
272 * We need to avoid excessive windup on filesystem shrinkers
273 * due to large numbers of GFP_NOFS allocations causing the
274 * shrinkers to return -1 all the time. This results in a large
275 * nr being built up so when a shrink that can do some work
276 * comes along it empties the entire cache due to nr >>>
277 * max_pass. This is bad for sustaining a working set in
278 * memory.
279 *
280 * Hence only allow the shrinker to scan the entire cache when
281 * a large delta change is calculated directly.
282 */
283 if (delta < max_pass / 4)
284 total_scan = min(total_scan, max_pass / 2);
285
ea164d73
AA
286 /*
287 * Avoid risking looping forever due to too large nr value:
288 * never try to free more than twice the estimate number of
289 * freeable entries.
290 */
acf92b48
DC
291 if (total_scan > max_pass * 2)
292 total_scan = max_pass * 2;
1da177e4 293
acf92b48 294 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
295 nr_pages_scanned, lru_pages,
296 max_pass, delta, total_scan);
297
e9299f50 298 while (total_scan >= batch_size) {
b15e0905 299 int nr_before;
1da177e4 300
1495f230
YH
301 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
302 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 303 batch_size);
1da177e4
LT
304 if (shrink_ret == -1)
305 break;
b15e0905 306 if (shrink_ret < nr_before)
307 ret += nr_before - shrink_ret;
e9299f50
DC
308 count_vm_events(SLABS_SCANNED, batch_size);
309 total_scan -= batch_size;
1da177e4
LT
310
311 cond_resched();
312 }
313
acf92b48
DC
314 /*
315 * move the unused scan count back into the shrinker in a
316 * manner that handles concurrent updates. If we exhausted the
317 * scan, there is no need to do an update.
318 */
83aeeada
KK
319 if (total_scan > 0)
320 new_nr = atomic_long_add_return(total_scan,
321 &shrinker->nr_in_batch);
322 else
323 new_nr = atomic_long_read(&shrinker->nr_in_batch);
acf92b48
DC
324
325 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
326 }
327 up_read(&shrinker_rwsem);
f06590bd
MK
328out:
329 cond_resched();
b15e0905 330 return ret;
1da177e4
LT
331}
332
1da177e4
LT
333static inline int is_page_cache_freeable(struct page *page)
334{
ceddc3a5
JW
335 /*
336 * A freeable page cache page is referenced only by the caller
337 * that isolated the page, the page cache radix tree and
338 * optional buffer heads at page->private.
339 */
edcf4748 340 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
341}
342
7d3579e8
KM
343static int may_write_to_queue(struct backing_dev_info *bdi,
344 struct scan_control *sc)
1da177e4 345{
930d9152 346 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
347 return 1;
348 if (!bdi_write_congested(bdi))
349 return 1;
350 if (bdi == current->backing_dev_info)
351 return 1;
352 return 0;
353}
354
355/*
356 * We detected a synchronous write error writing a page out. Probably
357 * -ENOSPC. We need to propagate that into the address_space for a subsequent
358 * fsync(), msync() or close().
359 *
360 * The tricky part is that after writepage we cannot touch the mapping: nothing
361 * prevents it from being freed up. But we have a ref on the page and once
362 * that page is locked, the mapping is pinned.
363 *
364 * We're allowed to run sleeping lock_page() here because we know the caller has
365 * __GFP_FS.
366 */
367static void handle_write_error(struct address_space *mapping,
368 struct page *page, int error)
369{
7eaceacc 370 lock_page(page);
3e9f45bd
GC
371 if (page_mapping(page) == mapping)
372 mapping_set_error(mapping, error);
1da177e4
LT
373 unlock_page(page);
374}
375
04e62a29
CL
376/* possible outcome of pageout() */
377typedef enum {
378 /* failed to write page out, page is locked */
379 PAGE_KEEP,
380 /* move page to the active list, page is locked */
381 PAGE_ACTIVATE,
382 /* page has been sent to the disk successfully, page is unlocked */
383 PAGE_SUCCESS,
384 /* page is clean and locked */
385 PAGE_CLEAN,
386} pageout_t;
387
1da177e4 388/*
1742f19f
AM
389 * pageout is called by shrink_page_list() for each dirty page.
390 * Calls ->writepage().
1da177e4 391 */
c661b078 392static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 393 struct scan_control *sc)
1da177e4
LT
394{
395 /*
396 * If the page is dirty, only perform writeback if that write
397 * will be non-blocking. To prevent this allocation from being
398 * stalled by pagecache activity. But note that there may be
399 * stalls if we need to run get_block(). We could test
400 * PagePrivate for that.
401 *
6aceb53b 402 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
403 * this page's queue, we can perform writeback even if that
404 * will block.
405 *
406 * If the page is swapcache, write it back even if that would
407 * block, for some throttling. This happens by accident, because
408 * swap_backing_dev_info is bust: it doesn't reflect the
409 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
410 */
411 if (!is_page_cache_freeable(page))
412 return PAGE_KEEP;
413 if (!mapping) {
414 /*
415 * Some data journaling orphaned pages can have
416 * page->mapping == NULL while being dirty with clean buffers.
417 */
266cf658 418 if (page_has_private(page)) {
1da177e4
LT
419 if (try_to_free_buffers(page)) {
420 ClearPageDirty(page);
d40cee24 421 printk("%s: orphaned page\n", __func__);
1da177e4
LT
422 return PAGE_CLEAN;
423 }
424 }
425 return PAGE_KEEP;
426 }
427 if (mapping->a_ops->writepage == NULL)
428 return PAGE_ACTIVATE;
0e093d99 429 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
430 return PAGE_KEEP;
431
432 if (clear_page_dirty_for_io(page)) {
433 int res;
434 struct writeback_control wbc = {
435 .sync_mode = WB_SYNC_NONE,
436 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
437 .range_start = 0,
438 .range_end = LLONG_MAX,
1da177e4
LT
439 .for_reclaim = 1,
440 };
441
442 SetPageReclaim(page);
443 res = mapping->a_ops->writepage(page, &wbc);
444 if (res < 0)
445 handle_write_error(mapping, page, res);
994fc28c 446 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
447 ClearPageReclaim(page);
448 return PAGE_ACTIVATE;
449 }
c661b078 450
1da177e4
LT
451 if (!PageWriteback(page)) {
452 /* synchronous write or broken a_ops? */
453 ClearPageReclaim(page);
454 }
23b9da55 455 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 456 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
457 return PAGE_SUCCESS;
458 }
459
460 return PAGE_CLEAN;
461}
462
a649fd92 463/*
e286781d
NP
464 * Same as remove_mapping, but if the page is removed from the mapping, it
465 * gets returned with a refcount of 0.
a649fd92 466 */
e286781d 467static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 468{
28e4d965
NP
469 BUG_ON(!PageLocked(page));
470 BUG_ON(mapping != page_mapping(page));
49d2e9cc 471
19fd6231 472 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 473 /*
0fd0e6b0
NP
474 * The non racy check for a busy page.
475 *
476 * Must be careful with the order of the tests. When someone has
477 * a ref to the page, it may be possible that they dirty it then
478 * drop the reference. So if PageDirty is tested before page_count
479 * here, then the following race may occur:
480 *
481 * get_user_pages(&page);
482 * [user mapping goes away]
483 * write_to(page);
484 * !PageDirty(page) [good]
485 * SetPageDirty(page);
486 * put_page(page);
487 * !page_count(page) [good, discard it]
488 *
489 * [oops, our write_to data is lost]
490 *
491 * Reversing the order of the tests ensures such a situation cannot
492 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
493 * load is not satisfied before that of page->_count.
494 *
495 * Note that if SetPageDirty is always performed via set_page_dirty,
496 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 497 */
e286781d 498 if (!page_freeze_refs(page, 2))
49d2e9cc 499 goto cannot_free;
e286781d
NP
500 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
501 if (unlikely(PageDirty(page))) {
502 page_unfreeze_refs(page, 2);
49d2e9cc 503 goto cannot_free;
e286781d 504 }
49d2e9cc
CL
505
506 if (PageSwapCache(page)) {
507 swp_entry_t swap = { .val = page_private(page) };
508 __delete_from_swap_cache(page);
19fd6231 509 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 510 swapcache_free(swap, page);
e286781d 511 } else {
6072d13c
LT
512 void (*freepage)(struct page *);
513
514 freepage = mapping->a_ops->freepage;
515
e64a782f 516 __delete_from_page_cache(page);
19fd6231 517 spin_unlock_irq(&mapping->tree_lock);
e767e056 518 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
519
520 if (freepage != NULL)
521 freepage(page);
49d2e9cc
CL
522 }
523
49d2e9cc
CL
524 return 1;
525
526cannot_free:
19fd6231 527 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
528 return 0;
529}
530
e286781d
NP
531/*
532 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
533 * someone else has a ref on the page, abort and return 0. If it was
534 * successfully detached, return 1. Assumes the caller has a single ref on
535 * this page.
536 */
537int remove_mapping(struct address_space *mapping, struct page *page)
538{
539 if (__remove_mapping(mapping, page)) {
540 /*
541 * Unfreezing the refcount with 1 rather than 2 effectively
542 * drops the pagecache ref for us without requiring another
543 * atomic operation.
544 */
545 page_unfreeze_refs(page, 1);
546 return 1;
547 }
548 return 0;
549}
550
894bc310
LS
551/**
552 * putback_lru_page - put previously isolated page onto appropriate LRU list
553 * @page: page to be put back to appropriate lru list
554 *
555 * Add previously isolated @page to appropriate LRU list.
556 * Page may still be unevictable for other reasons.
557 *
558 * lru_lock must not be held, interrupts must be enabled.
559 */
894bc310
LS
560void putback_lru_page(struct page *page)
561{
562 int lru;
563 int active = !!TestClearPageActive(page);
bbfd28ee 564 int was_unevictable = PageUnevictable(page);
894bc310
LS
565
566 VM_BUG_ON(PageLRU(page));
567
568redo:
569 ClearPageUnevictable(page);
570
571 if (page_evictable(page, NULL)) {
572 /*
573 * For evictable pages, we can use the cache.
574 * In event of a race, worst case is we end up with an
575 * unevictable page on [in]active list.
576 * We know how to handle that.
577 */
401a8e1c 578 lru = active + page_lru_base_type(page);
894bc310
LS
579 lru_cache_add_lru(page, lru);
580 } else {
581 /*
582 * Put unevictable pages directly on zone's unevictable
583 * list.
584 */
585 lru = LRU_UNEVICTABLE;
586 add_page_to_unevictable_list(page);
6a7b9548 587 /*
21ee9f39
MK
588 * When racing with an mlock or AS_UNEVICTABLE clearing
589 * (page is unlocked) make sure that if the other thread
590 * does not observe our setting of PG_lru and fails
24513264 591 * isolation/check_move_unevictable_pages,
21ee9f39 592 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
593 * the page back to the evictable list.
594 *
21ee9f39 595 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
596 */
597 smp_mb();
894bc310 598 }
894bc310
LS
599
600 /*
601 * page's status can change while we move it among lru. If an evictable
602 * page is on unevictable list, it never be freed. To avoid that,
603 * check after we added it to the list, again.
604 */
605 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
606 if (!isolate_lru_page(page)) {
607 put_page(page);
608 goto redo;
609 }
610 /* This means someone else dropped this page from LRU
611 * So, it will be freed or putback to LRU again. There is
612 * nothing to do here.
613 */
614 }
615
bbfd28ee
LS
616 if (was_unevictable && lru != LRU_UNEVICTABLE)
617 count_vm_event(UNEVICTABLE_PGRESCUED);
618 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
619 count_vm_event(UNEVICTABLE_PGCULLED);
620
894bc310
LS
621 put_page(page); /* drop ref from isolate */
622}
623
dfc8d636
JW
624enum page_references {
625 PAGEREF_RECLAIM,
626 PAGEREF_RECLAIM_CLEAN,
64574746 627 PAGEREF_KEEP,
dfc8d636
JW
628 PAGEREF_ACTIVATE,
629};
630
631static enum page_references page_check_references(struct page *page,
f16015fb 632 struct mem_cgroup_zone *mz,
dfc8d636
JW
633 struct scan_control *sc)
634{
64574746 635 int referenced_ptes, referenced_page;
dfc8d636 636 unsigned long vm_flags;
dfc8d636 637
c3ac9a8a
JW
638 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
639 &vm_flags);
64574746 640 referenced_page = TestClearPageReferenced(page);
dfc8d636 641
dfc8d636
JW
642 /*
643 * Mlock lost the isolation race with us. Let try_to_unmap()
644 * move the page to the unevictable list.
645 */
646 if (vm_flags & VM_LOCKED)
647 return PAGEREF_RECLAIM;
648
64574746 649 if (referenced_ptes) {
e4898273 650 if (PageSwapBacked(page))
64574746
JW
651 return PAGEREF_ACTIVATE;
652 /*
653 * All mapped pages start out with page table
654 * references from the instantiating fault, so we need
655 * to look twice if a mapped file page is used more
656 * than once.
657 *
658 * Mark it and spare it for another trip around the
659 * inactive list. Another page table reference will
660 * lead to its activation.
661 *
662 * Note: the mark is set for activated pages as well
663 * so that recently deactivated but used pages are
664 * quickly recovered.
665 */
666 SetPageReferenced(page);
667
34dbc67a 668 if (referenced_page || referenced_ptes > 1)
64574746
JW
669 return PAGEREF_ACTIVATE;
670
c909e993
KK
671 /*
672 * Activate file-backed executable pages after first usage.
673 */
674 if (vm_flags & VM_EXEC)
675 return PAGEREF_ACTIVATE;
676
64574746
JW
677 return PAGEREF_KEEP;
678 }
dfc8d636
JW
679
680 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 681 if (referenced_page && !PageSwapBacked(page))
64574746
JW
682 return PAGEREF_RECLAIM_CLEAN;
683
684 return PAGEREF_RECLAIM;
dfc8d636
JW
685}
686
1da177e4 687/*
1742f19f 688 * shrink_page_list() returns the number of reclaimed pages
1da177e4 689 */
1742f19f 690static unsigned long shrink_page_list(struct list_head *page_list,
f16015fb 691 struct mem_cgroup_zone *mz,
f84f6e2b 692 struct scan_control *sc,
92df3a72
MG
693 unsigned long *ret_nr_dirty,
694 unsigned long *ret_nr_writeback)
1da177e4
LT
695{
696 LIST_HEAD(ret_pages);
abe4c3b5 697 LIST_HEAD(free_pages);
1da177e4 698 int pgactivate = 0;
0e093d99
MG
699 unsigned long nr_dirty = 0;
700 unsigned long nr_congested = 0;
05ff5137 701 unsigned long nr_reclaimed = 0;
92df3a72 702 unsigned long nr_writeback = 0;
1da177e4
LT
703
704 cond_resched();
705
1da177e4 706 while (!list_empty(page_list)) {
dfc8d636 707 enum page_references references;
1da177e4
LT
708 struct address_space *mapping;
709 struct page *page;
710 int may_enter_fs;
1da177e4
LT
711
712 cond_resched();
713
714 page = lru_to_page(page_list);
715 list_del(&page->lru);
716
529ae9aa 717 if (!trylock_page(page))
1da177e4
LT
718 goto keep;
719
725d704e 720 VM_BUG_ON(PageActive(page));
f16015fb 721 VM_BUG_ON(page_zone(page) != mz->zone);
1da177e4
LT
722
723 sc->nr_scanned++;
80e43426 724
b291f000
NP
725 if (unlikely(!page_evictable(page, NULL)))
726 goto cull_mlocked;
894bc310 727
a6dc60f8 728 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
729 goto keep_locked;
730
1da177e4
LT
731 /* Double the slab pressure for mapped and swapcache pages */
732 if (page_mapped(page) || PageSwapCache(page))
733 sc->nr_scanned++;
734
c661b078
AW
735 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
736 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
737
738 if (PageWriteback(page)) {
92df3a72 739 nr_writeback++;
41ac1999
MG
740 unlock_page(page);
741 goto keep;
c661b078 742 }
1da177e4 743
f16015fb 744 references = page_check_references(page, mz, sc);
dfc8d636
JW
745 switch (references) {
746 case PAGEREF_ACTIVATE:
1da177e4 747 goto activate_locked;
64574746
JW
748 case PAGEREF_KEEP:
749 goto keep_locked;
dfc8d636
JW
750 case PAGEREF_RECLAIM:
751 case PAGEREF_RECLAIM_CLEAN:
752 ; /* try to reclaim the page below */
753 }
1da177e4 754
1da177e4
LT
755 /*
756 * Anonymous process memory has backing store?
757 * Try to allocate it some swap space here.
758 */
b291f000 759 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
760 if (!(sc->gfp_mask & __GFP_IO))
761 goto keep_locked;
ac47b003 762 if (!add_to_swap(page))
1da177e4 763 goto activate_locked;
63eb6b93 764 may_enter_fs = 1;
b291f000 765 }
1da177e4
LT
766
767 mapping = page_mapping(page);
1da177e4
LT
768
769 /*
770 * The page is mapped into the page tables of one or more
771 * processes. Try to unmap it here.
772 */
773 if (page_mapped(page) && mapping) {
14fa31b8 774 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
775 case SWAP_FAIL:
776 goto activate_locked;
777 case SWAP_AGAIN:
778 goto keep_locked;
b291f000
NP
779 case SWAP_MLOCK:
780 goto cull_mlocked;
1da177e4
LT
781 case SWAP_SUCCESS:
782 ; /* try to free the page below */
783 }
784 }
785
786 if (PageDirty(page)) {
0e093d99
MG
787 nr_dirty++;
788
ee72886d
MG
789 /*
790 * Only kswapd can writeback filesystem pages to
f84f6e2b
MG
791 * avoid risk of stack overflow but do not writeback
792 * unless under significant pressure.
ee72886d 793 */
f84f6e2b 794 if (page_is_file_cache(page) &&
9e3b2f8c
KK
795 (!current_is_kswapd() ||
796 sc->priority >= DEF_PRIORITY - 2)) {
49ea7eb6
MG
797 /*
798 * Immediately reclaim when written back.
799 * Similar in principal to deactivate_page()
800 * except we already have the page isolated
801 * and know it's dirty
802 */
803 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
804 SetPageReclaim(page);
805
ee72886d
MG
806 goto keep_locked;
807 }
808
dfc8d636 809 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 810 goto keep_locked;
4dd4b920 811 if (!may_enter_fs)
1da177e4 812 goto keep_locked;
52a8363e 813 if (!sc->may_writepage)
1da177e4
LT
814 goto keep_locked;
815
816 /* Page is dirty, try to write it out here */
7d3579e8 817 switch (pageout(page, mapping, sc)) {
1da177e4 818 case PAGE_KEEP:
0e093d99 819 nr_congested++;
1da177e4
LT
820 goto keep_locked;
821 case PAGE_ACTIVATE:
822 goto activate_locked;
823 case PAGE_SUCCESS:
7d3579e8 824 if (PageWriteback(page))
41ac1999 825 goto keep;
7d3579e8 826 if (PageDirty(page))
1da177e4 827 goto keep;
7d3579e8 828
1da177e4
LT
829 /*
830 * A synchronous write - probably a ramdisk. Go
831 * ahead and try to reclaim the page.
832 */
529ae9aa 833 if (!trylock_page(page))
1da177e4
LT
834 goto keep;
835 if (PageDirty(page) || PageWriteback(page))
836 goto keep_locked;
837 mapping = page_mapping(page);
838 case PAGE_CLEAN:
839 ; /* try to free the page below */
840 }
841 }
842
843 /*
844 * If the page has buffers, try to free the buffer mappings
845 * associated with this page. If we succeed we try to free
846 * the page as well.
847 *
848 * We do this even if the page is PageDirty().
849 * try_to_release_page() does not perform I/O, but it is
850 * possible for a page to have PageDirty set, but it is actually
851 * clean (all its buffers are clean). This happens if the
852 * buffers were written out directly, with submit_bh(). ext3
894bc310 853 * will do this, as well as the blockdev mapping.
1da177e4
LT
854 * try_to_release_page() will discover that cleanness and will
855 * drop the buffers and mark the page clean - it can be freed.
856 *
857 * Rarely, pages can have buffers and no ->mapping. These are
858 * the pages which were not successfully invalidated in
859 * truncate_complete_page(). We try to drop those buffers here
860 * and if that worked, and the page is no longer mapped into
861 * process address space (page_count == 1) it can be freed.
862 * Otherwise, leave the page on the LRU so it is swappable.
863 */
266cf658 864 if (page_has_private(page)) {
1da177e4
LT
865 if (!try_to_release_page(page, sc->gfp_mask))
866 goto activate_locked;
e286781d
NP
867 if (!mapping && page_count(page) == 1) {
868 unlock_page(page);
869 if (put_page_testzero(page))
870 goto free_it;
871 else {
872 /*
873 * rare race with speculative reference.
874 * the speculative reference will free
875 * this page shortly, so we may
876 * increment nr_reclaimed here (and
877 * leave it off the LRU).
878 */
879 nr_reclaimed++;
880 continue;
881 }
882 }
1da177e4
LT
883 }
884
e286781d 885 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 886 goto keep_locked;
1da177e4 887
a978d6f5
NP
888 /*
889 * At this point, we have no other references and there is
890 * no way to pick any more up (removed from LRU, removed
891 * from pagecache). Can use non-atomic bitops now (and
892 * we obviously don't have to worry about waking up a process
893 * waiting on the page lock, because there are no references.
894 */
895 __clear_page_locked(page);
e286781d 896free_it:
05ff5137 897 nr_reclaimed++;
abe4c3b5
MG
898
899 /*
900 * Is there need to periodically free_page_list? It would
901 * appear not as the counts should be low
902 */
903 list_add(&page->lru, &free_pages);
1da177e4
LT
904 continue;
905
b291f000 906cull_mlocked:
63d6c5ad
HD
907 if (PageSwapCache(page))
908 try_to_free_swap(page);
b291f000
NP
909 unlock_page(page);
910 putback_lru_page(page);
911 continue;
912
1da177e4 913activate_locked:
68a22394
RR
914 /* Not a candidate for swapping, so reclaim swap space. */
915 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 916 try_to_free_swap(page);
894bc310 917 VM_BUG_ON(PageActive(page));
1da177e4
LT
918 SetPageActive(page);
919 pgactivate++;
920keep_locked:
921 unlock_page(page);
922keep:
923 list_add(&page->lru, &ret_pages);
b291f000 924 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 925 }
abe4c3b5 926
0e093d99
MG
927 /*
928 * Tag a zone as congested if all the dirty pages encountered were
929 * backed by a congested BDI. In this case, reclaimers should just
930 * back off and wait for congestion to clear because further reclaim
931 * will encounter the same problem
932 */
89b5fae5 933 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
f16015fb 934 zone_set_flag(mz->zone, ZONE_CONGESTED);
0e093d99 935
cc59850e 936 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 937
1da177e4 938 list_splice(&ret_pages, page_list);
f8891e5e 939 count_vm_events(PGACTIVATE, pgactivate);
92df3a72
MG
940 *ret_nr_dirty += nr_dirty;
941 *ret_nr_writeback += nr_writeback;
05ff5137 942 return nr_reclaimed;
1da177e4
LT
943}
944
5ad333eb
AW
945/*
946 * Attempt to remove the specified page from its LRU. Only take this page
947 * if it is of the appropriate PageActive status. Pages which are being
948 * freed elsewhere are also ignored.
949 *
950 * page: page to consider
951 * mode: one of the LRU isolation modes defined above
952 *
953 * returns 0 on success, -ve errno on failure.
954 */
f3fd4a61 955int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
956{
957 int ret = -EINVAL;
958
959 /* Only take pages on the LRU. */
960 if (!PageLRU(page))
961 return ret;
962
c53919ad 963 /* Do not give back unevictable pages for compaction */
894bc310
LS
964 if (PageUnevictable(page))
965 return ret;
966
5ad333eb 967 ret = -EBUSY;
08e552c6 968
c8244935
MG
969 /*
970 * To minimise LRU disruption, the caller can indicate that it only
971 * wants to isolate pages it will be able to operate on without
972 * blocking - clean pages for the most part.
973 *
974 * ISOLATE_CLEAN means that only clean pages should be isolated. This
975 * is used by reclaim when it is cannot write to backing storage
976 *
977 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
978 * that it is possible to migrate without blocking
979 */
980 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
981 /* All the caller can do on PageWriteback is block */
982 if (PageWriteback(page))
983 return ret;
984
985 if (PageDirty(page)) {
986 struct address_space *mapping;
987
988 /* ISOLATE_CLEAN means only clean pages */
989 if (mode & ISOLATE_CLEAN)
990 return ret;
991
992 /*
993 * Only pages without mappings or that have a
994 * ->migratepage callback are possible to migrate
995 * without blocking
996 */
997 mapping = page_mapping(page);
998 if (mapping && !mapping->a_ops->migratepage)
999 return ret;
1000 }
1001 }
39deaf85 1002
f80c0673
MK
1003 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1004 return ret;
1005
5ad333eb
AW
1006 if (likely(get_page_unless_zero(page))) {
1007 /*
1008 * Be careful not to clear PageLRU until after we're
1009 * sure the page is not being freed elsewhere -- the
1010 * page release code relies on it.
1011 */
1012 ClearPageLRU(page);
1013 ret = 0;
1014 }
1015
1016 return ret;
1017}
1018
1da177e4
LT
1019/*
1020 * zone->lru_lock is heavily contended. Some of the functions that
1021 * shrink the lists perform better by taking out a batch of pages
1022 * and working on them outside the LRU lock.
1023 *
1024 * For pagecache intensive workloads, this function is the hottest
1025 * spot in the kernel (apart from copy_*_user functions).
1026 *
1027 * Appropriate locks must be held before calling this function.
1028 *
1029 * @nr_to_scan: The number of pages to look through on the list.
f626012d 1030 * @mz: The mem_cgroup_zone to pull pages from.
1da177e4 1031 * @dst: The temp list to put pages on to.
f626012d 1032 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1033 * @sc: The scan_control struct for this reclaim session
5ad333eb 1034 * @mode: One of the LRU isolation modes
3cb99451 1035 * @lru: LRU list id for isolating
1da177e4
LT
1036 *
1037 * returns how many pages were moved onto *@dst.
1038 */
69e05944 1039static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
f626012d 1040 struct mem_cgroup_zone *mz, struct list_head *dst,
fe2c2a10 1041 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1042 isolate_mode_t mode, enum lru_list lru)
1da177e4 1043{
f626012d
HD
1044 struct lruvec *lruvec;
1045 struct list_head *src;
69e05944 1046 unsigned long nr_taken = 0;
c9b02d97 1047 unsigned long scan;
3cb99451 1048 int file = is_file_lru(lru);
f626012d
HD
1049
1050 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
f626012d 1051 src = &lruvec->lists[lru];
1da177e4 1052
c9b02d97 1053 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1054 struct page *page;
5ad333eb 1055
1da177e4
LT
1056 page = lru_to_page(src);
1057 prefetchw_prev_lru_page(page, src, flags);
1058
725d704e 1059 VM_BUG_ON(!PageLRU(page));
8d438f96 1060
f3fd4a61 1061 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1062 case 0:
bbf808ed 1063 mem_cgroup_lru_del_list(page, lru);
5ad333eb 1064 list_move(&page->lru, dst);
2c888cfb 1065 nr_taken += hpage_nr_pages(page);
5ad333eb
AW
1066 break;
1067
1068 case -EBUSY:
1069 /* else it is being freed elsewhere */
1070 list_move(&page->lru, src);
1071 continue;
46453a6e 1072
5ad333eb
AW
1073 default:
1074 BUG();
1075 }
1da177e4
LT
1076 }
1077
f626012d 1078 *nr_scanned = scan;
a8a94d15 1079
fe2c2a10 1080 trace_mm_vmscan_lru_isolate(sc->order,
a8a94d15
MG
1081 nr_to_scan, scan,
1082 nr_taken,
ea4d349f 1083 mode, file);
1da177e4
LT
1084 return nr_taken;
1085}
1086
62695a84
NP
1087/**
1088 * isolate_lru_page - tries to isolate a page from its LRU list
1089 * @page: page to isolate from its LRU list
1090 *
1091 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1092 * vmstat statistic corresponding to whatever LRU list the page was on.
1093 *
1094 * Returns 0 if the page was removed from an LRU list.
1095 * Returns -EBUSY if the page was not on an LRU list.
1096 *
1097 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1098 * the active list, it will have PageActive set. If it was found on
1099 * the unevictable list, it will have the PageUnevictable bit set. That flag
1100 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1101 *
1102 * The vmstat statistic corresponding to the list on which the page was
1103 * found will be decremented.
1104 *
1105 * Restrictions:
1106 * (1) Must be called with an elevated refcount on the page. This is a
1107 * fundamentnal difference from isolate_lru_pages (which is called
1108 * without a stable reference).
1109 * (2) the lru_lock must not be held.
1110 * (3) interrupts must be enabled.
1111 */
1112int isolate_lru_page(struct page *page)
1113{
1114 int ret = -EBUSY;
1115
0c917313
KK
1116 VM_BUG_ON(!page_count(page));
1117
62695a84
NP
1118 if (PageLRU(page)) {
1119 struct zone *zone = page_zone(page);
1120
1121 spin_lock_irq(&zone->lru_lock);
0c917313 1122 if (PageLRU(page)) {
894bc310 1123 int lru = page_lru(page);
62695a84 1124 ret = 0;
0c917313 1125 get_page(page);
62695a84 1126 ClearPageLRU(page);
4f98a2fe 1127
4f98a2fe 1128 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1129 }
1130 spin_unlock_irq(&zone->lru_lock);
1131 }
1132 return ret;
1133}
1134
35cd7815
RR
1135/*
1136 * Are there way too many processes in the direct reclaim path already?
1137 */
1138static int too_many_isolated(struct zone *zone, int file,
1139 struct scan_control *sc)
1140{
1141 unsigned long inactive, isolated;
1142
1143 if (current_is_kswapd())
1144 return 0;
1145
89b5fae5 1146 if (!global_reclaim(sc))
35cd7815
RR
1147 return 0;
1148
1149 if (file) {
1150 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1151 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1152 } else {
1153 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1154 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1155 }
1156
1157 return isolated > inactive;
1158}
1159
66635629 1160static noinline_for_stack void
3f79768f
HD
1161putback_inactive_pages(struct mem_cgroup_zone *mz,
1162 struct list_head *page_list)
66635629 1163{
f16015fb 1164 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
3f79768f
HD
1165 struct zone *zone = mz->zone;
1166 LIST_HEAD(pages_to_free);
66635629 1167
66635629
MG
1168 /*
1169 * Put back any unfreeable pages.
1170 */
66635629 1171 while (!list_empty(page_list)) {
3f79768f 1172 struct page *page = lru_to_page(page_list);
66635629 1173 int lru;
3f79768f 1174
66635629
MG
1175 VM_BUG_ON(PageLRU(page));
1176 list_del(&page->lru);
1177 if (unlikely(!page_evictable(page, NULL))) {
1178 spin_unlock_irq(&zone->lru_lock);
1179 putback_lru_page(page);
1180 spin_lock_irq(&zone->lru_lock);
1181 continue;
1182 }
7a608572 1183 SetPageLRU(page);
66635629 1184 lru = page_lru(page);
7a608572 1185 add_page_to_lru_list(zone, page, lru);
66635629
MG
1186 if (is_active_lru(lru)) {
1187 int file = is_file_lru(lru);
9992af10
RR
1188 int numpages = hpage_nr_pages(page);
1189 reclaim_stat->recent_rotated[file] += numpages;
66635629 1190 }
2bcf8879
HD
1191 if (put_page_testzero(page)) {
1192 __ClearPageLRU(page);
1193 __ClearPageActive(page);
1194 del_page_from_lru_list(zone, page, lru);
1195
1196 if (unlikely(PageCompound(page))) {
1197 spin_unlock_irq(&zone->lru_lock);
1198 (*get_compound_page_dtor(page))(page);
1199 spin_lock_irq(&zone->lru_lock);
1200 } else
1201 list_add(&page->lru, &pages_to_free);
66635629
MG
1202 }
1203 }
66635629 1204
3f79768f
HD
1205 /*
1206 * To save our caller's stack, now use input list for pages to free.
1207 */
1208 list_splice(&pages_to_free, page_list);
66635629
MG
1209}
1210
f16015fb
JW
1211static noinline_for_stack void
1212update_isolated_counts(struct mem_cgroup_zone *mz,
3f79768f 1213 struct list_head *page_list,
f16015fb 1214 unsigned long *nr_anon,
3f79768f 1215 unsigned long *nr_file)
1489fa14 1216{
f16015fb 1217 struct zone *zone = mz->zone;
1489fa14 1218 unsigned int count[NR_LRU_LISTS] = { 0, };
3f79768f
HD
1219 unsigned long nr_active = 0;
1220 struct page *page;
1221 int lru;
1222
1223 /*
1224 * Count pages and clear active flags
1225 */
1226 list_for_each_entry(page, page_list, lru) {
1227 int numpages = hpage_nr_pages(page);
1228 lru = page_lru_base_type(page);
1229 if (PageActive(page)) {
1230 lru += LRU_ACTIVE;
1231 ClearPageActive(page);
1232 nr_active += numpages;
1233 }
1234 count[lru] += numpages;
1235 }
1489fa14 1236
d563c050 1237 preempt_disable();
1489fa14
MG
1238 __count_vm_events(PGDEACTIVATE, nr_active);
1239
1240 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1241 -count[LRU_ACTIVE_FILE]);
1242 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1243 -count[LRU_INACTIVE_FILE]);
1244 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1245 -count[LRU_ACTIVE_ANON]);
1246 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1247 -count[LRU_INACTIVE_ANON]);
1248
1249 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1250 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1489fa14 1251
d563c050
HD
1252 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1253 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1254 preempt_enable();
1489fa14
MG
1255}
1256
1da177e4 1257/*
1742f19f
AM
1258 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1259 * of reclaimed pages
1da177e4 1260 */
66635629 1261static noinline_for_stack unsigned long
f16015fb 1262shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
9e3b2f8c 1263 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1264{
1265 LIST_HEAD(page_list);
e247dbce 1266 unsigned long nr_scanned;
05ff5137 1267 unsigned long nr_reclaimed = 0;
e247dbce 1268 unsigned long nr_taken;
e247dbce
KM
1269 unsigned long nr_anon;
1270 unsigned long nr_file;
92df3a72
MG
1271 unsigned long nr_dirty = 0;
1272 unsigned long nr_writeback = 0;
f3fd4a61 1273 isolate_mode_t isolate_mode = 0;
3cb99451 1274 int file = is_file_lru(lru);
f16015fb 1275 struct zone *zone = mz->zone;
d563c050 1276 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
78dc583d 1277
35cd7815 1278 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1279 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1280
1281 /* We are about to die and free our memory. Return now. */
1282 if (fatal_signal_pending(current))
1283 return SWAP_CLUSTER_MAX;
1284 }
1285
1da177e4 1286 lru_add_drain();
f80c0673
MK
1287
1288 if (!sc->may_unmap)
61317289 1289 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1290 if (!sc->may_writepage)
61317289 1291 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1292
1da177e4 1293 spin_lock_irq(&zone->lru_lock);
b35ea17b 1294
fe2c2a10 1295 nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
3cb99451 1296 sc, isolate_mode, lru);
89b5fae5 1297 if (global_reclaim(sc)) {
e247dbce
KM
1298 zone->pages_scanned += nr_scanned;
1299 if (current_is_kswapd())
1300 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1301 nr_scanned);
1302 else
1303 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1304 nr_scanned);
e247dbce 1305 }
d563c050 1306 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1307
d563c050 1308 if (nr_taken == 0)
66635629 1309 return 0;
5ad333eb 1310
3f79768f
HD
1311 update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1312
9e3b2f8c 1313 nr_reclaimed = shrink_page_list(&page_list, mz, sc,
92df3a72 1314 &nr_dirty, &nr_writeback);
c661b078 1315
3f79768f
HD
1316 spin_lock_irq(&zone->lru_lock);
1317
d563c050
HD
1318 reclaim_stat->recent_scanned[0] += nr_anon;
1319 reclaim_stat->recent_scanned[1] += nr_file;
1320
904249aa
YH
1321 if (global_reclaim(sc)) {
1322 if (current_is_kswapd())
1323 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1324 nr_reclaimed);
1325 else
1326 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1327 nr_reclaimed);
1328 }
a74609fa 1329
3f79768f
HD
1330 putback_inactive_pages(mz, &page_list);
1331
1332 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1333 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1334
1335 spin_unlock_irq(&zone->lru_lock);
1336
1337 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1338
92df3a72
MG
1339 /*
1340 * If reclaim is isolating dirty pages under writeback, it implies
1341 * that the long-lived page allocation rate is exceeding the page
1342 * laundering rate. Either the global limits are not being effective
1343 * at throttling processes due to the page distribution throughout
1344 * zones or there is heavy usage of a slow backing device. The
1345 * only option is to throttle from reclaim context which is not ideal
1346 * as there is no guarantee the dirtying process is throttled in the
1347 * same way balance_dirty_pages() manages.
1348 *
1349 * This scales the number of dirty pages that must be under writeback
1350 * before throttling depending on priority. It is a simple backoff
1351 * function that has the most effect in the range DEF_PRIORITY to
1352 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1353 * in trouble and reclaim is considered to be in trouble.
1354 *
1355 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1356 * DEF_PRIORITY-1 50% must be PageWriteback
1357 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1358 * ...
1359 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1360 * isolated page is PageWriteback
1361 */
9e3b2f8c
KK
1362 if (nr_writeback && nr_writeback >=
1363 (nr_taken >> (DEF_PRIORITY - sc->priority)))
92df3a72
MG
1364 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1365
e11da5b4
MG
1366 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1367 zone_idx(zone),
1368 nr_scanned, nr_reclaimed,
9e3b2f8c 1369 sc->priority,
23b9da55 1370 trace_shrink_flags(file));
05ff5137 1371 return nr_reclaimed;
1da177e4
LT
1372}
1373
1374/*
1375 * This moves pages from the active list to the inactive list.
1376 *
1377 * We move them the other way if the page is referenced by one or more
1378 * processes, from rmap.
1379 *
1380 * If the pages are mostly unmapped, the processing is fast and it is
1381 * appropriate to hold zone->lru_lock across the whole operation. But if
1382 * the pages are mapped, the processing is slow (page_referenced()) so we
1383 * should drop zone->lru_lock around each page. It's impossible to balance
1384 * this, so instead we remove the pages from the LRU while processing them.
1385 * It is safe to rely on PG_active against the non-LRU pages in here because
1386 * nobody will play with that bit on a non-LRU page.
1387 *
1388 * The downside is that we have to touch page->_count against each page.
1389 * But we had to alter page->flags anyway.
1390 */
1cfb419b 1391
3eb4140f
WF
1392static void move_active_pages_to_lru(struct zone *zone,
1393 struct list_head *list,
2bcf8879 1394 struct list_head *pages_to_free,
3eb4140f
WF
1395 enum lru_list lru)
1396{
1397 unsigned long pgmoved = 0;
3eb4140f
WF
1398 struct page *page;
1399
3eb4140f 1400 while (!list_empty(list)) {
925b7673
JW
1401 struct lruvec *lruvec;
1402
3eb4140f 1403 page = lru_to_page(list);
3eb4140f
WF
1404
1405 VM_BUG_ON(PageLRU(page));
1406 SetPageLRU(page);
1407
925b7673
JW
1408 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1409 list_move(&page->lru, &lruvec->lists[lru]);
2c888cfb 1410 pgmoved += hpage_nr_pages(page);
3eb4140f 1411
2bcf8879
HD
1412 if (put_page_testzero(page)) {
1413 __ClearPageLRU(page);
1414 __ClearPageActive(page);
1415 del_page_from_lru_list(zone, page, lru);
1416
1417 if (unlikely(PageCompound(page))) {
1418 spin_unlock_irq(&zone->lru_lock);
1419 (*get_compound_page_dtor(page))(page);
1420 spin_lock_irq(&zone->lru_lock);
1421 } else
1422 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1423 }
1424 }
1425 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1426 if (!is_active_lru(lru))
1427 __count_vm_events(PGDEACTIVATE, pgmoved);
1428}
1cfb419b 1429
f626012d 1430static void shrink_active_list(unsigned long nr_to_scan,
f16015fb
JW
1431 struct mem_cgroup_zone *mz,
1432 struct scan_control *sc,
9e3b2f8c 1433 enum lru_list lru)
1da177e4 1434{
44c241f1 1435 unsigned long nr_taken;
f626012d 1436 unsigned long nr_scanned;
6fe6b7e3 1437 unsigned long vm_flags;
1da177e4 1438 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1439 LIST_HEAD(l_active);
b69408e8 1440 LIST_HEAD(l_inactive);
1da177e4 1441 struct page *page;
f16015fb 1442 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
44c241f1 1443 unsigned long nr_rotated = 0;
f3fd4a61 1444 isolate_mode_t isolate_mode = 0;
3cb99451 1445 int file = is_file_lru(lru);
f16015fb 1446 struct zone *zone = mz->zone;
1da177e4
LT
1447
1448 lru_add_drain();
f80c0673
MK
1449
1450 if (!sc->may_unmap)
61317289 1451 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1452 if (!sc->may_writepage)
61317289 1453 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1454
1da177e4 1455 spin_lock_irq(&zone->lru_lock);
925b7673 1456
fe2c2a10 1457 nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
3cb99451 1458 isolate_mode, lru);
89b5fae5 1459 if (global_reclaim(sc))
f626012d 1460 zone->pages_scanned += nr_scanned;
89b5fae5 1461
b7c46d15 1462 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1463
f626012d 1464 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1465 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1466 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1467 spin_unlock_irq(&zone->lru_lock);
1468
1da177e4
LT
1469 while (!list_empty(&l_hold)) {
1470 cond_resched();
1471 page = lru_to_page(&l_hold);
1472 list_del(&page->lru);
7e9cd484 1473
894bc310
LS
1474 if (unlikely(!page_evictable(page, NULL))) {
1475 putback_lru_page(page);
1476 continue;
1477 }
1478
cc715d99
MG
1479 if (unlikely(buffer_heads_over_limit)) {
1480 if (page_has_private(page) && trylock_page(page)) {
1481 if (page_has_private(page))
1482 try_to_release_page(page, 0);
1483 unlock_page(page);
1484 }
1485 }
1486
c3ac9a8a
JW
1487 if (page_referenced(page, 0, sc->target_mem_cgroup,
1488 &vm_flags)) {
9992af10 1489 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1490 /*
1491 * Identify referenced, file-backed active pages and
1492 * give them one more trip around the active list. So
1493 * that executable code get better chances to stay in
1494 * memory under moderate memory pressure. Anon pages
1495 * are not likely to be evicted by use-once streaming
1496 * IO, plus JVM can create lots of anon VM_EXEC pages,
1497 * so we ignore them here.
1498 */
41e20983 1499 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1500 list_add(&page->lru, &l_active);
1501 continue;
1502 }
1503 }
7e9cd484 1504
5205e56e 1505 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1506 list_add(&page->lru, &l_inactive);
1507 }
1508
b555749a 1509 /*
8cab4754 1510 * Move pages back to the lru list.
b555749a 1511 */
2a1dc509 1512 spin_lock_irq(&zone->lru_lock);
556adecb 1513 /*
8cab4754
WF
1514 * Count referenced pages from currently used mappings as rotated,
1515 * even though only some of them are actually re-activated. This
1516 * helps balance scan pressure between file and anonymous pages in
1517 * get_scan_ratio.
7e9cd484 1518 */
b7c46d15 1519 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1520
3cb99451
KK
1521 move_active_pages_to_lru(zone, &l_active, &l_hold, lru);
1522 move_active_pages_to_lru(zone, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1523 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1524 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1525
1526 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1527}
1528
74e3f3c3 1529#ifdef CONFIG_SWAP
14797e23 1530static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1531{
1532 unsigned long active, inactive;
1533
1534 active = zone_page_state(zone, NR_ACTIVE_ANON);
1535 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1536
1537 if (inactive * zone->inactive_ratio < active)
1538 return 1;
1539
1540 return 0;
1541}
1542
14797e23
KM
1543/**
1544 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1545 * @zone: zone to check
1546 * @sc: scan control of this context
1547 *
1548 * Returns true if the zone does not have enough inactive anon pages,
1549 * meaning some active anon pages need to be deactivated.
1550 */
f16015fb 1551static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
14797e23 1552{
74e3f3c3
MK
1553 /*
1554 * If we don't have swap space, anonymous page deactivation
1555 * is pointless.
1556 */
1557 if (!total_swap_pages)
1558 return 0;
1559
c3c787e8 1560 if (!mem_cgroup_disabled())
f16015fb
JW
1561 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1562 mz->zone);
1563
1564 return inactive_anon_is_low_global(mz->zone);
14797e23 1565}
74e3f3c3 1566#else
f16015fb 1567static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
74e3f3c3
MK
1568{
1569 return 0;
1570}
1571#endif
14797e23 1572
56e49d21
RR
1573static int inactive_file_is_low_global(struct zone *zone)
1574{
1575 unsigned long active, inactive;
1576
1577 active = zone_page_state(zone, NR_ACTIVE_FILE);
1578 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1579
1580 return (active > inactive);
1581}
1582
1583/**
1584 * inactive_file_is_low - check if file pages need to be deactivated
f16015fb 1585 * @mz: memory cgroup and zone to check
56e49d21
RR
1586 *
1587 * When the system is doing streaming IO, memory pressure here
1588 * ensures that active file pages get deactivated, until more
1589 * than half of the file pages are on the inactive list.
1590 *
1591 * Once we get to that situation, protect the system's working
1592 * set from being evicted by disabling active file page aging.
1593 *
1594 * This uses a different ratio than the anonymous pages, because
1595 * the page cache uses a use-once replacement algorithm.
1596 */
f16015fb 1597static int inactive_file_is_low(struct mem_cgroup_zone *mz)
56e49d21 1598{
c3c787e8 1599 if (!mem_cgroup_disabled())
f16015fb
JW
1600 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1601 mz->zone);
56e49d21 1602
f16015fb 1603 return inactive_file_is_low_global(mz->zone);
56e49d21
RR
1604}
1605
f16015fb 1606static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
b39415b2
RR
1607{
1608 if (file)
f16015fb 1609 return inactive_file_is_low(mz);
b39415b2 1610 else
f16015fb 1611 return inactive_anon_is_low(mz);
b39415b2
RR
1612}
1613
4f98a2fe 1614static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
f16015fb 1615 struct mem_cgroup_zone *mz,
9e3b2f8c 1616 struct scan_control *sc)
b69408e8 1617{
4f98a2fe
RR
1618 int file = is_file_lru(lru);
1619
b39415b2 1620 if (is_active_lru(lru)) {
f16015fb 1621 if (inactive_list_is_low(mz, file))
9e3b2f8c 1622 shrink_active_list(nr_to_scan, mz, sc, lru);
556adecb
RR
1623 return 0;
1624 }
1625
9e3b2f8c 1626 return shrink_inactive_list(nr_to_scan, mz, sc, lru);
4f98a2fe
RR
1627}
1628
3d58ab5c 1629static int vmscan_swappiness(struct scan_control *sc)
1f4c025b 1630{
89b5fae5 1631 if (global_reclaim(sc))
1f4c025b 1632 return vm_swappiness;
3d58ab5c 1633 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1f4c025b
KH
1634}
1635
4f98a2fe
RR
1636/*
1637 * Determine how aggressively the anon and file LRU lists should be
1638 * scanned. The relative value of each set of LRU lists is determined
1639 * by looking at the fraction of the pages scanned we did rotate back
1640 * onto the active list instead of evict.
1641 *
76a33fc3 1642 * nr[0] = anon pages to scan; nr[1] = file pages to scan
4f98a2fe 1643 */
f16015fb 1644static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
9e3b2f8c 1645 unsigned long *nr)
4f98a2fe
RR
1646{
1647 unsigned long anon, file, free;
1648 unsigned long anon_prio, file_prio;
1649 unsigned long ap, fp;
f16015fb 1650 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
76a33fc3 1651 u64 fraction[2], denominator;
4111304d 1652 enum lru_list lru;
76a33fc3 1653 int noswap = 0;
a4d3e9e7 1654 bool force_scan = false;
246e87a9 1655
f11c0ca5
JW
1656 /*
1657 * If the zone or memcg is small, nr[l] can be 0. This
1658 * results in no scanning on this priority and a potential
1659 * priority drop. Global direct reclaim can go to the next
1660 * zone and tends to have no problems. Global kswapd is for
1661 * zone balancing and it needs to scan a minimum amount. When
1662 * reclaiming for a memcg, a priority drop can cause high
1663 * latencies, so it's better to scan a minimum amount there as
1664 * well.
1665 */
b95a2f2d 1666 if (current_is_kswapd() && mz->zone->all_unreclaimable)
a4d3e9e7 1667 force_scan = true;
89b5fae5 1668 if (!global_reclaim(sc))
a4d3e9e7 1669 force_scan = true;
76a33fc3
SL
1670
1671 /* If we have no swap space, do not bother scanning anon pages. */
1672 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1673 noswap = 1;
1674 fraction[0] = 0;
1675 fraction[1] = 1;
1676 denominator = 1;
1677 goto out;
1678 }
4f98a2fe 1679
f16015fb
JW
1680 anon = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1681 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1682 file = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1683 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
a4d3e9e7 1684
89b5fae5 1685 if (global_reclaim(sc)) {
f16015fb 1686 free = zone_page_state(mz->zone, NR_FREE_PAGES);
eeee9a8c
KM
1687 /* If we have very few page cache pages,
1688 force-scan anon pages. */
f16015fb 1689 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
76a33fc3
SL
1690 fraction[0] = 1;
1691 fraction[1] = 0;
1692 denominator = 1;
1693 goto out;
eeee9a8c 1694 }
4f98a2fe
RR
1695 }
1696
58c37f6e
KM
1697 /*
1698 * With swappiness at 100, anonymous and file have the same priority.
1699 * This scanning priority is essentially the inverse of IO cost.
1700 */
3d58ab5c
KK
1701 anon_prio = vmscan_swappiness(sc);
1702 file_prio = 200 - vmscan_swappiness(sc);
58c37f6e 1703
4f98a2fe
RR
1704 /*
1705 * OK, so we have swap space and a fair amount of page cache
1706 * pages. We use the recently rotated / recently scanned
1707 * ratios to determine how valuable each cache is.
1708 *
1709 * Because workloads change over time (and to avoid overflow)
1710 * we keep these statistics as a floating average, which ends
1711 * up weighing recent references more than old ones.
1712 *
1713 * anon in [0], file in [1]
1714 */
f16015fb 1715 spin_lock_irq(&mz->zone->lru_lock);
6e901571 1716 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1717 reclaim_stat->recent_scanned[0] /= 2;
1718 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1719 }
1720
6e901571 1721 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1722 reclaim_stat->recent_scanned[1] /= 2;
1723 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1724 }
1725
4f98a2fe 1726 /*
00d8089c
RR
1727 * The amount of pressure on anon vs file pages is inversely
1728 * proportional to the fraction of recently scanned pages on
1729 * each list that were recently referenced and in active use.
4f98a2fe 1730 */
fe35004f 1731 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1732 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1733
fe35004f 1734 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1735 fp /= reclaim_stat->recent_rotated[1] + 1;
f16015fb 1736 spin_unlock_irq(&mz->zone->lru_lock);
4f98a2fe 1737
76a33fc3
SL
1738 fraction[0] = ap;
1739 fraction[1] = fp;
1740 denominator = ap + fp + 1;
1741out:
4111304d
HD
1742 for_each_evictable_lru(lru) {
1743 int file = is_file_lru(lru);
76a33fc3 1744 unsigned long scan;
6e08a369 1745
4111304d 1746 scan = zone_nr_lru_pages(mz, lru);
9e3b2f8c
KK
1747 if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1748 scan >>= sc->priority;
f11c0ca5
JW
1749 if (!scan && force_scan)
1750 scan = SWAP_CLUSTER_MAX;
76a33fc3
SL
1751 scan = div64_u64(scan * fraction[file], denominator);
1752 }
4111304d 1753 nr[lru] = scan;
76a33fc3 1754 }
6e08a369 1755}
4f98a2fe 1756
23b9da55 1757/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 1758static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55
MG
1759{
1760 if (COMPACTION_BUILD && sc->order &&
1761 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 1762 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
1763 return true;
1764
1765 return false;
1766}
1767
3e7d3449 1768/*
23b9da55
MG
1769 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1770 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1771 * true if more pages should be reclaimed such that when the page allocator
1772 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1773 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 1774 */
f16015fb 1775static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
3e7d3449
MG
1776 unsigned long nr_reclaimed,
1777 unsigned long nr_scanned,
1778 struct scan_control *sc)
1779{
1780 unsigned long pages_for_compaction;
1781 unsigned long inactive_lru_pages;
1782
1783 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 1784 if (!in_reclaim_compaction(sc))
3e7d3449
MG
1785 return false;
1786
2876592f
MG
1787 /* Consider stopping depending on scan and reclaim activity */
1788 if (sc->gfp_mask & __GFP_REPEAT) {
1789 /*
1790 * For __GFP_REPEAT allocations, stop reclaiming if the
1791 * full LRU list has been scanned and we are still failing
1792 * to reclaim pages. This full LRU scan is potentially
1793 * expensive but a __GFP_REPEAT caller really wants to succeed
1794 */
1795 if (!nr_reclaimed && !nr_scanned)
1796 return false;
1797 } else {
1798 /*
1799 * For non-__GFP_REPEAT allocations which can presumably
1800 * fail without consequence, stop if we failed to reclaim
1801 * any pages from the last SWAP_CLUSTER_MAX number of
1802 * pages that were scanned. This will return to the
1803 * caller faster at the risk reclaim/compaction and
1804 * the resulting allocation attempt fails
1805 */
1806 if (!nr_reclaimed)
1807 return false;
1808 }
3e7d3449
MG
1809
1810 /*
1811 * If we have not reclaimed enough pages for compaction and the
1812 * inactive lists are large enough, continue reclaiming
1813 */
1814 pages_for_compaction = (2UL << sc->order);
f16015fb 1815 inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
86cfd3a4 1816 if (nr_swap_pages > 0)
f16015fb 1817 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
3e7d3449
MG
1818 if (sc->nr_reclaimed < pages_for_compaction &&
1819 inactive_lru_pages > pages_for_compaction)
1820 return true;
1821
1822 /* If compaction would go ahead or the allocation would succeed, stop */
f16015fb 1823 switch (compaction_suitable(mz->zone, sc->order)) {
3e7d3449
MG
1824 case COMPACT_PARTIAL:
1825 case COMPACT_CONTINUE:
1826 return false;
1827 default:
1828 return true;
1829 }
1830}
1831
1da177e4
LT
1832/*
1833 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1834 */
9e3b2f8c 1835static void shrink_mem_cgroup_zone(struct mem_cgroup_zone *mz,
f16015fb 1836 struct scan_control *sc)
1da177e4 1837{
b69408e8 1838 unsigned long nr[NR_LRU_LISTS];
8695949a 1839 unsigned long nr_to_scan;
4111304d 1840 enum lru_list lru;
f0fdc5e8 1841 unsigned long nr_reclaimed, nr_scanned;
22fba335 1842 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
3da367c3 1843 struct blk_plug plug;
e0f79b8f 1844
3e7d3449
MG
1845restart:
1846 nr_reclaimed = 0;
f0fdc5e8 1847 nr_scanned = sc->nr_scanned;
9e3b2f8c 1848 get_scan_count(mz, sc, nr);
1da177e4 1849
3da367c3 1850 blk_start_plug(&plug);
556adecb
RR
1851 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1852 nr[LRU_INACTIVE_FILE]) {
4111304d
HD
1853 for_each_evictable_lru(lru) {
1854 if (nr[lru]) {
ece74b2e 1855 nr_to_scan = min_t(unsigned long,
4111304d
HD
1856 nr[lru], SWAP_CLUSTER_MAX);
1857 nr[lru] -= nr_to_scan;
1da177e4 1858
4111304d 1859 nr_reclaimed += shrink_list(lru, nr_to_scan,
9e3b2f8c 1860 mz, sc);
b69408e8 1861 }
1da177e4 1862 }
a79311c1
RR
1863 /*
1864 * On large memory systems, scan >> priority can become
1865 * really large. This is fine for the starting priority;
1866 * we want to put equal scanning pressure on each zone.
1867 * However, if the VM has a harder time of freeing pages,
1868 * with multiple processes reclaiming pages, the total
1869 * freeing target can get unreasonably large.
1870 */
9e3b2f8c
KK
1871 if (nr_reclaimed >= nr_to_reclaim &&
1872 sc->priority < DEF_PRIORITY)
a79311c1 1873 break;
1da177e4 1874 }
3da367c3 1875 blk_finish_plug(&plug);
3e7d3449 1876 sc->nr_reclaimed += nr_reclaimed;
01dbe5c9 1877
556adecb
RR
1878 /*
1879 * Even if we did not try to evict anon pages at all, we want to
1880 * rebalance the anon lru active/inactive ratio.
1881 */
f16015fb 1882 if (inactive_anon_is_low(mz))
3cb99451 1883 shrink_active_list(SWAP_CLUSTER_MAX, mz,
9e3b2f8c 1884 sc, LRU_ACTIVE_ANON);
556adecb 1885
3e7d3449 1886 /* reclaim/compaction might need reclaim to continue */
f16015fb 1887 if (should_continue_reclaim(mz, nr_reclaimed,
9e3b2f8c 1888 sc->nr_scanned - nr_scanned, sc))
3e7d3449
MG
1889 goto restart;
1890
232ea4d6 1891 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1892}
1893
9e3b2f8c 1894static void shrink_zone(struct zone *zone, struct scan_control *sc)
f16015fb 1895{
5660048c
JW
1896 struct mem_cgroup *root = sc->target_mem_cgroup;
1897 struct mem_cgroup_reclaim_cookie reclaim = {
f16015fb 1898 .zone = zone,
9e3b2f8c 1899 .priority = sc->priority,
f16015fb 1900 };
5660048c
JW
1901 struct mem_cgroup *memcg;
1902
5660048c
JW
1903 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1904 do {
1905 struct mem_cgroup_zone mz = {
1906 .mem_cgroup = memcg,
1907 .zone = zone,
1908 };
f16015fb 1909
9e3b2f8c 1910 shrink_mem_cgroup_zone(&mz, sc);
5660048c
JW
1911 /*
1912 * Limit reclaim has historically picked one memcg and
1913 * scanned it with decreasing priority levels until
1914 * nr_to_reclaim had been reclaimed. This priority
1915 * cycle is thus over after a single memcg.
b95a2f2d
JW
1916 *
1917 * Direct reclaim and kswapd, on the other hand, have
1918 * to scan all memory cgroups to fulfill the overall
1919 * scan target for the zone.
5660048c
JW
1920 */
1921 if (!global_reclaim(sc)) {
1922 mem_cgroup_iter_break(root, memcg);
1923 break;
1924 }
1925 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1926 } while (memcg);
f16015fb
JW
1927}
1928
fe4b1b24
MG
1929/* Returns true if compaction should go ahead for a high-order request */
1930static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1931{
1932 unsigned long balance_gap, watermark;
1933 bool watermark_ok;
1934
1935 /* Do not consider compaction for orders reclaim is meant to satisfy */
1936 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1937 return false;
1938
1939 /*
1940 * Compaction takes time to run and there are potentially other
1941 * callers using the pages just freed. Continue reclaiming until
1942 * there is a buffer of free pages available to give compaction
1943 * a reasonable chance of completing and allocating the page
1944 */
1945 balance_gap = min(low_wmark_pages(zone),
1946 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1947 KSWAPD_ZONE_BALANCE_GAP_RATIO);
1948 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1949 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1950
1951 /*
1952 * If compaction is deferred, reclaim up to a point where
1953 * compaction will have a chance of success when re-enabled
1954 */
aff62249 1955 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
1956 return watermark_ok;
1957
1958 /* If compaction is not ready to start, keep reclaiming */
1959 if (!compaction_suitable(zone, sc->order))
1960 return false;
1961
1962 return watermark_ok;
1963}
1964
1da177e4
LT
1965/*
1966 * This is the direct reclaim path, for page-allocating processes. We only
1967 * try to reclaim pages from zones which will satisfy the caller's allocation
1968 * request.
1969 *
41858966
MG
1970 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1971 * Because:
1da177e4
LT
1972 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1973 * allocation or
41858966
MG
1974 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1975 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1976 * zone defense algorithm.
1da177e4 1977 *
1da177e4
LT
1978 * If a zone is deemed to be full of pinned pages then just give it a light
1979 * scan then give up on it.
e0c23279
MG
1980 *
1981 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 1982 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
1983 * the caller that it should consider retrying the allocation instead of
1984 * further reclaim.
1da177e4 1985 */
9e3b2f8c 1986static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 1987{
dd1a239f 1988 struct zoneref *z;
54a6eb5c 1989 struct zone *zone;
d149e3b2
YH
1990 unsigned long nr_soft_reclaimed;
1991 unsigned long nr_soft_scanned;
0cee34fd 1992 bool aborted_reclaim = false;
1cfb419b 1993
cc715d99
MG
1994 /*
1995 * If the number of buffer_heads in the machine exceeds the maximum
1996 * allowed level, force direct reclaim to scan the highmem zone as
1997 * highmem pages could be pinning lowmem pages storing buffer_heads
1998 */
1999 if (buffer_heads_over_limit)
2000 sc->gfp_mask |= __GFP_HIGHMEM;
2001
d4debc66
MG
2002 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2003 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2004 if (!populated_zone(zone))
1da177e4 2005 continue;
1cfb419b
KH
2006 /*
2007 * Take care memory controller reclaiming has small influence
2008 * to global LRU.
2009 */
89b5fae5 2010 if (global_reclaim(sc)) {
1cfb419b
KH
2011 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2012 continue;
9e3b2f8c
KK
2013 if (zone->all_unreclaimable &&
2014 sc->priority != DEF_PRIORITY)
1cfb419b 2015 continue; /* Let kswapd poll it */
e0887c19
RR
2016 if (COMPACTION_BUILD) {
2017 /*
e0c23279
MG
2018 * If we already have plenty of memory free for
2019 * compaction in this zone, don't free any more.
2020 * Even though compaction is invoked for any
2021 * non-zero order, only frequent costly order
2022 * reclamation is disruptive enough to become a
c7cfa37b
CA
2023 * noticeable problem, like transparent huge
2024 * page allocations.
e0887c19 2025 */
fe4b1b24 2026 if (compaction_ready(zone, sc)) {
0cee34fd 2027 aborted_reclaim = true;
e0887c19 2028 continue;
e0c23279 2029 }
e0887c19 2030 }
ac34a1a3
KH
2031 /*
2032 * This steals pages from memory cgroups over softlimit
2033 * and returns the number of reclaimed pages and
2034 * scanned pages. This works for global memory pressure
2035 * and balancing, not for a memcg's limit.
2036 */
2037 nr_soft_scanned = 0;
2038 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2039 sc->order, sc->gfp_mask,
2040 &nr_soft_scanned);
2041 sc->nr_reclaimed += nr_soft_reclaimed;
2042 sc->nr_scanned += nr_soft_scanned;
2043 /* need some check for avoid more shrink_zone() */
1cfb419b 2044 }
408d8544 2045
9e3b2f8c 2046 shrink_zone(zone, sc);
1da177e4 2047 }
e0c23279 2048
0cee34fd 2049 return aborted_reclaim;
d1908362
MK
2050}
2051
2052static bool zone_reclaimable(struct zone *zone)
2053{
2054 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2055}
2056
929bea7c 2057/* All zones in zonelist are unreclaimable? */
d1908362
MK
2058static bool all_unreclaimable(struct zonelist *zonelist,
2059 struct scan_control *sc)
2060{
2061 struct zoneref *z;
2062 struct zone *zone;
d1908362
MK
2063
2064 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2065 gfp_zone(sc->gfp_mask), sc->nodemask) {
2066 if (!populated_zone(zone))
2067 continue;
2068 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2069 continue;
929bea7c
KM
2070 if (!zone->all_unreclaimable)
2071 return false;
d1908362
MK
2072 }
2073
929bea7c 2074 return true;
1da177e4 2075}
4f98a2fe 2076
1da177e4
LT
2077/*
2078 * This is the main entry point to direct page reclaim.
2079 *
2080 * If a full scan of the inactive list fails to free enough memory then we
2081 * are "out of memory" and something needs to be killed.
2082 *
2083 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2084 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2085 * caller can't do much about. We kick the writeback threads and take explicit
2086 * naps in the hope that some of these pages can be written. But if the
2087 * allocating task holds filesystem locks which prevent writeout this might not
2088 * work, and the allocation attempt will fail.
a41f24ea
NA
2089 *
2090 * returns: 0, if no pages reclaimed
2091 * else, the number of pages reclaimed
1da177e4 2092 */
dac1d27b 2093static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2094 struct scan_control *sc,
2095 struct shrink_control *shrink)
1da177e4 2096{
69e05944 2097 unsigned long total_scanned = 0;
1da177e4 2098 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2099 struct zoneref *z;
54a6eb5c 2100 struct zone *zone;
22fba335 2101 unsigned long writeback_threshold;
0cee34fd 2102 bool aborted_reclaim;
1da177e4 2103
873b4771
KK
2104 delayacct_freepages_start();
2105
89b5fae5 2106 if (global_reclaim(sc))
1cfb419b 2107 count_vm_event(ALLOCSTALL);
1da177e4 2108
9e3b2f8c 2109 do {
66e1707b 2110 sc->nr_scanned = 0;
9e3b2f8c 2111 aborted_reclaim = shrink_zones(zonelist, sc);
e0c23279 2112
66e1707b
BS
2113 /*
2114 * Don't shrink slabs when reclaiming memory from
2115 * over limit cgroups
2116 */
89b5fae5 2117 if (global_reclaim(sc)) {
c6a8a8c5 2118 unsigned long lru_pages = 0;
d4debc66
MG
2119 for_each_zone_zonelist(zone, z, zonelist,
2120 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2121 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2122 continue;
2123
2124 lru_pages += zone_reclaimable_pages(zone);
2125 }
2126
1495f230 2127 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2128 if (reclaim_state) {
a79311c1 2129 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2130 reclaim_state->reclaimed_slab = 0;
2131 }
1da177e4 2132 }
66e1707b 2133 total_scanned += sc->nr_scanned;
bb21c7ce 2134 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2135 goto out;
1da177e4
LT
2136
2137 /*
2138 * Try to write back as many pages as we just scanned. This
2139 * tends to cause slow streaming writers to write data to the
2140 * disk smoothly, at the dirtying rate, which is nice. But
2141 * that's undesirable in laptop mode, where we *want* lumpy
2142 * writeout. So in laptop mode, write out the whole world.
2143 */
22fba335
KM
2144 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2145 if (total_scanned > writeback_threshold) {
0e175a18
CW
2146 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2147 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2148 sc->may_writepage = 1;
1da177e4
LT
2149 }
2150
2151 /* Take a nap, wait for some writeback to complete */
7b51755c 2152 if (!sc->hibernation_mode && sc->nr_scanned &&
9e3b2f8c 2153 sc->priority < DEF_PRIORITY - 2) {
0e093d99
MG
2154 struct zone *preferred_zone;
2155
2156 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2157 &cpuset_current_mems_allowed,
2158 &preferred_zone);
0e093d99
MG
2159 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2160 }
9e3b2f8c 2161 } while (--sc->priority >= 0);
bb21c7ce 2162
1da177e4 2163out:
873b4771
KK
2164 delayacct_freepages_end();
2165
bb21c7ce
KM
2166 if (sc->nr_reclaimed)
2167 return sc->nr_reclaimed;
2168
929bea7c
KM
2169 /*
2170 * As hibernation is going on, kswapd is freezed so that it can't mark
2171 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2172 * check.
2173 */
2174 if (oom_killer_disabled)
2175 return 0;
2176
0cee34fd
MG
2177 /* Aborted reclaim to try compaction? don't OOM, then */
2178 if (aborted_reclaim)
7335084d
MG
2179 return 1;
2180
bb21c7ce 2181 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2182 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2183 return 1;
2184
2185 return 0;
1da177e4
LT
2186}
2187
dac1d27b 2188unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2189 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2190{
33906bc5 2191 unsigned long nr_reclaimed;
66e1707b
BS
2192 struct scan_control sc = {
2193 .gfp_mask = gfp_mask,
2194 .may_writepage = !laptop_mode,
22fba335 2195 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2196 .may_unmap = 1,
2e2e4259 2197 .may_swap = 1,
66e1707b 2198 .order = order,
9e3b2f8c 2199 .priority = DEF_PRIORITY,
f16015fb 2200 .target_mem_cgroup = NULL,
327c0e96 2201 .nodemask = nodemask,
66e1707b 2202 };
a09ed5e0
YH
2203 struct shrink_control shrink = {
2204 .gfp_mask = sc.gfp_mask,
2205 };
66e1707b 2206
33906bc5
MG
2207 trace_mm_vmscan_direct_reclaim_begin(order,
2208 sc.may_writepage,
2209 gfp_mask);
2210
a09ed5e0 2211 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2212
2213 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2214
2215 return nr_reclaimed;
66e1707b
BS
2216}
2217
00f0b825 2218#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 2219
72835c86 2220unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2221 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2222 struct zone *zone,
2223 unsigned long *nr_scanned)
4e416953
BS
2224{
2225 struct scan_control sc = {
0ae5e89c 2226 .nr_scanned = 0,
b8f5c566 2227 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2228 .may_writepage = !laptop_mode,
2229 .may_unmap = 1,
2230 .may_swap = !noswap,
4e416953 2231 .order = 0,
9e3b2f8c 2232 .priority = 0,
72835c86 2233 .target_mem_cgroup = memcg,
4e416953 2234 };
5660048c 2235 struct mem_cgroup_zone mz = {
72835c86 2236 .mem_cgroup = memcg,
5660048c
JW
2237 .zone = zone,
2238 };
0ae5e89c 2239
4e416953
BS
2240 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2241 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2242
9e3b2f8c 2243 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2244 sc.may_writepage,
2245 sc.gfp_mask);
2246
4e416953
BS
2247 /*
2248 * NOTE: Although we can get the priority field, using it
2249 * here is not a good idea, since it limits the pages we can scan.
2250 * if we don't reclaim here, the shrink_zone from balance_pgdat
2251 * will pick up pages from other mem cgroup's as well. We hack
2252 * the priority and make it zero.
2253 */
9e3b2f8c 2254 shrink_mem_cgroup_zone(&mz, &sc);
bdce6d9e
KM
2255
2256 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2257
0ae5e89c 2258 *nr_scanned = sc.nr_scanned;
4e416953
BS
2259 return sc.nr_reclaimed;
2260}
2261
72835c86 2262unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2263 gfp_t gfp_mask,
185efc0f 2264 bool noswap)
66e1707b 2265{
4e416953 2266 struct zonelist *zonelist;
bdce6d9e 2267 unsigned long nr_reclaimed;
889976db 2268 int nid;
66e1707b 2269 struct scan_control sc = {
66e1707b 2270 .may_writepage = !laptop_mode,
a6dc60f8 2271 .may_unmap = 1,
2e2e4259 2272 .may_swap = !noswap,
22fba335 2273 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2274 .order = 0,
9e3b2f8c 2275 .priority = DEF_PRIORITY,
72835c86 2276 .target_mem_cgroup = memcg,
327c0e96 2277 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2278 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2279 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2280 };
2281 struct shrink_control shrink = {
2282 .gfp_mask = sc.gfp_mask,
66e1707b 2283 };
66e1707b 2284
889976db
YH
2285 /*
2286 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2287 * take care of from where we get pages. So the node where we start the
2288 * scan does not need to be the current node.
2289 */
72835c86 2290 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2291
2292 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2293
2294 trace_mm_vmscan_memcg_reclaim_begin(0,
2295 sc.may_writepage,
2296 sc.gfp_mask);
2297
a09ed5e0 2298 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2299
2300 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2301
2302 return nr_reclaimed;
66e1707b
BS
2303}
2304#endif
2305
9e3b2f8c 2306static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2307{
b95a2f2d 2308 struct mem_cgroup *memcg;
f16015fb 2309
b95a2f2d
JW
2310 if (!total_swap_pages)
2311 return;
2312
2313 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2314 do {
2315 struct mem_cgroup_zone mz = {
2316 .mem_cgroup = memcg,
2317 .zone = zone,
2318 };
2319
2320 if (inactive_anon_is_low(&mz))
2321 shrink_active_list(SWAP_CLUSTER_MAX, &mz,
9e3b2f8c 2322 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2323
2324 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2325 } while (memcg);
f16015fb
JW
2326}
2327
1741c877
MG
2328/*
2329 * pgdat_balanced is used when checking if a node is balanced for high-order
2330 * allocations. Only zones that meet watermarks and are in a zone allowed
2331 * by the callers classzone_idx are added to balanced_pages. The total of
2332 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2333 * for the node to be considered balanced. Forcing all zones to be balanced
2334 * for high orders can cause excessive reclaim when there are imbalanced zones.
2335 * The choice of 25% is due to
2336 * o a 16M DMA zone that is balanced will not balance a zone on any
2337 * reasonable sized machine
2338 * o On all other machines, the top zone must be at least a reasonable
25985edc 2339 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2340 * would need to be at least 256M for it to be balance a whole node.
2341 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2342 * to balance a node on its own. These seemed like reasonable ratios.
2343 */
2344static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2345 int classzone_idx)
2346{
2347 unsigned long present_pages = 0;
2348 int i;
2349
2350 for (i = 0; i <= classzone_idx; i++)
2351 present_pages += pgdat->node_zones[i].present_pages;
2352
4746efde
SL
2353 /* A special case here: if zone has no page, we think it's balanced */
2354 return balanced_pages >= (present_pages >> 2);
1741c877
MG
2355}
2356
f50de2d3 2357/* is kswapd sleeping prematurely? */
dc83edd9
MG
2358static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2359 int classzone_idx)
f50de2d3 2360{
bb3ab596 2361 int i;
1741c877
MG
2362 unsigned long balanced = 0;
2363 bool all_zones_ok = true;
f50de2d3
MG
2364
2365 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2366 if (remaining)
dc83edd9 2367 return true;
f50de2d3 2368
0abdee2b 2369 /* Check the watermark levels */
08951e54 2370 for (i = 0; i <= classzone_idx; i++) {
bb3ab596
KM
2371 struct zone *zone = pgdat->node_zones + i;
2372
2373 if (!populated_zone(zone))
2374 continue;
2375
355b09c4
MG
2376 /*
2377 * balance_pgdat() skips over all_unreclaimable after
2378 * DEF_PRIORITY. Effectively, it considers them balanced so
2379 * they must be considered balanced here as well if kswapd
2380 * is to sleep
2381 */
2382 if (zone->all_unreclaimable) {
2383 balanced += zone->present_pages;
de3fab39 2384 continue;
355b09c4 2385 }
de3fab39 2386
88f5acf8 2387 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
da175d06 2388 i, 0))
1741c877
MG
2389 all_zones_ok = false;
2390 else
2391 balanced += zone->present_pages;
bb3ab596 2392 }
f50de2d3 2393
1741c877
MG
2394 /*
2395 * For high-order requests, the balanced zones must contain at least
2396 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2397 * must be balanced
2398 */
2399 if (order)
afc7e326 2400 return !pgdat_balanced(pgdat, balanced, classzone_idx);
1741c877
MG
2401 else
2402 return !all_zones_ok;
f50de2d3
MG
2403}
2404
1da177e4
LT
2405/*
2406 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2407 * they are all at high_wmark_pages(zone).
1da177e4 2408 *
0abdee2b 2409 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2410 *
2411 * There is special handling here for zones which are full of pinned pages.
2412 * This can happen if the pages are all mlocked, or if they are all used by
2413 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2414 * What we do is to detect the case where all pages in the zone have been
2415 * scanned twice and there has been zero successful reclaim. Mark the zone as
2416 * dead and from now on, only perform a short scan. Basically we're polling
2417 * the zone for when the problem goes away.
2418 *
2419 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2420 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2421 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2422 * lower zones regardless of the number of free pages in the lower zones. This
2423 * interoperates with the page allocator fallback scheme to ensure that aging
2424 * of pages is balanced across the zones.
1da177e4 2425 */
99504748 2426static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2427 int *classzone_idx)
1da177e4 2428{
1da177e4 2429 int all_zones_ok;
1741c877 2430 unsigned long balanced;
1da177e4 2431 int i;
99504748 2432 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
69e05944 2433 unsigned long total_scanned;
1da177e4 2434 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2435 unsigned long nr_soft_reclaimed;
2436 unsigned long nr_soft_scanned;
179e9639
AM
2437 struct scan_control sc = {
2438 .gfp_mask = GFP_KERNEL,
a6dc60f8 2439 .may_unmap = 1,
2e2e4259 2440 .may_swap = 1,
22fba335
KM
2441 /*
2442 * kswapd doesn't want to be bailed out while reclaim. because
2443 * we want to put equal scanning pressure on each zone.
2444 */
2445 .nr_to_reclaim = ULONG_MAX,
5ad333eb 2446 .order = order,
f16015fb 2447 .target_mem_cgroup = NULL,
179e9639 2448 };
a09ed5e0
YH
2449 struct shrink_control shrink = {
2450 .gfp_mask = sc.gfp_mask,
2451 };
1da177e4
LT
2452loop_again:
2453 total_scanned = 0;
9e3b2f8c 2454 sc.priority = DEF_PRIORITY;
a79311c1 2455 sc.nr_reclaimed = 0;
c0bbbc73 2456 sc.may_writepage = !laptop_mode;
f8891e5e 2457 count_vm_event(PAGEOUTRUN);
1da177e4 2458
9e3b2f8c 2459 do {
1da177e4 2460 unsigned long lru_pages = 0;
bb3ab596 2461 int has_under_min_watermark_zone = 0;
1da177e4
LT
2462
2463 all_zones_ok = 1;
1741c877 2464 balanced = 0;
1da177e4 2465
d6277db4
RW
2466 /*
2467 * Scan in the highmem->dma direction for the highest
2468 * zone which needs scanning
2469 */
2470 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2471 struct zone *zone = pgdat->node_zones + i;
1da177e4 2472
d6277db4
RW
2473 if (!populated_zone(zone))
2474 continue;
1da177e4 2475
9e3b2f8c
KK
2476 if (zone->all_unreclaimable &&
2477 sc.priority != DEF_PRIORITY)
d6277db4 2478 continue;
1da177e4 2479
556adecb
RR
2480 /*
2481 * Do some background aging of the anon list, to give
2482 * pages a chance to be referenced before reclaiming.
2483 */
9e3b2f8c 2484 age_active_anon(zone, &sc);
556adecb 2485
cc715d99
MG
2486 /*
2487 * If the number of buffer_heads in the machine
2488 * exceeds the maximum allowed level and this node
2489 * has a highmem zone, force kswapd to reclaim from
2490 * it to relieve lowmem pressure.
2491 */
2492 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2493 end_zone = i;
2494 break;
2495 }
2496
88f5acf8 2497 if (!zone_watermark_ok_safe(zone, order,
41858966 2498 high_wmark_pages(zone), 0, 0)) {
d6277db4 2499 end_zone = i;
e1dbeda6 2500 break;
439423f6
SL
2501 } else {
2502 /* If balanced, clear the congested flag */
2503 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2504 }
1da177e4 2505 }
e1dbeda6
AM
2506 if (i < 0)
2507 goto out;
2508
1da177e4
LT
2509 for (i = 0; i <= end_zone; i++) {
2510 struct zone *zone = pgdat->node_zones + i;
2511
adea02a1 2512 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2513 }
2514
2515 /*
2516 * Now scan the zone in the dma->highmem direction, stopping
2517 * at the last zone which needs scanning.
2518 *
2519 * We do this because the page allocator works in the opposite
2520 * direction. This prevents the page allocator from allocating
2521 * pages behind kswapd's direction of progress, which would
2522 * cause too much scanning of the lower zones.
2523 */
2524 for (i = 0; i <= end_zone; i++) {
2525 struct zone *zone = pgdat->node_zones + i;
fe2c2a10 2526 int nr_slab, testorder;
8afdcece 2527 unsigned long balance_gap;
1da177e4 2528
f3fe6512 2529 if (!populated_zone(zone))
1da177e4
LT
2530 continue;
2531
9e3b2f8c
KK
2532 if (zone->all_unreclaimable &&
2533 sc.priority != DEF_PRIORITY)
1da177e4
LT
2534 continue;
2535
1da177e4 2536 sc.nr_scanned = 0;
4e416953 2537
0ae5e89c 2538 nr_soft_scanned = 0;
4e416953
BS
2539 /*
2540 * Call soft limit reclaim before calling shrink_zone.
4e416953 2541 */
0ae5e89c
YH
2542 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2543 order, sc.gfp_mask,
2544 &nr_soft_scanned);
2545 sc.nr_reclaimed += nr_soft_reclaimed;
2546 total_scanned += nr_soft_scanned;
00918b6a 2547
32a4330d 2548 /*
8afdcece
MG
2549 * We put equal pressure on every zone, unless
2550 * one zone has way too many pages free
2551 * already. The "too many pages" is defined
2552 * as the high wmark plus a "gap" where the
2553 * gap is either the low watermark or 1%
2554 * of the zone, whichever is smaller.
32a4330d 2555 */
8afdcece
MG
2556 balance_gap = min(low_wmark_pages(zone),
2557 (zone->present_pages +
2558 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2559 KSWAPD_ZONE_BALANCE_GAP_RATIO);
fe2c2a10
RR
2560 /*
2561 * Kswapd reclaims only single pages with compaction
2562 * enabled. Trying too hard to reclaim until contiguous
2563 * free pages have become available can hurt performance
2564 * by evicting too much useful data from memory.
2565 * Do not reclaim more than needed for compaction.
2566 */
2567 testorder = order;
2568 if (COMPACTION_BUILD && order &&
2569 compaction_suitable(zone, order) !=
2570 COMPACT_SKIPPED)
2571 testorder = 0;
2572
cc715d99 2573 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
643ac9fc 2574 !zone_watermark_ok_safe(zone, testorder,
8afdcece 2575 high_wmark_pages(zone) + balance_gap,
d7868dae 2576 end_zone, 0)) {
9e3b2f8c 2577 shrink_zone(zone, &sc);
5a03b051 2578
d7868dae
MG
2579 reclaim_state->reclaimed_slab = 0;
2580 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2581 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2582 total_scanned += sc.nr_scanned;
2583
2584 if (nr_slab == 0 && !zone_reclaimable(zone))
2585 zone->all_unreclaimable = 1;
2586 }
2587
1da177e4
LT
2588 /*
2589 * If we've done a decent amount of scanning and
2590 * the reclaim ratio is low, start doing writepage
2591 * even in laptop mode
2592 */
2593 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2594 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2595 sc.may_writepage = 1;
bb3ab596 2596
215ddd66
MG
2597 if (zone->all_unreclaimable) {
2598 if (end_zone && end_zone == i)
2599 end_zone--;
d7868dae 2600 continue;
215ddd66 2601 }
d7868dae 2602
fe2c2a10 2603 if (!zone_watermark_ok_safe(zone, testorder,
45973d74
MK
2604 high_wmark_pages(zone), end_zone, 0)) {
2605 all_zones_ok = 0;
2606 /*
2607 * We are still under min water mark. This
2608 * means that we have a GFP_ATOMIC allocation
2609 * failure risk. Hurry up!
2610 */
88f5acf8 2611 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2612 min_wmark_pages(zone), end_zone, 0))
2613 has_under_min_watermark_zone = 1;
0e093d99
MG
2614 } else {
2615 /*
2616 * If a zone reaches its high watermark,
2617 * consider it to be no longer congested. It's
2618 * possible there are dirty pages backed by
2619 * congested BDIs but as pressure is relieved,
2620 * spectulatively avoid congestion waits
2621 */
2622 zone_clear_flag(zone, ZONE_CONGESTED);
dc83edd9 2623 if (i <= *classzone_idx)
1741c877 2624 balanced += zone->present_pages;
45973d74 2625 }
bb3ab596 2626
1da177e4 2627 }
dc83edd9 2628 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
1da177e4
LT
2629 break; /* kswapd: all done */
2630 /*
2631 * OK, kswapd is getting into trouble. Take a nap, then take
2632 * another pass across the zones.
2633 */
9e3b2f8c 2634 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
bb3ab596
KM
2635 if (has_under_min_watermark_zone)
2636 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2637 else
2638 congestion_wait(BLK_RW_ASYNC, HZ/10);
2639 }
1da177e4
LT
2640
2641 /*
2642 * We do this so kswapd doesn't build up large priorities for
2643 * example when it is freeing in parallel with allocators. It
2644 * matches the direct reclaim path behaviour in terms of impact
2645 * on zone->*_priority.
2646 */
a79311c1 2647 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4 2648 break;
9e3b2f8c 2649 } while (--sc.priority >= 0);
1da177e4 2650out:
99504748
MG
2651
2652 /*
2653 * order-0: All zones must meet high watermark for a balanced node
1741c877
MG
2654 * high-order: Balanced zones must make up at least 25% of the node
2655 * for the node to be balanced
99504748 2656 */
dc83edd9 2657 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
1da177e4 2658 cond_resched();
8357376d
RW
2659
2660 try_to_freeze();
2661
73ce02e9
KM
2662 /*
2663 * Fragmentation may mean that the system cannot be
2664 * rebalanced for high-order allocations in all zones.
2665 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2666 * it means the zones have been fully scanned and are still
2667 * not balanced. For high-order allocations, there is
2668 * little point trying all over again as kswapd may
2669 * infinite loop.
2670 *
2671 * Instead, recheck all watermarks at order-0 as they
2672 * are the most important. If watermarks are ok, kswapd will go
2673 * back to sleep. High-order users can still perform direct
2674 * reclaim if they wish.
2675 */
2676 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2677 order = sc.order = 0;
2678
1da177e4
LT
2679 goto loop_again;
2680 }
2681
99504748
MG
2682 /*
2683 * If kswapd was reclaiming at a higher order, it has the option of
2684 * sleeping without all zones being balanced. Before it does, it must
2685 * ensure that the watermarks for order-0 on *all* zones are met and
2686 * that the congestion flags are cleared. The congestion flag must
2687 * be cleared as kswapd is the only mechanism that clears the flag
2688 * and it is potentially going to sleep here.
2689 */
2690 if (order) {
7be62de9
RR
2691 int zones_need_compaction = 1;
2692
99504748
MG
2693 for (i = 0; i <= end_zone; i++) {
2694 struct zone *zone = pgdat->node_zones + i;
2695
2696 if (!populated_zone(zone))
2697 continue;
2698
9e3b2f8c
KK
2699 if (zone->all_unreclaimable &&
2700 sc.priority != DEF_PRIORITY)
99504748
MG
2701 continue;
2702
fe2c2a10 2703 /* Would compaction fail due to lack of free memory? */
496b919b
RR
2704 if (COMPACTION_BUILD &&
2705 compaction_suitable(zone, order) == COMPACT_SKIPPED)
fe2c2a10
RR
2706 goto loop_again;
2707
99504748
MG
2708 /* Confirm the zone is balanced for order-0 */
2709 if (!zone_watermark_ok(zone, 0,
2710 high_wmark_pages(zone), 0, 0)) {
2711 order = sc.order = 0;
2712 goto loop_again;
2713 }
2714
7be62de9
RR
2715 /* Check if the memory needs to be defragmented. */
2716 if (zone_watermark_ok(zone, order,
2717 low_wmark_pages(zone), *classzone_idx, 0))
2718 zones_need_compaction = 0;
2719
99504748
MG
2720 /* If balanced, clear the congested flag */
2721 zone_clear_flag(zone, ZONE_CONGESTED);
2722 }
7be62de9
RR
2723
2724 if (zones_need_compaction)
2725 compact_pgdat(pgdat, order);
99504748
MG
2726 }
2727
0abdee2b
MG
2728 /*
2729 * Return the order we were reclaiming at so sleeping_prematurely()
2730 * makes a decision on the order we were last reclaiming at. However,
2731 * if another caller entered the allocator slow path while kswapd
2732 * was awake, order will remain at the higher level
2733 */
dc83edd9 2734 *classzone_idx = end_zone;
0abdee2b 2735 return order;
1da177e4
LT
2736}
2737
dc83edd9 2738static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
2739{
2740 long remaining = 0;
2741 DEFINE_WAIT(wait);
2742
2743 if (freezing(current) || kthread_should_stop())
2744 return;
2745
2746 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2747
2748 /* Try to sleep for a short interval */
dc83edd9 2749 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2750 remaining = schedule_timeout(HZ/10);
2751 finish_wait(&pgdat->kswapd_wait, &wait);
2752 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2753 }
2754
2755 /*
2756 * After a short sleep, check if it was a premature sleep. If not, then
2757 * go fully to sleep until explicitly woken up.
2758 */
dc83edd9 2759 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2760 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2761
2762 /*
2763 * vmstat counters are not perfectly accurate and the estimated
2764 * value for counters such as NR_FREE_PAGES can deviate from the
2765 * true value by nr_online_cpus * threshold. To avoid the zone
2766 * watermarks being breached while under pressure, we reduce the
2767 * per-cpu vmstat threshold while kswapd is awake and restore
2768 * them before going back to sleep.
2769 */
2770 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2771 schedule();
2772 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2773 } else {
2774 if (remaining)
2775 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2776 else
2777 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2778 }
2779 finish_wait(&pgdat->kswapd_wait, &wait);
2780}
2781
1da177e4
LT
2782/*
2783 * The background pageout daemon, started as a kernel thread
4f98a2fe 2784 * from the init process.
1da177e4
LT
2785 *
2786 * This basically trickles out pages so that we have _some_
2787 * free memory available even if there is no other activity
2788 * that frees anything up. This is needed for things like routing
2789 * etc, where we otherwise might have all activity going on in
2790 * asynchronous contexts that cannot page things out.
2791 *
2792 * If there are applications that are active memory-allocators
2793 * (most normal use), this basically shouldn't matter.
2794 */
2795static int kswapd(void *p)
2796{
215ddd66 2797 unsigned long order, new_order;
d2ebd0f6 2798 unsigned balanced_order;
215ddd66 2799 int classzone_idx, new_classzone_idx;
d2ebd0f6 2800 int balanced_classzone_idx;
1da177e4
LT
2801 pg_data_t *pgdat = (pg_data_t*)p;
2802 struct task_struct *tsk = current;
f0bc0a60 2803
1da177e4
LT
2804 struct reclaim_state reclaim_state = {
2805 .reclaimed_slab = 0,
2806 };
a70f7302 2807 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2808
cf40bd16
NP
2809 lockdep_set_current_reclaim_state(GFP_KERNEL);
2810
174596a0 2811 if (!cpumask_empty(cpumask))
c5f59f08 2812 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2813 current->reclaim_state = &reclaim_state;
2814
2815 /*
2816 * Tell the memory management that we're a "memory allocator",
2817 * and that if we need more memory we should get access to it
2818 * regardless (see "__alloc_pages()"). "kswapd" should
2819 * never get caught in the normal page freeing logic.
2820 *
2821 * (Kswapd normally doesn't need memory anyway, but sometimes
2822 * you need a small amount of memory in order to be able to
2823 * page out something else, and this flag essentially protects
2824 * us from recursively trying to free more memory as we're
2825 * trying to free the first piece of memory in the first place).
2826 */
930d9152 2827 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2828 set_freezable();
1da177e4 2829
215ddd66 2830 order = new_order = 0;
d2ebd0f6 2831 balanced_order = 0;
215ddd66 2832 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 2833 balanced_classzone_idx = classzone_idx;
1da177e4 2834 for ( ; ; ) {
8fe23e05 2835 int ret;
3e1d1d28 2836
215ddd66
MG
2837 /*
2838 * If the last balance_pgdat was unsuccessful it's unlikely a
2839 * new request of a similar or harder type will succeed soon
2840 * so consider going to sleep on the basis we reclaimed at
2841 */
d2ebd0f6
AS
2842 if (balanced_classzone_idx >= new_classzone_idx &&
2843 balanced_order == new_order) {
215ddd66
MG
2844 new_order = pgdat->kswapd_max_order;
2845 new_classzone_idx = pgdat->classzone_idx;
2846 pgdat->kswapd_max_order = 0;
2847 pgdat->classzone_idx = pgdat->nr_zones - 1;
2848 }
2849
99504748 2850 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
2851 /*
2852 * Don't sleep if someone wants a larger 'order'
99504748 2853 * allocation or has tigher zone constraints
1da177e4
LT
2854 */
2855 order = new_order;
99504748 2856 classzone_idx = new_classzone_idx;
1da177e4 2857 } else {
d2ebd0f6
AS
2858 kswapd_try_to_sleep(pgdat, balanced_order,
2859 balanced_classzone_idx);
1da177e4 2860 order = pgdat->kswapd_max_order;
99504748 2861 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
2862 new_order = order;
2863 new_classzone_idx = classzone_idx;
4d40502e 2864 pgdat->kswapd_max_order = 0;
215ddd66 2865 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 2866 }
1da177e4 2867
8fe23e05
DR
2868 ret = try_to_freeze();
2869 if (kthread_should_stop())
2870 break;
2871
2872 /*
2873 * We can speed up thawing tasks if we don't call balance_pgdat
2874 * after returning from the refrigerator
2875 */
33906bc5
MG
2876 if (!ret) {
2877 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
2878 balanced_classzone_idx = classzone_idx;
2879 balanced_order = balance_pgdat(pgdat, order,
2880 &balanced_classzone_idx);
33906bc5 2881 }
1da177e4
LT
2882 }
2883 return 0;
2884}
2885
2886/*
2887 * A zone is low on free memory, so wake its kswapd task to service it.
2888 */
99504748 2889void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
2890{
2891 pg_data_t *pgdat;
2892
f3fe6512 2893 if (!populated_zone(zone))
1da177e4
LT
2894 return;
2895
88f5acf8 2896 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2897 return;
88f5acf8 2898 pgdat = zone->zone_pgdat;
99504748 2899 if (pgdat->kswapd_max_order < order) {
1da177e4 2900 pgdat->kswapd_max_order = order;
99504748
MG
2901 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2902 }
8d0986e2 2903 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2904 return;
88f5acf8
MG
2905 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2906 return;
2907
2908 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 2909 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2910}
2911
adea02a1
WF
2912/*
2913 * The reclaimable count would be mostly accurate.
2914 * The less reclaimable pages may be
2915 * - mlocked pages, which will be moved to unevictable list when encountered
2916 * - mapped pages, which may require several travels to be reclaimed
2917 * - dirty pages, which is not "instantly" reclaimable
2918 */
2919unsigned long global_reclaimable_pages(void)
4f98a2fe 2920{
adea02a1
WF
2921 int nr;
2922
2923 nr = global_page_state(NR_ACTIVE_FILE) +
2924 global_page_state(NR_INACTIVE_FILE);
2925
2926 if (nr_swap_pages > 0)
2927 nr += global_page_state(NR_ACTIVE_ANON) +
2928 global_page_state(NR_INACTIVE_ANON);
2929
2930 return nr;
2931}
2932
2933unsigned long zone_reclaimable_pages(struct zone *zone)
2934{
2935 int nr;
2936
2937 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2938 zone_page_state(zone, NR_INACTIVE_FILE);
2939
2940 if (nr_swap_pages > 0)
2941 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2942 zone_page_state(zone, NR_INACTIVE_ANON);
2943
2944 return nr;
4f98a2fe
RR
2945}
2946
c6f37f12 2947#ifdef CONFIG_HIBERNATION
1da177e4 2948/*
7b51755c 2949 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2950 * freed pages.
2951 *
2952 * Rather than trying to age LRUs the aim is to preserve the overall
2953 * LRU order by reclaiming preferentially
2954 * inactive > active > active referenced > active mapped
1da177e4 2955 */
7b51755c 2956unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2957{
d6277db4 2958 struct reclaim_state reclaim_state;
d6277db4 2959 struct scan_control sc = {
7b51755c
KM
2960 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2961 .may_swap = 1,
2962 .may_unmap = 1,
d6277db4 2963 .may_writepage = 1,
7b51755c
KM
2964 .nr_to_reclaim = nr_to_reclaim,
2965 .hibernation_mode = 1,
7b51755c 2966 .order = 0,
9e3b2f8c 2967 .priority = DEF_PRIORITY,
1da177e4 2968 };
a09ed5e0
YH
2969 struct shrink_control shrink = {
2970 .gfp_mask = sc.gfp_mask,
2971 };
2972 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
2973 struct task_struct *p = current;
2974 unsigned long nr_reclaimed;
1da177e4 2975
7b51755c
KM
2976 p->flags |= PF_MEMALLOC;
2977 lockdep_set_current_reclaim_state(sc.gfp_mask);
2978 reclaim_state.reclaimed_slab = 0;
2979 p->reclaim_state = &reclaim_state;
d6277db4 2980
a09ed5e0 2981 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 2982
7b51755c
KM
2983 p->reclaim_state = NULL;
2984 lockdep_clear_current_reclaim_state();
2985 p->flags &= ~PF_MEMALLOC;
d6277db4 2986
7b51755c 2987 return nr_reclaimed;
1da177e4 2988}
c6f37f12 2989#endif /* CONFIG_HIBERNATION */
1da177e4 2990
1da177e4
LT
2991/* It's optimal to keep kswapds on the same CPUs as their memory, but
2992 not required for correctness. So if the last cpu in a node goes
2993 away, we get changed to run anywhere: as the first one comes back,
2994 restore their cpu bindings. */
9c7b216d 2995static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2996 unsigned long action, void *hcpu)
1da177e4 2997{
58c0a4a7 2998 int nid;
1da177e4 2999
8bb78442 3000 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 3001 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 3002 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3003 const struct cpumask *mask;
3004
3005 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3006
3e597945 3007 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3008 /* One of our CPUs online: restore mask */
c5f59f08 3009 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3010 }
3011 }
3012 return NOTIFY_OK;
3013}
1da177e4 3014
3218ae14
YG
3015/*
3016 * This kswapd start function will be called by init and node-hot-add.
3017 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3018 */
3019int kswapd_run(int nid)
3020{
3021 pg_data_t *pgdat = NODE_DATA(nid);
3022 int ret = 0;
3023
3024 if (pgdat->kswapd)
3025 return 0;
3026
3027 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3028 if (IS_ERR(pgdat->kswapd)) {
3029 /* failure at boot is fatal */
3030 BUG_ON(system_state == SYSTEM_BOOTING);
3031 printk("Failed to start kswapd on node %d\n",nid);
3032 ret = -1;
3033 }
3034 return ret;
3035}
3036
8fe23e05
DR
3037/*
3038 * Called by memory hotplug when all memory in a node is offlined.
3039 */
3040void kswapd_stop(int nid)
3041{
3042 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3043
3044 if (kswapd)
3045 kthread_stop(kswapd);
3046}
3047
1da177e4
LT
3048static int __init kswapd_init(void)
3049{
3218ae14 3050 int nid;
69e05944 3051
1da177e4 3052 swap_setup();
9422ffba 3053 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 3054 kswapd_run(nid);
1da177e4
LT
3055 hotcpu_notifier(cpu_callback, 0);
3056 return 0;
3057}
3058
3059module_init(kswapd_init)
9eeff239
CL
3060
3061#ifdef CONFIG_NUMA
3062/*
3063 * Zone reclaim mode
3064 *
3065 * If non-zero call zone_reclaim when the number of free pages falls below
3066 * the watermarks.
9eeff239
CL
3067 */
3068int zone_reclaim_mode __read_mostly;
3069
1b2ffb78 3070#define RECLAIM_OFF 0
7d03431c 3071#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3072#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3073#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3074
a92f7126
CL
3075/*
3076 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3077 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3078 * a zone.
3079 */
3080#define ZONE_RECLAIM_PRIORITY 4
3081
9614634f
CL
3082/*
3083 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3084 * occur.
3085 */
3086int sysctl_min_unmapped_ratio = 1;
3087
0ff38490
CL
3088/*
3089 * If the number of slab pages in a zone grows beyond this percentage then
3090 * slab reclaim needs to occur.
3091 */
3092int sysctl_min_slab_ratio = 5;
3093
90afa5de
MG
3094static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3095{
3096 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3097 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3098 zone_page_state(zone, NR_ACTIVE_FILE);
3099
3100 /*
3101 * It's possible for there to be more file mapped pages than
3102 * accounted for by the pages on the file LRU lists because
3103 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3104 */
3105 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3106}
3107
3108/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3109static long zone_pagecache_reclaimable(struct zone *zone)
3110{
3111 long nr_pagecache_reclaimable;
3112 long delta = 0;
3113
3114 /*
3115 * If RECLAIM_SWAP is set, then all file pages are considered
3116 * potentially reclaimable. Otherwise, we have to worry about
3117 * pages like swapcache and zone_unmapped_file_pages() provides
3118 * a better estimate
3119 */
3120 if (zone_reclaim_mode & RECLAIM_SWAP)
3121 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3122 else
3123 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3124
3125 /* If we can't clean pages, remove dirty pages from consideration */
3126 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3127 delta += zone_page_state(zone, NR_FILE_DIRTY);
3128
3129 /* Watch for any possible underflows due to delta */
3130 if (unlikely(delta > nr_pagecache_reclaimable))
3131 delta = nr_pagecache_reclaimable;
3132
3133 return nr_pagecache_reclaimable - delta;
3134}
3135
9eeff239
CL
3136/*
3137 * Try to free up some pages from this zone through reclaim.
3138 */
179e9639 3139static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3140{
7fb2d46d 3141 /* Minimum pages needed in order to stay on node */
69e05944 3142 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3143 struct task_struct *p = current;
3144 struct reclaim_state reclaim_state;
179e9639
AM
3145 struct scan_control sc = {
3146 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3147 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3148 .may_swap = 1,
22fba335
KM
3149 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3150 SWAP_CLUSTER_MAX),
179e9639 3151 .gfp_mask = gfp_mask,
bd2f6199 3152 .order = order,
9e3b2f8c 3153 .priority = ZONE_RECLAIM_PRIORITY,
179e9639 3154 };
a09ed5e0
YH
3155 struct shrink_control shrink = {
3156 .gfp_mask = sc.gfp_mask,
3157 };
15748048 3158 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3159
9eeff239 3160 cond_resched();
d4f7796e
CL
3161 /*
3162 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3163 * and we also need to be able to write out pages for RECLAIM_WRITE
3164 * and RECLAIM_SWAP.
3165 */
3166 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3167 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3168 reclaim_state.reclaimed_slab = 0;
3169 p->reclaim_state = &reclaim_state;
c84db23c 3170
90afa5de 3171 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3172 /*
3173 * Free memory by calling shrink zone with increasing
3174 * priorities until we have enough memory freed.
3175 */
0ff38490 3176 do {
9e3b2f8c
KK
3177 shrink_zone(zone, &sc);
3178 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3179 }
c84db23c 3180
15748048
KM
3181 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3182 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3183 /*
7fb2d46d 3184 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3185 * many pages were freed in this zone. So we take the current
3186 * number of slab pages and shake the slab until it is reduced
3187 * by the same nr_pages that we used for reclaiming unmapped
3188 * pages.
2a16e3f4 3189 *
0ff38490
CL
3190 * Note that shrink_slab will free memory on all zones and may
3191 * take a long time.
2a16e3f4 3192 */
4dc4b3d9
KM
3193 for (;;) {
3194 unsigned long lru_pages = zone_reclaimable_pages(zone);
3195
3196 /* No reclaimable slab or very low memory pressure */
1495f230 3197 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3198 break;
3199
3200 /* Freed enough memory */
3201 nr_slab_pages1 = zone_page_state(zone,
3202 NR_SLAB_RECLAIMABLE);
3203 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3204 break;
3205 }
83e33a47
CL
3206
3207 /*
3208 * Update nr_reclaimed by the number of slab pages we
3209 * reclaimed from this zone.
3210 */
15748048
KM
3211 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3212 if (nr_slab_pages1 < nr_slab_pages0)
3213 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3214 }
3215
9eeff239 3216 p->reclaim_state = NULL;
d4f7796e 3217 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3218 lockdep_clear_current_reclaim_state();
a79311c1 3219 return sc.nr_reclaimed >= nr_pages;
9eeff239 3220}
179e9639
AM
3221
3222int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3223{
179e9639 3224 int node_id;
d773ed6b 3225 int ret;
179e9639
AM
3226
3227 /*
0ff38490
CL
3228 * Zone reclaim reclaims unmapped file backed pages and
3229 * slab pages if we are over the defined limits.
34aa1330 3230 *
9614634f
CL
3231 * A small portion of unmapped file backed pages is needed for
3232 * file I/O otherwise pages read by file I/O will be immediately
3233 * thrown out if the zone is overallocated. So we do not reclaim
3234 * if less than a specified percentage of the zone is used by
3235 * unmapped file backed pages.
179e9639 3236 */
90afa5de
MG
3237 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3238 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3239 return ZONE_RECLAIM_FULL;
179e9639 3240
93e4a89a 3241 if (zone->all_unreclaimable)
fa5e084e 3242 return ZONE_RECLAIM_FULL;
d773ed6b 3243
179e9639 3244 /*
d773ed6b 3245 * Do not scan if the allocation should not be delayed.
179e9639 3246 */
d773ed6b 3247 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3248 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3249
3250 /*
3251 * Only run zone reclaim on the local zone or on zones that do not
3252 * have associated processors. This will favor the local processor
3253 * over remote processors and spread off node memory allocations
3254 * as wide as possible.
3255 */
89fa3024 3256 node_id = zone_to_nid(zone);
37c0708d 3257 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3258 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3259
3260 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3261 return ZONE_RECLAIM_NOSCAN;
3262
d773ed6b
DR
3263 ret = __zone_reclaim(zone, gfp_mask, order);
3264 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3265
24cf7251
MG
3266 if (!ret)
3267 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3268
d773ed6b 3269 return ret;
179e9639 3270}
9eeff239 3271#endif
894bc310 3272
894bc310
LS
3273/*
3274 * page_evictable - test whether a page is evictable
3275 * @page: the page to test
3276 * @vma: the VMA in which the page is or will be mapped, may be NULL
3277 *
3278 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
3279 * lists vs unevictable list. The vma argument is !NULL when called from the
3280 * fault path to determine how to instantate a new page.
894bc310
LS
3281 *
3282 * Reasons page might not be evictable:
ba9ddf49 3283 * (1) page's mapping marked unevictable
b291f000 3284 * (2) page is part of an mlocked VMA
ba9ddf49 3285 *
894bc310
LS
3286 */
3287int page_evictable(struct page *page, struct vm_area_struct *vma)
3288{
3289
ba9ddf49
LS
3290 if (mapping_unevictable(page_mapping(page)))
3291 return 0;
3292
096a7cf4 3293 if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
b291f000 3294 return 0;
894bc310
LS
3295
3296 return 1;
3297}
89e004ea 3298
85046579 3299#ifdef CONFIG_SHMEM
89e004ea 3300/**
24513264
HD
3301 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3302 * @pages: array of pages to check
3303 * @nr_pages: number of pages to check
89e004ea 3304 *
24513264 3305 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3306 *
3307 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3308 */
24513264 3309void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3310{
925b7673 3311 struct lruvec *lruvec;
24513264
HD
3312 struct zone *zone = NULL;
3313 int pgscanned = 0;
3314 int pgrescued = 0;
3315 int i;
89e004ea 3316
24513264
HD
3317 for (i = 0; i < nr_pages; i++) {
3318 struct page *page = pages[i];
3319 struct zone *pagezone;
89e004ea 3320
24513264
HD
3321 pgscanned++;
3322 pagezone = page_zone(page);
3323 if (pagezone != zone) {
3324 if (zone)
3325 spin_unlock_irq(&zone->lru_lock);
3326 zone = pagezone;
3327 spin_lock_irq(&zone->lru_lock);
3328 }
89e004ea 3329
24513264
HD
3330 if (!PageLRU(page) || !PageUnevictable(page))
3331 continue;
89e004ea 3332
24513264
HD
3333 if (page_evictable(page, NULL)) {
3334 enum lru_list lru = page_lru_base_type(page);
3335
3336 VM_BUG_ON(PageActive(page));
3337 ClearPageUnevictable(page);
3338 __dec_zone_state(zone, NR_UNEVICTABLE);
3339 lruvec = mem_cgroup_lru_move_lists(zone, page,
3340 LRU_UNEVICTABLE, lru);
3341 list_move(&page->lru, &lruvec->lists[lru]);
3342 __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3343 pgrescued++;
89e004ea 3344 }
24513264 3345 }
89e004ea 3346
24513264
HD
3347 if (zone) {
3348 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3349 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3350 spin_unlock_irq(&zone->lru_lock);
89e004ea 3351 }
89e004ea 3352}
85046579 3353#endif /* CONFIG_SHMEM */
af936a16 3354
264e56d8 3355static void warn_scan_unevictable_pages(void)
af936a16 3356{
264e56d8 3357 printk_once(KERN_WARNING
25bd91bd 3358 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3359 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3360 "one, please send an email to linux-mm@kvack.org.\n",
3361 current->comm);
af936a16
LS
3362}
3363
3364/*
3365 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3366 * all nodes' unevictable lists for evictable pages
3367 */
3368unsigned long scan_unevictable_pages;
3369
3370int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3371 void __user *buffer,
af936a16
LS
3372 size_t *length, loff_t *ppos)
3373{
264e56d8 3374 warn_scan_unevictable_pages();
8d65af78 3375 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3376 scan_unevictable_pages = 0;
3377 return 0;
3378}
3379
e4455abb 3380#ifdef CONFIG_NUMA
af936a16
LS
3381/*
3382 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3383 * a specified node's per zone unevictable lists for evictable pages.
3384 */
3385
10fbcf4c
KS
3386static ssize_t read_scan_unevictable_node(struct device *dev,
3387 struct device_attribute *attr,
af936a16
LS
3388 char *buf)
3389{
264e56d8 3390 warn_scan_unevictable_pages();
af936a16
LS
3391 return sprintf(buf, "0\n"); /* always zero; should fit... */
3392}
3393
10fbcf4c
KS
3394static ssize_t write_scan_unevictable_node(struct device *dev,
3395 struct device_attribute *attr,
af936a16
LS
3396 const char *buf, size_t count)
3397{
264e56d8 3398 warn_scan_unevictable_pages();
af936a16
LS
3399 return 1;
3400}
3401
3402
10fbcf4c 3403static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3404 read_scan_unevictable_node,
3405 write_scan_unevictable_node);
3406
3407int scan_unevictable_register_node(struct node *node)
3408{
10fbcf4c 3409 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3410}
3411
3412void scan_unevictable_unregister_node(struct node *node)
3413{
10fbcf4c 3414 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3415}
e4455abb 3416#endif