]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/vmscan.c
mm: vmscan: move direct reclaim wait_iff_congested into shrink_list
[mirror_ubuntu-bionic-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
70ddf637 22#include <linux/vmpressure.h>
e129b5c2 23#include <linux/vmstat.h>
1da177e4
LT
24#include <linux/file.h>
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29#include <linux/mm_inline.h>
1da177e4
LT
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
3e7d3449 35#include <linux/compaction.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
248a0301 38#include <linux/delay.h>
3218ae14 39#include <linux/kthread.h>
7dfb7103 40#include <linux/freezer.h>
66e1707b 41#include <linux/memcontrol.h>
873b4771 42#include <linux/delayacct.h>
af936a16 43#include <linux/sysctl.h>
929bea7c 44#include <linux/oom.h>
268bb0ce 45#include <linux/prefetch.h>
1da177e4
LT
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
0f8053a5
NP
52#include "internal.h"
53
33906bc5
MG
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
1da177e4 57struct scan_control {
1da177e4
LT
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
60
a79311c1
RR
61 /* Number of pages freed so far during a call to shrink_zones() */
62 unsigned long nr_reclaimed;
63
22fba335
KM
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
66
7b51755c
KM
67 unsigned long hibernation_mode;
68
1da177e4 69 /* This context's GFP mask */
6daa0e28 70 gfp_t gfp_mask;
1da177e4
LT
71
72 int may_writepage;
73
a6dc60f8
JW
74 /* Can mapped pages be reclaimed? */
75 int may_unmap;
f1fd1067 76
2e2e4259
KM
77 /* Can pages be swapped as part of reclaim? */
78 int may_swap;
79
5ad333eb 80 int order;
66e1707b 81
9e3b2f8c
KK
82 /* Scan (total_size >> priority) pages at once */
83 int priority;
84
f16015fb
JW
85 /*
86 * The memory cgroup that hit its limit and as a result is the
87 * primary target of this reclaim invocation.
88 */
89 struct mem_cgroup *target_mem_cgroup;
66e1707b 90
327c0e96
KH
91 /*
92 * Nodemask of nodes allowed by the caller. If NULL, all nodes
93 * are scanned.
94 */
95 nodemask_t *nodemask;
1da177e4
LT
96};
97
1da177e4
LT
98#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100#ifdef ARCH_HAS_PREFETCH
101#define prefetch_prev_lru_page(_page, _base, _field) \
102 do { \
103 if ((_page)->lru.prev != _base) { \
104 struct page *prev; \
105 \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetch(&prev->_field); \
108 } \
109 } while (0)
110#else
111#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112#endif
113
114#ifdef ARCH_HAS_PREFETCHW
115#define prefetchw_prev_lru_page(_page, _base, _field) \
116 do { \
117 if ((_page)->lru.prev != _base) { \
118 struct page *prev; \
119 \
120 prev = lru_to_page(&(_page->lru)); \
121 prefetchw(&prev->_field); \
122 } \
123 } while (0)
124#else
125#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126#endif
127
128/*
129 * From 0 .. 100. Higher means more swappy.
130 */
131int vm_swappiness = 60;
b21e0b90 132unsigned long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
133
134static LIST_HEAD(shrinker_list);
135static DECLARE_RWSEM(shrinker_rwsem);
136
c255a458 137#ifdef CONFIG_MEMCG
89b5fae5
JW
138static bool global_reclaim(struct scan_control *sc)
139{
f16015fb 140 return !sc->target_mem_cgroup;
89b5fae5 141}
91a45470 142#else
89b5fae5
JW
143static bool global_reclaim(struct scan_control *sc)
144{
145 return true;
146}
91a45470
KH
147#endif
148
4d7dcca2 149static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 150{
c3c787e8 151 if (!mem_cgroup_disabled())
4d7dcca2 152 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 153
074291fe 154 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
155}
156
1da177e4
LT
157/*
158 * Add a shrinker callback to be called from the vm
159 */
8e1f936b 160void register_shrinker(struct shrinker *shrinker)
1da177e4 161{
83aeeada 162 atomic_long_set(&shrinker->nr_in_batch, 0);
8e1f936b
RR
163 down_write(&shrinker_rwsem);
164 list_add_tail(&shrinker->list, &shrinker_list);
165 up_write(&shrinker_rwsem);
1da177e4 166}
8e1f936b 167EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
168
169/*
170 * Remove one
171 */
8e1f936b 172void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
173{
174 down_write(&shrinker_rwsem);
175 list_del(&shrinker->list);
176 up_write(&shrinker_rwsem);
1da177e4 177}
8e1f936b 178EXPORT_SYMBOL(unregister_shrinker);
1da177e4 179
1495f230
YH
180static inline int do_shrinker_shrink(struct shrinker *shrinker,
181 struct shrink_control *sc,
182 unsigned long nr_to_scan)
183{
184 sc->nr_to_scan = nr_to_scan;
185 return (*shrinker->shrink)(shrinker, sc);
186}
187
1da177e4
LT
188#define SHRINK_BATCH 128
189/*
190 * Call the shrink functions to age shrinkable caches
191 *
192 * Here we assume it costs one seek to replace a lru page and that it also
193 * takes a seek to recreate a cache object. With this in mind we age equal
194 * percentages of the lru and ageable caches. This should balance the seeks
195 * generated by these structures.
196 *
183ff22b 197 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
198 * slab to avoid swapping.
199 *
200 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
201 *
202 * `lru_pages' represents the number of on-LRU pages in all the zones which
203 * are eligible for the caller's allocation attempt. It is used for balancing
204 * slab reclaim versus page reclaim.
b15e0905 205 *
206 * Returns the number of slab objects which we shrunk.
1da177e4 207 */
a09ed5e0 208unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 209 unsigned long nr_pages_scanned,
a09ed5e0 210 unsigned long lru_pages)
1da177e4
LT
211{
212 struct shrinker *shrinker;
69e05944 213 unsigned long ret = 0;
1da177e4 214
1495f230
YH
215 if (nr_pages_scanned == 0)
216 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 217
f06590bd
MK
218 if (!down_read_trylock(&shrinker_rwsem)) {
219 /* Assume we'll be able to shrink next time */
220 ret = 1;
221 goto out;
222 }
1da177e4
LT
223
224 list_for_each_entry(shrinker, &shrinker_list, list) {
225 unsigned long long delta;
635697c6
KK
226 long total_scan;
227 long max_pass;
09576073 228 int shrink_ret = 0;
acf92b48
DC
229 long nr;
230 long new_nr;
e9299f50
DC
231 long batch_size = shrinker->batch ? shrinker->batch
232 : SHRINK_BATCH;
1da177e4 233
635697c6
KK
234 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
235 if (max_pass <= 0)
236 continue;
237
acf92b48
DC
238 /*
239 * copy the current shrinker scan count into a local variable
240 * and zero it so that other concurrent shrinker invocations
241 * don't also do this scanning work.
242 */
83aeeada 243 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
acf92b48
DC
244
245 total_scan = nr;
1495f230 246 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 247 delta *= max_pass;
1da177e4 248 do_div(delta, lru_pages + 1);
acf92b48
DC
249 total_scan += delta;
250 if (total_scan < 0) {
88c3bd70
DR
251 printk(KERN_ERR "shrink_slab: %pF negative objects to "
252 "delete nr=%ld\n",
acf92b48
DC
253 shrinker->shrink, total_scan);
254 total_scan = max_pass;
ea164d73
AA
255 }
256
3567b59a
DC
257 /*
258 * We need to avoid excessive windup on filesystem shrinkers
259 * due to large numbers of GFP_NOFS allocations causing the
260 * shrinkers to return -1 all the time. This results in a large
261 * nr being built up so when a shrink that can do some work
262 * comes along it empties the entire cache due to nr >>>
263 * max_pass. This is bad for sustaining a working set in
264 * memory.
265 *
266 * Hence only allow the shrinker to scan the entire cache when
267 * a large delta change is calculated directly.
268 */
269 if (delta < max_pass / 4)
270 total_scan = min(total_scan, max_pass / 2);
271
ea164d73
AA
272 /*
273 * Avoid risking looping forever due to too large nr value:
274 * never try to free more than twice the estimate number of
275 * freeable entries.
276 */
acf92b48
DC
277 if (total_scan > max_pass * 2)
278 total_scan = max_pass * 2;
1da177e4 279
acf92b48 280 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
281 nr_pages_scanned, lru_pages,
282 max_pass, delta, total_scan);
283
e9299f50 284 while (total_scan >= batch_size) {
b15e0905 285 int nr_before;
1da177e4 286
1495f230
YH
287 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
288 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 289 batch_size);
1da177e4
LT
290 if (shrink_ret == -1)
291 break;
b15e0905 292 if (shrink_ret < nr_before)
293 ret += nr_before - shrink_ret;
e9299f50
DC
294 count_vm_events(SLABS_SCANNED, batch_size);
295 total_scan -= batch_size;
1da177e4
LT
296
297 cond_resched();
298 }
299
acf92b48
DC
300 /*
301 * move the unused scan count back into the shrinker in a
302 * manner that handles concurrent updates. If we exhausted the
303 * scan, there is no need to do an update.
304 */
83aeeada
KK
305 if (total_scan > 0)
306 new_nr = atomic_long_add_return(total_scan,
307 &shrinker->nr_in_batch);
308 else
309 new_nr = atomic_long_read(&shrinker->nr_in_batch);
acf92b48
DC
310
311 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
312 }
313 up_read(&shrinker_rwsem);
f06590bd
MK
314out:
315 cond_resched();
b15e0905 316 return ret;
1da177e4
LT
317}
318
1da177e4
LT
319static inline int is_page_cache_freeable(struct page *page)
320{
ceddc3a5
JW
321 /*
322 * A freeable page cache page is referenced only by the caller
323 * that isolated the page, the page cache radix tree and
324 * optional buffer heads at page->private.
325 */
edcf4748 326 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
327}
328
7d3579e8
KM
329static int may_write_to_queue(struct backing_dev_info *bdi,
330 struct scan_control *sc)
1da177e4 331{
930d9152 332 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
333 return 1;
334 if (!bdi_write_congested(bdi))
335 return 1;
336 if (bdi == current->backing_dev_info)
337 return 1;
338 return 0;
339}
340
341/*
342 * We detected a synchronous write error writing a page out. Probably
343 * -ENOSPC. We need to propagate that into the address_space for a subsequent
344 * fsync(), msync() or close().
345 *
346 * The tricky part is that after writepage we cannot touch the mapping: nothing
347 * prevents it from being freed up. But we have a ref on the page and once
348 * that page is locked, the mapping is pinned.
349 *
350 * We're allowed to run sleeping lock_page() here because we know the caller has
351 * __GFP_FS.
352 */
353static void handle_write_error(struct address_space *mapping,
354 struct page *page, int error)
355{
7eaceacc 356 lock_page(page);
3e9f45bd
GC
357 if (page_mapping(page) == mapping)
358 mapping_set_error(mapping, error);
1da177e4
LT
359 unlock_page(page);
360}
361
04e62a29
CL
362/* possible outcome of pageout() */
363typedef enum {
364 /* failed to write page out, page is locked */
365 PAGE_KEEP,
366 /* move page to the active list, page is locked */
367 PAGE_ACTIVATE,
368 /* page has been sent to the disk successfully, page is unlocked */
369 PAGE_SUCCESS,
370 /* page is clean and locked */
371 PAGE_CLEAN,
372} pageout_t;
373
1da177e4 374/*
1742f19f
AM
375 * pageout is called by shrink_page_list() for each dirty page.
376 * Calls ->writepage().
1da177e4 377 */
c661b078 378static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 379 struct scan_control *sc)
1da177e4
LT
380{
381 /*
382 * If the page is dirty, only perform writeback if that write
383 * will be non-blocking. To prevent this allocation from being
384 * stalled by pagecache activity. But note that there may be
385 * stalls if we need to run get_block(). We could test
386 * PagePrivate for that.
387 *
6aceb53b 388 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
389 * this page's queue, we can perform writeback even if that
390 * will block.
391 *
392 * If the page is swapcache, write it back even if that would
393 * block, for some throttling. This happens by accident, because
394 * swap_backing_dev_info is bust: it doesn't reflect the
395 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
396 */
397 if (!is_page_cache_freeable(page))
398 return PAGE_KEEP;
399 if (!mapping) {
400 /*
401 * Some data journaling orphaned pages can have
402 * page->mapping == NULL while being dirty with clean buffers.
403 */
266cf658 404 if (page_has_private(page)) {
1da177e4
LT
405 if (try_to_free_buffers(page)) {
406 ClearPageDirty(page);
d40cee24 407 printk("%s: orphaned page\n", __func__);
1da177e4
LT
408 return PAGE_CLEAN;
409 }
410 }
411 return PAGE_KEEP;
412 }
413 if (mapping->a_ops->writepage == NULL)
414 return PAGE_ACTIVATE;
0e093d99 415 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
416 return PAGE_KEEP;
417
418 if (clear_page_dirty_for_io(page)) {
419 int res;
420 struct writeback_control wbc = {
421 .sync_mode = WB_SYNC_NONE,
422 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
423 .range_start = 0,
424 .range_end = LLONG_MAX,
1da177e4
LT
425 .for_reclaim = 1,
426 };
427
428 SetPageReclaim(page);
429 res = mapping->a_ops->writepage(page, &wbc);
430 if (res < 0)
431 handle_write_error(mapping, page, res);
994fc28c 432 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
433 ClearPageReclaim(page);
434 return PAGE_ACTIVATE;
435 }
c661b078 436
1da177e4
LT
437 if (!PageWriteback(page)) {
438 /* synchronous write or broken a_ops? */
439 ClearPageReclaim(page);
440 }
23b9da55 441 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 442 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
443 return PAGE_SUCCESS;
444 }
445
446 return PAGE_CLEAN;
447}
448
a649fd92 449/*
e286781d
NP
450 * Same as remove_mapping, but if the page is removed from the mapping, it
451 * gets returned with a refcount of 0.
a649fd92 452 */
e286781d 453static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 454{
28e4d965
NP
455 BUG_ON(!PageLocked(page));
456 BUG_ON(mapping != page_mapping(page));
49d2e9cc 457
19fd6231 458 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 459 /*
0fd0e6b0
NP
460 * The non racy check for a busy page.
461 *
462 * Must be careful with the order of the tests. When someone has
463 * a ref to the page, it may be possible that they dirty it then
464 * drop the reference. So if PageDirty is tested before page_count
465 * here, then the following race may occur:
466 *
467 * get_user_pages(&page);
468 * [user mapping goes away]
469 * write_to(page);
470 * !PageDirty(page) [good]
471 * SetPageDirty(page);
472 * put_page(page);
473 * !page_count(page) [good, discard it]
474 *
475 * [oops, our write_to data is lost]
476 *
477 * Reversing the order of the tests ensures such a situation cannot
478 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
479 * load is not satisfied before that of page->_count.
480 *
481 * Note that if SetPageDirty is always performed via set_page_dirty,
482 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 483 */
e286781d 484 if (!page_freeze_refs(page, 2))
49d2e9cc 485 goto cannot_free;
e286781d
NP
486 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
487 if (unlikely(PageDirty(page))) {
488 page_unfreeze_refs(page, 2);
49d2e9cc 489 goto cannot_free;
e286781d 490 }
49d2e9cc
CL
491
492 if (PageSwapCache(page)) {
493 swp_entry_t swap = { .val = page_private(page) };
494 __delete_from_swap_cache(page);
19fd6231 495 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 496 swapcache_free(swap, page);
e286781d 497 } else {
6072d13c
LT
498 void (*freepage)(struct page *);
499
500 freepage = mapping->a_ops->freepage;
501
e64a782f 502 __delete_from_page_cache(page);
19fd6231 503 spin_unlock_irq(&mapping->tree_lock);
e767e056 504 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
505
506 if (freepage != NULL)
507 freepage(page);
49d2e9cc
CL
508 }
509
49d2e9cc
CL
510 return 1;
511
512cannot_free:
19fd6231 513 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
514 return 0;
515}
516
e286781d
NP
517/*
518 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
519 * someone else has a ref on the page, abort and return 0. If it was
520 * successfully detached, return 1. Assumes the caller has a single ref on
521 * this page.
522 */
523int remove_mapping(struct address_space *mapping, struct page *page)
524{
525 if (__remove_mapping(mapping, page)) {
526 /*
527 * Unfreezing the refcount with 1 rather than 2 effectively
528 * drops the pagecache ref for us without requiring another
529 * atomic operation.
530 */
531 page_unfreeze_refs(page, 1);
532 return 1;
533 }
534 return 0;
535}
536
894bc310
LS
537/**
538 * putback_lru_page - put previously isolated page onto appropriate LRU list
539 * @page: page to be put back to appropriate lru list
540 *
541 * Add previously isolated @page to appropriate LRU list.
542 * Page may still be unevictable for other reasons.
543 *
544 * lru_lock must not be held, interrupts must be enabled.
545 */
894bc310
LS
546void putback_lru_page(struct page *page)
547{
548 int lru;
549 int active = !!TestClearPageActive(page);
bbfd28ee 550 int was_unevictable = PageUnevictable(page);
894bc310
LS
551
552 VM_BUG_ON(PageLRU(page));
553
554redo:
555 ClearPageUnevictable(page);
556
39b5f29a 557 if (page_evictable(page)) {
894bc310
LS
558 /*
559 * For evictable pages, we can use the cache.
560 * In event of a race, worst case is we end up with an
561 * unevictable page on [in]active list.
562 * We know how to handle that.
563 */
401a8e1c 564 lru = active + page_lru_base_type(page);
894bc310
LS
565 lru_cache_add_lru(page, lru);
566 } else {
567 /*
568 * Put unevictable pages directly on zone's unevictable
569 * list.
570 */
571 lru = LRU_UNEVICTABLE;
572 add_page_to_unevictable_list(page);
6a7b9548 573 /*
21ee9f39
MK
574 * When racing with an mlock or AS_UNEVICTABLE clearing
575 * (page is unlocked) make sure that if the other thread
576 * does not observe our setting of PG_lru and fails
24513264 577 * isolation/check_move_unevictable_pages,
21ee9f39 578 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
579 * the page back to the evictable list.
580 *
21ee9f39 581 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
582 */
583 smp_mb();
894bc310 584 }
894bc310
LS
585
586 /*
587 * page's status can change while we move it among lru. If an evictable
588 * page is on unevictable list, it never be freed. To avoid that,
589 * check after we added it to the list, again.
590 */
39b5f29a 591 if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
894bc310
LS
592 if (!isolate_lru_page(page)) {
593 put_page(page);
594 goto redo;
595 }
596 /* This means someone else dropped this page from LRU
597 * So, it will be freed or putback to LRU again. There is
598 * nothing to do here.
599 */
600 }
601
bbfd28ee
LS
602 if (was_unevictable && lru != LRU_UNEVICTABLE)
603 count_vm_event(UNEVICTABLE_PGRESCUED);
604 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
605 count_vm_event(UNEVICTABLE_PGCULLED);
606
894bc310
LS
607 put_page(page); /* drop ref from isolate */
608}
609
dfc8d636
JW
610enum page_references {
611 PAGEREF_RECLAIM,
612 PAGEREF_RECLAIM_CLEAN,
64574746 613 PAGEREF_KEEP,
dfc8d636
JW
614 PAGEREF_ACTIVATE,
615};
616
617static enum page_references page_check_references(struct page *page,
618 struct scan_control *sc)
619{
64574746 620 int referenced_ptes, referenced_page;
dfc8d636 621 unsigned long vm_flags;
dfc8d636 622
c3ac9a8a
JW
623 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
624 &vm_flags);
64574746 625 referenced_page = TestClearPageReferenced(page);
dfc8d636 626
dfc8d636
JW
627 /*
628 * Mlock lost the isolation race with us. Let try_to_unmap()
629 * move the page to the unevictable list.
630 */
631 if (vm_flags & VM_LOCKED)
632 return PAGEREF_RECLAIM;
633
64574746 634 if (referenced_ptes) {
e4898273 635 if (PageSwapBacked(page))
64574746
JW
636 return PAGEREF_ACTIVATE;
637 /*
638 * All mapped pages start out with page table
639 * references from the instantiating fault, so we need
640 * to look twice if a mapped file page is used more
641 * than once.
642 *
643 * Mark it and spare it for another trip around the
644 * inactive list. Another page table reference will
645 * lead to its activation.
646 *
647 * Note: the mark is set for activated pages as well
648 * so that recently deactivated but used pages are
649 * quickly recovered.
650 */
651 SetPageReferenced(page);
652
34dbc67a 653 if (referenced_page || referenced_ptes > 1)
64574746
JW
654 return PAGEREF_ACTIVATE;
655
c909e993
KK
656 /*
657 * Activate file-backed executable pages after first usage.
658 */
659 if (vm_flags & VM_EXEC)
660 return PAGEREF_ACTIVATE;
661
64574746
JW
662 return PAGEREF_KEEP;
663 }
dfc8d636
JW
664
665 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 666 if (referenced_page && !PageSwapBacked(page))
64574746
JW
667 return PAGEREF_RECLAIM_CLEAN;
668
669 return PAGEREF_RECLAIM;
dfc8d636
JW
670}
671
e2be15f6
MG
672/* Check if a page is dirty or under writeback */
673static void page_check_dirty_writeback(struct page *page,
674 bool *dirty, bool *writeback)
675{
676 /*
677 * Anonymous pages are not handled by flushers and must be written
678 * from reclaim context. Do not stall reclaim based on them
679 */
680 if (!page_is_file_cache(page)) {
681 *dirty = false;
682 *writeback = false;
683 return;
684 }
685
686 /* By default assume that the page flags are accurate */
687 *dirty = PageDirty(page);
688 *writeback = PageWriteback(page);
689}
690
1da177e4 691/*
1742f19f 692 * shrink_page_list() returns the number of reclaimed pages
1da177e4 693 */
1742f19f 694static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 695 struct zone *zone,
f84f6e2b 696 struct scan_control *sc,
02c6de8d 697 enum ttu_flags ttu_flags,
8e950282 698 unsigned long *ret_nr_dirty,
d43006d5 699 unsigned long *ret_nr_unqueued_dirty,
8e950282 700 unsigned long *ret_nr_congested,
02c6de8d 701 unsigned long *ret_nr_writeback,
b1a6f21e 702 unsigned long *ret_nr_immediate,
02c6de8d 703 bool force_reclaim)
1da177e4
LT
704{
705 LIST_HEAD(ret_pages);
abe4c3b5 706 LIST_HEAD(free_pages);
1da177e4 707 int pgactivate = 0;
d43006d5 708 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
709 unsigned long nr_dirty = 0;
710 unsigned long nr_congested = 0;
05ff5137 711 unsigned long nr_reclaimed = 0;
92df3a72 712 unsigned long nr_writeback = 0;
b1a6f21e 713 unsigned long nr_immediate = 0;
1da177e4
LT
714
715 cond_resched();
716
69980e31 717 mem_cgroup_uncharge_start();
1da177e4
LT
718 while (!list_empty(page_list)) {
719 struct address_space *mapping;
720 struct page *page;
721 int may_enter_fs;
02c6de8d 722 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 723 bool dirty, writeback;
1da177e4
LT
724
725 cond_resched();
726
727 page = lru_to_page(page_list);
728 list_del(&page->lru);
729
529ae9aa 730 if (!trylock_page(page))
1da177e4
LT
731 goto keep;
732
725d704e 733 VM_BUG_ON(PageActive(page));
6a18adb3 734 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
735
736 sc->nr_scanned++;
80e43426 737
39b5f29a 738 if (unlikely(!page_evictable(page)))
b291f000 739 goto cull_mlocked;
894bc310 740
a6dc60f8 741 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
742 goto keep_locked;
743
1da177e4
LT
744 /* Double the slab pressure for mapped and swapcache pages */
745 if (page_mapped(page) || PageSwapCache(page))
746 sc->nr_scanned++;
747
c661b078
AW
748 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
749 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
750
e2be15f6
MG
751 /*
752 * The number of dirty pages determines if a zone is marked
753 * reclaim_congested which affects wait_iff_congested. kswapd
754 * will stall and start writing pages if the tail of the LRU
755 * is all dirty unqueued pages.
756 */
757 page_check_dirty_writeback(page, &dirty, &writeback);
758 if (dirty || writeback)
759 nr_dirty++;
760
761 if (dirty && !writeback)
762 nr_unqueued_dirty++;
763
764 /* Treat this page as congested if underlying BDI is */
765 mapping = page_mapping(page);
766 if (mapping && bdi_write_congested(mapping->backing_dev_info))
767 nr_congested++;
768
283aba9f
MG
769 /*
770 * If a page at the tail of the LRU is under writeback, there
771 * are three cases to consider.
772 *
773 * 1) If reclaim is encountering an excessive number of pages
774 * under writeback and this page is both under writeback and
775 * PageReclaim then it indicates that pages are being queued
776 * for IO but are being recycled through the LRU before the
777 * IO can complete. Waiting on the page itself risks an
778 * indefinite stall if it is impossible to writeback the
779 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
780 * note that the LRU is being scanned too quickly and the
781 * caller can stall after page list has been processed.
283aba9f
MG
782 *
783 * 2) Global reclaim encounters a page, memcg encounters a
784 * page that is not marked for immediate reclaim or
785 * the caller does not have __GFP_IO. In this case mark
786 * the page for immediate reclaim and continue scanning.
787 *
788 * __GFP_IO is checked because a loop driver thread might
789 * enter reclaim, and deadlock if it waits on a page for
790 * which it is needed to do the write (loop masks off
791 * __GFP_IO|__GFP_FS for this reason); but more thought
792 * would probably show more reasons.
793 *
794 * Don't require __GFP_FS, since we're not going into the
795 * FS, just waiting on its writeback completion. Worryingly,
796 * ext4 gfs2 and xfs allocate pages with
797 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
798 * may_enter_fs here is liable to OOM on them.
799 *
800 * 3) memcg encounters a page that is not already marked
801 * PageReclaim. memcg does not have any dirty pages
802 * throttling so we could easily OOM just because too many
803 * pages are in writeback and there is nothing else to
804 * reclaim. Wait for the writeback to complete.
805 */
c661b078 806 if (PageWriteback(page)) {
283aba9f
MG
807 /* Case 1 above */
808 if (current_is_kswapd() &&
809 PageReclaim(page) &&
810 zone_is_reclaim_writeback(zone)) {
b1a6f21e
MG
811 nr_immediate++;
812 goto keep_locked;
283aba9f
MG
813
814 /* Case 2 above */
815 } else if (global_reclaim(sc) ||
c3b94f44
HD
816 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
817 /*
818 * This is slightly racy - end_page_writeback()
819 * might have just cleared PageReclaim, then
820 * setting PageReclaim here end up interpreted
821 * as PageReadahead - but that does not matter
822 * enough to care. What we do want is for this
823 * page to have PageReclaim set next time memcg
824 * reclaim reaches the tests above, so it will
825 * then wait_on_page_writeback() to avoid OOM;
826 * and it's also appropriate in global reclaim.
827 */
828 SetPageReclaim(page);
e62e384e 829 nr_writeback++;
283aba9f 830
c3b94f44 831 goto keep_locked;
283aba9f
MG
832
833 /* Case 3 above */
834 } else {
835 wait_on_page_writeback(page);
e62e384e 836 }
c661b078 837 }
1da177e4 838
02c6de8d
MK
839 if (!force_reclaim)
840 references = page_check_references(page, sc);
841
dfc8d636
JW
842 switch (references) {
843 case PAGEREF_ACTIVATE:
1da177e4 844 goto activate_locked;
64574746
JW
845 case PAGEREF_KEEP:
846 goto keep_locked;
dfc8d636
JW
847 case PAGEREF_RECLAIM:
848 case PAGEREF_RECLAIM_CLEAN:
849 ; /* try to reclaim the page below */
850 }
1da177e4 851
1da177e4
LT
852 /*
853 * Anonymous process memory has backing store?
854 * Try to allocate it some swap space here.
855 */
b291f000 856 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
857 if (!(sc->gfp_mask & __GFP_IO))
858 goto keep_locked;
5bc7b8ac 859 if (!add_to_swap(page, page_list))
1da177e4 860 goto activate_locked;
63eb6b93 861 may_enter_fs = 1;
1da177e4 862
e2be15f6
MG
863 /* Adding to swap updated mapping */
864 mapping = page_mapping(page);
865 }
1da177e4
LT
866
867 /*
868 * The page is mapped into the page tables of one or more
869 * processes. Try to unmap it here.
870 */
871 if (page_mapped(page) && mapping) {
02c6de8d 872 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
873 case SWAP_FAIL:
874 goto activate_locked;
875 case SWAP_AGAIN:
876 goto keep_locked;
b291f000
NP
877 case SWAP_MLOCK:
878 goto cull_mlocked;
1da177e4
LT
879 case SWAP_SUCCESS:
880 ; /* try to free the page below */
881 }
882 }
883
884 if (PageDirty(page)) {
ee72886d
MG
885 /*
886 * Only kswapd can writeback filesystem pages to
d43006d5
MG
887 * avoid risk of stack overflow but only writeback
888 * if many dirty pages have been encountered.
ee72886d 889 */
f84f6e2b 890 if (page_is_file_cache(page) &&
9e3b2f8c 891 (!current_is_kswapd() ||
d43006d5 892 !zone_is_reclaim_dirty(zone))) {
49ea7eb6
MG
893 /*
894 * Immediately reclaim when written back.
895 * Similar in principal to deactivate_page()
896 * except we already have the page isolated
897 * and know it's dirty
898 */
899 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
900 SetPageReclaim(page);
901
ee72886d
MG
902 goto keep_locked;
903 }
904
dfc8d636 905 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 906 goto keep_locked;
4dd4b920 907 if (!may_enter_fs)
1da177e4 908 goto keep_locked;
52a8363e 909 if (!sc->may_writepage)
1da177e4
LT
910 goto keep_locked;
911
912 /* Page is dirty, try to write it out here */
7d3579e8 913 switch (pageout(page, mapping, sc)) {
1da177e4
LT
914 case PAGE_KEEP:
915 goto keep_locked;
916 case PAGE_ACTIVATE:
917 goto activate_locked;
918 case PAGE_SUCCESS:
7d3579e8 919 if (PageWriteback(page))
41ac1999 920 goto keep;
7d3579e8 921 if (PageDirty(page))
1da177e4 922 goto keep;
7d3579e8 923
1da177e4
LT
924 /*
925 * A synchronous write - probably a ramdisk. Go
926 * ahead and try to reclaim the page.
927 */
529ae9aa 928 if (!trylock_page(page))
1da177e4
LT
929 goto keep;
930 if (PageDirty(page) || PageWriteback(page))
931 goto keep_locked;
932 mapping = page_mapping(page);
933 case PAGE_CLEAN:
934 ; /* try to free the page below */
935 }
936 }
937
938 /*
939 * If the page has buffers, try to free the buffer mappings
940 * associated with this page. If we succeed we try to free
941 * the page as well.
942 *
943 * We do this even if the page is PageDirty().
944 * try_to_release_page() does not perform I/O, but it is
945 * possible for a page to have PageDirty set, but it is actually
946 * clean (all its buffers are clean). This happens if the
947 * buffers were written out directly, with submit_bh(). ext3
894bc310 948 * will do this, as well as the blockdev mapping.
1da177e4
LT
949 * try_to_release_page() will discover that cleanness and will
950 * drop the buffers and mark the page clean - it can be freed.
951 *
952 * Rarely, pages can have buffers and no ->mapping. These are
953 * the pages which were not successfully invalidated in
954 * truncate_complete_page(). We try to drop those buffers here
955 * and if that worked, and the page is no longer mapped into
956 * process address space (page_count == 1) it can be freed.
957 * Otherwise, leave the page on the LRU so it is swappable.
958 */
266cf658 959 if (page_has_private(page)) {
1da177e4
LT
960 if (!try_to_release_page(page, sc->gfp_mask))
961 goto activate_locked;
e286781d
NP
962 if (!mapping && page_count(page) == 1) {
963 unlock_page(page);
964 if (put_page_testzero(page))
965 goto free_it;
966 else {
967 /*
968 * rare race with speculative reference.
969 * the speculative reference will free
970 * this page shortly, so we may
971 * increment nr_reclaimed here (and
972 * leave it off the LRU).
973 */
974 nr_reclaimed++;
975 continue;
976 }
977 }
1da177e4
LT
978 }
979
e286781d 980 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 981 goto keep_locked;
1da177e4 982
a978d6f5
NP
983 /*
984 * At this point, we have no other references and there is
985 * no way to pick any more up (removed from LRU, removed
986 * from pagecache). Can use non-atomic bitops now (and
987 * we obviously don't have to worry about waking up a process
988 * waiting on the page lock, because there are no references.
989 */
990 __clear_page_locked(page);
e286781d 991free_it:
05ff5137 992 nr_reclaimed++;
abe4c3b5
MG
993
994 /*
995 * Is there need to periodically free_page_list? It would
996 * appear not as the counts should be low
997 */
998 list_add(&page->lru, &free_pages);
1da177e4
LT
999 continue;
1000
b291f000 1001cull_mlocked:
63d6c5ad
HD
1002 if (PageSwapCache(page))
1003 try_to_free_swap(page);
b291f000
NP
1004 unlock_page(page);
1005 putback_lru_page(page);
1006 continue;
1007
1da177e4 1008activate_locked:
68a22394
RR
1009 /* Not a candidate for swapping, so reclaim swap space. */
1010 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1011 try_to_free_swap(page);
894bc310 1012 VM_BUG_ON(PageActive(page));
1da177e4
LT
1013 SetPageActive(page);
1014 pgactivate++;
1015keep_locked:
1016 unlock_page(page);
1017keep:
1018 list_add(&page->lru, &ret_pages);
b291f000 1019 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 1020 }
abe4c3b5 1021
cc59850e 1022 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 1023
1da177e4 1024 list_splice(&ret_pages, page_list);
f8891e5e 1025 count_vm_events(PGACTIVATE, pgactivate);
69980e31 1026 mem_cgroup_uncharge_end();
8e950282
MG
1027 *ret_nr_dirty += nr_dirty;
1028 *ret_nr_congested += nr_congested;
d43006d5 1029 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1030 *ret_nr_writeback += nr_writeback;
b1a6f21e 1031 *ret_nr_immediate += nr_immediate;
05ff5137 1032 return nr_reclaimed;
1da177e4
LT
1033}
1034
02c6de8d
MK
1035unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1036 struct list_head *page_list)
1037{
1038 struct scan_control sc = {
1039 .gfp_mask = GFP_KERNEL,
1040 .priority = DEF_PRIORITY,
1041 .may_unmap = 1,
1042 };
8e950282 1043 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1044 struct page *page, *next;
1045 LIST_HEAD(clean_pages);
1046
1047 list_for_each_entry_safe(page, next, page_list, lru) {
1048 if (page_is_file_cache(page) && !PageDirty(page)) {
1049 ClearPageActive(page);
1050 list_move(&page->lru, &clean_pages);
1051 }
1052 }
1053
1054 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1055 TTU_UNMAP|TTU_IGNORE_ACCESS,
1056 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d
MK
1057 list_splice(&clean_pages, page_list);
1058 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1059 return ret;
1060}
1061
5ad333eb
AW
1062/*
1063 * Attempt to remove the specified page from its LRU. Only take this page
1064 * if it is of the appropriate PageActive status. Pages which are being
1065 * freed elsewhere are also ignored.
1066 *
1067 * page: page to consider
1068 * mode: one of the LRU isolation modes defined above
1069 *
1070 * returns 0 on success, -ve errno on failure.
1071 */
f3fd4a61 1072int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1073{
1074 int ret = -EINVAL;
1075
1076 /* Only take pages on the LRU. */
1077 if (!PageLRU(page))
1078 return ret;
1079
e46a2879
MK
1080 /* Compaction should not handle unevictable pages but CMA can do so */
1081 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1082 return ret;
1083
5ad333eb 1084 ret = -EBUSY;
08e552c6 1085
c8244935
MG
1086 /*
1087 * To minimise LRU disruption, the caller can indicate that it only
1088 * wants to isolate pages it will be able to operate on without
1089 * blocking - clean pages for the most part.
1090 *
1091 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1092 * is used by reclaim when it is cannot write to backing storage
1093 *
1094 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1095 * that it is possible to migrate without blocking
1096 */
1097 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1098 /* All the caller can do on PageWriteback is block */
1099 if (PageWriteback(page))
1100 return ret;
1101
1102 if (PageDirty(page)) {
1103 struct address_space *mapping;
1104
1105 /* ISOLATE_CLEAN means only clean pages */
1106 if (mode & ISOLATE_CLEAN)
1107 return ret;
1108
1109 /*
1110 * Only pages without mappings or that have a
1111 * ->migratepage callback are possible to migrate
1112 * without blocking
1113 */
1114 mapping = page_mapping(page);
1115 if (mapping && !mapping->a_ops->migratepage)
1116 return ret;
1117 }
1118 }
39deaf85 1119
f80c0673
MK
1120 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1121 return ret;
1122
5ad333eb
AW
1123 if (likely(get_page_unless_zero(page))) {
1124 /*
1125 * Be careful not to clear PageLRU until after we're
1126 * sure the page is not being freed elsewhere -- the
1127 * page release code relies on it.
1128 */
1129 ClearPageLRU(page);
1130 ret = 0;
1131 }
1132
1133 return ret;
1134}
1135
1da177e4
LT
1136/*
1137 * zone->lru_lock is heavily contended. Some of the functions that
1138 * shrink the lists perform better by taking out a batch of pages
1139 * and working on them outside the LRU lock.
1140 *
1141 * For pagecache intensive workloads, this function is the hottest
1142 * spot in the kernel (apart from copy_*_user functions).
1143 *
1144 * Appropriate locks must be held before calling this function.
1145 *
1146 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1147 * @lruvec: The LRU vector to pull pages from.
1da177e4 1148 * @dst: The temp list to put pages on to.
f626012d 1149 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1150 * @sc: The scan_control struct for this reclaim session
5ad333eb 1151 * @mode: One of the LRU isolation modes
3cb99451 1152 * @lru: LRU list id for isolating
1da177e4
LT
1153 *
1154 * returns how many pages were moved onto *@dst.
1155 */
69e05944 1156static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1157 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1158 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1159 isolate_mode_t mode, enum lru_list lru)
1da177e4 1160{
75b00af7 1161 struct list_head *src = &lruvec->lists[lru];
69e05944 1162 unsigned long nr_taken = 0;
c9b02d97 1163 unsigned long scan;
1da177e4 1164
c9b02d97 1165 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1166 struct page *page;
fa9add64 1167 int nr_pages;
5ad333eb 1168
1da177e4
LT
1169 page = lru_to_page(src);
1170 prefetchw_prev_lru_page(page, src, flags);
1171
725d704e 1172 VM_BUG_ON(!PageLRU(page));
8d438f96 1173
f3fd4a61 1174 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1175 case 0:
fa9add64
HD
1176 nr_pages = hpage_nr_pages(page);
1177 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1178 list_move(&page->lru, dst);
fa9add64 1179 nr_taken += nr_pages;
5ad333eb
AW
1180 break;
1181
1182 case -EBUSY:
1183 /* else it is being freed elsewhere */
1184 list_move(&page->lru, src);
1185 continue;
46453a6e 1186
5ad333eb
AW
1187 default:
1188 BUG();
1189 }
1da177e4
LT
1190 }
1191
f626012d 1192 *nr_scanned = scan;
75b00af7
HD
1193 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1194 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1195 return nr_taken;
1196}
1197
62695a84
NP
1198/**
1199 * isolate_lru_page - tries to isolate a page from its LRU list
1200 * @page: page to isolate from its LRU list
1201 *
1202 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1203 * vmstat statistic corresponding to whatever LRU list the page was on.
1204 *
1205 * Returns 0 if the page was removed from an LRU list.
1206 * Returns -EBUSY if the page was not on an LRU list.
1207 *
1208 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1209 * the active list, it will have PageActive set. If it was found on
1210 * the unevictable list, it will have the PageUnevictable bit set. That flag
1211 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1212 *
1213 * The vmstat statistic corresponding to the list on which the page was
1214 * found will be decremented.
1215 *
1216 * Restrictions:
1217 * (1) Must be called with an elevated refcount on the page. This is a
1218 * fundamentnal difference from isolate_lru_pages (which is called
1219 * without a stable reference).
1220 * (2) the lru_lock must not be held.
1221 * (3) interrupts must be enabled.
1222 */
1223int isolate_lru_page(struct page *page)
1224{
1225 int ret = -EBUSY;
1226
0c917313
KK
1227 VM_BUG_ON(!page_count(page));
1228
62695a84
NP
1229 if (PageLRU(page)) {
1230 struct zone *zone = page_zone(page);
fa9add64 1231 struct lruvec *lruvec;
62695a84
NP
1232
1233 spin_lock_irq(&zone->lru_lock);
fa9add64 1234 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1235 if (PageLRU(page)) {
894bc310 1236 int lru = page_lru(page);
0c917313 1237 get_page(page);
62695a84 1238 ClearPageLRU(page);
fa9add64
HD
1239 del_page_from_lru_list(page, lruvec, lru);
1240 ret = 0;
62695a84
NP
1241 }
1242 spin_unlock_irq(&zone->lru_lock);
1243 }
1244 return ret;
1245}
1246
35cd7815 1247/*
d37dd5dc
FW
1248 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1249 * then get resheduled. When there are massive number of tasks doing page
1250 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1251 * the LRU list will go small and be scanned faster than necessary, leading to
1252 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1253 */
1254static int too_many_isolated(struct zone *zone, int file,
1255 struct scan_control *sc)
1256{
1257 unsigned long inactive, isolated;
1258
1259 if (current_is_kswapd())
1260 return 0;
1261
89b5fae5 1262 if (!global_reclaim(sc))
35cd7815
RR
1263 return 0;
1264
1265 if (file) {
1266 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1267 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1268 } else {
1269 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1270 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1271 }
1272
3cf23841
FW
1273 /*
1274 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1275 * won't get blocked by normal direct-reclaimers, forming a circular
1276 * deadlock.
1277 */
1278 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1279 inactive >>= 3;
1280
35cd7815
RR
1281 return isolated > inactive;
1282}
1283
66635629 1284static noinline_for_stack void
75b00af7 1285putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1286{
27ac81d8
KK
1287 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1288 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1289 LIST_HEAD(pages_to_free);
66635629 1290
66635629
MG
1291 /*
1292 * Put back any unfreeable pages.
1293 */
66635629 1294 while (!list_empty(page_list)) {
3f79768f 1295 struct page *page = lru_to_page(page_list);
66635629 1296 int lru;
3f79768f 1297
66635629
MG
1298 VM_BUG_ON(PageLRU(page));
1299 list_del(&page->lru);
39b5f29a 1300 if (unlikely(!page_evictable(page))) {
66635629
MG
1301 spin_unlock_irq(&zone->lru_lock);
1302 putback_lru_page(page);
1303 spin_lock_irq(&zone->lru_lock);
1304 continue;
1305 }
fa9add64
HD
1306
1307 lruvec = mem_cgroup_page_lruvec(page, zone);
1308
7a608572 1309 SetPageLRU(page);
66635629 1310 lru = page_lru(page);
fa9add64
HD
1311 add_page_to_lru_list(page, lruvec, lru);
1312
66635629
MG
1313 if (is_active_lru(lru)) {
1314 int file = is_file_lru(lru);
9992af10
RR
1315 int numpages = hpage_nr_pages(page);
1316 reclaim_stat->recent_rotated[file] += numpages;
66635629 1317 }
2bcf8879
HD
1318 if (put_page_testzero(page)) {
1319 __ClearPageLRU(page);
1320 __ClearPageActive(page);
fa9add64 1321 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1322
1323 if (unlikely(PageCompound(page))) {
1324 spin_unlock_irq(&zone->lru_lock);
1325 (*get_compound_page_dtor(page))(page);
1326 spin_lock_irq(&zone->lru_lock);
1327 } else
1328 list_add(&page->lru, &pages_to_free);
66635629
MG
1329 }
1330 }
66635629 1331
3f79768f
HD
1332 /*
1333 * To save our caller's stack, now use input list for pages to free.
1334 */
1335 list_splice(&pages_to_free, page_list);
66635629
MG
1336}
1337
1da177e4 1338/*
1742f19f
AM
1339 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1340 * of reclaimed pages
1da177e4 1341 */
66635629 1342static noinline_for_stack unsigned long
1a93be0e 1343shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1344 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1345{
1346 LIST_HEAD(page_list);
e247dbce 1347 unsigned long nr_scanned;
05ff5137 1348 unsigned long nr_reclaimed = 0;
e247dbce 1349 unsigned long nr_taken;
8e950282
MG
1350 unsigned long nr_dirty = 0;
1351 unsigned long nr_congested = 0;
e2be15f6 1352 unsigned long nr_unqueued_dirty = 0;
92df3a72 1353 unsigned long nr_writeback = 0;
b1a6f21e 1354 unsigned long nr_immediate = 0;
f3fd4a61 1355 isolate_mode_t isolate_mode = 0;
3cb99451 1356 int file = is_file_lru(lru);
1a93be0e
KK
1357 struct zone *zone = lruvec_zone(lruvec);
1358 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1359
35cd7815 1360 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1361 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1362
1363 /* We are about to die and free our memory. Return now. */
1364 if (fatal_signal_pending(current))
1365 return SWAP_CLUSTER_MAX;
1366 }
1367
1da177e4 1368 lru_add_drain();
f80c0673
MK
1369
1370 if (!sc->may_unmap)
61317289 1371 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1372 if (!sc->may_writepage)
61317289 1373 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1374
1da177e4 1375 spin_lock_irq(&zone->lru_lock);
b35ea17b 1376
5dc35979
KK
1377 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1378 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1379
1380 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1381 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1382
89b5fae5 1383 if (global_reclaim(sc)) {
e247dbce
KM
1384 zone->pages_scanned += nr_scanned;
1385 if (current_is_kswapd())
75b00af7 1386 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1387 else
75b00af7 1388 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1389 }
d563c050 1390 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1391
d563c050 1392 if (nr_taken == 0)
66635629 1393 return 0;
5ad333eb 1394
02c6de8d 1395 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1396 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1397 &nr_writeback, &nr_immediate,
1398 false);
c661b078 1399
3f79768f
HD
1400 spin_lock_irq(&zone->lru_lock);
1401
95d918fc 1402 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1403
904249aa
YH
1404 if (global_reclaim(sc)) {
1405 if (current_is_kswapd())
1406 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1407 nr_reclaimed);
1408 else
1409 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1410 nr_reclaimed);
1411 }
a74609fa 1412
27ac81d8 1413 putback_inactive_pages(lruvec, &page_list);
3f79768f 1414
95d918fc 1415 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1416
1417 spin_unlock_irq(&zone->lru_lock);
1418
1419 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1420
92df3a72
MG
1421 /*
1422 * If reclaim is isolating dirty pages under writeback, it implies
1423 * that the long-lived page allocation rate is exceeding the page
1424 * laundering rate. Either the global limits are not being effective
1425 * at throttling processes due to the page distribution throughout
1426 * zones or there is heavy usage of a slow backing device. The
1427 * only option is to throttle from reclaim context which is not ideal
1428 * as there is no guarantee the dirtying process is throttled in the
1429 * same way balance_dirty_pages() manages.
1430 *
1431 * This scales the number of dirty pages that must be under writeback
8e950282 1432 * before a zone gets flagged ZONE_WRITEBACK. It is a simple backoff
92df3a72
MG
1433 * function that has the most effect in the range DEF_PRIORITY to
1434 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1435 * in trouble and reclaim is considered to be in trouble.
1436 *
1437 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1438 * DEF_PRIORITY-1 50% must be PageWriteback
1439 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1440 * ...
1441 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1442 * isolated page is PageWriteback
8e950282
MG
1443 *
1444 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1445 * of pages under pages flagged for immediate reclaim and stall if any
1446 * are encountered in the nr_immediate check below.
92df3a72 1447 */
9e3b2f8c 1448 if (nr_writeback && nr_writeback >=
8e950282 1449 (nr_taken >> (DEF_PRIORITY - sc->priority)))
283aba9f 1450 zone_set_flag(zone, ZONE_WRITEBACK);
92df3a72 1451
d43006d5 1452 /*
b1a6f21e
MG
1453 * memcg will stall in page writeback so only consider forcibly
1454 * stalling for global reclaim
d43006d5 1455 */
b1a6f21e 1456 if (global_reclaim(sc)) {
8e950282
MG
1457 /*
1458 * Tag a zone as congested if all the dirty pages scanned were
1459 * backed by a congested BDI and wait_iff_congested will stall.
1460 */
1461 if (nr_dirty && nr_dirty == nr_congested)
1462 zone_set_flag(zone, ZONE_CONGESTED);
1463
b1a6f21e
MG
1464 /*
1465 * If dirty pages are scanned that are not queued for IO, it
1466 * implies that flushers are not keeping up. In this case, flag
1467 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1468 * pages from reclaim context. It will forcibly stall in the
1469 * next check.
1470 */
1471 if (nr_unqueued_dirty == nr_taken)
1472 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1473
1474 /*
1475 * In addition, if kswapd scans pages marked marked for
1476 * immediate reclaim and under writeback (nr_immediate), it
1477 * implies that pages are cycling through the LRU faster than
1478 * they are written so also forcibly stall.
1479 */
1480 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1481 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1482 }
d43006d5 1483
8e950282
MG
1484 /*
1485 * Stall direct reclaim for IO completions if underlying BDIs or zone
1486 * is congested. Allow kswapd to continue until it starts encountering
1487 * unqueued dirty pages or cycling through the LRU too quickly.
1488 */
1489 if (!sc->hibernation_mode && !current_is_kswapd())
1490 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1491
e11da5b4
MG
1492 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1493 zone_idx(zone),
1494 nr_scanned, nr_reclaimed,
9e3b2f8c 1495 sc->priority,
23b9da55 1496 trace_shrink_flags(file));
05ff5137 1497 return nr_reclaimed;
1da177e4
LT
1498}
1499
1500/*
1501 * This moves pages from the active list to the inactive list.
1502 *
1503 * We move them the other way if the page is referenced by one or more
1504 * processes, from rmap.
1505 *
1506 * If the pages are mostly unmapped, the processing is fast and it is
1507 * appropriate to hold zone->lru_lock across the whole operation. But if
1508 * the pages are mapped, the processing is slow (page_referenced()) so we
1509 * should drop zone->lru_lock around each page. It's impossible to balance
1510 * this, so instead we remove the pages from the LRU while processing them.
1511 * It is safe to rely on PG_active against the non-LRU pages in here because
1512 * nobody will play with that bit on a non-LRU page.
1513 *
1514 * The downside is that we have to touch page->_count against each page.
1515 * But we had to alter page->flags anyway.
1516 */
1cfb419b 1517
fa9add64 1518static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1519 struct list_head *list,
2bcf8879 1520 struct list_head *pages_to_free,
3eb4140f
WF
1521 enum lru_list lru)
1522{
fa9add64 1523 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1524 unsigned long pgmoved = 0;
3eb4140f 1525 struct page *page;
fa9add64 1526 int nr_pages;
3eb4140f 1527
3eb4140f
WF
1528 while (!list_empty(list)) {
1529 page = lru_to_page(list);
fa9add64 1530 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f
WF
1531
1532 VM_BUG_ON(PageLRU(page));
1533 SetPageLRU(page);
1534
fa9add64
HD
1535 nr_pages = hpage_nr_pages(page);
1536 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1537 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1538 pgmoved += nr_pages;
3eb4140f 1539
2bcf8879
HD
1540 if (put_page_testzero(page)) {
1541 __ClearPageLRU(page);
1542 __ClearPageActive(page);
fa9add64 1543 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1544
1545 if (unlikely(PageCompound(page))) {
1546 spin_unlock_irq(&zone->lru_lock);
1547 (*get_compound_page_dtor(page))(page);
1548 spin_lock_irq(&zone->lru_lock);
1549 } else
1550 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1551 }
1552 }
1553 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1554 if (!is_active_lru(lru))
1555 __count_vm_events(PGDEACTIVATE, pgmoved);
1556}
1cfb419b 1557
f626012d 1558static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1559 struct lruvec *lruvec,
f16015fb 1560 struct scan_control *sc,
9e3b2f8c 1561 enum lru_list lru)
1da177e4 1562{
44c241f1 1563 unsigned long nr_taken;
f626012d 1564 unsigned long nr_scanned;
6fe6b7e3 1565 unsigned long vm_flags;
1da177e4 1566 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1567 LIST_HEAD(l_active);
b69408e8 1568 LIST_HEAD(l_inactive);
1da177e4 1569 struct page *page;
1a93be0e 1570 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1571 unsigned long nr_rotated = 0;
f3fd4a61 1572 isolate_mode_t isolate_mode = 0;
3cb99451 1573 int file = is_file_lru(lru);
1a93be0e 1574 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1575
1576 lru_add_drain();
f80c0673
MK
1577
1578 if (!sc->may_unmap)
61317289 1579 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1580 if (!sc->may_writepage)
61317289 1581 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1582
1da177e4 1583 spin_lock_irq(&zone->lru_lock);
925b7673 1584
5dc35979
KK
1585 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1586 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1587 if (global_reclaim(sc))
f626012d 1588 zone->pages_scanned += nr_scanned;
89b5fae5 1589
b7c46d15 1590 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1591
f626012d 1592 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1593 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1594 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1595 spin_unlock_irq(&zone->lru_lock);
1596
1da177e4
LT
1597 while (!list_empty(&l_hold)) {
1598 cond_resched();
1599 page = lru_to_page(&l_hold);
1600 list_del(&page->lru);
7e9cd484 1601
39b5f29a 1602 if (unlikely(!page_evictable(page))) {
894bc310
LS
1603 putback_lru_page(page);
1604 continue;
1605 }
1606
cc715d99
MG
1607 if (unlikely(buffer_heads_over_limit)) {
1608 if (page_has_private(page) && trylock_page(page)) {
1609 if (page_has_private(page))
1610 try_to_release_page(page, 0);
1611 unlock_page(page);
1612 }
1613 }
1614
c3ac9a8a
JW
1615 if (page_referenced(page, 0, sc->target_mem_cgroup,
1616 &vm_flags)) {
9992af10 1617 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1618 /*
1619 * Identify referenced, file-backed active pages and
1620 * give them one more trip around the active list. So
1621 * that executable code get better chances to stay in
1622 * memory under moderate memory pressure. Anon pages
1623 * are not likely to be evicted by use-once streaming
1624 * IO, plus JVM can create lots of anon VM_EXEC pages,
1625 * so we ignore them here.
1626 */
41e20983 1627 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1628 list_add(&page->lru, &l_active);
1629 continue;
1630 }
1631 }
7e9cd484 1632
5205e56e 1633 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1634 list_add(&page->lru, &l_inactive);
1635 }
1636
b555749a 1637 /*
8cab4754 1638 * Move pages back to the lru list.
b555749a 1639 */
2a1dc509 1640 spin_lock_irq(&zone->lru_lock);
556adecb 1641 /*
8cab4754
WF
1642 * Count referenced pages from currently used mappings as rotated,
1643 * even though only some of them are actually re-activated. This
1644 * helps balance scan pressure between file and anonymous pages in
1645 * get_scan_ratio.
7e9cd484 1646 */
b7c46d15 1647 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1648
fa9add64
HD
1649 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1650 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1651 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1652 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1653
1654 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1655}
1656
74e3f3c3 1657#ifdef CONFIG_SWAP
14797e23 1658static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1659{
1660 unsigned long active, inactive;
1661
1662 active = zone_page_state(zone, NR_ACTIVE_ANON);
1663 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1664
1665 if (inactive * zone->inactive_ratio < active)
1666 return 1;
1667
1668 return 0;
1669}
1670
14797e23
KM
1671/**
1672 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1673 * @lruvec: LRU vector to check
14797e23
KM
1674 *
1675 * Returns true if the zone does not have enough inactive anon pages,
1676 * meaning some active anon pages need to be deactivated.
1677 */
c56d5c7d 1678static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1679{
74e3f3c3
MK
1680 /*
1681 * If we don't have swap space, anonymous page deactivation
1682 * is pointless.
1683 */
1684 if (!total_swap_pages)
1685 return 0;
1686
c3c787e8 1687 if (!mem_cgroup_disabled())
c56d5c7d 1688 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1689
c56d5c7d 1690 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1691}
74e3f3c3 1692#else
c56d5c7d 1693static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1694{
1695 return 0;
1696}
1697#endif
14797e23 1698
56e49d21
RR
1699/**
1700 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1701 * @lruvec: LRU vector to check
56e49d21
RR
1702 *
1703 * When the system is doing streaming IO, memory pressure here
1704 * ensures that active file pages get deactivated, until more
1705 * than half of the file pages are on the inactive list.
1706 *
1707 * Once we get to that situation, protect the system's working
1708 * set from being evicted by disabling active file page aging.
1709 *
1710 * This uses a different ratio than the anonymous pages, because
1711 * the page cache uses a use-once replacement algorithm.
1712 */
c56d5c7d 1713static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1714{
e3790144
JW
1715 unsigned long inactive;
1716 unsigned long active;
1717
1718 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1719 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1720
e3790144 1721 return active > inactive;
56e49d21
RR
1722}
1723
75b00af7 1724static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1725{
75b00af7 1726 if (is_file_lru(lru))
c56d5c7d 1727 return inactive_file_is_low(lruvec);
b39415b2 1728 else
c56d5c7d 1729 return inactive_anon_is_low(lruvec);
b39415b2
RR
1730}
1731
4f98a2fe 1732static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1733 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1734{
b39415b2 1735 if (is_active_lru(lru)) {
75b00af7 1736 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1737 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1738 return 0;
1739 }
1740
1a93be0e 1741 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1742}
1743
3d58ab5c 1744static int vmscan_swappiness(struct scan_control *sc)
1f4c025b 1745{
89b5fae5 1746 if (global_reclaim(sc))
1f4c025b 1747 return vm_swappiness;
3d58ab5c 1748 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1f4c025b
KH
1749}
1750
9a265114
JW
1751enum scan_balance {
1752 SCAN_EQUAL,
1753 SCAN_FRACT,
1754 SCAN_ANON,
1755 SCAN_FILE,
1756};
1757
4f98a2fe
RR
1758/*
1759 * Determine how aggressively the anon and file LRU lists should be
1760 * scanned. The relative value of each set of LRU lists is determined
1761 * by looking at the fraction of the pages scanned we did rotate back
1762 * onto the active list instead of evict.
1763 *
be7bd59d
WL
1764 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1765 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1766 */
90126375 1767static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
9e3b2f8c 1768 unsigned long *nr)
4f98a2fe 1769{
9a265114
JW
1770 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1771 u64 fraction[2];
1772 u64 denominator = 0; /* gcc */
1773 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1774 unsigned long anon_prio, file_prio;
9a265114
JW
1775 enum scan_balance scan_balance;
1776 unsigned long anon, file, free;
1777 bool force_scan = false;
4f98a2fe 1778 unsigned long ap, fp;
4111304d 1779 enum lru_list lru;
246e87a9 1780
f11c0ca5
JW
1781 /*
1782 * If the zone or memcg is small, nr[l] can be 0. This
1783 * results in no scanning on this priority and a potential
1784 * priority drop. Global direct reclaim can go to the next
1785 * zone and tends to have no problems. Global kswapd is for
1786 * zone balancing and it needs to scan a minimum amount. When
1787 * reclaiming for a memcg, a priority drop can cause high
1788 * latencies, so it's better to scan a minimum amount there as
1789 * well.
1790 */
90126375 1791 if (current_is_kswapd() && zone->all_unreclaimable)
a4d3e9e7 1792 force_scan = true;
89b5fae5 1793 if (!global_reclaim(sc))
a4d3e9e7 1794 force_scan = true;
76a33fc3
SL
1795
1796 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1797 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1798 scan_balance = SCAN_FILE;
76a33fc3
SL
1799 goto out;
1800 }
4f98a2fe 1801
10316b31
JW
1802 /*
1803 * Global reclaim will swap to prevent OOM even with no
1804 * swappiness, but memcg users want to use this knob to
1805 * disable swapping for individual groups completely when
1806 * using the memory controller's swap limit feature would be
1807 * too expensive.
1808 */
1809 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
9a265114 1810 scan_balance = SCAN_FILE;
10316b31
JW
1811 goto out;
1812 }
1813
1814 /*
1815 * Do not apply any pressure balancing cleverness when the
1816 * system is close to OOM, scan both anon and file equally
1817 * (unless the swappiness setting disagrees with swapping).
1818 */
1819 if (!sc->priority && vmscan_swappiness(sc)) {
9a265114 1820 scan_balance = SCAN_EQUAL;
10316b31
JW
1821 goto out;
1822 }
1823
4d7dcca2
HD
1824 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1825 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1826 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1827 get_lru_size(lruvec, LRU_INACTIVE_FILE);
a4d3e9e7 1828
11d16c25
JW
1829 /*
1830 * If it's foreseeable that reclaiming the file cache won't be
1831 * enough to get the zone back into a desirable shape, we have
1832 * to swap. Better start now and leave the - probably heavily
1833 * thrashing - remaining file pages alone.
1834 */
89b5fae5 1835 if (global_reclaim(sc)) {
11d16c25 1836 free = zone_page_state(zone, NR_FREE_PAGES);
90126375 1837 if (unlikely(file + free <= high_wmark_pages(zone))) {
9a265114 1838 scan_balance = SCAN_ANON;
76a33fc3 1839 goto out;
eeee9a8c 1840 }
4f98a2fe
RR
1841 }
1842
7c5bd705
JW
1843 /*
1844 * There is enough inactive page cache, do not reclaim
1845 * anything from the anonymous working set right now.
1846 */
1847 if (!inactive_file_is_low(lruvec)) {
9a265114 1848 scan_balance = SCAN_FILE;
7c5bd705
JW
1849 goto out;
1850 }
1851
9a265114
JW
1852 scan_balance = SCAN_FRACT;
1853
58c37f6e
KM
1854 /*
1855 * With swappiness at 100, anonymous and file have the same priority.
1856 * This scanning priority is essentially the inverse of IO cost.
1857 */
3d58ab5c 1858 anon_prio = vmscan_swappiness(sc);
75b00af7 1859 file_prio = 200 - anon_prio;
58c37f6e 1860
4f98a2fe
RR
1861 /*
1862 * OK, so we have swap space and a fair amount of page cache
1863 * pages. We use the recently rotated / recently scanned
1864 * ratios to determine how valuable each cache is.
1865 *
1866 * Because workloads change over time (and to avoid overflow)
1867 * we keep these statistics as a floating average, which ends
1868 * up weighing recent references more than old ones.
1869 *
1870 * anon in [0], file in [1]
1871 */
90126375 1872 spin_lock_irq(&zone->lru_lock);
6e901571 1873 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1874 reclaim_stat->recent_scanned[0] /= 2;
1875 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1876 }
1877
6e901571 1878 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1879 reclaim_stat->recent_scanned[1] /= 2;
1880 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1881 }
1882
4f98a2fe 1883 /*
00d8089c
RR
1884 * The amount of pressure on anon vs file pages is inversely
1885 * proportional to the fraction of recently scanned pages on
1886 * each list that were recently referenced and in active use.
4f98a2fe 1887 */
fe35004f 1888 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1889 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1890
fe35004f 1891 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1892 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 1893 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1894
76a33fc3
SL
1895 fraction[0] = ap;
1896 fraction[1] = fp;
1897 denominator = ap + fp + 1;
1898out:
4111304d
HD
1899 for_each_evictable_lru(lru) {
1900 int file = is_file_lru(lru);
d778df51 1901 unsigned long size;
76a33fc3 1902 unsigned long scan;
6e08a369 1903
d778df51 1904 size = get_lru_size(lruvec, lru);
10316b31 1905 scan = size >> sc->priority;
9a265114 1906
10316b31
JW
1907 if (!scan && force_scan)
1908 scan = min(size, SWAP_CLUSTER_MAX);
9a265114
JW
1909
1910 switch (scan_balance) {
1911 case SCAN_EQUAL:
1912 /* Scan lists relative to size */
1913 break;
1914 case SCAN_FRACT:
1915 /*
1916 * Scan types proportional to swappiness and
1917 * their relative recent reclaim efficiency.
1918 */
1919 scan = div64_u64(scan * fraction[file], denominator);
1920 break;
1921 case SCAN_FILE:
1922 case SCAN_ANON:
1923 /* Scan one type exclusively */
1924 if ((scan_balance == SCAN_FILE) != file)
1925 scan = 0;
1926 break;
1927 default:
1928 /* Look ma, no brain */
1929 BUG();
1930 }
4111304d 1931 nr[lru] = scan;
76a33fc3 1932 }
6e08a369 1933}
4f98a2fe 1934
9b4f98cd
JW
1935/*
1936 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1937 */
1938static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1939{
1940 unsigned long nr[NR_LRU_LISTS];
e82e0561 1941 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
1942 unsigned long nr_to_scan;
1943 enum lru_list lru;
1944 unsigned long nr_reclaimed = 0;
1945 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1946 struct blk_plug plug;
e82e0561 1947 bool scan_adjusted = false;
9b4f98cd
JW
1948
1949 get_scan_count(lruvec, sc, nr);
1950
e82e0561
MG
1951 /* Record the original scan target for proportional adjustments later */
1952 memcpy(targets, nr, sizeof(nr));
1953
9b4f98cd
JW
1954 blk_start_plug(&plug);
1955 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1956 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
1957 unsigned long nr_anon, nr_file, percentage;
1958 unsigned long nr_scanned;
1959
9b4f98cd
JW
1960 for_each_evictable_lru(lru) {
1961 if (nr[lru]) {
1962 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1963 nr[lru] -= nr_to_scan;
1964
1965 nr_reclaimed += shrink_list(lru, nr_to_scan,
1966 lruvec, sc);
1967 }
1968 }
e82e0561
MG
1969
1970 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
1971 continue;
1972
9b4f98cd 1973 /*
e82e0561
MG
1974 * For global direct reclaim, reclaim only the number of pages
1975 * requested. Less care is taken to scan proportionally as it
1976 * is more important to minimise direct reclaim stall latency
1977 * than it is to properly age the LRU lists.
9b4f98cd 1978 */
e82e0561 1979 if (global_reclaim(sc) && !current_is_kswapd())
9b4f98cd 1980 break;
e82e0561
MG
1981
1982 /*
1983 * For kswapd and memcg, reclaim at least the number of pages
1984 * requested. Ensure that the anon and file LRUs shrink
1985 * proportionally what was requested by get_scan_count(). We
1986 * stop reclaiming one LRU and reduce the amount scanning
1987 * proportional to the original scan target.
1988 */
1989 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
1990 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
1991
1992 if (nr_file > nr_anon) {
1993 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
1994 targets[LRU_ACTIVE_ANON] + 1;
1995 lru = LRU_BASE;
1996 percentage = nr_anon * 100 / scan_target;
1997 } else {
1998 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
1999 targets[LRU_ACTIVE_FILE] + 1;
2000 lru = LRU_FILE;
2001 percentage = nr_file * 100 / scan_target;
2002 }
2003
2004 /* Stop scanning the smaller of the LRU */
2005 nr[lru] = 0;
2006 nr[lru + LRU_ACTIVE] = 0;
2007
2008 /*
2009 * Recalculate the other LRU scan count based on its original
2010 * scan target and the percentage scanning already complete
2011 */
2012 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2013 nr_scanned = targets[lru] - nr[lru];
2014 nr[lru] = targets[lru] * (100 - percentage) / 100;
2015 nr[lru] -= min(nr[lru], nr_scanned);
2016
2017 lru += LRU_ACTIVE;
2018 nr_scanned = targets[lru] - nr[lru];
2019 nr[lru] = targets[lru] * (100 - percentage) / 100;
2020 nr[lru] -= min(nr[lru], nr_scanned);
2021
2022 scan_adjusted = true;
9b4f98cd
JW
2023 }
2024 blk_finish_plug(&plug);
2025 sc->nr_reclaimed += nr_reclaimed;
2026
2027 /*
2028 * Even if we did not try to evict anon pages at all, we want to
2029 * rebalance the anon lru active/inactive ratio.
2030 */
2031 if (inactive_anon_is_low(lruvec))
2032 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2033 sc, LRU_ACTIVE_ANON);
2034
2035 throttle_vm_writeout(sc->gfp_mask);
2036}
2037
23b9da55 2038/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2039static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2040{
d84da3f9 2041 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2042 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2043 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2044 return true;
2045
2046 return false;
2047}
2048
3e7d3449 2049/*
23b9da55
MG
2050 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2051 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2052 * true if more pages should be reclaimed such that when the page allocator
2053 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2054 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2055 */
9b4f98cd 2056static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2057 unsigned long nr_reclaimed,
2058 unsigned long nr_scanned,
2059 struct scan_control *sc)
2060{
2061 unsigned long pages_for_compaction;
2062 unsigned long inactive_lru_pages;
2063
2064 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2065 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2066 return false;
2067
2876592f
MG
2068 /* Consider stopping depending on scan and reclaim activity */
2069 if (sc->gfp_mask & __GFP_REPEAT) {
2070 /*
2071 * For __GFP_REPEAT allocations, stop reclaiming if the
2072 * full LRU list has been scanned and we are still failing
2073 * to reclaim pages. This full LRU scan is potentially
2074 * expensive but a __GFP_REPEAT caller really wants to succeed
2075 */
2076 if (!nr_reclaimed && !nr_scanned)
2077 return false;
2078 } else {
2079 /*
2080 * For non-__GFP_REPEAT allocations which can presumably
2081 * fail without consequence, stop if we failed to reclaim
2082 * any pages from the last SWAP_CLUSTER_MAX number of
2083 * pages that were scanned. This will return to the
2084 * caller faster at the risk reclaim/compaction and
2085 * the resulting allocation attempt fails
2086 */
2087 if (!nr_reclaimed)
2088 return false;
2089 }
3e7d3449
MG
2090
2091 /*
2092 * If we have not reclaimed enough pages for compaction and the
2093 * inactive lists are large enough, continue reclaiming
2094 */
2095 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2096 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2097 if (get_nr_swap_pages() > 0)
9b4f98cd 2098 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2099 if (sc->nr_reclaimed < pages_for_compaction &&
2100 inactive_lru_pages > pages_for_compaction)
2101 return true;
2102
2103 /* If compaction would go ahead or the allocation would succeed, stop */
9b4f98cd 2104 switch (compaction_suitable(zone, sc->order)) {
3e7d3449
MG
2105 case COMPACT_PARTIAL:
2106 case COMPACT_CONTINUE:
2107 return false;
2108 default:
2109 return true;
2110 }
2111}
2112
9b4f98cd 2113static void shrink_zone(struct zone *zone, struct scan_control *sc)
1da177e4 2114{
f0fdc5e8 2115 unsigned long nr_reclaimed, nr_scanned;
1da177e4 2116
9b4f98cd
JW
2117 do {
2118 struct mem_cgroup *root = sc->target_mem_cgroup;
2119 struct mem_cgroup_reclaim_cookie reclaim = {
2120 .zone = zone,
2121 .priority = sc->priority,
2122 };
2123 struct mem_cgroup *memcg;
3e7d3449 2124
9b4f98cd
JW
2125 nr_reclaimed = sc->nr_reclaimed;
2126 nr_scanned = sc->nr_scanned;
1da177e4 2127
9b4f98cd
JW
2128 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2129 do {
2130 struct lruvec *lruvec;
5660048c 2131
9b4f98cd 2132 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
f9be23d6 2133
9b4f98cd 2134 shrink_lruvec(lruvec, sc);
f16015fb 2135
9b4f98cd 2136 /*
a394cb8e
MH
2137 * Direct reclaim and kswapd have to scan all memory
2138 * cgroups to fulfill the overall scan target for the
9b4f98cd 2139 * zone.
a394cb8e
MH
2140 *
2141 * Limit reclaim, on the other hand, only cares about
2142 * nr_to_reclaim pages to be reclaimed and it will
2143 * retry with decreasing priority if one round over the
2144 * whole hierarchy is not sufficient.
9b4f98cd 2145 */
a394cb8e
MH
2146 if (!global_reclaim(sc) &&
2147 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2148 mem_cgroup_iter_break(root, memcg);
2149 break;
2150 }
2151 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2152 } while (memcg);
70ddf637
AV
2153
2154 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2155 sc->nr_scanned - nr_scanned,
2156 sc->nr_reclaimed - nr_reclaimed);
2157
9b4f98cd
JW
2158 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2159 sc->nr_scanned - nr_scanned, sc));
f16015fb
JW
2160}
2161
fe4b1b24
MG
2162/* Returns true if compaction should go ahead for a high-order request */
2163static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2164{
2165 unsigned long balance_gap, watermark;
2166 bool watermark_ok;
2167
2168 /* Do not consider compaction for orders reclaim is meant to satisfy */
2169 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2170 return false;
2171
2172 /*
2173 * Compaction takes time to run and there are potentially other
2174 * callers using the pages just freed. Continue reclaiming until
2175 * there is a buffer of free pages available to give compaction
2176 * a reasonable chance of completing and allocating the page
2177 */
2178 balance_gap = min(low_wmark_pages(zone),
b40da049 2179 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
fe4b1b24
MG
2180 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2181 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2182 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2183
2184 /*
2185 * If compaction is deferred, reclaim up to a point where
2186 * compaction will have a chance of success when re-enabled
2187 */
aff62249 2188 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
2189 return watermark_ok;
2190
2191 /* If compaction is not ready to start, keep reclaiming */
2192 if (!compaction_suitable(zone, sc->order))
2193 return false;
2194
2195 return watermark_ok;
2196}
2197
1da177e4
LT
2198/*
2199 * This is the direct reclaim path, for page-allocating processes. We only
2200 * try to reclaim pages from zones which will satisfy the caller's allocation
2201 * request.
2202 *
41858966
MG
2203 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2204 * Because:
1da177e4
LT
2205 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2206 * allocation or
41858966
MG
2207 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2208 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2209 * zone defense algorithm.
1da177e4 2210 *
1da177e4
LT
2211 * If a zone is deemed to be full of pinned pages then just give it a light
2212 * scan then give up on it.
e0c23279
MG
2213 *
2214 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 2215 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
2216 * the caller that it should consider retrying the allocation instead of
2217 * further reclaim.
1da177e4 2218 */
9e3b2f8c 2219static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2220{
dd1a239f 2221 struct zoneref *z;
54a6eb5c 2222 struct zone *zone;
d149e3b2
YH
2223 unsigned long nr_soft_reclaimed;
2224 unsigned long nr_soft_scanned;
0cee34fd 2225 bool aborted_reclaim = false;
1cfb419b 2226
cc715d99
MG
2227 /*
2228 * If the number of buffer_heads in the machine exceeds the maximum
2229 * allowed level, force direct reclaim to scan the highmem zone as
2230 * highmem pages could be pinning lowmem pages storing buffer_heads
2231 */
2232 if (buffer_heads_over_limit)
2233 sc->gfp_mask |= __GFP_HIGHMEM;
2234
d4debc66
MG
2235 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2236 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2237 if (!populated_zone(zone))
1da177e4 2238 continue;
1cfb419b
KH
2239 /*
2240 * Take care memory controller reclaiming has small influence
2241 * to global LRU.
2242 */
89b5fae5 2243 if (global_reclaim(sc)) {
1cfb419b
KH
2244 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2245 continue;
9e3b2f8c
KK
2246 if (zone->all_unreclaimable &&
2247 sc->priority != DEF_PRIORITY)
1cfb419b 2248 continue; /* Let kswapd poll it */
d84da3f9 2249 if (IS_ENABLED(CONFIG_COMPACTION)) {
e0887c19 2250 /*
e0c23279
MG
2251 * If we already have plenty of memory free for
2252 * compaction in this zone, don't free any more.
2253 * Even though compaction is invoked for any
2254 * non-zero order, only frequent costly order
2255 * reclamation is disruptive enough to become a
c7cfa37b
CA
2256 * noticeable problem, like transparent huge
2257 * page allocations.
e0887c19 2258 */
fe4b1b24 2259 if (compaction_ready(zone, sc)) {
0cee34fd 2260 aborted_reclaim = true;
e0887c19 2261 continue;
e0c23279 2262 }
e0887c19 2263 }
ac34a1a3
KH
2264 /*
2265 * This steals pages from memory cgroups over softlimit
2266 * and returns the number of reclaimed pages and
2267 * scanned pages. This works for global memory pressure
2268 * and balancing, not for a memcg's limit.
2269 */
2270 nr_soft_scanned = 0;
2271 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2272 sc->order, sc->gfp_mask,
2273 &nr_soft_scanned);
2274 sc->nr_reclaimed += nr_soft_reclaimed;
2275 sc->nr_scanned += nr_soft_scanned;
2276 /* need some check for avoid more shrink_zone() */
1cfb419b 2277 }
408d8544 2278
9e3b2f8c 2279 shrink_zone(zone, sc);
1da177e4 2280 }
e0c23279 2281
0cee34fd 2282 return aborted_reclaim;
d1908362
MK
2283}
2284
2285static bool zone_reclaimable(struct zone *zone)
2286{
2287 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2288}
2289
929bea7c 2290/* All zones in zonelist are unreclaimable? */
d1908362
MK
2291static bool all_unreclaimable(struct zonelist *zonelist,
2292 struct scan_control *sc)
2293{
2294 struct zoneref *z;
2295 struct zone *zone;
d1908362
MK
2296
2297 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2298 gfp_zone(sc->gfp_mask), sc->nodemask) {
2299 if (!populated_zone(zone))
2300 continue;
2301 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2302 continue;
929bea7c
KM
2303 if (!zone->all_unreclaimable)
2304 return false;
d1908362
MK
2305 }
2306
929bea7c 2307 return true;
1da177e4 2308}
4f98a2fe 2309
1da177e4
LT
2310/*
2311 * This is the main entry point to direct page reclaim.
2312 *
2313 * If a full scan of the inactive list fails to free enough memory then we
2314 * are "out of memory" and something needs to be killed.
2315 *
2316 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2317 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2318 * caller can't do much about. We kick the writeback threads and take explicit
2319 * naps in the hope that some of these pages can be written. But if the
2320 * allocating task holds filesystem locks which prevent writeout this might not
2321 * work, and the allocation attempt will fail.
a41f24ea
NA
2322 *
2323 * returns: 0, if no pages reclaimed
2324 * else, the number of pages reclaimed
1da177e4 2325 */
dac1d27b 2326static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2327 struct scan_control *sc,
2328 struct shrink_control *shrink)
1da177e4 2329{
69e05944 2330 unsigned long total_scanned = 0;
1da177e4 2331 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2332 struct zoneref *z;
54a6eb5c 2333 struct zone *zone;
22fba335 2334 unsigned long writeback_threshold;
0cee34fd 2335 bool aborted_reclaim;
1da177e4 2336
873b4771
KK
2337 delayacct_freepages_start();
2338
89b5fae5 2339 if (global_reclaim(sc))
1cfb419b 2340 count_vm_event(ALLOCSTALL);
1da177e4 2341
9e3b2f8c 2342 do {
70ddf637
AV
2343 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2344 sc->priority);
66e1707b 2345 sc->nr_scanned = 0;
9e3b2f8c 2346 aborted_reclaim = shrink_zones(zonelist, sc);
e0c23279 2347
66e1707b
BS
2348 /*
2349 * Don't shrink slabs when reclaiming memory from
2350 * over limit cgroups
2351 */
89b5fae5 2352 if (global_reclaim(sc)) {
c6a8a8c5 2353 unsigned long lru_pages = 0;
d4debc66
MG
2354 for_each_zone_zonelist(zone, z, zonelist,
2355 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2356 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2357 continue;
2358
2359 lru_pages += zone_reclaimable_pages(zone);
2360 }
2361
1495f230 2362 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2363 if (reclaim_state) {
a79311c1 2364 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2365 reclaim_state->reclaimed_slab = 0;
2366 }
1da177e4 2367 }
66e1707b 2368 total_scanned += sc->nr_scanned;
bb21c7ce 2369 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2370 goto out;
1da177e4 2371
0e50ce3b
MK
2372 /*
2373 * If we're getting trouble reclaiming, start doing
2374 * writepage even in laptop mode.
2375 */
2376 if (sc->priority < DEF_PRIORITY - 2)
2377 sc->may_writepage = 1;
2378
1da177e4
LT
2379 /*
2380 * Try to write back as many pages as we just scanned. This
2381 * tends to cause slow streaming writers to write data to the
2382 * disk smoothly, at the dirtying rate, which is nice. But
2383 * that's undesirable in laptop mode, where we *want* lumpy
2384 * writeout. So in laptop mode, write out the whole world.
2385 */
22fba335
KM
2386 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2387 if (total_scanned > writeback_threshold) {
0e175a18
CW
2388 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2389 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2390 sc->may_writepage = 1;
1da177e4 2391 }
9e3b2f8c 2392 } while (--sc->priority >= 0);
bb21c7ce 2393
1da177e4 2394out:
873b4771
KK
2395 delayacct_freepages_end();
2396
bb21c7ce
KM
2397 if (sc->nr_reclaimed)
2398 return sc->nr_reclaimed;
2399
929bea7c
KM
2400 /*
2401 * As hibernation is going on, kswapd is freezed so that it can't mark
2402 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2403 * check.
2404 */
2405 if (oom_killer_disabled)
2406 return 0;
2407
0cee34fd
MG
2408 /* Aborted reclaim to try compaction? don't OOM, then */
2409 if (aborted_reclaim)
7335084d
MG
2410 return 1;
2411
bb21c7ce 2412 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2413 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2414 return 1;
2415
2416 return 0;
1da177e4
LT
2417}
2418
5515061d
MG
2419static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2420{
2421 struct zone *zone;
2422 unsigned long pfmemalloc_reserve = 0;
2423 unsigned long free_pages = 0;
2424 int i;
2425 bool wmark_ok;
2426
2427 for (i = 0; i <= ZONE_NORMAL; i++) {
2428 zone = &pgdat->node_zones[i];
2429 pfmemalloc_reserve += min_wmark_pages(zone);
2430 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2431 }
2432
2433 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2434
2435 /* kswapd must be awake if processes are being throttled */
2436 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2437 pgdat->classzone_idx = min(pgdat->classzone_idx,
2438 (enum zone_type)ZONE_NORMAL);
2439 wake_up_interruptible(&pgdat->kswapd_wait);
2440 }
2441
2442 return wmark_ok;
2443}
2444
2445/*
2446 * Throttle direct reclaimers if backing storage is backed by the network
2447 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2448 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2449 * when the low watermark is reached.
2450 *
2451 * Returns true if a fatal signal was delivered during throttling. If this
2452 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2453 */
50694c28 2454static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2455 nodemask_t *nodemask)
2456{
2457 struct zone *zone;
2458 int high_zoneidx = gfp_zone(gfp_mask);
2459 pg_data_t *pgdat;
2460
2461 /*
2462 * Kernel threads should not be throttled as they may be indirectly
2463 * responsible for cleaning pages necessary for reclaim to make forward
2464 * progress. kjournald for example may enter direct reclaim while
2465 * committing a transaction where throttling it could forcing other
2466 * processes to block on log_wait_commit().
2467 */
2468 if (current->flags & PF_KTHREAD)
50694c28
MG
2469 goto out;
2470
2471 /*
2472 * If a fatal signal is pending, this process should not throttle.
2473 * It should return quickly so it can exit and free its memory
2474 */
2475 if (fatal_signal_pending(current))
2476 goto out;
5515061d
MG
2477
2478 /* Check if the pfmemalloc reserves are ok */
2479 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2480 pgdat = zone->zone_pgdat;
2481 if (pfmemalloc_watermark_ok(pgdat))
50694c28 2482 goto out;
5515061d 2483
68243e76
MG
2484 /* Account for the throttling */
2485 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2486
5515061d
MG
2487 /*
2488 * If the caller cannot enter the filesystem, it's possible that it
2489 * is due to the caller holding an FS lock or performing a journal
2490 * transaction in the case of a filesystem like ext[3|4]. In this case,
2491 * it is not safe to block on pfmemalloc_wait as kswapd could be
2492 * blocked waiting on the same lock. Instead, throttle for up to a
2493 * second before continuing.
2494 */
2495 if (!(gfp_mask & __GFP_FS)) {
2496 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2497 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2498
2499 goto check_pending;
5515061d
MG
2500 }
2501
2502 /* Throttle until kswapd wakes the process */
2503 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2504 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2505
2506check_pending:
2507 if (fatal_signal_pending(current))
2508 return true;
2509
2510out:
2511 return false;
5515061d
MG
2512}
2513
dac1d27b 2514unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2515 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2516{
33906bc5 2517 unsigned long nr_reclaimed;
66e1707b 2518 struct scan_control sc = {
21caf2fc 2519 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
66e1707b 2520 .may_writepage = !laptop_mode,
22fba335 2521 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2522 .may_unmap = 1,
2e2e4259 2523 .may_swap = 1,
66e1707b 2524 .order = order,
9e3b2f8c 2525 .priority = DEF_PRIORITY,
f16015fb 2526 .target_mem_cgroup = NULL,
327c0e96 2527 .nodemask = nodemask,
66e1707b 2528 };
a09ed5e0
YH
2529 struct shrink_control shrink = {
2530 .gfp_mask = sc.gfp_mask,
2531 };
66e1707b 2532
5515061d 2533 /*
50694c28
MG
2534 * Do not enter reclaim if fatal signal was delivered while throttled.
2535 * 1 is returned so that the page allocator does not OOM kill at this
2536 * point.
5515061d 2537 */
50694c28 2538 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2539 return 1;
2540
33906bc5
MG
2541 trace_mm_vmscan_direct_reclaim_begin(order,
2542 sc.may_writepage,
2543 gfp_mask);
2544
a09ed5e0 2545 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2546
2547 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2548
2549 return nr_reclaimed;
66e1707b
BS
2550}
2551
c255a458 2552#ifdef CONFIG_MEMCG
66e1707b 2553
72835c86 2554unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2555 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2556 struct zone *zone,
2557 unsigned long *nr_scanned)
4e416953
BS
2558{
2559 struct scan_control sc = {
0ae5e89c 2560 .nr_scanned = 0,
b8f5c566 2561 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2562 .may_writepage = !laptop_mode,
2563 .may_unmap = 1,
2564 .may_swap = !noswap,
4e416953 2565 .order = 0,
9e3b2f8c 2566 .priority = 0,
72835c86 2567 .target_mem_cgroup = memcg,
4e416953 2568 };
f9be23d6 2569 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
0ae5e89c 2570
4e416953
BS
2571 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2572 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2573
9e3b2f8c 2574 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2575 sc.may_writepage,
2576 sc.gfp_mask);
2577
4e416953
BS
2578 /*
2579 * NOTE: Although we can get the priority field, using it
2580 * here is not a good idea, since it limits the pages we can scan.
2581 * if we don't reclaim here, the shrink_zone from balance_pgdat
2582 * will pick up pages from other mem cgroup's as well. We hack
2583 * the priority and make it zero.
2584 */
f9be23d6 2585 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
2586
2587 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2588
0ae5e89c 2589 *nr_scanned = sc.nr_scanned;
4e416953
BS
2590 return sc.nr_reclaimed;
2591}
2592
72835c86 2593unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2594 gfp_t gfp_mask,
185efc0f 2595 bool noswap)
66e1707b 2596{
4e416953 2597 struct zonelist *zonelist;
bdce6d9e 2598 unsigned long nr_reclaimed;
889976db 2599 int nid;
66e1707b 2600 struct scan_control sc = {
66e1707b 2601 .may_writepage = !laptop_mode,
a6dc60f8 2602 .may_unmap = 1,
2e2e4259 2603 .may_swap = !noswap,
22fba335 2604 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2605 .order = 0,
9e3b2f8c 2606 .priority = DEF_PRIORITY,
72835c86 2607 .target_mem_cgroup = memcg,
327c0e96 2608 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2609 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2610 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2611 };
2612 struct shrink_control shrink = {
2613 .gfp_mask = sc.gfp_mask,
66e1707b 2614 };
66e1707b 2615
889976db
YH
2616 /*
2617 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2618 * take care of from where we get pages. So the node where we start the
2619 * scan does not need to be the current node.
2620 */
72835c86 2621 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2622
2623 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2624
2625 trace_mm_vmscan_memcg_reclaim_begin(0,
2626 sc.may_writepage,
2627 sc.gfp_mask);
2628
a09ed5e0 2629 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2630
2631 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2632
2633 return nr_reclaimed;
66e1707b
BS
2634}
2635#endif
2636
9e3b2f8c 2637static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2638{
b95a2f2d 2639 struct mem_cgroup *memcg;
f16015fb 2640
b95a2f2d
JW
2641 if (!total_swap_pages)
2642 return;
2643
2644 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2645 do {
c56d5c7d 2646 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2647
c56d5c7d 2648 if (inactive_anon_is_low(lruvec))
1a93be0e 2649 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2650 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2651
2652 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2653 } while (memcg);
f16015fb
JW
2654}
2655
60cefed4
JW
2656static bool zone_balanced(struct zone *zone, int order,
2657 unsigned long balance_gap, int classzone_idx)
2658{
2659 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2660 balance_gap, classzone_idx, 0))
2661 return false;
2662
d84da3f9
KS
2663 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2664 !compaction_suitable(zone, order))
60cefed4
JW
2665 return false;
2666
2667 return true;
2668}
2669
1741c877 2670/*
4ae0a48b
ZC
2671 * pgdat_balanced() is used when checking if a node is balanced.
2672 *
2673 * For order-0, all zones must be balanced!
2674 *
2675 * For high-order allocations only zones that meet watermarks and are in a
2676 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2677 * total of balanced pages must be at least 25% of the zones allowed by
2678 * classzone_idx for the node to be considered balanced. Forcing all zones to
2679 * be balanced for high orders can cause excessive reclaim when there are
2680 * imbalanced zones.
1741c877
MG
2681 * The choice of 25% is due to
2682 * o a 16M DMA zone that is balanced will not balance a zone on any
2683 * reasonable sized machine
2684 * o On all other machines, the top zone must be at least a reasonable
25985edc 2685 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2686 * would need to be at least 256M for it to be balance a whole node.
2687 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2688 * to balance a node on its own. These seemed like reasonable ratios.
2689 */
4ae0a48b 2690static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2691{
b40da049 2692 unsigned long managed_pages = 0;
4ae0a48b 2693 unsigned long balanced_pages = 0;
1741c877
MG
2694 int i;
2695
4ae0a48b
ZC
2696 /* Check the watermark levels */
2697 for (i = 0; i <= classzone_idx; i++) {
2698 struct zone *zone = pgdat->node_zones + i;
1741c877 2699
4ae0a48b
ZC
2700 if (!populated_zone(zone))
2701 continue;
2702
b40da049 2703 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2704
2705 /*
2706 * A special case here:
2707 *
2708 * balance_pgdat() skips over all_unreclaimable after
2709 * DEF_PRIORITY. Effectively, it considers them balanced so
2710 * they must be considered balanced here as well!
2711 */
2712 if (zone->all_unreclaimable) {
b40da049 2713 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2714 continue;
2715 }
2716
2717 if (zone_balanced(zone, order, 0, i))
b40da049 2718 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2719 else if (!order)
2720 return false;
2721 }
2722
2723 if (order)
b40da049 2724 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
2725 else
2726 return true;
1741c877
MG
2727}
2728
5515061d
MG
2729/*
2730 * Prepare kswapd for sleeping. This verifies that there are no processes
2731 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2732 *
2733 * Returns true if kswapd is ready to sleep
2734 */
2735static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2736 int classzone_idx)
f50de2d3 2737{
f50de2d3
MG
2738 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2739 if (remaining)
5515061d
MG
2740 return false;
2741
2742 /*
2743 * There is a potential race between when kswapd checks its watermarks
2744 * and a process gets throttled. There is also a potential race if
2745 * processes get throttled, kswapd wakes, a large process exits therby
2746 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2747 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2748 * so wake them now if necessary. If necessary, processes will wake
2749 * kswapd and get throttled again
2750 */
2751 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2752 wake_up(&pgdat->pfmemalloc_wait);
2753 return false;
2754 }
f50de2d3 2755
4ae0a48b 2756 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
2757}
2758
75485363
MG
2759/*
2760 * kswapd shrinks the zone by the number of pages required to reach
2761 * the high watermark.
b8e83b94
MG
2762 *
2763 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
2764 * reclaim or if the lack of progress was due to pages under writeback.
2765 * This is used to determine if the scanning priority needs to be raised.
75485363 2766 */
b8e83b94 2767static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 2768 int classzone_idx,
75485363 2769 struct scan_control *sc,
2ab44f43
MG
2770 unsigned long lru_pages,
2771 unsigned long *nr_attempted)
75485363
MG
2772{
2773 unsigned long nr_slab;
7c954f6d
MG
2774 int testorder = sc->order;
2775 unsigned long balance_gap;
75485363
MG
2776 struct reclaim_state *reclaim_state = current->reclaim_state;
2777 struct shrink_control shrink = {
2778 .gfp_mask = sc->gfp_mask,
2779 };
7c954f6d 2780 bool lowmem_pressure;
75485363
MG
2781
2782 /* Reclaim above the high watermark. */
2783 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
2784
2785 /*
2786 * Kswapd reclaims only single pages with compaction enabled. Trying
2787 * too hard to reclaim until contiguous free pages have become
2788 * available can hurt performance by evicting too much useful data
2789 * from memory. Do not reclaim more than needed for compaction.
2790 */
2791 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2792 compaction_suitable(zone, sc->order) !=
2793 COMPACT_SKIPPED)
2794 testorder = 0;
2795
2796 /*
2797 * We put equal pressure on every zone, unless one zone has way too
2798 * many pages free already. The "too many pages" is defined as the
2799 * high wmark plus a "gap" where the gap is either the low
2800 * watermark or 1% of the zone, whichever is smaller.
2801 */
2802 balance_gap = min(low_wmark_pages(zone),
2803 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2804 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2805
2806 /*
2807 * If there is no low memory pressure or the zone is balanced then no
2808 * reclaim is necessary
2809 */
2810 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2811 if (!lowmem_pressure && zone_balanced(zone, testorder,
2812 balance_gap, classzone_idx))
2813 return true;
2814
75485363
MG
2815 shrink_zone(zone, sc);
2816
2817 reclaim_state->reclaimed_slab = 0;
2818 nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2819 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2820
2ab44f43
MG
2821 /* Account for the number of pages attempted to reclaim */
2822 *nr_attempted += sc->nr_to_reclaim;
2823
75485363
MG
2824 if (nr_slab == 0 && !zone_reclaimable(zone))
2825 zone->all_unreclaimable = 1;
b8e83b94 2826
283aba9f
MG
2827 zone_clear_flag(zone, ZONE_WRITEBACK);
2828
7c954f6d
MG
2829 /*
2830 * If a zone reaches its high watermark, consider it to be no longer
2831 * congested. It's possible there are dirty pages backed by congested
2832 * BDIs but as pressure is relieved, speculatively avoid congestion
2833 * waits.
2834 */
2835 if (!zone->all_unreclaimable &&
2836 zone_balanced(zone, testorder, 0, classzone_idx)) {
2837 zone_clear_flag(zone, ZONE_CONGESTED);
2838 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2839 }
2840
b8e83b94 2841 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
2842}
2843
1da177e4
LT
2844/*
2845 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2846 * they are all at high_wmark_pages(zone).
1da177e4 2847 *
0abdee2b 2848 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2849 *
2850 * There is special handling here for zones which are full of pinned pages.
2851 * This can happen if the pages are all mlocked, or if they are all used by
2852 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2853 * What we do is to detect the case where all pages in the zone have been
2854 * scanned twice and there has been zero successful reclaim. Mark the zone as
2855 * dead and from now on, only perform a short scan. Basically we're polling
2856 * the zone for when the problem goes away.
2857 *
2858 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2859 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2860 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2861 * lower zones regardless of the number of free pages in the lower zones. This
2862 * interoperates with the page allocator fallback scheme to ensure that aging
2863 * of pages is balanced across the zones.
1da177e4 2864 */
99504748 2865static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2866 int *classzone_idx)
1da177e4 2867{
1da177e4 2868 int i;
99504748 2869 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0ae5e89c
YH
2870 unsigned long nr_soft_reclaimed;
2871 unsigned long nr_soft_scanned;
179e9639
AM
2872 struct scan_control sc = {
2873 .gfp_mask = GFP_KERNEL,
b8e83b94 2874 .priority = DEF_PRIORITY,
a6dc60f8 2875 .may_unmap = 1,
2e2e4259 2876 .may_swap = 1,
b8e83b94 2877 .may_writepage = !laptop_mode,
5ad333eb 2878 .order = order,
f16015fb 2879 .target_mem_cgroup = NULL,
179e9639 2880 };
f8891e5e 2881 count_vm_event(PAGEOUTRUN);
1da177e4 2882
9e3b2f8c 2883 do {
1da177e4 2884 unsigned long lru_pages = 0;
2ab44f43 2885 unsigned long nr_attempted = 0;
b8e83b94 2886 bool raise_priority = true;
2ab44f43 2887 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
2888
2889 sc.nr_reclaimed = 0;
1da177e4 2890
d6277db4
RW
2891 /*
2892 * Scan in the highmem->dma direction for the highest
2893 * zone which needs scanning
2894 */
2895 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2896 struct zone *zone = pgdat->node_zones + i;
1da177e4 2897
d6277db4
RW
2898 if (!populated_zone(zone))
2899 continue;
1da177e4 2900
9e3b2f8c
KK
2901 if (zone->all_unreclaimable &&
2902 sc.priority != DEF_PRIORITY)
d6277db4 2903 continue;
1da177e4 2904
556adecb
RR
2905 /*
2906 * Do some background aging of the anon list, to give
2907 * pages a chance to be referenced before reclaiming.
2908 */
9e3b2f8c 2909 age_active_anon(zone, &sc);
556adecb 2910
cc715d99
MG
2911 /*
2912 * If the number of buffer_heads in the machine
2913 * exceeds the maximum allowed level and this node
2914 * has a highmem zone, force kswapd to reclaim from
2915 * it to relieve lowmem pressure.
2916 */
2917 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2918 end_zone = i;
2919 break;
2920 }
2921
60cefed4 2922 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 2923 end_zone = i;
e1dbeda6 2924 break;
439423f6 2925 } else {
d43006d5
MG
2926 /*
2927 * If balanced, clear the dirty and congested
2928 * flags
2929 */
439423f6 2930 zone_clear_flag(zone, ZONE_CONGESTED);
d43006d5 2931 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
1da177e4 2932 }
1da177e4 2933 }
dafcb73e 2934
b8e83b94 2935 if (i < 0)
e1dbeda6
AM
2936 goto out;
2937
1da177e4
LT
2938 for (i = 0; i <= end_zone; i++) {
2939 struct zone *zone = pgdat->node_zones + i;
2940
2ab44f43
MG
2941 if (!populated_zone(zone))
2942 continue;
2943
adea02a1 2944 lru_pages += zone_reclaimable_pages(zone);
2ab44f43
MG
2945
2946 /*
2947 * If any zone is currently balanced then kswapd will
2948 * not call compaction as it is expected that the
2949 * necessary pages are already available.
2950 */
2951 if (pgdat_needs_compaction &&
2952 zone_watermark_ok(zone, order,
2953 low_wmark_pages(zone),
2954 *classzone_idx, 0))
2955 pgdat_needs_compaction = false;
1da177e4
LT
2956 }
2957
b7ea3c41
MG
2958 /*
2959 * If we're getting trouble reclaiming, start doing writepage
2960 * even in laptop mode.
2961 */
2962 if (sc.priority < DEF_PRIORITY - 2)
2963 sc.may_writepage = 1;
2964
1da177e4
LT
2965 /*
2966 * Now scan the zone in the dma->highmem direction, stopping
2967 * at the last zone which needs scanning.
2968 *
2969 * We do this because the page allocator works in the opposite
2970 * direction. This prevents the page allocator from allocating
2971 * pages behind kswapd's direction of progress, which would
2972 * cause too much scanning of the lower zones.
2973 */
2974 for (i = 0; i <= end_zone; i++) {
2975 struct zone *zone = pgdat->node_zones + i;
2976
f3fe6512 2977 if (!populated_zone(zone))
1da177e4
LT
2978 continue;
2979
9e3b2f8c
KK
2980 if (zone->all_unreclaimable &&
2981 sc.priority != DEF_PRIORITY)
1da177e4
LT
2982 continue;
2983
1da177e4 2984 sc.nr_scanned = 0;
4e416953 2985
0ae5e89c 2986 nr_soft_scanned = 0;
4e416953
BS
2987 /*
2988 * Call soft limit reclaim before calling shrink_zone.
4e416953 2989 */
0ae5e89c
YH
2990 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2991 order, sc.gfp_mask,
2992 &nr_soft_scanned);
2993 sc.nr_reclaimed += nr_soft_reclaimed;
00918b6a 2994
32a4330d 2995 /*
7c954f6d
MG
2996 * There should be no need to raise the scanning
2997 * priority if enough pages are already being scanned
2998 * that that high watermark would be met at 100%
2999 * efficiency.
fe2c2a10 3000 */
7c954f6d
MG
3001 if (kswapd_shrink_zone(zone, end_zone, &sc,
3002 lru_pages, &nr_attempted))
3003 raise_priority = false;
1da177e4 3004 }
5515061d
MG
3005
3006 /*
3007 * If the low watermark is met there is no need for processes
3008 * to be throttled on pfmemalloc_wait as they should not be
3009 * able to safely make forward progress. Wake them
3010 */
3011 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3012 pfmemalloc_watermark_ok(pgdat))
3013 wake_up(&pgdat->pfmemalloc_wait);
3014
1da177e4 3015 /*
b8e83b94
MG
3016 * Fragmentation may mean that the system cannot be rebalanced
3017 * for high-order allocations in all zones. If twice the
3018 * allocation size has been reclaimed and the zones are still
3019 * not balanced then recheck the watermarks at order-0 to
3020 * prevent kswapd reclaiming excessively. Assume that a
3021 * process requested a high-order can direct reclaim/compact.
1da177e4 3022 */
b8e83b94
MG
3023 if (order && sc.nr_reclaimed >= 2UL << order)
3024 order = sc.order = 0;
8357376d 3025
b8e83b94
MG
3026 /* Check if kswapd should be suspending */
3027 if (try_to_freeze() || kthread_should_stop())
3028 break;
8357376d 3029
2ab44f43
MG
3030 /*
3031 * Compact if necessary and kswapd is reclaiming at least the
3032 * high watermark number of pages as requsted
3033 */
3034 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3035 compact_pgdat(pgdat, order);
3036
73ce02e9 3037 /*
b8e83b94
MG
3038 * Raise priority if scanning rate is too low or there was no
3039 * progress in reclaiming pages
73ce02e9 3040 */
b8e83b94
MG
3041 if (raise_priority || !sc.nr_reclaimed)
3042 sc.priority--;
9aa41348 3043 } while (sc.priority >= 1 &&
b8e83b94 3044 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3045
b8e83b94 3046out:
0abdee2b 3047 /*
5515061d 3048 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3049 * makes a decision on the order we were last reclaiming at. However,
3050 * if another caller entered the allocator slow path while kswapd
3051 * was awake, order will remain at the higher level
3052 */
dc83edd9 3053 *classzone_idx = end_zone;
0abdee2b 3054 return order;
1da177e4
LT
3055}
3056
dc83edd9 3057static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3058{
3059 long remaining = 0;
3060 DEFINE_WAIT(wait);
3061
3062 if (freezing(current) || kthread_should_stop())
3063 return;
3064
3065 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3066
3067 /* Try to sleep for a short interval */
5515061d 3068 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3069 remaining = schedule_timeout(HZ/10);
3070 finish_wait(&pgdat->kswapd_wait, &wait);
3071 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3072 }
3073
3074 /*
3075 * After a short sleep, check if it was a premature sleep. If not, then
3076 * go fully to sleep until explicitly woken up.
3077 */
5515061d 3078 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3079 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3080
3081 /*
3082 * vmstat counters are not perfectly accurate and the estimated
3083 * value for counters such as NR_FREE_PAGES can deviate from the
3084 * true value by nr_online_cpus * threshold. To avoid the zone
3085 * watermarks being breached while under pressure, we reduce the
3086 * per-cpu vmstat threshold while kswapd is awake and restore
3087 * them before going back to sleep.
3088 */
3089 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3090
62997027
MG
3091 /*
3092 * Compaction records what page blocks it recently failed to
3093 * isolate pages from and skips them in the future scanning.
3094 * When kswapd is going to sleep, it is reasonable to assume
3095 * that pages and compaction may succeed so reset the cache.
3096 */
3097 reset_isolation_suitable(pgdat);
3098
1c7e7f6c
AK
3099 if (!kthread_should_stop())
3100 schedule();
3101
f0bc0a60
KM
3102 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3103 } else {
3104 if (remaining)
3105 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3106 else
3107 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3108 }
3109 finish_wait(&pgdat->kswapd_wait, &wait);
3110}
3111
1da177e4
LT
3112/*
3113 * The background pageout daemon, started as a kernel thread
4f98a2fe 3114 * from the init process.
1da177e4
LT
3115 *
3116 * This basically trickles out pages so that we have _some_
3117 * free memory available even if there is no other activity
3118 * that frees anything up. This is needed for things like routing
3119 * etc, where we otherwise might have all activity going on in
3120 * asynchronous contexts that cannot page things out.
3121 *
3122 * If there are applications that are active memory-allocators
3123 * (most normal use), this basically shouldn't matter.
3124 */
3125static int kswapd(void *p)
3126{
215ddd66 3127 unsigned long order, new_order;
d2ebd0f6 3128 unsigned balanced_order;
215ddd66 3129 int classzone_idx, new_classzone_idx;
d2ebd0f6 3130 int balanced_classzone_idx;
1da177e4
LT
3131 pg_data_t *pgdat = (pg_data_t*)p;
3132 struct task_struct *tsk = current;
f0bc0a60 3133
1da177e4
LT
3134 struct reclaim_state reclaim_state = {
3135 .reclaimed_slab = 0,
3136 };
a70f7302 3137 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3138
cf40bd16
NP
3139 lockdep_set_current_reclaim_state(GFP_KERNEL);
3140
174596a0 3141 if (!cpumask_empty(cpumask))
c5f59f08 3142 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3143 current->reclaim_state = &reclaim_state;
3144
3145 /*
3146 * Tell the memory management that we're a "memory allocator",
3147 * and that if we need more memory we should get access to it
3148 * regardless (see "__alloc_pages()"). "kswapd" should
3149 * never get caught in the normal page freeing logic.
3150 *
3151 * (Kswapd normally doesn't need memory anyway, but sometimes
3152 * you need a small amount of memory in order to be able to
3153 * page out something else, and this flag essentially protects
3154 * us from recursively trying to free more memory as we're
3155 * trying to free the first piece of memory in the first place).
3156 */
930d9152 3157 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3158 set_freezable();
1da177e4 3159
215ddd66 3160 order = new_order = 0;
d2ebd0f6 3161 balanced_order = 0;
215ddd66 3162 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3163 balanced_classzone_idx = classzone_idx;
1da177e4 3164 for ( ; ; ) {
6f6313d4 3165 bool ret;
3e1d1d28 3166
215ddd66
MG
3167 /*
3168 * If the last balance_pgdat was unsuccessful it's unlikely a
3169 * new request of a similar or harder type will succeed soon
3170 * so consider going to sleep on the basis we reclaimed at
3171 */
d2ebd0f6
AS
3172 if (balanced_classzone_idx >= new_classzone_idx &&
3173 balanced_order == new_order) {
215ddd66
MG
3174 new_order = pgdat->kswapd_max_order;
3175 new_classzone_idx = pgdat->classzone_idx;
3176 pgdat->kswapd_max_order = 0;
3177 pgdat->classzone_idx = pgdat->nr_zones - 1;
3178 }
3179
99504748 3180 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3181 /*
3182 * Don't sleep if someone wants a larger 'order'
99504748 3183 * allocation or has tigher zone constraints
1da177e4
LT
3184 */
3185 order = new_order;
99504748 3186 classzone_idx = new_classzone_idx;
1da177e4 3187 } else {
d2ebd0f6
AS
3188 kswapd_try_to_sleep(pgdat, balanced_order,
3189 balanced_classzone_idx);
1da177e4 3190 order = pgdat->kswapd_max_order;
99504748 3191 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3192 new_order = order;
3193 new_classzone_idx = classzone_idx;
4d40502e 3194 pgdat->kswapd_max_order = 0;
215ddd66 3195 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3196 }
1da177e4 3197
8fe23e05
DR
3198 ret = try_to_freeze();
3199 if (kthread_should_stop())
3200 break;
3201
3202 /*
3203 * We can speed up thawing tasks if we don't call balance_pgdat
3204 * after returning from the refrigerator
3205 */
33906bc5
MG
3206 if (!ret) {
3207 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3208 balanced_classzone_idx = classzone_idx;
3209 balanced_order = balance_pgdat(pgdat, order,
3210 &balanced_classzone_idx);
33906bc5 3211 }
1da177e4 3212 }
b0a8cc58
TY
3213
3214 current->reclaim_state = NULL;
1da177e4
LT
3215 return 0;
3216}
3217
3218/*
3219 * A zone is low on free memory, so wake its kswapd task to service it.
3220 */
99504748 3221void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3222{
3223 pg_data_t *pgdat;
3224
f3fe6512 3225 if (!populated_zone(zone))
1da177e4
LT
3226 return;
3227
88f5acf8 3228 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 3229 return;
88f5acf8 3230 pgdat = zone->zone_pgdat;
99504748 3231 if (pgdat->kswapd_max_order < order) {
1da177e4 3232 pgdat->kswapd_max_order = order;
99504748
MG
3233 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3234 }
8d0986e2 3235 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3236 return;
88f5acf8
MG
3237 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3238 return;
3239
3240 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3241 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3242}
3243
adea02a1
WF
3244/*
3245 * The reclaimable count would be mostly accurate.
3246 * The less reclaimable pages may be
3247 * - mlocked pages, which will be moved to unevictable list when encountered
3248 * - mapped pages, which may require several travels to be reclaimed
3249 * - dirty pages, which is not "instantly" reclaimable
3250 */
3251unsigned long global_reclaimable_pages(void)
4f98a2fe 3252{
adea02a1
WF
3253 int nr;
3254
3255 nr = global_page_state(NR_ACTIVE_FILE) +
3256 global_page_state(NR_INACTIVE_FILE);
3257
ec8acf20 3258 if (get_nr_swap_pages() > 0)
adea02a1
WF
3259 nr += global_page_state(NR_ACTIVE_ANON) +
3260 global_page_state(NR_INACTIVE_ANON);
3261
3262 return nr;
3263}
3264
3265unsigned long zone_reclaimable_pages(struct zone *zone)
3266{
3267 int nr;
3268
3269 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3270 zone_page_state(zone, NR_INACTIVE_FILE);
3271
ec8acf20 3272 if (get_nr_swap_pages() > 0)
adea02a1
WF
3273 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3274 zone_page_state(zone, NR_INACTIVE_ANON);
3275
3276 return nr;
4f98a2fe
RR
3277}
3278
c6f37f12 3279#ifdef CONFIG_HIBERNATION
1da177e4 3280/*
7b51755c 3281 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3282 * freed pages.
3283 *
3284 * Rather than trying to age LRUs the aim is to preserve the overall
3285 * LRU order by reclaiming preferentially
3286 * inactive > active > active referenced > active mapped
1da177e4 3287 */
7b51755c 3288unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3289{
d6277db4 3290 struct reclaim_state reclaim_state;
d6277db4 3291 struct scan_control sc = {
7b51755c
KM
3292 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3293 .may_swap = 1,
3294 .may_unmap = 1,
d6277db4 3295 .may_writepage = 1,
7b51755c
KM
3296 .nr_to_reclaim = nr_to_reclaim,
3297 .hibernation_mode = 1,
7b51755c 3298 .order = 0,
9e3b2f8c 3299 .priority = DEF_PRIORITY,
1da177e4 3300 };
a09ed5e0
YH
3301 struct shrink_control shrink = {
3302 .gfp_mask = sc.gfp_mask,
3303 };
3304 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3305 struct task_struct *p = current;
3306 unsigned long nr_reclaimed;
1da177e4 3307
7b51755c
KM
3308 p->flags |= PF_MEMALLOC;
3309 lockdep_set_current_reclaim_state(sc.gfp_mask);
3310 reclaim_state.reclaimed_slab = 0;
3311 p->reclaim_state = &reclaim_state;
d6277db4 3312
a09ed5e0 3313 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 3314
7b51755c
KM
3315 p->reclaim_state = NULL;
3316 lockdep_clear_current_reclaim_state();
3317 p->flags &= ~PF_MEMALLOC;
d6277db4 3318
7b51755c 3319 return nr_reclaimed;
1da177e4 3320}
c6f37f12 3321#endif /* CONFIG_HIBERNATION */
1da177e4 3322
1da177e4
LT
3323/* It's optimal to keep kswapds on the same CPUs as their memory, but
3324 not required for correctness. So if the last cpu in a node goes
3325 away, we get changed to run anywhere: as the first one comes back,
3326 restore their cpu bindings. */
fcb35a9b
GKH
3327static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3328 void *hcpu)
1da177e4 3329{
58c0a4a7 3330 int nid;
1da177e4 3331
8bb78442 3332 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3333 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3334 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3335 const struct cpumask *mask;
3336
3337 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3338
3e597945 3339 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3340 /* One of our CPUs online: restore mask */
c5f59f08 3341 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3342 }
3343 }
3344 return NOTIFY_OK;
3345}
1da177e4 3346
3218ae14
YG
3347/*
3348 * This kswapd start function will be called by init and node-hot-add.
3349 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3350 */
3351int kswapd_run(int nid)
3352{
3353 pg_data_t *pgdat = NODE_DATA(nid);
3354 int ret = 0;
3355
3356 if (pgdat->kswapd)
3357 return 0;
3358
3359 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3360 if (IS_ERR(pgdat->kswapd)) {
3361 /* failure at boot is fatal */
3362 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3363 pr_err("Failed to start kswapd on node %d\n", nid);
3364 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3365 pgdat->kswapd = NULL;
3218ae14
YG
3366 }
3367 return ret;
3368}
3369
8fe23e05 3370/*
d8adde17
JL
3371 * Called by memory hotplug when all memory in a node is offlined. Caller must
3372 * hold lock_memory_hotplug().
8fe23e05
DR
3373 */
3374void kswapd_stop(int nid)
3375{
3376 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3377
d8adde17 3378 if (kswapd) {
8fe23e05 3379 kthread_stop(kswapd);
d8adde17
JL
3380 NODE_DATA(nid)->kswapd = NULL;
3381 }
8fe23e05
DR
3382}
3383
1da177e4
LT
3384static int __init kswapd_init(void)
3385{
3218ae14 3386 int nid;
69e05944 3387
1da177e4 3388 swap_setup();
48fb2e24 3389 for_each_node_state(nid, N_MEMORY)
3218ae14 3390 kswapd_run(nid);
1da177e4
LT
3391 hotcpu_notifier(cpu_callback, 0);
3392 return 0;
3393}
3394
3395module_init(kswapd_init)
9eeff239
CL
3396
3397#ifdef CONFIG_NUMA
3398/*
3399 * Zone reclaim mode
3400 *
3401 * If non-zero call zone_reclaim when the number of free pages falls below
3402 * the watermarks.
9eeff239
CL
3403 */
3404int zone_reclaim_mode __read_mostly;
3405
1b2ffb78 3406#define RECLAIM_OFF 0
7d03431c 3407#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3408#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3409#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3410
a92f7126
CL
3411/*
3412 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3413 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3414 * a zone.
3415 */
3416#define ZONE_RECLAIM_PRIORITY 4
3417
9614634f
CL
3418/*
3419 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3420 * occur.
3421 */
3422int sysctl_min_unmapped_ratio = 1;
3423
0ff38490
CL
3424/*
3425 * If the number of slab pages in a zone grows beyond this percentage then
3426 * slab reclaim needs to occur.
3427 */
3428int sysctl_min_slab_ratio = 5;
3429
90afa5de
MG
3430static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3431{
3432 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3433 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3434 zone_page_state(zone, NR_ACTIVE_FILE);
3435
3436 /*
3437 * It's possible for there to be more file mapped pages than
3438 * accounted for by the pages on the file LRU lists because
3439 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3440 */
3441 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3442}
3443
3444/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3445static long zone_pagecache_reclaimable(struct zone *zone)
3446{
3447 long nr_pagecache_reclaimable;
3448 long delta = 0;
3449
3450 /*
3451 * If RECLAIM_SWAP is set, then all file pages are considered
3452 * potentially reclaimable. Otherwise, we have to worry about
3453 * pages like swapcache and zone_unmapped_file_pages() provides
3454 * a better estimate
3455 */
3456 if (zone_reclaim_mode & RECLAIM_SWAP)
3457 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3458 else
3459 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3460
3461 /* If we can't clean pages, remove dirty pages from consideration */
3462 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3463 delta += zone_page_state(zone, NR_FILE_DIRTY);
3464
3465 /* Watch for any possible underflows due to delta */
3466 if (unlikely(delta > nr_pagecache_reclaimable))
3467 delta = nr_pagecache_reclaimable;
3468
3469 return nr_pagecache_reclaimable - delta;
3470}
3471
9eeff239
CL
3472/*
3473 * Try to free up some pages from this zone through reclaim.
3474 */
179e9639 3475static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3476{
7fb2d46d 3477 /* Minimum pages needed in order to stay on node */
69e05944 3478 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3479 struct task_struct *p = current;
3480 struct reclaim_state reclaim_state;
179e9639
AM
3481 struct scan_control sc = {
3482 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3483 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3484 .may_swap = 1,
62b726c1 3485 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3486 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3487 .order = order,
9e3b2f8c 3488 .priority = ZONE_RECLAIM_PRIORITY,
179e9639 3489 };
a09ed5e0
YH
3490 struct shrink_control shrink = {
3491 .gfp_mask = sc.gfp_mask,
3492 };
15748048 3493 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3494
9eeff239 3495 cond_resched();
d4f7796e
CL
3496 /*
3497 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3498 * and we also need to be able to write out pages for RECLAIM_WRITE
3499 * and RECLAIM_SWAP.
3500 */
3501 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3502 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3503 reclaim_state.reclaimed_slab = 0;
3504 p->reclaim_state = &reclaim_state;
c84db23c 3505
90afa5de 3506 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3507 /*
3508 * Free memory by calling shrink zone with increasing
3509 * priorities until we have enough memory freed.
3510 */
0ff38490 3511 do {
9e3b2f8c
KK
3512 shrink_zone(zone, &sc);
3513 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3514 }
c84db23c 3515
15748048
KM
3516 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3517 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3518 /*
7fb2d46d 3519 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3520 * many pages were freed in this zone. So we take the current
3521 * number of slab pages and shake the slab until it is reduced
3522 * by the same nr_pages that we used for reclaiming unmapped
3523 * pages.
2a16e3f4 3524 *
0ff38490
CL
3525 * Note that shrink_slab will free memory on all zones and may
3526 * take a long time.
2a16e3f4 3527 */
4dc4b3d9
KM
3528 for (;;) {
3529 unsigned long lru_pages = zone_reclaimable_pages(zone);
3530
3531 /* No reclaimable slab or very low memory pressure */
1495f230 3532 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3533 break;
3534
3535 /* Freed enough memory */
3536 nr_slab_pages1 = zone_page_state(zone,
3537 NR_SLAB_RECLAIMABLE);
3538 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3539 break;
3540 }
83e33a47
CL
3541
3542 /*
3543 * Update nr_reclaimed by the number of slab pages we
3544 * reclaimed from this zone.
3545 */
15748048
KM
3546 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3547 if (nr_slab_pages1 < nr_slab_pages0)
3548 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3549 }
3550
9eeff239 3551 p->reclaim_state = NULL;
d4f7796e 3552 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3553 lockdep_clear_current_reclaim_state();
a79311c1 3554 return sc.nr_reclaimed >= nr_pages;
9eeff239 3555}
179e9639
AM
3556
3557int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3558{
179e9639 3559 int node_id;
d773ed6b 3560 int ret;
179e9639
AM
3561
3562 /*
0ff38490
CL
3563 * Zone reclaim reclaims unmapped file backed pages and
3564 * slab pages if we are over the defined limits.
34aa1330 3565 *
9614634f
CL
3566 * A small portion of unmapped file backed pages is needed for
3567 * file I/O otherwise pages read by file I/O will be immediately
3568 * thrown out if the zone is overallocated. So we do not reclaim
3569 * if less than a specified percentage of the zone is used by
3570 * unmapped file backed pages.
179e9639 3571 */
90afa5de
MG
3572 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3573 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3574 return ZONE_RECLAIM_FULL;
179e9639 3575
93e4a89a 3576 if (zone->all_unreclaimable)
fa5e084e 3577 return ZONE_RECLAIM_FULL;
d773ed6b 3578
179e9639 3579 /*
d773ed6b 3580 * Do not scan if the allocation should not be delayed.
179e9639 3581 */
d773ed6b 3582 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3583 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3584
3585 /*
3586 * Only run zone reclaim on the local zone or on zones that do not
3587 * have associated processors. This will favor the local processor
3588 * over remote processors and spread off node memory allocations
3589 * as wide as possible.
3590 */
89fa3024 3591 node_id = zone_to_nid(zone);
37c0708d 3592 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3593 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3594
3595 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3596 return ZONE_RECLAIM_NOSCAN;
3597
d773ed6b
DR
3598 ret = __zone_reclaim(zone, gfp_mask, order);
3599 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3600
24cf7251
MG
3601 if (!ret)
3602 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3603
d773ed6b 3604 return ret;
179e9639 3605}
9eeff239 3606#endif
894bc310 3607
894bc310
LS
3608/*
3609 * page_evictable - test whether a page is evictable
3610 * @page: the page to test
894bc310
LS
3611 *
3612 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3613 * lists vs unevictable list.
894bc310
LS
3614 *
3615 * Reasons page might not be evictable:
ba9ddf49 3616 * (1) page's mapping marked unevictable
b291f000 3617 * (2) page is part of an mlocked VMA
ba9ddf49 3618 *
894bc310 3619 */
39b5f29a 3620int page_evictable(struct page *page)
894bc310 3621{
39b5f29a 3622 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3623}
89e004ea 3624
85046579 3625#ifdef CONFIG_SHMEM
89e004ea 3626/**
24513264
HD
3627 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3628 * @pages: array of pages to check
3629 * @nr_pages: number of pages to check
89e004ea 3630 *
24513264 3631 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3632 *
3633 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3634 */
24513264 3635void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3636{
925b7673 3637 struct lruvec *lruvec;
24513264
HD
3638 struct zone *zone = NULL;
3639 int pgscanned = 0;
3640 int pgrescued = 0;
3641 int i;
89e004ea 3642
24513264
HD
3643 for (i = 0; i < nr_pages; i++) {
3644 struct page *page = pages[i];
3645 struct zone *pagezone;
89e004ea 3646
24513264
HD
3647 pgscanned++;
3648 pagezone = page_zone(page);
3649 if (pagezone != zone) {
3650 if (zone)
3651 spin_unlock_irq(&zone->lru_lock);
3652 zone = pagezone;
3653 spin_lock_irq(&zone->lru_lock);
3654 }
fa9add64 3655 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3656
24513264
HD
3657 if (!PageLRU(page) || !PageUnevictable(page))
3658 continue;
89e004ea 3659
39b5f29a 3660 if (page_evictable(page)) {
24513264
HD
3661 enum lru_list lru = page_lru_base_type(page);
3662
3663 VM_BUG_ON(PageActive(page));
3664 ClearPageUnevictable(page);
fa9add64
HD
3665 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3666 add_page_to_lru_list(page, lruvec, lru);
24513264 3667 pgrescued++;
89e004ea 3668 }
24513264 3669 }
89e004ea 3670
24513264
HD
3671 if (zone) {
3672 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3673 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3674 spin_unlock_irq(&zone->lru_lock);
89e004ea 3675 }
89e004ea 3676}
85046579 3677#endif /* CONFIG_SHMEM */
af936a16 3678
264e56d8 3679static void warn_scan_unevictable_pages(void)
af936a16 3680{
264e56d8 3681 printk_once(KERN_WARNING
25bd91bd 3682 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3683 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3684 "one, please send an email to linux-mm@kvack.org.\n",
3685 current->comm);
af936a16
LS
3686}
3687
3688/*
3689 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3690 * all nodes' unevictable lists for evictable pages
3691 */
3692unsigned long scan_unevictable_pages;
3693
3694int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3695 void __user *buffer,
af936a16
LS
3696 size_t *length, loff_t *ppos)
3697{
264e56d8 3698 warn_scan_unevictable_pages();
8d65af78 3699 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3700 scan_unevictable_pages = 0;
3701 return 0;
3702}
3703
e4455abb 3704#ifdef CONFIG_NUMA
af936a16
LS
3705/*
3706 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3707 * a specified node's per zone unevictable lists for evictable pages.
3708 */
3709
10fbcf4c
KS
3710static ssize_t read_scan_unevictable_node(struct device *dev,
3711 struct device_attribute *attr,
af936a16
LS
3712 char *buf)
3713{
264e56d8 3714 warn_scan_unevictable_pages();
af936a16
LS
3715 return sprintf(buf, "0\n"); /* always zero; should fit... */
3716}
3717
10fbcf4c
KS
3718static ssize_t write_scan_unevictable_node(struct device *dev,
3719 struct device_attribute *attr,
af936a16
LS
3720 const char *buf, size_t count)
3721{
264e56d8 3722 warn_scan_unevictable_pages();
af936a16
LS
3723 return 1;
3724}
3725
3726
10fbcf4c 3727static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3728 read_scan_unevictable_node,
3729 write_scan_unevictable_node);
3730
3731int scan_unevictable_register_node(struct node *node)
3732{
10fbcf4c 3733 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3734}
3735
3736void scan_unevictable_unregister_node(struct node *node)
3737{
10fbcf4c 3738 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3739}
e4455abb 3740#endif