]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/vmscan.c
mm/vmscan: push lruvec pointer into get_scan_count()
[mirror_ubuntu-artful-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
1da177e4
LT
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
3e7d3449 34#include <linux/compaction.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
929bea7c 43#include <linux/oom.h>
268bb0ce 44#include <linux/prefetch.h>
1da177e4
LT
45
46#include <asm/tlbflush.h>
47#include <asm/div64.h>
48
49#include <linux/swapops.h>
50
0f8053a5
NP
51#include "internal.h"
52
33906bc5
MG
53#define CREATE_TRACE_POINTS
54#include <trace/events/vmscan.h>
55
1da177e4 56struct scan_control {
1da177e4
LT
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
59
a79311c1
RR
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
62
22fba335
KM
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
7b51755c
KM
66 unsigned long hibernation_mode;
67
1da177e4 68 /* This context's GFP mask */
6daa0e28 69 gfp_t gfp_mask;
1da177e4
LT
70
71 int may_writepage;
72
a6dc60f8
JW
73 /* Can mapped pages be reclaimed? */
74 int may_unmap;
f1fd1067 75
2e2e4259
KM
76 /* Can pages be swapped as part of reclaim? */
77 int may_swap;
78
5ad333eb 79 int order;
66e1707b 80
9e3b2f8c
KK
81 /* Scan (total_size >> priority) pages at once */
82 int priority;
83
f16015fb
JW
84 /*
85 * The memory cgroup that hit its limit and as a result is the
86 * primary target of this reclaim invocation.
87 */
88 struct mem_cgroup *target_mem_cgroup;
66e1707b 89
327c0e96
KH
90 /*
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
93 */
94 nodemask_t *nodemask;
1da177e4
LT
95};
96
f16015fb
JW
97struct mem_cgroup_zone {
98 struct mem_cgroup *mem_cgroup;
99 struct zone *zone;
100};
101
1da177e4
LT
102#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
103
104#ifdef ARCH_HAS_PREFETCH
105#define prefetch_prev_lru_page(_page, _base, _field) \
106 do { \
107 if ((_page)->lru.prev != _base) { \
108 struct page *prev; \
109 \
110 prev = lru_to_page(&(_page->lru)); \
111 prefetch(&prev->_field); \
112 } \
113 } while (0)
114#else
115#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
116#endif
117
118#ifdef ARCH_HAS_PREFETCHW
119#define prefetchw_prev_lru_page(_page, _base, _field) \
120 do { \
121 if ((_page)->lru.prev != _base) { \
122 struct page *prev; \
123 \
124 prev = lru_to_page(&(_page->lru)); \
125 prefetchw(&prev->_field); \
126 } \
127 } while (0)
128#else
129#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
130#endif
131
132/*
133 * From 0 .. 100. Higher means more swappy.
134 */
135int vm_swappiness = 60;
bd1e22b8 136long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
137
138static LIST_HEAD(shrinker_list);
139static DECLARE_RWSEM(shrinker_rwsem);
140
00f0b825 141#ifdef CONFIG_CGROUP_MEM_RES_CTLR
89b5fae5
JW
142static bool global_reclaim(struct scan_control *sc)
143{
f16015fb 144 return !sc->target_mem_cgroup;
89b5fae5 145}
91a45470 146#else
89b5fae5
JW
147static bool global_reclaim(struct scan_control *sc)
148{
149 return true;
150}
91a45470
KH
151#endif
152
074291fe 153static unsigned long get_lruvec_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 154{
c3c787e8 155 if (!mem_cgroup_disabled())
074291fe 156 return mem_cgroup_get_lruvec_size(lruvec, lru);
a3d8e054 157
074291fe 158 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
159}
160
1da177e4
LT
161/*
162 * Add a shrinker callback to be called from the vm
163 */
8e1f936b 164void register_shrinker(struct shrinker *shrinker)
1da177e4 165{
83aeeada 166 atomic_long_set(&shrinker->nr_in_batch, 0);
8e1f936b
RR
167 down_write(&shrinker_rwsem);
168 list_add_tail(&shrinker->list, &shrinker_list);
169 up_write(&shrinker_rwsem);
1da177e4 170}
8e1f936b 171EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
172
173/*
174 * Remove one
175 */
8e1f936b 176void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
177{
178 down_write(&shrinker_rwsem);
179 list_del(&shrinker->list);
180 up_write(&shrinker_rwsem);
1da177e4 181}
8e1f936b 182EXPORT_SYMBOL(unregister_shrinker);
1da177e4 183
1495f230
YH
184static inline int do_shrinker_shrink(struct shrinker *shrinker,
185 struct shrink_control *sc,
186 unsigned long nr_to_scan)
187{
188 sc->nr_to_scan = nr_to_scan;
189 return (*shrinker->shrink)(shrinker, sc);
190}
191
1da177e4
LT
192#define SHRINK_BATCH 128
193/*
194 * Call the shrink functions to age shrinkable caches
195 *
196 * Here we assume it costs one seek to replace a lru page and that it also
197 * takes a seek to recreate a cache object. With this in mind we age equal
198 * percentages of the lru and ageable caches. This should balance the seeks
199 * generated by these structures.
200 *
183ff22b 201 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
202 * slab to avoid swapping.
203 *
204 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
205 *
206 * `lru_pages' represents the number of on-LRU pages in all the zones which
207 * are eligible for the caller's allocation attempt. It is used for balancing
208 * slab reclaim versus page reclaim.
b15e0905 209 *
210 * Returns the number of slab objects which we shrunk.
1da177e4 211 */
a09ed5e0 212unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 213 unsigned long nr_pages_scanned,
a09ed5e0 214 unsigned long lru_pages)
1da177e4
LT
215{
216 struct shrinker *shrinker;
69e05944 217 unsigned long ret = 0;
1da177e4 218
1495f230
YH
219 if (nr_pages_scanned == 0)
220 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 221
f06590bd
MK
222 if (!down_read_trylock(&shrinker_rwsem)) {
223 /* Assume we'll be able to shrink next time */
224 ret = 1;
225 goto out;
226 }
1da177e4
LT
227
228 list_for_each_entry(shrinker, &shrinker_list, list) {
229 unsigned long long delta;
635697c6
KK
230 long total_scan;
231 long max_pass;
09576073 232 int shrink_ret = 0;
acf92b48
DC
233 long nr;
234 long new_nr;
e9299f50
DC
235 long batch_size = shrinker->batch ? shrinker->batch
236 : SHRINK_BATCH;
1da177e4 237
635697c6
KK
238 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
239 if (max_pass <= 0)
240 continue;
241
acf92b48
DC
242 /*
243 * copy the current shrinker scan count into a local variable
244 * and zero it so that other concurrent shrinker invocations
245 * don't also do this scanning work.
246 */
83aeeada 247 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
acf92b48
DC
248
249 total_scan = nr;
1495f230 250 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 251 delta *= max_pass;
1da177e4 252 do_div(delta, lru_pages + 1);
acf92b48
DC
253 total_scan += delta;
254 if (total_scan < 0) {
88c3bd70
DR
255 printk(KERN_ERR "shrink_slab: %pF negative objects to "
256 "delete nr=%ld\n",
acf92b48
DC
257 shrinker->shrink, total_scan);
258 total_scan = max_pass;
ea164d73
AA
259 }
260
3567b59a
DC
261 /*
262 * We need to avoid excessive windup on filesystem shrinkers
263 * due to large numbers of GFP_NOFS allocations causing the
264 * shrinkers to return -1 all the time. This results in a large
265 * nr being built up so when a shrink that can do some work
266 * comes along it empties the entire cache due to nr >>>
267 * max_pass. This is bad for sustaining a working set in
268 * memory.
269 *
270 * Hence only allow the shrinker to scan the entire cache when
271 * a large delta change is calculated directly.
272 */
273 if (delta < max_pass / 4)
274 total_scan = min(total_scan, max_pass / 2);
275
ea164d73
AA
276 /*
277 * Avoid risking looping forever due to too large nr value:
278 * never try to free more than twice the estimate number of
279 * freeable entries.
280 */
acf92b48
DC
281 if (total_scan > max_pass * 2)
282 total_scan = max_pass * 2;
1da177e4 283
acf92b48 284 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
285 nr_pages_scanned, lru_pages,
286 max_pass, delta, total_scan);
287
e9299f50 288 while (total_scan >= batch_size) {
b15e0905 289 int nr_before;
1da177e4 290
1495f230
YH
291 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
292 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 293 batch_size);
1da177e4
LT
294 if (shrink_ret == -1)
295 break;
b15e0905 296 if (shrink_ret < nr_before)
297 ret += nr_before - shrink_ret;
e9299f50
DC
298 count_vm_events(SLABS_SCANNED, batch_size);
299 total_scan -= batch_size;
1da177e4
LT
300
301 cond_resched();
302 }
303
acf92b48
DC
304 /*
305 * move the unused scan count back into the shrinker in a
306 * manner that handles concurrent updates. If we exhausted the
307 * scan, there is no need to do an update.
308 */
83aeeada
KK
309 if (total_scan > 0)
310 new_nr = atomic_long_add_return(total_scan,
311 &shrinker->nr_in_batch);
312 else
313 new_nr = atomic_long_read(&shrinker->nr_in_batch);
acf92b48
DC
314
315 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
316 }
317 up_read(&shrinker_rwsem);
f06590bd
MK
318out:
319 cond_resched();
b15e0905 320 return ret;
1da177e4
LT
321}
322
1da177e4
LT
323static inline int is_page_cache_freeable(struct page *page)
324{
ceddc3a5
JW
325 /*
326 * A freeable page cache page is referenced only by the caller
327 * that isolated the page, the page cache radix tree and
328 * optional buffer heads at page->private.
329 */
edcf4748 330 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
331}
332
7d3579e8
KM
333static int may_write_to_queue(struct backing_dev_info *bdi,
334 struct scan_control *sc)
1da177e4 335{
930d9152 336 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
337 return 1;
338 if (!bdi_write_congested(bdi))
339 return 1;
340 if (bdi == current->backing_dev_info)
341 return 1;
342 return 0;
343}
344
345/*
346 * We detected a synchronous write error writing a page out. Probably
347 * -ENOSPC. We need to propagate that into the address_space for a subsequent
348 * fsync(), msync() or close().
349 *
350 * The tricky part is that after writepage we cannot touch the mapping: nothing
351 * prevents it from being freed up. But we have a ref on the page and once
352 * that page is locked, the mapping is pinned.
353 *
354 * We're allowed to run sleeping lock_page() here because we know the caller has
355 * __GFP_FS.
356 */
357static void handle_write_error(struct address_space *mapping,
358 struct page *page, int error)
359{
7eaceacc 360 lock_page(page);
3e9f45bd
GC
361 if (page_mapping(page) == mapping)
362 mapping_set_error(mapping, error);
1da177e4
LT
363 unlock_page(page);
364}
365
04e62a29
CL
366/* possible outcome of pageout() */
367typedef enum {
368 /* failed to write page out, page is locked */
369 PAGE_KEEP,
370 /* move page to the active list, page is locked */
371 PAGE_ACTIVATE,
372 /* page has been sent to the disk successfully, page is unlocked */
373 PAGE_SUCCESS,
374 /* page is clean and locked */
375 PAGE_CLEAN,
376} pageout_t;
377
1da177e4 378/*
1742f19f
AM
379 * pageout is called by shrink_page_list() for each dirty page.
380 * Calls ->writepage().
1da177e4 381 */
c661b078 382static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 383 struct scan_control *sc)
1da177e4
LT
384{
385 /*
386 * If the page is dirty, only perform writeback if that write
387 * will be non-blocking. To prevent this allocation from being
388 * stalled by pagecache activity. But note that there may be
389 * stalls if we need to run get_block(). We could test
390 * PagePrivate for that.
391 *
6aceb53b 392 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
393 * this page's queue, we can perform writeback even if that
394 * will block.
395 *
396 * If the page is swapcache, write it back even if that would
397 * block, for some throttling. This happens by accident, because
398 * swap_backing_dev_info is bust: it doesn't reflect the
399 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
400 */
401 if (!is_page_cache_freeable(page))
402 return PAGE_KEEP;
403 if (!mapping) {
404 /*
405 * Some data journaling orphaned pages can have
406 * page->mapping == NULL while being dirty with clean buffers.
407 */
266cf658 408 if (page_has_private(page)) {
1da177e4
LT
409 if (try_to_free_buffers(page)) {
410 ClearPageDirty(page);
d40cee24 411 printk("%s: orphaned page\n", __func__);
1da177e4
LT
412 return PAGE_CLEAN;
413 }
414 }
415 return PAGE_KEEP;
416 }
417 if (mapping->a_ops->writepage == NULL)
418 return PAGE_ACTIVATE;
0e093d99 419 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
420 return PAGE_KEEP;
421
422 if (clear_page_dirty_for_io(page)) {
423 int res;
424 struct writeback_control wbc = {
425 .sync_mode = WB_SYNC_NONE,
426 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
427 .range_start = 0,
428 .range_end = LLONG_MAX,
1da177e4
LT
429 .for_reclaim = 1,
430 };
431
432 SetPageReclaim(page);
433 res = mapping->a_ops->writepage(page, &wbc);
434 if (res < 0)
435 handle_write_error(mapping, page, res);
994fc28c 436 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
437 ClearPageReclaim(page);
438 return PAGE_ACTIVATE;
439 }
c661b078 440
1da177e4
LT
441 if (!PageWriteback(page)) {
442 /* synchronous write or broken a_ops? */
443 ClearPageReclaim(page);
444 }
23b9da55 445 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 446 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
447 return PAGE_SUCCESS;
448 }
449
450 return PAGE_CLEAN;
451}
452
a649fd92 453/*
e286781d
NP
454 * Same as remove_mapping, but if the page is removed from the mapping, it
455 * gets returned with a refcount of 0.
a649fd92 456 */
e286781d 457static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 458{
28e4d965
NP
459 BUG_ON(!PageLocked(page));
460 BUG_ON(mapping != page_mapping(page));
49d2e9cc 461
19fd6231 462 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 463 /*
0fd0e6b0
NP
464 * The non racy check for a busy page.
465 *
466 * Must be careful with the order of the tests. When someone has
467 * a ref to the page, it may be possible that they dirty it then
468 * drop the reference. So if PageDirty is tested before page_count
469 * here, then the following race may occur:
470 *
471 * get_user_pages(&page);
472 * [user mapping goes away]
473 * write_to(page);
474 * !PageDirty(page) [good]
475 * SetPageDirty(page);
476 * put_page(page);
477 * !page_count(page) [good, discard it]
478 *
479 * [oops, our write_to data is lost]
480 *
481 * Reversing the order of the tests ensures such a situation cannot
482 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
483 * load is not satisfied before that of page->_count.
484 *
485 * Note that if SetPageDirty is always performed via set_page_dirty,
486 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 487 */
e286781d 488 if (!page_freeze_refs(page, 2))
49d2e9cc 489 goto cannot_free;
e286781d
NP
490 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
491 if (unlikely(PageDirty(page))) {
492 page_unfreeze_refs(page, 2);
49d2e9cc 493 goto cannot_free;
e286781d 494 }
49d2e9cc
CL
495
496 if (PageSwapCache(page)) {
497 swp_entry_t swap = { .val = page_private(page) };
498 __delete_from_swap_cache(page);
19fd6231 499 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 500 swapcache_free(swap, page);
e286781d 501 } else {
6072d13c
LT
502 void (*freepage)(struct page *);
503
504 freepage = mapping->a_ops->freepage;
505
e64a782f 506 __delete_from_page_cache(page);
19fd6231 507 spin_unlock_irq(&mapping->tree_lock);
e767e056 508 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
509
510 if (freepage != NULL)
511 freepage(page);
49d2e9cc
CL
512 }
513
49d2e9cc
CL
514 return 1;
515
516cannot_free:
19fd6231 517 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
518 return 0;
519}
520
e286781d
NP
521/*
522 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
523 * someone else has a ref on the page, abort and return 0. If it was
524 * successfully detached, return 1. Assumes the caller has a single ref on
525 * this page.
526 */
527int remove_mapping(struct address_space *mapping, struct page *page)
528{
529 if (__remove_mapping(mapping, page)) {
530 /*
531 * Unfreezing the refcount with 1 rather than 2 effectively
532 * drops the pagecache ref for us without requiring another
533 * atomic operation.
534 */
535 page_unfreeze_refs(page, 1);
536 return 1;
537 }
538 return 0;
539}
540
894bc310
LS
541/**
542 * putback_lru_page - put previously isolated page onto appropriate LRU list
543 * @page: page to be put back to appropriate lru list
544 *
545 * Add previously isolated @page to appropriate LRU list.
546 * Page may still be unevictable for other reasons.
547 *
548 * lru_lock must not be held, interrupts must be enabled.
549 */
894bc310
LS
550void putback_lru_page(struct page *page)
551{
552 int lru;
553 int active = !!TestClearPageActive(page);
bbfd28ee 554 int was_unevictable = PageUnevictable(page);
894bc310
LS
555
556 VM_BUG_ON(PageLRU(page));
557
558redo:
559 ClearPageUnevictable(page);
560
561 if (page_evictable(page, NULL)) {
562 /*
563 * For evictable pages, we can use the cache.
564 * In event of a race, worst case is we end up with an
565 * unevictable page on [in]active list.
566 * We know how to handle that.
567 */
401a8e1c 568 lru = active + page_lru_base_type(page);
894bc310
LS
569 lru_cache_add_lru(page, lru);
570 } else {
571 /*
572 * Put unevictable pages directly on zone's unevictable
573 * list.
574 */
575 lru = LRU_UNEVICTABLE;
576 add_page_to_unevictable_list(page);
6a7b9548 577 /*
21ee9f39
MK
578 * When racing with an mlock or AS_UNEVICTABLE clearing
579 * (page is unlocked) make sure that if the other thread
580 * does not observe our setting of PG_lru and fails
24513264 581 * isolation/check_move_unevictable_pages,
21ee9f39 582 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
583 * the page back to the evictable list.
584 *
21ee9f39 585 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
586 */
587 smp_mb();
894bc310 588 }
894bc310
LS
589
590 /*
591 * page's status can change while we move it among lru. If an evictable
592 * page is on unevictable list, it never be freed. To avoid that,
593 * check after we added it to the list, again.
594 */
595 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
596 if (!isolate_lru_page(page)) {
597 put_page(page);
598 goto redo;
599 }
600 /* This means someone else dropped this page from LRU
601 * So, it will be freed or putback to LRU again. There is
602 * nothing to do here.
603 */
604 }
605
bbfd28ee
LS
606 if (was_unevictable && lru != LRU_UNEVICTABLE)
607 count_vm_event(UNEVICTABLE_PGRESCUED);
608 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
609 count_vm_event(UNEVICTABLE_PGCULLED);
610
894bc310
LS
611 put_page(page); /* drop ref from isolate */
612}
613
dfc8d636
JW
614enum page_references {
615 PAGEREF_RECLAIM,
616 PAGEREF_RECLAIM_CLEAN,
64574746 617 PAGEREF_KEEP,
dfc8d636
JW
618 PAGEREF_ACTIVATE,
619};
620
621static enum page_references page_check_references(struct page *page,
622 struct scan_control *sc)
623{
64574746 624 int referenced_ptes, referenced_page;
dfc8d636 625 unsigned long vm_flags;
dfc8d636 626
c3ac9a8a
JW
627 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
628 &vm_flags);
64574746 629 referenced_page = TestClearPageReferenced(page);
dfc8d636 630
dfc8d636
JW
631 /*
632 * Mlock lost the isolation race with us. Let try_to_unmap()
633 * move the page to the unevictable list.
634 */
635 if (vm_flags & VM_LOCKED)
636 return PAGEREF_RECLAIM;
637
64574746 638 if (referenced_ptes) {
e4898273 639 if (PageSwapBacked(page))
64574746
JW
640 return PAGEREF_ACTIVATE;
641 /*
642 * All mapped pages start out with page table
643 * references from the instantiating fault, so we need
644 * to look twice if a mapped file page is used more
645 * than once.
646 *
647 * Mark it and spare it for another trip around the
648 * inactive list. Another page table reference will
649 * lead to its activation.
650 *
651 * Note: the mark is set for activated pages as well
652 * so that recently deactivated but used pages are
653 * quickly recovered.
654 */
655 SetPageReferenced(page);
656
34dbc67a 657 if (referenced_page || referenced_ptes > 1)
64574746
JW
658 return PAGEREF_ACTIVATE;
659
c909e993
KK
660 /*
661 * Activate file-backed executable pages after first usage.
662 */
663 if (vm_flags & VM_EXEC)
664 return PAGEREF_ACTIVATE;
665
64574746
JW
666 return PAGEREF_KEEP;
667 }
dfc8d636
JW
668
669 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 670 if (referenced_page && !PageSwapBacked(page))
64574746
JW
671 return PAGEREF_RECLAIM_CLEAN;
672
673 return PAGEREF_RECLAIM;
dfc8d636
JW
674}
675
1da177e4 676/*
1742f19f 677 * shrink_page_list() returns the number of reclaimed pages
1da177e4 678 */
1742f19f 679static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 680 struct zone *zone,
f84f6e2b 681 struct scan_control *sc,
92df3a72
MG
682 unsigned long *ret_nr_dirty,
683 unsigned long *ret_nr_writeback)
1da177e4
LT
684{
685 LIST_HEAD(ret_pages);
abe4c3b5 686 LIST_HEAD(free_pages);
1da177e4 687 int pgactivate = 0;
0e093d99
MG
688 unsigned long nr_dirty = 0;
689 unsigned long nr_congested = 0;
05ff5137 690 unsigned long nr_reclaimed = 0;
92df3a72 691 unsigned long nr_writeback = 0;
1da177e4
LT
692
693 cond_resched();
694
1da177e4 695 while (!list_empty(page_list)) {
dfc8d636 696 enum page_references references;
1da177e4
LT
697 struct address_space *mapping;
698 struct page *page;
699 int may_enter_fs;
1da177e4
LT
700
701 cond_resched();
702
703 page = lru_to_page(page_list);
704 list_del(&page->lru);
705
529ae9aa 706 if (!trylock_page(page))
1da177e4
LT
707 goto keep;
708
725d704e 709 VM_BUG_ON(PageActive(page));
6a18adb3 710 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
711
712 sc->nr_scanned++;
80e43426 713
b291f000
NP
714 if (unlikely(!page_evictable(page, NULL)))
715 goto cull_mlocked;
894bc310 716
a6dc60f8 717 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
718 goto keep_locked;
719
1da177e4
LT
720 /* Double the slab pressure for mapped and swapcache pages */
721 if (page_mapped(page) || PageSwapCache(page))
722 sc->nr_scanned++;
723
c661b078
AW
724 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
725 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
726
727 if (PageWriteback(page)) {
92df3a72 728 nr_writeback++;
41ac1999
MG
729 unlock_page(page);
730 goto keep;
c661b078 731 }
1da177e4 732
6a18adb3 733 references = page_check_references(page, sc);
dfc8d636
JW
734 switch (references) {
735 case PAGEREF_ACTIVATE:
1da177e4 736 goto activate_locked;
64574746
JW
737 case PAGEREF_KEEP:
738 goto keep_locked;
dfc8d636
JW
739 case PAGEREF_RECLAIM:
740 case PAGEREF_RECLAIM_CLEAN:
741 ; /* try to reclaim the page below */
742 }
1da177e4 743
1da177e4
LT
744 /*
745 * Anonymous process memory has backing store?
746 * Try to allocate it some swap space here.
747 */
b291f000 748 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
749 if (!(sc->gfp_mask & __GFP_IO))
750 goto keep_locked;
ac47b003 751 if (!add_to_swap(page))
1da177e4 752 goto activate_locked;
63eb6b93 753 may_enter_fs = 1;
b291f000 754 }
1da177e4
LT
755
756 mapping = page_mapping(page);
1da177e4
LT
757
758 /*
759 * The page is mapped into the page tables of one or more
760 * processes. Try to unmap it here.
761 */
762 if (page_mapped(page) && mapping) {
14fa31b8 763 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
764 case SWAP_FAIL:
765 goto activate_locked;
766 case SWAP_AGAIN:
767 goto keep_locked;
b291f000
NP
768 case SWAP_MLOCK:
769 goto cull_mlocked;
1da177e4
LT
770 case SWAP_SUCCESS:
771 ; /* try to free the page below */
772 }
773 }
774
775 if (PageDirty(page)) {
0e093d99
MG
776 nr_dirty++;
777
ee72886d
MG
778 /*
779 * Only kswapd can writeback filesystem pages to
f84f6e2b
MG
780 * avoid risk of stack overflow but do not writeback
781 * unless under significant pressure.
ee72886d 782 */
f84f6e2b 783 if (page_is_file_cache(page) &&
9e3b2f8c
KK
784 (!current_is_kswapd() ||
785 sc->priority >= DEF_PRIORITY - 2)) {
49ea7eb6
MG
786 /*
787 * Immediately reclaim when written back.
788 * Similar in principal to deactivate_page()
789 * except we already have the page isolated
790 * and know it's dirty
791 */
792 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
793 SetPageReclaim(page);
794
ee72886d
MG
795 goto keep_locked;
796 }
797
dfc8d636 798 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 799 goto keep_locked;
4dd4b920 800 if (!may_enter_fs)
1da177e4 801 goto keep_locked;
52a8363e 802 if (!sc->may_writepage)
1da177e4
LT
803 goto keep_locked;
804
805 /* Page is dirty, try to write it out here */
7d3579e8 806 switch (pageout(page, mapping, sc)) {
1da177e4 807 case PAGE_KEEP:
0e093d99 808 nr_congested++;
1da177e4
LT
809 goto keep_locked;
810 case PAGE_ACTIVATE:
811 goto activate_locked;
812 case PAGE_SUCCESS:
7d3579e8 813 if (PageWriteback(page))
41ac1999 814 goto keep;
7d3579e8 815 if (PageDirty(page))
1da177e4 816 goto keep;
7d3579e8 817
1da177e4
LT
818 /*
819 * A synchronous write - probably a ramdisk. Go
820 * ahead and try to reclaim the page.
821 */
529ae9aa 822 if (!trylock_page(page))
1da177e4
LT
823 goto keep;
824 if (PageDirty(page) || PageWriteback(page))
825 goto keep_locked;
826 mapping = page_mapping(page);
827 case PAGE_CLEAN:
828 ; /* try to free the page below */
829 }
830 }
831
832 /*
833 * If the page has buffers, try to free the buffer mappings
834 * associated with this page. If we succeed we try to free
835 * the page as well.
836 *
837 * We do this even if the page is PageDirty().
838 * try_to_release_page() does not perform I/O, but it is
839 * possible for a page to have PageDirty set, but it is actually
840 * clean (all its buffers are clean). This happens if the
841 * buffers were written out directly, with submit_bh(). ext3
894bc310 842 * will do this, as well as the blockdev mapping.
1da177e4
LT
843 * try_to_release_page() will discover that cleanness and will
844 * drop the buffers and mark the page clean - it can be freed.
845 *
846 * Rarely, pages can have buffers and no ->mapping. These are
847 * the pages which were not successfully invalidated in
848 * truncate_complete_page(). We try to drop those buffers here
849 * and if that worked, and the page is no longer mapped into
850 * process address space (page_count == 1) it can be freed.
851 * Otherwise, leave the page on the LRU so it is swappable.
852 */
266cf658 853 if (page_has_private(page)) {
1da177e4
LT
854 if (!try_to_release_page(page, sc->gfp_mask))
855 goto activate_locked;
e286781d
NP
856 if (!mapping && page_count(page) == 1) {
857 unlock_page(page);
858 if (put_page_testzero(page))
859 goto free_it;
860 else {
861 /*
862 * rare race with speculative reference.
863 * the speculative reference will free
864 * this page shortly, so we may
865 * increment nr_reclaimed here (and
866 * leave it off the LRU).
867 */
868 nr_reclaimed++;
869 continue;
870 }
871 }
1da177e4
LT
872 }
873
e286781d 874 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 875 goto keep_locked;
1da177e4 876
a978d6f5
NP
877 /*
878 * At this point, we have no other references and there is
879 * no way to pick any more up (removed from LRU, removed
880 * from pagecache). Can use non-atomic bitops now (and
881 * we obviously don't have to worry about waking up a process
882 * waiting on the page lock, because there are no references.
883 */
884 __clear_page_locked(page);
e286781d 885free_it:
05ff5137 886 nr_reclaimed++;
abe4c3b5
MG
887
888 /*
889 * Is there need to periodically free_page_list? It would
890 * appear not as the counts should be low
891 */
892 list_add(&page->lru, &free_pages);
1da177e4
LT
893 continue;
894
b291f000 895cull_mlocked:
63d6c5ad
HD
896 if (PageSwapCache(page))
897 try_to_free_swap(page);
b291f000
NP
898 unlock_page(page);
899 putback_lru_page(page);
900 continue;
901
1da177e4 902activate_locked:
68a22394
RR
903 /* Not a candidate for swapping, so reclaim swap space. */
904 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 905 try_to_free_swap(page);
894bc310 906 VM_BUG_ON(PageActive(page));
1da177e4
LT
907 SetPageActive(page);
908 pgactivate++;
909keep_locked:
910 unlock_page(page);
911keep:
912 list_add(&page->lru, &ret_pages);
b291f000 913 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 914 }
abe4c3b5 915
0e093d99
MG
916 /*
917 * Tag a zone as congested if all the dirty pages encountered were
918 * backed by a congested BDI. In this case, reclaimers should just
919 * back off and wait for congestion to clear because further reclaim
920 * will encounter the same problem
921 */
89b5fae5 922 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
6a18adb3 923 zone_set_flag(zone, ZONE_CONGESTED);
0e093d99 924
cc59850e 925 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 926
1da177e4 927 list_splice(&ret_pages, page_list);
f8891e5e 928 count_vm_events(PGACTIVATE, pgactivate);
92df3a72
MG
929 *ret_nr_dirty += nr_dirty;
930 *ret_nr_writeback += nr_writeback;
05ff5137 931 return nr_reclaimed;
1da177e4
LT
932}
933
5ad333eb
AW
934/*
935 * Attempt to remove the specified page from its LRU. Only take this page
936 * if it is of the appropriate PageActive status. Pages which are being
937 * freed elsewhere are also ignored.
938 *
939 * page: page to consider
940 * mode: one of the LRU isolation modes defined above
941 *
942 * returns 0 on success, -ve errno on failure.
943 */
f3fd4a61 944int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
945{
946 int ret = -EINVAL;
947
948 /* Only take pages on the LRU. */
949 if (!PageLRU(page))
950 return ret;
951
c53919ad 952 /* Do not give back unevictable pages for compaction */
894bc310
LS
953 if (PageUnevictable(page))
954 return ret;
955
5ad333eb 956 ret = -EBUSY;
08e552c6 957
c8244935
MG
958 /*
959 * To minimise LRU disruption, the caller can indicate that it only
960 * wants to isolate pages it will be able to operate on without
961 * blocking - clean pages for the most part.
962 *
963 * ISOLATE_CLEAN means that only clean pages should be isolated. This
964 * is used by reclaim when it is cannot write to backing storage
965 *
966 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
967 * that it is possible to migrate without blocking
968 */
969 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
970 /* All the caller can do on PageWriteback is block */
971 if (PageWriteback(page))
972 return ret;
973
974 if (PageDirty(page)) {
975 struct address_space *mapping;
976
977 /* ISOLATE_CLEAN means only clean pages */
978 if (mode & ISOLATE_CLEAN)
979 return ret;
980
981 /*
982 * Only pages without mappings or that have a
983 * ->migratepage callback are possible to migrate
984 * without blocking
985 */
986 mapping = page_mapping(page);
987 if (mapping && !mapping->a_ops->migratepage)
988 return ret;
989 }
990 }
39deaf85 991
f80c0673
MK
992 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
993 return ret;
994
5ad333eb
AW
995 if (likely(get_page_unless_zero(page))) {
996 /*
997 * Be careful not to clear PageLRU until after we're
998 * sure the page is not being freed elsewhere -- the
999 * page release code relies on it.
1000 */
1001 ClearPageLRU(page);
1002 ret = 0;
1003 }
1004
1005 return ret;
1006}
1007
1da177e4
LT
1008/*
1009 * zone->lru_lock is heavily contended. Some of the functions that
1010 * shrink the lists perform better by taking out a batch of pages
1011 * and working on them outside the LRU lock.
1012 *
1013 * For pagecache intensive workloads, this function is the hottest
1014 * spot in the kernel (apart from copy_*_user functions).
1015 *
1016 * Appropriate locks must be held before calling this function.
1017 *
1018 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1019 * @lruvec: The LRU vector to pull pages from.
1da177e4 1020 * @dst: The temp list to put pages on to.
f626012d 1021 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1022 * @sc: The scan_control struct for this reclaim session
5ad333eb 1023 * @mode: One of the LRU isolation modes
3cb99451 1024 * @lru: LRU list id for isolating
1da177e4
LT
1025 *
1026 * returns how many pages were moved onto *@dst.
1027 */
69e05944 1028static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1029 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1030 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1031 isolate_mode_t mode, enum lru_list lru)
1da177e4 1032{
f626012d 1033 struct list_head *src;
69e05944 1034 unsigned long nr_taken = 0;
c9b02d97 1035 unsigned long scan;
3cb99451 1036 int file = is_file_lru(lru);
f626012d 1037
f626012d 1038 src = &lruvec->lists[lru];
1da177e4 1039
c9b02d97 1040 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1041 struct page *page;
5ad333eb 1042
1da177e4
LT
1043 page = lru_to_page(src);
1044 prefetchw_prev_lru_page(page, src, flags);
1045
725d704e 1046 VM_BUG_ON(!PageLRU(page));
8d438f96 1047
f3fd4a61 1048 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1049 case 0:
bbf808ed 1050 mem_cgroup_lru_del_list(page, lru);
5ad333eb 1051 list_move(&page->lru, dst);
2c888cfb 1052 nr_taken += hpage_nr_pages(page);
5ad333eb
AW
1053 break;
1054
1055 case -EBUSY:
1056 /* else it is being freed elsewhere */
1057 list_move(&page->lru, src);
1058 continue;
46453a6e 1059
5ad333eb
AW
1060 default:
1061 BUG();
1062 }
1da177e4
LT
1063 }
1064
f626012d 1065 *nr_scanned = scan;
a8a94d15 1066
fe2c2a10 1067 trace_mm_vmscan_lru_isolate(sc->order,
a8a94d15
MG
1068 nr_to_scan, scan,
1069 nr_taken,
ea4d349f 1070 mode, file);
1da177e4
LT
1071 return nr_taken;
1072}
1073
62695a84
NP
1074/**
1075 * isolate_lru_page - tries to isolate a page from its LRU list
1076 * @page: page to isolate from its LRU list
1077 *
1078 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1079 * vmstat statistic corresponding to whatever LRU list the page was on.
1080 *
1081 * Returns 0 if the page was removed from an LRU list.
1082 * Returns -EBUSY if the page was not on an LRU list.
1083 *
1084 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1085 * the active list, it will have PageActive set. If it was found on
1086 * the unevictable list, it will have the PageUnevictable bit set. That flag
1087 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1088 *
1089 * The vmstat statistic corresponding to the list on which the page was
1090 * found will be decremented.
1091 *
1092 * Restrictions:
1093 * (1) Must be called with an elevated refcount on the page. This is a
1094 * fundamentnal difference from isolate_lru_pages (which is called
1095 * without a stable reference).
1096 * (2) the lru_lock must not be held.
1097 * (3) interrupts must be enabled.
1098 */
1099int isolate_lru_page(struct page *page)
1100{
1101 int ret = -EBUSY;
1102
0c917313
KK
1103 VM_BUG_ON(!page_count(page));
1104
62695a84
NP
1105 if (PageLRU(page)) {
1106 struct zone *zone = page_zone(page);
1107
1108 spin_lock_irq(&zone->lru_lock);
0c917313 1109 if (PageLRU(page)) {
894bc310 1110 int lru = page_lru(page);
62695a84 1111 ret = 0;
0c917313 1112 get_page(page);
62695a84 1113 ClearPageLRU(page);
4f98a2fe 1114
4f98a2fe 1115 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1116 }
1117 spin_unlock_irq(&zone->lru_lock);
1118 }
1119 return ret;
1120}
1121
35cd7815
RR
1122/*
1123 * Are there way too many processes in the direct reclaim path already?
1124 */
1125static int too_many_isolated(struct zone *zone, int file,
1126 struct scan_control *sc)
1127{
1128 unsigned long inactive, isolated;
1129
1130 if (current_is_kswapd())
1131 return 0;
1132
89b5fae5 1133 if (!global_reclaim(sc))
35cd7815
RR
1134 return 0;
1135
1136 if (file) {
1137 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1138 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1139 } else {
1140 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1141 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1142 }
1143
1144 return isolated > inactive;
1145}
1146
66635629 1147static noinline_for_stack void
27ac81d8 1148putback_inactive_pages(struct lruvec *lruvec,
3f79768f 1149 struct list_head *page_list)
66635629 1150{
27ac81d8
KK
1151 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1152 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1153 LIST_HEAD(pages_to_free);
66635629 1154
66635629
MG
1155 /*
1156 * Put back any unfreeable pages.
1157 */
66635629 1158 while (!list_empty(page_list)) {
3f79768f 1159 struct page *page = lru_to_page(page_list);
66635629 1160 int lru;
3f79768f 1161
66635629
MG
1162 VM_BUG_ON(PageLRU(page));
1163 list_del(&page->lru);
1164 if (unlikely(!page_evictable(page, NULL))) {
1165 spin_unlock_irq(&zone->lru_lock);
1166 putback_lru_page(page);
1167 spin_lock_irq(&zone->lru_lock);
1168 continue;
1169 }
7a608572 1170 SetPageLRU(page);
66635629 1171 lru = page_lru(page);
7a608572 1172 add_page_to_lru_list(zone, page, lru);
66635629
MG
1173 if (is_active_lru(lru)) {
1174 int file = is_file_lru(lru);
9992af10
RR
1175 int numpages = hpage_nr_pages(page);
1176 reclaim_stat->recent_rotated[file] += numpages;
66635629 1177 }
2bcf8879
HD
1178 if (put_page_testzero(page)) {
1179 __ClearPageLRU(page);
1180 __ClearPageActive(page);
1181 del_page_from_lru_list(zone, page, lru);
1182
1183 if (unlikely(PageCompound(page))) {
1184 spin_unlock_irq(&zone->lru_lock);
1185 (*get_compound_page_dtor(page))(page);
1186 spin_lock_irq(&zone->lru_lock);
1187 } else
1188 list_add(&page->lru, &pages_to_free);
66635629
MG
1189 }
1190 }
66635629 1191
3f79768f
HD
1192 /*
1193 * To save our caller's stack, now use input list for pages to free.
1194 */
1195 list_splice(&pages_to_free, page_list);
66635629
MG
1196}
1197
1da177e4 1198/*
1742f19f
AM
1199 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1200 * of reclaimed pages
1da177e4 1201 */
66635629 1202static noinline_for_stack unsigned long
1a93be0e 1203shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1204 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1205{
1206 LIST_HEAD(page_list);
e247dbce 1207 unsigned long nr_scanned;
05ff5137 1208 unsigned long nr_reclaimed = 0;
e247dbce 1209 unsigned long nr_taken;
92df3a72
MG
1210 unsigned long nr_dirty = 0;
1211 unsigned long nr_writeback = 0;
f3fd4a61 1212 isolate_mode_t isolate_mode = 0;
3cb99451 1213 int file = is_file_lru(lru);
1a93be0e
KK
1214 struct zone *zone = lruvec_zone(lruvec);
1215 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1216
35cd7815 1217 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1218 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1219
1220 /* We are about to die and free our memory. Return now. */
1221 if (fatal_signal_pending(current))
1222 return SWAP_CLUSTER_MAX;
1223 }
1224
1da177e4 1225 lru_add_drain();
f80c0673
MK
1226
1227 if (!sc->may_unmap)
61317289 1228 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1229 if (!sc->may_writepage)
61317289 1230 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1231
1da177e4 1232 spin_lock_irq(&zone->lru_lock);
b35ea17b 1233
5dc35979
KK
1234 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1235 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1236
1237 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1238 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1239
89b5fae5 1240 if (global_reclaim(sc)) {
e247dbce
KM
1241 zone->pages_scanned += nr_scanned;
1242 if (current_is_kswapd())
1243 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1244 nr_scanned);
1245 else
1246 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1247 nr_scanned);
e247dbce 1248 }
d563c050 1249 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1250
d563c050 1251 if (nr_taken == 0)
66635629 1252 return 0;
5ad333eb 1253
6a18adb3 1254 nr_reclaimed = shrink_page_list(&page_list, zone, sc,
92df3a72 1255 &nr_dirty, &nr_writeback);
c661b078 1256
3f79768f
HD
1257 spin_lock_irq(&zone->lru_lock);
1258
95d918fc 1259 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1260
904249aa
YH
1261 if (global_reclaim(sc)) {
1262 if (current_is_kswapd())
1263 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1264 nr_reclaimed);
1265 else
1266 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1267 nr_reclaimed);
1268 }
a74609fa 1269
27ac81d8 1270 putback_inactive_pages(lruvec, &page_list);
3f79768f 1271
95d918fc 1272 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1273
1274 spin_unlock_irq(&zone->lru_lock);
1275
1276 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1277
92df3a72
MG
1278 /*
1279 * If reclaim is isolating dirty pages under writeback, it implies
1280 * that the long-lived page allocation rate is exceeding the page
1281 * laundering rate. Either the global limits are not being effective
1282 * at throttling processes due to the page distribution throughout
1283 * zones or there is heavy usage of a slow backing device. The
1284 * only option is to throttle from reclaim context which is not ideal
1285 * as there is no guarantee the dirtying process is throttled in the
1286 * same way balance_dirty_pages() manages.
1287 *
1288 * This scales the number of dirty pages that must be under writeback
1289 * before throttling depending on priority. It is a simple backoff
1290 * function that has the most effect in the range DEF_PRIORITY to
1291 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1292 * in trouble and reclaim is considered to be in trouble.
1293 *
1294 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1295 * DEF_PRIORITY-1 50% must be PageWriteback
1296 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1297 * ...
1298 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1299 * isolated page is PageWriteback
1300 */
9e3b2f8c
KK
1301 if (nr_writeback && nr_writeback >=
1302 (nr_taken >> (DEF_PRIORITY - sc->priority)))
92df3a72
MG
1303 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1304
e11da5b4
MG
1305 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1306 zone_idx(zone),
1307 nr_scanned, nr_reclaimed,
9e3b2f8c 1308 sc->priority,
23b9da55 1309 trace_shrink_flags(file));
05ff5137 1310 return nr_reclaimed;
1da177e4
LT
1311}
1312
1313/*
1314 * This moves pages from the active list to the inactive list.
1315 *
1316 * We move them the other way if the page is referenced by one or more
1317 * processes, from rmap.
1318 *
1319 * If the pages are mostly unmapped, the processing is fast and it is
1320 * appropriate to hold zone->lru_lock across the whole operation. But if
1321 * the pages are mapped, the processing is slow (page_referenced()) so we
1322 * should drop zone->lru_lock around each page. It's impossible to balance
1323 * this, so instead we remove the pages from the LRU while processing them.
1324 * It is safe to rely on PG_active against the non-LRU pages in here because
1325 * nobody will play with that bit on a non-LRU page.
1326 *
1327 * The downside is that we have to touch page->_count against each page.
1328 * But we had to alter page->flags anyway.
1329 */
1cfb419b 1330
3eb4140f
WF
1331static void move_active_pages_to_lru(struct zone *zone,
1332 struct list_head *list,
2bcf8879 1333 struct list_head *pages_to_free,
3eb4140f
WF
1334 enum lru_list lru)
1335{
1336 unsigned long pgmoved = 0;
3eb4140f
WF
1337 struct page *page;
1338
3eb4140f 1339 while (!list_empty(list)) {
925b7673
JW
1340 struct lruvec *lruvec;
1341
3eb4140f 1342 page = lru_to_page(list);
3eb4140f
WF
1343
1344 VM_BUG_ON(PageLRU(page));
1345 SetPageLRU(page);
1346
925b7673
JW
1347 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1348 list_move(&page->lru, &lruvec->lists[lru]);
2c888cfb 1349 pgmoved += hpage_nr_pages(page);
3eb4140f 1350
2bcf8879
HD
1351 if (put_page_testzero(page)) {
1352 __ClearPageLRU(page);
1353 __ClearPageActive(page);
1354 del_page_from_lru_list(zone, page, lru);
1355
1356 if (unlikely(PageCompound(page))) {
1357 spin_unlock_irq(&zone->lru_lock);
1358 (*get_compound_page_dtor(page))(page);
1359 spin_lock_irq(&zone->lru_lock);
1360 } else
1361 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1362 }
1363 }
1364 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1365 if (!is_active_lru(lru))
1366 __count_vm_events(PGDEACTIVATE, pgmoved);
1367}
1cfb419b 1368
f626012d 1369static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1370 struct lruvec *lruvec,
f16015fb 1371 struct scan_control *sc,
9e3b2f8c 1372 enum lru_list lru)
1da177e4 1373{
44c241f1 1374 unsigned long nr_taken;
f626012d 1375 unsigned long nr_scanned;
6fe6b7e3 1376 unsigned long vm_flags;
1da177e4 1377 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1378 LIST_HEAD(l_active);
b69408e8 1379 LIST_HEAD(l_inactive);
1da177e4 1380 struct page *page;
1a93be0e 1381 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1382 unsigned long nr_rotated = 0;
f3fd4a61 1383 isolate_mode_t isolate_mode = 0;
3cb99451 1384 int file = is_file_lru(lru);
1a93be0e 1385 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1386
1387 lru_add_drain();
f80c0673
MK
1388
1389 if (!sc->may_unmap)
61317289 1390 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1391 if (!sc->may_writepage)
61317289 1392 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1393
1da177e4 1394 spin_lock_irq(&zone->lru_lock);
925b7673 1395
5dc35979
KK
1396 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1397 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1398 if (global_reclaim(sc))
f626012d 1399 zone->pages_scanned += nr_scanned;
89b5fae5 1400
b7c46d15 1401 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1402
f626012d 1403 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1404 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1405 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1406 spin_unlock_irq(&zone->lru_lock);
1407
1da177e4
LT
1408 while (!list_empty(&l_hold)) {
1409 cond_resched();
1410 page = lru_to_page(&l_hold);
1411 list_del(&page->lru);
7e9cd484 1412
894bc310
LS
1413 if (unlikely(!page_evictable(page, NULL))) {
1414 putback_lru_page(page);
1415 continue;
1416 }
1417
cc715d99
MG
1418 if (unlikely(buffer_heads_over_limit)) {
1419 if (page_has_private(page) && trylock_page(page)) {
1420 if (page_has_private(page))
1421 try_to_release_page(page, 0);
1422 unlock_page(page);
1423 }
1424 }
1425
c3ac9a8a
JW
1426 if (page_referenced(page, 0, sc->target_mem_cgroup,
1427 &vm_flags)) {
9992af10 1428 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1429 /*
1430 * Identify referenced, file-backed active pages and
1431 * give them one more trip around the active list. So
1432 * that executable code get better chances to stay in
1433 * memory under moderate memory pressure. Anon pages
1434 * are not likely to be evicted by use-once streaming
1435 * IO, plus JVM can create lots of anon VM_EXEC pages,
1436 * so we ignore them here.
1437 */
41e20983 1438 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1439 list_add(&page->lru, &l_active);
1440 continue;
1441 }
1442 }
7e9cd484 1443
5205e56e 1444 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1445 list_add(&page->lru, &l_inactive);
1446 }
1447
b555749a 1448 /*
8cab4754 1449 * Move pages back to the lru list.
b555749a 1450 */
2a1dc509 1451 spin_lock_irq(&zone->lru_lock);
556adecb 1452 /*
8cab4754
WF
1453 * Count referenced pages from currently used mappings as rotated,
1454 * even though only some of them are actually re-activated. This
1455 * helps balance scan pressure between file and anonymous pages in
1456 * get_scan_ratio.
7e9cd484 1457 */
b7c46d15 1458 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1459
3cb99451
KK
1460 move_active_pages_to_lru(zone, &l_active, &l_hold, lru);
1461 move_active_pages_to_lru(zone, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1462 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1463 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1464
1465 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1466}
1467
74e3f3c3 1468#ifdef CONFIG_SWAP
14797e23 1469static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1470{
1471 unsigned long active, inactive;
1472
1473 active = zone_page_state(zone, NR_ACTIVE_ANON);
1474 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1475
1476 if (inactive * zone->inactive_ratio < active)
1477 return 1;
1478
1479 return 0;
1480}
1481
14797e23
KM
1482/**
1483 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1484 * @lruvec: LRU vector to check
14797e23
KM
1485 *
1486 * Returns true if the zone does not have enough inactive anon pages,
1487 * meaning some active anon pages need to be deactivated.
1488 */
c56d5c7d 1489static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1490{
74e3f3c3
MK
1491 /*
1492 * If we don't have swap space, anonymous page deactivation
1493 * is pointless.
1494 */
1495 if (!total_swap_pages)
1496 return 0;
1497
c3c787e8 1498 if (!mem_cgroup_disabled())
c56d5c7d 1499 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1500
c56d5c7d 1501 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1502}
74e3f3c3 1503#else
c56d5c7d 1504static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1505{
1506 return 0;
1507}
1508#endif
14797e23 1509
56e49d21
RR
1510static int inactive_file_is_low_global(struct zone *zone)
1511{
1512 unsigned long active, inactive;
1513
1514 active = zone_page_state(zone, NR_ACTIVE_FILE);
1515 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1516
1517 return (active > inactive);
1518}
1519
1520/**
1521 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1522 * @lruvec: LRU vector to check
56e49d21
RR
1523 *
1524 * When the system is doing streaming IO, memory pressure here
1525 * ensures that active file pages get deactivated, until more
1526 * than half of the file pages are on the inactive list.
1527 *
1528 * Once we get to that situation, protect the system's working
1529 * set from being evicted by disabling active file page aging.
1530 *
1531 * This uses a different ratio than the anonymous pages, because
1532 * the page cache uses a use-once replacement algorithm.
1533 */
c56d5c7d 1534static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1535{
c3c787e8 1536 if (!mem_cgroup_disabled())
c56d5c7d 1537 return mem_cgroup_inactive_file_is_low(lruvec);
56e49d21 1538
c56d5c7d 1539 return inactive_file_is_low_global(lruvec_zone(lruvec));
56e49d21
RR
1540}
1541
c56d5c7d 1542static int inactive_list_is_low(struct lruvec *lruvec, int file)
b39415b2
RR
1543{
1544 if (file)
c56d5c7d 1545 return inactive_file_is_low(lruvec);
b39415b2 1546 else
c56d5c7d 1547 return inactive_anon_is_low(lruvec);
b39415b2
RR
1548}
1549
4f98a2fe 1550static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1551 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1552{
4f98a2fe
RR
1553 int file = is_file_lru(lru);
1554
b39415b2 1555 if (is_active_lru(lru)) {
c56d5c7d 1556 if (inactive_list_is_low(lruvec, file))
1a93be0e 1557 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1558 return 0;
1559 }
1560
1a93be0e 1561 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1562}
1563
3d58ab5c 1564static int vmscan_swappiness(struct scan_control *sc)
1f4c025b 1565{
89b5fae5 1566 if (global_reclaim(sc))
1f4c025b 1567 return vm_swappiness;
3d58ab5c 1568 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1f4c025b
KH
1569}
1570
4f98a2fe
RR
1571/*
1572 * Determine how aggressively the anon and file LRU lists should be
1573 * scanned. The relative value of each set of LRU lists is determined
1574 * by looking at the fraction of the pages scanned we did rotate back
1575 * onto the active list instead of evict.
1576 *
76a33fc3 1577 * nr[0] = anon pages to scan; nr[1] = file pages to scan
4f98a2fe 1578 */
90126375 1579static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
9e3b2f8c 1580 unsigned long *nr)
4f98a2fe
RR
1581{
1582 unsigned long anon, file, free;
1583 unsigned long anon_prio, file_prio;
1584 unsigned long ap, fp;
90126375 1585 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
76a33fc3 1586 u64 fraction[2], denominator;
4111304d 1587 enum lru_list lru;
76a33fc3 1588 int noswap = 0;
a4d3e9e7 1589 bool force_scan = false;
90126375 1590 struct zone *zone = lruvec_zone(lruvec);
246e87a9 1591
f11c0ca5
JW
1592 /*
1593 * If the zone or memcg is small, nr[l] can be 0. This
1594 * results in no scanning on this priority and a potential
1595 * priority drop. Global direct reclaim can go to the next
1596 * zone and tends to have no problems. Global kswapd is for
1597 * zone balancing and it needs to scan a minimum amount. When
1598 * reclaiming for a memcg, a priority drop can cause high
1599 * latencies, so it's better to scan a minimum amount there as
1600 * well.
1601 */
90126375 1602 if (current_is_kswapd() && zone->all_unreclaimable)
a4d3e9e7 1603 force_scan = true;
89b5fae5 1604 if (!global_reclaim(sc))
a4d3e9e7 1605 force_scan = true;
76a33fc3
SL
1606
1607 /* If we have no swap space, do not bother scanning anon pages. */
1608 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1609 noswap = 1;
1610 fraction[0] = 0;
1611 fraction[1] = 1;
1612 denominator = 1;
1613 goto out;
1614 }
4f98a2fe 1615
074291fe
KK
1616 anon = get_lruvec_size(lruvec, LRU_ACTIVE_ANON) +
1617 get_lruvec_size(lruvec, LRU_INACTIVE_ANON);
1618 file = get_lruvec_size(lruvec, LRU_ACTIVE_FILE) +
1619 get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
a4d3e9e7 1620
89b5fae5 1621 if (global_reclaim(sc)) {
90126375 1622 free = zone_page_state(zone, NR_FREE_PAGES);
eeee9a8c
KM
1623 /* If we have very few page cache pages,
1624 force-scan anon pages. */
90126375 1625 if (unlikely(file + free <= high_wmark_pages(zone))) {
76a33fc3
SL
1626 fraction[0] = 1;
1627 fraction[1] = 0;
1628 denominator = 1;
1629 goto out;
eeee9a8c 1630 }
4f98a2fe
RR
1631 }
1632
58c37f6e
KM
1633 /*
1634 * With swappiness at 100, anonymous and file have the same priority.
1635 * This scanning priority is essentially the inverse of IO cost.
1636 */
3d58ab5c
KK
1637 anon_prio = vmscan_swappiness(sc);
1638 file_prio = 200 - vmscan_swappiness(sc);
58c37f6e 1639
4f98a2fe
RR
1640 /*
1641 * OK, so we have swap space and a fair amount of page cache
1642 * pages. We use the recently rotated / recently scanned
1643 * ratios to determine how valuable each cache is.
1644 *
1645 * Because workloads change over time (and to avoid overflow)
1646 * we keep these statistics as a floating average, which ends
1647 * up weighing recent references more than old ones.
1648 *
1649 * anon in [0], file in [1]
1650 */
90126375 1651 spin_lock_irq(&zone->lru_lock);
6e901571 1652 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1653 reclaim_stat->recent_scanned[0] /= 2;
1654 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1655 }
1656
6e901571 1657 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1658 reclaim_stat->recent_scanned[1] /= 2;
1659 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1660 }
1661
4f98a2fe 1662 /*
00d8089c
RR
1663 * The amount of pressure on anon vs file pages is inversely
1664 * proportional to the fraction of recently scanned pages on
1665 * each list that were recently referenced and in active use.
4f98a2fe 1666 */
fe35004f 1667 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1668 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1669
fe35004f 1670 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1671 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 1672 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1673
76a33fc3
SL
1674 fraction[0] = ap;
1675 fraction[1] = fp;
1676 denominator = ap + fp + 1;
1677out:
4111304d
HD
1678 for_each_evictable_lru(lru) {
1679 int file = is_file_lru(lru);
76a33fc3 1680 unsigned long scan;
6e08a369 1681
074291fe 1682 scan = get_lruvec_size(lruvec, lru);
9e3b2f8c
KK
1683 if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1684 scan >>= sc->priority;
f11c0ca5
JW
1685 if (!scan && force_scan)
1686 scan = SWAP_CLUSTER_MAX;
76a33fc3
SL
1687 scan = div64_u64(scan * fraction[file], denominator);
1688 }
4111304d 1689 nr[lru] = scan;
76a33fc3 1690 }
6e08a369 1691}
4f98a2fe 1692
23b9da55 1693/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 1694static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55
MG
1695{
1696 if (COMPACTION_BUILD && sc->order &&
1697 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 1698 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
1699 return true;
1700
1701 return false;
1702}
1703
3e7d3449 1704/*
23b9da55
MG
1705 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1706 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1707 * true if more pages should be reclaimed such that when the page allocator
1708 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1709 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 1710 */
f16015fb 1711static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
3e7d3449
MG
1712 unsigned long nr_reclaimed,
1713 unsigned long nr_scanned,
1714 struct scan_control *sc)
1715{
1716 unsigned long pages_for_compaction;
1717 unsigned long inactive_lru_pages;
074291fe 1718 struct lruvec *lruvec;
3e7d3449
MG
1719
1720 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 1721 if (!in_reclaim_compaction(sc))
3e7d3449
MG
1722 return false;
1723
2876592f
MG
1724 /* Consider stopping depending on scan and reclaim activity */
1725 if (sc->gfp_mask & __GFP_REPEAT) {
1726 /*
1727 * For __GFP_REPEAT allocations, stop reclaiming if the
1728 * full LRU list has been scanned and we are still failing
1729 * to reclaim pages. This full LRU scan is potentially
1730 * expensive but a __GFP_REPEAT caller really wants to succeed
1731 */
1732 if (!nr_reclaimed && !nr_scanned)
1733 return false;
1734 } else {
1735 /*
1736 * For non-__GFP_REPEAT allocations which can presumably
1737 * fail without consequence, stop if we failed to reclaim
1738 * any pages from the last SWAP_CLUSTER_MAX number of
1739 * pages that were scanned. This will return to the
1740 * caller faster at the risk reclaim/compaction and
1741 * the resulting allocation attempt fails
1742 */
1743 if (!nr_reclaimed)
1744 return false;
1745 }
3e7d3449
MG
1746
1747 /*
1748 * If we have not reclaimed enough pages for compaction and the
1749 * inactive lists are large enough, continue reclaiming
1750 */
074291fe 1751 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
3e7d3449 1752 pages_for_compaction = (2UL << sc->order);
074291fe 1753 inactive_lru_pages = get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
86cfd3a4 1754 if (nr_swap_pages > 0)
074291fe
KK
1755 inactive_lru_pages += get_lruvec_size(lruvec,
1756 LRU_INACTIVE_ANON);
3e7d3449
MG
1757 if (sc->nr_reclaimed < pages_for_compaction &&
1758 inactive_lru_pages > pages_for_compaction)
1759 return true;
1760
1761 /* If compaction would go ahead or the allocation would succeed, stop */
f16015fb 1762 switch (compaction_suitable(mz->zone, sc->order)) {
3e7d3449
MG
1763 case COMPACT_PARTIAL:
1764 case COMPACT_CONTINUE:
1765 return false;
1766 default:
1767 return true;
1768 }
1769}
1770
1da177e4
LT
1771/*
1772 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1773 */
9e3b2f8c 1774static void shrink_mem_cgroup_zone(struct mem_cgroup_zone *mz,
f16015fb 1775 struct scan_control *sc)
1da177e4 1776{
b69408e8 1777 unsigned long nr[NR_LRU_LISTS];
8695949a 1778 unsigned long nr_to_scan;
4111304d 1779 enum lru_list lru;
f0fdc5e8 1780 unsigned long nr_reclaimed, nr_scanned;
22fba335 1781 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
3da367c3 1782 struct blk_plug plug;
c56d5c7d
KK
1783 struct lruvec *lruvec;
1784
1785 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
e0f79b8f 1786
3e7d3449
MG
1787restart:
1788 nr_reclaimed = 0;
f0fdc5e8 1789 nr_scanned = sc->nr_scanned;
90126375 1790 get_scan_count(lruvec, sc, nr);
1da177e4 1791
3da367c3 1792 blk_start_plug(&plug);
556adecb
RR
1793 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1794 nr[LRU_INACTIVE_FILE]) {
4111304d
HD
1795 for_each_evictable_lru(lru) {
1796 if (nr[lru]) {
ece74b2e 1797 nr_to_scan = min_t(unsigned long,
4111304d
HD
1798 nr[lru], SWAP_CLUSTER_MAX);
1799 nr[lru] -= nr_to_scan;
1da177e4 1800
4111304d 1801 nr_reclaimed += shrink_list(lru, nr_to_scan,
1a93be0e 1802 lruvec, sc);
b69408e8 1803 }
1da177e4 1804 }
a79311c1
RR
1805 /*
1806 * On large memory systems, scan >> priority can become
1807 * really large. This is fine for the starting priority;
1808 * we want to put equal scanning pressure on each zone.
1809 * However, if the VM has a harder time of freeing pages,
1810 * with multiple processes reclaiming pages, the total
1811 * freeing target can get unreasonably large.
1812 */
9e3b2f8c
KK
1813 if (nr_reclaimed >= nr_to_reclaim &&
1814 sc->priority < DEF_PRIORITY)
a79311c1 1815 break;
1da177e4 1816 }
3da367c3 1817 blk_finish_plug(&plug);
3e7d3449 1818 sc->nr_reclaimed += nr_reclaimed;
01dbe5c9 1819
556adecb
RR
1820 /*
1821 * Even if we did not try to evict anon pages at all, we want to
1822 * rebalance the anon lru active/inactive ratio.
1823 */
c56d5c7d 1824 if (inactive_anon_is_low(lruvec))
1a93be0e 1825 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 1826 sc, LRU_ACTIVE_ANON);
556adecb 1827
3e7d3449 1828 /* reclaim/compaction might need reclaim to continue */
f16015fb 1829 if (should_continue_reclaim(mz, nr_reclaimed,
9e3b2f8c 1830 sc->nr_scanned - nr_scanned, sc))
3e7d3449
MG
1831 goto restart;
1832
232ea4d6 1833 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1834}
1835
9e3b2f8c 1836static void shrink_zone(struct zone *zone, struct scan_control *sc)
f16015fb 1837{
5660048c
JW
1838 struct mem_cgroup *root = sc->target_mem_cgroup;
1839 struct mem_cgroup_reclaim_cookie reclaim = {
f16015fb 1840 .zone = zone,
9e3b2f8c 1841 .priority = sc->priority,
f16015fb 1842 };
5660048c
JW
1843 struct mem_cgroup *memcg;
1844
5660048c
JW
1845 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1846 do {
1847 struct mem_cgroup_zone mz = {
1848 .mem_cgroup = memcg,
1849 .zone = zone,
1850 };
f16015fb 1851
9e3b2f8c 1852 shrink_mem_cgroup_zone(&mz, sc);
5660048c
JW
1853 /*
1854 * Limit reclaim has historically picked one memcg and
1855 * scanned it with decreasing priority levels until
1856 * nr_to_reclaim had been reclaimed. This priority
1857 * cycle is thus over after a single memcg.
b95a2f2d
JW
1858 *
1859 * Direct reclaim and kswapd, on the other hand, have
1860 * to scan all memory cgroups to fulfill the overall
1861 * scan target for the zone.
5660048c
JW
1862 */
1863 if (!global_reclaim(sc)) {
1864 mem_cgroup_iter_break(root, memcg);
1865 break;
1866 }
1867 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1868 } while (memcg);
f16015fb
JW
1869}
1870
fe4b1b24
MG
1871/* Returns true if compaction should go ahead for a high-order request */
1872static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1873{
1874 unsigned long balance_gap, watermark;
1875 bool watermark_ok;
1876
1877 /* Do not consider compaction for orders reclaim is meant to satisfy */
1878 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1879 return false;
1880
1881 /*
1882 * Compaction takes time to run and there are potentially other
1883 * callers using the pages just freed. Continue reclaiming until
1884 * there is a buffer of free pages available to give compaction
1885 * a reasonable chance of completing and allocating the page
1886 */
1887 balance_gap = min(low_wmark_pages(zone),
1888 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1889 KSWAPD_ZONE_BALANCE_GAP_RATIO);
1890 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1891 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1892
1893 /*
1894 * If compaction is deferred, reclaim up to a point where
1895 * compaction will have a chance of success when re-enabled
1896 */
aff62249 1897 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
1898 return watermark_ok;
1899
1900 /* If compaction is not ready to start, keep reclaiming */
1901 if (!compaction_suitable(zone, sc->order))
1902 return false;
1903
1904 return watermark_ok;
1905}
1906
1da177e4
LT
1907/*
1908 * This is the direct reclaim path, for page-allocating processes. We only
1909 * try to reclaim pages from zones which will satisfy the caller's allocation
1910 * request.
1911 *
41858966
MG
1912 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1913 * Because:
1da177e4
LT
1914 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1915 * allocation or
41858966
MG
1916 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1917 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1918 * zone defense algorithm.
1da177e4 1919 *
1da177e4
LT
1920 * If a zone is deemed to be full of pinned pages then just give it a light
1921 * scan then give up on it.
e0c23279
MG
1922 *
1923 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 1924 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
1925 * the caller that it should consider retrying the allocation instead of
1926 * further reclaim.
1da177e4 1927 */
9e3b2f8c 1928static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 1929{
dd1a239f 1930 struct zoneref *z;
54a6eb5c 1931 struct zone *zone;
d149e3b2
YH
1932 unsigned long nr_soft_reclaimed;
1933 unsigned long nr_soft_scanned;
0cee34fd 1934 bool aborted_reclaim = false;
1cfb419b 1935
cc715d99
MG
1936 /*
1937 * If the number of buffer_heads in the machine exceeds the maximum
1938 * allowed level, force direct reclaim to scan the highmem zone as
1939 * highmem pages could be pinning lowmem pages storing buffer_heads
1940 */
1941 if (buffer_heads_over_limit)
1942 sc->gfp_mask |= __GFP_HIGHMEM;
1943
d4debc66
MG
1944 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1945 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 1946 if (!populated_zone(zone))
1da177e4 1947 continue;
1cfb419b
KH
1948 /*
1949 * Take care memory controller reclaiming has small influence
1950 * to global LRU.
1951 */
89b5fae5 1952 if (global_reclaim(sc)) {
1cfb419b
KH
1953 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1954 continue;
9e3b2f8c
KK
1955 if (zone->all_unreclaimable &&
1956 sc->priority != DEF_PRIORITY)
1cfb419b 1957 continue; /* Let kswapd poll it */
e0887c19
RR
1958 if (COMPACTION_BUILD) {
1959 /*
e0c23279
MG
1960 * If we already have plenty of memory free for
1961 * compaction in this zone, don't free any more.
1962 * Even though compaction is invoked for any
1963 * non-zero order, only frequent costly order
1964 * reclamation is disruptive enough to become a
c7cfa37b
CA
1965 * noticeable problem, like transparent huge
1966 * page allocations.
e0887c19 1967 */
fe4b1b24 1968 if (compaction_ready(zone, sc)) {
0cee34fd 1969 aborted_reclaim = true;
e0887c19 1970 continue;
e0c23279 1971 }
e0887c19 1972 }
ac34a1a3
KH
1973 /*
1974 * This steals pages from memory cgroups over softlimit
1975 * and returns the number of reclaimed pages and
1976 * scanned pages. This works for global memory pressure
1977 * and balancing, not for a memcg's limit.
1978 */
1979 nr_soft_scanned = 0;
1980 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
1981 sc->order, sc->gfp_mask,
1982 &nr_soft_scanned);
1983 sc->nr_reclaimed += nr_soft_reclaimed;
1984 sc->nr_scanned += nr_soft_scanned;
1985 /* need some check for avoid more shrink_zone() */
1cfb419b 1986 }
408d8544 1987
9e3b2f8c 1988 shrink_zone(zone, sc);
1da177e4 1989 }
e0c23279 1990
0cee34fd 1991 return aborted_reclaim;
d1908362
MK
1992}
1993
1994static bool zone_reclaimable(struct zone *zone)
1995{
1996 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1997}
1998
929bea7c 1999/* All zones in zonelist are unreclaimable? */
d1908362
MK
2000static bool all_unreclaimable(struct zonelist *zonelist,
2001 struct scan_control *sc)
2002{
2003 struct zoneref *z;
2004 struct zone *zone;
d1908362
MK
2005
2006 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2007 gfp_zone(sc->gfp_mask), sc->nodemask) {
2008 if (!populated_zone(zone))
2009 continue;
2010 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2011 continue;
929bea7c
KM
2012 if (!zone->all_unreclaimable)
2013 return false;
d1908362
MK
2014 }
2015
929bea7c 2016 return true;
1da177e4 2017}
4f98a2fe 2018
1da177e4
LT
2019/*
2020 * This is the main entry point to direct page reclaim.
2021 *
2022 * If a full scan of the inactive list fails to free enough memory then we
2023 * are "out of memory" and something needs to be killed.
2024 *
2025 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2026 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2027 * caller can't do much about. We kick the writeback threads and take explicit
2028 * naps in the hope that some of these pages can be written. But if the
2029 * allocating task holds filesystem locks which prevent writeout this might not
2030 * work, and the allocation attempt will fail.
a41f24ea
NA
2031 *
2032 * returns: 0, if no pages reclaimed
2033 * else, the number of pages reclaimed
1da177e4 2034 */
dac1d27b 2035static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2036 struct scan_control *sc,
2037 struct shrink_control *shrink)
1da177e4 2038{
69e05944 2039 unsigned long total_scanned = 0;
1da177e4 2040 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2041 struct zoneref *z;
54a6eb5c 2042 struct zone *zone;
22fba335 2043 unsigned long writeback_threshold;
0cee34fd 2044 bool aborted_reclaim;
1da177e4 2045
873b4771
KK
2046 delayacct_freepages_start();
2047
89b5fae5 2048 if (global_reclaim(sc))
1cfb419b 2049 count_vm_event(ALLOCSTALL);
1da177e4 2050
9e3b2f8c 2051 do {
66e1707b 2052 sc->nr_scanned = 0;
9e3b2f8c 2053 aborted_reclaim = shrink_zones(zonelist, sc);
e0c23279 2054
66e1707b
BS
2055 /*
2056 * Don't shrink slabs when reclaiming memory from
2057 * over limit cgroups
2058 */
89b5fae5 2059 if (global_reclaim(sc)) {
c6a8a8c5 2060 unsigned long lru_pages = 0;
d4debc66
MG
2061 for_each_zone_zonelist(zone, z, zonelist,
2062 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2063 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2064 continue;
2065
2066 lru_pages += zone_reclaimable_pages(zone);
2067 }
2068
1495f230 2069 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2070 if (reclaim_state) {
a79311c1 2071 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2072 reclaim_state->reclaimed_slab = 0;
2073 }
1da177e4 2074 }
66e1707b 2075 total_scanned += sc->nr_scanned;
bb21c7ce 2076 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2077 goto out;
1da177e4
LT
2078
2079 /*
2080 * Try to write back as many pages as we just scanned. This
2081 * tends to cause slow streaming writers to write data to the
2082 * disk smoothly, at the dirtying rate, which is nice. But
2083 * that's undesirable in laptop mode, where we *want* lumpy
2084 * writeout. So in laptop mode, write out the whole world.
2085 */
22fba335
KM
2086 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2087 if (total_scanned > writeback_threshold) {
0e175a18
CW
2088 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2089 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2090 sc->may_writepage = 1;
1da177e4
LT
2091 }
2092
2093 /* Take a nap, wait for some writeback to complete */
7b51755c 2094 if (!sc->hibernation_mode && sc->nr_scanned &&
9e3b2f8c 2095 sc->priority < DEF_PRIORITY - 2) {
0e093d99
MG
2096 struct zone *preferred_zone;
2097
2098 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2099 &cpuset_current_mems_allowed,
2100 &preferred_zone);
0e093d99
MG
2101 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2102 }
9e3b2f8c 2103 } while (--sc->priority >= 0);
bb21c7ce 2104
1da177e4 2105out:
873b4771
KK
2106 delayacct_freepages_end();
2107
bb21c7ce
KM
2108 if (sc->nr_reclaimed)
2109 return sc->nr_reclaimed;
2110
929bea7c
KM
2111 /*
2112 * As hibernation is going on, kswapd is freezed so that it can't mark
2113 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2114 * check.
2115 */
2116 if (oom_killer_disabled)
2117 return 0;
2118
0cee34fd
MG
2119 /* Aborted reclaim to try compaction? don't OOM, then */
2120 if (aborted_reclaim)
7335084d
MG
2121 return 1;
2122
bb21c7ce 2123 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2124 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2125 return 1;
2126
2127 return 0;
1da177e4
LT
2128}
2129
dac1d27b 2130unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2131 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2132{
33906bc5 2133 unsigned long nr_reclaimed;
66e1707b
BS
2134 struct scan_control sc = {
2135 .gfp_mask = gfp_mask,
2136 .may_writepage = !laptop_mode,
22fba335 2137 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2138 .may_unmap = 1,
2e2e4259 2139 .may_swap = 1,
66e1707b 2140 .order = order,
9e3b2f8c 2141 .priority = DEF_PRIORITY,
f16015fb 2142 .target_mem_cgroup = NULL,
327c0e96 2143 .nodemask = nodemask,
66e1707b 2144 };
a09ed5e0
YH
2145 struct shrink_control shrink = {
2146 .gfp_mask = sc.gfp_mask,
2147 };
66e1707b 2148
33906bc5
MG
2149 trace_mm_vmscan_direct_reclaim_begin(order,
2150 sc.may_writepage,
2151 gfp_mask);
2152
a09ed5e0 2153 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2154
2155 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2156
2157 return nr_reclaimed;
66e1707b
BS
2158}
2159
00f0b825 2160#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 2161
72835c86 2162unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2163 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2164 struct zone *zone,
2165 unsigned long *nr_scanned)
4e416953
BS
2166{
2167 struct scan_control sc = {
0ae5e89c 2168 .nr_scanned = 0,
b8f5c566 2169 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2170 .may_writepage = !laptop_mode,
2171 .may_unmap = 1,
2172 .may_swap = !noswap,
4e416953 2173 .order = 0,
9e3b2f8c 2174 .priority = 0,
72835c86 2175 .target_mem_cgroup = memcg,
4e416953 2176 };
5660048c 2177 struct mem_cgroup_zone mz = {
72835c86 2178 .mem_cgroup = memcg,
5660048c
JW
2179 .zone = zone,
2180 };
0ae5e89c 2181
4e416953
BS
2182 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2183 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2184
9e3b2f8c 2185 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2186 sc.may_writepage,
2187 sc.gfp_mask);
2188
4e416953
BS
2189 /*
2190 * NOTE: Although we can get the priority field, using it
2191 * here is not a good idea, since it limits the pages we can scan.
2192 * if we don't reclaim here, the shrink_zone from balance_pgdat
2193 * will pick up pages from other mem cgroup's as well. We hack
2194 * the priority and make it zero.
2195 */
9e3b2f8c 2196 shrink_mem_cgroup_zone(&mz, &sc);
bdce6d9e
KM
2197
2198 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2199
0ae5e89c 2200 *nr_scanned = sc.nr_scanned;
4e416953
BS
2201 return sc.nr_reclaimed;
2202}
2203
72835c86 2204unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2205 gfp_t gfp_mask,
185efc0f 2206 bool noswap)
66e1707b 2207{
4e416953 2208 struct zonelist *zonelist;
bdce6d9e 2209 unsigned long nr_reclaimed;
889976db 2210 int nid;
66e1707b 2211 struct scan_control sc = {
66e1707b 2212 .may_writepage = !laptop_mode,
a6dc60f8 2213 .may_unmap = 1,
2e2e4259 2214 .may_swap = !noswap,
22fba335 2215 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2216 .order = 0,
9e3b2f8c 2217 .priority = DEF_PRIORITY,
72835c86 2218 .target_mem_cgroup = memcg,
327c0e96 2219 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2220 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2221 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2222 };
2223 struct shrink_control shrink = {
2224 .gfp_mask = sc.gfp_mask,
66e1707b 2225 };
66e1707b 2226
889976db
YH
2227 /*
2228 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2229 * take care of from where we get pages. So the node where we start the
2230 * scan does not need to be the current node.
2231 */
72835c86 2232 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2233
2234 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2235
2236 trace_mm_vmscan_memcg_reclaim_begin(0,
2237 sc.may_writepage,
2238 sc.gfp_mask);
2239
a09ed5e0 2240 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2241
2242 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2243
2244 return nr_reclaimed;
66e1707b
BS
2245}
2246#endif
2247
9e3b2f8c 2248static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2249{
b95a2f2d 2250 struct mem_cgroup *memcg;
f16015fb 2251
b95a2f2d
JW
2252 if (!total_swap_pages)
2253 return;
2254
2255 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2256 do {
c56d5c7d 2257 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2258
c56d5c7d 2259 if (inactive_anon_is_low(lruvec))
1a93be0e 2260 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2261 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2262
2263 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2264 } while (memcg);
f16015fb
JW
2265}
2266
1741c877
MG
2267/*
2268 * pgdat_balanced is used when checking if a node is balanced for high-order
2269 * allocations. Only zones that meet watermarks and are in a zone allowed
2270 * by the callers classzone_idx are added to balanced_pages. The total of
2271 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2272 * for the node to be considered balanced. Forcing all zones to be balanced
2273 * for high orders can cause excessive reclaim when there are imbalanced zones.
2274 * The choice of 25% is due to
2275 * o a 16M DMA zone that is balanced will not balance a zone on any
2276 * reasonable sized machine
2277 * o On all other machines, the top zone must be at least a reasonable
25985edc 2278 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2279 * would need to be at least 256M for it to be balance a whole node.
2280 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2281 * to balance a node on its own. These seemed like reasonable ratios.
2282 */
2283static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2284 int classzone_idx)
2285{
2286 unsigned long present_pages = 0;
2287 int i;
2288
2289 for (i = 0; i <= classzone_idx; i++)
2290 present_pages += pgdat->node_zones[i].present_pages;
2291
4746efde
SL
2292 /* A special case here: if zone has no page, we think it's balanced */
2293 return balanced_pages >= (present_pages >> 2);
1741c877
MG
2294}
2295
f50de2d3 2296/* is kswapd sleeping prematurely? */
dc83edd9
MG
2297static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2298 int classzone_idx)
f50de2d3 2299{
bb3ab596 2300 int i;
1741c877
MG
2301 unsigned long balanced = 0;
2302 bool all_zones_ok = true;
f50de2d3
MG
2303
2304 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2305 if (remaining)
dc83edd9 2306 return true;
f50de2d3 2307
0abdee2b 2308 /* Check the watermark levels */
08951e54 2309 for (i = 0; i <= classzone_idx; i++) {
bb3ab596
KM
2310 struct zone *zone = pgdat->node_zones + i;
2311
2312 if (!populated_zone(zone))
2313 continue;
2314
355b09c4
MG
2315 /*
2316 * balance_pgdat() skips over all_unreclaimable after
2317 * DEF_PRIORITY. Effectively, it considers them balanced so
2318 * they must be considered balanced here as well if kswapd
2319 * is to sleep
2320 */
2321 if (zone->all_unreclaimable) {
2322 balanced += zone->present_pages;
de3fab39 2323 continue;
355b09c4 2324 }
de3fab39 2325
88f5acf8 2326 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
da175d06 2327 i, 0))
1741c877
MG
2328 all_zones_ok = false;
2329 else
2330 balanced += zone->present_pages;
bb3ab596 2331 }
f50de2d3 2332
1741c877
MG
2333 /*
2334 * For high-order requests, the balanced zones must contain at least
2335 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2336 * must be balanced
2337 */
2338 if (order)
afc7e326 2339 return !pgdat_balanced(pgdat, balanced, classzone_idx);
1741c877
MG
2340 else
2341 return !all_zones_ok;
f50de2d3
MG
2342}
2343
1da177e4
LT
2344/*
2345 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2346 * they are all at high_wmark_pages(zone).
1da177e4 2347 *
0abdee2b 2348 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2349 *
2350 * There is special handling here for zones which are full of pinned pages.
2351 * This can happen if the pages are all mlocked, or if they are all used by
2352 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2353 * What we do is to detect the case where all pages in the zone have been
2354 * scanned twice and there has been zero successful reclaim. Mark the zone as
2355 * dead and from now on, only perform a short scan. Basically we're polling
2356 * the zone for when the problem goes away.
2357 *
2358 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2359 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2360 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2361 * lower zones regardless of the number of free pages in the lower zones. This
2362 * interoperates with the page allocator fallback scheme to ensure that aging
2363 * of pages is balanced across the zones.
1da177e4 2364 */
99504748 2365static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2366 int *classzone_idx)
1da177e4 2367{
1da177e4 2368 int all_zones_ok;
1741c877 2369 unsigned long balanced;
1da177e4 2370 int i;
99504748 2371 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
69e05944 2372 unsigned long total_scanned;
1da177e4 2373 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2374 unsigned long nr_soft_reclaimed;
2375 unsigned long nr_soft_scanned;
179e9639
AM
2376 struct scan_control sc = {
2377 .gfp_mask = GFP_KERNEL,
a6dc60f8 2378 .may_unmap = 1,
2e2e4259 2379 .may_swap = 1,
22fba335
KM
2380 /*
2381 * kswapd doesn't want to be bailed out while reclaim. because
2382 * we want to put equal scanning pressure on each zone.
2383 */
2384 .nr_to_reclaim = ULONG_MAX,
5ad333eb 2385 .order = order,
f16015fb 2386 .target_mem_cgroup = NULL,
179e9639 2387 };
a09ed5e0
YH
2388 struct shrink_control shrink = {
2389 .gfp_mask = sc.gfp_mask,
2390 };
1da177e4
LT
2391loop_again:
2392 total_scanned = 0;
9e3b2f8c 2393 sc.priority = DEF_PRIORITY;
a79311c1 2394 sc.nr_reclaimed = 0;
c0bbbc73 2395 sc.may_writepage = !laptop_mode;
f8891e5e 2396 count_vm_event(PAGEOUTRUN);
1da177e4 2397
9e3b2f8c 2398 do {
1da177e4 2399 unsigned long lru_pages = 0;
bb3ab596 2400 int has_under_min_watermark_zone = 0;
1da177e4
LT
2401
2402 all_zones_ok = 1;
1741c877 2403 balanced = 0;
1da177e4 2404
d6277db4
RW
2405 /*
2406 * Scan in the highmem->dma direction for the highest
2407 * zone which needs scanning
2408 */
2409 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2410 struct zone *zone = pgdat->node_zones + i;
1da177e4 2411
d6277db4
RW
2412 if (!populated_zone(zone))
2413 continue;
1da177e4 2414
9e3b2f8c
KK
2415 if (zone->all_unreclaimable &&
2416 sc.priority != DEF_PRIORITY)
d6277db4 2417 continue;
1da177e4 2418
556adecb
RR
2419 /*
2420 * Do some background aging of the anon list, to give
2421 * pages a chance to be referenced before reclaiming.
2422 */
9e3b2f8c 2423 age_active_anon(zone, &sc);
556adecb 2424
cc715d99
MG
2425 /*
2426 * If the number of buffer_heads in the machine
2427 * exceeds the maximum allowed level and this node
2428 * has a highmem zone, force kswapd to reclaim from
2429 * it to relieve lowmem pressure.
2430 */
2431 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2432 end_zone = i;
2433 break;
2434 }
2435
88f5acf8 2436 if (!zone_watermark_ok_safe(zone, order,
41858966 2437 high_wmark_pages(zone), 0, 0)) {
d6277db4 2438 end_zone = i;
e1dbeda6 2439 break;
439423f6
SL
2440 } else {
2441 /* If balanced, clear the congested flag */
2442 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2443 }
1da177e4 2444 }
e1dbeda6
AM
2445 if (i < 0)
2446 goto out;
2447
1da177e4
LT
2448 for (i = 0; i <= end_zone; i++) {
2449 struct zone *zone = pgdat->node_zones + i;
2450
adea02a1 2451 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2452 }
2453
2454 /*
2455 * Now scan the zone in the dma->highmem direction, stopping
2456 * at the last zone which needs scanning.
2457 *
2458 * We do this because the page allocator works in the opposite
2459 * direction. This prevents the page allocator from allocating
2460 * pages behind kswapd's direction of progress, which would
2461 * cause too much scanning of the lower zones.
2462 */
2463 for (i = 0; i <= end_zone; i++) {
2464 struct zone *zone = pgdat->node_zones + i;
fe2c2a10 2465 int nr_slab, testorder;
8afdcece 2466 unsigned long balance_gap;
1da177e4 2467
f3fe6512 2468 if (!populated_zone(zone))
1da177e4
LT
2469 continue;
2470
9e3b2f8c
KK
2471 if (zone->all_unreclaimable &&
2472 sc.priority != DEF_PRIORITY)
1da177e4
LT
2473 continue;
2474
1da177e4 2475 sc.nr_scanned = 0;
4e416953 2476
0ae5e89c 2477 nr_soft_scanned = 0;
4e416953
BS
2478 /*
2479 * Call soft limit reclaim before calling shrink_zone.
4e416953 2480 */
0ae5e89c
YH
2481 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2482 order, sc.gfp_mask,
2483 &nr_soft_scanned);
2484 sc.nr_reclaimed += nr_soft_reclaimed;
2485 total_scanned += nr_soft_scanned;
00918b6a 2486
32a4330d 2487 /*
8afdcece
MG
2488 * We put equal pressure on every zone, unless
2489 * one zone has way too many pages free
2490 * already. The "too many pages" is defined
2491 * as the high wmark plus a "gap" where the
2492 * gap is either the low watermark or 1%
2493 * of the zone, whichever is smaller.
32a4330d 2494 */
8afdcece
MG
2495 balance_gap = min(low_wmark_pages(zone),
2496 (zone->present_pages +
2497 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2498 KSWAPD_ZONE_BALANCE_GAP_RATIO);
fe2c2a10
RR
2499 /*
2500 * Kswapd reclaims only single pages with compaction
2501 * enabled. Trying too hard to reclaim until contiguous
2502 * free pages have become available can hurt performance
2503 * by evicting too much useful data from memory.
2504 * Do not reclaim more than needed for compaction.
2505 */
2506 testorder = order;
2507 if (COMPACTION_BUILD && order &&
2508 compaction_suitable(zone, order) !=
2509 COMPACT_SKIPPED)
2510 testorder = 0;
2511
cc715d99 2512 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
643ac9fc 2513 !zone_watermark_ok_safe(zone, testorder,
8afdcece 2514 high_wmark_pages(zone) + balance_gap,
d7868dae 2515 end_zone, 0)) {
9e3b2f8c 2516 shrink_zone(zone, &sc);
5a03b051 2517
d7868dae
MG
2518 reclaim_state->reclaimed_slab = 0;
2519 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2520 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2521 total_scanned += sc.nr_scanned;
2522
2523 if (nr_slab == 0 && !zone_reclaimable(zone))
2524 zone->all_unreclaimable = 1;
2525 }
2526
1da177e4
LT
2527 /*
2528 * If we've done a decent amount of scanning and
2529 * the reclaim ratio is low, start doing writepage
2530 * even in laptop mode
2531 */
2532 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2533 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2534 sc.may_writepage = 1;
bb3ab596 2535
215ddd66
MG
2536 if (zone->all_unreclaimable) {
2537 if (end_zone && end_zone == i)
2538 end_zone--;
d7868dae 2539 continue;
215ddd66 2540 }
d7868dae 2541
fe2c2a10 2542 if (!zone_watermark_ok_safe(zone, testorder,
45973d74
MK
2543 high_wmark_pages(zone), end_zone, 0)) {
2544 all_zones_ok = 0;
2545 /*
2546 * We are still under min water mark. This
2547 * means that we have a GFP_ATOMIC allocation
2548 * failure risk. Hurry up!
2549 */
88f5acf8 2550 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2551 min_wmark_pages(zone), end_zone, 0))
2552 has_under_min_watermark_zone = 1;
0e093d99
MG
2553 } else {
2554 /*
2555 * If a zone reaches its high watermark,
2556 * consider it to be no longer congested. It's
2557 * possible there are dirty pages backed by
2558 * congested BDIs but as pressure is relieved,
2559 * spectulatively avoid congestion waits
2560 */
2561 zone_clear_flag(zone, ZONE_CONGESTED);
dc83edd9 2562 if (i <= *classzone_idx)
1741c877 2563 balanced += zone->present_pages;
45973d74 2564 }
bb3ab596 2565
1da177e4 2566 }
dc83edd9 2567 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
1da177e4
LT
2568 break; /* kswapd: all done */
2569 /*
2570 * OK, kswapd is getting into trouble. Take a nap, then take
2571 * another pass across the zones.
2572 */
9e3b2f8c 2573 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
bb3ab596
KM
2574 if (has_under_min_watermark_zone)
2575 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2576 else
2577 congestion_wait(BLK_RW_ASYNC, HZ/10);
2578 }
1da177e4
LT
2579
2580 /*
2581 * We do this so kswapd doesn't build up large priorities for
2582 * example when it is freeing in parallel with allocators. It
2583 * matches the direct reclaim path behaviour in terms of impact
2584 * on zone->*_priority.
2585 */
a79311c1 2586 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4 2587 break;
9e3b2f8c 2588 } while (--sc.priority >= 0);
1da177e4 2589out:
99504748
MG
2590
2591 /*
2592 * order-0: All zones must meet high watermark for a balanced node
1741c877
MG
2593 * high-order: Balanced zones must make up at least 25% of the node
2594 * for the node to be balanced
99504748 2595 */
dc83edd9 2596 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
1da177e4 2597 cond_resched();
8357376d
RW
2598
2599 try_to_freeze();
2600
73ce02e9
KM
2601 /*
2602 * Fragmentation may mean that the system cannot be
2603 * rebalanced for high-order allocations in all zones.
2604 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2605 * it means the zones have been fully scanned and are still
2606 * not balanced. For high-order allocations, there is
2607 * little point trying all over again as kswapd may
2608 * infinite loop.
2609 *
2610 * Instead, recheck all watermarks at order-0 as they
2611 * are the most important. If watermarks are ok, kswapd will go
2612 * back to sleep. High-order users can still perform direct
2613 * reclaim if they wish.
2614 */
2615 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2616 order = sc.order = 0;
2617
1da177e4
LT
2618 goto loop_again;
2619 }
2620
99504748
MG
2621 /*
2622 * If kswapd was reclaiming at a higher order, it has the option of
2623 * sleeping without all zones being balanced. Before it does, it must
2624 * ensure that the watermarks for order-0 on *all* zones are met and
2625 * that the congestion flags are cleared. The congestion flag must
2626 * be cleared as kswapd is the only mechanism that clears the flag
2627 * and it is potentially going to sleep here.
2628 */
2629 if (order) {
7be62de9
RR
2630 int zones_need_compaction = 1;
2631
99504748
MG
2632 for (i = 0; i <= end_zone; i++) {
2633 struct zone *zone = pgdat->node_zones + i;
2634
2635 if (!populated_zone(zone))
2636 continue;
2637
9e3b2f8c
KK
2638 if (zone->all_unreclaimable &&
2639 sc.priority != DEF_PRIORITY)
99504748
MG
2640 continue;
2641
fe2c2a10 2642 /* Would compaction fail due to lack of free memory? */
496b919b
RR
2643 if (COMPACTION_BUILD &&
2644 compaction_suitable(zone, order) == COMPACT_SKIPPED)
fe2c2a10
RR
2645 goto loop_again;
2646
99504748
MG
2647 /* Confirm the zone is balanced for order-0 */
2648 if (!zone_watermark_ok(zone, 0,
2649 high_wmark_pages(zone), 0, 0)) {
2650 order = sc.order = 0;
2651 goto loop_again;
2652 }
2653
7be62de9
RR
2654 /* Check if the memory needs to be defragmented. */
2655 if (zone_watermark_ok(zone, order,
2656 low_wmark_pages(zone), *classzone_idx, 0))
2657 zones_need_compaction = 0;
2658
99504748
MG
2659 /* If balanced, clear the congested flag */
2660 zone_clear_flag(zone, ZONE_CONGESTED);
2661 }
7be62de9
RR
2662
2663 if (zones_need_compaction)
2664 compact_pgdat(pgdat, order);
99504748
MG
2665 }
2666
0abdee2b
MG
2667 /*
2668 * Return the order we were reclaiming at so sleeping_prematurely()
2669 * makes a decision on the order we were last reclaiming at. However,
2670 * if another caller entered the allocator slow path while kswapd
2671 * was awake, order will remain at the higher level
2672 */
dc83edd9 2673 *classzone_idx = end_zone;
0abdee2b 2674 return order;
1da177e4
LT
2675}
2676
dc83edd9 2677static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
2678{
2679 long remaining = 0;
2680 DEFINE_WAIT(wait);
2681
2682 if (freezing(current) || kthread_should_stop())
2683 return;
2684
2685 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2686
2687 /* Try to sleep for a short interval */
dc83edd9 2688 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2689 remaining = schedule_timeout(HZ/10);
2690 finish_wait(&pgdat->kswapd_wait, &wait);
2691 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2692 }
2693
2694 /*
2695 * After a short sleep, check if it was a premature sleep. If not, then
2696 * go fully to sleep until explicitly woken up.
2697 */
dc83edd9 2698 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2699 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2700
2701 /*
2702 * vmstat counters are not perfectly accurate and the estimated
2703 * value for counters such as NR_FREE_PAGES can deviate from the
2704 * true value by nr_online_cpus * threshold. To avoid the zone
2705 * watermarks being breached while under pressure, we reduce the
2706 * per-cpu vmstat threshold while kswapd is awake and restore
2707 * them before going back to sleep.
2708 */
2709 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2710 schedule();
2711 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2712 } else {
2713 if (remaining)
2714 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2715 else
2716 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2717 }
2718 finish_wait(&pgdat->kswapd_wait, &wait);
2719}
2720
1da177e4
LT
2721/*
2722 * The background pageout daemon, started as a kernel thread
4f98a2fe 2723 * from the init process.
1da177e4
LT
2724 *
2725 * This basically trickles out pages so that we have _some_
2726 * free memory available even if there is no other activity
2727 * that frees anything up. This is needed for things like routing
2728 * etc, where we otherwise might have all activity going on in
2729 * asynchronous contexts that cannot page things out.
2730 *
2731 * If there are applications that are active memory-allocators
2732 * (most normal use), this basically shouldn't matter.
2733 */
2734static int kswapd(void *p)
2735{
215ddd66 2736 unsigned long order, new_order;
d2ebd0f6 2737 unsigned balanced_order;
215ddd66 2738 int classzone_idx, new_classzone_idx;
d2ebd0f6 2739 int balanced_classzone_idx;
1da177e4
LT
2740 pg_data_t *pgdat = (pg_data_t*)p;
2741 struct task_struct *tsk = current;
f0bc0a60 2742
1da177e4
LT
2743 struct reclaim_state reclaim_state = {
2744 .reclaimed_slab = 0,
2745 };
a70f7302 2746 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2747
cf40bd16
NP
2748 lockdep_set_current_reclaim_state(GFP_KERNEL);
2749
174596a0 2750 if (!cpumask_empty(cpumask))
c5f59f08 2751 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2752 current->reclaim_state = &reclaim_state;
2753
2754 /*
2755 * Tell the memory management that we're a "memory allocator",
2756 * and that if we need more memory we should get access to it
2757 * regardless (see "__alloc_pages()"). "kswapd" should
2758 * never get caught in the normal page freeing logic.
2759 *
2760 * (Kswapd normally doesn't need memory anyway, but sometimes
2761 * you need a small amount of memory in order to be able to
2762 * page out something else, and this flag essentially protects
2763 * us from recursively trying to free more memory as we're
2764 * trying to free the first piece of memory in the first place).
2765 */
930d9152 2766 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2767 set_freezable();
1da177e4 2768
215ddd66 2769 order = new_order = 0;
d2ebd0f6 2770 balanced_order = 0;
215ddd66 2771 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 2772 balanced_classzone_idx = classzone_idx;
1da177e4 2773 for ( ; ; ) {
8fe23e05 2774 int ret;
3e1d1d28 2775
215ddd66
MG
2776 /*
2777 * If the last balance_pgdat was unsuccessful it's unlikely a
2778 * new request of a similar or harder type will succeed soon
2779 * so consider going to sleep on the basis we reclaimed at
2780 */
d2ebd0f6
AS
2781 if (balanced_classzone_idx >= new_classzone_idx &&
2782 balanced_order == new_order) {
215ddd66
MG
2783 new_order = pgdat->kswapd_max_order;
2784 new_classzone_idx = pgdat->classzone_idx;
2785 pgdat->kswapd_max_order = 0;
2786 pgdat->classzone_idx = pgdat->nr_zones - 1;
2787 }
2788
99504748 2789 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
2790 /*
2791 * Don't sleep if someone wants a larger 'order'
99504748 2792 * allocation or has tigher zone constraints
1da177e4
LT
2793 */
2794 order = new_order;
99504748 2795 classzone_idx = new_classzone_idx;
1da177e4 2796 } else {
d2ebd0f6
AS
2797 kswapd_try_to_sleep(pgdat, balanced_order,
2798 balanced_classzone_idx);
1da177e4 2799 order = pgdat->kswapd_max_order;
99504748 2800 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
2801 new_order = order;
2802 new_classzone_idx = classzone_idx;
4d40502e 2803 pgdat->kswapd_max_order = 0;
215ddd66 2804 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 2805 }
1da177e4 2806
8fe23e05
DR
2807 ret = try_to_freeze();
2808 if (kthread_should_stop())
2809 break;
2810
2811 /*
2812 * We can speed up thawing tasks if we don't call balance_pgdat
2813 * after returning from the refrigerator
2814 */
33906bc5
MG
2815 if (!ret) {
2816 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
2817 balanced_classzone_idx = classzone_idx;
2818 balanced_order = balance_pgdat(pgdat, order,
2819 &balanced_classzone_idx);
33906bc5 2820 }
1da177e4
LT
2821 }
2822 return 0;
2823}
2824
2825/*
2826 * A zone is low on free memory, so wake its kswapd task to service it.
2827 */
99504748 2828void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
2829{
2830 pg_data_t *pgdat;
2831
f3fe6512 2832 if (!populated_zone(zone))
1da177e4
LT
2833 return;
2834
88f5acf8 2835 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2836 return;
88f5acf8 2837 pgdat = zone->zone_pgdat;
99504748 2838 if (pgdat->kswapd_max_order < order) {
1da177e4 2839 pgdat->kswapd_max_order = order;
99504748
MG
2840 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2841 }
8d0986e2 2842 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2843 return;
88f5acf8
MG
2844 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2845 return;
2846
2847 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 2848 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2849}
2850
adea02a1
WF
2851/*
2852 * The reclaimable count would be mostly accurate.
2853 * The less reclaimable pages may be
2854 * - mlocked pages, which will be moved to unevictable list when encountered
2855 * - mapped pages, which may require several travels to be reclaimed
2856 * - dirty pages, which is not "instantly" reclaimable
2857 */
2858unsigned long global_reclaimable_pages(void)
4f98a2fe 2859{
adea02a1
WF
2860 int nr;
2861
2862 nr = global_page_state(NR_ACTIVE_FILE) +
2863 global_page_state(NR_INACTIVE_FILE);
2864
2865 if (nr_swap_pages > 0)
2866 nr += global_page_state(NR_ACTIVE_ANON) +
2867 global_page_state(NR_INACTIVE_ANON);
2868
2869 return nr;
2870}
2871
2872unsigned long zone_reclaimable_pages(struct zone *zone)
2873{
2874 int nr;
2875
2876 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2877 zone_page_state(zone, NR_INACTIVE_FILE);
2878
2879 if (nr_swap_pages > 0)
2880 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2881 zone_page_state(zone, NR_INACTIVE_ANON);
2882
2883 return nr;
4f98a2fe
RR
2884}
2885
c6f37f12 2886#ifdef CONFIG_HIBERNATION
1da177e4 2887/*
7b51755c 2888 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2889 * freed pages.
2890 *
2891 * Rather than trying to age LRUs the aim is to preserve the overall
2892 * LRU order by reclaiming preferentially
2893 * inactive > active > active referenced > active mapped
1da177e4 2894 */
7b51755c 2895unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2896{
d6277db4 2897 struct reclaim_state reclaim_state;
d6277db4 2898 struct scan_control sc = {
7b51755c
KM
2899 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2900 .may_swap = 1,
2901 .may_unmap = 1,
d6277db4 2902 .may_writepage = 1,
7b51755c
KM
2903 .nr_to_reclaim = nr_to_reclaim,
2904 .hibernation_mode = 1,
7b51755c 2905 .order = 0,
9e3b2f8c 2906 .priority = DEF_PRIORITY,
1da177e4 2907 };
a09ed5e0
YH
2908 struct shrink_control shrink = {
2909 .gfp_mask = sc.gfp_mask,
2910 };
2911 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
2912 struct task_struct *p = current;
2913 unsigned long nr_reclaimed;
1da177e4 2914
7b51755c
KM
2915 p->flags |= PF_MEMALLOC;
2916 lockdep_set_current_reclaim_state(sc.gfp_mask);
2917 reclaim_state.reclaimed_slab = 0;
2918 p->reclaim_state = &reclaim_state;
d6277db4 2919
a09ed5e0 2920 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 2921
7b51755c
KM
2922 p->reclaim_state = NULL;
2923 lockdep_clear_current_reclaim_state();
2924 p->flags &= ~PF_MEMALLOC;
d6277db4 2925
7b51755c 2926 return nr_reclaimed;
1da177e4 2927}
c6f37f12 2928#endif /* CONFIG_HIBERNATION */
1da177e4 2929
1da177e4
LT
2930/* It's optimal to keep kswapds on the same CPUs as their memory, but
2931 not required for correctness. So if the last cpu in a node goes
2932 away, we get changed to run anywhere: as the first one comes back,
2933 restore their cpu bindings. */
9c7b216d 2934static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2935 unsigned long action, void *hcpu)
1da177e4 2936{
58c0a4a7 2937 int nid;
1da177e4 2938
8bb78442 2939 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2940 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2941 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2942 const struct cpumask *mask;
2943
2944 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 2945
3e597945 2946 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2947 /* One of our CPUs online: restore mask */
c5f59f08 2948 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2949 }
2950 }
2951 return NOTIFY_OK;
2952}
1da177e4 2953
3218ae14
YG
2954/*
2955 * This kswapd start function will be called by init and node-hot-add.
2956 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2957 */
2958int kswapd_run(int nid)
2959{
2960 pg_data_t *pgdat = NODE_DATA(nid);
2961 int ret = 0;
2962
2963 if (pgdat->kswapd)
2964 return 0;
2965
2966 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2967 if (IS_ERR(pgdat->kswapd)) {
2968 /* failure at boot is fatal */
2969 BUG_ON(system_state == SYSTEM_BOOTING);
2970 printk("Failed to start kswapd on node %d\n",nid);
2971 ret = -1;
2972 }
2973 return ret;
2974}
2975
8fe23e05
DR
2976/*
2977 * Called by memory hotplug when all memory in a node is offlined.
2978 */
2979void kswapd_stop(int nid)
2980{
2981 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2982
2983 if (kswapd)
2984 kthread_stop(kswapd);
2985}
2986
1da177e4
LT
2987static int __init kswapd_init(void)
2988{
3218ae14 2989 int nid;
69e05944 2990
1da177e4 2991 swap_setup();
9422ffba 2992 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 2993 kswapd_run(nid);
1da177e4
LT
2994 hotcpu_notifier(cpu_callback, 0);
2995 return 0;
2996}
2997
2998module_init(kswapd_init)
9eeff239
CL
2999
3000#ifdef CONFIG_NUMA
3001/*
3002 * Zone reclaim mode
3003 *
3004 * If non-zero call zone_reclaim when the number of free pages falls below
3005 * the watermarks.
9eeff239
CL
3006 */
3007int zone_reclaim_mode __read_mostly;
3008
1b2ffb78 3009#define RECLAIM_OFF 0
7d03431c 3010#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3011#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3012#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3013
a92f7126
CL
3014/*
3015 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3016 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3017 * a zone.
3018 */
3019#define ZONE_RECLAIM_PRIORITY 4
3020
9614634f
CL
3021/*
3022 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3023 * occur.
3024 */
3025int sysctl_min_unmapped_ratio = 1;
3026
0ff38490
CL
3027/*
3028 * If the number of slab pages in a zone grows beyond this percentage then
3029 * slab reclaim needs to occur.
3030 */
3031int sysctl_min_slab_ratio = 5;
3032
90afa5de
MG
3033static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3034{
3035 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3036 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3037 zone_page_state(zone, NR_ACTIVE_FILE);
3038
3039 /*
3040 * It's possible for there to be more file mapped pages than
3041 * accounted for by the pages on the file LRU lists because
3042 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3043 */
3044 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3045}
3046
3047/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3048static long zone_pagecache_reclaimable(struct zone *zone)
3049{
3050 long nr_pagecache_reclaimable;
3051 long delta = 0;
3052
3053 /*
3054 * If RECLAIM_SWAP is set, then all file pages are considered
3055 * potentially reclaimable. Otherwise, we have to worry about
3056 * pages like swapcache and zone_unmapped_file_pages() provides
3057 * a better estimate
3058 */
3059 if (zone_reclaim_mode & RECLAIM_SWAP)
3060 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3061 else
3062 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3063
3064 /* If we can't clean pages, remove dirty pages from consideration */
3065 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3066 delta += zone_page_state(zone, NR_FILE_DIRTY);
3067
3068 /* Watch for any possible underflows due to delta */
3069 if (unlikely(delta > nr_pagecache_reclaimable))
3070 delta = nr_pagecache_reclaimable;
3071
3072 return nr_pagecache_reclaimable - delta;
3073}
3074
9eeff239
CL
3075/*
3076 * Try to free up some pages from this zone through reclaim.
3077 */
179e9639 3078static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3079{
7fb2d46d 3080 /* Minimum pages needed in order to stay on node */
69e05944 3081 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3082 struct task_struct *p = current;
3083 struct reclaim_state reclaim_state;
179e9639
AM
3084 struct scan_control sc = {
3085 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3086 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3087 .may_swap = 1,
22fba335
KM
3088 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3089 SWAP_CLUSTER_MAX),
179e9639 3090 .gfp_mask = gfp_mask,
bd2f6199 3091 .order = order,
9e3b2f8c 3092 .priority = ZONE_RECLAIM_PRIORITY,
179e9639 3093 };
a09ed5e0
YH
3094 struct shrink_control shrink = {
3095 .gfp_mask = sc.gfp_mask,
3096 };
15748048 3097 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3098
9eeff239 3099 cond_resched();
d4f7796e
CL
3100 /*
3101 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3102 * and we also need to be able to write out pages for RECLAIM_WRITE
3103 * and RECLAIM_SWAP.
3104 */
3105 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3106 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3107 reclaim_state.reclaimed_slab = 0;
3108 p->reclaim_state = &reclaim_state;
c84db23c 3109
90afa5de 3110 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3111 /*
3112 * Free memory by calling shrink zone with increasing
3113 * priorities until we have enough memory freed.
3114 */
0ff38490 3115 do {
9e3b2f8c
KK
3116 shrink_zone(zone, &sc);
3117 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3118 }
c84db23c 3119
15748048
KM
3120 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3121 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3122 /*
7fb2d46d 3123 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3124 * many pages were freed in this zone. So we take the current
3125 * number of slab pages and shake the slab until it is reduced
3126 * by the same nr_pages that we used for reclaiming unmapped
3127 * pages.
2a16e3f4 3128 *
0ff38490
CL
3129 * Note that shrink_slab will free memory on all zones and may
3130 * take a long time.
2a16e3f4 3131 */
4dc4b3d9
KM
3132 for (;;) {
3133 unsigned long lru_pages = zone_reclaimable_pages(zone);
3134
3135 /* No reclaimable slab or very low memory pressure */
1495f230 3136 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3137 break;
3138
3139 /* Freed enough memory */
3140 nr_slab_pages1 = zone_page_state(zone,
3141 NR_SLAB_RECLAIMABLE);
3142 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3143 break;
3144 }
83e33a47
CL
3145
3146 /*
3147 * Update nr_reclaimed by the number of slab pages we
3148 * reclaimed from this zone.
3149 */
15748048
KM
3150 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3151 if (nr_slab_pages1 < nr_slab_pages0)
3152 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3153 }
3154
9eeff239 3155 p->reclaim_state = NULL;
d4f7796e 3156 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3157 lockdep_clear_current_reclaim_state();
a79311c1 3158 return sc.nr_reclaimed >= nr_pages;
9eeff239 3159}
179e9639
AM
3160
3161int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3162{
179e9639 3163 int node_id;
d773ed6b 3164 int ret;
179e9639
AM
3165
3166 /*
0ff38490
CL
3167 * Zone reclaim reclaims unmapped file backed pages and
3168 * slab pages if we are over the defined limits.
34aa1330 3169 *
9614634f
CL
3170 * A small portion of unmapped file backed pages is needed for
3171 * file I/O otherwise pages read by file I/O will be immediately
3172 * thrown out if the zone is overallocated. So we do not reclaim
3173 * if less than a specified percentage of the zone is used by
3174 * unmapped file backed pages.
179e9639 3175 */
90afa5de
MG
3176 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3177 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3178 return ZONE_RECLAIM_FULL;
179e9639 3179
93e4a89a 3180 if (zone->all_unreclaimable)
fa5e084e 3181 return ZONE_RECLAIM_FULL;
d773ed6b 3182
179e9639 3183 /*
d773ed6b 3184 * Do not scan if the allocation should not be delayed.
179e9639 3185 */
d773ed6b 3186 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3187 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3188
3189 /*
3190 * Only run zone reclaim on the local zone or on zones that do not
3191 * have associated processors. This will favor the local processor
3192 * over remote processors and spread off node memory allocations
3193 * as wide as possible.
3194 */
89fa3024 3195 node_id = zone_to_nid(zone);
37c0708d 3196 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3197 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3198
3199 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3200 return ZONE_RECLAIM_NOSCAN;
3201
d773ed6b
DR
3202 ret = __zone_reclaim(zone, gfp_mask, order);
3203 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3204
24cf7251
MG
3205 if (!ret)
3206 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3207
d773ed6b 3208 return ret;
179e9639 3209}
9eeff239 3210#endif
894bc310 3211
894bc310
LS
3212/*
3213 * page_evictable - test whether a page is evictable
3214 * @page: the page to test
3215 * @vma: the VMA in which the page is or will be mapped, may be NULL
3216 *
3217 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
3218 * lists vs unevictable list. The vma argument is !NULL when called from the
3219 * fault path to determine how to instantate a new page.
894bc310
LS
3220 *
3221 * Reasons page might not be evictable:
ba9ddf49 3222 * (1) page's mapping marked unevictable
b291f000 3223 * (2) page is part of an mlocked VMA
ba9ddf49 3224 *
894bc310
LS
3225 */
3226int page_evictable(struct page *page, struct vm_area_struct *vma)
3227{
3228
ba9ddf49
LS
3229 if (mapping_unevictable(page_mapping(page)))
3230 return 0;
3231
096a7cf4 3232 if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
b291f000 3233 return 0;
894bc310
LS
3234
3235 return 1;
3236}
89e004ea 3237
85046579 3238#ifdef CONFIG_SHMEM
89e004ea 3239/**
24513264
HD
3240 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3241 * @pages: array of pages to check
3242 * @nr_pages: number of pages to check
89e004ea 3243 *
24513264 3244 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3245 *
3246 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3247 */
24513264 3248void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3249{
925b7673 3250 struct lruvec *lruvec;
24513264
HD
3251 struct zone *zone = NULL;
3252 int pgscanned = 0;
3253 int pgrescued = 0;
3254 int i;
89e004ea 3255
24513264
HD
3256 for (i = 0; i < nr_pages; i++) {
3257 struct page *page = pages[i];
3258 struct zone *pagezone;
89e004ea 3259
24513264
HD
3260 pgscanned++;
3261 pagezone = page_zone(page);
3262 if (pagezone != zone) {
3263 if (zone)
3264 spin_unlock_irq(&zone->lru_lock);
3265 zone = pagezone;
3266 spin_lock_irq(&zone->lru_lock);
3267 }
89e004ea 3268
24513264
HD
3269 if (!PageLRU(page) || !PageUnevictable(page))
3270 continue;
89e004ea 3271
24513264
HD
3272 if (page_evictable(page, NULL)) {
3273 enum lru_list lru = page_lru_base_type(page);
3274
3275 VM_BUG_ON(PageActive(page));
3276 ClearPageUnevictable(page);
3277 __dec_zone_state(zone, NR_UNEVICTABLE);
3278 lruvec = mem_cgroup_lru_move_lists(zone, page,
3279 LRU_UNEVICTABLE, lru);
3280 list_move(&page->lru, &lruvec->lists[lru]);
3281 __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3282 pgrescued++;
89e004ea 3283 }
24513264 3284 }
89e004ea 3285
24513264
HD
3286 if (zone) {
3287 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3288 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3289 spin_unlock_irq(&zone->lru_lock);
89e004ea 3290 }
89e004ea 3291}
85046579 3292#endif /* CONFIG_SHMEM */
af936a16 3293
264e56d8 3294static void warn_scan_unevictable_pages(void)
af936a16 3295{
264e56d8 3296 printk_once(KERN_WARNING
25bd91bd 3297 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3298 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3299 "one, please send an email to linux-mm@kvack.org.\n",
3300 current->comm);
af936a16
LS
3301}
3302
3303/*
3304 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3305 * all nodes' unevictable lists for evictable pages
3306 */
3307unsigned long scan_unevictable_pages;
3308
3309int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3310 void __user *buffer,
af936a16
LS
3311 size_t *length, loff_t *ppos)
3312{
264e56d8 3313 warn_scan_unevictable_pages();
8d65af78 3314 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3315 scan_unevictable_pages = 0;
3316 return 0;
3317}
3318
e4455abb 3319#ifdef CONFIG_NUMA
af936a16
LS
3320/*
3321 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3322 * a specified node's per zone unevictable lists for evictable pages.
3323 */
3324
10fbcf4c
KS
3325static ssize_t read_scan_unevictable_node(struct device *dev,
3326 struct device_attribute *attr,
af936a16
LS
3327 char *buf)
3328{
264e56d8 3329 warn_scan_unevictable_pages();
af936a16
LS
3330 return sprintf(buf, "0\n"); /* always zero; should fit... */
3331}
3332
10fbcf4c
KS
3333static ssize_t write_scan_unevictable_node(struct device *dev,
3334 struct device_attribute *attr,
af936a16
LS
3335 const char *buf, size_t count)
3336{
264e56d8 3337 warn_scan_unevictable_pages();
af936a16
LS
3338 return 1;
3339}
3340
3341
10fbcf4c 3342static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3343 read_scan_unevictable_node,
3344 write_scan_unevictable_node);
3345
3346int scan_unevictable_register_node(struct node *node)
3347{
10fbcf4c 3348 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3349}
3350
3351void scan_unevictable_unregister_node(struct node *node)
3352{
10fbcf4c 3353 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3354}
e4455abb 3355#endif