]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmscan.c
mm: vmscan: clean up get_scan_count()
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
1da177e4
LT
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
3e7d3449 34#include <linux/compaction.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
929bea7c 43#include <linux/oom.h>
268bb0ce 44#include <linux/prefetch.h>
1da177e4
LT
45
46#include <asm/tlbflush.h>
47#include <asm/div64.h>
48
49#include <linux/swapops.h>
50
0f8053a5
NP
51#include "internal.h"
52
33906bc5
MG
53#define CREATE_TRACE_POINTS
54#include <trace/events/vmscan.h>
55
1da177e4 56struct scan_control {
1da177e4
LT
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
59
a79311c1
RR
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
62
22fba335
KM
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
7b51755c
KM
66 unsigned long hibernation_mode;
67
1da177e4 68 /* This context's GFP mask */
6daa0e28 69 gfp_t gfp_mask;
1da177e4
LT
70
71 int may_writepage;
72
a6dc60f8
JW
73 /* Can mapped pages be reclaimed? */
74 int may_unmap;
f1fd1067 75
2e2e4259
KM
76 /* Can pages be swapped as part of reclaim? */
77 int may_swap;
78
5ad333eb 79 int order;
66e1707b 80
9e3b2f8c
KK
81 /* Scan (total_size >> priority) pages at once */
82 int priority;
83
f16015fb
JW
84 /*
85 * The memory cgroup that hit its limit and as a result is the
86 * primary target of this reclaim invocation.
87 */
88 struct mem_cgroup *target_mem_cgroup;
66e1707b 89
327c0e96
KH
90 /*
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
93 */
94 nodemask_t *nodemask;
1da177e4
LT
95};
96
1da177e4
LT
97#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99#ifdef ARCH_HAS_PREFETCH
100#define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
107 } \
108 } while (0)
109#else
110#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111#endif
112
113#ifdef ARCH_HAS_PREFETCHW
114#define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
121 } \
122 } while (0)
123#else
124#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127/*
128 * From 0 .. 100. Higher means more swappy.
129 */
130int vm_swappiness = 60;
bd1e22b8 131long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
132
133static LIST_HEAD(shrinker_list);
134static DECLARE_RWSEM(shrinker_rwsem);
135
c255a458 136#ifdef CONFIG_MEMCG
89b5fae5
JW
137static bool global_reclaim(struct scan_control *sc)
138{
f16015fb 139 return !sc->target_mem_cgroup;
89b5fae5 140}
91a45470 141#else
89b5fae5
JW
142static bool global_reclaim(struct scan_control *sc)
143{
144 return true;
145}
91a45470
KH
146#endif
147
4d7dcca2 148static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 149{
c3c787e8 150 if (!mem_cgroup_disabled())
4d7dcca2 151 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 152
074291fe 153 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
154}
155
1da177e4
LT
156/*
157 * Add a shrinker callback to be called from the vm
158 */
8e1f936b 159void register_shrinker(struct shrinker *shrinker)
1da177e4 160{
83aeeada 161 atomic_long_set(&shrinker->nr_in_batch, 0);
8e1f936b
RR
162 down_write(&shrinker_rwsem);
163 list_add_tail(&shrinker->list, &shrinker_list);
164 up_write(&shrinker_rwsem);
1da177e4 165}
8e1f936b 166EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
167
168/*
169 * Remove one
170 */
8e1f936b 171void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
172{
173 down_write(&shrinker_rwsem);
174 list_del(&shrinker->list);
175 up_write(&shrinker_rwsem);
1da177e4 176}
8e1f936b 177EXPORT_SYMBOL(unregister_shrinker);
1da177e4 178
1495f230
YH
179static inline int do_shrinker_shrink(struct shrinker *shrinker,
180 struct shrink_control *sc,
181 unsigned long nr_to_scan)
182{
183 sc->nr_to_scan = nr_to_scan;
184 return (*shrinker->shrink)(shrinker, sc);
185}
186
1da177e4
LT
187#define SHRINK_BATCH 128
188/*
189 * Call the shrink functions to age shrinkable caches
190 *
191 * Here we assume it costs one seek to replace a lru page and that it also
192 * takes a seek to recreate a cache object. With this in mind we age equal
193 * percentages of the lru and ageable caches. This should balance the seeks
194 * generated by these structures.
195 *
183ff22b 196 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
197 * slab to avoid swapping.
198 *
199 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
200 *
201 * `lru_pages' represents the number of on-LRU pages in all the zones which
202 * are eligible for the caller's allocation attempt. It is used for balancing
203 * slab reclaim versus page reclaim.
b15e0905 204 *
205 * Returns the number of slab objects which we shrunk.
1da177e4 206 */
a09ed5e0 207unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 208 unsigned long nr_pages_scanned,
a09ed5e0 209 unsigned long lru_pages)
1da177e4
LT
210{
211 struct shrinker *shrinker;
69e05944 212 unsigned long ret = 0;
1da177e4 213
1495f230
YH
214 if (nr_pages_scanned == 0)
215 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 216
f06590bd
MK
217 if (!down_read_trylock(&shrinker_rwsem)) {
218 /* Assume we'll be able to shrink next time */
219 ret = 1;
220 goto out;
221 }
1da177e4
LT
222
223 list_for_each_entry(shrinker, &shrinker_list, list) {
224 unsigned long long delta;
635697c6
KK
225 long total_scan;
226 long max_pass;
09576073 227 int shrink_ret = 0;
acf92b48
DC
228 long nr;
229 long new_nr;
e9299f50
DC
230 long batch_size = shrinker->batch ? shrinker->batch
231 : SHRINK_BATCH;
1da177e4 232
635697c6
KK
233 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
234 if (max_pass <= 0)
235 continue;
236
acf92b48
DC
237 /*
238 * copy the current shrinker scan count into a local variable
239 * and zero it so that other concurrent shrinker invocations
240 * don't also do this scanning work.
241 */
83aeeada 242 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
acf92b48
DC
243
244 total_scan = nr;
1495f230 245 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 246 delta *= max_pass;
1da177e4 247 do_div(delta, lru_pages + 1);
acf92b48
DC
248 total_scan += delta;
249 if (total_scan < 0) {
88c3bd70
DR
250 printk(KERN_ERR "shrink_slab: %pF negative objects to "
251 "delete nr=%ld\n",
acf92b48
DC
252 shrinker->shrink, total_scan);
253 total_scan = max_pass;
ea164d73
AA
254 }
255
3567b59a
DC
256 /*
257 * We need to avoid excessive windup on filesystem shrinkers
258 * due to large numbers of GFP_NOFS allocations causing the
259 * shrinkers to return -1 all the time. This results in a large
260 * nr being built up so when a shrink that can do some work
261 * comes along it empties the entire cache due to nr >>>
262 * max_pass. This is bad for sustaining a working set in
263 * memory.
264 *
265 * Hence only allow the shrinker to scan the entire cache when
266 * a large delta change is calculated directly.
267 */
268 if (delta < max_pass / 4)
269 total_scan = min(total_scan, max_pass / 2);
270
ea164d73
AA
271 /*
272 * Avoid risking looping forever due to too large nr value:
273 * never try to free more than twice the estimate number of
274 * freeable entries.
275 */
acf92b48
DC
276 if (total_scan > max_pass * 2)
277 total_scan = max_pass * 2;
1da177e4 278
acf92b48 279 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
280 nr_pages_scanned, lru_pages,
281 max_pass, delta, total_scan);
282
e9299f50 283 while (total_scan >= batch_size) {
b15e0905 284 int nr_before;
1da177e4 285
1495f230
YH
286 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
287 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 288 batch_size);
1da177e4
LT
289 if (shrink_ret == -1)
290 break;
b15e0905 291 if (shrink_ret < nr_before)
292 ret += nr_before - shrink_ret;
e9299f50
DC
293 count_vm_events(SLABS_SCANNED, batch_size);
294 total_scan -= batch_size;
1da177e4
LT
295
296 cond_resched();
297 }
298
acf92b48
DC
299 /*
300 * move the unused scan count back into the shrinker in a
301 * manner that handles concurrent updates. If we exhausted the
302 * scan, there is no need to do an update.
303 */
83aeeada
KK
304 if (total_scan > 0)
305 new_nr = atomic_long_add_return(total_scan,
306 &shrinker->nr_in_batch);
307 else
308 new_nr = atomic_long_read(&shrinker->nr_in_batch);
acf92b48
DC
309
310 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
311 }
312 up_read(&shrinker_rwsem);
f06590bd
MK
313out:
314 cond_resched();
b15e0905 315 return ret;
1da177e4
LT
316}
317
1da177e4
LT
318static inline int is_page_cache_freeable(struct page *page)
319{
ceddc3a5
JW
320 /*
321 * A freeable page cache page is referenced only by the caller
322 * that isolated the page, the page cache radix tree and
323 * optional buffer heads at page->private.
324 */
edcf4748 325 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
326}
327
7d3579e8
KM
328static int may_write_to_queue(struct backing_dev_info *bdi,
329 struct scan_control *sc)
1da177e4 330{
930d9152 331 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
332 return 1;
333 if (!bdi_write_congested(bdi))
334 return 1;
335 if (bdi == current->backing_dev_info)
336 return 1;
337 return 0;
338}
339
340/*
341 * We detected a synchronous write error writing a page out. Probably
342 * -ENOSPC. We need to propagate that into the address_space for a subsequent
343 * fsync(), msync() or close().
344 *
345 * The tricky part is that after writepage we cannot touch the mapping: nothing
346 * prevents it from being freed up. But we have a ref on the page and once
347 * that page is locked, the mapping is pinned.
348 *
349 * We're allowed to run sleeping lock_page() here because we know the caller has
350 * __GFP_FS.
351 */
352static void handle_write_error(struct address_space *mapping,
353 struct page *page, int error)
354{
7eaceacc 355 lock_page(page);
3e9f45bd
GC
356 if (page_mapping(page) == mapping)
357 mapping_set_error(mapping, error);
1da177e4
LT
358 unlock_page(page);
359}
360
04e62a29
CL
361/* possible outcome of pageout() */
362typedef enum {
363 /* failed to write page out, page is locked */
364 PAGE_KEEP,
365 /* move page to the active list, page is locked */
366 PAGE_ACTIVATE,
367 /* page has been sent to the disk successfully, page is unlocked */
368 PAGE_SUCCESS,
369 /* page is clean and locked */
370 PAGE_CLEAN,
371} pageout_t;
372
1da177e4 373/*
1742f19f
AM
374 * pageout is called by shrink_page_list() for each dirty page.
375 * Calls ->writepage().
1da177e4 376 */
c661b078 377static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 378 struct scan_control *sc)
1da177e4
LT
379{
380 /*
381 * If the page is dirty, only perform writeback if that write
382 * will be non-blocking. To prevent this allocation from being
383 * stalled by pagecache activity. But note that there may be
384 * stalls if we need to run get_block(). We could test
385 * PagePrivate for that.
386 *
6aceb53b 387 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
388 * this page's queue, we can perform writeback even if that
389 * will block.
390 *
391 * If the page is swapcache, write it back even if that would
392 * block, for some throttling. This happens by accident, because
393 * swap_backing_dev_info is bust: it doesn't reflect the
394 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
395 */
396 if (!is_page_cache_freeable(page))
397 return PAGE_KEEP;
398 if (!mapping) {
399 /*
400 * Some data journaling orphaned pages can have
401 * page->mapping == NULL while being dirty with clean buffers.
402 */
266cf658 403 if (page_has_private(page)) {
1da177e4
LT
404 if (try_to_free_buffers(page)) {
405 ClearPageDirty(page);
d40cee24 406 printk("%s: orphaned page\n", __func__);
1da177e4
LT
407 return PAGE_CLEAN;
408 }
409 }
410 return PAGE_KEEP;
411 }
412 if (mapping->a_ops->writepage == NULL)
413 return PAGE_ACTIVATE;
0e093d99 414 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
415 return PAGE_KEEP;
416
417 if (clear_page_dirty_for_io(page)) {
418 int res;
419 struct writeback_control wbc = {
420 .sync_mode = WB_SYNC_NONE,
421 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
422 .range_start = 0,
423 .range_end = LLONG_MAX,
1da177e4
LT
424 .for_reclaim = 1,
425 };
426
427 SetPageReclaim(page);
428 res = mapping->a_ops->writepage(page, &wbc);
429 if (res < 0)
430 handle_write_error(mapping, page, res);
994fc28c 431 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
432 ClearPageReclaim(page);
433 return PAGE_ACTIVATE;
434 }
c661b078 435
1da177e4
LT
436 if (!PageWriteback(page)) {
437 /* synchronous write or broken a_ops? */
438 ClearPageReclaim(page);
439 }
23b9da55 440 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 441 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
442 return PAGE_SUCCESS;
443 }
444
445 return PAGE_CLEAN;
446}
447
a649fd92 448/*
e286781d
NP
449 * Same as remove_mapping, but if the page is removed from the mapping, it
450 * gets returned with a refcount of 0.
a649fd92 451 */
e286781d 452static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 453{
28e4d965
NP
454 BUG_ON(!PageLocked(page));
455 BUG_ON(mapping != page_mapping(page));
49d2e9cc 456
19fd6231 457 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 458 /*
0fd0e6b0
NP
459 * The non racy check for a busy page.
460 *
461 * Must be careful with the order of the tests. When someone has
462 * a ref to the page, it may be possible that they dirty it then
463 * drop the reference. So if PageDirty is tested before page_count
464 * here, then the following race may occur:
465 *
466 * get_user_pages(&page);
467 * [user mapping goes away]
468 * write_to(page);
469 * !PageDirty(page) [good]
470 * SetPageDirty(page);
471 * put_page(page);
472 * !page_count(page) [good, discard it]
473 *
474 * [oops, our write_to data is lost]
475 *
476 * Reversing the order of the tests ensures such a situation cannot
477 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478 * load is not satisfied before that of page->_count.
479 *
480 * Note that if SetPageDirty is always performed via set_page_dirty,
481 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 482 */
e286781d 483 if (!page_freeze_refs(page, 2))
49d2e9cc 484 goto cannot_free;
e286781d
NP
485 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486 if (unlikely(PageDirty(page))) {
487 page_unfreeze_refs(page, 2);
49d2e9cc 488 goto cannot_free;
e286781d 489 }
49d2e9cc
CL
490
491 if (PageSwapCache(page)) {
492 swp_entry_t swap = { .val = page_private(page) };
493 __delete_from_swap_cache(page);
19fd6231 494 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 495 swapcache_free(swap, page);
e286781d 496 } else {
6072d13c
LT
497 void (*freepage)(struct page *);
498
499 freepage = mapping->a_ops->freepage;
500
e64a782f 501 __delete_from_page_cache(page);
19fd6231 502 spin_unlock_irq(&mapping->tree_lock);
e767e056 503 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
504
505 if (freepage != NULL)
506 freepage(page);
49d2e9cc
CL
507 }
508
49d2e9cc
CL
509 return 1;
510
511cannot_free:
19fd6231 512 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
513 return 0;
514}
515
e286781d
NP
516/*
517 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
518 * someone else has a ref on the page, abort and return 0. If it was
519 * successfully detached, return 1. Assumes the caller has a single ref on
520 * this page.
521 */
522int remove_mapping(struct address_space *mapping, struct page *page)
523{
524 if (__remove_mapping(mapping, page)) {
525 /*
526 * Unfreezing the refcount with 1 rather than 2 effectively
527 * drops the pagecache ref for us without requiring another
528 * atomic operation.
529 */
530 page_unfreeze_refs(page, 1);
531 return 1;
532 }
533 return 0;
534}
535
894bc310
LS
536/**
537 * putback_lru_page - put previously isolated page onto appropriate LRU list
538 * @page: page to be put back to appropriate lru list
539 *
540 * Add previously isolated @page to appropriate LRU list.
541 * Page may still be unevictable for other reasons.
542 *
543 * lru_lock must not be held, interrupts must be enabled.
544 */
894bc310
LS
545void putback_lru_page(struct page *page)
546{
547 int lru;
548 int active = !!TestClearPageActive(page);
bbfd28ee 549 int was_unevictable = PageUnevictable(page);
894bc310
LS
550
551 VM_BUG_ON(PageLRU(page));
552
553redo:
554 ClearPageUnevictable(page);
555
39b5f29a 556 if (page_evictable(page)) {
894bc310
LS
557 /*
558 * For evictable pages, we can use the cache.
559 * In event of a race, worst case is we end up with an
560 * unevictable page on [in]active list.
561 * We know how to handle that.
562 */
401a8e1c 563 lru = active + page_lru_base_type(page);
894bc310
LS
564 lru_cache_add_lru(page, lru);
565 } else {
566 /*
567 * Put unevictable pages directly on zone's unevictable
568 * list.
569 */
570 lru = LRU_UNEVICTABLE;
571 add_page_to_unevictable_list(page);
6a7b9548 572 /*
21ee9f39
MK
573 * When racing with an mlock or AS_UNEVICTABLE clearing
574 * (page is unlocked) make sure that if the other thread
575 * does not observe our setting of PG_lru and fails
24513264 576 * isolation/check_move_unevictable_pages,
21ee9f39 577 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
578 * the page back to the evictable list.
579 *
21ee9f39 580 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
581 */
582 smp_mb();
894bc310 583 }
894bc310
LS
584
585 /*
586 * page's status can change while we move it among lru. If an evictable
587 * page is on unevictable list, it never be freed. To avoid that,
588 * check after we added it to the list, again.
589 */
39b5f29a 590 if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
894bc310
LS
591 if (!isolate_lru_page(page)) {
592 put_page(page);
593 goto redo;
594 }
595 /* This means someone else dropped this page from LRU
596 * So, it will be freed or putback to LRU again. There is
597 * nothing to do here.
598 */
599 }
600
bbfd28ee
LS
601 if (was_unevictable && lru != LRU_UNEVICTABLE)
602 count_vm_event(UNEVICTABLE_PGRESCUED);
603 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604 count_vm_event(UNEVICTABLE_PGCULLED);
605
894bc310
LS
606 put_page(page); /* drop ref from isolate */
607}
608
dfc8d636
JW
609enum page_references {
610 PAGEREF_RECLAIM,
611 PAGEREF_RECLAIM_CLEAN,
64574746 612 PAGEREF_KEEP,
dfc8d636
JW
613 PAGEREF_ACTIVATE,
614};
615
616static enum page_references page_check_references(struct page *page,
617 struct scan_control *sc)
618{
64574746 619 int referenced_ptes, referenced_page;
dfc8d636 620 unsigned long vm_flags;
dfc8d636 621
c3ac9a8a
JW
622 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623 &vm_flags);
64574746 624 referenced_page = TestClearPageReferenced(page);
dfc8d636 625
dfc8d636
JW
626 /*
627 * Mlock lost the isolation race with us. Let try_to_unmap()
628 * move the page to the unevictable list.
629 */
630 if (vm_flags & VM_LOCKED)
631 return PAGEREF_RECLAIM;
632
64574746 633 if (referenced_ptes) {
e4898273 634 if (PageSwapBacked(page))
64574746
JW
635 return PAGEREF_ACTIVATE;
636 /*
637 * All mapped pages start out with page table
638 * references from the instantiating fault, so we need
639 * to look twice if a mapped file page is used more
640 * than once.
641 *
642 * Mark it and spare it for another trip around the
643 * inactive list. Another page table reference will
644 * lead to its activation.
645 *
646 * Note: the mark is set for activated pages as well
647 * so that recently deactivated but used pages are
648 * quickly recovered.
649 */
650 SetPageReferenced(page);
651
34dbc67a 652 if (referenced_page || referenced_ptes > 1)
64574746
JW
653 return PAGEREF_ACTIVATE;
654
c909e993
KK
655 /*
656 * Activate file-backed executable pages after first usage.
657 */
658 if (vm_flags & VM_EXEC)
659 return PAGEREF_ACTIVATE;
660
64574746
JW
661 return PAGEREF_KEEP;
662 }
dfc8d636
JW
663
664 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 665 if (referenced_page && !PageSwapBacked(page))
64574746
JW
666 return PAGEREF_RECLAIM_CLEAN;
667
668 return PAGEREF_RECLAIM;
dfc8d636
JW
669}
670
1da177e4 671/*
1742f19f 672 * shrink_page_list() returns the number of reclaimed pages
1da177e4 673 */
1742f19f 674static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 675 struct zone *zone,
f84f6e2b 676 struct scan_control *sc,
02c6de8d 677 enum ttu_flags ttu_flags,
92df3a72 678 unsigned long *ret_nr_dirty,
02c6de8d
MK
679 unsigned long *ret_nr_writeback,
680 bool force_reclaim)
1da177e4
LT
681{
682 LIST_HEAD(ret_pages);
abe4c3b5 683 LIST_HEAD(free_pages);
1da177e4 684 int pgactivate = 0;
0e093d99
MG
685 unsigned long nr_dirty = 0;
686 unsigned long nr_congested = 0;
05ff5137 687 unsigned long nr_reclaimed = 0;
92df3a72 688 unsigned long nr_writeback = 0;
1da177e4
LT
689
690 cond_resched();
691
69980e31 692 mem_cgroup_uncharge_start();
1da177e4
LT
693 while (!list_empty(page_list)) {
694 struct address_space *mapping;
695 struct page *page;
696 int may_enter_fs;
02c6de8d 697 enum page_references references = PAGEREF_RECLAIM_CLEAN;
1da177e4
LT
698
699 cond_resched();
700
701 page = lru_to_page(page_list);
702 list_del(&page->lru);
703
529ae9aa 704 if (!trylock_page(page))
1da177e4
LT
705 goto keep;
706
725d704e 707 VM_BUG_ON(PageActive(page));
6a18adb3 708 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
709
710 sc->nr_scanned++;
80e43426 711
39b5f29a 712 if (unlikely(!page_evictable(page)))
b291f000 713 goto cull_mlocked;
894bc310 714
a6dc60f8 715 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
716 goto keep_locked;
717
1da177e4
LT
718 /* Double the slab pressure for mapped and swapcache pages */
719 if (page_mapped(page) || PageSwapCache(page))
720 sc->nr_scanned++;
721
c661b078
AW
722 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
723 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
724
725 if (PageWriteback(page)) {
e62e384e
MH
726 /*
727 * memcg doesn't have any dirty pages throttling so we
728 * could easily OOM just because too many pages are in
c3b94f44 729 * writeback and there is nothing else to reclaim.
e62e384e 730 *
c3b94f44 731 * Check __GFP_IO, certainly because a loop driver
e62e384e
MH
732 * thread might enter reclaim, and deadlock if it waits
733 * on a page for which it is needed to do the write
734 * (loop masks off __GFP_IO|__GFP_FS for this reason);
735 * but more thought would probably show more reasons.
c3b94f44
HD
736 *
737 * Don't require __GFP_FS, since we're not going into
738 * the FS, just waiting on its writeback completion.
739 * Worryingly, ext4 gfs2 and xfs allocate pages with
740 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
741 * testing may_enter_fs here is liable to OOM on them.
e62e384e 742 */
c3b94f44
HD
743 if (global_reclaim(sc) ||
744 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
745 /*
746 * This is slightly racy - end_page_writeback()
747 * might have just cleared PageReclaim, then
748 * setting PageReclaim here end up interpreted
749 * as PageReadahead - but that does not matter
750 * enough to care. What we do want is for this
751 * page to have PageReclaim set next time memcg
752 * reclaim reaches the tests above, so it will
753 * then wait_on_page_writeback() to avoid OOM;
754 * and it's also appropriate in global reclaim.
755 */
756 SetPageReclaim(page);
e62e384e 757 nr_writeback++;
c3b94f44 758 goto keep_locked;
e62e384e 759 }
c3b94f44 760 wait_on_page_writeback(page);
c661b078 761 }
1da177e4 762
02c6de8d
MK
763 if (!force_reclaim)
764 references = page_check_references(page, sc);
765
dfc8d636
JW
766 switch (references) {
767 case PAGEREF_ACTIVATE:
1da177e4 768 goto activate_locked;
64574746
JW
769 case PAGEREF_KEEP:
770 goto keep_locked;
dfc8d636
JW
771 case PAGEREF_RECLAIM:
772 case PAGEREF_RECLAIM_CLEAN:
773 ; /* try to reclaim the page below */
774 }
1da177e4 775
1da177e4
LT
776 /*
777 * Anonymous process memory has backing store?
778 * Try to allocate it some swap space here.
779 */
b291f000 780 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
781 if (!(sc->gfp_mask & __GFP_IO))
782 goto keep_locked;
ac47b003 783 if (!add_to_swap(page))
1da177e4 784 goto activate_locked;
63eb6b93 785 may_enter_fs = 1;
b291f000 786 }
1da177e4
LT
787
788 mapping = page_mapping(page);
1da177e4
LT
789
790 /*
791 * The page is mapped into the page tables of one or more
792 * processes. Try to unmap it here.
793 */
794 if (page_mapped(page) && mapping) {
02c6de8d 795 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
796 case SWAP_FAIL:
797 goto activate_locked;
798 case SWAP_AGAIN:
799 goto keep_locked;
b291f000
NP
800 case SWAP_MLOCK:
801 goto cull_mlocked;
1da177e4
LT
802 case SWAP_SUCCESS:
803 ; /* try to free the page below */
804 }
805 }
806
807 if (PageDirty(page)) {
0e093d99
MG
808 nr_dirty++;
809
ee72886d
MG
810 /*
811 * Only kswapd can writeback filesystem pages to
f84f6e2b
MG
812 * avoid risk of stack overflow but do not writeback
813 * unless under significant pressure.
ee72886d 814 */
f84f6e2b 815 if (page_is_file_cache(page) &&
9e3b2f8c
KK
816 (!current_is_kswapd() ||
817 sc->priority >= DEF_PRIORITY - 2)) {
49ea7eb6
MG
818 /*
819 * Immediately reclaim when written back.
820 * Similar in principal to deactivate_page()
821 * except we already have the page isolated
822 * and know it's dirty
823 */
824 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
825 SetPageReclaim(page);
826
ee72886d
MG
827 goto keep_locked;
828 }
829
dfc8d636 830 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 831 goto keep_locked;
4dd4b920 832 if (!may_enter_fs)
1da177e4 833 goto keep_locked;
52a8363e 834 if (!sc->may_writepage)
1da177e4
LT
835 goto keep_locked;
836
837 /* Page is dirty, try to write it out here */
7d3579e8 838 switch (pageout(page, mapping, sc)) {
1da177e4 839 case PAGE_KEEP:
0e093d99 840 nr_congested++;
1da177e4
LT
841 goto keep_locked;
842 case PAGE_ACTIVATE:
843 goto activate_locked;
844 case PAGE_SUCCESS:
7d3579e8 845 if (PageWriteback(page))
41ac1999 846 goto keep;
7d3579e8 847 if (PageDirty(page))
1da177e4 848 goto keep;
7d3579e8 849
1da177e4
LT
850 /*
851 * A synchronous write - probably a ramdisk. Go
852 * ahead and try to reclaim the page.
853 */
529ae9aa 854 if (!trylock_page(page))
1da177e4
LT
855 goto keep;
856 if (PageDirty(page) || PageWriteback(page))
857 goto keep_locked;
858 mapping = page_mapping(page);
859 case PAGE_CLEAN:
860 ; /* try to free the page below */
861 }
862 }
863
864 /*
865 * If the page has buffers, try to free the buffer mappings
866 * associated with this page. If we succeed we try to free
867 * the page as well.
868 *
869 * We do this even if the page is PageDirty().
870 * try_to_release_page() does not perform I/O, but it is
871 * possible for a page to have PageDirty set, but it is actually
872 * clean (all its buffers are clean). This happens if the
873 * buffers were written out directly, with submit_bh(). ext3
894bc310 874 * will do this, as well as the blockdev mapping.
1da177e4
LT
875 * try_to_release_page() will discover that cleanness and will
876 * drop the buffers and mark the page clean - it can be freed.
877 *
878 * Rarely, pages can have buffers and no ->mapping. These are
879 * the pages which were not successfully invalidated in
880 * truncate_complete_page(). We try to drop those buffers here
881 * and if that worked, and the page is no longer mapped into
882 * process address space (page_count == 1) it can be freed.
883 * Otherwise, leave the page on the LRU so it is swappable.
884 */
266cf658 885 if (page_has_private(page)) {
1da177e4
LT
886 if (!try_to_release_page(page, sc->gfp_mask))
887 goto activate_locked;
e286781d
NP
888 if (!mapping && page_count(page) == 1) {
889 unlock_page(page);
890 if (put_page_testzero(page))
891 goto free_it;
892 else {
893 /*
894 * rare race with speculative reference.
895 * the speculative reference will free
896 * this page shortly, so we may
897 * increment nr_reclaimed here (and
898 * leave it off the LRU).
899 */
900 nr_reclaimed++;
901 continue;
902 }
903 }
1da177e4
LT
904 }
905
e286781d 906 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 907 goto keep_locked;
1da177e4 908
a978d6f5
NP
909 /*
910 * At this point, we have no other references and there is
911 * no way to pick any more up (removed from LRU, removed
912 * from pagecache). Can use non-atomic bitops now (and
913 * we obviously don't have to worry about waking up a process
914 * waiting on the page lock, because there are no references.
915 */
916 __clear_page_locked(page);
e286781d 917free_it:
05ff5137 918 nr_reclaimed++;
abe4c3b5
MG
919
920 /*
921 * Is there need to periodically free_page_list? It would
922 * appear not as the counts should be low
923 */
924 list_add(&page->lru, &free_pages);
1da177e4
LT
925 continue;
926
b291f000 927cull_mlocked:
63d6c5ad
HD
928 if (PageSwapCache(page))
929 try_to_free_swap(page);
b291f000
NP
930 unlock_page(page);
931 putback_lru_page(page);
932 continue;
933
1da177e4 934activate_locked:
68a22394
RR
935 /* Not a candidate for swapping, so reclaim swap space. */
936 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 937 try_to_free_swap(page);
894bc310 938 VM_BUG_ON(PageActive(page));
1da177e4
LT
939 SetPageActive(page);
940 pgactivate++;
941keep_locked:
942 unlock_page(page);
943keep:
944 list_add(&page->lru, &ret_pages);
b291f000 945 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 946 }
abe4c3b5 947
0e093d99
MG
948 /*
949 * Tag a zone as congested if all the dirty pages encountered were
950 * backed by a congested BDI. In this case, reclaimers should just
951 * back off and wait for congestion to clear because further reclaim
952 * will encounter the same problem
953 */
89b5fae5 954 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
6a18adb3 955 zone_set_flag(zone, ZONE_CONGESTED);
0e093d99 956
cc59850e 957 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 958
1da177e4 959 list_splice(&ret_pages, page_list);
f8891e5e 960 count_vm_events(PGACTIVATE, pgactivate);
69980e31 961 mem_cgroup_uncharge_end();
92df3a72
MG
962 *ret_nr_dirty += nr_dirty;
963 *ret_nr_writeback += nr_writeback;
05ff5137 964 return nr_reclaimed;
1da177e4
LT
965}
966
02c6de8d
MK
967unsigned long reclaim_clean_pages_from_list(struct zone *zone,
968 struct list_head *page_list)
969{
970 struct scan_control sc = {
971 .gfp_mask = GFP_KERNEL,
972 .priority = DEF_PRIORITY,
973 .may_unmap = 1,
974 };
975 unsigned long ret, dummy1, dummy2;
976 struct page *page, *next;
977 LIST_HEAD(clean_pages);
978
979 list_for_each_entry_safe(page, next, page_list, lru) {
980 if (page_is_file_cache(page) && !PageDirty(page)) {
981 ClearPageActive(page);
982 list_move(&page->lru, &clean_pages);
983 }
984 }
985
986 ret = shrink_page_list(&clean_pages, zone, &sc,
987 TTU_UNMAP|TTU_IGNORE_ACCESS,
988 &dummy1, &dummy2, true);
989 list_splice(&clean_pages, page_list);
990 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
991 return ret;
992}
993
5ad333eb
AW
994/*
995 * Attempt to remove the specified page from its LRU. Only take this page
996 * if it is of the appropriate PageActive status. Pages which are being
997 * freed elsewhere are also ignored.
998 *
999 * page: page to consider
1000 * mode: one of the LRU isolation modes defined above
1001 *
1002 * returns 0 on success, -ve errno on failure.
1003 */
f3fd4a61 1004int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1005{
1006 int ret = -EINVAL;
1007
1008 /* Only take pages on the LRU. */
1009 if (!PageLRU(page))
1010 return ret;
1011
e46a2879
MK
1012 /* Compaction should not handle unevictable pages but CMA can do so */
1013 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1014 return ret;
1015
5ad333eb 1016 ret = -EBUSY;
08e552c6 1017
c8244935
MG
1018 /*
1019 * To minimise LRU disruption, the caller can indicate that it only
1020 * wants to isolate pages it will be able to operate on without
1021 * blocking - clean pages for the most part.
1022 *
1023 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1024 * is used by reclaim when it is cannot write to backing storage
1025 *
1026 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1027 * that it is possible to migrate without blocking
1028 */
1029 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1030 /* All the caller can do on PageWriteback is block */
1031 if (PageWriteback(page))
1032 return ret;
1033
1034 if (PageDirty(page)) {
1035 struct address_space *mapping;
1036
1037 /* ISOLATE_CLEAN means only clean pages */
1038 if (mode & ISOLATE_CLEAN)
1039 return ret;
1040
1041 /*
1042 * Only pages without mappings or that have a
1043 * ->migratepage callback are possible to migrate
1044 * without blocking
1045 */
1046 mapping = page_mapping(page);
1047 if (mapping && !mapping->a_ops->migratepage)
1048 return ret;
1049 }
1050 }
39deaf85 1051
f80c0673
MK
1052 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1053 return ret;
1054
5ad333eb
AW
1055 if (likely(get_page_unless_zero(page))) {
1056 /*
1057 * Be careful not to clear PageLRU until after we're
1058 * sure the page is not being freed elsewhere -- the
1059 * page release code relies on it.
1060 */
1061 ClearPageLRU(page);
1062 ret = 0;
1063 }
1064
1065 return ret;
1066}
1067
1da177e4
LT
1068/*
1069 * zone->lru_lock is heavily contended. Some of the functions that
1070 * shrink the lists perform better by taking out a batch of pages
1071 * and working on them outside the LRU lock.
1072 *
1073 * For pagecache intensive workloads, this function is the hottest
1074 * spot in the kernel (apart from copy_*_user functions).
1075 *
1076 * Appropriate locks must be held before calling this function.
1077 *
1078 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1079 * @lruvec: The LRU vector to pull pages from.
1da177e4 1080 * @dst: The temp list to put pages on to.
f626012d 1081 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1082 * @sc: The scan_control struct for this reclaim session
5ad333eb 1083 * @mode: One of the LRU isolation modes
3cb99451 1084 * @lru: LRU list id for isolating
1da177e4
LT
1085 *
1086 * returns how many pages were moved onto *@dst.
1087 */
69e05944 1088static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1089 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1090 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1091 isolate_mode_t mode, enum lru_list lru)
1da177e4 1092{
75b00af7 1093 struct list_head *src = &lruvec->lists[lru];
69e05944 1094 unsigned long nr_taken = 0;
c9b02d97 1095 unsigned long scan;
1da177e4 1096
c9b02d97 1097 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1098 struct page *page;
fa9add64 1099 int nr_pages;
5ad333eb 1100
1da177e4
LT
1101 page = lru_to_page(src);
1102 prefetchw_prev_lru_page(page, src, flags);
1103
725d704e 1104 VM_BUG_ON(!PageLRU(page));
8d438f96 1105
f3fd4a61 1106 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1107 case 0:
fa9add64
HD
1108 nr_pages = hpage_nr_pages(page);
1109 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1110 list_move(&page->lru, dst);
fa9add64 1111 nr_taken += nr_pages;
5ad333eb
AW
1112 break;
1113
1114 case -EBUSY:
1115 /* else it is being freed elsewhere */
1116 list_move(&page->lru, src);
1117 continue;
46453a6e 1118
5ad333eb
AW
1119 default:
1120 BUG();
1121 }
1da177e4
LT
1122 }
1123
f626012d 1124 *nr_scanned = scan;
75b00af7
HD
1125 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1126 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1127 return nr_taken;
1128}
1129
62695a84
NP
1130/**
1131 * isolate_lru_page - tries to isolate a page from its LRU list
1132 * @page: page to isolate from its LRU list
1133 *
1134 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1135 * vmstat statistic corresponding to whatever LRU list the page was on.
1136 *
1137 * Returns 0 if the page was removed from an LRU list.
1138 * Returns -EBUSY if the page was not on an LRU list.
1139 *
1140 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1141 * the active list, it will have PageActive set. If it was found on
1142 * the unevictable list, it will have the PageUnevictable bit set. That flag
1143 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1144 *
1145 * The vmstat statistic corresponding to the list on which the page was
1146 * found will be decremented.
1147 *
1148 * Restrictions:
1149 * (1) Must be called with an elevated refcount on the page. This is a
1150 * fundamentnal difference from isolate_lru_pages (which is called
1151 * without a stable reference).
1152 * (2) the lru_lock must not be held.
1153 * (3) interrupts must be enabled.
1154 */
1155int isolate_lru_page(struct page *page)
1156{
1157 int ret = -EBUSY;
1158
0c917313
KK
1159 VM_BUG_ON(!page_count(page));
1160
62695a84
NP
1161 if (PageLRU(page)) {
1162 struct zone *zone = page_zone(page);
fa9add64 1163 struct lruvec *lruvec;
62695a84
NP
1164
1165 spin_lock_irq(&zone->lru_lock);
fa9add64 1166 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1167 if (PageLRU(page)) {
894bc310 1168 int lru = page_lru(page);
0c917313 1169 get_page(page);
62695a84 1170 ClearPageLRU(page);
fa9add64
HD
1171 del_page_from_lru_list(page, lruvec, lru);
1172 ret = 0;
62695a84
NP
1173 }
1174 spin_unlock_irq(&zone->lru_lock);
1175 }
1176 return ret;
1177}
1178
35cd7815 1179/*
d37dd5dc
FW
1180 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1181 * then get resheduled. When there are massive number of tasks doing page
1182 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1183 * the LRU list will go small and be scanned faster than necessary, leading to
1184 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1185 */
1186static int too_many_isolated(struct zone *zone, int file,
1187 struct scan_control *sc)
1188{
1189 unsigned long inactive, isolated;
1190
1191 if (current_is_kswapd())
1192 return 0;
1193
89b5fae5 1194 if (!global_reclaim(sc))
35cd7815
RR
1195 return 0;
1196
1197 if (file) {
1198 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1199 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1200 } else {
1201 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1202 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1203 }
1204
3cf23841
FW
1205 /*
1206 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1207 * won't get blocked by normal direct-reclaimers, forming a circular
1208 * deadlock.
1209 */
1210 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1211 inactive >>= 3;
1212
35cd7815
RR
1213 return isolated > inactive;
1214}
1215
66635629 1216static noinline_for_stack void
75b00af7 1217putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1218{
27ac81d8
KK
1219 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1220 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1221 LIST_HEAD(pages_to_free);
66635629 1222
66635629
MG
1223 /*
1224 * Put back any unfreeable pages.
1225 */
66635629 1226 while (!list_empty(page_list)) {
3f79768f 1227 struct page *page = lru_to_page(page_list);
66635629 1228 int lru;
3f79768f 1229
66635629
MG
1230 VM_BUG_ON(PageLRU(page));
1231 list_del(&page->lru);
39b5f29a 1232 if (unlikely(!page_evictable(page))) {
66635629
MG
1233 spin_unlock_irq(&zone->lru_lock);
1234 putback_lru_page(page);
1235 spin_lock_irq(&zone->lru_lock);
1236 continue;
1237 }
fa9add64
HD
1238
1239 lruvec = mem_cgroup_page_lruvec(page, zone);
1240
7a608572 1241 SetPageLRU(page);
66635629 1242 lru = page_lru(page);
fa9add64
HD
1243 add_page_to_lru_list(page, lruvec, lru);
1244
66635629
MG
1245 if (is_active_lru(lru)) {
1246 int file = is_file_lru(lru);
9992af10
RR
1247 int numpages = hpage_nr_pages(page);
1248 reclaim_stat->recent_rotated[file] += numpages;
66635629 1249 }
2bcf8879
HD
1250 if (put_page_testzero(page)) {
1251 __ClearPageLRU(page);
1252 __ClearPageActive(page);
fa9add64 1253 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1254
1255 if (unlikely(PageCompound(page))) {
1256 spin_unlock_irq(&zone->lru_lock);
1257 (*get_compound_page_dtor(page))(page);
1258 spin_lock_irq(&zone->lru_lock);
1259 } else
1260 list_add(&page->lru, &pages_to_free);
66635629
MG
1261 }
1262 }
66635629 1263
3f79768f
HD
1264 /*
1265 * To save our caller's stack, now use input list for pages to free.
1266 */
1267 list_splice(&pages_to_free, page_list);
66635629
MG
1268}
1269
1da177e4 1270/*
1742f19f
AM
1271 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1272 * of reclaimed pages
1da177e4 1273 */
66635629 1274static noinline_for_stack unsigned long
1a93be0e 1275shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1276 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1277{
1278 LIST_HEAD(page_list);
e247dbce 1279 unsigned long nr_scanned;
05ff5137 1280 unsigned long nr_reclaimed = 0;
e247dbce 1281 unsigned long nr_taken;
92df3a72
MG
1282 unsigned long nr_dirty = 0;
1283 unsigned long nr_writeback = 0;
f3fd4a61 1284 isolate_mode_t isolate_mode = 0;
3cb99451 1285 int file = is_file_lru(lru);
1a93be0e
KK
1286 struct zone *zone = lruvec_zone(lruvec);
1287 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1288
35cd7815 1289 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1290 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1291
1292 /* We are about to die and free our memory. Return now. */
1293 if (fatal_signal_pending(current))
1294 return SWAP_CLUSTER_MAX;
1295 }
1296
1da177e4 1297 lru_add_drain();
f80c0673
MK
1298
1299 if (!sc->may_unmap)
61317289 1300 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1301 if (!sc->may_writepage)
61317289 1302 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1303
1da177e4 1304 spin_lock_irq(&zone->lru_lock);
b35ea17b 1305
5dc35979
KK
1306 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1307 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1308
1309 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1310 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1311
89b5fae5 1312 if (global_reclaim(sc)) {
e247dbce
KM
1313 zone->pages_scanned += nr_scanned;
1314 if (current_is_kswapd())
75b00af7 1315 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1316 else
75b00af7 1317 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1318 }
d563c050 1319 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1320
d563c050 1321 if (nr_taken == 0)
66635629 1322 return 0;
5ad333eb 1323
02c6de8d
MK
1324 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1325 &nr_dirty, &nr_writeback, false);
c661b078 1326
3f79768f
HD
1327 spin_lock_irq(&zone->lru_lock);
1328
95d918fc 1329 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1330
904249aa
YH
1331 if (global_reclaim(sc)) {
1332 if (current_is_kswapd())
1333 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1334 nr_reclaimed);
1335 else
1336 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1337 nr_reclaimed);
1338 }
a74609fa 1339
27ac81d8 1340 putback_inactive_pages(lruvec, &page_list);
3f79768f 1341
95d918fc 1342 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1343
1344 spin_unlock_irq(&zone->lru_lock);
1345
1346 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1347
92df3a72
MG
1348 /*
1349 * If reclaim is isolating dirty pages under writeback, it implies
1350 * that the long-lived page allocation rate is exceeding the page
1351 * laundering rate. Either the global limits are not being effective
1352 * at throttling processes due to the page distribution throughout
1353 * zones or there is heavy usage of a slow backing device. The
1354 * only option is to throttle from reclaim context which is not ideal
1355 * as there is no guarantee the dirtying process is throttled in the
1356 * same way balance_dirty_pages() manages.
1357 *
1358 * This scales the number of dirty pages that must be under writeback
1359 * before throttling depending on priority. It is a simple backoff
1360 * function that has the most effect in the range DEF_PRIORITY to
1361 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1362 * in trouble and reclaim is considered to be in trouble.
1363 *
1364 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1365 * DEF_PRIORITY-1 50% must be PageWriteback
1366 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1367 * ...
1368 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1369 * isolated page is PageWriteback
1370 */
9e3b2f8c
KK
1371 if (nr_writeback && nr_writeback >=
1372 (nr_taken >> (DEF_PRIORITY - sc->priority)))
92df3a72
MG
1373 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1374
e11da5b4
MG
1375 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1376 zone_idx(zone),
1377 nr_scanned, nr_reclaimed,
9e3b2f8c 1378 sc->priority,
23b9da55 1379 trace_shrink_flags(file));
05ff5137 1380 return nr_reclaimed;
1da177e4
LT
1381}
1382
1383/*
1384 * This moves pages from the active list to the inactive list.
1385 *
1386 * We move them the other way if the page is referenced by one or more
1387 * processes, from rmap.
1388 *
1389 * If the pages are mostly unmapped, the processing is fast and it is
1390 * appropriate to hold zone->lru_lock across the whole operation. But if
1391 * the pages are mapped, the processing is slow (page_referenced()) so we
1392 * should drop zone->lru_lock around each page. It's impossible to balance
1393 * this, so instead we remove the pages from the LRU while processing them.
1394 * It is safe to rely on PG_active against the non-LRU pages in here because
1395 * nobody will play with that bit on a non-LRU page.
1396 *
1397 * The downside is that we have to touch page->_count against each page.
1398 * But we had to alter page->flags anyway.
1399 */
1cfb419b 1400
fa9add64 1401static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1402 struct list_head *list,
2bcf8879 1403 struct list_head *pages_to_free,
3eb4140f
WF
1404 enum lru_list lru)
1405{
fa9add64 1406 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1407 unsigned long pgmoved = 0;
3eb4140f 1408 struct page *page;
fa9add64 1409 int nr_pages;
3eb4140f 1410
3eb4140f
WF
1411 while (!list_empty(list)) {
1412 page = lru_to_page(list);
fa9add64 1413 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f
WF
1414
1415 VM_BUG_ON(PageLRU(page));
1416 SetPageLRU(page);
1417
fa9add64
HD
1418 nr_pages = hpage_nr_pages(page);
1419 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1420 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1421 pgmoved += nr_pages;
3eb4140f 1422
2bcf8879
HD
1423 if (put_page_testzero(page)) {
1424 __ClearPageLRU(page);
1425 __ClearPageActive(page);
fa9add64 1426 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1427
1428 if (unlikely(PageCompound(page))) {
1429 spin_unlock_irq(&zone->lru_lock);
1430 (*get_compound_page_dtor(page))(page);
1431 spin_lock_irq(&zone->lru_lock);
1432 } else
1433 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1434 }
1435 }
1436 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1437 if (!is_active_lru(lru))
1438 __count_vm_events(PGDEACTIVATE, pgmoved);
1439}
1cfb419b 1440
f626012d 1441static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1442 struct lruvec *lruvec,
f16015fb 1443 struct scan_control *sc,
9e3b2f8c 1444 enum lru_list lru)
1da177e4 1445{
44c241f1 1446 unsigned long nr_taken;
f626012d 1447 unsigned long nr_scanned;
6fe6b7e3 1448 unsigned long vm_flags;
1da177e4 1449 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1450 LIST_HEAD(l_active);
b69408e8 1451 LIST_HEAD(l_inactive);
1da177e4 1452 struct page *page;
1a93be0e 1453 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1454 unsigned long nr_rotated = 0;
f3fd4a61 1455 isolate_mode_t isolate_mode = 0;
3cb99451 1456 int file = is_file_lru(lru);
1a93be0e 1457 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1458
1459 lru_add_drain();
f80c0673
MK
1460
1461 if (!sc->may_unmap)
61317289 1462 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1463 if (!sc->may_writepage)
61317289 1464 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1465
1da177e4 1466 spin_lock_irq(&zone->lru_lock);
925b7673 1467
5dc35979
KK
1468 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1469 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1470 if (global_reclaim(sc))
f626012d 1471 zone->pages_scanned += nr_scanned;
89b5fae5 1472
b7c46d15 1473 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1474
f626012d 1475 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1476 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1477 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1478 spin_unlock_irq(&zone->lru_lock);
1479
1da177e4
LT
1480 while (!list_empty(&l_hold)) {
1481 cond_resched();
1482 page = lru_to_page(&l_hold);
1483 list_del(&page->lru);
7e9cd484 1484
39b5f29a 1485 if (unlikely(!page_evictable(page))) {
894bc310
LS
1486 putback_lru_page(page);
1487 continue;
1488 }
1489
cc715d99
MG
1490 if (unlikely(buffer_heads_over_limit)) {
1491 if (page_has_private(page) && trylock_page(page)) {
1492 if (page_has_private(page))
1493 try_to_release_page(page, 0);
1494 unlock_page(page);
1495 }
1496 }
1497
c3ac9a8a
JW
1498 if (page_referenced(page, 0, sc->target_mem_cgroup,
1499 &vm_flags)) {
9992af10 1500 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1501 /*
1502 * Identify referenced, file-backed active pages and
1503 * give them one more trip around the active list. So
1504 * that executable code get better chances to stay in
1505 * memory under moderate memory pressure. Anon pages
1506 * are not likely to be evicted by use-once streaming
1507 * IO, plus JVM can create lots of anon VM_EXEC pages,
1508 * so we ignore them here.
1509 */
41e20983 1510 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1511 list_add(&page->lru, &l_active);
1512 continue;
1513 }
1514 }
7e9cd484 1515
5205e56e 1516 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1517 list_add(&page->lru, &l_inactive);
1518 }
1519
b555749a 1520 /*
8cab4754 1521 * Move pages back to the lru list.
b555749a 1522 */
2a1dc509 1523 spin_lock_irq(&zone->lru_lock);
556adecb 1524 /*
8cab4754
WF
1525 * Count referenced pages from currently used mappings as rotated,
1526 * even though only some of them are actually re-activated. This
1527 * helps balance scan pressure between file and anonymous pages in
1528 * get_scan_ratio.
7e9cd484 1529 */
b7c46d15 1530 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1531
fa9add64
HD
1532 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1533 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1534 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1535 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1536
1537 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1538}
1539
74e3f3c3 1540#ifdef CONFIG_SWAP
14797e23 1541static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1542{
1543 unsigned long active, inactive;
1544
1545 active = zone_page_state(zone, NR_ACTIVE_ANON);
1546 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1547
1548 if (inactive * zone->inactive_ratio < active)
1549 return 1;
1550
1551 return 0;
1552}
1553
14797e23
KM
1554/**
1555 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1556 * @lruvec: LRU vector to check
14797e23
KM
1557 *
1558 * Returns true if the zone does not have enough inactive anon pages,
1559 * meaning some active anon pages need to be deactivated.
1560 */
c56d5c7d 1561static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1562{
74e3f3c3
MK
1563 /*
1564 * If we don't have swap space, anonymous page deactivation
1565 * is pointless.
1566 */
1567 if (!total_swap_pages)
1568 return 0;
1569
c3c787e8 1570 if (!mem_cgroup_disabled())
c56d5c7d 1571 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1572
c56d5c7d 1573 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1574}
74e3f3c3 1575#else
c56d5c7d 1576static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1577{
1578 return 0;
1579}
1580#endif
14797e23 1581
56e49d21
RR
1582static int inactive_file_is_low_global(struct zone *zone)
1583{
1584 unsigned long active, inactive;
1585
1586 active = zone_page_state(zone, NR_ACTIVE_FILE);
1587 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1588
1589 return (active > inactive);
1590}
1591
1592/**
1593 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1594 * @lruvec: LRU vector to check
56e49d21
RR
1595 *
1596 * When the system is doing streaming IO, memory pressure here
1597 * ensures that active file pages get deactivated, until more
1598 * than half of the file pages are on the inactive list.
1599 *
1600 * Once we get to that situation, protect the system's working
1601 * set from being evicted by disabling active file page aging.
1602 *
1603 * This uses a different ratio than the anonymous pages, because
1604 * the page cache uses a use-once replacement algorithm.
1605 */
c56d5c7d 1606static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1607{
c3c787e8 1608 if (!mem_cgroup_disabled())
c56d5c7d 1609 return mem_cgroup_inactive_file_is_low(lruvec);
56e49d21 1610
c56d5c7d 1611 return inactive_file_is_low_global(lruvec_zone(lruvec));
56e49d21
RR
1612}
1613
75b00af7 1614static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1615{
75b00af7 1616 if (is_file_lru(lru))
c56d5c7d 1617 return inactive_file_is_low(lruvec);
b39415b2 1618 else
c56d5c7d 1619 return inactive_anon_is_low(lruvec);
b39415b2
RR
1620}
1621
4f98a2fe 1622static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1623 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1624{
b39415b2 1625 if (is_active_lru(lru)) {
75b00af7 1626 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1627 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1628 return 0;
1629 }
1630
1a93be0e 1631 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1632}
1633
3d58ab5c 1634static int vmscan_swappiness(struct scan_control *sc)
1f4c025b 1635{
89b5fae5 1636 if (global_reclaim(sc))
1f4c025b 1637 return vm_swappiness;
3d58ab5c 1638 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1f4c025b
KH
1639}
1640
9a265114
JW
1641enum scan_balance {
1642 SCAN_EQUAL,
1643 SCAN_FRACT,
1644 SCAN_ANON,
1645 SCAN_FILE,
1646};
1647
4f98a2fe
RR
1648/*
1649 * Determine how aggressively the anon and file LRU lists should be
1650 * scanned. The relative value of each set of LRU lists is determined
1651 * by looking at the fraction of the pages scanned we did rotate back
1652 * onto the active list instead of evict.
1653 *
be7bd59d
WL
1654 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1655 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1656 */
90126375 1657static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
9e3b2f8c 1658 unsigned long *nr)
4f98a2fe 1659{
9a265114
JW
1660 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1661 u64 fraction[2];
1662 u64 denominator = 0; /* gcc */
1663 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1664 unsigned long anon_prio, file_prio;
9a265114
JW
1665 enum scan_balance scan_balance;
1666 unsigned long anon, file, free;
1667 bool force_scan = false;
4f98a2fe 1668 unsigned long ap, fp;
4111304d 1669 enum lru_list lru;
246e87a9 1670
f11c0ca5
JW
1671 /*
1672 * If the zone or memcg is small, nr[l] can be 0. This
1673 * results in no scanning on this priority and a potential
1674 * priority drop. Global direct reclaim can go to the next
1675 * zone and tends to have no problems. Global kswapd is for
1676 * zone balancing and it needs to scan a minimum amount. When
1677 * reclaiming for a memcg, a priority drop can cause high
1678 * latencies, so it's better to scan a minimum amount there as
1679 * well.
1680 */
90126375 1681 if (current_is_kswapd() && zone->all_unreclaimable)
a4d3e9e7 1682 force_scan = true;
89b5fae5 1683 if (!global_reclaim(sc))
a4d3e9e7 1684 force_scan = true;
76a33fc3
SL
1685
1686 /* If we have no swap space, do not bother scanning anon pages. */
1687 if (!sc->may_swap || (nr_swap_pages <= 0)) {
9a265114 1688 scan_balance = SCAN_FILE;
76a33fc3
SL
1689 goto out;
1690 }
4f98a2fe 1691
10316b31
JW
1692 /*
1693 * Global reclaim will swap to prevent OOM even with no
1694 * swappiness, but memcg users want to use this knob to
1695 * disable swapping for individual groups completely when
1696 * using the memory controller's swap limit feature would be
1697 * too expensive.
1698 */
1699 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
9a265114 1700 scan_balance = SCAN_FILE;
10316b31
JW
1701 goto out;
1702 }
1703
1704 /*
1705 * Do not apply any pressure balancing cleverness when the
1706 * system is close to OOM, scan both anon and file equally
1707 * (unless the swappiness setting disagrees with swapping).
1708 */
1709 if (!sc->priority && vmscan_swappiness(sc)) {
9a265114 1710 scan_balance = SCAN_EQUAL;
10316b31
JW
1711 goto out;
1712 }
1713
4d7dcca2
HD
1714 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1715 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1716 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1717 get_lru_size(lruvec, LRU_INACTIVE_FILE);
a4d3e9e7 1718
11d16c25
JW
1719 /*
1720 * If it's foreseeable that reclaiming the file cache won't be
1721 * enough to get the zone back into a desirable shape, we have
1722 * to swap. Better start now and leave the - probably heavily
1723 * thrashing - remaining file pages alone.
1724 */
89b5fae5 1725 if (global_reclaim(sc)) {
11d16c25 1726 free = zone_page_state(zone, NR_FREE_PAGES);
90126375 1727 if (unlikely(file + free <= high_wmark_pages(zone))) {
9a265114 1728 scan_balance = SCAN_ANON;
76a33fc3 1729 goto out;
eeee9a8c 1730 }
4f98a2fe
RR
1731 }
1732
7c5bd705
JW
1733 /*
1734 * There is enough inactive page cache, do not reclaim
1735 * anything from the anonymous working set right now.
1736 */
1737 if (!inactive_file_is_low(lruvec)) {
9a265114 1738 scan_balance = SCAN_FILE;
7c5bd705
JW
1739 goto out;
1740 }
1741
9a265114
JW
1742 scan_balance = SCAN_FRACT;
1743
58c37f6e
KM
1744 /*
1745 * With swappiness at 100, anonymous and file have the same priority.
1746 * This scanning priority is essentially the inverse of IO cost.
1747 */
3d58ab5c 1748 anon_prio = vmscan_swappiness(sc);
75b00af7 1749 file_prio = 200 - anon_prio;
58c37f6e 1750
4f98a2fe
RR
1751 /*
1752 * OK, so we have swap space and a fair amount of page cache
1753 * pages. We use the recently rotated / recently scanned
1754 * ratios to determine how valuable each cache is.
1755 *
1756 * Because workloads change over time (and to avoid overflow)
1757 * we keep these statistics as a floating average, which ends
1758 * up weighing recent references more than old ones.
1759 *
1760 * anon in [0], file in [1]
1761 */
90126375 1762 spin_lock_irq(&zone->lru_lock);
6e901571 1763 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1764 reclaim_stat->recent_scanned[0] /= 2;
1765 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1766 }
1767
6e901571 1768 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1769 reclaim_stat->recent_scanned[1] /= 2;
1770 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1771 }
1772
4f98a2fe 1773 /*
00d8089c
RR
1774 * The amount of pressure on anon vs file pages is inversely
1775 * proportional to the fraction of recently scanned pages on
1776 * each list that were recently referenced and in active use.
4f98a2fe 1777 */
fe35004f 1778 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1779 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1780
fe35004f 1781 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1782 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 1783 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1784
76a33fc3
SL
1785 fraction[0] = ap;
1786 fraction[1] = fp;
1787 denominator = ap + fp + 1;
1788out:
4111304d
HD
1789 for_each_evictable_lru(lru) {
1790 int file = is_file_lru(lru);
d778df51 1791 unsigned long size;
76a33fc3 1792 unsigned long scan;
6e08a369 1793
d778df51 1794 size = get_lru_size(lruvec, lru);
10316b31 1795 scan = size >> sc->priority;
9a265114 1796
10316b31
JW
1797 if (!scan && force_scan)
1798 scan = min(size, SWAP_CLUSTER_MAX);
9a265114
JW
1799
1800 switch (scan_balance) {
1801 case SCAN_EQUAL:
1802 /* Scan lists relative to size */
1803 break;
1804 case SCAN_FRACT:
1805 /*
1806 * Scan types proportional to swappiness and
1807 * their relative recent reclaim efficiency.
1808 */
1809 scan = div64_u64(scan * fraction[file], denominator);
1810 break;
1811 case SCAN_FILE:
1812 case SCAN_ANON:
1813 /* Scan one type exclusively */
1814 if ((scan_balance == SCAN_FILE) != file)
1815 scan = 0;
1816 break;
1817 default:
1818 /* Look ma, no brain */
1819 BUG();
1820 }
4111304d 1821 nr[lru] = scan;
76a33fc3 1822 }
6e08a369 1823}
4f98a2fe 1824
23b9da55 1825/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 1826static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 1827{
d84da3f9 1828 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 1829 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 1830 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
1831 return true;
1832
1833 return false;
1834}
1835
3e7d3449 1836/*
23b9da55
MG
1837 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1838 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1839 * true if more pages should be reclaimed such that when the page allocator
1840 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1841 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 1842 */
90bdcfaf 1843static inline bool should_continue_reclaim(struct lruvec *lruvec,
3e7d3449
MG
1844 unsigned long nr_reclaimed,
1845 unsigned long nr_scanned,
1846 struct scan_control *sc)
1847{
1848 unsigned long pages_for_compaction;
1849 unsigned long inactive_lru_pages;
1850
1851 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 1852 if (!in_reclaim_compaction(sc))
3e7d3449
MG
1853 return false;
1854
2876592f
MG
1855 /* Consider stopping depending on scan and reclaim activity */
1856 if (sc->gfp_mask & __GFP_REPEAT) {
1857 /*
1858 * For __GFP_REPEAT allocations, stop reclaiming if the
1859 * full LRU list has been scanned and we are still failing
1860 * to reclaim pages. This full LRU scan is potentially
1861 * expensive but a __GFP_REPEAT caller really wants to succeed
1862 */
1863 if (!nr_reclaimed && !nr_scanned)
1864 return false;
1865 } else {
1866 /*
1867 * For non-__GFP_REPEAT allocations which can presumably
1868 * fail without consequence, stop if we failed to reclaim
1869 * any pages from the last SWAP_CLUSTER_MAX number of
1870 * pages that were scanned. This will return to the
1871 * caller faster at the risk reclaim/compaction and
1872 * the resulting allocation attempt fails
1873 */
1874 if (!nr_reclaimed)
1875 return false;
1876 }
3e7d3449
MG
1877
1878 /*
1879 * If we have not reclaimed enough pages for compaction and the
1880 * inactive lists are large enough, continue reclaiming
1881 */
1882 pages_for_compaction = (2UL << sc->order);
4d7dcca2 1883 inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
86cfd3a4 1884 if (nr_swap_pages > 0)
4d7dcca2 1885 inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
3e7d3449
MG
1886 if (sc->nr_reclaimed < pages_for_compaction &&
1887 inactive_lru_pages > pages_for_compaction)
1888 return true;
1889
1890 /* If compaction would go ahead or the allocation would succeed, stop */
90bdcfaf 1891 switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
3e7d3449
MG
1892 case COMPACT_PARTIAL:
1893 case COMPACT_CONTINUE:
1894 return false;
1895 default:
1896 return true;
1897 }
1898}
1899
1da177e4
LT
1900/*
1901 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1902 */
f9be23d6 1903static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1da177e4 1904{
b69408e8 1905 unsigned long nr[NR_LRU_LISTS];
8695949a 1906 unsigned long nr_to_scan;
4111304d 1907 enum lru_list lru;
f0fdc5e8 1908 unsigned long nr_reclaimed, nr_scanned;
22fba335 1909 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
3da367c3 1910 struct blk_plug plug;
e0f79b8f 1911
3e7d3449
MG
1912restart:
1913 nr_reclaimed = 0;
f0fdc5e8 1914 nr_scanned = sc->nr_scanned;
90126375 1915 get_scan_count(lruvec, sc, nr);
1da177e4 1916
3da367c3 1917 blk_start_plug(&plug);
556adecb
RR
1918 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1919 nr[LRU_INACTIVE_FILE]) {
4111304d
HD
1920 for_each_evictable_lru(lru) {
1921 if (nr[lru]) {
ece74b2e 1922 nr_to_scan = min_t(unsigned long,
4111304d
HD
1923 nr[lru], SWAP_CLUSTER_MAX);
1924 nr[lru] -= nr_to_scan;
1da177e4 1925
4111304d 1926 nr_reclaimed += shrink_list(lru, nr_to_scan,
1a93be0e 1927 lruvec, sc);
b69408e8 1928 }
1da177e4 1929 }
a79311c1
RR
1930 /*
1931 * On large memory systems, scan >> priority can become
1932 * really large. This is fine for the starting priority;
1933 * we want to put equal scanning pressure on each zone.
1934 * However, if the VM has a harder time of freeing pages,
1935 * with multiple processes reclaiming pages, the total
1936 * freeing target can get unreasonably large.
1937 */
9e3b2f8c
KK
1938 if (nr_reclaimed >= nr_to_reclaim &&
1939 sc->priority < DEF_PRIORITY)
a79311c1 1940 break;
1da177e4 1941 }
3da367c3 1942 blk_finish_plug(&plug);
3e7d3449 1943 sc->nr_reclaimed += nr_reclaimed;
01dbe5c9 1944
556adecb
RR
1945 /*
1946 * Even if we did not try to evict anon pages at all, we want to
1947 * rebalance the anon lru active/inactive ratio.
1948 */
c56d5c7d 1949 if (inactive_anon_is_low(lruvec))
1a93be0e 1950 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 1951 sc, LRU_ACTIVE_ANON);
556adecb 1952
3e7d3449 1953 /* reclaim/compaction might need reclaim to continue */
90bdcfaf 1954 if (should_continue_reclaim(lruvec, nr_reclaimed,
9e3b2f8c 1955 sc->nr_scanned - nr_scanned, sc))
3e7d3449
MG
1956 goto restart;
1957
232ea4d6 1958 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1959}
1960
9e3b2f8c 1961static void shrink_zone(struct zone *zone, struct scan_control *sc)
f16015fb 1962{
5660048c
JW
1963 struct mem_cgroup *root = sc->target_mem_cgroup;
1964 struct mem_cgroup_reclaim_cookie reclaim = {
f16015fb 1965 .zone = zone,
9e3b2f8c 1966 .priority = sc->priority,
f16015fb 1967 };
5660048c
JW
1968 struct mem_cgroup *memcg;
1969
5660048c
JW
1970 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1971 do {
f9be23d6
KK
1972 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
1973
1974 shrink_lruvec(lruvec, sc);
f16015fb 1975
5660048c
JW
1976 /*
1977 * Limit reclaim has historically picked one memcg and
1978 * scanned it with decreasing priority levels until
1979 * nr_to_reclaim had been reclaimed. This priority
1980 * cycle is thus over after a single memcg.
b95a2f2d
JW
1981 *
1982 * Direct reclaim and kswapd, on the other hand, have
1983 * to scan all memory cgroups to fulfill the overall
1984 * scan target for the zone.
5660048c
JW
1985 */
1986 if (!global_reclaim(sc)) {
1987 mem_cgroup_iter_break(root, memcg);
1988 break;
1989 }
1990 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1991 } while (memcg);
f16015fb
JW
1992}
1993
fe4b1b24
MG
1994/* Returns true if compaction should go ahead for a high-order request */
1995static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1996{
1997 unsigned long balance_gap, watermark;
1998 bool watermark_ok;
1999
2000 /* Do not consider compaction for orders reclaim is meant to satisfy */
2001 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2002 return false;
2003
2004 /*
2005 * Compaction takes time to run and there are potentially other
2006 * callers using the pages just freed. Continue reclaiming until
2007 * there is a buffer of free pages available to give compaction
2008 * a reasonable chance of completing and allocating the page
2009 */
2010 balance_gap = min(low_wmark_pages(zone),
2011 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2012 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2013 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2014 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2015
2016 /*
2017 * If compaction is deferred, reclaim up to a point where
2018 * compaction will have a chance of success when re-enabled
2019 */
aff62249 2020 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
2021 return watermark_ok;
2022
2023 /* If compaction is not ready to start, keep reclaiming */
2024 if (!compaction_suitable(zone, sc->order))
2025 return false;
2026
2027 return watermark_ok;
2028}
2029
1da177e4
LT
2030/*
2031 * This is the direct reclaim path, for page-allocating processes. We only
2032 * try to reclaim pages from zones which will satisfy the caller's allocation
2033 * request.
2034 *
41858966
MG
2035 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2036 * Because:
1da177e4
LT
2037 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2038 * allocation or
41858966
MG
2039 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2040 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2041 * zone defense algorithm.
1da177e4 2042 *
1da177e4
LT
2043 * If a zone is deemed to be full of pinned pages then just give it a light
2044 * scan then give up on it.
e0c23279
MG
2045 *
2046 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 2047 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
2048 * the caller that it should consider retrying the allocation instead of
2049 * further reclaim.
1da177e4 2050 */
9e3b2f8c 2051static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2052{
dd1a239f 2053 struct zoneref *z;
54a6eb5c 2054 struct zone *zone;
d149e3b2
YH
2055 unsigned long nr_soft_reclaimed;
2056 unsigned long nr_soft_scanned;
0cee34fd 2057 bool aborted_reclaim = false;
1cfb419b 2058
cc715d99
MG
2059 /*
2060 * If the number of buffer_heads in the machine exceeds the maximum
2061 * allowed level, force direct reclaim to scan the highmem zone as
2062 * highmem pages could be pinning lowmem pages storing buffer_heads
2063 */
2064 if (buffer_heads_over_limit)
2065 sc->gfp_mask |= __GFP_HIGHMEM;
2066
d4debc66
MG
2067 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2068 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2069 if (!populated_zone(zone))
1da177e4 2070 continue;
1cfb419b
KH
2071 /*
2072 * Take care memory controller reclaiming has small influence
2073 * to global LRU.
2074 */
89b5fae5 2075 if (global_reclaim(sc)) {
1cfb419b
KH
2076 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2077 continue;
9e3b2f8c
KK
2078 if (zone->all_unreclaimable &&
2079 sc->priority != DEF_PRIORITY)
1cfb419b 2080 continue; /* Let kswapd poll it */
d84da3f9 2081 if (IS_ENABLED(CONFIG_COMPACTION)) {
e0887c19 2082 /*
e0c23279
MG
2083 * If we already have plenty of memory free for
2084 * compaction in this zone, don't free any more.
2085 * Even though compaction is invoked for any
2086 * non-zero order, only frequent costly order
2087 * reclamation is disruptive enough to become a
c7cfa37b
CA
2088 * noticeable problem, like transparent huge
2089 * page allocations.
e0887c19 2090 */
fe4b1b24 2091 if (compaction_ready(zone, sc)) {
0cee34fd 2092 aborted_reclaim = true;
e0887c19 2093 continue;
e0c23279 2094 }
e0887c19 2095 }
ac34a1a3
KH
2096 /*
2097 * This steals pages from memory cgroups over softlimit
2098 * and returns the number of reclaimed pages and
2099 * scanned pages. This works for global memory pressure
2100 * and balancing, not for a memcg's limit.
2101 */
2102 nr_soft_scanned = 0;
2103 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2104 sc->order, sc->gfp_mask,
2105 &nr_soft_scanned);
2106 sc->nr_reclaimed += nr_soft_reclaimed;
2107 sc->nr_scanned += nr_soft_scanned;
2108 /* need some check for avoid more shrink_zone() */
1cfb419b 2109 }
408d8544 2110
9e3b2f8c 2111 shrink_zone(zone, sc);
1da177e4 2112 }
e0c23279 2113
0cee34fd 2114 return aborted_reclaim;
d1908362
MK
2115}
2116
2117static bool zone_reclaimable(struct zone *zone)
2118{
2119 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2120}
2121
929bea7c 2122/* All zones in zonelist are unreclaimable? */
d1908362
MK
2123static bool all_unreclaimable(struct zonelist *zonelist,
2124 struct scan_control *sc)
2125{
2126 struct zoneref *z;
2127 struct zone *zone;
d1908362
MK
2128
2129 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2130 gfp_zone(sc->gfp_mask), sc->nodemask) {
2131 if (!populated_zone(zone))
2132 continue;
2133 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2134 continue;
929bea7c
KM
2135 if (!zone->all_unreclaimable)
2136 return false;
d1908362
MK
2137 }
2138
929bea7c 2139 return true;
1da177e4 2140}
4f98a2fe 2141
1da177e4
LT
2142/*
2143 * This is the main entry point to direct page reclaim.
2144 *
2145 * If a full scan of the inactive list fails to free enough memory then we
2146 * are "out of memory" and something needs to be killed.
2147 *
2148 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2149 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2150 * caller can't do much about. We kick the writeback threads and take explicit
2151 * naps in the hope that some of these pages can be written. But if the
2152 * allocating task holds filesystem locks which prevent writeout this might not
2153 * work, and the allocation attempt will fail.
a41f24ea
NA
2154 *
2155 * returns: 0, if no pages reclaimed
2156 * else, the number of pages reclaimed
1da177e4 2157 */
dac1d27b 2158static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2159 struct scan_control *sc,
2160 struct shrink_control *shrink)
1da177e4 2161{
69e05944 2162 unsigned long total_scanned = 0;
1da177e4 2163 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2164 struct zoneref *z;
54a6eb5c 2165 struct zone *zone;
22fba335 2166 unsigned long writeback_threshold;
0cee34fd 2167 bool aborted_reclaim;
1da177e4 2168
873b4771
KK
2169 delayacct_freepages_start();
2170
89b5fae5 2171 if (global_reclaim(sc))
1cfb419b 2172 count_vm_event(ALLOCSTALL);
1da177e4 2173
9e3b2f8c 2174 do {
66e1707b 2175 sc->nr_scanned = 0;
9e3b2f8c 2176 aborted_reclaim = shrink_zones(zonelist, sc);
e0c23279 2177
66e1707b
BS
2178 /*
2179 * Don't shrink slabs when reclaiming memory from
2180 * over limit cgroups
2181 */
89b5fae5 2182 if (global_reclaim(sc)) {
c6a8a8c5 2183 unsigned long lru_pages = 0;
d4debc66
MG
2184 for_each_zone_zonelist(zone, z, zonelist,
2185 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2186 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2187 continue;
2188
2189 lru_pages += zone_reclaimable_pages(zone);
2190 }
2191
1495f230 2192 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2193 if (reclaim_state) {
a79311c1 2194 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2195 reclaim_state->reclaimed_slab = 0;
2196 }
1da177e4 2197 }
66e1707b 2198 total_scanned += sc->nr_scanned;
bb21c7ce 2199 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2200 goto out;
1da177e4
LT
2201
2202 /*
2203 * Try to write back as many pages as we just scanned. This
2204 * tends to cause slow streaming writers to write data to the
2205 * disk smoothly, at the dirtying rate, which is nice. But
2206 * that's undesirable in laptop mode, where we *want* lumpy
2207 * writeout. So in laptop mode, write out the whole world.
2208 */
22fba335
KM
2209 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2210 if (total_scanned > writeback_threshold) {
0e175a18
CW
2211 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2212 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2213 sc->may_writepage = 1;
1da177e4
LT
2214 }
2215
2216 /* Take a nap, wait for some writeback to complete */
7b51755c 2217 if (!sc->hibernation_mode && sc->nr_scanned &&
9e3b2f8c 2218 sc->priority < DEF_PRIORITY - 2) {
0e093d99
MG
2219 struct zone *preferred_zone;
2220
2221 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2222 &cpuset_current_mems_allowed,
2223 &preferred_zone);
0e093d99
MG
2224 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2225 }
9e3b2f8c 2226 } while (--sc->priority >= 0);
bb21c7ce 2227
1da177e4 2228out:
873b4771
KK
2229 delayacct_freepages_end();
2230
bb21c7ce
KM
2231 if (sc->nr_reclaimed)
2232 return sc->nr_reclaimed;
2233
929bea7c
KM
2234 /*
2235 * As hibernation is going on, kswapd is freezed so that it can't mark
2236 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2237 * check.
2238 */
2239 if (oom_killer_disabled)
2240 return 0;
2241
0cee34fd
MG
2242 /* Aborted reclaim to try compaction? don't OOM, then */
2243 if (aborted_reclaim)
7335084d
MG
2244 return 1;
2245
bb21c7ce 2246 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2247 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2248 return 1;
2249
2250 return 0;
1da177e4
LT
2251}
2252
5515061d
MG
2253static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2254{
2255 struct zone *zone;
2256 unsigned long pfmemalloc_reserve = 0;
2257 unsigned long free_pages = 0;
2258 int i;
2259 bool wmark_ok;
2260
2261 for (i = 0; i <= ZONE_NORMAL; i++) {
2262 zone = &pgdat->node_zones[i];
2263 pfmemalloc_reserve += min_wmark_pages(zone);
2264 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2265 }
2266
2267 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2268
2269 /* kswapd must be awake if processes are being throttled */
2270 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2271 pgdat->classzone_idx = min(pgdat->classzone_idx,
2272 (enum zone_type)ZONE_NORMAL);
2273 wake_up_interruptible(&pgdat->kswapd_wait);
2274 }
2275
2276 return wmark_ok;
2277}
2278
2279/*
2280 * Throttle direct reclaimers if backing storage is backed by the network
2281 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2282 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2283 * when the low watermark is reached.
2284 *
2285 * Returns true if a fatal signal was delivered during throttling. If this
2286 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2287 */
50694c28 2288static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2289 nodemask_t *nodemask)
2290{
2291 struct zone *zone;
2292 int high_zoneidx = gfp_zone(gfp_mask);
2293 pg_data_t *pgdat;
2294
2295 /*
2296 * Kernel threads should not be throttled as they may be indirectly
2297 * responsible for cleaning pages necessary for reclaim to make forward
2298 * progress. kjournald for example may enter direct reclaim while
2299 * committing a transaction where throttling it could forcing other
2300 * processes to block on log_wait_commit().
2301 */
2302 if (current->flags & PF_KTHREAD)
50694c28
MG
2303 goto out;
2304
2305 /*
2306 * If a fatal signal is pending, this process should not throttle.
2307 * It should return quickly so it can exit and free its memory
2308 */
2309 if (fatal_signal_pending(current))
2310 goto out;
5515061d
MG
2311
2312 /* Check if the pfmemalloc reserves are ok */
2313 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2314 pgdat = zone->zone_pgdat;
2315 if (pfmemalloc_watermark_ok(pgdat))
50694c28 2316 goto out;
5515061d 2317
68243e76
MG
2318 /* Account for the throttling */
2319 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2320
5515061d
MG
2321 /*
2322 * If the caller cannot enter the filesystem, it's possible that it
2323 * is due to the caller holding an FS lock or performing a journal
2324 * transaction in the case of a filesystem like ext[3|4]. In this case,
2325 * it is not safe to block on pfmemalloc_wait as kswapd could be
2326 * blocked waiting on the same lock. Instead, throttle for up to a
2327 * second before continuing.
2328 */
2329 if (!(gfp_mask & __GFP_FS)) {
2330 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2331 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2332
2333 goto check_pending;
5515061d
MG
2334 }
2335
2336 /* Throttle until kswapd wakes the process */
2337 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2338 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2339
2340check_pending:
2341 if (fatal_signal_pending(current))
2342 return true;
2343
2344out:
2345 return false;
5515061d
MG
2346}
2347
dac1d27b 2348unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2349 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2350{
33906bc5 2351 unsigned long nr_reclaimed;
66e1707b
BS
2352 struct scan_control sc = {
2353 .gfp_mask = gfp_mask,
2354 .may_writepage = !laptop_mode,
22fba335 2355 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2356 .may_unmap = 1,
2e2e4259 2357 .may_swap = 1,
66e1707b 2358 .order = order,
9e3b2f8c 2359 .priority = DEF_PRIORITY,
f16015fb 2360 .target_mem_cgroup = NULL,
327c0e96 2361 .nodemask = nodemask,
66e1707b 2362 };
a09ed5e0
YH
2363 struct shrink_control shrink = {
2364 .gfp_mask = sc.gfp_mask,
2365 };
66e1707b 2366
5515061d 2367 /*
50694c28
MG
2368 * Do not enter reclaim if fatal signal was delivered while throttled.
2369 * 1 is returned so that the page allocator does not OOM kill at this
2370 * point.
5515061d 2371 */
50694c28 2372 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2373 return 1;
2374
33906bc5
MG
2375 trace_mm_vmscan_direct_reclaim_begin(order,
2376 sc.may_writepage,
2377 gfp_mask);
2378
a09ed5e0 2379 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2380
2381 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2382
2383 return nr_reclaimed;
66e1707b
BS
2384}
2385
c255a458 2386#ifdef CONFIG_MEMCG
66e1707b 2387
72835c86 2388unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2389 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2390 struct zone *zone,
2391 unsigned long *nr_scanned)
4e416953
BS
2392{
2393 struct scan_control sc = {
0ae5e89c 2394 .nr_scanned = 0,
b8f5c566 2395 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2396 .may_writepage = !laptop_mode,
2397 .may_unmap = 1,
2398 .may_swap = !noswap,
4e416953 2399 .order = 0,
9e3b2f8c 2400 .priority = 0,
72835c86 2401 .target_mem_cgroup = memcg,
4e416953 2402 };
f9be23d6 2403 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
0ae5e89c 2404
4e416953
BS
2405 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2406 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2407
9e3b2f8c 2408 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2409 sc.may_writepage,
2410 sc.gfp_mask);
2411
4e416953
BS
2412 /*
2413 * NOTE: Although we can get the priority field, using it
2414 * here is not a good idea, since it limits the pages we can scan.
2415 * if we don't reclaim here, the shrink_zone from balance_pgdat
2416 * will pick up pages from other mem cgroup's as well. We hack
2417 * the priority and make it zero.
2418 */
f9be23d6 2419 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
2420
2421 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2422
0ae5e89c 2423 *nr_scanned = sc.nr_scanned;
4e416953
BS
2424 return sc.nr_reclaimed;
2425}
2426
72835c86 2427unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2428 gfp_t gfp_mask,
185efc0f 2429 bool noswap)
66e1707b 2430{
4e416953 2431 struct zonelist *zonelist;
bdce6d9e 2432 unsigned long nr_reclaimed;
889976db 2433 int nid;
66e1707b 2434 struct scan_control sc = {
66e1707b 2435 .may_writepage = !laptop_mode,
a6dc60f8 2436 .may_unmap = 1,
2e2e4259 2437 .may_swap = !noswap,
22fba335 2438 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2439 .order = 0,
9e3b2f8c 2440 .priority = DEF_PRIORITY,
72835c86 2441 .target_mem_cgroup = memcg,
327c0e96 2442 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2443 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2444 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2445 };
2446 struct shrink_control shrink = {
2447 .gfp_mask = sc.gfp_mask,
66e1707b 2448 };
66e1707b 2449
889976db
YH
2450 /*
2451 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2452 * take care of from where we get pages. So the node where we start the
2453 * scan does not need to be the current node.
2454 */
72835c86 2455 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2456
2457 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2458
2459 trace_mm_vmscan_memcg_reclaim_begin(0,
2460 sc.may_writepage,
2461 sc.gfp_mask);
2462
a09ed5e0 2463 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2464
2465 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2466
2467 return nr_reclaimed;
66e1707b
BS
2468}
2469#endif
2470
9e3b2f8c 2471static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2472{
b95a2f2d 2473 struct mem_cgroup *memcg;
f16015fb 2474
b95a2f2d
JW
2475 if (!total_swap_pages)
2476 return;
2477
2478 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2479 do {
c56d5c7d 2480 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2481
c56d5c7d 2482 if (inactive_anon_is_low(lruvec))
1a93be0e 2483 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2484 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2485
2486 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2487 } while (memcg);
f16015fb
JW
2488}
2489
60cefed4
JW
2490static bool zone_balanced(struct zone *zone, int order,
2491 unsigned long balance_gap, int classzone_idx)
2492{
2493 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2494 balance_gap, classzone_idx, 0))
2495 return false;
2496
d84da3f9
KS
2497 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2498 !compaction_suitable(zone, order))
60cefed4
JW
2499 return false;
2500
2501 return true;
2502}
2503
1741c877 2504/*
4ae0a48b
ZC
2505 * pgdat_balanced() is used when checking if a node is balanced.
2506 *
2507 * For order-0, all zones must be balanced!
2508 *
2509 * For high-order allocations only zones that meet watermarks and are in a
2510 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2511 * total of balanced pages must be at least 25% of the zones allowed by
2512 * classzone_idx for the node to be considered balanced. Forcing all zones to
2513 * be balanced for high orders can cause excessive reclaim when there are
2514 * imbalanced zones.
1741c877
MG
2515 * The choice of 25% is due to
2516 * o a 16M DMA zone that is balanced will not balance a zone on any
2517 * reasonable sized machine
2518 * o On all other machines, the top zone must be at least a reasonable
25985edc 2519 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2520 * would need to be at least 256M for it to be balance a whole node.
2521 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2522 * to balance a node on its own. These seemed like reasonable ratios.
2523 */
4ae0a48b 2524static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877
MG
2525{
2526 unsigned long present_pages = 0;
4ae0a48b 2527 unsigned long balanced_pages = 0;
1741c877
MG
2528 int i;
2529
4ae0a48b
ZC
2530 /* Check the watermark levels */
2531 for (i = 0; i <= classzone_idx; i++) {
2532 struct zone *zone = pgdat->node_zones + i;
1741c877 2533
4ae0a48b
ZC
2534 if (!populated_zone(zone))
2535 continue;
2536
2537 present_pages += zone->present_pages;
2538
2539 /*
2540 * A special case here:
2541 *
2542 * balance_pgdat() skips over all_unreclaimable after
2543 * DEF_PRIORITY. Effectively, it considers them balanced so
2544 * they must be considered balanced here as well!
2545 */
2546 if (zone->all_unreclaimable) {
2547 balanced_pages += zone->present_pages;
2548 continue;
2549 }
2550
2551 if (zone_balanced(zone, order, 0, i))
2552 balanced_pages += zone->present_pages;
2553 else if (!order)
2554 return false;
2555 }
2556
2557 if (order)
2558 return balanced_pages >= (present_pages >> 2);
2559 else
2560 return true;
1741c877
MG
2561}
2562
5515061d
MG
2563/*
2564 * Prepare kswapd for sleeping. This verifies that there are no processes
2565 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2566 *
2567 * Returns true if kswapd is ready to sleep
2568 */
2569static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2570 int classzone_idx)
f50de2d3 2571{
f50de2d3
MG
2572 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2573 if (remaining)
5515061d
MG
2574 return false;
2575
2576 /*
2577 * There is a potential race between when kswapd checks its watermarks
2578 * and a process gets throttled. There is also a potential race if
2579 * processes get throttled, kswapd wakes, a large process exits therby
2580 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2581 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2582 * so wake them now if necessary. If necessary, processes will wake
2583 * kswapd and get throttled again
2584 */
2585 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2586 wake_up(&pgdat->pfmemalloc_wait);
2587 return false;
2588 }
f50de2d3 2589
4ae0a48b 2590 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
2591}
2592
1da177e4
LT
2593/*
2594 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2595 * they are all at high_wmark_pages(zone).
1da177e4 2596 *
0abdee2b 2597 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2598 *
2599 * There is special handling here for zones which are full of pinned pages.
2600 * This can happen if the pages are all mlocked, or if they are all used by
2601 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2602 * What we do is to detect the case where all pages in the zone have been
2603 * scanned twice and there has been zero successful reclaim. Mark the zone as
2604 * dead and from now on, only perform a short scan. Basically we're polling
2605 * the zone for when the problem goes away.
2606 *
2607 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2608 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2609 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2610 * lower zones regardless of the number of free pages in the lower zones. This
2611 * interoperates with the page allocator fallback scheme to ensure that aging
2612 * of pages is balanced across the zones.
1da177e4 2613 */
99504748 2614static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2615 int *classzone_idx)
1da177e4 2616{
cda73a10 2617 struct zone *unbalanced_zone;
1da177e4 2618 int i;
99504748 2619 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
69e05944 2620 unsigned long total_scanned;
1da177e4 2621 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2622 unsigned long nr_soft_reclaimed;
2623 unsigned long nr_soft_scanned;
179e9639
AM
2624 struct scan_control sc = {
2625 .gfp_mask = GFP_KERNEL,
a6dc60f8 2626 .may_unmap = 1,
2e2e4259 2627 .may_swap = 1,
22fba335
KM
2628 /*
2629 * kswapd doesn't want to be bailed out while reclaim. because
2630 * we want to put equal scanning pressure on each zone.
2631 */
2632 .nr_to_reclaim = ULONG_MAX,
5ad333eb 2633 .order = order,
f16015fb 2634 .target_mem_cgroup = NULL,
179e9639 2635 };
a09ed5e0
YH
2636 struct shrink_control shrink = {
2637 .gfp_mask = sc.gfp_mask,
2638 };
1da177e4
LT
2639loop_again:
2640 total_scanned = 0;
9e3b2f8c 2641 sc.priority = DEF_PRIORITY;
a79311c1 2642 sc.nr_reclaimed = 0;
c0bbbc73 2643 sc.may_writepage = !laptop_mode;
f8891e5e 2644 count_vm_event(PAGEOUTRUN);
1da177e4 2645
9e3b2f8c 2646 do {
1da177e4 2647 unsigned long lru_pages = 0;
bb3ab596 2648 int has_under_min_watermark_zone = 0;
1da177e4 2649
cda73a10 2650 unbalanced_zone = NULL;
1da177e4 2651
d6277db4
RW
2652 /*
2653 * Scan in the highmem->dma direction for the highest
2654 * zone which needs scanning
2655 */
2656 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2657 struct zone *zone = pgdat->node_zones + i;
1da177e4 2658
d6277db4
RW
2659 if (!populated_zone(zone))
2660 continue;
1da177e4 2661
9e3b2f8c
KK
2662 if (zone->all_unreclaimable &&
2663 sc.priority != DEF_PRIORITY)
d6277db4 2664 continue;
1da177e4 2665
556adecb
RR
2666 /*
2667 * Do some background aging of the anon list, to give
2668 * pages a chance to be referenced before reclaiming.
2669 */
9e3b2f8c 2670 age_active_anon(zone, &sc);
556adecb 2671
cc715d99
MG
2672 /*
2673 * If the number of buffer_heads in the machine
2674 * exceeds the maximum allowed level and this node
2675 * has a highmem zone, force kswapd to reclaim from
2676 * it to relieve lowmem pressure.
2677 */
2678 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2679 end_zone = i;
2680 break;
2681 }
2682
60cefed4 2683 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 2684 end_zone = i;
e1dbeda6 2685 break;
439423f6
SL
2686 } else {
2687 /* If balanced, clear the congested flag */
2688 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2689 }
1da177e4 2690 }
e1dbeda6
AM
2691 if (i < 0)
2692 goto out;
2693
1da177e4
LT
2694 for (i = 0; i <= end_zone; i++) {
2695 struct zone *zone = pgdat->node_zones + i;
2696
adea02a1 2697 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2698 }
2699
2700 /*
2701 * Now scan the zone in the dma->highmem direction, stopping
2702 * at the last zone which needs scanning.
2703 *
2704 * We do this because the page allocator works in the opposite
2705 * direction. This prevents the page allocator from allocating
2706 * pages behind kswapd's direction of progress, which would
2707 * cause too much scanning of the lower zones.
2708 */
2709 for (i = 0; i <= end_zone; i++) {
2710 struct zone *zone = pgdat->node_zones + i;
fe2c2a10 2711 int nr_slab, testorder;
8afdcece 2712 unsigned long balance_gap;
1da177e4 2713
f3fe6512 2714 if (!populated_zone(zone))
1da177e4
LT
2715 continue;
2716
9e3b2f8c
KK
2717 if (zone->all_unreclaimable &&
2718 sc.priority != DEF_PRIORITY)
1da177e4
LT
2719 continue;
2720
1da177e4 2721 sc.nr_scanned = 0;
4e416953 2722
0ae5e89c 2723 nr_soft_scanned = 0;
4e416953
BS
2724 /*
2725 * Call soft limit reclaim before calling shrink_zone.
4e416953 2726 */
0ae5e89c
YH
2727 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2728 order, sc.gfp_mask,
2729 &nr_soft_scanned);
2730 sc.nr_reclaimed += nr_soft_reclaimed;
2731 total_scanned += nr_soft_scanned;
00918b6a 2732
32a4330d 2733 /*
8afdcece
MG
2734 * We put equal pressure on every zone, unless
2735 * one zone has way too many pages free
2736 * already. The "too many pages" is defined
2737 * as the high wmark plus a "gap" where the
2738 * gap is either the low watermark or 1%
2739 * of the zone, whichever is smaller.
32a4330d 2740 */
8afdcece
MG
2741 balance_gap = min(low_wmark_pages(zone),
2742 (zone->present_pages +
2743 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2744 KSWAPD_ZONE_BALANCE_GAP_RATIO);
fe2c2a10
RR
2745 /*
2746 * Kswapd reclaims only single pages with compaction
2747 * enabled. Trying too hard to reclaim until contiguous
2748 * free pages have become available can hurt performance
2749 * by evicting too much useful data from memory.
2750 * Do not reclaim more than needed for compaction.
2751 */
2752 testorder = order;
d84da3f9 2753 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
fe2c2a10
RR
2754 compaction_suitable(zone, order) !=
2755 COMPACT_SKIPPED)
2756 testorder = 0;
2757
cc715d99 2758 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
60cefed4
JW
2759 !zone_balanced(zone, testorder,
2760 balance_gap, end_zone)) {
9e3b2f8c 2761 shrink_zone(zone, &sc);
5a03b051 2762
d7868dae
MG
2763 reclaim_state->reclaimed_slab = 0;
2764 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2765 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2766 total_scanned += sc.nr_scanned;
2767
2768 if (nr_slab == 0 && !zone_reclaimable(zone))
2769 zone->all_unreclaimable = 1;
2770 }
2771
1da177e4
LT
2772 /*
2773 * If we've done a decent amount of scanning and
2774 * the reclaim ratio is low, start doing writepage
2775 * even in laptop mode
2776 */
2777 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2778 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2779 sc.may_writepage = 1;
bb3ab596 2780
215ddd66
MG
2781 if (zone->all_unreclaimable) {
2782 if (end_zone && end_zone == i)
2783 end_zone--;
d7868dae 2784 continue;
215ddd66 2785 }
d7868dae 2786
60cefed4 2787 if (!zone_balanced(zone, testorder, 0, end_zone)) {
cda73a10 2788 unbalanced_zone = zone;
45973d74
MK
2789 /*
2790 * We are still under min water mark. This
2791 * means that we have a GFP_ATOMIC allocation
2792 * failure risk. Hurry up!
2793 */
88f5acf8 2794 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2795 min_wmark_pages(zone), end_zone, 0))
2796 has_under_min_watermark_zone = 1;
0e093d99
MG
2797 } else {
2798 /*
2799 * If a zone reaches its high watermark,
2800 * consider it to be no longer congested. It's
2801 * possible there are dirty pages backed by
2802 * congested BDIs but as pressure is relieved,
ab8704b8 2803 * speculatively avoid congestion waits
0e093d99
MG
2804 */
2805 zone_clear_flag(zone, ZONE_CONGESTED);
45973d74 2806 }
bb3ab596 2807
1da177e4 2808 }
5515061d
MG
2809
2810 /*
2811 * If the low watermark is met there is no need for processes
2812 * to be throttled on pfmemalloc_wait as they should not be
2813 * able to safely make forward progress. Wake them
2814 */
2815 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2816 pfmemalloc_watermark_ok(pgdat))
2817 wake_up(&pgdat->pfmemalloc_wait);
2818
4ae0a48b 2819 if (pgdat_balanced(pgdat, order, *classzone_idx))
1da177e4
LT
2820 break; /* kswapd: all done */
2821 /*
2822 * OK, kswapd is getting into trouble. Take a nap, then take
2823 * another pass across the zones.
2824 */
9e3b2f8c 2825 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
bb3ab596
KM
2826 if (has_under_min_watermark_zone)
2827 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
ecccd124 2828 else if (unbalanced_zone)
cda73a10 2829 wait_iff_congested(unbalanced_zone, BLK_RW_ASYNC, HZ/10);
bb3ab596 2830 }
1da177e4
LT
2831
2832 /*
2833 * We do this so kswapd doesn't build up large priorities for
2834 * example when it is freeing in parallel with allocators. It
2835 * matches the direct reclaim path behaviour in terms of impact
2836 * on zone->*_priority.
2837 */
a79311c1 2838 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4 2839 break;
9e3b2f8c 2840 } while (--sc.priority >= 0);
1da177e4 2841out:
99504748 2842
4ae0a48b 2843 if (!pgdat_balanced(pgdat, order, *classzone_idx)) {
1da177e4 2844 cond_resched();
8357376d
RW
2845
2846 try_to_freeze();
2847
73ce02e9
KM
2848 /*
2849 * Fragmentation may mean that the system cannot be
2850 * rebalanced for high-order allocations in all zones.
2851 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2852 * it means the zones have been fully scanned and are still
2853 * not balanced. For high-order allocations, there is
2854 * little point trying all over again as kswapd may
2855 * infinite loop.
2856 *
2857 * Instead, recheck all watermarks at order-0 as they
2858 * are the most important. If watermarks are ok, kswapd will go
2859 * back to sleep. High-order users can still perform direct
2860 * reclaim if they wish.
2861 */
2862 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2863 order = sc.order = 0;
2864
1da177e4
LT
2865 goto loop_again;
2866 }
2867
99504748
MG
2868 /*
2869 * If kswapd was reclaiming at a higher order, it has the option of
2870 * sleeping without all zones being balanced. Before it does, it must
2871 * ensure that the watermarks for order-0 on *all* zones are met and
2872 * that the congestion flags are cleared. The congestion flag must
2873 * be cleared as kswapd is the only mechanism that clears the flag
2874 * and it is potentially going to sleep here.
2875 */
2876 if (order) {
7be62de9
RR
2877 int zones_need_compaction = 1;
2878
99504748
MG
2879 for (i = 0; i <= end_zone; i++) {
2880 struct zone *zone = pgdat->node_zones + i;
2881
2882 if (!populated_zone(zone))
2883 continue;
2884
7be62de9
RR
2885 /* Check if the memory needs to be defragmented. */
2886 if (zone_watermark_ok(zone, order,
2887 low_wmark_pages(zone), *classzone_idx, 0))
2888 zones_need_compaction = 0;
99504748 2889 }
7be62de9
RR
2890
2891 if (zones_need_compaction)
2892 compact_pgdat(pgdat, order);
99504748
MG
2893 }
2894
0abdee2b 2895 /*
5515061d 2896 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
2897 * makes a decision on the order we were last reclaiming at. However,
2898 * if another caller entered the allocator slow path while kswapd
2899 * was awake, order will remain at the higher level
2900 */
dc83edd9 2901 *classzone_idx = end_zone;
0abdee2b 2902 return order;
1da177e4
LT
2903}
2904
dc83edd9 2905static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
2906{
2907 long remaining = 0;
2908 DEFINE_WAIT(wait);
2909
2910 if (freezing(current) || kthread_should_stop())
2911 return;
2912
2913 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2914
2915 /* Try to sleep for a short interval */
5515061d 2916 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2917 remaining = schedule_timeout(HZ/10);
2918 finish_wait(&pgdat->kswapd_wait, &wait);
2919 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2920 }
2921
2922 /*
2923 * After a short sleep, check if it was a premature sleep. If not, then
2924 * go fully to sleep until explicitly woken up.
2925 */
5515061d 2926 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2927 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2928
2929 /*
2930 * vmstat counters are not perfectly accurate and the estimated
2931 * value for counters such as NR_FREE_PAGES can deviate from the
2932 * true value by nr_online_cpus * threshold. To avoid the zone
2933 * watermarks being breached while under pressure, we reduce the
2934 * per-cpu vmstat threshold while kswapd is awake and restore
2935 * them before going back to sleep.
2936 */
2937 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 2938
62997027
MG
2939 /*
2940 * Compaction records what page blocks it recently failed to
2941 * isolate pages from and skips them in the future scanning.
2942 * When kswapd is going to sleep, it is reasonable to assume
2943 * that pages and compaction may succeed so reset the cache.
2944 */
2945 reset_isolation_suitable(pgdat);
2946
1c7e7f6c
AK
2947 if (!kthread_should_stop())
2948 schedule();
2949
f0bc0a60
KM
2950 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2951 } else {
2952 if (remaining)
2953 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2954 else
2955 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2956 }
2957 finish_wait(&pgdat->kswapd_wait, &wait);
2958}
2959
1da177e4
LT
2960/*
2961 * The background pageout daemon, started as a kernel thread
4f98a2fe 2962 * from the init process.
1da177e4
LT
2963 *
2964 * This basically trickles out pages so that we have _some_
2965 * free memory available even if there is no other activity
2966 * that frees anything up. This is needed for things like routing
2967 * etc, where we otherwise might have all activity going on in
2968 * asynchronous contexts that cannot page things out.
2969 *
2970 * If there are applications that are active memory-allocators
2971 * (most normal use), this basically shouldn't matter.
2972 */
2973static int kswapd(void *p)
2974{
215ddd66 2975 unsigned long order, new_order;
d2ebd0f6 2976 unsigned balanced_order;
215ddd66 2977 int classzone_idx, new_classzone_idx;
d2ebd0f6 2978 int balanced_classzone_idx;
1da177e4
LT
2979 pg_data_t *pgdat = (pg_data_t*)p;
2980 struct task_struct *tsk = current;
f0bc0a60 2981
1da177e4
LT
2982 struct reclaim_state reclaim_state = {
2983 .reclaimed_slab = 0,
2984 };
a70f7302 2985 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2986
cf40bd16
NP
2987 lockdep_set_current_reclaim_state(GFP_KERNEL);
2988
174596a0 2989 if (!cpumask_empty(cpumask))
c5f59f08 2990 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2991 current->reclaim_state = &reclaim_state;
2992
2993 /*
2994 * Tell the memory management that we're a "memory allocator",
2995 * and that if we need more memory we should get access to it
2996 * regardless (see "__alloc_pages()"). "kswapd" should
2997 * never get caught in the normal page freeing logic.
2998 *
2999 * (Kswapd normally doesn't need memory anyway, but sometimes
3000 * you need a small amount of memory in order to be able to
3001 * page out something else, and this flag essentially protects
3002 * us from recursively trying to free more memory as we're
3003 * trying to free the first piece of memory in the first place).
3004 */
930d9152 3005 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3006 set_freezable();
1da177e4 3007
215ddd66 3008 order = new_order = 0;
d2ebd0f6 3009 balanced_order = 0;
215ddd66 3010 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3011 balanced_classzone_idx = classzone_idx;
1da177e4 3012 for ( ; ; ) {
6f6313d4 3013 bool ret;
3e1d1d28 3014
215ddd66
MG
3015 /*
3016 * If the last balance_pgdat was unsuccessful it's unlikely a
3017 * new request of a similar or harder type will succeed soon
3018 * so consider going to sleep on the basis we reclaimed at
3019 */
d2ebd0f6
AS
3020 if (balanced_classzone_idx >= new_classzone_idx &&
3021 balanced_order == new_order) {
215ddd66
MG
3022 new_order = pgdat->kswapd_max_order;
3023 new_classzone_idx = pgdat->classzone_idx;
3024 pgdat->kswapd_max_order = 0;
3025 pgdat->classzone_idx = pgdat->nr_zones - 1;
3026 }
3027
99504748 3028 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3029 /*
3030 * Don't sleep if someone wants a larger 'order'
99504748 3031 * allocation or has tigher zone constraints
1da177e4
LT
3032 */
3033 order = new_order;
99504748 3034 classzone_idx = new_classzone_idx;
1da177e4 3035 } else {
d2ebd0f6
AS
3036 kswapd_try_to_sleep(pgdat, balanced_order,
3037 balanced_classzone_idx);
1da177e4 3038 order = pgdat->kswapd_max_order;
99504748 3039 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3040 new_order = order;
3041 new_classzone_idx = classzone_idx;
4d40502e 3042 pgdat->kswapd_max_order = 0;
215ddd66 3043 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3044 }
1da177e4 3045
8fe23e05
DR
3046 ret = try_to_freeze();
3047 if (kthread_should_stop())
3048 break;
3049
3050 /*
3051 * We can speed up thawing tasks if we don't call balance_pgdat
3052 * after returning from the refrigerator
3053 */
33906bc5
MG
3054 if (!ret) {
3055 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3056 balanced_classzone_idx = classzone_idx;
3057 balanced_order = balance_pgdat(pgdat, order,
3058 &balanced_classzone_idx);
33906bc5 3059 }
1da177e4 3060 }
b0a8cc58
TY
3061
3062 current->reclaim_state = NULL;
1da177e4
LT
3063 return 0;
3064}
3065
3066/*
3067 * A zone is low on free memory, so wake its kswapd task to service it.
3068 */
99504748 3069void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3070{
3071 pg_data_t *pgdat;
3072
f3fe6512 3073 if (!populated_zone(zone))
1da177e4
LT
3074 return;
3075
88f5acf8 3076 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 3077 return;
88f5acf8 3078 pgdat = zone->zone_pgdat;
99504748 3079 if (pgdat->kswapd_max_order < order) {
1da177e4 3080 pgdat->kswapd_max_order = order;
99504748
MG
3081 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3082 }
8d0986e2 3083 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3084 return;
88f5acf8
MG
3085 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3086 return;
3087
3088 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3089 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3090}
3091
adea02a1
WF
3092/*
3093 * The reclaimable count would be mostly accurate.
3094 * The less reclaimable pages may be
3095 * - mlocked pages, which will be moved to unevictable list when encountered
3096 * - mapped pages, which may require several travels to be reclaimed
3097 * - dirty pages, which is not "instantly" reclaimable
3098 */
3099unsigned long global_reclaimable_pages(void)
4f98a2fe 3100{
adea02a1
WF
3101 int nr;
3102
3103 nr = global_page_state(NR_ACTIVE_FILE) +
3104 global_page_state(NR_INACTIVE_FILE);
3105
3106 if (nr_swap_pages > 0)
3107 nr += global_page_state(NR_ACTIVE_ANON) +
3108 global_page_state(NR_INACTIVE_ANON);
3109
3110 return nr;
3111}
3112
3113unsigned long zone_reclaimable_pages(struct zone *zone)
3114{
3115 int nr;
3116
3117 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3118 zone_page_state(zone, NR_INACTIVE_FILE);
3119
3120 if (nr_swap_pages > 0)
3121 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3122 zone_page_state(zone, NR_INACTIVE_ANON);
3123
3124 return nr;
4f98a2fe
RR
3125}
3126
c6f37f12 3127#ifdef CONFIG_HIBERNATION
1da177e4 3128/*
7b51755c 3129 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3130 * freed pages.
3131 *
3132 * Rather than trying to age LRUs the aim is to preserve the overall
3133 * LRU order by reclaiming preferentially
3134 * inactive > active > active referenced > active mapped
1da177e4 3135 */
7b51755c 3136unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3137{
d6277db4 3138 struct reclaim_state reclaim_state;
d6277db4 3139 struct scan_control sc = {
7b51755c
KM
3140 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3141 .may_swap = 1,
3142 .may_unmap = 1,
d6277db4 3143 .may_writepage = 1,
7b51755c
KM
3144 .nr_to_reclaim = nr_to_reclaim,
3145 .hibernation_mode = 1,
7b51755c 3146 .order = 0,
9e3b2f8c 3147 .priority = DEF_PRIORITY,
1da177e4 3148 };
a09ed5e0
YH
3149 struct shrink_control shrink = {
3150 .gfp_mask = sc.gfp_mask,
3151 };
3152 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3153 struct task_struct *p = current;
3154 unsigned long nr_reclaimed;
1da177e4 3155
7b51755c
KM
3156 p->flags |= PF_MEMALLOC;
3157 lockdep_set_current_reclaim_state(sc.gfp_mask);
3158 reclaim_state.reclaimed_slab = 0;
3159 p->reclaim_state = &reclaim_state;
d6277db4 3160
a09ed5e0 3161 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 3162
7b51755c
KM
3163 p->reclaim_state = NULL;
3164 lockdep_clear_current_reclaim_state();
3165 p->flags &= ~PF_MEMALLOC;
d6277db4 3166
7b51755c 3167 return nr_reclaimed;
1da177e4 3168}
c6f37f12 3169#endif /* CONFIG_HIBERNATION */
1da177e4 3170
1da177e4
LT
3171/* It's optimal to keep kswapds on the same CPUs as their memory, but
3172 not required for correctness. So if the last cpu in a node goes
3173 away, we get changed to run anywhere: as the first one comes back,
3174 restore their cpu bindings. */
fcb35a9b
GKH
3175static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3176 void *hcpu)
1da177e4 3177{
58c0a4a7 3178 int nid;
1da177e4 3179
8bb78442 3180 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3181 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3182 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3183 const struct cpumask *mask;
3184
3185 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3186
3e597945 3187 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3188 /* One of our CPUs online: restore mask */
c5f59f08 3189 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3190 }
3191 }
3192 return NOTIFY_OK;
3193}
1da177e4 3194
3218ae14
YG
3195/*
3196 * This kswapd start function will be called by init and node-hot-add.
3197 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3198 */
3199int kswapd_run(int nid)
3200{
3201 pg_data_t *pgdat = NODE_DATA(nid);
3202 int ret = 0;
3203
3204 if (pgdat->kswapd)
3205 return 0;
3206
3207 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3208 if (IS_ERR(pgdat->kswapd)) {
3209 /* failure at boot is fatal */
3210 BUG_ON(system_state == SYSTEM_BOOTING);
18b48d58 3211 pgdat->kswapd = NULL;
d5dc0ad9
GS
3212 pr_err("Failed to start kswapd on node %d\n", nid);
3213 ret = PTR_ERR(pgdat->kswapd);
3218ae14
YG
3214 }
3215 return ret;
3216}
3217
8fe23e05 3218/*
d8adde17
JL
3219 * Called by memory hotplug when all memory in a node is offlined. Caller must
3220 * hold lock_memory_hotplug().
8fe23e05
DR
3221 */
3222void kswapd_stop(int nid)
3223{
3224 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3225
d8adde17 3226 if (kswapd) {
8fe23e05 3227 kthread_stop(kswapd);
d8adde17
JL
3228 NODE_DATA(nid)->kswapd = NULL;
3229 }
8fe23e05
DR
3230}
3231
1da177e4
LT
3232static int __init kswapd_init(void)
3233{
3218ae14 3234 int nid;
69e05944 3235
1da177e4 3236 swap_setup();
48fb2e24 3237 for_each_node_state(nid, N_MEMORY)
3218ae14 3238 kswapd_run(nid);
1da177e4
LT
3239 hotcpu_notifier(cpu_callback, 0);
3240 return 0;
3241}
3242
3243module_init(kswapd_init)
9eeff239
CL
3244
3245#ifdef CONFIG_NUMA
3246/*
3247 * Zone reclaim mode
3248 *
3249 * If non-zero call zone_reclaim when the number of free pages falls below
3250 * the watermarks.
9eeff239
CL
3251 */
3252int zone_reclaim_mode __read_mostly;
3253
1b2ffb78 3254#define RECLAIM_OFF 0
7d03431c 3255#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3256#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3257#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3258
a92f7126
CL
3259/*
3260 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3261 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3262 * a zone.
3263 */
3264#define ZONE_RECLAIM_PRIORITY 4
3265
9614634f
CL
3266/*
3267 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3268 * occur.
3269 */
3270int sysctl_min_unmapped_ratio = 1;
3271
0ff38490
CL
3272/*
3273 * If the number of slab pages in a zone grows beyond this percentage then
3274 * slab reclaim needs to occur.
3275 */
3276int sysctl_min_slab_ratio = 5;
3277
90afa5de
MG
3278static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3279{
3280 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3281 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3282 zone_page_state(zone, NR_ACTIVE_FILE);
3283
3284 /*
3285 * It's possible for there to be more file mapped pages than
3286 * accounted for by the pages on the file LRU lists because
3287 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3288 */
3289 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3290}
3291
3292/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3293static long zone_pagecache_reclaimable(struct zone *zone)
3294{
3295 long nr_pagecache_reclaimable;
3296 long delta = 0;
3297
3298 /*
3299 * If RECLAIM_SWAP is set, then all file pages are considered
3300 * potentially reclaimable. Otherwise, we have to worry about
3301 * pages like swapcache and zone_unmapped_file_pages() provides
3302 * a better estimate
3303 */
3304 if (zone_reclaim_mode & RECLAIM_SWAP)
3305 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3306 else
3307 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3308
3309 /* If we can't clean pages, remove dirty pages from consideration */
3310 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3311 delta += zone_page_state(zone, NR_FILE_DIRTY);
3312
3313 /* Watch for any possible underflows due to delta */
3314 if (unlikely(delta > nr_pagecache_reclaimable))
3315 delta = nr_pagecache_reclaimable;
3316
3317 return nr_pagecache_reclaimable - delta;
3318}
3319
9eeff239
CL
3320/*
3321 * Try to free up some pages from this zone through reclaim.
3322 */
179e9639 3323static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3324{
7fb2d46d 3325 /* Minimum pages needed in order to stay on node */
69e05944 3326 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3327 struct task_struct *p = current;
3328 struct reclaim_state reclaim_state;
179e9639
AM
3329 struct scan_control sc = {
3330 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3331 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3332 .may_swap = 1,
22fba335
KM
3333 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3334 SWAP_CLUSTER_MAX),
179e9639 3335 .gfp_mask = gfp_mask,
bd2f6199 3336 .order = order,
9e3b2f8c 3337 .priority = ZONE_RECLAIM_PRIORITY,
179e9639 3338 };
a09ed5e0
YH
3339 struct shrink_control shrink = {
3340 .gfp_mask = sc.gfp_mask,
3341 };
15748048 3342 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3343
9eeff239 3344 cond_resched();
d4f7796e
CL
3345 /*
3346 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3347 * and we also need to be able to write out pages for RECLAIM_WRITE
3348 * and RECLAIM_SWAP.
3349 */
3350 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3351 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3352 reclaim_state.reclaimed_slab = 0;
3353 p->reclaim_state = &reclaim_state;
c84db23c 3354
90afa5de 3355 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3356 /*
3357 * Free memory by calling shrink zone with increasing
3358 * priorities until we have enough memory freed.
3359 */
0ff38490 3360 do {
9e3b2f8c
KK
3361 shrink_zone(zone, &sc);
3362 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3363 }
c84db23c 3364
15748048
KM
3365 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3366 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3367 /*
7fb2d46d 3368 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3369 * many pages were freed in this zone. So we take the current
3370 * number of slab pages and shake the slab until it is reduced
3371 * by the same nr_pages that we used for reclaiming unmapped
3372 * pages.
2a16e3f4 3373 *
0ff38490
CL
3374 * Note that shrink_slab will free memory on all zones and may
3375 * take a long time.
2a16e3f4 3376 */
4dc4b3d9
KM
3377 for (;;) {
3378 unsigned long lru_pages = zone_reclaimable_pages(zone);
3379
3380 /* No reclaimable slab or very low memory pressure */
1495f230 3381 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3382 break;
3383
3384 /* Freed enough memory */
3385 nr_slab_pages1 = zone_page_state(zone,
3386 NR_SLAB_RECLAIMABLE);
3387 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3388 break;
3389 }
83e33a47
CL
3390
3391 /*
3392 * Update nr_reclaimed by the number of slab pages we
3393 * reclaimed from this zone.
3394 */
15748048
KM
3395 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3396 if (nr_slab_pages1 < nr_slab_pages0)
3397 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3398 }
3399
9eeff239 3400 p->reclaim_state = NULL;
d4f7796e 3401 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3402 lockdep_clear_current_reclaim_state();
a79311c1 3403 return sc.nr_reclaimed >= nr_pages;
9eeff239 3404}
179e9639
AM
3405
3406int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3407{
179e9639 3408 int node_id;
d773ed6b 3409 int ret;
179e9639
AM
3410
3411 /*
0ff38490
CL
3412 * Zone reclaim reclaims unmapped file backed pages and
3413 * slab pages if we are over the defined limits.
34aa1330 3414 *
9614634f
CL
3415 * A small portion of unmapped file backed pages is needed for
3416 * file I/O otherwise pages read by file I/O will be immediately
3417 * thrown out if the zone is overallocated. So we do not reclaim
3418 * if less than a specified percentage of the zone is used by
3419 * unmapped file backed pages.
179e9639 3420 */
90afa5de
MG
3421 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3422 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3423 return ZONE_RECLAIM_FULL;
179e9639 3424
93e4a89a 3425 if (zone->all_unreclaimable)
fa5e084e 3426 return ZONE_RECLAIM_FULL;
d773ed6b 3427
179e9639 3428 /*
d773ed6b 3429 * Do not scan if the allocation should not be delayed.
179e9639 3430 */
d773ed6b 3431 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3432 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3433
3434 /*
3435 * Only run zone reclaim on the local zone or on zones that do not
3436 * have associated processors. This will favor the local processor
3437 * over remote processors and spread off node memory allocations
3438 * as wide as possible.
3439 */
89fa3024 3440 node_id = zone_to_nid(zone);
37c0708d 3441 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3442 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3443
3444 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3445 return ZONE_RECLAIM_NOSCAN;
3446
d773ed6b
DR
3447 ret = __zone_reclaim(zone, gfp_mask, order);
3448 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3449
24cf7251
MG
3450 if (!ret)
3451 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3452
d773ed6b 3453 return ret;
179e9639 3454}
9eeff239 3455#endif
894bc310 3456
894bc310
LS
3457/*
3458 * page_evictable - test whether a page is evictable
3459 * @page: the page to test
894bc310
LS
3460 *
3461 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3462 * lists vs unevictable list.
894bc310
LS
3463 *
3464 * Reasons page might not be evictable:
ba9ddf49 3465 * (1) page's mapping marked unevictable
b291f000 3466 * (2) page is part of an mlocked VMA
ba9ddf49 3467 *
894bc310 3468 */
39b5f29a 3469int page_evictable(struct page *page)
894bc310 3470{
39b5f29a 3471 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3472}
89e004ea 3473
85046579 3474#ifdef CONFIG_SHMEM
89e004ea 3475/**
24513264
HD
3476 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3477 * @pages: array of pages to check
3478 * @nr_pages: number of pages to check
89e004ea 3479 *
24513264 3480 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3481 *
3482 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3483 */
24513264 3484void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3485{
925b7673 3486 struct lruvec *lruvec;
24513264
HD
3487 struct zone *zone = NULL;
3488 int pgscanned = 0;
3489 int pgrescued = 0;
3490 int i;
89e004ea 3491
24513264
HD
3492 for (i = 0; i < nr_pages; i++) {
3493 struct page *page = pages[i];
3494 struct zone *pagezone;
89e004ea 3495
24513264
HD
3496 pgscanned++;
3497 pagezone = page_zone(page);
3498 if (pagezone != zone) {
3499 if (zone)
3500 spin_unlock_irq(&zone->lru_lock);
3501 zone = pagezone;
3502 spin_lock_irq(&zone->lru_lock);
3503 }
fa9add64 3504 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3505
24513264
HD
3506 if (!PageLRU(page) || !PageUnevictable(page))
3507 continue;
89e004ea 3508
39b5f29a 3509 if (page_evictable(page)) {
24513264
HD
3510 enum lru_list lru = page_lru_base_type(page);
3511
3512 VM_BUG_ON(PageActive(page));
3513 ClearPageUnevictable(page);
fa9add64
HD
3514 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3515 add_page_to_lru_list(page, lruvec, lru);
24513264 3516 pgrescued++;
89e004ea 3517 }
24513264 3518 }
89e004ea 3519
24513264
HD
3520 if (zone) {
3521 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3522 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3523 spin_unlock_irq(&zone->lru_lock);
89e004ea 3524 }
89e004ea 3525}
85046579 3526#endif /* CONFIG_SHMEM */
af936a16 3527
264e56d8 3528static void warn_scan_unevictable_pages(void)
af936a16 3529{
264e56d8 3530 printk_once(KERN_WARNING
25bd91bd 3531 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3532 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3533 "one, please send an email to linux-mm@kvack.org.\n",
3534 current->comm);
af936a16
LS
3535}
3536
3537/*
3538 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3539 * all nodes' unevictable lists for evictable pages
3540 */
3541unsigned long scan_unevictable_pages;
3542
3543int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3544 void __user *buffer,
af936a16
LS
3545 size_t *length, loff_t *ppos)
3546{
264e56d8 3547 warn_scan_unevictable_pages();
8d65af78 3548 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3549 scan_unevictable_pages = 0;
3550 return 0;
3551}
3552
e4455abb 3553#ifdef CONFIG_NUMA
af936a16
LS
3554/*
3555 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3556 * a specified node's per zone unevictable lists for evictable pages.
3557 */
3558
10fbcf4c
KS
3559static ssize_t read_scan_unevictable_node(struct device *dev,
3560 struct device_attribute *attr,
af936a16
LS
3561 char *buf)
3562{
264e56d8 3563 warn_scan_unevictable_pages();
af936a16
LS
3564 return sprintf(buf, "0\n"); /* always zero; should fit... */
3565}
3566
10fbcf4c
KS
3567static ssize_t write_scan_unevictable_node(struct device *dev,
3568 struct device_attribute *attr,
af936a16
LS
3569 const char *buf, size_t count)
3570{
264e56d8 3571 warn_scan_unevictable_pages();
af936a16
LS
3572 return 1;
3573}
3574
3575
10fbcf4c 3576static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3577 read_scan_unevictable_node,
3578 write_scan_unevictable_node);
3579
3580int scan_unevictable_register_node(struct node *node)
3581{
10fbcf4c 3582 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3583}
3584
3585void scan_unevictable_unregister_node(struct node *node)
3586{
10fbcf4c 3587 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3588}
e4455abb 3589#endif