]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmscan.c
mm, vmscan: move lru_lock to the node
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4
LT
16#include <linux/mm.h>
17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
268bb0ce 47#include <linux/prefetch.h>
b1de0d13 48#include <linux/printk.h>
f9fe48be 49#include <linux/dax.h>
1da177e4
LT
50
51#include <asm/tlbflush.h>
52#include <asm/div64.h>
53
54#include <linux/swapops.h>
117aad1e 55#include <linux/balloon_compaction.h>
1da177e4 56
0f8053a5
NP
57#include "internal.h"
58
33906bc5
MG
59#define CREATE_TRACE_POINTS
60#include <trace/events/vmscan.h>
61
1da177e4 62struct scan_control {
22fba335
KM
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
1da177e4 66 /* This context's GFP mask */
6daa0e28 67 gfp_t gfp_mask;
1da177e4 68
ee814fe2 69 /* Allocation order */
5ad333eb 70 int order;
66e1707b 71
ee814fe2
JW
72 /*
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 * are scanned.
75 */
76 nodemask_t *nodemask;
9e3b2f8c 77
f16015fb
JW
78 /*
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
81 */
82 struct mem_cgroup *target_mem_cgroup;
66e1707b 83
ee814fe2
JW
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
86
87 unsigned int may_writepage:1;
88
89 /* Can mapped pages be reclaimed? */
90 unsigned int may_unmap:1;
91
92 /* Can pages be swapped as part of reclaim? */
93 unsigned int may_swap:1;
94
241994ed
JW
95 /* Can cgroups be reclaimed below their normal consumption range? */
96 unsigned int may_thrash:1;
97
ee814fe2
JW
98 unsigned int hibernation_mode:1;
99
100 /* One of the zones is ready for compaction */
101 unsigned int compaction_ready:1;
102
103 /* Incremented by the number of inactive pages that were scanned */
104 unsigned long nr_scanned;
105
106 /* Number of pages freed so far during a call to shrink_zones() */
107 unsigned long nr_reclaimed;
1da177e4
LT
108};
109
1da177e4
LT
110#ifdef ARCH_HAS_PREFETCH
111#define prefetch_prev_lru_page(_page, _base, _field) \
112 do { \
113 if ((_page)->lru.prev != _base) { \
114 struct page *prev; \
115 \
116 prev = lru_to_page(&(_page->lru)); \
117 prefetch(&prev->_field); \
118 } \
119 } while (0)
120#else
121#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
122#endif
123
124#ifdef ARCH_HAS_PREFETCHW
125#define prefetchw_prev_lru_page(_page, _base, _field) \
126 do { \
127 if ((_page)->lru.prev != _base) { \
128 struct page *prev; \
129 \
130 prev = lru_to_page(&(_page->lru)); \
131 prefetchw(&prev->_field); \
132 } \
133 } while (0)
134#else
135#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
136#endif
137
138/*
139 * From 0 .. 100. Higher means more swappy.
140 */
141int vm_swappiness = 60;
d0480be4
WSH
142/*
143 * The total number of pages which are beyond the high watermark within all
144 * zones.
145 */
146unsigned long vm_total_pages;
1da177e4
LT
147
148static LIST_HEAD(shrinker_list);
149static DECLARE_RWSEM(shrinker_rwsem);
150
c255a458 151#ifdef CONFIG_MEMCG
89b5fae5
JW
152static bool global_reclaim(struct scan_control *sc)
153{
f16015fb 154 return !sc->target_mem_cgroup;
89b5fae5 155}
97c9341f
TH
156
157/**
158 * sane_reclaim - is the usual dirty throttling mechanism operational?
159 * @sc: scan_control in question
160 *
161 * The normal page dirty throttling mechanism in balance_dirty_pages() is
162 * completely broken with the legacy memcg and direct stalling in
163 * shrink_page_list() is used for throttling instead, which lacks all the
164 * niceties such as fairness, adaptive pausing, bandwidth proportional
165 * allocation and configurability.
166 *
167 * This function tests whether the vmscan currently in progress can assume
168 * that the normal dirty throttling mechanism is operational.
169 */
170static bool sane_reclaim(struct scan_control *sc)
171{
172 struct mem_cgroup *memcg = sc->target_mem_cgroup;
173
174 if (!memcg)
175 return true;
176#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 177 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
178 return true;
179#endif
180 return false;
181}
91a45470 182#else
89b5fae5
JW
183static bool global_reclaim(struct scan_control *sc)
184{
185 return true;
186}
97c9341f
TH
187
188static bool sane_reclaim(struct scan_control *sc)
189{
190 return true;
191}
91a45470
KH
192#endif
193
0a0337e0 194unsigned long zone_reclaimable_pages(struct zone *zone)
6e543d57 195{
d031a157 196 unsigned long nr;
6e543d57 197
0db2cb8d
MH
198 nr = zone_page_state_snapshot(zone, NR_ACTIVE_FILE) +
199 zone_page_state_snapshot(zone, NR_INACTIVE_FILE) +
200 zone_page_state_snapshot(zone, NR_ISOLATED_FILE);
6e543d57
LD
201
202 if (get_nr_swap_pages() > 0)
0db2cb8d
MH
203 nr += zone_page_state_snapshot(zone, NR_ACTIVE_ANON) +
204 zone_page_state_snapshot(zone, NR_INACTIVE_ANON) +
205 zone_page_state_snapshot(zone, NR_ISOLATED_ANON);
6e543d57
LD
206
207 return nr;
208}
209
210bool zone_reclaimable(struct zone *zone)
211{
0db2cb8d 212 return zone_page_state_snapshot(zone, NR_PAGES_SCANNED) <
0d5d823a 213 zone_reclaimable_pages(zone) * 6;
6e543d57
LD
214}
215
23047a96 216unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 217{
c3c787e8 218 if (!mem_cgroup_disabled())
4d7dcca2 219 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 220
074291fe 221 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
222}
223
1da177e4 224/*
1d3d4437 225 * Add a shrinker callback to be called from the vm.
1da177e4 226 */
1d3d4437 227int register_shrinker(struct shrinker *shrinker)
1da177e4 228{
1d3d4437
GC
229 size_t size = sizeof(*shrinker->nr_deferred);
230
1d3d4437
GC
231 if (shrinker->flags & SHRINKER_NUMA_AWARE)
232 size *= nr_node_ids;
233
234 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
235 if (!shrinker->nr_deferred)
236 return -ENOMEM;
237
8e1f936b
RR
238 down_write(&shrinker_rwsem);
239 list_add_tail(&shrinker->list, &shrinker_list);
240 up_write(&shrinker_rwsem);
1d3d4437 241 return 0;
1da177e4 242}
8e1f936b 243EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
244
245/*
246 * Remove one
247 */
8e1f936b 248void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
249{
250 down_write(&shrinker_rwsem);
251 list_del(&shrinker->list);
252 up_write(&shrinker_rwsem);
ae393321 253 kfree(shrinker->nr_deferred);
1da177e4 254}
8e1f936b 255EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
256
257#define SHRINK_BATCH 128
1d3d4437 258
cb731d6c
VD
259static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
260 struct shrinker *shrinker,
261 unsigned long nr_scanned,
262 unsigned long nr_eligible)
1d3d4437
GC
263{
264 unsigned long freed = 0;
265 unsigned long long delta;
266 long total_scan;
d5bc5fd3 267 long freeable;
1d3d4437
GC
268 long nr;
269 long new_nr;
270 int nid = shrinkctl->nid;
271 long batch_size = shrinker->batch ? shrinker->batch
272 : SHRINK_BATCH;
273
d5bc5fd3
VD
274 freeable = shrinker->count_objects(shrinker, shrinkctl);
275 if (freeable == 0)
1d3d4437
GC
276 return 0;
277
278 /*
279 * copy the current shrinker scan count into a local variable
280 * and zero it so that other concurrent shrinker invocations
281 * don't also do this scanning work.
282 */
283 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
284
285 total_scan = nr;
6b4f7799 286 delta = (4 * nr_scanned) / shrinker->seeks;
d5bc5fd3 287 delta *= freeable;
6b4f7799 288 do_div(delta, nr_eligible + 1);
1d3d4437
GC
289 total_scan += delta;
290 if (total_scan < 0) {
8612c663 291 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 292 shrinker->scan_objects, total_scan);
d5bc5fd3 293 total_scan = freeable;
1d3d4437
GC
294 }
295
296 /*
297 * We need to avoid excessive windup on filesystem shrinkers
298 * due to large numbers of GFP_NOFS allocations causing the
299 * shrinkers to return -1 all the time. This results in a large
300 * nr being built up so when a shrink that can do some work
301 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 302 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
303 * memory.
304 *
305 * Hence only allow the shrinker to scan the entire cache when
306 * a large delta change is calculated directly.
307 */
d5bc5fd3
VD
308 if (delta < freeable / 4)
309 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
310
311 /*
312 * Avoid risking looping forever due to too large nr value:
313 * never try to free more than twice the estimate number of
314 * freeable entries.
315 */
d5bc5fd3
VD
316 if (total_scan > freeable * 2)
317 total_scan = freeable * 2;
1d3d4437
GC
318
319 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
6b4f7799
JW
320 nr_scanned, nr_eligible,
321 freeable, delta, total_scan);
1d3d4437 322
0b1fb40a
VD
323 /*
324 * Normally, we should not scan less than batch_size objects in one
325 * pass to avoid too frequent shrinker calls, but if the slab has less
326 * than batch_size objects in total and we are really tight on memory,
327 * we will try to reclaim all available objects, otherwise we can end
328 * up failing allocations although there are plenty of reclaimable
329 * objects spread over several slabs with usage less than the
330 * batch_size.
331 *
332 * We detect the "tight on memory" situations by looking at the total
333 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 334 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
335 * scanning at high prio and therefore should try to reclaim as much as
336 * possible.
337 */
338 while (total_scan >= batch_size ||
d5bc5fd3 339 total_scan >= freeable) {
a0b02131 340 unsigned long ret;
0b1fb40a 341 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 342
0b1fb40a 343 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
344 ret = shrinker->scan_objects(shrinker, shrinkctl);
345 if (ret == SHRINK_STOP)
346 break;
347 freed += ret;
1d3d4437 348
0b1fb40a
VD
349 count_vm_events(SLABS_SCANNED, nr_to_scan);
350 total_scan -= nr_to_scan;
1d3d4437
GC
351
352 cond_resched();
353 }
354
355 /*
356 * move the unused scan count back into the shrinker in a
357 * manner that handles concurrent updates. If we exhausted the
358 * scan, there is no need to do an update.
359 */
360 if (total_scan > 0)
361 new_nr = atomic_long_add_return(total_scan,
362 &shrinker->nr_deferred[nid]);
363 else
364 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
365
df9024a8 366 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 367 return freed;
1495f230
YH
368}
369
6b4f7799 370/**
cb731d6c 371 * shrink_slab - shrink slab caches
6b4f7799
JW
372 * @gfp_mask: allocation context
373 * @nid: node whose slab caches to target
cb731d6c 374 * @memcg: memory cgroup whose slab caches to target
6b4f7799
JW
375 * @nr_scanned: pressure numerator
376 * @nr_eligible: pressure denominator
1da177e4 377 *
6b4f7799 378 * Call the shrink functions to age shrinkable caches.
1da177e4 379 *
6b4f7799
JW
380 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
381 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 382 *
cb731d6c
VD
383 * @memcg specifies the memory cgroup to target. If it is not NULL,
384 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
0fc9f58a
VD
385 * objects from the memory cgroup specified. Otherwise, only unaware
386 * shrinkers are called.
cb731d6c 387 *
6b4f7799
JW
388 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
389 * the available objects should be scanned. Page reclaim for example
390 * passes the number of pages scanned and the number of pages on the
391 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
392 * when it encountered mapped pages. The ratio is further biased by
393 * the ->seeks setting of the shrink function, which indicates the
394 * cost to recreate an object relative to that of an LRU page.
b15e0905 395 *
6b4f7799 396 * Returns the number of reclaimed slab objects.
1da177e4 397 */
cb731d6c
VD
398static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
399 struct mem_cgroup *memcg,
400 unsigned long nr_scanned,
401 unsigned long nr_eligible)
1da177e4
LT
402{
403 struct shrinker *shrinker;
24f7c6b9 404 unsigned long freed = 0;
1da177e4 405
0fc9f58a 406 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
cb731d6c
VD
407 return 0;
408
6b4f7799
JW
409 if (nr_scanned == 0)
410 nr_scanned = SWAP_CLUSTER_MAX;
1da177e4 411
f06590bd 412 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
413 /*
414 * If we would return 0, our callers would understand that we
415 * have nothing else to shrink and give up trying. By returning
416 * 1 we keep it going and assume we'll be able to shrink next
417 * time.
418 */
419 freed = 1;
f06590bd
MK
420 goto out;
421 }
1da177e4
LT
422
423 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
424 struct shrink_control sc = {
425 .gfp_mask = gfp_mask,
426 .nid = nid,
cb731d6c 427 .memcg = memcg,
6b4f7799 428 };
ec97097b 429
0fc9f58a
VD
430 /*
431 * If kernel memory accounting is disabled, we ignore
432 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
433 * passing NULL for memcg.
434 */
435 if (memcg_kmem_enabled() &&
436 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
cb731d6c
VD
437 continue;
438
6b4f7799
JW
439 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
440 sc.nid = 0;
1da177e4 441
cb731d6c 442 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
1da177e4 443 }
6b4f7799 444
1da177e4 445 up_read(&shrinker_rwsem);
f06590bd
MK
446out:
447 cond_resched();
24f7c6b9 448 return freed;
1da177e4
LT
449}
450
cb731d6c
VD
451void drop_slab_node(int nid)
452{
453 unsigned long freed;
454
455 do {
456 struct mem_cgroup *memcg = NULL;
457
458 freed = 0;
459 do {
460 freed += shrink_slab(GFP_KERNEL, nid, memcg,
461 1000, 1000);
462 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
463 } while (freed > 10);
464}
465
466void drop_slab(void)
467{
468 int nid;
469
470 for_each_online_node(nid)
471 drop_slab_node(nid);
472}
473
1da177e4
LT
474static inline int is_page_cache_freeable(struct page *page)
475{
ceddc3a5
JW
476 /*
477 * A freeable page cache page is referenced only by the caller
478 * that isolated the page, the page cache radix tree and
479 * optional buffer heads at page->private.
480 */
edcf4748 481 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
482}
483
703c2708 484static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 485{
930d9152 486 if (current->flags & PF_SWAPWRITE)
1da177e4 487 return 1;
703c2708 488 if (!inode_write_congested(inode))
1da177e4 489 return 1;
703c2708 490 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
491 return 1;
492 return 0;
493}
494
495/*
496 * We detected a synchronous write error writing a page out. Probably
497 * -ENOSPC. We need to propagate that into the address_space for a subsequent
498 * fsync(), msync() or close().
499 *
500 * The tricky part is that after writepage we cannot touch the mapping: nothing
501 * prevents it from being freed up. But we have a ref on the page and once
502 * that page is locked, the mapping is pinned.
503 *
504 * We're allowed to run sleeping lock_page() here because we know the caller has
505 * __GFP_FS.
506 */
507static void handle_write_error(struct address_space *mapping,
508 struct page *page, int error)
509{
7eaceacc 510 lock_page(page);
3e9f45bd
GC
511 if (page_mapping(page) == mapping)
512 mapping_set_error(mapping, error);
1da177e4
LT
513 unlock_page(page);
514}
515
04e62a29
CL
516/* possible outcome of pageout() */
517typedef enum {
518 /* failed to write page out, page is locked */
519 PAGE_KEEP,
520 /* move page to the active list, page is locked */
521 PAGE_ACTIVATE,
522 /* page has been sent to the disk successfully, page is unlocked */
523 PAGE_SUCCESS,
524 /* page is clean and locked */
525 PAGE_CLEAN,
526} pageout_t;
527
1da177e4 528/*
1742f19f
AM
529 * pageout is called by shrink_page_list() for each dirty page.
530 * Calls ->writepage().
1da177e4 531 */
c661b078 532static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 533 struct scan_control *sc)
1da177e4
LT
534{
535 /*
536 * If the page is dirty, only perform writeback if that write
537 * will be non-blocking. To prevent this allocation from being
538 * stalled by pagecache activity. But note that there may be
539 * stalls if we need to run get_block(). We could test
540 * PagePrivate for that.
541 *
8174202b 542 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
543 * this page's queue, we can perform writeback even if that
544 * will block.
545 *
546 * If the page is swapcache, write it back even if that would
547 * block, for some throttling. This happens by accident, because
548 * swap_backing_dev_info is bust: it doesn't reflect the
549 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
550 */
551 if (!is_page_cache_freeable(page))
552 return PAGE_KEEP;
553 if (!mapping) {
554 /*
555 * Some data journaling orphaned pages can have
556 * page->mapping == NULL while being dirty with clean buffers.
557 */
266cf658 558 if (page_has_private(page)) {
1da177e4
LT
559 if (try_to_free_buffers(page)) {
560 ClearPageDirty(page);
b1de0d13 561 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
562 return PAGE_CLEAN;
563 }
564 }
565 return PAGE_KEEP;
566 }
567 if (mapping->a_ops->writepage == NULL)
568 return PAGE_ACTIVATE;
703c2708 569 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
570 return PAGE_KEEP;
571
572 if (clear_page_dirty_for_io(page)) {
573 int res;
574 struct writeback_control wbc = {
575 .sync_mode = WB_SYNC_NONE,
576 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
577 .range_start = 0,
578 .range_end = LLONG_MAX,
1da177e4
LT
579 .for_reclaim = 1,
580 };
581
582 SetPageReclaim(page);
583 res = mapping->a_ops->writepage(page, &wbc);
584 if (res < 0)
585 handle_write_error(mapping, page, res);
994fc28c 586 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
587 ClearPageReclaim(page);
588 return PAGE_ACTIVATE;
589 }
c661b078 590
1da177e4
LT
591 if (!PageWriteback(page)) {
592 /* synchronous write or broken a_ops? */
593 ClearPageReclaim(page);
594 }
3aa23851 595 trace_mm_vmscan_writepage(page);
e129b5c2 596 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
597 return PAGE_SUCCESS;
598 }
599
600 return PAGE_CLEAN;
601}
602
a649fd92 603/*
e286781d
NP
604 * Same as remove_mapping, but if the page is removed from the mapping, it
605 * gets returned with a refcount of 0.
a649fd92 606 */
a528910e
JW
607static int __remove_mapping(struct address_space *mapping, struct page *page,
608 bool reclaimed)
49d2e9cc 609{
c4843a75 610 unsigned long flags;
c4843a75 611
28e4d965
NP
612 BUG_ON(!PageLocked(page));
613 BUG_ON(mapping != page_mapping(page));
49d2e9cc 614
c4843a75 615 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 616 /*
0fd0e6b0
NP
617 * The non racy check for a busy page.
618 *
619 * Must be careful with the order of the tests. When someone has
620 * a ref to the page, it may be possible that they dirty it then
621 * drop the reference. So if PageDirty is tested before page_count
622 * here, then the following race may occur:
623 *
624 * get_user_pages(&page);
625 * [user mapping goes away]
626 * write_to(page);
627 * !PageDirty(page) [good]
628 * SetPageDirty(page);
629 * put_page(page);
630 * !page_count(page) [good, discard it]
631 *
632 * [oops, our write_to data is lost]
633 *
634 * Reversing the order of the tests ensures such a situation cannot
635 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 636 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
637 *
638 * Note that if SetPageDirty is always performed via set_page_dirty,
639 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 640 */
fe896d18 641 if (!page_ref_freeze(page, 2))
49d2e9cc 642 goto cannot_free;
e286781d
NP
643 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
644 if (unlikely(PageDirty(page))) {
fe896d18 645 page_ref_unfreeze(page, 2);
49d2e9cc 646 goto cannot_free;
e286781d 647 }
49d2e9cc
CL
648
649 if (PageSwapCache(page)) {
650 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 651 mem_cgroup_swapout(page, swap);
49d2e9cc 652 __delete_from_swap_cache(page);
c4843a75 653 spin_unlock_irqrestore(&mapping->tree_lock, flags);
0a31bc97 654 swapcache_free(swap);
e286781d 655 } else {
6072d13c 656 void (*freepage)(struct page *);
a528910e 657 void *shadow = NULL;
6072d13c
LT
658
659 freepage = mapping->a_ops->freepage;
a528910e
JW
660 /*
661 * Remember a shadow entry for reclaimed file cache in
662 * order to detect refaults, thus thrashing, later on.
663 *
664 * But don't store shadows in an address space that is
665 * already exiting. This is not just an optizimation,
666 * inode reclaim needs to empty out the radix tree or
667 * the nodes are lost. Don't plant shadows behind its
668 * back.
f9fe48be
RZ
669 *
670 * We also don't store shadows for DAX mappings because the
671 * only page cache pages found in these are zero pages
672 * covering holes, and because we don't want to mix DAX
673 * exceptional entries and shadow exceptional entries in the
674 * same page_tree.
a528910e
JW
675 */
676 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 677 !mapping_exiting(mapping) && !dax_mapping(mapping))
a528910e 678 shadow = workingset_eviction(mapping, page);
62cccb8c 679 __delete_from_page_cache(page, shadow);
c4843a75 680 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
681
682 if (freepage != NULL)
683 freepage(page);
49d2e9cc
CL
684 }
685
49d2e9cc
CL
686 return 1;
687
688cannot_free:
c4843a75 689 spin_unlock_irqrestore(&mapping->tree_lock, flags);
49d2e9cc
CL
690 return 0;
691}
692
e286781d
NP
693/*
694 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
695 * someone else has a ref on the page, abort and return 0. If it was
696 * successfully detached, return 1. Assumes the caller has a single ref on
697 * this page.
698 */
699int remove_mapping(struct address_space *mapping, struct page *page)
700{
a528910e 701 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
702 /*
703 * Unfreezing the refcount with 1 rather than 2 effectively
704 * drops the pagecache ref for us without requiring another
705 * atomic operation.
706 */
fe896d18 707 page_ref_unfreeze(page, 1);
e286781d
NP
708 return 1;
709 }
710 return 0;
711}
712
894bc310
LS
713/**
714 * putback_lru_page - put previously isolated page onto appropriate LRU list
715 * @page: page to be put back to appropriate lru list
716 *
717 * Add previously isolated @page to appropriate LRU list.
718 * Page may still be unevictable for other reasons.
719 *
720 * lru_lock must not be held, interrupts must be enabled.
721 */
894bc310
LS
722void putback_lru_page(struct page *page)
723{
0ec3b74c 724 bool is_unevictable;
bbfd28ee 725 int was_unevictable = PageUnevictable(page);
894bc310 726
309381fe 727 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
728
729redo:
730 ClearPageUnevictable(page);
731
39b5f29a 732 if (page_evictable(page)) {
894bc310
LS
733 /*
734 * For evictable pages, we can use the cache.
735 * In event of a race, worst case is we end up with an
736 * unevictable page on [in]active list.
737 * We know how to handle that.
738 */
0ec3b74c 739 is_unevictable = false;
c53954a0 740 lru_cache_add(page);
894bc310
LS
741 } else {
742 /*
743 * Put unevictable pages directly on zone's unevictable
744 * list.
745 */
0ec3b74c 746 is_unevictable = true;
894bc310 747 add_page_to_unevictable_list(page);
6a7b9548 748 /*
21ee9f39
MK
749 * When racing with an mlock or AS_UNEVICTABLE clearing
750 * (page is unlocked) make sure that if the other thread
751 * does not observe our setting of PG_lru and fails
24513264 752 * isolation/check_move_unevictable_pages,
21ee9f39 753 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
754 * the page back to the evictable list.
755 *
21ee9f39 756 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
757 */
758 smp_mb();
894bc310 759 }
894bc310
LS
760
761 /*
762 * page's status can change while we move it among lru. If an evictable
763 * page is on unevictable list, it never be freed. To avoid that,
764 * check after we added it to the list, again.
765 */
0ec3b74c 766 if (is_unevictable && page_evictable(page)) {
894bc310
LS
767 if (!isolate_lru_page(page)) {
768 put_page(page);
769 goto redo;
770 }
771 /* This means someone else dropped this page from LRU
772 * So, it will be freed or putback to LRU again. There is
773 * nothing to do here.
774 */
775 }
776
0ec3b74c 777 if (was_unevictable && !is_unevictable)
bbfd28ee 778 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 779 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
780 count_vm_event(UNEVICTABLE_PGCULLED);
781
894bc310
LS
782 put_page(page); /* drop ref from isolate */
783}
784
dfc8d636
JW
785enum page_references {
786 PAGEREF_RECLAIM,
787 PAGEREF_RECLAIM_CLEAN,
64574746 788 PAGEREF_KEEP,
dfc8d636
JW
789 PAGEREF_ACTIVATE,
790};
791
792static enum page_references page_check_references(struct page *page,
793 struct scan_control *sc)
794{
64574746 795 int referenced_ptes, referenced_page;
dfc8d636 796 unsigned long vm_flags;
dfc8d636 797
c3ac9a8a
JW
798 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
799 &vm_flags);
64574746 800 referenced_page = TestClearPageReferenced(page);
dfc8d636 801
dfc8d636
JW
802 /*
803 * Mlock lost the isolation race with us. Let try_to_unmap()
804 * move the page to the unevictable list.
805 */
806 if (vm_flags & VM_LOCKED)
807 return PAGEREF_RECLAIM;
808
64574746 809 if (referenced_ptes) {
e4898273 810 if (PageSwapBacked(page))
64574746
JW
811 return PAGEREF_ACTIVATE;
812 /*
813 * All mapped pages start out with page table
814 * references from the instantiating fault, so we need
815 * to look twice if a mapped file page is used more
816 * than once.
817 *
818 * Mark it and spare it for another trip around the
819 * inactive list. Another page table reference will
820 * lead to its activation.
821 *
822 * Note: the mark is set for activated pages as well
823 * so that recently deactivated but used pages are
824 * quickly recovered.
825 */
826 SetPageReferenced(page);
827
34dbc67a 828 if (referenced_page || referenced_ptes > 1)
64574746
JW
829 return PAGEREF_ACTIVATE;
830
c909e993
KK
831 /*
832 * Activate file-backed executable pages after first usage.
833 */
834 if (vm_flags & VM_EXEC)
835 return PAGEREF_ACTIVATE;
836
64574746
JW
837 return PAGEREF_KEEP;
838 }
dfc8d636
JW
839
840 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 841 if (referenced_page && !PageSwapBacked(page))
64574746
JW
842 return PAGEREF_RECLAIM_CLEAN;
843
844 return PAGEREF_RECLAIM;
dfc8d636
JW
845}
846
e2be15f6
MG
847/* Check if a page is dirty or under writeback */
848static void page_check_dirty_writeback(struct page *page,
849 bool *dirty, bool *writeback)
850{
b4597226
MG
851 struct address_space *mapping;
852
e2be15f6
MG
853 /*
854 * Anonymous pages are not handled by flushers and must be written
855 * from reclaim context. Do not stall reclaim based on them
856 */
857 if (!page_is_file_cache(page)) {
858 *dirty = false;
859 *writeback = false;
860 return;
861 }
862
863 /* By default assume that the page flags are accurate */
864 *dirty = PageDirty(page);
865 *writeback = PageWriteback(page);
b4597226
MG
866
867 /* Verify dirty/writeback state if the filesystem supports it */
868 if (!page_has_private(page))
869 return;
870
871 mapping = page_mapping(page);
872 if (mapping && mapping->a_ops->is_dirty_writeback)
873 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
874}
875
1da177e4 876/*
1742f19f 877 * shrink_page_list() returns the number of reclaimed pages
1da177e4 878 */
1742f19f 879static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 880 struct zone *zone,
f84f6e2b 881 struct scan_control *sc,
02c6de8d 882 enum ttu_flags ttu_flags,
8e950282 883 unsigned long *ret_nr_dirty,
d43006d5 884 unsigned long *ret_nr_unqueued_dirty,
8e950282 885 unsigned long *ret_nr_congested,
02c6de8d 886 unsigned long *ret_nr_writeback,
b1a6f21e 887 unsigned long *ret_nr_immediate,
02c6de8d 888 bool force_reclaim)
1da177e4
LT
889{
890 LIST_HEAD(ret_pages);
abe4c3b5 891 LIST_HEAD(free_pages);
1da177e4 892 int pgactivate = 0;
d43006d5 893 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
894 unsigned long nr_dirty = 0;
895 unsigned long nr_congested = 0;
05ff5137 896 unsigned long nr_reclaimed = 0;
92df3a72 897 unsigned long nr_writeback = 0;
b1a6f21e 898 unsigned long nr_immediate = 0;
1da177e4
LT
899
900 cond_resched();
901
1da177e4
LT
902 while (!list_empty(page_list)) {
903 struct address_space *mapping;
904 struct page *page;
905 int may_enter_fs;
02c6de8d 906 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 907 bool dirty, writeback;
854e9ed0
MK
908 bool lazyfree = false;
909 int ret = SWAP_SUCCESS;
1da177e4
LT
910
911 cond_resched();
912
913 page = lru_to_page(page_list);
914 list_del(&page->lru);
915
529ae9aa 916 if (!trylock_page(page))
1da177e4
LT
917 goto keep;
918
309381fe
SL
919 VM_BUG_ON_PAGE(PageActive(page), page);
920 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1da177e4
LT
921
922 sc->nr_scanned++;
80e43426 923
39b5f29a 924 if (unlikely(!page_evictable(page)))
b291f000 925 goto cull_mlocked;
894bc310 926
a6dc60f8 927 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
928 goto keep_locked;
929
1da177e4
LT
930 /* Double the slab pressure for mapped and swapcache pages */
931 if (page_mapped(page) || PageSwapCache(page))
932 sc->nr_scanned++;
933
c661b078
AW
934 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
935 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
936
e2be15f6
MG
937 /*
938 * The number of dirty pages determines if a zone is marked
939 * reclaim_congested which affects wait_iff_congested. kswapd
940 * will stall and start writing pages if the tail of the LRU
941 * is all dirty unqueued pages.
942 */
943 page_check_dirty_writeback(page, &dirty, &writeback);
944 if (dirty || writeback)
945 nr_dirty++;
946
947 if (dirty && !writeback)
948 nr_unqueued_dirty++;
949
d04e8acd
MG
950 /*
951 * Treat this page as congested if the underlying BDI is or if
952 * pages are cycling through the LRU so quickly that the
953 * pages marked for immediate reclaim are making it to the
954 * end of the LRU a second time.
955 */
e2be15f6 956 mapping = page_mapping(page);
1da58ee2 957 if (((dirty || writeback) && mapping &&
703c2708 958 inode_write_congested(mapping->host)) ||
d04e8acd 959 (writeback && PageReclaim(page)))
e2be15f6
MG
960 nr_congested++;
961
283aba9f
MG
962 /*
963 * If a page at the tail of the LRU is under writeback, there
964 * are three cases to consider.
965 *
966 * 1) If reclaim is encountering an excessive number of pages
967 * under writeback and this page is both under writeback and
968 * PageReclaim then it indicates that pages are being queued
969 * for IO but are being recycled through the LRU before the
970 * IO can complete. Waiting on the page itself risks an
971 * indefinite stall if it is impossible to writeback the
972 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
973 * note that the LRU is being scanned too quickly and the
974 * caller can stall after page list has been processed.
283aba9f 975 *
97c9341f 976 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
977 * not marked for immediate reclaim, or the caller does not
978 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
979 * not to fs). In this case mark the page for immediate
97c9341f 980 * reclaim and continue scanning.
283aba9f 981 *
ecf5fc6e
MH
982 * Require may_enter_fs because we would wait on fs, which
983 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
984 * enter reclaim, and deadlock if it waits on a page for
985 * which it is needed to do the write (loop masks off
986 * __GFP_IO|__GFP_FS for this reason); but more thought
987 * would probably show more reasons.
988 *
7fadc820 989 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
990 * PageReclaim. memcg does not have any dirty pages
991 * throttling so we could easily OOM just because too many
992 * pages are in writeback and there is nothing else to
993 * reclaim. Wait for the writeback to complete.
994 */
c661b078 995 if (PageWriteback(page)) {
283aba9f
MG
996 /* Case 1 above */
997 if (current_is_kswapd() &&
998 PageReclaim(page) &&
57054651 999 test_bit(ZONE_WRITEBACK, &zone->flags)) {
b1a6f21e
MG
1000 nr_immediate++;
1001 goto keep_locked;
283aba9f
MG
1002
1003 /* Case 2 above */
97c9341f 1004 } else if (sane_reclaim(sc) ||
ecf5fc6e 1005 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1006 /*
1007 * This is slightly racy - end_page_writeback()
1008 * might have just cleared PageReclaim, then
1009 * setting PageReclaim here end up interpreted
1010 * as PageReadahead - but that does not matter
1011 * enough to care. What we do want is for this
1012 * page to have PageReclaim set next time memcg
1013 * reclaim reaches the tests above, so it will
1014 * then wait_on_page_writeback() to avoid OOM;
1015 * and it's also appropriate in global reclaim.
1016 */
1017 SetPageReclaim(page);
e62e384e 1018 nr_writeback++;
c3b94f44 1019 goto keep_locked;
283aba9f
MG
1020
1021 /* Case 3 above */
1022 } else {
7fadc820 1023 unlock_page(page);
283aba9f 1024 wait_on_page_writeback(page);
7fadc820
HD
1025 /* then go back and try same page again */
1026 list_add_tail(&page->lru, page_list);
1027 continue;
e62e384e 1028 }
c661b078 1029 }
1da177e4 1030
02c6de8d
MK
1031 if (!force_reclaim)
1032 references = page_check_references(page, sc);
1033
dfc8d636
JW
1034 switch (references) {
1035 case PAGEREF_ACTIVATE:
1da177e4 1036 goto activate_locked;
64574746
JW
1037 case PAGEREF_KEEP:
1038 goto keep_locked;
dfc8d636
JW
1039 case PAGEREF_RECLAIM:
1040 case PAGEREF_RECLAIM_CLEAN:
1041 ; /* try to reclaim the page below */
1042 }
1da177e4 1043
1da177e4
LT
1044 /*
1045 * Anonymous process memory has backing store?
1046 * Try to allocate it some swap space here.
1047 */
b291f000 1048 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
1049 if (!(sc->gfp_mask & __GFP_IO))
1050 goto keep_locked;
5bc7b8ac 1051 if (!add_to_swap(page, page_list))
1da177e4 1052 goto activate_locked;
854e9ed0 1053 lazyfree = true;
63eb6b93 1054 may_enter_fs = 1;
1da177e4 1055
e2be15f6
MG
1056 /* Adding to swap updated mapping */
1057 mapping = page_mapping(page);
7751b2da
KS
1058 } else if (unlikely(PageTransHuge(page))) {
1059 /* Split file THP */
1060 if (split_huge_page_to_list(page, page_list))
1061 goto keep_locked;
e2be15f6 1062 }
1da177e4 1063
7751b2da
KS
1064 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1065
1da177e4
LT
1066 /*
1067 * The page is mapped into the page tables of one or more
1068 * processes. Try to unmap it here.
1069 */
1070 if (page_mapped(page) && mapping) {
854e9ed0
MK
1071 switch (ret = try_to_unmap(page, lazyfree ?
1072 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1073 (ttu_flags | TTU_BATCH_FLUSH))) {
1da177e4
LT
1074 case SWAP_FAIL:
1075 goto activate_locked;
1076 case SWAP_AGAIN:
1077 goto keep_locked;
b291f000
NP
1078 case SWAP_MLOCK:
1079 goto cull_mlocked;
854e9ed0
MK
1080 case SWAP_LZFREE:
1081 goto lazyfree;
1da177e4
LT
1082 case SWAP_SUCCESS:
1083 ; /* try to free the page below */
1084 }
1085 }
1086
1087 if (PageDirty(page)) {
ee72886d
MG
1088 /*
1089 * Only kswapd can writeback filesystem pages to
d43006d5
MG
1090 * avoid risk of stack overflow but only writeback
1091 * if many dirty pages have been encountered.
ee72886d 1092 */
f84f6e2b 1093 if (page_is_file_cache(page) &&
9e3b2f8c 1094 (!current_is_kswapd() ||
57054651 1095 !test_bit(ZONE_DIRTY, &zone->flags))) {
49ea7eb6
MG
1096 /*
1097 * Immediately reclaim when written back.
1098 * Similar in principal to deactivate_page()
1099 * except we already have the page isolated
1100 * and know it's dirty
1101 */
1102 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1103 SetPageReclaim(page);
1104
ee72886d
MG
1105 goto keep_locked;
1106 }
1107
dfc8d636 1108 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1109 goto keep_locked;
4dd4b920 1110 if (!may_enter_fs)
1da177e4 1111 goto keep_locked;
52a8363e 1112 if (!sc->may_writepage)
1da177e4
LT
1113 goto keep_locked;
1114
d950c947
MG
1115 /*
1116 * Page is dirty. Flush the TLB if a writable entry
1117 * potentially exists to avoid CPU writes after IO
1118 * starts and then write it out here.
1119 */
1120 try_to_unmap_flush_dirty();
7d3579e8 1121 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1122 case PAGE_KEEP:
1123 goto keep_locked;
1124 case PAGE_ACTIVATE:
1125 goto activate_locked;
1126 case PAGE_SUCCESS:
7d3579e8 1127 if (PageWriteback(page))
41ac1999 1128 goto keep;
7d3579e8 1129 if (PageDirty(page))
1da177e4 1130 goto keep;
7d3579e8 1131
1da177e4
LT
1132 /*
1133 * A synchronous write - probably a ramdisk. Go
1134 * ahead and try to reclaim the page.
1135 */
529ae9aa 1136 if (!trylock_page(page))
1da177e4
LT
1137 goto keep;
1138 if (PageDirty(page) || PageWriteback(page))
1139 goto keep_locked;
1140 mapping = page_mapping(page);
1141 case PAGE_CLEAN:
1142 ; /* try to free the page below */
1143 }
1144 }
1145
1146 /*
1147 * If the page has buffers, try to free the buffer mappings
1148 * associated with this page. If we succeed we try to free
1149 * the page as well.
1150 *
1151 * We do this even if the page is PageDirty().
1152 * try_to_release_page() does not perform I/O, but it is
1153 * possible for a page to have PageDirty set, but it is actually
1154 * clean (all its buffers are clean). This happens if the
1155 * buffers were written out directly, with submit_bh(). ext3
894bc310 1156 * will do this, as well as the blockdev mapping.
1da177e4
LT
1157 * try_to_release_page() will discover that cleanness and will
1158 * drop the buffers and mark the page clean - it can be freed.
1159 *
1160 * Rarely, pages can have buffers and no ->mapping. These are
1161 * the pages which were not successfully invalidated in
1162 * truncate_complete_page(). We try to drop those buffers here
1163 * and if that worked, and the page is no longer mapped into
1164 * process address space (page_count == 1) it can be freed.
1165 * Otherwise, leave the page on the LRU so it is swappable.
1166 */
266cf658 1167 if (page_has_private(page)) {
1da177e4
LT
1168 if (!try_to_release_page(page, sc->gfp_mask))
1169 goto activate_locked;
e286781d
NP
1170 if (!mapping && page_count(page) == 1) {
1171 unlock_page(page);
1172 if (put_page_testzero(page))
1173 goto free_it;
1174 else {
1175 /*
1176 * rare race with speculative reference.
1177 * the speculative reference will free
1178 * this page shortly, so we may
1179 * increment nr_reclaimed here (and
1180 * leave it off the LRU).
1181 */
1182 nr_reclaimed++;
1183 continue;
1184 }
1185 }
1da177e4
LT
1186 }
1187
854e9ed0 1188lazyfree:
a528910e 1189 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1190 goto keep_locked;
1da177e4 1191
a978d6f5
NP
1192 /*
1193 * At this point, we have no other references and there is
1194 * no way to pick any more up (removed from LRU, removed
1195 * from pagecache). Can use non-atomic bitops now (and
1196 * we obviously don't have to worry about waking up a process
1197 * waiting on the page lock, because there are no references.
1198 */
48c935ad 1199 __ClearPageLocked(page);
e286781d 1200free_it:
854e9ed0
MK
1201 if (ret == SWAP_LZFREE)
1202 count_vm_event(PGLAZYFREED);
1203
05ff5137 1204 nr_reclaimed++;
abe4c3b5
MG
1205
1206 /*
1207 * Is there need to periodically free_page_list? It would
1208 * appear not as the counts should be low
1209 */
1210 list_add(&page->lru, &free_pages);
1da177e4
LT
1211 continue;
1212
b291f000 1213cull_mlocked:
63d6c5ad
HD
1214 if (PageSwapCache(page))
1215 try_to_free_swap(page);
b291f000 1216 unlock_page(page);
c54839a7 1217 list_add(&page->lru, &ret_pages);
b291f000
NP
1218 continue;
1219
1da177e4 1220activate_locked:
68a22394 1221 /* Not a candidate for swapping, so reclaim swap space. */
5ccc5aba 1222 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
a2c43eed 1223 try_to_free_swap(page);
309381fe 1224 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1225 SetPageActive(page);
1226 pgactivate++;
1227keep_locked:
1228 unlock_page(page);
1229keep:
1230 list_add(&page->lru, &ret_pages);
309381fe 1231 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1232 }
abe4c3b5 1233
747db954 1234 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1235 try_to_unmap_flush();
b745bc85 1236 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1237
1da177e4 1238 list_splice(&ret_pages, page_list);
f8891e5e 1239 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1240
8e950282
MG
1241 *ret_nr_dirty += nr_dirty;
1242 *ret_nr_congested += nr_congested;
d43006d5 1243 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1244 *ret_nr_writeback += nr_writeback;
b1a6f21e 1245 *ret_nr_immediate += nr_immediate;
05ff5137 1246 return nr_reclaimed;
1da177e4
LT
1247}
1248
02c6de8d
MK
1249unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1250 struct list_head *page_list)
1251{
1252 struct scan_control sc = {
1253 .gfp_mask = GFP_KERNEL,
1254 .priority = DEF_PRIORITY,
1255 .may_unmap = 1,
1256 };
8e950282 1257 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1258 struct page *page, *next;
1259 LIST_HEAD(clean_pages);
1260
1261 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1262 if (page_is_file_cache(page) && !PageDirty(page) &&
b1123ea6 1263 !__PageMovable(page)) {
02c6de8d
MK
1264 ClearPageActive(page);
1265 list_move(&page->lru, &clean_pages);
1266 }
1267 }
1268
1269 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1270 TTU_UNMAP|TTU_IGNORE_ACCESS,
1271 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d 1272 list_splice(&clean_pages, page_list);
83da7510 1273 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1274 return ret;
1275}
1276
5ad333eb
AW
1277/*
1278 * Attempt to remove the specified page from its LRU. Only take this page
1279 * if it is of the appropriate PageActive status. Pages which are being
1280 * freed elsewhere are also ignored.
1281 *
1282 * page: page to consider
1283 * mode: one of the LRU isolation modes defined above
1284 *
1285 * returns 0 on success, -ve errno on failure.
1286 */
f3fd4a61 1287int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1288{
1289 int ret = -EINVAL;
1290
1291 /* Only take pages on the LRU. */
1292 if (!PageLRU(page))
1293 return ret;
1294
e46a2879
MK
1295 /* Compaction should not handle unevictable pages but CMA can do so */
1296 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1297 return ret;
1298
5ad333eb 1299 ret = -EBUSY;
08e552c6 1300
c8244935
MG
1301 /*
1302 * To minimise LRU disruption, the caller can indicate that it only
1303 * wants to isolate pages it will be able to operate on without
1304 * blocking - clean pages for the most part.
1305 *
1306 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1307 * is used by reclaim when it is cannot write to backing storage
1308 *
1309 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1310 * that it is possible to migrate without blocking
1311 */
1312 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1313 /* All the caller can do on PageWriteback is block */
1314 if (PageWriteback(page))
1315 return ret;
1316
1317 if (PageDirty(page)) {
1318 struct address_space *mapping;
1319
1320 /* ISOLATE_CLEAN means only clean pages */
1321 if (mode & ISOLATE_CLEAN)
1322 return ret;
1323
1324 /*
1325 * Only pages without mappings or that have a
1326 * ->migratepage callback are possible to migrate
1327 * without blocking
1328 */
1329 mapping = page_mapping(page);
1330 if (mapping && !mapping->a_ops->migratepage)
1331 return ret;
1332 }
1333 }
39deaf85 1334
f80c0673
MK
1335 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1336 return ret;
1337
5ad333eb
AW
1338 if (likely(get_page_unless_zero(page))) {
1339 /*
1340 * Be careful not to clear PageLRU until after we're
1341 * sure the page is not being freed elsewhere -- the
1342 * page release code relies on it.
1343 */
1344 ClearPageLRU(page);
1345 ret = 0;
1346 }
1347
1348 return ret;
1349}
1350
1da177e4 1351/*
a52633d8 1352 * zone_lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1353 * shrink the lists perform better by taking out a batch of pages
1354 * and working on them outside the LRU lock.
1355 *
1356 * For pagecache intensive workloads, this function is the hottest
1357 * spot in the kernel (apart from copy_*_user functions).
1358 *
1359 * Appropriate locks must be held before calling this function.
1360 *
1361 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1362 * @lruvec: The LRU vector to pull pages from.
1da177e4 1363 * @dst: The temp list to put pages on to.
f626012d 1364 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1365 * @sc: The scan_control struct for this reclaim session
5ad333eb 1366 * @mode: One of the LRU isolation modes
3cb99451 1367 * @lru: LRU list id for isolating
1da177e4
LT
1368 *
1369 * returns how many pages were moved onto *@dst.
1370 */
69e05944 1371static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1372 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1373 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1374 isolate_mode_t mode, enum lru_list lru)
1da177e4 1375{
75b00af7 1376 struct list_head *src = &lruvec->lists[lru];
69e05944 1377 unsigned long nr_taken = 0;
c9b02d97 1378 unsigned long scan;
1da177e4 1379
0b802f10
VD
1380 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1381 !list_empty(src); scan++) {
5ad333eb 1382 struct page *page;
5ad333eb 1383
1da177e4
LT
1384 page = lru_to_page(src);
1385 prefetchw_prev_lru_page(page, src, flags);
1386
309381fe 1387 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1388
f3fd4a61 1389 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1390 case 0:
9d5e6a9f 1391 nr_taken += hpage_nr_pages(page);
5ad333eb 1392 list_move(&page->lru, dst);
5ad333eb
AW
1393 break;
1394
1395 case -EBUSY:
1396 /* else it is being freed elsewhere */
1397 list_move(&page->lru, src);
1398 continue;
46453a6e 1399
5ad333eb
AW
1400 default:
1401 BUG();
1402 }
1da177e4
LT
1403 }
1404
f626012d 1405 *nr_scanned = scan;
75b00af7
HD
1406 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1407 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1408 return nr_taken;
1409}
1410
62695a84
NP
1411/**
1412 * isolate_lru_page - tries to isolate a page from its LRU list
1413 * @page: page to isolate from its LRU list
1414 *
1415 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1416 * vmstat statistic corresponding to whatever LRU list the page was on.
1417 *
1418 * Returns 0 if the page was removed from an LRU list.
1419 * Returns -EBUSY if the page was not on an LRU list.
1420 *
1421 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1422 * the active list, it will have PageActive set. If it was found on
1423 * the unevictable list, it will have the PageUnevictable bit set. That flag
1424 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1425 *
1426 * The vmstat statistic corresponding to the list on which the page was
1427 * found will be decremented.
1428 *
1429 * Restrictions:
1430 * (1) Must be called with an elevated refcount on the page. This is a
1431 * fundamentnal difference from isolate_lru_pages (which is called
1432 * without a stable reference).
1433 * (2) the lru_lock must not be held.
1434 * (3) interrupts must be enabled.
1435 */
1436int isolate_lru_page(struct page *page)
1437{
1438 int ret = -EBUSY;
1439
309381fe 1440 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1441 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1442
62695a84
NP
1443 if (PageLRU(page)) {
1444 struct zone *zone = page_zone(page);
fa9add64 1445 struct lruvec *lruvec;
62695a84 1446
a52633d8 1447 spin_lock_irq(zone_lru_lock(zone));
fa9add64 1448 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1449 if (PageLRU(page)) {
894bc310 1450 int lru = page_lru(page);
0c917313 1451 get_page(page);
62695a84 1452 ClearPageLRU(page);
fa9add64
HD
1453 del_page_from_lru_list(page, lruvec, lru);
1454 ret = 0;
62695a84 1455 }
a52633d8 1456 spin_unlock_irq(zone_lru_lock(zone));
62695a84
NP
1457 }
1458 return ret;
1459}
1460
35cd7815 1461/*
d37dd5dc
FW
1462 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1463 * then get resheduled. When there are massive number of tasks doing page
1464 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1465 * the LRU list will go small and be scanned faster than necessary, leading to
1466 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1467 */
1468static int too_many_isolated(struct zone *zone, int file,
1469 struct scan_control *sc)
1470{
1471 unsigned long inactive, isolated;
1472
1473 if (current_is_kswapd())
1474 return 0;
1475
97c9341f 1476 if (!sane_reclaim(sc))
35cd7815
RR
1477 return 0;
1478
1479 if (file) {
1480 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1481 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1482 } else {
1483 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1484 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1485 }
1486
3cf23841
FW
1487 /*
1488 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1489 * won't get blocked by normal direct-reclaimers, forming a circular
1490 * deadlock.
1491 */
d0164adc 1492 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1493 inactive >>= 3;
1494
35cd7815
RR
1495 return isolated > inactive;
1496}
1497
66635629 1498static noinline_for_stack void
75b00af7 1499putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1500{
27ac81d8
KK
1501 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1502 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1503 LIST_HEAD(pages_to_free);
66635629 1504
66635629
MG
1505 /*
1506 * Put back any unfreeable pages.
1507 */
66635629 1508 while (!list_empty(page_list)) {
3f79768f 1509 struct page *page = lru_to_page(page_list);
66635629 1510 int lru;
3f79768f 1511
309381fe 1512 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1513 list_del(&page->lru);
39b5f29a 1514 if (unlikely(!page_evictable(page))) {
a52633d8 1515 spin_unlock_irq(zone_lru_lock(zone));
66635629 1516 putback_lru_page(page);
a52633d8 1517 spin_lock_irq(zone_lru_lock(zone));
66635629
MG
1518 continue;
1519 }
fa9add64
HD
1520
1521 lruvec = mem_cgroup_page_lruvec(page, zone);
1522
7a608572 1523 SetPageLRU(page);
66635629 1524 lru = page_lru(page);
fa9add64
HD
1525 add_page_to_lru_list(page, lruvec, lru);
1526
66635629
MG
1527 if (is_active_lru(lru)) {
1528 int file = is_file_lru(lru);
9992af10
RR
1529 int numpages = hpage_nr_pages(page);
1530 reclaim_stat->recent_rotated[file] += numpages;
66635629 1531 }
2bcf8879
HD
1532 if (put_page_testzero(page)) {
1533 __ClearPageLRU(page);
1534 __ClearPageActive(page);
fa9add64 1535 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1536
1537 if (unlikely(PageCompound(page))) {
a52633d8 1538 spin_unlock_irq(zone_lru_lock(zone));
747db954 1539 mem_cgroup_uncharge(page);
2bcf8879 1540 (*get_compound_page_dtor(page))(page);
a52633d8 1541 spin_lock_irq(zone_lru_lock(zone));
2bcf8879
HD
1542 } else
1543 list_add(&page->lru, &pages_to_free);
66635629
MG
1544 }
1545 }
66635629 1546
3f79768f
HD
1547 /*
1548 * To save our caller's stack, now use input list for pages to free.
1549 */
1550 list_splice(&pages_to_free, page_list);
66635629
MG
1551}
1552
399ba0b9
N
1553/*
1554 * If a kernel thread (such as nfsd for loop-back mounts) services
1555 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1556 * In that case we should only throttle if the backing device it is
1557 * writing to is congested. In other cases it is safe to throttle.
1558 */
1559static int current_may_throttle(void)
1560{
1561 return !(current->flags & PF_LESS_THROTTLE) ||
1562 current->backing_dev_info == NULL ||
1563 bdi_write_congested(current->backing_dev_info);
1564}
1565
1da177e4 1566/*
1742f19f
AM
1567 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1568 * of reclaimed pages
1da177e4 1569 */
66635629 1570static noinline_for_stack unsigned long
1a93be0e 1571shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1572 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1573{
1574 LIST_HEAD(page_list);
e247dbce 1575 unsigned long nr_scanned;
05ff5137 1576 unsigned long nr_reclaimed = 0;
e247dbce 1577 unsigned long nr_taken;
8e950282
MG
1578 unsigned long nr_dirty = 0;
1579 unsigned long nr_congested = 0;
e2be15f6 1580 unsigned long nr_unqueued_dirty = 0;
92df3a72 1581 unsigned long nr_writeback = 0;
b1a6f21e 1582 unsigned long nr_immediate = 0;
f3fd4a61 1583 isolate_mode_t isolate_mode = 0;
3cb99451 1584 int file = is_file_lru(lru);
1a93be0e
KK
1585 struct zone *zone = lruvec_zone(lruvec);
1586 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1587
35cd7815 1588 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1589 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1590
1591 /* We are about to die and free our memory. Return now. */
1592 if (fatal_signal_pending(current))
1593 return SWAP_CLUSTER_MAX;
1594 }
1595
1da177e4 1596 lru_add_drain();
f80c0673
MK
1597
1598 if (!sc->may_unmap)
61317289 1599 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1600 if (!sc->may_writepage)
61317289 1601 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1602
a52633d8 1603 spin_lock_irq(zone_lru_lock(zone));
b35ea17b 1604
5dc35979
KK
1605 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1606 &nr_scanned, sc, isolate_mode, lru);
95d918fc 1607
9d5e6a9f 1608 update_lru_size(lruvec, lru, -nr_taken);
95d918fc 1609 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1610 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1611
89b5fae5 1612 if (global_reclaim(sc)) {
0d5d823a 1613 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
e247dbce 1614 if (current_is_kswapd())
75b00af7 1615 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1616 else
75b00af7 1617 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1618 }
a52633d8 1619 spin_unlock_irq(zone_lru_lock(zone));
b35ea17b 1620
d563c050 1621 if (nr_taken == 0)
66635629 1622 return 0;
5ad333eb 1623
02c6de8d 1624 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1625 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1626 &nr_writeback, &nr_immediate,
1627 false);
c661b078 1628
a52633d8 1629 spin_lock_irq(zone_lru_lock(zone));
3f79768f 1630
904249aa
YH
1631 if (global_reclaim(sc)) {
1632 if (current_is_kswapd())
1633 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1634 nr_reclaimed);
1635 else
1636 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1637 nr_reclaimed);
1638 }
a74609fa 1639
27ac81d8 1640 putback_inactive_pages(lruvec, &page_list);
3f79768f 1641
95d918fc 1642 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1643
a52633d8 1644 spin_unlock_irq(zone_lru_lock(zone));
3f79768f 1645
747db954 1646 mem_cgroup_uncharge_list(&page_list);
b745bc85 1647 free_hot_cold_page_list(&page_list, true);
e11da5b4 1648
92df3a72
MG
1649 /*
1650 * If reclaim is isolating dirty pages under writeback, it implies
1651 * that the long-lived page allocation rate is exceeding the page
1652 * laundering rate. Either the global limits are not being effective
1653 * at throttling processes due to the page distribution throughout
1654 * zones or there is heavy usage of a slow backing device. The
1655 * only option is to throttle from reclaim context which is not ideal
1656 * as there is no guarantee the dirtying process is throttled in the
1657 * same way balance_dirty_pages() manages.
1658 *
8e950282
MG
1659 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1660 * of pages under pages flagged for immediate reclaim and stall if any
1661 * are encountered in the nr_immediate check below.
92df3a72 1662 */
918fc718 1663 if (nr_writeback && nr_writeback == nr_taken)
57054651 1664 set_bit(ZONE_WRITEBACK, &zone->flags);
92df3a72 1665
d43006d5 1666 /*
97c9341f
TH
1667 * Legacy memcg will stall in page writeback so avoid forcibly
1668 * stalling here.
d43006d5 1669 */
97c9341f 1670 if (sane_reclaim(sc)) {
8e950282
MG
1671 /*
1672 * Tag a zone as congested if all the dirty pages scanned were
1673 * backed by a congested BDI and wait_iff_congested will stall.
1674 */
1675 if (nr_dirty && nr_dirty == nr_congested)
57054651 1676 set_bit(ZONE_CONGESTED, &zone->flags);
8e950282 1677
b1a6f21e
MG
1678 /*
1679 * If dirty pages are scanned that are not queued for IO, it
1680 * implies that flushers are not keeping up. In this case, flag
57054651
JW
1681 * the zone ZONE_DIRTY and kswapd will start writing pages from
1682 * reclaim context.
b1a6f21e
MG
1683 */
1684 if (nr_unqueued_dirty == nr_taken)
57054651 1685 set_bit(ZONE_DIRTY, &zone->flags);
b1a6f21e
MG
1686
1687 /*
b738d764
LT
1688 * If kswapd scans pages marked marked for immediate
1689 * reclaim and under writeback (nr_immediate), it implies
1690 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1691 * they are written so also forcibly stall.
1692 */
b738d764 1693 if (nr_immediate && current_may_throttle())
b1a6f21e 1694 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1695 }
d43006d5 1696
8e950282
MG
1697 /*
1698 * Stall direct reclaim for IO completions if underlying BDIs or zone
1699 * is congested. Allow kswapd to continue until it starts encountering
1700 * unqueued dirty pages or cycling through the LRU too quickly.
1701 */
399ba0b9
N
1702 if (!sc->hibernation_mode && !current_is_kswapd() &&
1703 current_may_throttle())
8e950282
MG
1704 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1705
ba5e9579 1706 trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed,
1707 sc->priority, file);
05ff5137 1708 return nr_reclaimed;
1da177e4
LT
1709}
1710
1711/*
1712 * This moves pages from the active list to the inactive list.
1713 *
1714 * We move them the other way if the page is referenced by one or more
1715 * processes, from rmap.
1716 *
1717 * If the pages are mostly unmapped, the processing is fast and it is
a52633d8 1718 * appropriate to hold zone_lru_lock across the whole operation. But if
1da177e4 1719 * the pages are mapped, the processing is slow (page_referenced()) so we
a52633d8 1720 * should drop zone_lru_lock around each page. It's impossible to balance
1da177e4
LT
1721 * this, so instead we remove the pages from the LRU while processing them.
1722 * It is safe to rely on PG_active against the non-LRU pages in here because
1723 * nobody will play with that bit on a non-LRU page.
1724 *
0139aa7b 1725 * The downside is that we have to touch page->_refcount against each page.
1da177e4
LT
1726 * But we had to alter page->flags anyway.
1727 */
1cfb419b 1728
fa9add64 1729static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1730 struct list_head *list,
2bcf8879 1731 struct list_head *pages_to_free,
3eb4140f
WF
1732 enum lru_list lru)
1733{
fa9add64 1734 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1735 unsigned long pgmoved = 0;
3eb4140f 1736 struct page *page;
fa9add64 1737 int nr_pages;
3eb4140f 1738
3eb4140f
WF
1739 while (!list_empty(list)) {
1740 page = lru_to_page(list);
fa9add64 1741 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f 1742
309381fe 1743 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1744 SetPageLRU(page);
1745
fa9add64 1746 nr_pages = hpage_nr_pages(page);
9d5e6a9f 1747 update_lru_size(lruvec, lru, nr_pages);
925b7673 1748 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1749 pgmoved += nr_pages;
3eb4140f 1750
2bcf8879
HD
1751 if (put_page_testzero(page)) {
1752 __ClearPageLRU(page);
1753 __ClearPageActive(page);
fa9add64 1754 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1755
1756 if (unlikely(PageCompound(page))) {
a52633d8 1757 spin_unlock_irq(zone_lru_lock(zone));
747db954 1758 mem_cgroup_uncharge(page);
2bcf8879 1759 (*get_compound_page_dtor(page))(page);
a52633d8 1760 spin_lock_irq(zone_lru_lock(zone));
2bcf8879
HD
1761 } else
1762 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1763 }
1764 }
9d5e6a9f 1765
3eb4140f
WF
1766 if (!is_active_lru(lru))
1767 __count_vm_events(PGDEACTIVATE, pgmoved);
1768}
1cfb419b 1769
f626012d 1770static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1771 struct lruvec *lruvec,
f16015fb 1772 struct scan_control *sc,
9e3b2f8c 1773 enum lru_list lru)
1da177e4 1774{
44c241f1 1775 unsigned long nr_taken;
f626012d 1776 unsigned long nr_scanned;
6fe6b7e3 1777 unsigned long vm_flags;
1da177e4 1778 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1779 LIST_HEAD(l_active);
b69408e8 1780 LIST_HEAD(l_inactive);
1da177e4 1781 struct page *page;
1a93be0e 1782 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1783 unsigned long nr_rotated = 0;
f3fd4a61 1784 isolate_mode_t isolate_mode = 0;
3cb99451 1785 int file = is_file_lru(lru);
1a93be0e 1786 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1787
1788 lru_add_drain();
f80c0673
MK
1789
1790 if (!sc->may_unmap)
61317289 1791 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1792 if (!sc->may_writepage)
61317289 1793 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1794
a52633d8 1795 spin_lock_irq(zone_lru_lock(zone));
925b7673 1796
5dc35979
KK
1797 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1798 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1799
9d5e6a9f
HD
1800 update_lru_size(lruvec, lru, -nr_taken);
1801 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 1802 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1803
9d5e6a9f
HD
1804 if (global_reclaim(sc))
1805 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
f626012d 1806 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
9d5e6a9f 1807
a52633d8 1808 spin_unlock_irq(zone_lru_lock(zone));
1da177e4 1809
1da177e4
LT
1810 while (!list_empty(&l_hold)) {
1811 cond_resched();
1812 page = lru_to_page(&l_hold);
1813 list_del(&page->lru);
7e9cd484 1814
39b5f29a 1815 if (unlikely(!page_evictable(page))) {
894bc310
LS
1816 putback_lru_page(page);
1817 continue;
1818 }
1819
cc715d99
MG
1820 if (unlikely(buffer_heads_over_limit)) {
1821 if (page_has_private(page) && trylock_page(page)) {
1822 if (page_has_private(page))
1823 try_to_release_page(page, 0);
1824 unlock_page(page);
1825 }
1826 }
1827
c3ac9a8a
JW
1828 if (page_referenced(page, 0, sc->target_mem_cgroup,
1829 &vm_flags)) {
9992af10 1830 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1831 /*
1832 * Identify referenced, file-backed active pages and
1833 * give them one more trip around the active list. So
1834 * that executable code get better chances to stay in
1835 * memory under moderate memory pressure. Anon pages
1836 * are not likely to be evicted by use-once streaming
1837 * IO, plus JVM can create lots of anon VM_EXEC pages,
1838 * so we ignore them here.
1839 */
41e20983 1840 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1841 list_add(&page->lru, &l_active);
1842 continue;
1843 }
1844 }
7e9cd484 1845
5205e56e 1846 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1847 list_add(&page->lru, &l_inactive);
1848 }
1849
b555749a 1850 /*
8cab4754 1851 * Move pages back to the lru list.
b555749a 1852 */
a52633d8 1853 spin_lock_irq(zone_lru_lock(zone));
556adecb 1854 /*
8cab4754
WF
1855 * Count referenced pages from currently used mappings as rotated,
1856 * even though only some of them are actually re-activated. This
1857 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 1858 * get_scan_count.
7e9cd484 1859 */
b7c46d15 1860 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1861
fa9add64
HD
1862 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1863 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1864 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
a52633d8 1865 spin_unlock_irq(zone_lru_lock(zone));
2bcf8879 1866
747db954 1867 mem_cgroup_uncharge_list(&l_hold);
b745bc85 1868 free_hot_cold_page_list(&l_hold, true);
1da177e4
LT
1869}
1870
59dc76b0
RR
1871/*
1872 * The inactive anon list should be small enough that the VM never has
1873 * to do too much work.
14797e23 1874 *
59dc76b0
RR
1875 * The inactive file list should be small enough to leave most memory
1876 * to the established workingset on the scan-resistant active list,
1877 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 1878 *
59dc76b0
RR
1879 * Both inactive lists should also be large enough that each inactive
1880 * page has a chance to be referenced again before it is reclaimed.
56e49d21 1881 *
59dc76b0
RR
1882 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
1883 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
1884 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 1885 *
59dc76b0
RR
1886 * total target max
1887 * memory ratio inactive
1888 * -------------------------------------
1889 * 10MB 1 5MB
1890 * 100MB 1 50MB
1891 * 1GB 3 250MB
1892 * 10GB 10 0.9GB
1893 * 100GB 31 3GB
1894 * 1TB 101 10GB
1895 * 10TB 320 32GB
56e49d21 1896 */
59dc76b0 1897static bool inactive_list_is_low(struct lruvec *lruvec, bool file)
56e49d21 1898{
59dc76b0 1899 unsigned long inactive_ratio;
e3790144
JW
1900 unsigned long inactive;
1901 unsigned long active;
59dc76b0 1902 unsigned long gb;
e3790144 1903
59dc76b0
RR
1904 /*
1905 * If we don't have swap space, anonymous page deactivation
1906 * is pointless.
1907 */
1908 if (!file && !total_swap_pages)
1909 return false;
56e49d21 1910
59dc76b0
RR
1911 inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
1912 active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
56e49d21 1913
59dc76b0
RR
1914 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1915 if (gb)
1916 inactive_ratio = int_sqrt(10 * gb);
b39415b2 1917 else
59dc76b0
RR
1918 inactive_ratio = 1;
1919
1920 return inactive * inactive_ratio < active;
b39415b2
RR
1921}
1922
4f98a2fe 1923static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1924 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1925{
b39415b2 1926 if (is_active_lru(lru)) {
59dc76b0 1927 if (inactive_list_is_low(lruvec, is_file_lru(lru)))
1a93be0e 1928 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1929 return 0;
1930 }
1931
1a93be0e 1932 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1933}
1934
9a265114
JW
1935enum scan_balance {
1936 SCAN_EQUAL,
1937 SCAN_FRACT,
1938 SCAN_ANON,
1939 SCAN_FILE,
1940};
1941
4f98a2fe
RR
1942/*
1943 * Determine how aggressively the anon and file LRU lists should be
1944 * scanned. The relative value of each set of LRU lists is determined
1945 * by looking at the fraction of the pages scanned we did rotate back
1946 * onto the active list instead of evict.
1947 *
be7bd59d
WL
1948 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1949 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1950 */
33377678 1951static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
1952 struct scan_control *sc, unsigned long *nr,
1953 unsigned long *lru_pages)
4f98a2fe 1954{
33377678 1955 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
1956 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1957 u64 fraction[2];
1958 u64 denominator = 0; /* gcc */
1959 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1960 unsigned long anon_prio, file_prio;
9a265114 1961 enum scan_balance scan_balance;
0bf1457f 1962 unsigned long anon, file;
9a265114 1963 bool force_scan = false;
4f98a2fe 1964 unsigned long ap, fp;
4111304d 1965 enum lru_list lru;
6f04f48d
SS
1966 bool some_scanned;
1967 int pass;
246e87a9 1968
f11c0ca5
JW
1969 /*
1970 * If the zone or memcg is small, nr[l] can be 0. This
1971 * results in no scanning on this priority and a potential
1972 * priority drop. Global direct reclaim can go to the next
1973 * zone and tends to have no problems. Global kswapd is for
1974 * zone balancing and it needs to scan a minimum amount. When
1975 * reclaiming for a memcg, a priority drop can cause high
1976 * latencies, so it's better to scan a minimum amount there as
1977 * well.
1978 */
90cbc250
VD
1979 if (current_is_kswapd()) {
1980 if (!zone_reclaimable(zone))
1981 force_scan = true;
eb01aaab 1982 if (!mem_cgroup_online(memcg))
90cbc250
VD
1983 force_scan = true;
1984 }
89b5fae5 1985 if (!global_reclaim(sc))
a4d3e9e7 1986 force_scan = true;
76a33fc3
SL
1987
1988 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 1989 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 1990 scan_balance = SCAN_FILE;
76a33fc3
SL
1991 goto out;
1992 }
4f98a2fe 1993
10316b31
JW
1994 /*
1995 * Global reclaim will swap to prevent OOM even with no
1996 * swappiness, but memcg users want to use this knob to
1997 * disable swapping for individual groups completely when
1998 * using the memory controller's swap limit feature would be
1999 * too expensive.
2000 */
02695175 2001 if (!global_reclaim(sc) && !swappiness) {
9a265114 2002 scan_balance = SCAN_FILE;
10316b31
JW
2003 goto out;
2004 }
2005
2006 /*
2007 * Do not apply any pressure balancing cleverness when the
2008 * system is close to OOM, scan both anon and file equally
2009 * (unless the swappiness setting disagrees with swapping).
2010 */
02695175 2011 if (!sc->priority && swappiness) {
9a265114 2012 scan_balance = SCAN_EQUAL;
10316b31
JW
2013 goto out;
2014 }
2015
62376251
JW
2016 /*
2017 * Prevent the reclaimer from falling into the cache trap: as
2018 * cache pages start out inactive, every cache fault will tip
2019 * the scan balance towards the file LRU. And as the file LRU
2020 * shrinks, so does the window for rotation from references.
2021 * This means we have a runaway feedback loop where a tiny
2022 * thrashing file LRU becomes infinitely more attractive than
2023 * anon pages. Try to detect this based on file LRU size.
2024 */
2025 if (global_reclaim(sc)) {
2ab051e1
JM
2026 unsigned long zonefile;
2027 unsigned long zonefree;
2028
2029 zonefree = zone_page_state(zone, NR_FREE_PAGES);
2030 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2031 zone_page_state(zone, NR_INACTIVE_FILE);
62376251 2032
2ab051e1 2033 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
62376251
JW
2034 scan_balance = SCAN_ANON;
2035 goto out;
2036 }
2037 }
2038
7c5bd705 2039 /*
316bda0e
VD
2040 * If there is enough inactive page cache, i.e. if the size of the
2041 * inactive list is greater than that of the active list *and* the
2042 * inactive list actually has some pages to scan on this priority, we
2043 * do not reclaim anything from the anonymous working set right now.
2044 * Without the second condition we could end up never scanning an
2045 * lruvec even if it has plenty of old anonymous pages unless the
2046 * system is under heavy pressure.
7c5bd705 2047 */
59dc76b0 2048 if (!inactive_list_is_low(lruvec, true) &&
23047a96 2049 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
9a265114 2050 scan_balance = SCAN_FILE;
7c5bd705
JW
2051 goto out;
2052 }
2053
9a265114
JW
2054 scan_balance = SCAN_FRACT;
2055
58c37f6e
KM
2056 /*
2057 * With swappiness at 100, anonymous and file have the same priority.
2058 * This scanning priority is essentially the inverse of IO cost.
2059 */
02695175 2060 anon_prio = swappiness;
75b00af7 2061 file_prio = 200 - anon_prio;
58c37f6e 2062
4f98a2fe
RR
2063 /*
2064 * OK, so we have swap space and a fair amount of page cache
2065 * pages. We use the recently rotated / recently scanned
2066 * ratios to determine how valuable each cache is.
2067 *
2068 * Because workloads change over time (and to avoid overflow)
2069 * we keep these statistics as a floating average, which ends
2070 * up weighing recent references more than old ones.
2071 *
2072 * anon in [0], file in [1]
2073 */
2ab051e1 2074
23047a96
JW
2075 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
2076 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
2077 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
2078 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2ab051e1 2079
a52633d8 2080 spin_lock_irq(zone_lru_lock(zone));
6e901571 2081 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2082 reclaim_stat->recent_scanned[0] /= 2;
2083 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2084 }
2085
6e901571 2086 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2087 reclaim_stat->recent_scanned[1] /= 2;
2088 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2089 }
2090
4f98a2fe 2091 /*
00d8089c
RR
2092 * The amount of pressure on anon vs file pages is inversely
2093 * proportional to the fraction of recently scanned pages on
2094 * each list that were recently referenced and in active use.
4f98a2fe 2095 */
fe35004f 2096 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2097 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2098
fe35004f 2099 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2100 fp /= reclaim_stat->recent_rotated[1] + 1;
a52633d8 2101 spin_unlock_irq(zone_lru_lock(zone));
4f98a2fe 2102
76a33fc3
SL
2103 fraction[0] = ap;
2104 fraction[1] = fp;
2105 denominator = ap + fp + 1;
2106out:
6f04f48d
SS
2107 some_scanned = false;
2108 /* Only use force_scan on second pass. */
2109 for (pass = 0; !some_scanned && pass < 2; pass++) {
6b4f7799 2110 *lru_pages = 0;
6f04f48d
SS
2111 for_each_evictable_lru(lru) {
2112 int file = is_file_lru(lru);
2113 unsigned long size;
2114 unsigned long scan;
6e08a369 2115
23047a96 2116 size = lruvec_lru_size(lruvec, lru);
6f04f48d 2117 scan = size >> sc->priority;
9a265114 2118
6f04f48d
SS
2119 if (!scan && pass && force_scan)
2120 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2121
6f04f48d
SS
2122 switch (scan_balance) {
2123 case SCAN_EQUAL:
2124 /* Scan lists relative to size */
2125 break;
2126 case SCAN_FRACT:
2127 /*
2128 * Scan types proportional to swappiness and
2129 * their relative recent reclaim efficiency.
2130 */
2131 scan = div64_u64(scan * fraction[file],
2132 denominator);
2133 break;
2134 case SCAN_FILE:
2135 case SCAN_ANON:
2136 /* Scan one type exclusively */
6b4f7799
JW
2137 if ((scan_balance == SCAN_FILE) != file) {
2138 size = 0;
6f04f48d 2139 scan = 0;
6b4f7799 2140 }
6f04f48d
SS
2141 break;
2142 default:
2143 /* Look ma, no brain */
2144 BUG();
2145 }
6b4f7799
JW
2146
2147 *lru_pages += size;
6f04f48d 2148 nr[lru] = scan;
6b4f7799 2149
9a265114 2150 /*
6f04f48d
SS
2151 * Skip the second pass and don't force_scan,
2152 * if we found something to scan.
9a265114 2153 */
6f04f48d 2154 some_scanned |= !!scan;
9a265114 2155 }
76a33fc3 2156 }
6e08a369 2157}
4f98a2fe 2158
72b252ae
MG
2159#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2160static void init_tlb_ubc(void)
2161{
2162 /*
2163 * This deliberately does not clear the cpumask as it's expensive
2164 * and unnecessary. If there happens to be data in there then the
2165 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2166 * then will be cleared.
2167 */
2168 current->tlb_ubc.flush_required = false;
2169}
2170#else
2171static inline void init_tlb_ubc(void)
2172{
2173}
2174#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2175
9b4f98cd
JW
2176/*
2177 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2178 */
33377678
VD
2179static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg,
2180 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2181{
33377678 2182 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
9b4f98cd 2183 unsigned long nr[NR_LRU_LISTS];
e82e0561 2184 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2185 unsigned long nr_to_scan;
2186 enum lru_list lru;
2187 unsigned long nr_reclaimed = 0;
2188 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2189 struct blk_plug plug;
1a501907 2190 bool scan_adjusted;
9b4f98cd 2191
33377678 2192 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2193
e82e0561
MG
2194 /* Record the original scan target for proportional adjustments later */
2195 memcpy(targets, nr, sizeof(nr));
2196
1a501907
MG
2197 /*
2198 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2199 * event that can occur when there is little memory pressure e.g.
2200 * multiple streaming readers/writers. Hence, we do not abort scanning
2201 * when the requested number of pages are reclaimed when scanning at
2202 * DEF_PRIORITY on the assumption that the fact we are direct
2203 * reclaiming implies that kswapd is not keeping up and it is best to
2204 * do a batch of work at once. For memcg reclaim one check is made to
2205 * abort proportional reclaim if either the file or anon lru has already
2206 * dropped to zero at the first pass.
2207 */
2208 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2209 sc->priority == DEF_PRIORITY);
2210
72b252ae
MG
2211 init_tlb_ubc();
2212
9b4f98cd
JW
2213 blk_start_plug(&plug);
2214 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2215 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2216 unsigned long nr_anon, nr_file, percentage;
2217 unsigned long nr_scanned;
2218
9b4f98cd
JW
2219 for_each_evictable_lru(lru) {
2220 if (nr[lru]) {
2221 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2222 nr[lru] -= nr_to_scan;
2223
2224 nr_reclaimed += shrink_list(lru, nr_to_scan,
2225 lruvec, sc);
2226 }
2227 }
e82e0561
MG
2228
2229 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2230 continue;
2231
e82e0561
MG
2232 /*
2233 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2234 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2235 * proportionally what was requested by get_scan_count(). We
2236 * stop reclaiming one LRU and reduce the amount scanning
2237 * proportional to the original scan target.
2238 */
2239 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2240 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2241
1a501907
MG
2242 /*
2243 * It's just vindictive to attack the larger once the smaller
2244 * has gone to zero. And given the way we stop scanning the
2245 * smaller below, this makes sure that we only make one nudge
2246 * towards proportionality once we've got nr_to_reclaim.
2247 */
2248 if (!nr_file || !nr_anon)
2249 break;
2250
e82e0561
MG
2251 if (nr_file > nr_anon) {
2252 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2253 targets[LRU_ACTIVE_ANON] + 1;
2254 lru = LRU_BASE;
2255 percentage = nr_anon * 100 / scan_target;
2256 } else {
2257 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2258 targets[LRU_ACTIVE_FILE] + 1;
2259 lru = LRU_FILE;
2260 percentage = nr_file * 100 / scan_target;
2261 }
2262
2263 /* Stop scanning the smaller of the LRU */
2264 nr[lru] = 0;
2265 nr[lru + LRU_ACTIVE] = 0;
2266
2267 /*
2268 * Recalculate the other LRU scan count based on its original
2269 * scan target and the percentage scanning already complete
2270 */
2271 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2272 nr_scanned = targets[lru] - nr[lru];
2273 nr[lru] = targets[lru] * (100 - percentage) / 100;
2274 nr[lru] -= min(nr[lru], nr_scanned);
2275
2276 lru += LRU_ACTIVE;
2277 nr_scanned = targets[lru] - nr[lru];
2278 nr[lru] = targets[lru] * (100 - percentage) / 100;
2279 nr[lru] -= min(nr[lru], nr_scanned);
2280
2281 scan_adjusted = true;
9b4f98cd
JW
2282 }
2283 blk_finish_plug(&plug);
2284 sc->nr_reclaimed += nr_reclaimed;
2285
2286 /*
2287 * Even if we did not try to evict anon pages at all, we want to
2288 * rebalance the anon lru active/inactive ratio.
2289 */
59dc76b0 2290 if (inactive_list_is_low(lruvec, false))
9b4f98cd
JW
2291 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2292 sc, LRU_ACTIVE_ANON);
2293
2294 throttle_vm_writeout(sc->gfp_mask);
2295}
2296
23b9da55 2297/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2298static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2299{
d84da3f9 2300 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2301 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2302 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2303 return true;
2304
2305 return false;
2306}
2307
3e7d3449 2308/*
23b9da55
MG
2309 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2310 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2311 * true if more pages should be reclaimed such that when the page allocator
2312 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2313 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2314 */
9b4f98cd 2315static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2316 unsigned long nr_reclaimed,
2317 unsigned long nr_scanned,
2318 struct scan_control *sc)
2319{
2320 unsigned long pages_for_compaction;
2321 unsigned long inactive_lru_pages;
2322
2323 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2324 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2325 return false;
2326
2876592f
MG
2327 /* Consider stopping depending on scan and reclaim activity */
2328 if (sc->gfp_mask & __GFP_REPEAT) {
2329 /*
2330 * For __GFP_REPEAT allocations, stop reclaiming if the
2331 * full LRU list has been scanned and we are still failing
2332 * to reclaim pages. This full LRU scan is potentially
2333 * expensive but a __GFP_REPEAT caller really wants to succeed
2334 */
2335 if (!nr_reclaimed && !nr_scanned)
2336 return false;
2337 } else {
2338 /*
2339 * For non-__GFP_REPEAT allocations which can presumably
2340 * fail without consequence, stop if we failed to reclaim
2341 * any pages from the last SWAP_CLUSTER_MAX number of
2342 * pages that were scanned. This will return to the
2343 * caller faster at the risk reclaim/compaction and
2344 * the resulting allocation attempt fails
2345 */
2346 if (!nr_reclaimed)
2347 return false;
2348 }
3e7d3449
MG
2349
2350 /*
2351 * If we have not reclaimed enough pages for compaction and the
2352 * inactive lists are large enough, continue reclaiming
2353 */
2354 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2355 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2356 if (get_nr_swap_pages() > 0)
9b4f98cd 2357 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2358 if (sc->nr_reclaimed < pages_for_compaction &&
2359 inactive_lru_pages > pages_for_compaction)
2360 return true;
2361
2362 /* If compaction would go ahead or the allocation would succeed, stop */
ebff3980 2363 switch (compaction_suitable(zone, sc->order, 0, 0)) {
3e7d3449
MG
2364 case COMPACT_PARTIAL:
2365 case COMPACT_CONTINUE:
2366 return false;
2367 default:
2368 return true;
2369 }
2370}
2371
6b4f7799
JW
2372static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2373 bool is_classzone)
1da177e4 2374{
cb731d6c 2375 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2376 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2377 bool reclaimable = false;
1da177e4 2378
9b4f98cd
JW
2379 do {
2380 struct mem_cgroup *root = sc->target_mem_cgroup;
2381 struct mem_cgroup_reclaim_cookie reclaim = {
2382 .zone = zone,
2383 .priority = sc->priority,
2384 };
6b4f7799 2385 unsigned long zone_lru_pages = 0;
694fbc0f 2386 struct mem_cgroup *memcg;
3e7d3449 2387
9b4f98cd
JW
2388 nr_reclaimed = sc->nr_reclaimed;
2389 nr_scanned = sc->nr_scanned;
1da177e4 2390
694fbc0f
AM
2391 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2392 do {
6b4f7799 2393 unsigned long lru_pages;
8e8ae645 2394 unsigned long reclaimed;
cb731d6c 2395 unsigned long scanned;
5660048c 2396
241994ed
JW
2397 if (mem_cgroup_low(root, memcg)) {
2398 if (!sc->may_thrash)
2399 continue;
2400 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2401 }
2402
8e8ae645 2403 reclaimed = sc->nr_reclaimed;
cb731d6c 2404 scanned = sc->nr_scanned;
f9be23d6 2405
33377678 2406 shrink_zone_memcg(zone, memcg, sc, &lru_pages);
6b4f7799 2407 zone_lru_pages += lru_pages;
f16015fb 2408
cb731d6c
VD
2409 if (memcg && is_classzone)
2410 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2411 memcg, sc->nr_scanned - scanned,
2412 lru_pages);
2413
8e8ae645
JW
2414 /* Record the group's reclaim efficiency */
2415 vmpressure(sc->gfp_mask, memcg, false,
2416 sc->nr_scanned - scanned,
2417 sc->nr_reclaimed - reclaimed);
2418
9b4f98cd 2419 /*
a394cb8e
MH
2420 * Direct reclaim and kswapd have to scan all memory
2421 * cgroups to fulfill the overall scan target for the
9b4f98cd 2422 * zone.
a394cb8e
MH
2423 *
2424 * Limit reclaim, on the other hand, only cares about
2425 * nr_to_reclaim pages to be reclaimed and it will
2426 * retry with decreasing priority if one round over the
2427 * whole hierarchy is not sufficient.
9b4f98cd 2428 */
a394cb8e
MH
2429 if (!global_reclaim(sc) &&
2430 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2431 mem_cgroup_iter_break(root, memcg);
2432 break;
2433 }
241994ed 2434 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2435
6b4f7799
JW
2436 /*
2437 * Shrink the slab caches in the same proportion that
2438 * the eligible LRU pages were scanned.
2439 */
cb731d6c
VD
2440 if (global_reclaim(sc) && is_classzone)
2441 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2442 sc->nr_scanned - nr_scanned,
2443 zone_lru_pages);
2444
2445 if (reclaim_state) {
2446 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2447 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2448 }
2449
8e8ae645
JW
2450 /* Record the subtree's reclaim efficiency */
2451 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2452 sc->nr_scanned - nr_scanned,
2453 sc->nr_reclaimed - nr_reclaimed);
2454
2344d7e4
JW
2455 if (sc->nr_reclaimed - nr_reclaimed)
2456 reclaimable = true;
2457
9b4f98cd
JW
2458 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2459 sc->nr_scanned - nr_scanned, sc));
2344d7e4
JW
2460
2461 return reclaimable;
f16015fb
JW
2462}
2463
53853e2d
VB
2464/*
2465 * Returns true if compaction should go ahead for a high-order request, or
2466 * the high-order allocation would succeed without compaction.
2467 */
b6459cc1 2468static inline bool compaction_ready(struct zone *zone, int order, int classzone_idx)
fe4b1b24
MG
2469{
2470 unsigned long balance_gap, watermark;
2471 bool watermark_ok;
2472
fe4b1b24
MG
2473 /*
2474 * Compaction takes time to run and there are potentially other
2475 * callers using the pages just freed. Continue reclaiming until
2476 * there is a buffer of free pages available to give compaction
2477 * a reasonable chance of completing and allocating the page
2478 */
4be89a34
JZ
2479 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2480 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
0b06496a 2481 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
b6459cc1 2482 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, classzone_idx);
fe4b1b24
MG
2483
2484 /*
2485 * If compaction is deferred, reclaim up to a point where
2486 * compaction will have a chance of success when re-enabled
2487 */
0b06496a 2488 if (compaction_deferred(zone, order))
fe4b1b24
MG
2489 return watermark_ok;
2490
53853e2d
VB
2491 /*
2492 * If compaction is not ready to start and allocation is not likely
2493 * to succeed without it, then keep reclaiming.
2494 */
b6459cc1 2495 if (compaction_suitable(zone, order, 0, classzone_idx) == COMPACT_SKIPPED)
fe4b1b24
MG
2496 return false;
2497
2498 return watermark_ok;
2499}
2500
1da177e4
LT
2501/*
2502 * This is the direct reclaim path, for page-allocating processes. We only
2503 * try to reclaim pages from zones which will satisfy the caller's allocation
2504 * request.
2505 *
41858966
MG
2506 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2507 * Because:
1da177e4
LT
2508 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2509 * allocation or
41858966
MG
2510 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2511 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2512 * zone defense algorithm.
1da177e4 2513 *
1da177e4
LT
2514 * If a zone is deemed to be full of pinned pages then just give it a light
2515 * scan then give up on it.
2516 */
0a0337e0 2517static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2518{
dd1a239f 2519 struct zoneref *z;
54a6eb5c 2520 struct zone *zone;
0608f43d
AM
2521 unsigned long nr_soft_reclaimed;
2522 unsigned long nr_soft_scanned;
619d0d76 2523 gfp_t orig_mask;
9bbc04ee 2524 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
1cfb419b 2525
cc715d99
MG
2526 /*
2527 * If the number of buffer_heads in the machine exceeds the maximum
2528 * allowed level, force direct reclaim to scan the highmem zone as
2529 * highmem pages could be pinning lowmem pages storing buffer_heads
2530 */
619d0d76 2531 orig_mask = sc->gfp_mask;
cc715d99
MG
2532 if (buffer_heads_over_limit)
2533 sc->gfp_mask |= __GFP_HIGHMEM;
2534
d4debc66 2535 for_each_zone_zonelist_nodemask(zone, z, zonelist,
7bf52fb8 2536 gfp_zone(sc->gfp_mask), sc->nodemask) {
6b4f7799
JW
2537 enum zone_type classzone_idx;
2538
f3fe6512 2539 if (!populated_zone(zone))
1da177e4 2540 continue;
6b4f7799
JW
2541
2542 classzone_idx = requested_highidx;
2543 while (!populated_zone(zone->zone_pgdat->node_zones +
2544 classzone_idx))
2545 classzone_idx--;
2546
1cfb419b
KH
2547 /*
2548 * Take care memory controller reclaiming has small influence
2549 * to global LRU.
2550 */
89b5fae5 2551 if (global_reclaim(sc)) {
344736f2
VD
2552 if (!cpuset_zone_allowed(zone,
2553 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2554 continue;
65ec02cb 2555
6e543d57
LD
2556 if (sc->priority != DEF_PRIORITY &&
2557 !zone_reclaimable(zone))
1cfb419b 2558 continue; /* Let kswapd poll it */
0b06496a
JW
2559
2560 /*
2561 * If we already have plenty of memory free for
2562 * compaction in this zone, don't free any more.
2563 * Even though compaction is invoked for any
2564 * non-zero order, only frequent costly order
2565 * reclamation is disruptive enough to become a
2566 * noticeable problem, like transparent huge
2567 * page allocations.
2568 */
2569 if (IS_ENABLED(CONFIG_COMPACTION) &&
2570 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2571 zonelist_zone_idx(z) <= requested_highidx &&
b6459cc1 2572 compaction_ready(zone, sc->order, requested_highidx)) {
0b06496a
JW
2573 sc->compaction_ready = true;
2574 continue;
e0887c19 2575 }
0b06496a 2576
0608f43d
AM
2577 /*
2578 * This steals pages from memory cgroups over softlimit
2579 * and returns the number of reclaimed pages and
2580 * scanned pages. This works for global memory pressure
2581 * and balancing, not for a memcg's limit.
2582 */
2583 nr_soft_scanned = 0;
2584 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2585 sc->order, sc->gfp_mask,
2586 &nr_soft_scanned);
2587 sc->nr_reclaimed += nr_soft_reclaimed;
2588 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2589 /* need some check for avoid more shrink_zone() */
1cfb419b 2590 }
408d8544 2591
0a0337e0 2592 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
1da177e4 2593 }
e0c23279 2594
619d0d76
WY
2595 /*
2596 * Restore to original mask to avoid the impact on the caller if we
2597 * promoted it to __GFP_HIGHMEM.
2598 */
2599 sc->gfp_mask = orig_mask;
1da177e4 2600}
4f98a2fe 2601
1da177e4
LT
2602/*
2603 * This is the main entry point to direct page reclaim.
2604 *
2605 * If a full scan of the inactive list fails to free enough memory then we
2606 * are "out of memory" and something needs to be killed.
2607 *
2608 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2609 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2610 * caller can't do much about. We kick the writeback threads and take explicit
2611 * naps in the hope that some of these pages can be written. But if the
2612 * allocating task holds filesystem locks which prevent writeout this might not
2613 * work, and the allocation attempt will fail.
a41f24ea
NA
2614 *
2615 * returns: 0, if no pages reclaimed
2616 * else, the number of pages reclaimed
1da177e4 2617 */
dac1d27b 2618static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2619 struct scan_control *sc)
1da177e4 2620{
241994ed 2621 int initial_priority = sc->priority;
69e05944 2622 unsigned long total_scanned = 0;
22fba335 2623 unsigned long writeback_threshold;
241994ed 2624retry:
873b4771
KK
2625 delayacct_freepages_start();
2626
89b5fae5 2627 if (global_reclaim(sc))
1cfb419b 2628 count_vm_event(ALLOCSTALL);
1da177e4 2629
9e3b2f8c 2630 do {
70ddf637
AV
2631 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2632 sc->priority);
66e1707b 2633 sc->nr_scanned = 0;
0a0337e0 2634 shrink_zones(zonelist, sc);
c6a8a8c5 2635
66e1707b 2636 total_scanned += sc->nr_scanned;
bb21c7ce 2637 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2638 break;
2639
2640 if (sc->compaction_ready)
2641 break;
1da177e4 2642
0e50ce3b
MK
2643 /*
2644 * If we're getting trouble reclaiming, start doing
2645 * writepage even in laptop mode.
2646 */
2647 if (sc->priority < DEF_PRIORITY - 2)
2648 sc->may_writepage = 1;
2649
1da177e4
LT
2650 /*
2651 * Try to write back as many pages as we just scanned. This
2652 * tends to cause slow streaming writers to write data to the
2653 * disk smoothly, at the dirtying rate, which is nice. But
2654 * that's undesirable in laptop mode, where we *want* lumpy
2655 * writeout. So in laptop mode, write out the whole world.
2656 */
22fba335
KM
2657 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2658 if (total_scanned > writeback_threshold) {
0e175a18
CW
2659 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2660 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2661 sc->may_writepage = 1;
1da177e4 2662 }
0b06496a 2663 } while (--sc->priority >= 0);
bb21c7ce 2664
873b4771
KK
2665 delayacct_freepages_end();
2666
bb21c7ce
KM
2667 if (sc->nr_reclaimed)
2668 return sc->nr_reclaimed;
2669
0cee34fd 2670 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2671 if (sc->compaction_ready)
7335084d
MG
2672 return 1;
2673
241994ed
JW
2674 /* Untapped cgroup reserves? Don't OOM, retry. */
2675 if (!sc->may_thrash) {
2676 sc->priority = initial_priority;
2677 sc->may_thrash = 1;
2678 goto retry;
2679 }
2680
bb21c7ce 2681 return 0;
1da177e4
LT
2682}
2683
5515061d
MG
2684static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2685{
2686 struct zone *zone;
2687 unsigned long pfmemalloc_reserve = 0;
2688 unsigned long free_pages = 0;
2689 int i;
2690 bool wmark_ok;
2691
2692 for (i = 0; i <= ZONE_NORMAL; i++) {
2693 zone = &pgdat->node_zones[i];
f012a84a
NA
2694 if (!populated_zone(zone) ||
2695 zone_reclaimable_pages(zone) == 0)
675becce
MG
2696 continue;
2697
5515061d
MG
2698 pfmemalloc_reserve += min_wmark_pages(zone);
2699 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2700 }
2701
675becce
MG
2702 /* If there are no reserves (unexpected config) then do not throttle */
2703 if (!pfmemalloc_reserve)
2704 return true;
2705
5515061d
MG
2706 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2707
2708 /* kswapd must be awake if processes are being throttled */
2709 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2710 pgdat->classzone_idx = min(pgdat->classzone_idx,
2711 (enum zone_type)ZONE_NORMAL);
2712 wake_up_interruptible(&pgdat->kswapd_wait);
2713 }
2714
2715 return wmark_ok;
2716}
2717
2718/*
2719 * Throttle direct reclaimers if backing storage is backed by the network
2720 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2721 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2722 * when the low watermark is reached.
2723 *
2724 * Returns true if a fatal signal was delivered during throttling. If this
2725 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2726 */
50694c28 2727static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2728 nodemask_t *nodemask)
2729{
675becce 2730 struct zoneref *z;
5515061d 2731 struct zone *zone;
675becce 2732 pg_data_t *pgdat = NULL;
5515061d
MG
2733
2734 /*
2735 * Kernel threads should not be throttled as they may be indirectly
2736 * responsible for cleaning pages necessary for reclaim to make forward
2737 * progress. kjournald for example may enter direct reclaim while
2738 * committing a transaction where throttling it could forcing other
2739 * processes to block on log_wait_commit().
2740 */
2741 if (current->flags & PF_KTHREAD)
50694c28
MG
2742 goto out;
2743
2744 /*
2745 * If a fatal signal is pending, this process should not throttle.
2746 * It should return quickly so it can exit and free its memory
2747 */
2748 if (fatal_signal_pending(current))
2749 goto out;
5515061d 2750
675becce
MG
2751 /*
2752 * Check if the pfmemalloc reserves are ok by finding the first node
2753 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2754 * GFP_KERNEL will be required for allocating network buffers when
2755 * swapping over the network so ZONE_HIGHMEM is unusable.
2756 *
2757 * Throttling is based on the first usable node and throttled processes
2758 * wait on a queue until kswapd makes progress and wakes them. There
2759 * is an affinity then between processes waking up and where reclaim
2760 * progress has been made assuming the process wakes on the same node.
2761 * More importantly, processes running on remote nodes will not compete
2762 * for remote pfmemalloc reserves and processes on different nodes
2763 * should make reasonable progress.
2764 */
2765 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2766 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2767 if (zone_idx(zone) > ZONE_NORMAL)
2768 continue;
2769
2770 /* Throttle based on the first usable node */
2771 pgdat = zone->zone_pgdat;
2772 if (pfmemalloc_watermark_ok(pgdat))
2773 goto out;
2774 break;
2775 }
2776
2777 /* If no zone was usable by the allocation flags then do not throttle */
2778 if (!pgdat)
50694c28 2779 goto out;
5515061d 2780
68243e76
MG
2781 /* Account for the throttling */
2782 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2783
5515061d
MG
2784 /*
2785 * If the caller cannot enter the filesystem, it's possible that it
2786 * is due to the caller holding an FS lock or performing a journal
2787 * transaction in the case of a filesystem like ext[3|4]. In this case,
2788 * it is not safe to block on pfmemalloc_wait as kswapd could be
2789 * blocked waiting on the same lock. Instead, throttle for up to a
2790 * second before continuing.
2791 */
2792 if (!(gfp_mask & __GFP_FS)) {
2793 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2794 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2795
2796 goto check_pending;
5515061d
MG
2797 }
2798
2799 /* Throttle until kswapd wakes the process */
2800 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2801 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2802
2803check_pending:
2804 if (fatal_signal_pending(current))
2805 return true;
2806
2807out:
2808 return false;
5515061d
MG
2809}
2810
dac1d27b 2811unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2812 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2813{
33906bc5 2814 unsigned long nr_reclaimed;
66e1707b 2815 struct scan_control sc = {
ee814fe2 2816 .nr_to_reclaim = SWAP_CLUSTER_MAX,
21caf2fc 2817 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
ee814fe2
JW
2818 .order = order,
2819 .nodemask = nodemask,
2820 .priority = DEF_PRIORITY,
66e1707b 2821 .may_writepage = !laptop_mode,
a6dc60f8 2822 .may_unmap = 1,
2e2e4259 2823 .may_swap = 1,
66e1707b
BS
2824 };
2825
5515061d 2826 /*
50694c28
MG
2827 * Do not enter reclaim if fatal signal was delivered while throttled.
2828 * 1 is returned so that the page allocator does not OOM kill at this
2829 * point.
5515061d 2830 */
50694c28 2831 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2832 return 1;
2833
33906bc5
MG
2834 trace_mm_vmscan_direct_reclaim_begin(order,
2835 sc.may_writepage,
2836 gfp_mask);
2837
3115cd91 2838 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2839
2840 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2841
2842 return nr_reclaimed;
66e1707b
BS
2843}
2844
c255a458 2845#ifdef CONFIG_MEMCG
66e1707b 2846
72835c86 2847unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2848 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2849 struct zone *zone,
2850 unsigned long *nr_scanned)
4e416953
BS
2851{
2852 struct scan_control sc = {
b8f5c566 2853 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 2854 .target_mem_cgroup = memcg,
4e416953
BS
2855 .may_writepage = !laptop_mode,
2856 .may_unmap = 1,
2857 .may_swap = !noswap,
4e416953 2858 };
6b4f7799 2859 unsigned long lru_pages;
0ae5e89c 2860
4e416953
BS
2861 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2862 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2863
9e3b2f8c 2864 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2865 sc.may_writepage,
2866 sc.gfp_mask);
2867
4e416953
BS
2868 /*
2869 * NOTE: Although we can get the priority field, using it
2870 * here is not a good idea, since it limits the pages we can scan.
2871 * if we don't reclaim here, the shrink_zone from balance_pgdat
2872 * will pick up pages from other mem cgroup's as well. We hack
2873 * the priority and make it zero.
2874 */
33377678 2875 shrink_zone_memcg(zone, memcg, &sc, &lru_pages);
bdce6d9e
KM
2876
2877 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2878
0ae5e89c 2879 *nr_scanned = sc.nr_scanned;
4e416953
BS
2880 return sc.nr_reclaimed;
2881}
2882
72835c86 2883unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 2884 unsigned long nr_pages,
a7885eb8 2885 gfp_t gfp_mask,
b70a2a21 2886 bool may_swap)
66e1707b 2887{
4e416953 2888 struct zonelist *zonelist;
bdce6d9e 2889 unsigned long nr_reclaimed;
889976db 2890 int nid;
66e1707b 2891 struct scan_control sc = {
b70a2a21 2892 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
a09ed5e0
YH
2893 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2894 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
ee814fe2
JW
2895 .target_mem_cgroup = memcg,
2896 .priority = DEF_PRIORITY,
2897 .may_writepage = !laptop_mode,
2898 .may_unmap = 1,
b70a2a21 2899 .may_swap = may_swap,
a09ed5e0 2900 };
66e1707b 2901
889976db
YH
2902 /*
2903 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2904 * take care of from where we get pages. So the node where we start the
2905 * scan does not need to be the current node.
2906 */
72835c86 2907 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2908
2909 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2910
2911 trace_mm_vmscan_memcg_reclaim_begin(0,
2912 sc.may_writepage,
2913 sc.gfp_mask);
2914
3115cd91 2915 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
bdce6d9e
KM
2916
2917 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2918
2919 return nr_reclaimed;
66e1707b
BS
2920}
2921#endif
2922
9e3b2f8c 2923static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2924{
b95a2f2d 2925 struct mem_cgroup *memcg;
f16015fb 2926
b95a2f2d
JW
2927 if (!total_swap_pages)
2928 return;
2929
2930 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2931 do {
c56d5c7d 2932 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2933
59dc76b0 2934 if (inactive_list_is_low(lruvec, false))
1a93be0e 2935 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2936 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2937
2938 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2939 } while (memcg);
f16015fb
JW
2940}
2941
accf6242
VB
2942static bool zone_balanced(struct zone *zone, int order, bool highorder,
2943 unsigned long balance_gap, int classzone_idx)
60cefed4 2944{
accf6242 2945 unsigned long mark = high_wmark_pages(zone) + balance_gap;
60cefed4 2946
accf6242
VB
2947 /*
2948 * When checking from pgdat_balanced(), kswapd should stop and sleep
2949 * when it reaches the high order-0 watermark and let kcompactd take
2950 * over. Other callers such as wakeup_kswapd() want to determine the
2951 * true high-order watermark.
2952 */
2953 if (IS_ENABLED(CONFIG_COMPACTION) && !highorder) {
2954 mark += (1UL << order);
2955 order = 0;
2956 }
60cefed4 2957
accf6242 2958 return zone_watermark_ok_safe(zone, order, mark, classzone_idx);
60cefed4
JW
2959}
2960
1741c877 2961/*
4ae0a48b
ZC
2962 * pgdat_balanced() is used when checking if a node is balanced.
2963 *
2964 * For order-0, all zones must be balanced!
2965 *
2966 * For high-order allocations only zones that meet watermarks and are in a
2967 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2968 * total of balanced pages must be at least 25% of the zones allowed by
2969 * classzone_idx for the node to be considered balanced. Forcing all zones to
2970 * be balanced for high orders can cause excessive reclaim when there are
2971 * imbalanced zones.
1741c877
MG
2972 * The choice of 25% is due to
2973 * o a 16M DMA zone that is balanced will not balance a zone on any
2974 * reasonable sized machine
2975 * o On all other machines, the top zone must be at least a reasonable
25985edc 2976 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2977 * would need to be at least 256M for it to be balance a whole node.
2978 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2979 * to balance a node on its own. These seemed like reasonable ratios.
2980 */
4ae0a48b 2981static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2982{
b40da049 2983 unsigned long managed_pages = 0;
4ae0a48b 2984 unsigned long balanced_pages = 0;
1741c877
MG
2985 int i;
2986
4ae0a48b
ZC
2987 /* Check the watermark levels */
2988 for (i = 0; i <= classzone_idx; i++) {
2989 struct zone *zone = pgdat->node_zones + i;
1741c877 2990
4ae0a48b
ZC
2991 if (!populated_zone(zone))
2992 continue;
2993
b40da049 2994 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2995
2996 /*
2997 * A special case here:
2998 *
2999 * balance_pgdat() skips over all_unreclaimable after
3000 * DEF_PRIORITY. Effectively, it considers them balanced so
3001 * they must be considered balanced here as well!
3002 */
6e543d57 3003 if (!zone_reclaimable(zone)) {
b40da049 3004 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
3005 continue;
3006 }
3007
accf6242 3008 if (zone_balanced(zone, order, false, 0, i))
b40da049 3009 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
3010 else if (!order)
3011 return false;
3012 }
3013
3014 if (order)
b40da049 3015 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
3016 else
3017 return true;
1741c877
MG
3018}
3019
5515061d
MG
3020/*
3021 * Prepare kswapd for sleeping. This verifies that there are no processes
3022 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3023 *
3024 * Returns true if kswapd is ready to sleep
3025 */
3026static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 3027 int classzone_idx)
f50de2d3 3028{
f50de2d3
MG
3029 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3030 if (remaining)
5515061d
MG
3031 return false;
3032
3033 /*
9e5e3661
VB
3034 * The throttled processes are normally woken up in balance_pgdat() as
3035 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3036 * race between when kswapd checks the watermarks and a process gets
3037 * throttled. There is also a potential race if processes get
3038 * throttled, kswapd wakes, a large process exits thereby balancing the
3039 * zones, which causes kswapd to exit balance_pgdat() before reaching
3040 * the wake up checks. If kswapd is going to sleep, no process should
3041 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3042 * the wake up is premature, processes will wake kswapd and get
3043 * throttled again. The difference from wake ups in balance_pgdat() is
3044 * that here we are under prepare_to_wait().
5515061d 3045 */
9e5e3661
VB
3046 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3047 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3048
4ae0a48b 3049 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
3050}
3051
75485363
MG
3052/*
3053 * kswapd shrinks the zone by the number of pages required to reach
3054 * the high watermark.
b8e83b94
MG
3055 *
3056 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3057 * reclaim or if the lack of progress was due to pages under writeback.
3058 * This is used to determine if the scanning priority needs to be raised.
75485363 3059 */
b8e83b94 3060static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 3061 int classzone_idx,
accf6242 3062 struct scan_control *sc)
75485363 3063{
7c954f6d 3064 unsigned long balance_gap;
7c954f6d 3065 bool lowmem_pressure;
75485363
MG
3066
3067 /* Reclaim above the high watermark. */
3068 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d 3069
7c954f6d
MG
3070 /*
3071 * We put equal pressure on every zone, unless one zone has way too
3072 * many pages free already. The "too many pages" is defined as the
3073 * high wmark plus a "gap" where the gap is either the low
3074 * watermark or 1% of the zone, whichever is smaller.
3075 */
4be89a34
JZ
3076 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3077 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
7c954f6d
MG
3078
3079 /*
3080 * If there is no low memory pressure or the zone is balanced then no
3081 * reclaim is necessary
3082 */
3083 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
accf6242 3084 if (!lowmem_pressure && zone_balanced(zone, sc->order, false,
7c954f6d
MG
3085 balance_gap, classzone_idx))
3086 return true;
3087
6b4f7799 3088 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
75485363 3089
57054651 3090 clear_bit(ZONE_WRITEBACK, &zone->flags);
283aba9f 3091
7c954f6d
MG
3092 /*
3093 * If a zone reaches its high watermark, consider it to be no longer
3094 * congested. It's possible there are dirty pages backed by congested
3095 * BDIs but as pressure is relieved, speculatively avoid congestion
3096 * waits.
3097 */
6e543d57 3098 if (zone_reclaimable(zone) &&
accf6242 3099 zone_balanced(zone, sc->order, false, 0, classzone_idx)) {
57054651
JW
3100 clear_bit(ZONE_CONGESTED, &zone->flags);
3101 clear_bit(ZONE_DIRTY, &zone->flags);
7c954f6d
MG
3102 }
3103
b8e83b94 3104 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3105}
3106
1da177e4
LT
3107/*
3108 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 3109 * they are all at high_wmark_pages(zone).
1da177e4 3110 *
accf6242 3111 * Returns the highest zone idx kswapd was reclaiming at
1da177e4
LT
3112 *
3113 * There is special handling here for zones which are full of pinned pages.
3114 * This can happen if the pages are all mlocked, or if they are all used by
3115 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3116 * What we do is to detect the case where all pages in the zone have been
3117 * scanned twice and there has been zero successful reclaim. Mark the zone as
3118 * dead and from now on, only perform a short scan. Basically we're polling
3119 * the zone for when the problem goes away.
3120 *
3121 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
3122 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3123 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3124 * lower zones regardless of the number of free pages in the lower zones. This
3125 * interoperates with the page allocator fallback scheme to ensure that aging
3126 * of pages is balanced across the zones.
1da177e4 3127 */
accf6242 3128static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3129{
1da177e4 3130 int i;
99504748 3131 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0608f43d
AM
3132 unsigned long nr_soft_reclaimed;
3133 unsigned long nr_soft_scanned;
179e9639
AM
3134 struct scan_control sc = {
3135 .gfp_mask = GFP_KERNEL,
ee814fe2 3136 .order = order,
b8e83b94 3137 .priority = DEF_PRIORITY,
ee814fe2 3138 .may_writepage = !laptop_mode,
a6dc60f8 3139 .may_unmap = 1,
2e2e4259 3140 .may_swap = 1,
179e9639 3141 };
f8891e5e 3142 count_vm_event(PAGEOUTRUN);
1da177e4 3143
9e3b2f8c 3144 do {
b8e83b94
MG
3145 bool raise_priority = true;
3146
3147 sc.nr_reclaimed = 0;
1da177e4 3148
d6277db4
RW
3149 /*
3150 * Scan in the highmem->dma direction for the highest
3151 * zone which needs scanning
3152 */
3153 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3154 struct zone *zone = pgdat->node_zones + i;
1da177e4 3155
d6277db4
RW
3156 if (!populated_zone(zone))
3157 continue;
1da177e4 3158
6e543d57
LD
3159 if (sc.priority != DEF_PRIORITY &&
3160 !zone_reclaimable(zone))
d6277db4 3161 continue;
1da177e4 3162
556adecb
RR
3163 /*
3164 * Do some background aging of the anon list, to give
3165 * pages a chance to be referenced before reclaiming.
3166 */
9e3b2f8c 3167 age_active_anon(zone, &sc);
556adecb 3168
cc715d99
MG
3169 /*
3170 * If the number of buffer_heads in the machine
3171 * exceeds the maximum allowed level and this node
3172 * has a highmem zone, force kswapd to reclaim from
3173 * it to relieve lowmem pressure.
3174 */
3175 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3176 end_zone = i;
3177 break;
3178 }
3179
accf6242 3180 if (!zone_balanced(zone, order, false, 0, 0)) {
d6277db4 3181 end_zone = i;
e1dbeda6 3182 break;
439423f6 3183 } else {
d43006d5
MG
3184 /*
3185 * If balanced, clear the dirty and congested
3186 * flags
3187 */
57054651
JW
3188 clear_bit(ZONE_CONGESTED, &zone->flags);
3189 clear_bit(ZONE_DIRTY, &zone->flags);
1da177e4 3190 }
1da177e4 3191 }
dafcb73e 3192
b8e83b94 3193 if (i < 0)
e1dbeda6
AM
3194 goto out;
3195
b7ea3c41
MG
3196 /*
3197 * If we're getting trouble reclaiming, start doing writepage
3198 * even in laptop mode.
3199 */
3200 if (sc.priority < DEF_PRIORITY - 2)
3201 sc.may_writepage = 1;
3202
1da177e4
LT
3203 /*
3204 * Now scan the zone in the dma->highmem direction, stopping
3205 * at the last zone which needs scanning.
3206 *
3207 * We do this because the page allocator works in the opposite
3208 * direction. This prevents the page allocator from allocating
3209 * pages behind kswapd's direction of progress, which would
3210 * cause too much scanning of the lower zones.
3211 */
3212 for (i = 0; i <= end_zone; i++) {
3213 struct zone *zone = pgdat->node_zones + i;
3214
f3fe6512 3215 if (!populated_zone(zone))
1da177e4
LT
3216 continue;
3217
6e543d57
LD
3218 if (sc.priority != DEF_PRIORITY &&
3219 !zone_reclaimable(zone))
1da177e4
LT
3220 continue;
3221
1da177e4 3222 sc.nr_scanned = 0;
4e416953 3223
0608f43d
AM
3224 nr_soft_scanned = 0;
3225 /*
3226 * Call soft limit reclaim before calling shrink_zone.
3227 */
3228 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3229 order, sc.gfp_mask,
3230 &nr_soft_scanned);
3231 sc.nr_reclaimed += nr_soft_reclaimed;
3232
32a4330d 3233 /*
7c954f6d
MG
3234 * There should be no need to raise the scanning
3235 * priority if enough pages are already being scanned
3236 * that that high watermark would be met at 100%
3237 * efficiency.
fe2c2a10 3238 */
accf6242 3239 if (kswapd_shrink_zone(zone, end_zone, &sc))
7c954f6d 3240 raise_priority = false;
1da177e4 3241 }
5515061d
MG
3242
3243 /*
3244 * If the low watermark is met there is no need for processes
3245 * to be throttled on pfmemalloc_wait as they should not be
3246 * able to safely make forward progress. Wake them
3247 */
3248 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3249 pfmemalloc_watermark_ok(pgdat))
cfc51155 3250 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3251
b8e83b94
MG
3252 /* Check if kswapd should be suspending */
3253 if (try_to_freeze() || kthread_should_stop())
3254 break;
8357376d 3255
73ce02e9 3256 /*
b8e83b94
MG
3257 * Raise priority if scanning rate is too low or there was no
3258 * progress in reclaiming pages
73ce02e9 3259 */
b8e83b94
MG
3260 if (raise_priority || !sc.nr_reclaimed)
3261 sc.priority--;
9aa41348 3262 } while (sc.priority >= 1 &&
accf6242 3263 !pgdat_balanced(pgdat, order, classzone_idx));
1da177e4 3264
b8e83b94 3265out:
0abdee2b 3266 /*
accf6242
VB
3267 * Return the highest zone idx we were reclaiming at so
3268 * prepare_kswapd_sleep() makes the same decisions as here.
0abdee2b 3269 */
accf6242 3270 return end_zone;
1da177e4
LT
3271}
3272
accf6242
VB
3273static void kswapd_try_to_sleep(pg_data_t *pgdat, int order,
3274 int classzone_idx, int balanced_classzone_idx)
f0bc0a60
KM
3275{
3276 long remaining = 0;
3277 DEFINE_WAIT(wait);
3278
3279 if (freezing(current) || kthread_should_stop())
3280 return;
3281
3282 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3283
3284 /* Try to sleep for a short interval */
accf6242
VB
3285 if (prepare_kswapd_sleep(pgdat, order, remaining,
3286 balanced_classzone_idx)) {
fd901c95
VB
3287 /*
3288 * Compaction records what page blocks it recently failed to
3289 * isolate pages from and skips them in the future scanning.
3290 * When kswapd is going to sleep, it is reasonable to assume
3291 * that pages and compaction may succeed so reset the cache.
3292 */
3293 reset_isolation_suitable(pgdat);
3294
3295 /*
3296 * We have freed the memory, now we should compact it to make
3297 * allocation of the requested order possible.
3298 */
3299 wakeup_kcompactd(pgdat, order, classzone_idx);
3300
f0bc0a60
KM
3301 remaining = schedule_timeout(HZ/10);
3302 finish_wait(&pgdat->kswapd_wait, &wait);
3303 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3304 }
3305
3306 /*
3307 * After a short sleep, check if it was a premature sleep. If not, then
3308 * go fully to sleep until explicitly woken up.
3309 */
accf6242
VB
3310 if (prepare_kswapd_sleep(pgdat, order, remaining,
3311 balanced_classzone_idx)) {
f0bc0a60
KM
3312 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3313
3314 /*
3315 * vmstat counters are not perfectly accurate and the estimated
3316 * value for counters such as NR_FREE_PAGES can deviate from the
3317 * true value by nr_online_cpus * threshold. To avoid the zone
3318 * watermarks being breached while under pressure, we reduce the
3319 * per-cpu vmstat threshold while kswapd is awake and restore
3320 * them before going back to sleep.
3321 */
3322 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3323
3324 if (!kthread_should_stop())
3325 schedule();
3326
f0bc0a60
KM
3327 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3328 } else {
3329 if (remaining)
3330 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3331 else
3332 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3333 }
3334 finish_wait(&pgdat->kswapd_wait, &wait);
3335}
3336
1da177e4
LT
3337/*
3338 * The background pageout daemon, started as a kernel thread
4f98a2fe 3339 * from the init process.
1da177e4
LT
3340 *
3341 * This basically trickles out pages so that we have _some_
3342 * free memory available even if there is no other activity
3343 * that frees anything up. This is needed for things like routing
3344 * etc, where we otherwise might have all activity going on in
3345 * asynchronous contexts that cannot page things out.
3346 *
3347 * If there are applications that are active memory-allocators
3348 * (most normal use), this basically shouldn't matter.
3349 */
3350static int kswapd(void *p)
3351{
215ddd66
MG
3352 unsigned long order, new_order;
3353 int classzone_idx, new_classzone_idx;
d2ebd0f6 3354 int balanced_classzone_idx;
1da177e4
LT
3355 pg_data_t *pgdat = (pg_data_t*)p;
3356 struct task_struct *tsk = current;
f0bc0a60 3357
1da177e4
LT
3358 struct reclaim_state reclaim_state = {
3359 .reclaimed_slab = 0,
3360 };
a70f7302 3361 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3362
cf40bd16
NP
3363 lockdep_set_current_reclaim_state(GFP_KERNEL);
3364
174596a0 3365 if (!cpumask_empty(cpumask))
c5f59f08 3366 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3367 current->reclaim_state = &reclaim_state;
3368
3369 /*
3370 * Tell the memory management that we're a "memory allocator",
3371 * and that if we need more memory we should get access to it
3372 * regardless (see "__alloc_pages()"). "kswapd" should
3373 * never get caught in the normal page freeing logic.
3374 *
3375 * (Kswapd normally doesn't need memory anyway, but sometimes
3376 * you need a small amount of memory in order to be able to
3377 * page out something else, and this flag essentially protects
3378 * us from recursively trying to free more memory as we're
3379 * trying to free the first piece of memory in the first place).
3380 */
930d9152 3381 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3382 set_freezable();
1da177e4 3383
215ddd66
MG
3384 order = new_order = 0;
3385 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3386 balanced_classzone_idx = classzone_idx;
1da177e4 3387 for ( ; ; ) {
6f6313d4 3388 bool ret;
3e1d1d28 3389
215ddd66 3390 /*
accf6242
VB
3391 * While we were reclaiming, there might have been another
3392 * wakeup, so check the values.
215ddd66 3393 */
accf6242
VB
3394 new_order = pgdat->kswapd_max_order;
3395 new_classzone_idx = pgdat->classzone_idx;
3396 pgdat->kswapd_max_order = 0;
3397 pgdat->classzone_idx = pgdat->nr_zones - 1;
215ddd66 3398
99504748 3399 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3400 /*
3401 * Don't sleep if someone wants a larger 'order'
99504748 3402 * allocation or has tigher zone constraints
1da177e4
LT
3403 */
3404 order = new_order;
99504748 3405 classzone_idx = new_classzone_idx;
1da177e4 3406 } else {
accf6242 3407 kswapd_try_to_sleep(pgdat, order, classzone_idx,
d2ebd0f6 3408 balanced_classzone_idx);
1da177e4 3409 order = pgdat->kswapd_max_order;
99504748 3410 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3411 new_order = order;
3412 new_classzone_idx = classzone_idx;
4d40502e 3413 pgdat->kswapd_max_order = 0;
215ddd66 3414 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3415 }
1da177e4 3416
8fe23e05
DR
3417 ret = try_to_freeze();
3418 if (kthread_should_stop())
3419 break;
3420
3421 /*
3422 * We can speed up thawing tasks if we don't call balance_pgdat
3423 * after returning from the refrigerator
3424 */
33906bc5
MG
3425 if (!ret) {
3426 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
accf6242
VB
3427 balanced_classzone_idx = balance_pgdat(pgdat, order,
3428 classzone_idx);
33906bc5 3429 }
1da177e4 3430 }
b0a8cc58 3431
71abdc15 3432 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3433 current->reclaim_state = NULL;
71abdc15
JW
3434 lockdep_clear_current_reclaim_state();
3435
1da177e4
LT
3436 return 0;
3437}
3438
3439/*
3440 * A zone is low on free memory, so wake its kswapd task to service it.
3441 */
99504748 3442void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3443{
3444 pg_data_t *pgdat;
3445
f3fe6512 3446 if (!populated_zone(zone))
1da177e4
LT
3447 return;
3448
344736f2 3449 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3450 return;
88f5acf8 3451 pgdat = zone->zone_pgdat;
99504748 3452 if (pgdat->kswapd_max_order < order) {
1da177e4 3453 pgdat->kswapd_max_order = order;
99504748
MG
3454 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3455 }
8d0986e2 3456 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3457 return;
accf6242 3458 if (zone_balanced(zone, order, true, 0, 0))
88f5acf8
MG
3459 return;
3460
3461 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3462 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3463}
3464
c6f37f12 3465#ifdef CONFIG_HIBERNATION
1da177e4 3466/*
7b51755c 3467 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3468 * freed pages.
3469 *
3470 * Rather than trying to age LRUs the aim is to preserve the overall
3471 * LRU order by reclaiming preferentially
3472 * inactive > active > active referenced > active mapped
1da177e4 3473 */
7b51755c 3474unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3475{
d6277db4 3476 struct reclaim_state reclaim_state;
d6277db4 3477 struct scan_control sc = {
ee814fe2 3478 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3479 .gfp_mask = GFP_HIGHUSER_MOVABLE,
ee814fe2 3480 .priority = DEF_PRIORITY,
d6277db4 3481 .may_writepage = 1,
ee814fe2
JW
3482 .may_unmap = 1,
3483 .may_swap = 1,
7b51755c 3484 .hibernation_mode = 1,
1da177e4 3485 };
a09ed5e0 3486 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3487 struct task_struct *p = current;
3488 unsigned long nr_reclaimed;
1da177e4 3489
7b51755c
KM
3490 p->flags |= PF_MEMALLOC;
3491 lockdep_set_current_reclaim_state(sc.gfp_mask);
3492 reclaim_state.reclaimed_slab = 0;
3493 p->reclaim_state = &reclaim_state;
d6277db4 3494
3115cd91 3495 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3496
7b51755c
KM
3497 p->reclaim_state = NULL;
3498 lockdep_clear_current_reclaim_state();
3499 p->flags &= ~PF_MEMALLOC;
d6277db4 3500
7b51755c 3501 return nr_reclaimed;
1da177e4 3502}
c6f37f12 3503#endif /* CONFIG_HIBERNATION */
1da177e4 3504
1da177e4
LT
3505/* It's optimal to keep kswapds on the same CPUs as their memory, but
3506 not required for correctness. So if the last cpu in a node goes
3507 away, we get changed to run anywhere: as the first one comes back,
3508 restore their cpu bindings. */
fcb35a9b
GKH
3509static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3510 void *hcpu)
1da177e4 3511{
58c0a4a7 3512 int nid;
1da177e4 3513
8bb78442 3514 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3515 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3516 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3517 const struct cpumask *mask;
3518
3519 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3520
3e597945 3521 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3522 /* One of our CPUs online: restore mask */
c5f59f08 3523 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3524 }
3525 }
3526 return NOTIFY_OK;
3527}
1da177e4 3528
3218ae14
YG
3529/*
3530 * This kswapd start function will be called by init and node-hot-add.
3531 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3532 */
3533int kswapd_run(int nid)
3534{
3535 pg_data_t *pgdat = NODE_DATA(nid);
3536 int ret = 0;
3537
3538 if (pgdat->kswapd)
3539 return 0;
3540
3541 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3542 if (IS_ERR(pgdat->kswapd)) {
3543 /* failure at boot is fatal */
3544 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3545 pr_err("Failed to start kswapd on node %d\n", nid);
3546 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3547 pgdat->kswapd = NULL;
3218ae14
YG
3548 }
3549 return ret;
3550}
3551
8fe23e05 3552/*
d8adde17 3553 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3554 * hold mem_hotplug_begin/end().
8fe23e05
DR
3555 */
3556void kswapd_stop(int nid)
3557{
3558 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3559
d8adde17 3560 if (kswapd) {
8fe23e05 3561 kthread_stop(kswapd);
d8adde17
JL
3562 NODE_DATA(nid)->kswapd = NULL;
3563 }
8fe23e05
DR
3564}
3565
1da177e4
LT
3566static int __init kswapd_init(void)
3567{
3218ae14 3568 int nid;
69e05944 3569
1da177e4 3570 swap_setup();
48fb2e24 3571 for_each_node_state(nid, N_MEMORY)
3218ae14 3572 kswapd_run(nid);
1da177e4
LT
3573 hotcpu_notifier(cpu_callback, 0);
3574 return 0;
3575}
3576
3577module_init(kswapd_init)
9eeff239
CL
3578
3579#ifdef CONFIG_NUMA
3580/*
3581 * Zone reclaim mode
3582 *
3583 * If non-zero call zone_reclaim when the number of free pages falls below
3584 * the watermarks.
9eeff239
CL
3585 */
3586int zone_reclaim_mode __read_mostly;
3587
1b2ffb78 3588#define RECLAIM_OFF 0
7d03431c 3589#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3590#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3591#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3592
a92f7126
CL
3593/*
3594 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3595 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3596 * a zone.
3597 */
3598#define ZONE_RECLAIM_PRIORITY 4
3599
9614634f
CL
3600/*
3601 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3602 * occur.
3603 */
3604int sysctl_min_unmapped_ratio = 1;
3605
0ff38490
CL
3606/*
3607 * If the number of slab pages in a zone grows beyond this percentage then
3608 * slab reclaim needs to occur.
3609 */
3610int sysctl_min_slab_ratio = 5;
3611
90afa5de
MG
3612static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3613{
3614 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3615 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3616 zone_page_state(zone, NR_ACTIVE_FILE);
3617
3618 /*
3619 * It's possible for there to be more file mapped pages than
3620 * accounted for by the pages on the file LRU lists because
3621 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3622 */
3623 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3624}
3625
3626/* Work out how many page cache pages we can reclaim in this reclaim_mode */
d031a157 3627static unsigned long zone_pagecache_reclaimable(struct zone *zone)
90afa5de 3628{
d031a157
AM
3629 unsigned long nr_pagecache_reclaimable;
3630 unsigned long delta = 0;
90afa5de
MG
3631
3632 /*
95bbc0c7 3633 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de
MG
3634 * potentially reclaimable. Otherwise, we have to worry about
3635 * pages like swapcache and zone_unmapped_file_pages() provides
3636 * a better estimate
3637 */
95bbc0c7 3638 if (zone_reclaim_mode & RECLAIM_UNMAP)
90afa5de
MG
3639 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3640 else
3641 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3642
3643 /* If we can't clean pages, remove dirty pages from consideration */
3644 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3645 delta += zone_page_state(zone, NR_FILE_DIRTY);
3646
3647 /* Watch for any possible underflows due to delta */
3648 if (unlikely(delta > nr_pagecache_reclaimable))
3649 delta = nr_pagecache_reclaimable;
3650
3651 return nr_pagecache_reclaimable - delta;
3652}
3653
9eeff239
CL
3654/*
3655 * Try to free up some pages from this zone through reclaim.
3656 */
179e9639 3657static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3658{
7fb2d46d 3659 /* Minimum pages needed in order to stay on node */
69e05944 3660 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3661 struct task_struct *p = current;
3662 struct reclaim_state reclaim_state;
179e9639 3663 struct scan_control sc = {
62b726c1 3664 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3665 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3666 .order = order,
9e3b2f8c 3667 .priority = ZONE_RECLAIM_PRIORITY,
ee814fe2 3668 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
95bbc0c7 3669 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 3670 .may_swap = 1,
179e9639 3671 };
9eeff239 3672
9eeff239 3673 cond_resched();
d4f7796e 3674 /*
95bbc0c7 3675 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 3676 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 3677 * and RECLAIM_UNMAP.
d4f7796e
CL
3678 */
3679 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3680 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3681 reclaim_state.reclaimed_slab = 0;
3682 p->reclaim_state = &reclaim_state;
c84db23c 3683
90afa5de 3684 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3685 /*
3686 * Free memory by calling shrink zone with increasing
3687 * priorities until we have enough memory freed.
3688 */
0ff38490 3689 do {
6b4f7799 3690 shrink_zone(zone, &sc, true);
9e3b2f8c 3691 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3692 }
c84db23c 3693
9eeff239 3694 p->reclaim_state = NULL;
d4f7796e 3695 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3696 lockdep_clear_current_reclaim_state();
a79311c1 3697 return sc.nr_reclaimed >= nr_pages;
9eeff239 3698}
179e9639
AM
3699
3700int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3701{
179e9639 3702 int node_id;
d773ed6b 3703 int ret;
179e9639
AM
3704
3705 /*
0ff38490
CL
3706 * Zone reclaim reclaims unmapped file backed pages and
3707 * slab pages if we are over the defined limits.
34aa1330 3708 *
9614634f
CL
3709 * A small portion of unmapped file backed pages is needed for
3710 * file I/O otherwise pages read by file I/O will be immediately
3711 * thrown out if the zone is overallocated. So we do not reclaim
3712 * if less than a specified percentage of the zone is used by
3713 * unmapped file backed pages.
179e9639 3714 */
90afa5de
MG
3715 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3716 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3717 return ZONE_RECLAIM_FULL;
179e9639 3718
6e543d57 3719 if (!zone_reclaimable(zone))
fa5e084e 3720 return ZONE_RECLAIM_FULL;
d773ed6b 3721
179e9639 3722 /*
d773ed6b 3723 * Do not scan if the allocation should not be delayed.
179e9639 3724 */
d0164adc 3725 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
fa5e084e 3726 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3727
3728 /*
3729 * Only run zone reclaim on the local zone or on zones that do not
3730 * have associated processors. This will favor the local processor
3731 * over remote processors and spread off node memory allocations
3732 * as wide as possible.
3733 */
89fa3024 3734 node_id = zone_to_nid(zone);
37c0708d 3735 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3736 return ZONE_RECLAIM_NOSCAN;
d773ed6b 3737
57054651 3738 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
fa5e084e
MG
3739 return ZONE_RECLAIM_NOSCAN;
3740
d773ed6b 3741 ret = __zone_reclaim(zone, gfp_mask, order);
57054651 3742 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
d773ed6b 3743
24cf7251
MG
3744 if (!ret)
3745 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3746
d773ed6b 3747 return ret;
179e9639 3748}
9eeff239 3749#endif
894bc310 3750
894bc310
LS
3751/*
3752 * page_evictable - test whether a page is evictable
3753 * @page: the page to test
894bc310
LS
3754 *
3755 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3756 * lists vs unevictable list.
894bc310
LS
3757 *
3758 * Reasons page might not be evictable:
ba9ddf49 3759 * (1) page's mapping marked unevictable
b291f000 3760 * (2) page is part of an mlocked VMA
ba9ddf49 3761 *
894bc310 3762 */
39b5f29a 3763int page_evictable(struct page *page)
894bc310 3764{
39b5f29a 3765 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3766}
89e004ea 3767
85046579 3768#ifdef CONFIG_SHMEM
89e004ea 3769/**
24513264
HD
3770 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3771 * @pages: array of pages to check
3772 * @nr_pages: number of pages to check
89e004ea 3773 *
24513264 3774 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3775 *
3776 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3777 */
24513264 3778void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3779{
925b7673 3780 struct lruvec *lruvec;
24513264
HD
3781 struct zone *zone = NULL;
3782 int pgscanned = 0;
3783 int pgrescued = 0;
3784 int i;
89e004ea 3785
24513264
HD
3786 for (i = 0; i < nr_pages; i++) {
3787 struct page *page = pages[i];
3788 struct zone *pagezone;
89e004ea 3789
24513264
HD
3790 pgscanned++;
3791 pagezone = page_zone(page);
3792 if (pagezone != zone) {
3793 if (zone)
a52633d8 3794 spin_unlock_irq(zone_lru_lock(zone));
24513264 3795 zone = pagezone;
a52633d8 3796 spin_lock_irq(zone_lru_lock(zone));
24513264 3797 }
fa9add64 3798 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3799
24513264
HD
3800 if (!PageLRU(page) || !PageUnevictable(page))
3801 continue;
89e004ea 3802
39b5f29a 3803 if (page_evictable(page)) {
24513264
HD
3804 enum lru_list lru = page_lru_base_type(page);
3805
309381fe 3806 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3807 ClearPageUnevictable(page);
fa9add64
HD
3808 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3809 add_page_to_lru_list(page, lruvec, lru);
24513264 3810 pgrescued++;
89e004ea 3811 }
24513264 3812 }
89e004ea 3813
24513264
HD
3814 if (zone) {
3815 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3816 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
a52633d8 3817 spin_unlock_irq(zone_lru_lock(zone));
89e004ea 3818 }
89e004ea 3819}
85046579 3820#endif /* CONFIG_SHMEM */