]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmscan.c
mm: compaction: introduce sync-light migration for use by compaction
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
3e7d3449 35#include <linux/compaction.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
248a0301 38#include <linux/delay.h>
3218ae14 39#include <linux/kthread.h>
7dfb7103 40#include <linux/freezer.h>
66e1707b 41#include <linux/memcontrol.h>
873b4771 42#include <linux/delayacct.h>
af936a16 43#include <linux/sysctl.h>
929bea7c 44#include <linux/oom.h>
268bb0ce 45#include <linux/prefetch.h>
1da177e4
LT
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
0f8053a5
NP
52#include "internal.h"
53
33906bc5
MG
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
ee64fc93 57/*
f3a310bc
MG
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
ee64fc93
MG
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
f3a310bc 65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
3e7d3449 66 * order-0 pages and then compact the zone
ee64fc93 67 */
f3a310bc
MG
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
7d3579e8 74
1da177e4 75struct scan_control {
1da177e4
LT
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned;
78
a79311c1
RR
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed;
81
22fba335
KM
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim;
84
7b51755c
KM
85 unsigned long hibernation_mode;
86
1da177e4 87 /* This context's GFP mask */
6daa0e28 88 gfp_t gfp_mask;
1da177e4
LT
89
90 int may_writepage;
91
a6dc60f8
JW
92 /* Can mapped pages be reclaimed? */
93 int may_unmap;
f1fd1067 94
2e2e4259
KM
95 /* Can pages be swapped as part of reclaim? */
96 int may_swap;
97
5ad333eb 98 int order;
66e1707b 99
5f53e762 100 /*
415b54e3
NK
101 * Intend to reclaim enough continuous memory rather than reclaim
102 * enough amount of memory. i.e, mode for high order allocation.
5f53e762 103 */
f3a310bc 104 reclaim_mode_t reclaim_mode;
5f53e762 105
f16015fb
JW
106 /*
107 * The memory cgroup that hit its limit and as a result is the
108 * primary target of this reclaim invocation.
109 */
110 struct mem_cgroup *target_mem_cgroup;
66e1707b 111
327c0e96
KH
112 /*
113 * Nodemask of nodes allowed by the caller. If NULL, all nodes
114 * are scanned.
115 */
116 nodemask_t *nodemask;
1da177e4
LT
117};
118
f16015fb
JW
119struct mem_cgroup_zone {
120 struct mem_cgroup *mem_cgroup;
121 struct zone *zone;
122};
123
1da177e4
LT
124#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
125
126#ifdef ARCH_HAS_PREFETCH
127#define prefetch_prev_lru_page(_page, _base, _field) \
128 do { \
129 if ((_page)->lru.prev != _base) { \
130 struct page *prev; \
131 \
132 prev = lru_to_page(&(_page->lru)); \
133 prefetch(&prev->_field); \
134 } \
135 } while (0)
136#else
137#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
138#endif
139
140#ifdef ARCH_HAS_PREFETCHW
141#define prefetchw_prev_lru_page(_page, _base, _field) \
142 do { \
143 if ((_page)->lru.prev != _base) { \
144 struct page *prev; \
145 \
146 prev = lru_to_page(&(_page->lru)); \
147 prefetchw(&prev->_field); \
148 } \
149 } while (0)
150#else
151#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
152#endif
153
154/*
155 * From 0 .. 100. Higher means more swappy.
156 */
157int vm_swappiness = 60;
bd1e22b8 158long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
159
160static LIST_HEAD(shrinker_list);
161static DECLARE_RWSEM(shrinker_rwsem);
162
00f0b825 163#ifdef CONFIG_CGROUP_MEM_RES_CTLR
89b5fae5
JW
164static bool global_reclaim(struct scan_control *sc)
165{
f16015fb 166 return !sc->target_mem_cgroup;
89b5fae5
JW
167}
168
f16015fb 169static bool scanning_global_lru(struct mem_cgroup_zone *mz)
89b5fae5 170{
f16015fb 171 return !mz->mem_cgroup;
89b5fae5 172}
91a45470 173#else
89b5fae5
JW
174static bool global_reclaim(struct scan_control *sc)
175{
176 return true;
177}
178
f16015fb 179static bool scanning_global_lru(struct mem_cgroup_zone *mz)
89b5fae5
JW
180{
181 return true;
182}
91a45470
KH
183#endif
184
f16015fb 185static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
6e901571 186{
f16015fb
JW
187 if (!scanning_global_lru(mz))
188 return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
3e2f41f1 189
f16015fb 190 return &mz->zone->reclaim_stat;
6e901571
KM
191}
192
f16015fb
JW
193static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
194 enum lru_list lru)
c9f299d9 195{
f16015fb
JW
196 if (!scanning_global_lru(mz))
197 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
198 zone_to_nid(mz->zone),
199 zone_idx(mz->zone),
200 BIT(lru));
a3d8e054 201
f16015fb 202 return zone_page_state(mz->zone, NR_LRU_BASE + lru);
c9f299d9
KM
203}
204
205
1da177e4
LT
206/*
207 * Add a shrinker callback to be called from the vm
208 */
8e1f936b 209void register_shrinker(struct shrinker *shrinker)
1da177e4 210{
83aeeada 211 atomic_long_set(&shrinker->nr_in_batch, 0);
8e1f936b
RR
212 down_write(&shrinker_rwsem);
213 list_add_tail(&shrinker->list, &shrinker_list);
214 up_write(&shrinker_rwsem);
1da177e4 215}
8e1f936b 216EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
217
218/*
219 * Remove one
220 */
8e1f936b 221void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
222{
223 down_write(&shrinker_rwsem);
224 list_del(&shrinker->list);
225 up_write(&shrinker_rwsem);
1da177e4 226}
8e1f936b 227EXPORT_SYMBOL(unregister_shrinker);
1da177e4 228
1495f230
YH
229static inline int do_shrinker_shrink(struct shrinker *shrinker,
230 struct shrink_control *sc,
231 unsigned long nr_to_scan)
232{
233 sc->nr_to_scan = nr_to_scan;
234 return (*shrinker->shrink)(shrinker, sc);
235}
236
1da177e4
LT
237#define SHRINK_BATCH 128
238/*
239 * Call the shrink functions to age shrinkable caches
240 *
241 * Here we assume it costs one seek to replace a lru page and that it also
242 * takes a seek to recreate a cache object. With this in mind we age equal
243 * percentages of the lru and ageable caches. This should balance the seeks
244 * generated by these structures.
245 *
183ff22b 246 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
247 * slab to avoid swapping.
248 *
249 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
250 *
251 * `lru_pages' represents the number of on-LRU pages in all the zones which
252 * are eligible for the caller's allocation attempt. It is used for balancing
253 * slab reclaim versus page reclaim.
b15e0905 254 *
255 * Returns the number of slab objects which we shrunk.
1da177e4 256 */
a09ed5e0 257unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 258 unsigned long nr_pages_scanned,
a09ed5e0 259 unsigned long lru_pages)
1da177e4
LT
260{
261 struct shrinker *shrinker;
69e05944 262 unsigned long ret = 0;
1da177e4 263
1495f230
YH
264 if (nr_pages_scanned == 0)
265 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 266
f06590bd
MK
267 if (!down_read_trylock(&shrinker_rwsem)) {
268 /* Assume we'll be able to shrink next time */
269 ret = 1;
270 goto out;
271 }
1da177e4
LT
272
273 list_for_each_entry(shrinker, &shrinker_list, list) {
274 unsigned long long delta;
635697c6
KK
275 long total_scan;
276 long max_pass;
09576073 277 int shrink_ret = 0;
acf92b48
DC
278 long nr;
279 long new_nr;
e9299f50
DC
280 long batch_size = shrinker->batch ? shrinker->batch
281 : SHRINK_BATCH;
1da177e4 282
635697c6
KK
283 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
284 if (max_pass <= 0)
285 continue;
286
acf92b48
DC
287 /*
288 * copy the current shrinker scan count into a local variable
289 * and zero it so that other concurrent shrinker invocations
290 * don't also do this scanning work.
291 */
83aeeada 292 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
acf92b48
DC
293
294 total_scan = nr;
1495f230 295 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 296 delta *= max_pass;
1da177e4 297 do_div(delta, lru_pages + 1);
acf92b48
DC
298 total_scan += delta;
299 if (total_scan < 0) {
88c3bd70
DR
300 printk(KERN_ERR "shrink_slab: %pF negative objects to "
301 "delete nr=%ld\n",
acf92b48
DC
302 shrinker->shrink, total_scan);
303 total_scan = max_pass;
ea164d73
AA
304 }
305
3567b59a
DC
306 /*
307 * We need to avoid excessive windup on filesystem shrinkers
308 * due to large numbers of GFP_NOFS allocations causing the
309 * shrinkers to return -1 all the time. This results in a large
310 * nr being built up so when a shrink that can do some work
311 * comes along it empties the entire cache due to nr >>>
312 * max_pass. This is bad for sustaining a working set in
313 * memory.
314 *
315 * Hence only allow the shrinker to scan the entire cache when
316 * a large delta change is calculated directly.
317 */
318 if (delta < max_pass / 4)
319 total_scan = min(total_scan, max_pass / 2);
320
ea164d73
AA
321 /*
322 * Avoid risking looping forever due to too large nr value:
323 * never try to free more than twice the estimate number of
324 * freeable entries.
325 */
acf92b48
DC
326 if (total_scan > max_pass * 2)
327 total_scan = max_pass * 2;
1da177e4 328
acf92b48 329 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
330 nr_pages_scanned, lru_pages,
331 max_pass, delta, total_scan);
332
e9299f50 333 while (total_scan >= batch_size) {
b15e0905 334 int nr_before;
1da177e4 335
1495f230
YH
336 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
337 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 338 batch_size);
1da177e4
LT
339 if (shrink_ret == -1)
340 break;
b15e0905 341 if (shrink_ret < nr_before)
342 ret += nr_before - shrink_ret;
e9299f50
DC
343 count_vm_events(SLABS_SCANNED, batch_size);
344 total_scan -= batch_size;
1da177e4
LT
345
346 cond_resched();
347 }
348
acf92b48
DC
349 /*
350 * move the unused scan count back into the shrinker in a
351 * manner that handles concurrent updates. If we exhausted the
352 * scan, there is no need to do an update.
353 */
83aeeada
KK
354 if (total_scan > 0)
355 new_nr = atomic_long_add_return(total_scan,
356 &shrinker->nr_in_batch);
357 else
358 new_nr = atomic_long_read(&shrinker->nr_in_batch);
acf92b48
DC
359
360 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
361 }
362 up_read(&shrinker_rwsem);
f06590bd
MK
363out:
364 cond_resched();
b15e0905 365 return ret;
1da177e4
LT
366}
367
f3a310bc 368static void set_reclaim_mode(int priority, struct scan_control *sc,
7d3579e8
KM
369 bool sync)
370{
f3a310bc 371 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
7d3579e8
KM
372
373 /*
3e7d3449
MG
374 * Initially assume we are entering either lumpy reclaim or
375 * reclaim/compaction.Depending on the order, we will either set the
376 * sync mode or just reclaim order-0 pages later.
7d3579e8 377 */
3e7d3449 378 if (COMPACTION_BUILD)
f3a310bc 379 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
3e7d3449 380 else
f3a310bc 381 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
7d3579e8
KM
382
383 /*
3e7d3449
MG
384 * Avoid using lumpy reclaim or reclaim/compaction if possible by
385 * restricting when its set to either costly allocations or when
386 * under memory pressure
7d3579e8
KM
387 */
388 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
f3a310bc 389 sc->reclaim_mode |= syncmode;
7d3579e8 390 else if (sc->order && priority < DEF_PRIORITY - 2)
f3a310bc 391 sc->reclaim_mode |= syncmode;
7d3579e8 392 else
f3a310bc 393 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
7d3579e8
KM
394}
395
f3a310bc 396static void reset_reclaim_mode(struct scan_control *sc)
7d3579e8 397{
f3a310bc 398 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
7d3579e8
KM
399}
400
1da177e4
LT
401static inline int is_page_cache_freeable(struct page *page)
402{
ceddc3a5
JW
403 /*
404 * A freeable page cache page is referenced only by the caller
405 * that isolated the page, the page cache radix tree and
406 * optional buffer heads at page->private.
407 */
edcf4748 408 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
409}
410
7d3579e8
KM
411static int may_write_to_queue(struct backing_dev_info *bdi,
412 struct scan_control *sc)
1da177e4 413{
930d9152 414 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
415 return 1;
416 if (!bdi_write_congested(bdi))
417 return 1;
418 if (bdi == current->backing_dev_info)
419 return 1;
7d3579e8
KM
420
421 /* lumpy reclaim for hugepage often need a lot of write */
422 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
423 return 1;
1da177e4
LT
424 return 0;
425}
426
427/*
428 * We detected a synchronous write error writing a page out. Probably
429 * -ENOSPC. We need to propagate that into the address_space for a subsequent
430 * fsync(), msync() or close().
431 *
432 * The tricky part is that after writepage we cannot touch the mapping: nothing
433 * prevents it from being freed up. But we have a ref on the page and once
434 * that page is locked, the mapping is pinned.
435 *
436 * We're allowed to run sleeping lock_page() here because we know the caller has
437 * __GFP_FS.
438 */
439static void handle_write_error(struct address_space *mapping,
440 struct page *page, int error)
441{
7eaceacc 442 lock_page(page);
3e9f45bd
GC
443 if (page_mapping(page) == mapping)
444 mapping_set_error(mapping, error);
1da177e4
LT
445 unlock_page(page);
446}
447
04e62a29
CL
448/* possible outcome of pageout() */
449typedef enum {
450 /* failed to write page out, page is locked */
451 PAGE_KEEP,
452 /* move page to the active list, page is locked */
453 PAGE_ACTIVATE,
454 /* page has been sent to the disk successfully, page is unlocked */
455 PAGE_SUCCESS,
456 /* page is clean and locked */
457 PAGE_CLEAN,
458} pageout_t;
459
1da177e4 460/*
1742f19f
AM
461 * pageout is called by shrink_page_list() for each dirty page.
462 * Calls ->writepage().
1da177e4 463 */
c661b078 464static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 465 struct scan_control *sc)
1da177e4
LT
466{
467 /*
468 * If the page is dirty, only perform writeback if that write
469 * will be non-blocking. To prevent this allocation from being
470 * stalled by pagecache activity. But note that there may be
471 * stalls if we need to run get_block(). We could test
472 * PagePrivate for that.
473 *
6aceb53b 474 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
475 * this page's queue, we can perform writeback even if that
476 * will block.
477 *
478 * If the page is swapcache, write it back even if that would
479 * block, for some throttling. This happens by accident, because
480 * swap_backing_dev_info is bust: it doesn't reflect the
481 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
482 */
483 if (!is_page_cache_freeable(page))
484 return PAGE_KEEP;
485 if (!mapping) {
486 /*
487 * Some data journaling orphaned pages can have
488 * page->mapping == NULL while being dirty with clean buffers.
489 */
266cf658 490 if (page_has_private(page)) {
1da177e4
LT
491 if (try_to_free_buffers(page)) {
492 ClearPageDirty(page);
d40cee24 493 printk("%s: orphaned page\n", __func__);
1da177e4
LT
494 return PAGE_CLEAN;
495 }
496 }
497 return PAGE_KEEP;
498 }
499 if (mapping->a_ops->writepage == NULL)
500 return PAGE_ACTIVATE;
0e093d99 501 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
502 return PAGE_KEEP;
503
504 if (clear_page_dirty_for_io(page)) {
505 int res;
506 struct writeback_control wbc = {
507 .sync_mode = WB_SYNC_NONE,
508 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
509 .range_start = 0,
510 .range_end = LLONG_MAX,
1da177e4
LT
511 .for_reclaim = 1,
512 };
513
514 SetPageReclaim(page);
515 res = mapping->a_ops->writepage(page, &wbc);
516 if (res < 0)
517 handle_write_error(mapping, page, res);
994fc28c 518 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
519 ClearPageReclaim(page);
520 return PAGE_ACTIVATE;
521 }
c661b078 522
1da177e4
LT
523 if (!PageWriteback(page)) {
524 /* synchronous write or broken a_ops? */
525 ClearPageReclaim(page);
526 }
755f0225 527 trace_mm_vmscan_writepage(page,
f3a310bc 528 trace_reclaim_flags(page, sc->reclaim_mode));
e129b5c2 529 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
530 return PAGE_SUCCESS;
531 }
532
533 return PAGE_CLEAN;
534}
535
a649fd92 536/*
e286781d
NP
537 * Same as remove_mapping, but if the page is removed from the mapping, it
538 * gets returned with a refcount of 0.
a649fd92 539 */
e286781d 540static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 541{
28e4d965
NP
542 BUG_ON(!PageLocked(page));
543 BUG_ON(mapping != page_mapping(page));
49d2e9cc 544
19fd6231 545 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 546 /*
0fd0e6b0
NP
547 * The non racy check for a busy page.
548 *
549 * Must be careful with the order of the tests. When someone has
550 * a ref to the page, it may be possible that they dirty it then
551 * drop the reference. So if PageDirty is tested before page_count
552 * here, then the following race may occur:
553 *
554 * get_user_pages(&page);
555 * [user mapping goes away]
556 * write_to(page);
557 * !PageDirty(page) [good]
558 * SetPageDirty(page);
559 * put_page(page);
560 * !page_count(page) [good, discard it]
561 *
562 * [oops, our write_to data is lost]
563 *
564 * Reversing the order of the tests ensures such a situation cannot
565 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
566 * load is not satisfied before that of page->_count.
567 *
568 * Note that if SetPageDirty is always performed via set_page_dirty,
569 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 570 */
e286781d 571 if (!page_freeze_refs(page, 2))
49d2e9cc 572 goto cannot_free;
e286781d
NP
573 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
574 if (unlikely(PageDirty(page))) {
575 page_unfreeze_refs(page, 2);
49d2e9cc 576 goto cannot_free;
e286781d 577 }
49d2e9cc
CL
578
579 if (PageSwapCache(page)) {
580 swp_entry_t swap = { .val = page_private(page) };
581 __delete_from_swap_cache(page);
19fd6231 582 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 583 swapcache_free(swap, page);
e286781d 584 } else {
6072d13c
LT
585 void (*freepage)(struct page *);
586
587 freepage = mapping->a_ops->freepage;
588
e64a782f 589 __delete_from_page_cache(page);
19fd6231 590 spin_unlock_irq(&mapping->tree_lock);
e767e056 591 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
592
593 if (freepage != NULL)
594 freepage(page);
49d2e9cc
CL
595 }
596
49d2e9cc
CL
597 return 1;
598
599cannot_free:
19fd6231 600 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
601 return 0;
602}
603
e286781d
NP
604/*
605 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
606 * someone else has a ref on the page, abort and return 0. If it was
607 * successfully detached, return 1. Assumes the caller has a single ref on
608 * this page.
609 */
610int remove_mapping(struct address_space *mapping, struct page *page)
611{
612 if (__remove_mapping(mapping, page)) {
613 /*
614 * Unfreezing the refcount with 1 rather than 2 effectively
615 * drops the pagecache ref for us without requiring another
616 * atomic operation.
617 */
618 page_unfreeze_refs(page, 1);
619 return 1;
620 }
621 return 0;
622}
623
894bc310
LS
624/**
625 * putback_lru_page - put previously isolated page onto appropriate LRU list
626 * @page: page to be put back to appropriate lru list
627 *
628 * Add previously isolated @page to appropriate LRU list.
629 * Page may still be unevictable for other reasons.
630 *
631 * lru_lock must not be held, interrupts must be enabled.
632 */
894bc310
LS
633void putback_lru_page(struct page *page)
634{
635 int lru;
636 int active = !!TestClearPageActive(page);
bbfd28ee 637 int was_unevictable = PageUnevictable(page);
894bc310
LS
638
639 VM_BUG_ON(PageLRU(page));
640
641redo:
642 ClearPageUnevictable(page);
643
644 if (page_evictable(page, NULL)) {
645 /*
646 * For evictable pages, we can use the cache.
647 * In event of a race, worst case is we end up with an
648 * unevictable page on [in]active list.
649 * We know how to handle that.
650 */
401a8e1c 651 lru = active + page_lru_base_type(page);
894bc310
LS
652 lru_cache_add_lru(page, lru);
653 } else {
654 /*
655 * Put unevictable pages directly on zone's unevictable
656 * list.
657 */
658 lru = LRU_UNEVICTABLE;
659 add_page_to_unevictable_list(page);
6a7b9548 660 /*
21ee9f39
MK
661 * When racing with an mlock or AS_UNEVICTABLE clearing
662 * (page is unlocked) make sure that if the other thread
663 * does not observe our setting of PG_lru and fails
664 * isolation/check_move_unevictable_page,
665 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
666 * the page back to the evictable list.
667 *
21ee9f39 668 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
669 */
670 smp_mb();
894bc310 671 }
894bc310
LS
672
673 /*
674 * page's status can change while we move it among lru. If an evictable
675 * page is on unevictable list, it never be freed. To avoid that,
676 * check after we added it to the list, again.
677 */
678 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
679 if (!isolate_lru_page(page)) {
680 put_page(page);
681 goto redo;
682 }
683 /* This means someone else dropped this page from LRU
684 * So, it will be freed or putback to LRU again. There is
685 * nothing to do here.
686 */
687 }
688
bbfd28ee
LS
689 if (was_unevictable && lru != LRU_UNEVICTABLE)
690 count_vm_event(UNEVICTABLE_PGRESCUED);
691 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
692 count_vm_event(UNEVICTABLE_PGCULLED);
693
894bc310
LS
694 put_page(page); /* drop ref from isolate */
695}
696
dfc8d636
JW
697enum page_references {
698 PAGEREF_RECLAIM,
699 PAGEREF_RECLAIM_CLEAN,
64574746 700 PAGEREF_KEEP,
dfc8d636
JW
701 PAGEREF_ACTIVATE,
702};
703
704static enum page_references page_check_references(struct page *page,
f16015fb 705 struct mem_cgroup_zone *mz,
dfc8d636
JW
706 struct scan_control *sc)
707{
64574746 708 int referenced_ptes, referenced_page;
dfc8d636 709 unsigned long vm_flags;
dfc8d636 710
f16015fb 711 referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
64574746 712 referenced_page = TestClearPageReferenced(page);
dfc8d636
JW
713
714 /* Lumpy reclaim - ignore references */
f3a310bc 715 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
dfc8d636
JW
716 return PAGEREF_RECLAIM;
717
718 /*
719 * Mlock lost the isolation race with us. Let try_to_unmap()
720 * move the page to the unevictable list.
721 */
722 if (vm_flags & VM_LOCKED)
723 return PAGEREF_RECLAIM;
724
64574746
JW
725 if (referenced_ptes) {
726 if (PageAnon(page))
727 return PAGEREF_ACTIVATE;
728 /*
729 * All mapped pages start out with page table
730 * references from the instantiating fault, so we need
731 * to look twice if a mapped file page is used more
732 * than once.
733 *
734 * Mark it and spare it for another trip around the
735 * inactive list. Another page table reference will
736 * lead to its activation.
737 *
738 * Note: the mark is set for activated pages as well
739 * so that recently deactivated but used pages are
740 * quickly recovered.
741 */
742 SetPageReferenced(page);
743
34dbc67a 744 if (referenced_page || referenced_ptes > 1)
64574746
JW
745 return PAGEREF_ACTIVATE;
746
c909e993
KK
747 /*
748 * Activate file-backed executable pages after first usage.
749 */
750 if (vm_flags & VM_EXEC)
751 return PAGEREF_ACTIVATE;
752
64574746
JW
753 return PAGEREF_KEEP;
754 }
dfc8d636
JW
755
756 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 757 if (referenced_page && !PageSwapBacked(page))
64574746
JW
758 return PAGEREF_RECLAIM_CLEAN;
759
760 return PAGEREF_RECLAIM;
dfc8d636
JW
761}
762
1da177e4 763/*
1742f19f 764 * shrink_page_list() returns the number of reclaimed pages
1da177e4 765 */
1742f19f 766static unsigned long shrink_page_list(struct list_head *page_list,
f16015fb 767 struct mem_cgroup_zone *mz,
f84f6e2b 768 struct scan_control *sc,
92df3a72
MG
769 int priority,
770 unsigned long *ret_nr_dirty,
771 unsigned long *ret_nr_writeback)
1da177e4
LT
772{
773 LIST_HEAD(ret_pages);
abe4c3b5 774 LIST_HEAD(free_pages);
1da177e4 775 int pgactivate = 0;
0e093d99
MG
776 unsigned long nr_dirty = 0;
777 unsigned long nr_congested = 0;
05ff5137 778 unsigned long nr_reclaimed = 0;
92df3a72 779 unsigned long nr_writeback = 0;
1da177e4
LT
780
781 cond_resched();
782
1da177e4 783 while (!list_empty(page_list)) {
dfc8d636 784 enum page_references references;
1da177e4
LT
785 struct address_space *mapping;
786 struct page *page;
787 int may_enter_fs;
1da177e4
LT
788
789 cond_resched();
790
791 page = lru_to_page(page_list);
792 list_del(&page->lru);
793
529ae9aa 794 if (!trylock_page(page))
1da177e4
LT
795 goto keep;
796
725d704e 797 VM_BUG_ON(PageActive(page));
f16015fb 798 VM_BUG_ON(page_zone(page) != mz->zone);
1da177e4
LT
799
800 sc->nr_scanned++;
80e43426 801
b291f000
NP
802 if (unlikely(!page_evictable(page, NULL)))
803 goto cull_mlocked;
894bc310 804
a6dc60f8 805 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
806 goto keep_locked;
807
1da177e4
LT
808 /* Double the slab pressure for mapped and swapcache pages */
809 if (page_mapped(page) || PageSwapCache(page))
810 sc->nr_scanned++;
811
c661b078
AW
812 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
813 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
814
815 if (PageWriteback(page)) {
92df3a72 816 nr_writeback++;
c661b078 817 /*
a18bba06
MG
818 * Synchronous reclaim cannot queue pages for
819 * writeback due to the possibility of stack overflow
820 * but if it encounters a page under writeback, wait
821 * for the IO to complete.
c661b078 822 */
f3a310bc 823 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
7d3579e8 824 may_enter_fs)
c661b078 825 wait_on_page_writeback(page);
7d3579e8
KM
826 else {
827 unlock_page(page);
828 goto keep_lumpy;
829 }
c661b078 830 }
1da177e4 831
f16015fb 832 references = page_check_references(page, mz, sc);
dfc8d636
JW
833 switch (references) {
834 case PAGEREF_ACTIVATE:
1da177e4 835 goto activate_locked;
64574746
JW
836 case PAGEREF_KEEP:
837 goto keep_locked;
dfc8d636
JW
838 case PAGEREF_RECLAIM:
839 case PAGEREF_RECLAIM_CLEAN:
840 ; /* try to reclaim the page below */
841 }
1da177e4 842
1da177e4
LT
843 /*
844 * Anonymous process memory has backing store?
845 * Try to allocate it some swap space here.
846 */
b291f000 847 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
848 if (!(sc->gfp_mask & __GFP_IO))
849 goto keep_locked;
ac47b003 850 if (!add_to_swap(page))
1da177e4 851 goto activate_locked;
63eb6b93 852 may_enter_fs = 1;
b291f000 853 }
1da177e4
LT
854
855 mapping = page_mapping(page);
1da177e4
LT
856
857 /*
858 * The page is mapped into the page tables of one or more
859 * processes. Try to unmap it here.
860 */
861 if (page_mapped(page) && mapping) {
14fa31b8 862 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
863 case SWAP_FAIL:
864 goto activate_locked;
865 case SWAP_AGAIN:
866 goto keep_locked;
b291f000
NP
867 case SWAP_MLOCK:
868 goto cull_mlocked;
1da177e4
LT
869 case SWAP_SUCCESS:
870 ; /* try to free the page below */
871 }
872 }
873
874 if (PageDirty(page)) {
0e093d99
MG
875 nr_dirty++;
876
ee72886d
MG
877 /*
878 * Only kswapd can writeback filesystem pages to
f84f6e2b
MG
879 * avoid risk of stack overflow but do not writeback
880 * unless under significant pressure.
ee72886d 881 */
f84f6e2b
MG
882 if (page_is_file_cache(page) &&
883 (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
49ea7eb6
MG
884 /*
885 * Immediately reclaim when written back.
886 * Similar in principal to deactivate_page()
887 * except we already have the page isolated
888 * and know it's dirty
889 */
890 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
891 SetPageReclaim(page);
892
ee72886d
MG
893 goto keep_locked;
894 }
895
dfc8d636 896 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 897 goto keep_locked;
4dd4b920 898 if (!may_enter_fs)
1da177e4 899 goto keep_locked;
52a8363e 900 if (!sc->may_writepage)
1da177e4
LT
901 goto keep_locked;
902
903 /* Page is dirty, try to write it out here */
7d3579e8 904 switch (pageout(page, mapping, sc)) {
1da177e4 905 case PAGE_KEEP:
0e093d99 906 nr_congested++;
1da177e4
LT
907 goto keep_locked;
908 case PAGE_ACTIVATE:
909 goto activate_locked;
910 case PAGE_SUCCESS:
7d3579e8
KM
911 if (PageWriteback(page))
912 goto keep_lumpy;
913 if (PageDirty(page))
1da177e4 914 goto keep;
7d3579e8 915
1da177e4
LT
916 /*
917 * A synchronous write - probably a ramdisk. Go
918 * ahead and try to reclaim the page.
919 */
529ae9aa 920 if (!trylock_page(page))
1da177e4
LT
921 goto keep;
922 if (PageDirty(page) || PageWriteback(page))
923 goto keep_locked;
924 mapping = page_mapping(page);
925 case PAGE_CLEAN:
926 ; /* try to free the page below */
927 }
928 }
929
930 /*
931 * If the page has buffers, try to free the buffer mappings
932 * associated with this page. If we succeed we try to free
933 * the page as well.
934 *
935 * We do this even if the page is PageDirty().
936 * try_to_release_page() does not perform I/O, but it is
937 * possible for a page to have PageDirty set, but it is actually
938 * clean (all its buffers are clean). This happens if the
939 * buffers were written out directly, with submit_bh(). ext3
894bc310 940 * will do this, as well as the blockdev mapping.
1da177e4
LT
941 * try_to_release_page() will discover that cleanness and will
942 * drop the buffers and mark the page clean - it can be freed.
943 *
944 * Rarely, pages can have buffers and no ->mapping. These are
945 * the pages which were not successfully invalidated in
946 * truncate_complete_page(). We try to drop those buffers here
947 * and if that worked, and the page is no longer mapped into
948 * process address space (page_count == 1) it can be freed.
949 * Otherwise, leave the page on the LRU so it is swappable.
950 */
266cf658 951 if (page_has_private(page)) {
1da177e4
LT
952 if (!try_to_release_page(page, sc->gfp_mask))
953 goto activate_locked;
e286781d
NP
954 if (!mapping && page_count(page) == 1) {
955 unlock_page(page);
956 if (put_page_testzero(page))
957 goto free_it;
958 else {
959 /*
960 * rare race with speculative reference.
961 * the speculative reference will free
962 * this page shortly, so we may
963 * increment nr_reclaimed here (and
964 * leave it off the LRU).
965 */
966 nr_reclaimed++;
967 continue;
968 }
969 }
1da177e4
LT
970 }
971
e286781d 972 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 973 goto keep_locked;
1da177e4 974
a978d6f5
NP
975 /*
976 * At this point, we have no other references and there is
977 * no way to pick any more up (removed from LRU, removed
978 * from pagecache). Can use non-atomic bitops now (and
979 * we obviously don't have to worry about waking up a process
980 * waiting on the page lock, because there are no references.
981 */
982 __clear_page_locked(page);
e286781d 983free_it:
05ff5137 984 nr_reclaimed++;
abe4c3b5
MG
985
986 /*
987 * Is there need to periodically free_page_list? It would
988 * appear not as the counts should be low
989 */
990 list_add(&page->lru, &free_pages);
1da177e4
LT
991 continue;
992
b291f000 993cull_mlocked:
63d6c5ad
HD
994 if (PageSwapCache(page))
995 try_to_free_swap(page);
b291f000
NP
996 unlock_page(page);
997 putback_lru_page(page);
f3a310bc 998 reset_reclaim_mode(sc);
b291f000
NP
999 continue;
1000
1da177e4 1001activate_locked:
68a22394
RR
1002 /* Not a candidate for swapping, so reclaim swap space. */
1003 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1004 try_to_free_swap(page);
894bc310 1005 VM_BUG_ON(PageActive(page));
1da177e4
LT
1006 SetPageActive(page);
1007 pgactivate++;
1008keep_locked:
1009 unlock_page(page);
1010keep:
f3a310bc 1011 reset_reclaim_mode(sc);
7d3579e8 1012keep_lumpy:
1da177e4 1013 list_add(&page->lru, &ret_pages);
b291f000 1014 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 1015 }
abe4c3b5 1016
0e093d99
MG
1017 /*
1018 * Tag a zone as congested if all the dirty pages encountered were
1019 * backed by a congested BDI. In this case, reclaimers should just
1020 * back off and wait for congestion to clear because further reclaim
1021 * will encounter the same problem
1022 */
89b5fae5 1023 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
f16015fb 1024 zone_set_flag(mz->zone, ZONE_CONGESTED);
0e093d99 1025
cc59850e 1026 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 1027
1da177e4 1028 list_splice(&ret_pages, page_list);
f8891e5e 1029 count_vm_events(PGACTIVATE, pgactivate);
92df3a72
MG
1030 *ret_nr_dirty += nr_dirty;
1031 *ret_nr_writeback += nr_writeback;
05ff5137 1032 return nr_reclaimed;
1da177e4
LT
1033}
1034
5ad333eb
AW
1035/*
1036 * Attempt to remove the specified page from its LRU. Only take this page
1037 * if it is of the appropriate PageActive status. Pages which are being
1038 * freed elsewhere are also ignored.
1039 *
1040 * page: page to consider
1041 * mode: one of the LRU isolation modes defined above
1042 *
1043 * returns 0 on success, -ve errno on failure.
1044 */
4356f21d 1045int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
5ad333eb 1046{
4356f21d 1047 bool all_lru_mode;
5ad333eb
AW
1048 int ret = -EINVAL;
1049
1050 /* Only take pages on the LRU. */
1051 if (!PageLRU(page))
1052 return ret;
1053
4356f21d
MK
1054 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1055 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1056
5ad333eb
AW
1057 /*
1058 * When checking the active state, we need to be sure we are
1059 * dealing with comparible boolean values. Take the logical not
1060 * of each.
1061 */
4356f21d 1062 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
5ad333eb
AW
1063 return ret;
1064
4356f21d 1065 if (!all_lru_mode && !!page_is_file_cache(page) != file)
4f98a2fe
RR
1066 return ret;
1067
894bc310
LS
1068 /*
1069 * When this function is being called for lumpy reclaim, we
1070 * initially look into all LRU pages, active, inactive and
1071 * unevictable; only give shrink_page_list evictable pages.
1072 */
1073 if (PageUnevictable(page))
1074 return ret;
1075
5ad333eb 1076 ret = -EBUSY;
08e552c6 1077
c8244935
MG
1078 /*
1079 * To minimise LRU disruption, the caller can indicate that it only
1080 * wants to isolate pages it will be able to operate on without
1081 * blocking - clean pages for the most part.
1082 *
1083 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1084 * is used by reclaim when it is cannot write to backing storage
1085 *
1086 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1087 * that it is possible to migrate without blocking
1088 */
1089 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1090 /* All the caller can do on PageWriteback is block */
1091 if (PageWriteback(page))
1092 return ret;
1093
1094 if (PageDirty(page)) {
1095 struct address_space *mapping;
1096
1097 /* ISOLATE_CLEAN means only clean pages */
1098 if (mode & ISOLATE_CLEAN)
1099 return ret;
1100
1101 /*
1102 * Only pages without mappings or that have a
1103 * ->migratepage callback are possible to migrate
1104 * without blocking
1105 */
1106 mapping = page_mapping(page);
1107 if (mapping && !mapping->a_ops->migratepage)
1108 return ret;
1109 }
1110 }
39deaf85 1111
f80c0673
MK
1112 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1113 return ret;
1114
5ad333eb
AW
1115 if (likely(get_page_unless_zero(page))) {
1116 /*
1117 * Be careful not to clear PageLRU until after we're
1118 * sure the page is not being freed elsewhere -- the
1119 * page release code relies on it.
1120 */
1121 ClearPageLRU(page);
1122 ret = 0;
1123 }
1124
1125 return ret;
1126}
1127
1da177e4
LT
1128/*
1129 * zone->lru_lock is heavily contended. Some of the functions that
1130 * shrink the lists perform better by taking out a batch of pages
1131 * and working on them outside the LRU lock.
1132 *
1133 * For pagecache intensive workloads, this function is the hottest
1134 * spot in the kernel (apart from copy_*_user functions).
1135 *
1136 * Appropriate locks must be held before calling this function.
1137 *
1138 * @nr_to_scan: The number of pages to look through on the list.
1139 * @src: The LRU list to pull pages off.
1140 * @dst: The temp list to put pages on to.
1141 * @scanned: The number of pages that were scanned.
5ad333eb
AW
1142 * @order: The caller's attempted allocation order
1143 * @mode: One of the LRU isolation modes
4f98a2fe 1144 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
1145 *
1146 * returns how many pages were moved onto *@dst.
1147 */
69e05944
AM
1148static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1149 struct list_head *src, struct list_head *dst,
4356f21d
MK
1150 unsigned long *scanned, int order, isolate_mode_t mode,
1151 int file)
1da177e4 1152{
69e05944 1153 unsigned long nr_taken = 0;
a8a94d15
MG
1154 unsigned long nr_lumpy_taken = 0;
1155 unsigned long nr_lumpy_dirty = 0;
1156 unsigned long nr_lumpy_failed = 0;
c9b02d97 1157 unsigned long scan;
1da177e4 1158
c9b02d97 1159 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
1160 struct page *page;
1161 unsigned long pfn;
1162 unsigned long end_pfn;
1163 unsigned long page_pfn;
1164 int zone_id;
1165
1da177e4
LT
1166 page = lru_to_page(src);
1167 prefetchw_prev_lru_page(page, src, flags);
1168
725d704e 1169 VM_BUG_ON(!PageLRU(page));
8d438f96 1170
4f98a2fe 1171 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb 1172 case 0:
925b7673 1173 mem_cgroup_lru_del(page);
5ad333eb 1174 list_move(&page->lru, dst);
2c888cfb 1175 nr_taken += hpage_nr_pages(page);
5ad333eb
AW
1176 break;
1177
1178 case -EBUSY:
1179 /* else it is being freed elsewhere */
1180 list_move(&page->lru, src);
1181 continue;
46453a6e 1182
5ad333eb
AW
1183 default:
1184 BUG();
1185 }
1186
1187 if (!order)
1188 continue;
1189
1190 /*
1191 * Attempt to take all pages in the order aligned region
1192 * surrounding the tag page. Only take those pages of
1193 * the same active state as that tag page. We may safely
1194 * round the target page pfn down to the requested order
25985edc 1195 * as the mem_map is guaranteed valid out to MAX_ORDER,
5ad333eb
AW
1196 * where that page is in a different zone we will detect
1197 * it from its zone id and abort this block scan.
1198 */
1199 zone_id = page_zone_id(page);
1200 page_pfn = page_to_pfn(page);
1201 pfn = page_pfn & ~((1 << order) - 1);
1202 end_pfn = pfn + (1 << order);
1203 for (; pfn < end_pfn; pfn++) {
1204 struct page *cursor_page;
1205
1206 /* The target page is in the block, ignore it. */
1207 if (unlikely(pfn == page_pfn))
1208 continue;
1209
1210 /* Avoid holes within the zone. */
1211 if (unlikely(!pfn_valid_within(pfn)))
1212 break;
1213
1214 cursor_page = pfn_to_page(pfn);
4f98a2fe 1215
5ad333eb
AW
1216 /* Check that we have not crossed a zone boundary. */
1217 if (unlikely(page_zone_id(cursor_page) != zone_id))
08fc468f 1218 break;
de2e7567
MK
1219
1220 /*
1221 * If we don't have enough swap space, reclaiming of
1222 * anon page which don't already have a swap slot is
1223 * pointless.
1224 */
043bcbe5 1225 if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
08fc468f
KM
1226 !PageSwapCache(cursor_page))
1227 break;
de2e7567 1228
ee993b13 1229 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
50134731
AA
1230 unsigned int isolated_pages;
1231
925b7673 1232 mem_cgroup_lru_del(cursor_page);
5ad333eb 1233 list_move(&cursor_page->lru, dst);
50134731
AA
1234 isolated_pages = hpage_nr_pages(cursor_page);
1235 nr_taken += isolated_pages;
1236 nr_lumpy_taken += isolated_pages;
a8a94d15 1237 if (PageDirty(cursor_page))
50134731 1238 nr_lumpy_dirty += isolated_pages;
5ad333eb 1239 scan++;
50134731 1240 pfn += isolated_pages - 1;
a8a94d15 1241 } else {
d179e84b
AA
1242 /*
1243 * Check if the page is freed already.
1244 *
1245 * We can't use page_count() as that
1246 * requires compound_head and we don't
1247 * have a pin on the page here. If a
1248 * page is tail, we may or may not
1249 * have isolated the head, so assume
1250 * it's not free, it'd be tricky to
1251 * track the head status without a
1252 * page pin.
1253 */
1254 if (!PageTail(cursor_page) &&
1255 !atomic_read(&cursor_page->_count))
08fc468f
KM
1256 continue;
1257 break;
5ad333eb
AW
1258 }
1259 }
08fc468f
KM
1260
1261 /* If we break out of the loop above, lumpy reclaim failed */
1262 if (pfn < end_pfn)
1263 nr_lumpy_failed++;
1da177e4
LT
1264 }
1265
1266 *scanned = scan;
a8a94d15
MG
1267
1268 trace_mm_vmscan_lru_isolate(order,
1269 nr_to_scan, scan,
1270 nr_taken,
1271 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
ea4d349f 1272 mode, file);
1da177e4
LT
1273 return nr_taken;
1274}
1275
925b7673
JW
1276static unsigned long isolate_pages(unsigned long nr, struct mem_cgroup_zone *mz,
1277 struct list_head *dst,
1278 unsigned long *scanned, int order,
1279 isolate_mode_t mode, int active, int file)
66e1707b 1280{
925b7673 1281 struct lruvec *lruvec;
4f98a2fe 1282 int lru = LRU_BASE;
925b7673
JW
1283
1284 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
66e1707b 1285 if (active)
4f98a2fe
RR
1286 lru += LRU_ACTIVE;
1287 if (file)
1288 lru += LRU_FILE;
925b7673 1289 return isolate_lru_pages(nr, &lruvec->lists[lru], dst,
6290df54 1290 scanned, order, mode, file);
66e1707b
BS
1291}
1292
5ad333eb
AW
1293/*
1294 * clear_active_flags() is a helper for shrink_active_list(), clearing
1295 * any active bits from the pages in the list.
1296 */
4f98a2fe
RR
1297static unsigned long clear_active_flags(struct list_head *page_list,
1298 unsigned int *count)
5ad333eb
AW
1299{
1300 int nr_active = 0;
4f98a2fe 1301 int lru;
5ad333eb
AW
1302 struct page *page;
1303
4f98a2fe 1304 list_for_each_entry(page, page_list, lru) {
2c888cfb 1305 int numpages = hpage_nr_pages(page);
401a8e1c 1306 lru = page_lru_base_type(page);
5ad333eb 1307 if (PageActive(page)) {
4f98a2fe 1308 lru += LRU_ACTIVE;
5ad333eb 1309 ClearPageActive(page);
2c888cfb 1310 nr_active += numpages;
5ad333eb 1311 }
1489fa14 1312 if (count)
2c888cfb 1313 count[lru] += numpages;
4f98a2fe 1314 }
5ad333eb
AW
1315
1316 return nr_active;
1317}
1318
62695a84
NP
1319/**
1320 * isolate_lru_page - tries to isolate a page from its LRU list
1321 * @page: page to isolate from its LRU list
1322 *
1323 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1324 * vmstat statistic corresponding to whatever LRU list the page was on.
1325 *
1326 * Returns 0 if the page was removed from an LRU list.
1327 * Returns -EBUSY if the page was not on an LRU list.
1328 *
1329 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1330 * the active list, it will have PageActive set. If it was found on
1331 * the unevictable list, it will have the PageUnevictable bit set. That flag
1332 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1333 *
1334 * The vmstat statistic corresponding to the list on which the page was
1335 * found will be decremented.
1336 *
1337 * Restrictions:
1338 * (1) Must be called with an elevated refcount on the page. This is a
1339 * fundamentnal difference from isolate_lru_pages (which is called
1340 * without a stable reference).
1341 * (2) the lru_lock must not be held.
1342 * (3) interrupts must be enabled.
1343 */
1344int isolate_lru_page(struct page *page)
1345{
1346 int ret = -EBUSY;
1347
0c917313
KK
1348 VM_BUG_ON(!page_count(page));
1349
62695a84
NP
1350 if (PageLRU(page)) {
1351 struct zone *zone = page_zone(page);
1352
1353 spin_lock_irq(&zone->lru_lock);
0c917313 1354 if (PageLRU(page)) {
894bc310 1355 int lru = page_lru(page);
62695a84 1356 ret = 0;
0c917313 1357 get_page(page);
62695a84 1358 ClearPageLRU(page);
4f98a2fe 1359
4f98a2fe 1360 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1361 }
1362 spin_unlock_irq(&zone->lru_lock);
1363 }
1364 return ret;
1365}
1366
35cd7815
RR
1367/*
1368 * Are there way too many processes in the direct reclaim path already?
1369 */
1370static int too_many_isolated(struct zone *zone, int file,
1371 struct scan_control *sc)
1372{
1373 unsigned long inactive, isolated;
1374
1375 if (current_is_kswapd())
1376 return 0;
1377
89b5fae5 1378 if (!global_reclaim(sc))
35cd7815
RR
1379 return 0;
1380
1381 if (file) {
1382 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1383 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1384 } else {
1385 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1386 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1387 }
1388
1389 return isolated > inactive;
1390}
1391
66635629
MG
1392/*
1393 * TODO: Try merging with migrations version of putback_lru_pages
1394 */
1395static noinline_for_stack void
f16015fb
JW
1396putback_lru_pages(struct mem_cgroup_zone *mz, struct scan_control *sc,
1397 unsigned long nr_anon, unsigned long nr_file,
1398 struct list_head *page_list)
66635629
MG
1399{
1400 struct page *page;
1401 struct pagevec pvec;
f16015fb
JW
1402 struct zone *zone = mz->zone;
1403 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
66635629
MG
1404
1405 pagevec_init(&pvec, 1);
1406
1407 /*
1408 * Put back any unfreeable pages.
1409 */
1410 spin_lock(&zone->lru_lock);
1411 while (!list_empty(page_list)) {
1412 int lru;
1413 page = lru_to_page(page_list);
1414 VM_BUG_ON(PageLRU(page));
1415 list_del(&page->lru);
1416 if (unlikely(!page_evictable(page, NULL))) {
1417 spin_unlock_irq(&zone->lru_lock);
1418 putback_lru_page(page);
1419 spin_lock_irq(&zone->lru_lock);
1420 continue;
1421 }
7a608572 1422 SetPageLRU(page);
66635629 1423 lru = page_lru(page);
7a608572 1424 add_page_to_lru_list(zone, page, lru);
66635629
MG
1425 if (is_active_lru(lru)) {
1426 int file = is_file_lru(lru);
9992af10
RR
1427 int numpages = hpage_nr_pages(page);
1428 reclaim_stat->recent_rotated[file] += numpages;
66635629
MG
1429 }
1430 if (!pagevec_add(&pvec, page)) {
1431 spin_unlock_irq(&zone->lru_lock);
1432 __pagevec_release(&pvec);
1433 spin_lock_irq(&zone->lru_lock);
1434 }
1435 }
1436 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1437 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1438
1439 spin_unlock_irq(&zone->lru_lock);
1440 pagevec_release(&pvec);
1441}
1442
f16015fb
JW
1443static noinline_for_stack void
1444update_isolated_counts(struct mem_cgroup_zone *mz,
1445 struct scan_control *sc,
1446 unsigned long *nr_anon,
1447 unsigned long *nr_file,
1448 struct list_head *isolated_list)
1489fa14
MG
1449{
1450 unsigned long nr_active;
f16015fb 1451 struct zone *zone = mz->zone;
1489fa14 1452 unsigned int count[NR_LRU_LISTS] = { 0, };
f16015fb 1453 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1489fa14
MG
1454
1455 nr_active = clear_active_flags(isolated_list, count);
1456 __count_vm_events(PGDEACTIVATE, nr_active);
1457
1458 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1459 -count[LRU_ACTIVE_FILE]);
1460 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1461 -count[LRU_INACTIVE_FILE]);
1462 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1463 -count[LRU_ACTIVE_ANON]);
1464 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1465 -count[LRU_INACTIVE_ANON]);
1466
1467 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1468 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1469 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1470 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1471
1472 reclaim_stat->recent_scanned[0] += *nr_anon;
1473 reclaim_stat->recent_scanned[1] += *nr_file;
1474}
1475
e31f3698 1476/*
a18bba06 1477 * Returns true if a direct reclaim should wait on pages under writeback.
e31f3698
WF
1478 *
1479 * If we are direct reclaiming for contiguous pages and we do not reclaim
1480 * everything in the list, try again and wait for writeback IO to complete.
1481 * This will stall high-order allocations noticeably. Only do that when really
1482 * need to free the pages under high memory pressure.
1483 */
1484static inline bool should_reclaim_stall(unsigned long nr_taken,
1485 unsigned long nr_freed,
1486 int priority,
1487 struct scan_control *sc)
1488{
1489 int lumpy_stall_priority;
1490
1491 /* kswapd should not stall on sync IO */
1492 if (current_is_kswapd())
1493 return false;
1494
1495 /* Only stall on lumpy reclaim */
f3a310bc 1496 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
e31f3698
WF
1497 return false;
1498
81d66c70 1499 /* If we have reclaimed everything on the isolated list, no stall */
e31f3698
WF
1500 if (nr_freed == nr_taken)
1501 return false;
1502
1503 /*
1504 * For high-order allocations, there are two stall thresholds.
1505 * High-cost allocations stall immediately where as lower
1506 * order allocations such as stacks require the scanning
1507 * priority to be much higher before stalling.
1508 */
1509 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1510 lumpy_stall_priority = DEF_PRIORITY;
1511 else
1512 lumpy_stall_priority = DEF_PRIORITY / 3;
1513
1514 return priority <= lumpy_stall_priority;
1515}
1516
1da177e4 1517/*
1742f19f
AM
1518 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1519 * of reclaimed pages
1da177e4 1520 */
66635629 1521static noinline_for_stack unsigned long
f16015fb
JW
1522shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1523 struct scan_control *sc, int priority, int file)
1da177e4
LT
1524{
1525 LIST_HEAD(page_list);
e247dbce 1526 unsigned long nr_scanned;
05ff5137 1527 unsigned long nr_reclaimed = 0;
e247dbce 1528 unsigned long nr_taken;
e247dbce
KM
1529 unsigned long nr_anon;
1530 unsigned long nr_file;
92df3a72
MG
1531 unsigned long nr_dirty = 0;
1532 unsigned long nr_writeback = 0;
4356f21d 1533 isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
f16015fb 1534 struct zone *zone = mz->zone;
78dc583d 1535
35cd7815 1536 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1537 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1538
1539 /* We are about to die and free our memory. Return now. */
1540 if (fatal_signal_pending(current))
1541 return SWAP_CLUSTER_MAX;
1542 }
1543
f3a310bc 1544 set_reclaim_mode(priority, sc, false);
4356f21d
MK
1545 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1546 reclaim_mode |= ISOLATE_ACTIVE;
1547
1da177e4 1548 lru_add_drain();
f80c0673
MK
1549
1550 if (!sc->may_unmap)
1551 reclaim_mode |= ISOLATE_UNMAPPED;
1552 if (!sc->may_writepage)
1553 reclaim_mode |= ISOLATE_CLEAN;
1554
1da177e4 1555 spin_lock_irq(&zone->lru_lock);
b35ea17b 1556
925b7673
JW
1557 nr_taken = isolate_pages(nr_to_scan, mz, &page_list,
1558 &nr_scanned, sc->order,
1559 reclaim_mode, 0, file);
89b5fae5 1560 if (global_reclaim(sc)) {
e247dbce
KM
1561 zone->pages_scanned += nr_scanned;
1562 if (current_is_kswapd())
1563 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1564 nr_scanned);
1565 else
1566 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1567 nr_scanned);
e247dbce 1568 }
b35ea17b 1569
66635629
MG
1570 if (nr_taken == 0) {
1571 spin_unlock_irq(&zone->lru_lock);
1572 return 0;
1573 }
5ad333eb 1574
f16015fb 1575 update_isolated_counts(mz, sc, &nr_anon, &nr_file, &page_list);
1da177e4 1576
e247dbce 1577 spin_unlock_irq(&zone->lru_lock);
c661b078 1578
f16015fb 1579 nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
92df3a72 1580 &nr_dirty, &nr_writeback);
c661b078 1581
e31f3698
WF
1582 /* Check if we should syncronously wait for writeback */
1583 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
f3a310bc 1584 set_reclaim_mode(priority, sc, true);
f16015fb 1585 nr_reclaimed += shrink_page_list(&page_list, mz, sc,
92df3a72 1586 priority, &nr_dirty, &nr_writeback);
e247dbce 1587 }
b35ea17b 1588
e247dbce
KM
1589 local_irq_disable();
1590 if (current_is_kswapd())
1591 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1592 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
a74609fa 1593
f16015fb 1594 putback_lru_pages(mz, sc, nr_anon, nr_file, &page_list);
e11da5b4 1595
92df3a72
MG
1596 /*
1597 * If reclaim is isolating dirty pages under writeback, it implies
1598 * that the long-lived page allocation rate is exceeding the page
1599 * laundering rate. Either the global limits are not being effective
1600 * at throttling processes due to the page distribution throughout
1601 * zones or there is heavy usage of a slow backing device. The
1602 * only option is to throttle from reclaim context which is not ideal
1603 * as there is no guarantee the dirtying process is throttled in the
1604 * same way balance_dirty_pages() manages.
1605 *
1606 * This scales the number of dirty pages that must be under writeback
1607 * before throttling depending on priority. It is a simple backoff
1608 * function that has the most effect in the range DEF_PRIORITY to
1609 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1610 * in trouble and reclaim is considered to be in trouble.
1611 *
1612 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1613 * DEF_PRIORITY-1 50% must be PageWriteback
1614 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1615 * ...
1616 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1617 * isolated page is PageWriteback
1618 */
1619 if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1620 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1621
e11da5b4
MG
1622 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1623 zone_idx(zone),
1624 nr_scanned, nr_reclaimed,
1625 priority,
f3a310bc 1626 trace_shrink_flags(file, sc->reclaim_mode));
05ff5137 1627 return nr_reclaimed;
1da177e4
LT
1628}
1629
1630/*
1631 * This moves pages from the active list to the inactive list.
1632 *
1633 * We move them the other way if the page is referenced by one or more
1634 * processes, from rmap.
1635 *
1636 * If the pages are mostly unmapped, the processing is fast and it is
1637 * appropriate to hold zone->lru_lock across the whole operation. But if
1638 * the pages are mapped, the processing is slow (page_referenced()) so we
1639 * should drop zone->lru_lock around each page. It's impossible to balance
1640 * this, so instead we remove the pages from the LRU while processing them.
1641 * It is safe to rely on PG_active against the non-LRU pages in here because
1642 * nobody will play with that bit on a non-LRU page.
1643 *
1644 * The downside is that we have to touch page->_count against each page.
1645 * But we had to alter page->flags anyway.
1646 */
1cfb419b 1647
3eb4140f
WF
1648static void move_active_pages_to_lru(struct zone *zone,
1649 struct list_head *list,
1650 enum lru_list lru)
1651{
1652 unsigned long pgmoved = 0;
1653 struct pagevec pvec;
1654 struct page *page;
1655
1656 pagevec_init(&pvec, 1);
1657
1658 while (!list_empty(list)) {
925b7673
JW
1659 struct lruvec *lruvec;
1660
3eb4140f 1661 page = lru_to_page(list);
3eb4140f
WF
1662
1663 VM_BUG_ON(PageLRU(page));
1664 SetPageLRU(page);
1665
925b7673
JW
1666 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1667 list_move(&page->lru, &lruvec->lists[lru]);
2c888cfb 1668 pgmoved += hpage_nr_pages(page);
3eb4140f
WF
1669
1670 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1671 spin_unlock_irq(&zone->lru_lock);
1672 if (buffer_heads_over_limit)
1673 pagevec_strip(&pvec);
1674 __pagevec_release(&pvec);
1675 spin_lock_irq(&zone->lru_lock);
1676 }
1677 }
1678 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1679 if (!is_active_lru(lru))
1680 __count_vm_events(PGDEACTIVATE, pgmoved);
1681}
1cfb419b 1682
f16015fb
JW
1683static void shrink_active_list(unsigned long nr_pages,
1684 struct mem_cgroup_zone *mz,
1685 struct scan_control *sc,
1686 int priority, int file)
1da177e4 1687{
44c241f1 1688 unsigned long nr_taken;
69e05944 1689 unsigned long pgscanned;
6fe6b7e3 1690 unsigned long vm_flags;
1da177e4 1691 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1692 LIST_HEAD(l_active);
b69408e8 1693 LIST_HEAD(l_inactive);
1da177e4 1694 struct page *page;
f16015fb 1695 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
44c241f1 1696 unsigned long nr_rotated = 0;
f80c0673 1697 isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
f16015fb 1698 struct zone *zone = mz->zone;
1da177e4
LT
1699
1700 lru_add_drain();
f80c0673
MK
1701
1702 if (!sc->may_unmap)
1703 reclaim_mode |= ISOLATE_UNMAPPED;
1704 if (!sc->may_writepage)
1705 reclaim_mode |= ISOLATE_CLEAN;
1706
1da177e4 1707 spin_lock_irq(&zone->lru_lock);
925b7673
JW
1708
1709 nr_taken = isolate_pages(nr_pages, mz, &l_hold,
1710 &pgscanned, sc->order,
1711 reclaim_mode, 1, file);
8b25c6d2 1712
89b5fae5
JW
1713 if (global_reclaim(sc))
1714 zone->pages_scanned += pgscanned;
1715
b7c46d15 1716 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1717
3eb4140f 1718 __count_zone_vm_events(PGREFILL, zone, pgscanned);
4f98a2fe 1719 if (file)
44c241f1 1720 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
4f98a2fe 1721 else
44c241f1 1722 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
a731286d 1723 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1724 spin_unlock_irq(&zone->lru_lock);
1725
1da177e4
LT
1726 while (!list_empty(&l_hold)) {
1727 cond_resched();
1728 page = lru_to_page(&l_hold);
1729 list_del(&page->lru);
7e9cd484 1730
894bc310
LS
1731 if (unlikely(!page_evictable(page, NULL))) {
1732 putback_lru_page(page);
1733 continue;
1734 }
1735
f16015fb 1736 if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
9992af10 1737 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1738 /*
1739 * Identify referenced, file-backed active pages and
1740 * give them one more trip around the active list. So
1741 * that executable code get better chances to stay in
1742 * memory under moderate memory pressure. Anon pages
1743 * are not likely to be evicted by use-once streaming
1744 * IO, plus JVM can create lots of anon VM_EXEC pages,
1745 * so we ignore them here.
1746 */
41e20983 1747 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1748 list_add(&page->lru, &l_active);
1749 continue;
1750 }
1751 }
7e9cd484 1752
5205e56e 1753 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1754 list_add(&page->lru, &l_inactive);
1755 }
1756
b555749a 1757 /*
8cab4754 1758 * Move pages back to the lru list.
b555749a 1759 */
2a1dc509 1760 spin_lock_irq(&zone->lru_lock);
556adecb 1761 /*
8cab4754
WF
1762 * Count referenced pages from currently used mappings as rotated,
1763 * even though only some of them are actually re-activated. This
1764 * helps balance scan pressure between file and anonymous pages in
1765 * get_scan_ratio.
7e9cd484 1766 */
b7c46d15 1767 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1768
3eb4140f
WF
1769 move_active_pages_to_lru(zone, &l_active,
1770 LRU_ACTIVE + file * LRU_FILE);
1771 move_active_pages_to_lru(zone, &l_inactive,
1772 LRU_BASE + file * LRU_FILE);
a731286d 1773 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1774 spin_unlock_irq(&zone->lru_lock);
1da177e4
LT
1775}
1776
74e3f3c3 1777#ifdef CONFIG_SWAP
14797e23 1778static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1779{
1780 unsigned long active, inactive;
1781
1782 active = zone_page_state(zone, NR_ACTIVE_ANON);
1783 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1784
1785 if (inactive * zone->inactive_ratio < active)
1786 return 1;
1787
1788 return 0;
1789}
1790
14797e23
KM
1791/**
1792 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1793 * @zone: zone to check
1794 * @sc: scan control of this context
1795 *
1796 * Returns true if the zone does not have enough inactive anon pages,
1797 * meaning some active anon pages need to be deactivated.
1798 */
f16015fb 1799static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
14797e23 1800{
74e3f3c3
MK
1801 /*
1802 * If we don't have swap space, anonymous page deactivation
1803 * is pointless.
1804 */
1805 if (!total_swap_pages)
1806 return 0;
1807
f16015fb
JW
1808 if (!scanning_global_lru(mz))
1809 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1810 mz->zone);
1811
1812 return inactive_anon_is_low_global(mz->zone);
14797e23 1813}
74e3f3c3 1814#else
f16015fb 1815static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
74e3f3c3
MK
1816{
1817 return 0;
1818}
1819#endif
14797e23 1820
56e49d21
RR
1821static int inactive_file_is_low_global(struct zone *zone)
1822{
1823 unsigned long active, inactive;
1824
1825 active = zone_page_state(zone, NR_ACTIVE_FILE);
1826 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1827
1828 return (active > inactive);
1829}
1830
1831/**
1832 * inactive_file_is_low - check if file pages need to be deactivated
f16015fb 1833 * @mz: memory cgroup and zone to check
56e49d21
RR
1834 *
1835 * When the system is doing streaming IO, memory pressure here
1836 * ensures that active file pages get deactivated, until more
1837 * than half of the file pages are on the inactive list.
1838 *
1839 * Once we get to that situation, protect the system's working
1840 * set from being evicted by disabling active file page aging.
1841 *
1842 * This uses a different ratio than the anonymous pages, because
1843 * the page cache uses a use-once replacement algorithm.
1844 */
f16015fb 1845static int inactive_file_is_low(struct mem_cgroup_zone *mz)
56e49d21 1846{
f16015fb
JW
1847 if (!scanning_global_lru(mz))
1848 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1849 mz->zone);
56e49d21 1850
f16015fb 1851 return inactive_file_is_low_global(mz->zone);
56e49d21
RR
1852}
1853
f16015fb 1854static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
b39415b2
RR
1855{
1856 if (file)
f16015fb 1857 return inactive_file_is_low(mz);
b39415b2 1858 else
f16015fb 1859 return inactive_anon_is_low(mz);
b39415b2
RR
1860}
1861
4f98a2fe 1862static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
f16015fb
JW
1863 struct mem_cgroup_zone *mz,
1864 struct scan_control *sc, int priority)
b69408e8 1865{
4f98a2fe
RR
1866 int file = is_file_lru(lru);
1867
b39415b2 1868 if (is_active_lru(lru)) {
f16015fb
JW
1869 if (inactive_list_is_low(mz, file))
1870 shrink_active_list(nr_to_scan, mz, sc, priority, file);
556adecb
RR
1871 return 0;
1872 }
1873
f16015fb 1874 return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
4f98a2fe
RR
1875}
1876
f16015fb
JW
1877static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1878 struct scan_control *sc)
1f4c025b 1879{
89b5fae5 1880 if (global_reclaim(sc))
1f4c025b 1881 return vm_swappiness;
f16015fb 1882 return mem_cgroup_swappiness(mz->mem_cgroup);
1f4c025b
KH
1883}
1884
4f98a2fe
RR
1885/*
1886 * Determine how aggressively the anon and file LRU lists should be
1887 * scanned. The relative value of each set of LRU lists is determined
1888 * by looking at the fraction of the pages scanned we did rotate back
1889 * onto the active list instead of evict.
1890 *
76a33fc3 1891 * nr[0] = anon pages to scan; nr[1] = file pages to scan
4f98a2fe 1892 */
f16015fb
JW
1893static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1894 unsigned long *nr, int priority)
4f98a2fe
RR
1895{
1896 unsigned long anon, file, free;
1897 unsigned long anon_prio, file_prio;
1898 unsigned long ap, fp;
f16015fb 1899 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
76a33fc3
SL
1900 u64 fraction[2], denominator;
1901 enum lru_list l;
1902 int noswap = 0;
a4d3e9e7 1903 bool force_scan = false;
246e87a9 1904
f11c0ca5
JW
1905 /*
1906 * If the zone or memcg is small, nr[l] can be 0. This
1907 * results in no scanning on this priority and a potential
1908 * priority drop. Global direct reclaim can go to the next
1909 * zone and tends to have no problems. Global kswapd is for
1910 * zone balancing and it needs to scan a minimum amount. When
1911 * reclaiming for a memcg, a priority drop can cause high
1912 * latencies, so it's better to scan a minimum amount there as
1913 * well.
1914 */
b95a2f2d 1915 if (current_is_kswapd() && mz->zone->all_unreclaimable)
a4d3e9e7 1916 force_scan = true;
89b5fae5 1917 if (!global_reclaim(sc))
a4d3e9e7 1918 force_scan = true;
76a33fc3
SL
1919
1920 /* If we have no swap space, do not bother scanning anon pages. */
1921 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1922 noswap = 1;
1923 fraction[0] = 0;
1924 fraction[1] = 1;
1925 denominator = 1;
1926 goto out;
1927 }
4f98a2fe 1928
f16015fb
JW
1929 anon = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1930 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1931 file = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1932 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
a4d3e9e7 1933
89b5fae5 1934 if (global_reclaim(sc)) {
f16015fb 1935 free = zone_page_state(mz->zone, NR_FREE_PAGES);
eeee9a8c
KM
1936 /* If we have very few page cache pages,
1937 force-scan anon pages. */
f16015fb 1938 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
76a33fc3
SL
1939 fraction[0] = 1;
1940 fraction[1] = 0;
1941 denominator = 1;
1942 goto out;
eeee9a8c 1943 }
4f98a2fe
RR
1944 }
1945
58c37f6e
KM
1946 /*
1947 * With swappiness at 100, anonymous and file have the same priority.
1948 * This scanning priority is essentially the inverse of IO cost.
1949 */
f16015fb
JW
1950 anon_prio = vmscan_swappiness(mz, sc);
1951 file_prio = 200 - vmscan_swappiness(mz, sc);
58c37f6e 1952
4f98a2fe
RR
1953 /*
1954 * OK, so we have swap space and a fair amount of page cache
1955 * pages. We use the recently rotated / recently scanned
1956 * ratios to determine how valuable each cache is.
1957 *
1958 * Because workloads change over time (and to avoid overflow)
1959 * we keep these statistics as a floating average, which ends
1960 * up weighing recent references more than old ones.
1961 *
1962 * anon in [0], file in [1]
1963 */
f16015fb 1964 spin_lock_irq(&mz->zone->lru_lock);
6e901571 1965 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1966 reclaim_stat->recent_scanned[0] /= 2;
1967 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1968 }
1969
6e901571 1970 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1971 reclaim_stat->recent_scanned[1] /= 2;
1972 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1973 }
1974
4f98a2fe 1975 /*
00d8089c
RR
1976 * The amount of pressure on anon vs file pages is inversely
1977 * proportional to the fraction of recently scanned pages on
1978 * each list that were recently referenced and in active use.
4f98a2fe 1979 */
6e901571
KM
1980 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1981 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1982
6e901571
KM
1983 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1984 fp /= reclaim_stat->recent_rotated[1] + 1;
f16015fb 1985 spin_unlock_irq(&mz->zone->lru_lock);
4f98a2fe 1986
76a33fc3
SL
1987 fraction[0] = ap;
1988 fraction[1] = fp;
1989 denominator = ap + fp + 1;
1990out:
1991 for_each_evictable_lru(l) {
1992 int file = is_file_lru(l);
1993 unsigned long scan;
6e08a369 1994
f16015fb 1995 scan = zone_nr_lru_pages(mz, l);
76a33fc3
SL
1996 if (priority || noswap) {
1997 scan >>= priority;
f11c0ca5
JW
1998 if (!scan && force_scan)
1999 scan = SWAP_CLUSTER_MAX;
76a33fc3
SL
2000 scan = div64_u64(scan * fraction[file], denominator);
2001 }
246e87a9 2002 nr[l] = scan;
76a33fc3 2003 }
6e08a369 2004}
4f98a2fe 2005
3e7d3449
MG
2006/*
2007 * Reclaim/compaction depends on a number of pages being freed. To avoid
2008 * disruption to the system, a small number of order-0 pages continue to be
2009 * rotated and reclaimed in the normal fashion. However, by the time we get
2010 * back to the allocator and call try_to_compact_zone(), we ensure that
2011 * there are enough free pages for it to be likely successful
2012 */
f16015fb 2013static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
3e7d3449
MG
2014 unsigned long nr_reclaimed,
2015 unsigned long nr_scanned,
2016 struct scan_control *sc)
2017{
2018 unsigned long pages_for_compaction;
2019 unsigned long inactive_lru_pages;
2020
2021 /* If not in reclaim/compaction mode, stop */
f3a310bc 2022 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
3e7d3449
MG
2023 return false;
2024
2876592f
MG
2025 /* Consider stopping depending on scan and reclaim activity */
2026 if (sc->gfp_mask & __GFP_REPEAT) {
2027 /*
2028 * For __GFP_REPEAT allocations, stop reclaiming if the
2029 * full LRU list has been scanned and we are still failing
2030 * to reclaim pages. This full LRU scan is potentially
2031 * expensive but a __GFP_REPEAT caller really wants to succeed
2032 */
2033 if (!nr_reclaimed && !nr_scanned)
2034 return false;
2035 } else {
2036 /*
2037 * For non-__GFP_REPEAT allocations which can presumably
2038 * fail without consequence, stop if we failed to reclaim
2039 * any pages from the last SWAP_CLUSTER_MAX number of
2040 * pages that were scanned. This will return to the
2041 * caller faster at the risk reclaim/compaction and
2042 * the resulting allocation attempt fails
2043 */
2044 if (!nr_reclaimed)
2045 return false;
2046 }
3e7d3449
MG
2047
2048 /*
2049 * If we have not reclaimed enough pages for compaction and the
2050 * inactive lists are large enough, continue reclaiming
2051 */
2052 pages_for_compaction = (2UL << sc->order);
f16015fb 2053 inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
86cfd3a4 2054 if (nr_swap_pages > 0)
f16015fb 2055 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
3e7d3449
MG
2056 if (sc->nr_reclaimed < pages_for_compaction &&
2057 inactive_lru_pages > pages_for_compaction)
2058 return true;
2059
2060 /* If compaction would go ahead or the allocation would succeed, stop */
f16015fb 2061 switch (compaction_suitable(mz->zone, sc->order)) {
3e7d3449
MG
2062 case COMPACT_PARTIAL:
2063 case COMPACT_CONTINUE:
2064 return false;
2065 default:
2066 return true;
2067 }
2068}
2069
1da177e4
LT
2070/*
2071 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2072 */
f16015fb
JW
2073static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
2074 struct scan_control *sc)
1da177e4 2075{
b69408e8 2076 unsigned long nr[NR_LRU_LISTS];
8695949a 2077 unsigned long nr_to_scan;
b69408e8 2078 enum lru_list l;
f0fdc5e8 2079 unsigned long nr_reclaimed, nr_scanned;
22fba335 2080 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
3da367c3 2081 struct blk_plug plug;
e0f79b8f 2082
3e7d3449
MG
2083restart:
2084 nr_reclaimed = 0;
f0fdc5e8 2085 nr_scanned = sc->nr_scanned;
f16015fb 2086 get_scan_count(mz, sc, nr, priority);
1da177e4 2087
3da367c3 2088 blk_start_plug(&plug);
556adecb
RR
2089 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2090 nr[LRU_INACTIVE_FILE]) {
894bc310 2091 for_each_evictable_lru(l) {
b69408e8 2092 if (nr[l]) {
ece74b2e
KM
2093 nr_to_scan = min_t(unsigned long,
2094 nr[l], SWAP_CLUSTER_MAX);
b69408e8 2095 nr[l] -= nr_to_scan;
1da177e4 2096
01dbe5c9 2097 nr_reclaimed += shrink_list(l, nr_to_scan,
f16015fb 2098 mz, sc, priority);
b69408e8 2099 }
1da177e4 2100 }
a79311c1
RR
2101 /*
2102 * On large memory systems, scan >> priority can become
2103 * really large. This is fine for the starting priority;
2104 * we want to put equal scanning pressure on each zone.
2105 * However, if the VM has a harder time of freeing pages,
2106 * with multiple processes reclaiming pages, the total
2107 * freeing target can get unreasonably large.
2108 */
338fde90 2109 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
a79311c1 2110 break;
1da177e4 2111 }
3da367c3 2112 blk_finish_plug(&plug);
3e7d3449 2113 sc->nr_reclaimed += nr_reclaimed;
01dbe5c9 2114
556adecb
RR
2115 /*
2116 * Even if we did not try to evict anon pages at all, we want to
2117 * rebalance the anon lru active/inactive ratio.
2118 */
f16015fb
JW
2119 if (inactive_anon_is_low(mz))
2120 shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
556adecb 2121
3e7d3449 2122 /* reclaim/compaction might need reclaim to continue */
f16015fb 2123 if (should_continue_reclaim(mz, nr_reclaimed,
3e7d3449
MG
2124 sc->nr_scanned - nr_scanned, sc))
2125 goto restart;
2126
232ea4d6 2127 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
2128}
2129
f16015fb
JW
2130static void shrink_zone(int priority, struct zone *zone,
2131 struct scan_control *sc)
2132{
5660048c
JW
2133 struct mem_cgroup *root = sc->target_mem_cgroup;
2134 struct mem_cgroup_reclaim_cookie reclaim = {
f16015fb 2135 .zone = zone,
5660048c 2136 .priority = priority,
f16015fb 2137 };
5660048c
JW
2138 struct mem_cgroup *memcg;
2139
5660048c
JW
2140 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2141 do {
2142 struct mem_cgroup_zone mz = {
2143 .mem_cgroup = memcg,
2144 .zone = zone,
2145 };
f16015fb 2146
5660048c
JW
2147 shrink_mem_cgroup_zone(priority, &mz, sc);
2148 /*
2149 * Limit reclaim has historically picked one memcg and
2150 * scanned it with decreasing priority levels until
2151 * nr_to_reclaim had been reclaimed. This priority
2152 * cycle is thus over after a single memcg.
b95a2f2d
JW
2153 *
2154 * Direct reclaim and kswapd, on the other hand, have
2155 * to scan all memory cgroups to fulfill the overall
2156 * scan target for the zone.
5660048c
JW
2157 */
2158 if (!global_reclaim(sc)) {
2159 mem_cgroup_iter_break(root, memcg);
2160 break;
2161 }
2162 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2163 } while (memcg);
f16015fb
JW
2164}
2165
1da177e4
LT
2166/*
2167 * This is the direct reclaim path, for page-allocating processes. We only
2168 * try to reclaim pages from zones which will satisfy the caller's allocation
2169 * request.
2170 *
41858966
MG
2171 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2172 * Because:
1da177e4
LT
2173 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2174 * allocation or
41858966
MG
2175 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2176 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2177 * zone defense algorithm.
1da177e4 2178 *
1da177e4
LT
2179 * If a zone is deemed to be full of pinned pages then just give it a light
2180 * scan then give up on it.
e0c23279
MG
2181 *
2182 * This function returns true if a zone is being reclaimed for a costly
2183 * high-order allocation and compaction is either ready to begin or deferred.
2184 * This indicates to the caller that it should retry the allocation or fail.
1da177e4 2185 */
e0c23279 2186static bool shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 2187 struct scan_control *sc)
1da177e4 2188{
dd1a239f 2189 struct zoneref *z;
54a6eb5c 2190 struct zone *zone;
d149e3b2
YH
2191 unsigned long nr_soft_reclaimed;
2192 unsigned long nr_soft_scanned;
e0c23279 2193 bool should_abort_reclaim = false;
1cfb419b 2194
d4debc66
MG
2195 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2196 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2197 if (!populated_zone(zone))
1da177e4 2198 continue;
1cfb419b
KH
2199 /*
2200 * Take care memory controller reclaiming has small influence
2201 * to global LRU.
2202 */
89b5fae5 2203 if (global_reclaim(sc)) {
1cfb419b
KH
2204 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2205 continue;
93e4a89a 2206 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1cfb419b 2207 continue; /* Let kswapd poll it */
e0887c19
RR
2208 if (COMPACTION_BUILD) {
2209 /*
e0c23279
MG
2210 * If we already have plenty of memory free for
2211 * compaction in this zone, don't free any more.
2212 * Even though compaction is invoked for any
2213 * non-zero order, only frequent costly order
2214 * reclamation is disruptive enough to become a
2215 * noticable problem, like transparent huge page
2216 * allocations.
e0887c19
RR
2217 */
2218 if (sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2219 (compaction_suitable(zone, sc->order) ||
e0c23279
MG
2220 compaction_deferred(zone))) {
2221 should_abort_reclaim = true;
e0887c19 2222 continue;
e0c23279 2223 }
e0887c19 2224 }
ac34a1a3
KH
2225 /*
2226 * This steals pages from memory cgroups over softlimit
2227 * and returns the number of reclaimed pages and
2228 * scanned pages. This works for global memory pressure
2229 * and balancing, not for a memcg's limit.
2230 */
2231 nr_soft_scanned = 0;
2232 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2233 sc->order, sc->gfp_mask,
2234 &nr_soft_scanned);
2235 sc->nr_reclaimed += nr_soft_reclaimed;
2236 sc->nr_scanned += nr_soft_scanned;
2237 /* need some check for avoid more shrink_zone() */
1cfb419b 2238 }
408d8544 2239
a79311c1 2240 shrink_zone(priority, zone, sc);
1da177e4 2241 }
e0c23279
MG
2242
2243 return should_abort_reclaim;
d1908362
MK
2244}
2245
2246static bool zone_reclaimable(struct zone *zone)
2247{
2248 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2249}
2250
929bea7c 2251/* All zones in zonelist are unreclaimable? */
d1908362
MK
2252static bool all_unreclaimable(struct zonelist *zonelist,
2253 struct scan_control *sc)
2254{
2255 struct zoneref *z;
2256 struct zone *zone;
d1908362
MK
2257
2258 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2259 gfp_zone(sc->gfp_mask), sc->nodemask) {
2260 if (!populated_zone(zone))
2261 continue;
2262 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2263 continue;
929bea7c
KM
2264 if (!zone->all_unreclaimable)
2265 return false;
d1908362
MK
2266 }
2267
929bea7c 2268 return true;
1da177e4 2269}
4f98a2fe 2270
1da177e4
LT
2271/*
2272 * This is the main entry point to direct page reclaim.
2273 *
2274 * If a full scan of the inactive list fails to free enough memory then we
2275 * are "out of memory" and something needs to be killed.
2276 *
2277 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2278 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2279 * caller can't do much about. We kick the writeback threads and take explicit
2280 * naps in the hope that some of these pages can be written. But if the
2281 * allocating task holds filesystem locks which prevent writeout this might not
2282 * work, and the allocation attempt will fail.
a41f24ea
NA
2283 *
2284 * returns: 0, if no pages reclaimed
2285 * else, the number of pages reclaimed
1da177e4 2286 */
dac1d27b 2287static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2288 struct scan_control *sc,
2289 struct shrink_control *shrink)
1da177e4
LT
2290{
2291 int priority;
69e05944 2292 unsigned long total_scanned = 0;
1da177e4 2293 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2294 struct zoneref *z;
54a6eb5c 2295 struct zone *zone;
22fba335 2296 unsigned long writeback_threshold;
7335084d 2297 bool should_abort_reclaim;
1da177e4 2298
c0ff7453 2299 get_mems_allowed();
873b4771
KK
2300 delayacct_freepages_start();
2301
89b5fae5 2302 if (global_reclaim(sc))
1cfb419b 2303 count_vm_event(ALLOCSTALL);
1da177e4
LT
2304
2305 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 2306 sc->nr_scanned = 0;
f7b7fd8f 2307 if (!priority)
f16015fb 2308 disable_swap_token(sc->target_mem_cgroup);
7335084d
MG
2309 should_abort_reclaim = shrink_zones(priority, zonelist, sc);
2310 if (should_abort_reclaim)
e0c23279
MG
2311 break;
2312
66e1707b
BS
2313 /*
2314 * Don't shrink slabs when reclaiming memory from
2315 * over limit cgroups
2316 */
89b5fae5 2317 if (global_reclaim(sc)) {
c6a8a8c5 2318 unsigned long lru_pages = 0;
d4debc66
MG
2319 for_each_zone_zonelist(zone, z, zonelist,
2320 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2321 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2322 continue;
2323
2324 lru_pages += zone_reclaimable_pages(zone);
2325 }
2326
1495f230 2327 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2328 if (reclaim_state) {
a79311c1 2329 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2330 reclaim_state->reclaimed_slab = 0;
2331 }
1da177e4 2332 }
66e1707b 2333 total_scanned += sc->nr_scanned;
bb21c7ce 2334 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2335 goto out;
1da177e4
LT
2336
2337 /*
2338 * Try to write back as many pages as we just scanned. This
2339 * tends to cause slow streaming writers to write data to the
2340 * disk smoothly, at the dirtying rate, which is nice. But
2341 * that's undesirable in laptop mode, where we *want* lumpy
2342 * writeout. So in laptop mode, write out the whole world.
2343 */
22fba335
KM
2344 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2345 if (total_scanned > writeback_threshold) {
0e175a18
CW
2346 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2347 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2348 sc->may_writepage = 1;
1da177e4
LT
2349 }
2350
2351 /* Take a nap, wait for some writeback to complete */
7b51755c 2352 if (!sc->hibernation_mode && sc->nr_scanned &&
0e093d99
MG
2353 priority < DEF_PRIORITY - 2) {
2354 struct zone *preferred_zone;
2355
2356 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2357 &cpuset_current_mems_allowed,
2358 &preferred_zone);
0e093d99
MG
2359 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2360 }
1da177e4 2361 }
bb21c7ce 2362
1da177e4 2363out:
873b4771 2364 delayacct_freepages_end();
c0ff7453 2365 put_mems_allowed();
873b4771 2366
bb21c7ce
KM
2367 if (sc->nr_reclaimed)
2368 return sc->nr_reclaimed;
2369
929bea7c
KM
2370 /*
2371 * As hibernation is going on, kswapd is freezed so that it can't mark
2372 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2373 * check.
2374 */
2375 if (oom_killer_disabled)
2376 return 0;
2377
7335084d
MG
2378 /* Aborting reclaim to try compaction? don't OOM, then */
2379 if (should_abort_reclaim)
2380 return 1;
2381
bb21c7ce 2382 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2383 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2384 return 1;
2385
2386 return 0;
1da177e4
LT
2387}
2388
dac1d27b 2389unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2390 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2391{
33906bc5 2392 unsigned long nr_reclaimed;
66e1707b
BS
2393 struct scan_control sc = {
2394 .gfp_mask = gfp_mask,
2395 .may_writepage = !laptop_mode,
22fba335 2396 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2397 .may_unmap = 1,
2e2e4259 2398 .may_swap = 1,
66e1707b 2399 .order = order,
f16015fb 2400 .target_mem_cgroup = NULL,
327c0e96 2401 .nodemask = nodemask,
66e1707b 2402 };
a09ed5e0
YH
2403 struct shrink_control shrink = {
2404 .gfp_mask = sc.gfp_mask,
2405 };
66e1707b 2406
33906bc5
MG
2407 trace_mm_vmscan_direct_reclaim_begin(order,
2408 sc.may_writepage,
2409 gfp_mask);
2410
a09ed5e0 2411 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2412
2413 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2414
2415 return nr_reclaimed;
66e1707b
BS
2416}
2417
00f0b825 2418#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 2419
72835c86 2420unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2421 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2422 struct zone *zone,
2423 unsigned long *nr_scanned)
4e416953
BS
2424{
2425 struct scan_control sc = {
0ae5e89c 2426 .nr_scanned = 0,
b8f5c566 2427 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2428 .may_writepage = !laptop_mode,
2429 .may_unmap = 1,
2430 .may_swap = !noswap,
4e416953 2431 .order = 0,
72835c86 2432 .target_mem_cgroup = memcg,
4e416953 2433 };
5660048c 2434 struct mem_cgroup_zone mz = {
72835c86 2435 .mem_cgroup = memcg,
5660048c
JW
2436 .zone = zone,
2437 };
0ae5e89c 2438
4e416953
BS
2439 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2440 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e
KM
2441
2442 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2443 sc.may_writepage,
2444 sc.gfp_mask);
2445
4e416953
BS
2446 /*
2447 * NOTE: Although we can get the priority field, using it
2448 * here is not a good idea, since it limits the pages we can scan.
2449 * if we don't reclaim here, the shrink_zone from balance_pgdat
2450 * will pick up pages from other mem cgroup's as well. We hack
2451 * the priority and make it zero.
2452 */
5660048c 2453 shrink_mem_cgroup_zone(0, &mz, &sc);
bdce6d9e
KM
2454
2455 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2456
0ae5e89c 2457 *nr_scanned = sc.nr_scanned;
4e416953
BS
2458 return sc.nr_reclaimed;
2459}
2460
72835c86 2461unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2462 gfp_t gfp_mask,
185efc0f 2463 bool noswap)
66e1707b 2464{
4e416953 2465 struct zonelist *zonelist;
bdce6d9e 2466 unsigned long nr_reclaimed;
889976db 2467 int nid;
66e1707b 2468 struct scan_control sc = {
66e1707b 2469 .may_writepage = !laptop_mode,
a6dc60f8 2470 .may_unmap = 1,
2e2e4259 2471 .may_swap = !noswap,
22fba335 2472 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2473 .order = 0,
72835c86 2474 .target_mem_cgroup = memcg,
327c0e96 2475 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2476 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2477 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2478 };
2479 struct shrink_control shrink = {
2480 .gfp_mask = sc.gfp_mask,
66e1707b 2481 };
66e1707b 2482
889976db
YH
2483 /*
2484 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2485 * take care of from where we get pages. So the node where we start the
2486 * scan does not need to be the current node.
2487 */
72835c86 2488 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2489
2490 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2491
2492 trace_mm_vmscan_memcg_reclaim_begin(0,
2493 sc.may_writepage,
2494 sc.gfp_mask);
2495
a09ed5e0 2496 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2497
2498 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2499
2500 return nr_reclaimed;
66e1707b
BS
2501}
2502#endif
2503
f16015fb
JW
2504static void age_active_anon(struct zone *zone, struct scan_control *sc,
2505 int priority)
2506{
b95a2f2d 2507 struct mem_cgroup *memcg;
f16015fb 2508
b95a2f2d
JW
2509 if (!total_swap_pages)
2510 return;
2511
2512 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2513 do {
2514 struct mem_cgroup_zone mz = {
2515 .mem_cgroup = memcg,
2516 .zone = zone,
2517 };
2518
2519 if (inactive_anon_is_low(&mz))
2520 shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2521 sc, priority, 0);
2522
2523 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2524 } while (memcg);
f16015fb
JW
2525}
2526
1741c877
MG
2527/*
2528 * pgdat_balanced is used when checking if a node is balanced for high-order
2529 * allocations. Only zones that meet watermarks and are in a zone allowed
2530 * by the callers classzone_idx are added to balanced_pages. The total of
2531 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2532 * for the node to be considered balanced. Forcing all zones to be balanced
2533 * for high orders can cause excessive reclaim when there are imbalanced zones.
2534 * The choice of 25% is due to
2535 * o a 16M DMA zone that is balanced will not balance a zone on any
2536 * reasonable sized machine
2537 * o On all other machines, the top zone must be at least a reasonable
25985edc 2538 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2539 * would need to be at least 256M for it to be balance a whole node.
2540 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2541 * to balance a node on its own. These seemed like reasonable ratios.
2542 */
2543static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2544 int classzone_idx)
2545{
2546 unsigned long present_pages = 0;
2547 int i;
2548
2549 for (i = 0; i <= classzone_idx; i++)
2550 present_pages += pgdat->node_zones[i].present_pages;
2551
4746efde
SL
2552 /* A special case here: if zone has no page, we think it's balanced */
2553 return balanced_pages >= (present_pages >> 2);
1741c877
MG
2554}
2555
f50de2d3 2556/* is kswapd sleeping prematurely? */
dc83edd9
MG
2557static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2558 int classzone_idx)
f50de2d3 2559{
bb3ab596 2560 int i;
1741c877
MG
2561 unsigned long balanced = 0;
2562 bool all_zones_ok = true;
f50de2d3
MG
2563
2564 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2565 if (remaining)
dc83edd9 2566 return true;
f50de2d3 2567
0abdee2b 2568 /* Check the watermark levels */
08951e54 2569 for (i = 0; i <= classzone_idx; i++) {
bb3ab596
KM
2570 struct zone *zone = pgdat->node_zones + i;
2571
2572 if (!populated_zone(zone))
2573 continue;
2574
355b09c4
MG
2575 /*
2576 * balance_pgdat() skips over all_unreclaimable after
2577 * DEF_PRIORITY. Effectively, it considers them balanced so
2578 * they must be considered balanced here as well if kswapd
2579 * is to sleep
2580 */
2581 if (zone->all_unreclaimable) {
2582 balanced += zone->present_pages;
de3fab39 2583 continue;
355b09c4 2584 }
de3fab39 2585
88f5acf8 2586 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
da175d06 2587 i, 0))
1741c877
MG
2588 all_zones_ok = false;
2589 else
2590 balanced += zone->present_pages;
bb3ab596 2591 }
f50de2d3 2592
1741c877
MG
2593 /*
2594 * For high-order requests, the balanced zones must contain at least
2595 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2596 * must be balanced
2597 */
2598 if (order)
afc7e326 2599 return !pgdat_balanced(pgdat, balanced, classzone_idx);
1741c877
MG
2600 else
2601 return !all_zones_ok;
f50de2d3
MG
2602}
2603
1da177e4
LT
2604/*
2605 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2606 * they are all at high_wmark_pages(zone).
1da177e4 2607 *
0abdee2b 2608 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2609 *
2610 * There is special handling here for zones which are full of pinned pages.
2611 * This can happen if the pages are all mlocked, or if they are all used by
2612 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2613 * What we do is to detect the case where all pages in the zone have been
2614 * scanned twice and there has been zero successful reclaim. Mark the zone as
2615 * dead and from now on, only perform a short scan. Basically we're polling
2616 * the zone for when the problem goes away.
2617 *
2618 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2619 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2620 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2621 * lower zones regardless of the number of free pages in the lower zones. This
2622 * interoperates with the page allocator fallback scheme to ensure that aging
2623 * of pages is balanced across the zones.
1da177e4 2624 */
99504748 2625static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2626 int *classzone_idx)
1da177e4 2627{
1da177e4 2628 int all_zones_ok;
1741c877 2629 unsigned long balanced;
1da177e4
LT
2630 int priority;
2631 int i;
99504748 2632 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
69e05944 2633 unsigned long total_scanned;
1da177e4 2634 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2635 unsigned long nr_soft_reclaimed;
2636 unsigned long nr_soft_scanned;
179e9639
AM
2637 struct scan_control sc = {
2638 .gfp_mask = GFP_KERNEL,
a6dc60f8 2639 .may_unmap = 1,
2e2e4259 2640 .may_swap = 1,
22fba335
KM
2641 /*
2642 * kswapd doesn't want to be bailed out while reclaim. because
2643 * we want to put equal scanning pressure on each zone.
2644 */
2645 .nr_to_reclaim = ULONG_MAX,
5ad333eb 2646 .order = order,
f16015fb 2647 .target_mem_cgroup = NULL,
179e9639 2648 };
a09ed5e0
YH
2649 struct shrink_control shrink = {
2650 .gfp_mask = sc.gfp_mask,
2651 };
1da177e4
LT
2652loop_again:
2653 total_scanned = 0;
a79311c1 2654 sc.nr_reclaimed = 0;
c0bbbc73 2655 sc.may_writepage = !laptop_mode;
f8891e5e 2656 count_vm_event(PAGEOUTRUN);
1da177e4 2657
1da177e4 2658 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1da177e4 2659 unsigned long lru_pages = 0;
bb3ab596 2660 int has_under_min_watermark_zone = 0;
1da177e4 2661
f7b7fd8f
RR
2662 /* The swap token gets in the way of swapout... */
2663 if (!priority)
a433658c 2664 disable_swap_token(NULL);
f7b7fd8f 2665
1da177e4 2666 all_zones_ok = 1;
1741c877 2667 balanced = 0;
1da177e4 2668
d6277db4
RW
2669 /*
2670 * Scan in the highmem->dma direction for the highest
2671 * zone which needs scanning
2672 */
2673 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2674 struct zone *zone = pgdat->node_zones + i;
1da177e4 2675
d6277db4
RW
2676 if (!populated_zone(zone))
2677 continue;
1da177e4 2678
93e4a89a 2679 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
d6277db4 2680 continue;
1da177e4 2681
556adecb
RR
2682 /*
2683 * Do some background aging of the anon list, to give
2684 * pages a chance to be referenced before reclaiming.
2685 */
f16015fb 2686 age_active_anon(zone, &sc, priority);
556adecb 2687
88f5acf8 2688 if (!zone_watermark_ok_safe(zone, order,
41858966 2689 high_wmark_pages(zone), 0, 0)) {
d6277db4 2690 end_zone = i;
e1dbeda6 2691 break;
439423f6
SL
2692 } else {
2693 /* If balanced, clear the congested flag */
2694 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2695 }
1da177e4 2696 }
e1dbeda6
AM
2697 if (i < 0)
2698 goto out;
2699
1da177e4
LT
2700 for (i = 0; i <= end_zone; i++) {
2701 struct zone *zone = pgdat->node_zones + i;
2702
adea02a1 2703 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2704 }
2705
2706 /*
2707 * Now scan the zone in the dma->highmem direction, stopping
2708 * at the last zone which needs scanning.
2709 *
2710 * We do this because the page allocator works in the opposite
2711 * direction. This prevents the page allocator from allocating
2712 * pages behind kswapd's direction of progress, which would
2713 * cause too much scanning of the lower zones.
2714 */
2715 for (i = 0; i <= end_zone; i++) {
2716 struct zone *zone = pgdat->node_zones + i;
b15e0905 2717 int nr_slab;
8afdcece 2718 unsigned long balance_gap;
1da177e4 2719
f3fe6512 2720 if (!populated_zone(zone))
1da177e4
LT
2721 continue;
2722
93e4a89a 2723 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1da177e4
LT
2724 continue;
2725
1da177e4 2726 sc.nr_scanned = 0;
4e416953 2727
0ae5e89c 2728 nr_soft_scanned = 0;
4e416953
BS
2729 /*
2730 * Call soft limit reclaim before calling shrink_zone.
4e416953 2731 */
0ae5e89c
YH
2732 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2733 order, sc.gfp_mask,
2734 &nr_soft_scanned);
2735 sc.nr_reclaimed += nr_soft_reclaimed;
2736 total_scanned += nr_soft_scanned;
00918b6a 2737
32a4330d 2738 /*
8afdcece
MG
2739 * We put equal pressure on every zone, unless
2740 * one zone has way too many pages free
2741 * already. The "too many pages" is defined
2742 * as the high wmark plus a "gap" where the
2743 * gap is either the low watermark or 1%
2744 * of the zone, whichever is smaller.
32a4330d 2745 */
8afdcece
MG
2746 balance_gap = min(low_wmark_pages(zone),
2747 (zone->present_pages +
2748 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2749 KSWAPD_ZONE_BALANCE_GAP_RATIO);
88f5acf8 2750 if (!zone_watermark_ok_safe(zone, order,
8afdcece 2751 high_wmark_pages(zone) + balance_gap,
d7868dae 2752 end_zone, 0)) {
a79311c1 2753 shrink_zone(priority, zone, &sc);
5a03b051 2754
d7868dae
MG
2755 reclaim_state->reclaimed_slab = 0;
2756 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2757 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2758 total_scanned += sc.nr_scanned;
2759
2760 if (nr_slab == 0 && !zone_reclaimable(zone))
2761 zone->all_unreclaimable = 1;
2762 }
2763
1da177e4
LT
2764 /*
2765 * If we've done a decent amount of scanning and
2766 * the reclaim ratio is low, start doing writepage
2767 * even in laptop mode
2768 */
2769 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2770 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2771 sc.may_writepage = 1;
bb3ab596 2772
215ddd66
MG
2773 if (zone->all_unreclaimable) {
2774 if (end_zone && end_zone == i)
2775 end_zone--;
d7868dae 2776 continue;
215ddd66 2777 }
d7868dae 2778
88f5acf8 2779 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2780 high_wmark_pages(zone), end_zone, 0)) {
2781 all_zones_ok = 0;
2782 /*
2783 * We are still under min water mark. This
2784 * means that we have a GFP_ATOMIC allocation
2785 * failure risk. Hurry up!
2786 */
88f5acf8 2787 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2788 min_wmark_pages(zone), end_zone, 0))
2789 has_under_min_watermark_zone = 1;
0e093d99
MG
2790 } else {
2791 /*
2792 * If a zone reaches its high watermark,
2793 * consider it to be no longer congested. It's
2794 * possible there are dirty pages backed by
2795 * congested BDIs but as pressure is relieved,
2796 * spectulatively avoid congestion waits
2797 */
2798 zone_clear_flag(zone, ZONE_CONGESTED);
dc83edd9 2799 if (i <= *classzone_idx)
1741c877 2800 balanced += zone->present_pages;
45973d74 2801 }
bb3ab596 2802
1da177e4 2803 }
dc83edd9 2804 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
1da177e4
LT
2805 break; /* kswapd: all done */
2806 /*
2807 * OK, kswapd is getting into trouble. Take a nap, then take
2808 * another pass across the zones.
2809 */
bb3ab596
KM
2810 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2811 if (has_under_min_watermark_zone)
2812 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2813 else
2814 congestion_wait(BLK_RW_ASYNC, HZ/10);
2815 }
1da177e4
LT
2816
2817 /*
2818 * We do this so kswapd doesn't build up large priorities for
2819 * example when it is freeing in parallel with allocators. It
2820 * matches the direct reclaim path behaviour in terms of impact
2821 * on zone->*_priority.
2822 */
a79311c1 2823 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2824 break;
2825 }
2826out:
99504748
MG
2827
2828 /*
2829 * order-0: All zones must meet high watermark for a balanced node
1741c877
MG
2830 * high-order: Balanced zones must make up at least 25% of the node
2831 * for the node to be balanced
99504748 2832 */
dc83edd9 2833 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
1da177e4 2834 cond_resched();
8357376d
RW
2835
2836 try_to_freeze();
2837
73ce02e9
KM
2838 /*
2839 * Fragmentation may mean that the system cannot be
2840 * rebalanced for high-order allocations in all zones.
2841 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2842 * it means the zones have been fully scanned and are still
2843 * not balanced. For high-order allocations, there is
2844 * little point trying all over again as kswapd may
2845 * infinite loop.
2846 *
2847 * Instead, recheck all watermarks at order-0 as they
2848 * are the most important. If watermarks are ok, kswapd will go
2849 * back to sleep. High-order users can still perform direct
2850 * reclaim if they wish.
2851 */
2852 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2853 order = sc.order = 0;
2854
1da177e4
LT
2855 goto loop_again;
2856 }
2857
99504748
MG
2858 /*
2859 * If kswapd was reclaiming at a higher order, it has the option of
2860 * sleeping without all zones being balanced. Before it does, it must
2861 * ensure that the watermarks for order-0 on *all* zones are met and
2862 * that the congestion flags are cleared. The congestion flag must
2863 * be cleared as kswapd is the only mechanism that clears the flag
2864 * and it is potentially going to sleep here.
2865 */
2866 if (order) {
2867 for (i = 0; i <= end_zone; i++) {
2868 struct zone *zone = pgdat->node_zones + i;
2869
2870 if (!populated_zone(zone))
2871 continue;
2872
2873 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2874 continue;
2875
2876 /* Confirm the zone is balanced for order-0 */
2877 if (!zone_watermark_ok(zone, 0,
2878 high_wmark_pages(zone), 0, 0)) {
2879 order = sc.order = 0;
2880 goto loop_again;
2881 }
2882
2883 /* If balanced, clear the congested flag */
2884 zone_clear_flag(zone, ZONE_CONGESTED);
16fb9512
SL
2885 if (i <= *classzone_idx)
2886 balanced += zone->present_pages;
99504748
MG
2887 }
2888 }
2889
0abdee2b
MG
2890 /*
2891 * Return the order we were reclaiming at so sleeping_prematurely()
2892 * makes a decision on the order we were last reclaiming at. However,
2893 * if another caller entered the allocator slow path while kswapd
2894 * was awake, order will remain at the higher level
2895 */
dc83edd9 2896 *classzone_idx = end_zone;
0abdee2b 2897 return order;
1da177e4
LT
2898}
2899
dc83edd9 2900static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
2901{
2902 long remaining = 0;
2903 DEFINE_WAIT(wait);
2904
2905 if (freezing(current) || kthread_should_stop())
2906 return;
2907
2908 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2909
2910 /* Try to sleep for a short interval */
dc83edd9 2911 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2912 remaining = schedule_timeout(HZ/10);
2913 finish_wait(&pgdat->kswapd_wait, &wait);
2914 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2915 }
2916
2917 /*
2918 * After a short sleep, check if it was a premature sleep. If not, then
2919 * go fully to sleep until explicitly woken up.
2920 */
dc83edd9 2921 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2922 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2923
2924 /*
2925 * vmstat counters are not perfectly accurate and the estimated
2926 * value for counters such as NR_FREE_PAGES can deviate from the
2927 * true value by nr_online_cpus * threshold. To avoid the zone
2928 * watermarks being breached while under pressure, we reduce the
2929 * per-cpu vmstat threshold while kswapd is awake and restore
2930 * them before going back to sleep.
2931 */
2932 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2933 schedule();
2934 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2935 } else {
2936 if (remaining)
2937 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2938 else
2939 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2940 }
2941 finish_wait(&pgdat->kswapd_wait, &wait);
2942}
2943
1da177e4
LT
2944/*
2945 * The background pageout daemon, started as a kernel thread
4f98a2fe 2946 * from the init process.
1da177e4
LT
2947 *
2948 * This basically trickles out pages so that we have _some_
2949 * free memory available even if there is no other activity
2950 * that frees anything up. This is needed for things like routing
2951 * etc, where we otherwise might have all activity going on in
2952 * asynchronous contexts that cannot page things out.
2953 *
2954 * If there are applications that are active memory-allocators
2955 * (most normal use), this basically shouldn't matter.
2956 */
2957static int kswapd(void *p)
2958{
215ddd66 2959 unsigned long order, new_order;
d2ebd0f6 2960 unsigned balanced_order;
215ddd66 2961 int classzone_idx, new_classzone_idx;
d2ebd0f6 2962 int balanced_classzone_idx;
1da177e4
LT
2963 pg_data_t *pgdat = (pg_data_t*)p;
2964 struct task_struct *tsk = current;
f0bc0a60 2965
1da177e4
LT
2966 struct reclaim_state reclaim_state = {
2967 .reclaimed_slab = 0,
2968 };
a70f7302 2969 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2970
cf40bd16
NP
2971 lockdep_set_current_reclaim_state(GFP_KERNEL);
2972
174596a0 2973 if (!cpumask_empty(cpumask))
c5f59f08 2974 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2975 current->reclaim_state = &reclaim_state;
2976
2977 /*
2978 * Tell the memory management that we're a "memory allocator",
2979 * and that if we need more memory we should get access to it
2980 * regardless (see "__alloc_pages()"). "kswapd" should
2981 * never get caught in the normal page freeing logic.
2982 *
2983 * (Kswapd normally doesn't need memory anyway, but sometimes
2984 * you need a small amount of memory in order to be able to
2985 * page out something else, and this flag essentially protects
2986 * us from recursively trying to free more memory as we're
2987 * trying to free the first piece of memory in the first place).
2988 */
930d9152 2989 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2990 set_freezable();
1da177e4 2991
215ddd66 2992 order = new_order = 0;
d2ebd0f6 2993 balanced_order = 0;
215ddd66 2994 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 2995 balanced_classzone_idx = classzone_idx;
1da177e4 2996 for ( ; ; ) {
8fe23e05 2997 int ret;
3e1d1d28 2998
215ddd66
MG
2999 /*
3000 * If the last balance_pgdat was unsuccessful it's unlikely a
3001 * new request of a similar or harder type will succeed soon
3002 * so consider going to sleep on the basis we reclaimed at
3003 */
d2ebd0f6
AS
3004 if (balanced_classzone_idx >= new_classzone_idx &&
3005 balanced_order == new_order) {
215ddd66
MG
3006 new_order = pgdat->kswapd_max_order;
3007 new_classzone_idx = pgdat->classzone_idx;
3008 pgdat->kswapd_max_order = 0;
3009 pgdat->classzone_idx = pgdat->nr_zones - 1;
3010 }
3011
99504748 3012 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3013 /*
3014 * Don't sleep if someone wants a larger 'order'
99504748 3015 * allocation or has tigher zone constraints
1da177e4
LT
3016 */
3017 order = new_order;
99504748 3018 classzone_idx = new_classzone_idx;
1da177e4 3019 } else {
d2ebd0f6
AS
3020 kswapd_try_to_sleep(pgdat, balanced_order,
3021 balanced_classzone_idx);
1da177e4 3022 order = pgdat->kswapd_max_order;
99504748 3023 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3024 new_order = order;
3025 new_classzone_idx = classzone_idx;
4d40502e 3026 pgdat->kswapd_max_order = 0;
215ddd66 3027 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3028 }
1da177e4 3029
8fe23e05
DR
3030 ret = try_to_freeze();
3031 if (kthread_should_stop())
3032 break;
3033
3034 /*
3035 * We can speed up thawing tasks if we don't call balance_pgdat
3036 * after returning from the refrigerator
3037 */
33906bc5
MG
3038 if (!ret) {
3039 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3040 balanced_classzone_idx = classzone_idx;
3041 balanced_order = balance_pgdat(pgdat, order,
3042 &balanced_classzone_idx);
33906bc5 3043 }
1da177e4
LT
3044 }
3045 return 0;
3046}
3047
3048/*
3049 * A zone is low on free memory, so wake its kswapd task to service it.
3050 */
99504748 3051void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3052{
3053 pg_data_t *pgdat;
3054
f3fe6512 3055 if (!populated_zone(zone))
1da177e4
LT
3056 return;
3057
88f5acf8 3058 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 3059 return;
88f5acf8 3060 pgdat = zone->zone_pgdat;
99504748 3061 if (pgdat->kswapd_max_order < order) {
1da177e4 3062 pgdat->kswapd_max_order = order;
99504748
MG
3063 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3064 }
8d0986e2 3065 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3066 return;
88f5acf8
MG
3067 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3068 return;
3069
3070 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3071 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3072}
3073
adea02a1
WF
3074/*
3075 * The reclaimable count would be mostly accurate.
3076 * The less reclaimable pages may be
3077 * - mlocked pages, which will be moved to unevictable list when encountered
3078 * - mapped pages, which may require several travels to be reclaimed
3079 * - dirty pages, which is not "instantly" reclaimable
3080 */
3081unsigned long global_reclaimable_pages(void)
4f98a2fe 3082{
adea02a1
WF
3083 int nr;
3084
3085 nr = global_page_state(NR_ACTIVE_FILE) +
3086 global_page_state(NR_INACTIVE_FILE);
3087
3088 if (nr_swap_pages > 0)
3089 nr += global_page_state(NR_ACTIVE_ANON) +
3090 global_page_state(NR_INACTIVE_ANON);
3091
3092 return nr;
3093}
3094
3095unsigned long zone_reclaimable_pages(struct zone *zone)
3096{
3097 int nr;
3098
3099 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3100 zone_page_state(zone, NR_INACTIVE_FILE);
3101
3102 if (nr_swap_pages > 0)
3103 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3104 zone_page_state(zone, NR_INACTIVE_ANON);
3105
3106 return nr;
4f98a2fe
RR
3107}
3108
c6f37f12 3109#ifdef CONFIG_HIBERNATION
1da177e4 3110/*
7b51755c 3111 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3112 * freed pages.
3113 *
3114 * Rather than trying to age LRUs the aim is to preserve the overall
3115 * LRU order by reclaiming preferentially
3116 * inactive > active > active referenced > active mapped
1da177e4 3117 */
7b51755c 3118unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3119{
d6277db4 3120 struct reclaim_state reclaim_state;
d6277db4 3121 struct scan_control sc = {
7b51755c
KM
3122 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3123 .may_swap = 1,
3124 .may_unmap = 1,
d6277db4 3125 .may_writepage = 1,
7b51755c
KM
3126 .nr_to_reclaim = nr_to_reclaim,
3127 .hibernation_mode = 1,
7b51755c 3128 .order = 0,
1da177e4 3129 };
a09ed5e0
YH
3130 struct shrink_control shrink = {
3131 .gfp_mask = sc.gfp_mask,
3132 };
3133 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3134 struct task_struct *p = current;
3135 unsigned long nr_reclaimed;
1da177e4 3136
7b51755c
KM
3137 p->flags |= PF_MEMALLOC;
3138 lockdep_set_current_reclaim_state(sc.gfp_mask);
3139 reclaim_state.reclaimed_slab = 0;
3140 p->reclaim_state = &reclaim_state;
d6277db4 3141
a09ed5e0 3142 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 3143
7b51755c
KM
3144 p->reclaim_state = NULL;
3145 lockdep_clear_current_reclaim_state();
3146 p->flags &= ~PF_MEMALLOC;
d6277db4 3147
7b51755c 3148 return nr_reclaimed;
1da177e4 3149}
c6f37f12 3150#endif /* CONFIG_HIBERNATION */
1da177e4 3151
1da177e4
LT
3152/* It's optimal to keep kswapds on the same CPUs as their memory, but
3153 not required for correctness. So if the last cpu in a node goes
3154 away, we get changed to run anywhere: as the first one comes back,
3155 restore their cpu bindings. */
9c7b216d 3156static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 3157 unsigned long action, void *hcpu)
1da177e4 3158{
58c0a4a7 3159 int nid;
1da177e4 3160
8bb78442 3161 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 3162 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 3163 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3164 const struct cpumask *mask;
3165
3166 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3167
3e597945 3168 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3169 /* One of our CPUs online: restore mask */
c5f59f08 3170 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3171 }
3172 }
3173 return NOTIFY_OK;
3174}
1da177e4 3175
3218ae14
YG
3176/*
3177 * This kswapd start function will be called by init and node-hot-add.
3178 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3179 */
3180int kswapd_run(int nid)
3181{
3182 pg_data_t *pgdat = NODE_DATA(nid);
3183 int ret = 0;
3184
3185 if (pgdat->kswapd)
3186 return 0;
3187
3188 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3189 if (IS_ERR(pgdat->kswapd)) {
3190 /* failure at boot is fatal */
3191 BUG_ON(system_state == SYSTEM_BOOTING);
3192 printk("Failed to start kswapd on node %d\n",nid);
3193 ret = -1;
3194 }
3195 return ret;
3196}
3197
8fe23e05
DR
3198/*
3199 * Called by memory hotplug when all memory in a node is offlined.
3200 */
3201void kswapd_stop(int nid)
3202{
3203 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3204
3205 if (kswapd)
3206 kthread_stop(kswapd);
3207}
3208
1da177e4
LT
3209static int __init kswapd_init(void)
3210{
3218ae14 3211 int nid;
69e05944 3212
1da177e4 3213 swap_setup();
9422ffba 3214 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 3215 kswapd_run(nid);
1da177e4
LT
3216 hotcpu_notifier(cpu_callback, 0);
3217 return 0;
3218}
3219
3220module_init(kswapd_init)
9eeff239
CL
3221
3222#ifdef CONFIG_NUMA
3223/*
3224 * Zone reclaim mode
3225 *
3226 * If non-zero call zone_reclaim when the number of free pages falls below
3227 * the watermarks.
9eeff239
CL
3228 */
3229int zone_reclaim_mode __read_mostly;
3230
1b2ffb78 3231#define RECLAIM_OFF 0
7d03431c 3232#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3233#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3234#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3235
a92f7126
CL
3236/*
3237 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3238 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3239 * a zone.
3240 */
3241#define ZONE_RECLAIM_PRIORITY 4
3242
9614634f
CL
3243/*
3244 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3245 * occur.
3246 */
3247int sysctl_min_unmapped_ratio = 1;
3248
0ff38490
CL
3249/*
3250 * If the number of slab pages in a zone grows beyond this percentage then
3251 * slab reclaim needs to occur.
3252 */
3253int sysctl_min_slab_ratio = 5;
3254
90afa5de
MG
3255static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3256{
3257 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3258 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3259 zone_page_state(zone, NR_ACTIVE_FILE);
3260
3261 /*
3262 * It's possible for there to be more file mapped pages than
3263 * accounted for by the pages on the file LRU lists because
3264 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3265 */
3266 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3267}
3268
3269/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3270static long zone_pagecache_reclaimable(struct zone *zone)
3271{
3272 long nr_pagecache_reclaimable;
3273 long delta = 0;
3274
3275 /*
3276 * If RECLAIM_SWAP is set, then all file pages are considered
3277 * potentially reclaimable. Otherwise, we have to worry about
3278 * pages like swapcache and zone_unmapped_file_pages() provides
3279 * a better estimate
3280 */
3281 if (zone_reclaim_mode & RECLAIM_SWAP)
3282 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3283 else
3284 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3285
3286 /* If we can't clean pages, remove dirty pages from consideration */
3287 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3288 delta += zone_page_state(zone, NR_FILE_DIRTY);
3289
3290 /* Watch for any possible underflows due to delta */
3291 if (unlikely(delta > nr_pagecache_reclaimable))
3292 delta = nr_pagecache_reclaimable;
3293
3294 return nr_pagecache_reclaimable - delta;
3295}
3296
9eeff239
CL
3297/*
3298 * Try to free up some pages from this zone through reclaim.
3299 */
179e9639 3300static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3301{
7fb2d46d 3302 /* Minimum pages needed in order to stay on node */
69e05944 3303 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3304 struct task_struct *p = current;
3305 struct reclaim_state reclaim_state;
8695949a 3306 int priority;
179e9639
AM
3307 struct scan_control sc = {
3308 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3309 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3310 .may_swap = 1,
22fba335
KM
3311 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3312 SWAP_CLUSTER_MAX),
179e9639 3313 .gfp_mask = gfp_mask,
bd2f6199 3314 .order = order,
179e9639 3315 };
a09ed5e0
YH
3316 struct shrink_control shrink = {
3317 .gfp_mask = sc.gfp_mask,
3318 };
15748048 3319 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3320
9eeff239 3321 cond_resched();
d4f7796e
CL
3322 /*
3323 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3324 * and we also need to be able to write out pages for RECLAIM_WRITE
3325 * and RECLAIM_SWAP.
3326 */
3327 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3328 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3329 reclaim_state.reclaimed_slab = 0;
3330 p->reclaim_state = &reclaim_state;
c84db23c 3331
90afa5de 3332 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3333 /*
3334 * Free memory by calling shrink zone with increasing
3335 * priorities until we have enough memory freed.
3336 */
3337 priority = ZONE_RECLAIM_PRIORITY;
3338 do {
a79311c1 3339 shrink_zone(priority, zone, &sc);
0ff38490 3340 priority--;
a79311c1 3341 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 3342 }
c84db23c 3343
15748048
KM
3344 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3345 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3346 /*
7fb2d46d 3347 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3348 * many pages were freed in this zone. So we take the current
3349 * number of slab pages and shake the slab until it is reduced
3350 * by the same nr_pages that we used for reclaiming unmapped
3351 * pages.
2a16e3f4 3352 *
0ff38490
CL
3353 * Note that shrink_slab will free memory on all zones and may
3354 * take a long time.
2a16e3f4 3355 */
4dc4b3d9
KM
3356 for (;;) {
3357 unsigned long lru_pages = zone_reclaimable_pages(zone);
3358
3359 /* No reclaimable slab or very low memory pressure */
1495f230 3360 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3361 break;
3362
3363 /* Freed enough memory */
3364 nr_slab_pages1 = zone_page_state(zone,
3365 NR_SLAB_RECLAIMABLE);
3366 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3367 break;
3368 }
83e33a47
CL
3369
3370 /*
3371 * Update nr_reclaimed by the number of slab pages we
3372 * reclaimed from this zone.
3373 */
15748048
KM
3374 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3375 if (nr_slab_pages1 < nr_slab_pages0)
3376 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3377 }
3378
9eeff239 3379 p->reclaim_state = NULL;
d4f7796e 3380 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3381 lockdep_clear_current_reclaim_state();
a79311c1 3382 return sc.nr_reclaimed >= nr_pages;
9eeff239 3383}
179e9639
AM
3384
3385int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3386{
179e9639 3387 int node_id;
d773ed6b 3388 int ret;
179e9639
AM
3389
3390 /*
0ff38490
CL
3391 * Zone reclaim reclaims unmapped file backed pages and
3392 * slab pages if we are over the defined limits.
34aa1330 3393 *
9614634f
CL
3394 * A small portion of unmapped file backed pages is needed for
3395 * file I/O otherwise pages read by file I/O will be immediately
3396 * thrown out if the zone is overallocated. So we do not reclaim
3397 * if less than a specified percentage of the zone is used by
3398 * unmapped file backed pages.
179e9639 3399 */
90afa5de
MG
3400 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3401 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3402 return ZONE_RECLAIM_FULL;
179e9639 3403
93e4a89a 3404 if (zone->all_unreclaimable)
fa5e084e 3405 return ZONE_RECLAIM_FULL;
d773ed6b 3406
179e9639 3407 /*
d773ed6b 3408 * Do not scan if the allocation should not be delayed.
179e9639 3409 */
d773ed6b 3410 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3411 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3412
3413 /*
3414 * Only run zone reclaim on the local zone or on zones that do not
3415 * have associated processors. This will favor the local processor
3416 * over remote processors and spread off node memory allocations
3417 * as wide as possible.
3418 */
89fa3024 3419 node_id = zone_to_nid(zone);
37c0708d 3420 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3421 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3422
3423 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3424 return ZONE_RECLAIM_NOSCAN;
3425
d773ed6b
DR
3426 ret = __zone_reclaim(zone, gfp_mask, order);
3427 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3428
24cf7251
MG
3429 if (!ret)
3430 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3431
d773ed6b 3432 return ret;
179e9639 3433}
9eeff239 3434#endif
894bc310 3435
894bc310
LS
3436/*
3437 * page_evictable - test whether a page is evictable
3438 * @page: the page to test
3439 * @vma: the VMA in which the page is or will be mapped, may be NULL
3440 *
3441 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
3442 * lists vs unevictable list. The vma argument is !NULL when called from the
3443 * fault path to determine how to instantate a new page.
894bc310
LS
3444 *
3445 * Reasons page might not be evictable:
ba9ddf49 3446 * (1) page's mapping marked unevictable
b291f000 3447 * (2) page is part of an mlocked VMA
ba9ddf49 3448 *
894bc310
LS
3449 */
3450int page_evictable(struct page *page, struct vm_area_struct *vma)
3451{
3452
ba9ddf49
LS
3453 if (mapping_unevictable(page_mapping(page)))
3454 return 0;
3455
b291f000
NP
3456 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3457 return 0;
894bc310
LS
3458
3459 return 1;
3460}
89e004ea
LS
3461
3462/**
3463 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3464 * @page: page to check evictability and move to appropriate lru list
3465 * @zone: zone page is in
3466 *
3467 * Checks a page for evictability and moves the page to the appropriate
3468 * zone lru list.
3469 *
3470 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3471 * have PageUnevictable set.
3472 */
3473static void check_move_unevictable_page(struct page *page, struct zone *zone)
3474{
925b7673 3475 struct lruvec *lruvec;
89e004ea 3476
925b7673 3477 VM_BUG_ON(PageActive(page));
89e004ea
LS
3478retry:
3479 ClearPageUnevictable(page);
3480 if (page_evictable(page, NULL)) {
401a8e1c 3481 enum lru_list l = page_lru_base_type(page);
af936a16 3482
89e004ea 3483 __dec_zone_state(zone, NR_UNEVICTABLE);
925b7673
JW
3484 lruvec = mem_cgroup_lru_move_lists(zone, page,
3485 LRU_UNEVICTABLE, l);
3486 list_move(&page->lru, &lruvec->lists[l]);
89e004ea
LS
3487 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3488 __count_vm_event(UNEVICTABLE_PGRESCUED);
3489 } else {
3490 /*
3491 * rotate unevictable list
3492 */
3493 SetPageUnevictable(page);
925b7673
JW
3494 lruvec = mem_cgroup_lru_move_lists(zone, page, LRU_UNEVICTABLE,
3495 LRU_UNEVICTABLE);
3496 list_move(&page->lru, &lruvec->lists[LRU_UNEVICTABLE]);
89e004ea
LS
3497 if (page_evictable(page, NULL))
3498 goto retry;
3499 }
3500}
3501
3502/**
3503 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3504 * @mapping: struct address_space to scan for evictable pages
3505 *
3506 * Scan all pages in mapping. Check unevictable pages for
3507 * evictability and move them to the appropriate zone lru list.
3508 */
3509void scan_mapping_unevictable_pages(struct address_space *mapping)
3510{
3511 pgoff_t next = 0;
3512 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3513 PAGE_CACHE_SHIFT;
3514 struct zone *zone;
3515 struct pagevec pvec;
3516
3517 if (mapping->nrpages == 0)
3518 return;
3519
3520 pagevec_init(&pvec, 0);
3521 while (next < end &&
3522 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3523 int i;
3524 int pg_scanned = 0;
3525
3526 zone = NULL;
3527
3528 for (i = 0; i < pagevec_count(&pvec); i++) {
3529 struct page *page = pvec.pages[i];
3530 pgoff_t page_index = page->index;
3531 struct zone *pagezone = page_zone(page);
3532
3533 pg_scanned++;
3534 if (page_index > next)
3535 next = page_index;
3536 next++;
3537
3538 if (pagezone != zone) {
3539 if (zone)
3540 spin_unlock_irq(&zone->lru_lock);
3541 zone = pagezone;
3542 spin_lock_irq(&zone->lru_lock);
3543 }
3544
3545 if (PageLRU(page) && PageUnevictable(page))
3546 check_move_unevictable_page(page, zone);
3547 }
3548 if (zone)
3549 spin_unlock_irq(&zone->lru_lock);
3550 pagevec_release(&pvec);
3551
3552 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3553 }
3554
3555}
af936a16 3556
264e56d8 3557static void warn_scan_unevictable_pages(void)
af936a16 3558{
264e56d8 3559 printk_once(KERN_WARNING
25bd91bd 3560 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3561 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3562 "one, please send an email to linux-mm@kvack.org.\n",
3563 current->comm);
af936a16
LS
3564}
3565
3566/*
3567 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3568 * all nodes' unevictable lists for evictable pages
3569 */
3570unsigned long scan_unevictable_pages;
3571
3572int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3573 void __user *buffer,
af936a16
LS
3574 size_t *length, loff_t *ppos)
3575{
264e56d8 3576 warn_scan_unevictable_pages();
8d65af78 3577 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3578 scan_unevictable_pages = 0;
3579 return 0;
3580}
3581
e4455abb 3582#ifdef CONFIG_NUMA
af936a16
LS
3583/*
3584 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3585 * a specified node's per zone unevictable lists for evictable pages.
3586 */
3587
10fbcf4c
KS
3588static ssize_t read_scan_unevictable_node(struct device *dev,
3589 struct device_attribute *attr,
af936a16
LS
3590 char *buf)
3591{
264e56d8 3592 warn_scan_unevictable_pages();
af936a16
LS
3593 return sprintf(buf, "0\n"); /* always zero; should fit... */
3594}
3595
10fbcf4c
KS
3596static ssize_t write_scan_unevictable_node(struct device *dev,
3597 struct device_attribute *attr,
af936a16
LS
3598 const char *buf, size_t count)
3599{
264e56d8 3600 warn_scan_unevictable_pages();
af936a16
LS
3601 return 1;
3602}
3603
3604
10fbcf4c 3605static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3606 read_scan_unevictable_node,
3607 write_scan_unevictable_node);
3608
3609int scan_unevictable_register_node(struct node *node)
3610{
10fbcf4c 3611 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3612}
3613
3614void scan_unevictable_unregister_node(struct node *node)
3615{
10fbcf4c 3616 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3617}
e4455abb 3618#endif