]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmscan.c
vmscan: bail out of direct reclaim after swap_cluster_max pages
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
1da177e4
LT
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
0f8053a5
NP
49#include "internal.h"
50
1da177e4 51struct scan_control {
1da177e4
LT
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
54
a79311c1
RR
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed;
57
1da177e4 58 /* This context's GFP mask */
6daa0e28 59 gfp_t gfp_mask;
1da177e4
LT
60
61 int may_writepage;
62
f1fd1067
CL
63 /* Can pages be swapped as part of reclaim? */
64 int may_swap;
65
1da177e4
LT
66 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
67 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
68 * In this context, it doesn't matter that we scan the
69 * whole list at once. */
70 int swap_cluster_max;
d6277db4
RW
71
72 int swappiness;
408d8544
NP
73
74 int all_unreclaimable;
5ad333eb
AW
75
76 int order;
66e1707b
BS
77
78 /* Which cgroup do we reclaim from */
79 struct mem_cgroup *mem_cgroup;
80
81 /* Pluggable isolate pages callback */
82 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
83 unsigned long *scanned, int order, int mode,
84 struct zone *z, struct mem_cgroup *mem_cont,
4f98a2fe 85 int active, int file);
1da177e4
LT
86};
87
1da177e4
LT
88#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
89
90#ifdef ARCH_HAS_PREFETCH
91#define prefetch_prev_lru_page(_page, _base, _field) \
92 do { \
93 if ((_page)->lru.prev != _base) { \
94 struct page *prev; \
95 \
96 prev = lru_to_page(&(_page->lru)); \
97 prefetch(&prev->_field); \
98 } \
99 } while (0)
100#else
101#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
102#endif
103
104#ifdef ARCH_HAS_PREFETCHW
105#define prefetchw_prev_lru_page(_page, _base, _field) \
106 do { \
107 if ((_page)->lru.prev != _base) { \
108 struct page *prev; \
109 \
110 prev = lru_to_page(&(_page->lru)); \
111 prefetchw(&prev->_field); \
112 } \
113 } while (0)
114#else
115#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
116#endif
117
118/*
119 * From 0 .. 100. Higher means more swappy.
120 */
121int vm_swappiness = 60;
bd1e22b8 122long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
123
124static LIST_HEAD(shrinker_list);
125static DECLARE_RWSEM(shrinker_rwsem);
126
00f0b825 127#ifdef CONFIG_CGROUP_MEM_RES_CTLR
91a45470
KH
128#define scan_global_lru(sc) (!(sc)->mem_cgroup)
129#else
130#define scan_global_lru(sc) (1)
131#endif
132
1da177e4
LT
133/*
134 * Add a shrinker callback to be called from the vm
135 */
8e1f936b 136void register_shrinker(struct shrinker *shrinker)
1da177e4 137{
8e1f936b
RR
138 shrinker->nr = 0;
139 down_write(&shrinker_rwsem);
140 list_add_tail(&shrinker->list, &shrinker_list);
141 up_write(&shrinker_rwsem);
1da177e4 142}
8e1f936b 143EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
144
145/*
146 * Remove one
147 */
8e1f936b 148void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
149{
150 down_write(&shrinker_rwsem);
151 list_del(&shrinker->list);
152 up_write(&shrinker_rwsem);
1da177e4 153}
8e1f936b 154EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
155
156#define SHRINK_BATCH 128
157/*
158 * Call the shrink functions to age shrinkable caches
159 *
160 * Here we assume it costs one seek to replace a lru page and that it also
161 * takes a seek to recreate a cache object. With this in mind we age equal
162 * percentages of the lru and ageable caches. This should balance the seeks
163 * generated by these structures.
164 *
183ff22b 165 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
166 * slab to avoid swapping.
167 *
168 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
169 *
170 * `lru_pages' represents the number of on-LRU pages in all the zones which
171 * are eligible for the caller's allocation attempt. It is used for balancing
172 * slab reclaim versus page reclaim.
b15e0905 173 *
174 * Returns the number of slab objects which we shrunk.
1da177e4 175 */
69e05944
AM
176unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
177 unsigned long lru_pages)
1da177e4
LT
178{
179 struct shrinker *shrinker;
69e05944 180 unsigned long ret = 0;
1da177e4
LT
181
182 if (scanned == 0)
183 scanned = SWAP_CLUSTER_MAX;
184
185 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 186 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
187
188 list_for_each_entry(shrinker, &shrinker_list, list) {
189 unsigned long long delta;
190 unsigned long total_scan;
8e1f936b 191 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
1da177e4
LT
192
193 delta = (4 * scanned) / shrinker->seeks;
ea164d73 194 delta *= max_pass;
1da177e4
LT
195 do_div(delta, lru_pages + 1);
196 shrinker->nr += delta;
ea164d73
AA
197 if (shrinker->nr < 0) {
198 printk(KERN_ERR "%s: nr=%ld\n",
d40cee24 199 __func__, shrinker->nr);
ea164d73
AA
200 shrinker->nr = max_pass;
201 }
202
203 /*
204 * Avoid risking looping forever due to too large nr value:
205 * never try to free more than twice the estimate number of
206 * freeable entries.
207 */
208 if (shrinker->nr > max_pass * 2)
209 shrinker->nr = max_pass * 2;
1da177e4
LT
210
211 total_scan = shrinker->nr;
212 shrinker->nr = 0;
213
214 while (total_scan >= SHRINK_BATCH) {
215 long this_scan = SHRINK_BATCH;
216 int shrink_ret;
b15e0905 217 int nr_before;
1da177e4 218
8e1f936b
RR
219 nr_before = (*shrinker->shrink)(0, gfp_mask);
220 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
1da177e4
LT
221 if (shrink_ret == -1)
222 break;
b15e0905 223 if (shrink_ret < nr_before)
224 ret += nr_before - shrink_ret;
f8891e5e 225 count_vm_events(SLABS_SCANNED, this_scan);
1da177e4
LT
226 total_scan -= this_scan;
227
228 cond_resched();
229 }
230
231 shrinker->nr += total_scan;
232 }
233 up_read(&shrinker_rwsem);
b15e0905 234 return ret;
1da177e4
LT
235}
236
237/* Called without lock on whether page is mapped, so answer is unstable */
238static inline int page_mapping_inuse(struct page *page)
239{
240 struct address_space *mapping;
241
242 /* Page is in somebody's page tables. */
243 if (page_mapped(page))
244 return 1;
245
246 /* Be more reluctant to reclaim swapcache than pagecache */
247 if (PageSwapCache(page))
248 return 1;
249
250 mapping = page_mapping(page);
251 if (!mapping)
252 return 0;
253
254 /* File is mmap'd by somebody? */
255 return mapping_mapped(mapping);
256}
257
258static inline int is_page_cache_freeable(struct page *page)
259{
260 return page_count(page) - !!PagePrivate(page) == 2;
261}
262
263static int may_write_to_queue(struct backing_dev_info *bdi)
264{
930d9152 265 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
266 return 1;
267 if (!bdi_write_congested(bdi))
268 return 1;
269 if (bdi == current->backing_dev_info)
270 return 1;
271 return 0;
272}
273
274/*
275 * We detected a synchronous write error writing a page out. Probably
276 * -ENOSPC. We need to propagate that into the address_space for a subsequent
277 * fsync(), msync() or close().
278 *
279 * The tricky part is that after writepage we cannot touch the mapping: nothing
280 * prevents it from being freed up. But we have a ref on the page and once
281 * that page is locked, the mapping is pinned.
282 *
283 * We're allowed to run sleeping lock_page() here because we know the caller has
284 * __GFP_FS.
285 */
286static void handle_write_error(struct address_space *mapping,
287 struct page *page, int error)
288{
289 lock_page(page);
3e9f45bd
GC
290 if (page_mapping(page) == mapping)
291 mapping_set_error(mapping, error);
1da177e4
LT
292 unlock_page(page);
293}
294
c661b078
AW
295/* Request for sync pageout. */
296enum pageout_io {
297 PAGEOUT_IO_ASYNC,
298 PAGEOUT_IO_SYNC,
299};
300
04e62a29
CL
301/* possible outcome of pageout() */
302typedef enum {
303 /* failed to write page out, page is locked */
304 PAGE_KEEP,
305 /* move page to the active list, page is locked */
306 PAGE_ACTIVATE,
307 /* page has been sent to the disk successfully, page is unlocked */
308 PAGE_SUCCESS,
309 /* page is clean and locked */
310 PAGE_CLEAN,
311} pageout_t;
312
1da177e4 313/*
1742f19f
AM
314 * pageout is called by shrink_page_list() for each dirty page.
315 * Calls ->writepage().
1da177e4 316 */
c661b078
AW
317static pageout_t pageout(struct page *page, struct address_space *mapping,
318 enum pageout_io sync_writeback)
1da177e4
LT
319{
320 /*
321 * If the page is dirty, only perform writeback if that write
322 * will be non-blocking. To prevent this allocation from being
323 * stalled by pagecache activity. But note that there may be
324 * stalls if we need to run get_block(). We could test
325 * PagePrivate for that.
326 *
327 * If this process is currently in generic_file_write() against
328 * this page's queue, we can perform writeback even if that
329 * will block.
330 *
331 * If the page is swapcache, write it back even if that would
332 * block, for some throttling. This happens by accident, because
333 * swap_backing_dev_info is bust: it doesn't reflect the
334 * congestion state of the swapdevs. Easy to fix, if needed.
335 * See swapfile.c:page_queue_congested().
336 */
337 if (!is_page_cache_freeable(page))
338 return PAGE_KEEP;
339 if (!mapping) {
340 /*
341 * Some data journaling orphaned pages can have
342 * page->mapping == NULL while being dirty with clean buffers.
343 */
323aca6c 344 if (PagePrivate(page)) {
1da177e4
LT
345 if (try_to_free_buffers(page)) {
346 ClearPageDirty(page);
d40cee24 347 printk("%s: orphaned page\n", __func__);
1da177e4
LT
348 return PAGE_CLEAN;
349 }
350 }
351 return PAGE_KEEP;
352 }
353 if (mapping->a_ops->writepage == NULL)
354 return PAGE_ACTIVATE;
355 if (!may_write_to_queue(mapping->backing_dev_info))
356 return PAGE_KEEP;
357
358 if (clear_page_dirty_for_io(page)) {
359 int res;
360 struct writeback_control wbc = {
361 .sync_mode = WB_SYNC_NONE,
362 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
363 .range_start = 0,
364 .range_end = LLONG_MAX,
1da177e4
LT
365 .nonblocking = 1,
366 .for_reclaim = 1,
367 };
368
369 SetPageReclaim(page);
370 res = mapping->a_ops->writepage(page, &wbc);
371 if (res < 0)
372 handle_write_error(mapping, page, res);
994fc28c 373 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
374 ClearPageReclaim(page);
375 return PAGE_ACTIVATE;
376 }
c661b078
AW
377
378 /*
379 * Wait on writeback if requested to. This happens when
380 * direct reclaiming a large contiguous area and the
381 * first attempt to free a range of pages fails.
382 */
383 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
384 wait_on_page_writeback(page);
385
1da177e4
LT
386 if (!PageWriteback(page)) {
387 /* synchronous write or broken a_ops? */
388 ClearPageReclaim(page);
389 }
e129b5c2 390 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
391 return PAGE_SUCCESS;
392 }
393
394 return PAGE_CLEAN;
395}
396
a649fd92 397/*
e286781d
NP
398 * Same as remove_mapping, but if the page is removed from the mapping, it
399 * gets returned with a refcount of 0.
a649fd92 400 */
e286781d 401static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 402{
28e4d965
NP
403 BUG_ON(!PageLocked(page));
404 BUG_ON(mapping != page_mapping(page));
49d2e9cc 405
19fd6231 406 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 407 /*
0fd0e6b0
NP
408 * The non racy check for a busy page.
409 *
410 * Must be careful with the order of the tests. When someone has
411 * a ref to the page, it may be possible that they dirty it then
412 * drop the reference. So if PageDirty is tested before page_count
413 * here, then the following race may occur:
414 *
415 * get_user_pages(&page);
416 * [user mapping goes away]
417 * write_to(page);
418 * !PageDirty(page) [good]
419 * SetPageDirty(page);
420 * put_page(page);
421 * !page_count(page) [good, discard it]
422 *
423 * [oops, our write_to data is lost]
424 *
425 * Reversing the order of the tests ensures such a situation cannot
426 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
427 * load is not satisfied before that of page->_count.
428 *
429 * Note that if SetPageDirty is always performed via set_page_dirty,
430 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 431 */
e286781d 432 if (!page_freeze_refs(page, 2))
49d2e9cc 433 goto cannot_free;
e286781d
NP
434 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
435 if (unlikely(PageDirty(page))) {
436 page_unfreeze_refs(page, 2);
49d2e9cc 437 goto cannot_free;
e286781d 438 }
49d2e9cc
CL
439
440 if (PageSwapCache(page)) {
441 swp_entry_t swap = { .val = page_private(page) };
442 __delete_from_swap_cache(page);
19fd6231 443 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc 444 swap_free(swap);
e286781d
NP
445 } else {
446 __remove_from_page_cache(page);
19fd6231 447 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
448 }
449
49d2e9cc
CL
450 return 1;
451
452cannot_free:
19fd6231 453 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
454 return 0;
455}
456
e286781d
NP
457/*
458 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
459 * someone else has a ref on the page, abort and return 0. If it was
460 * successfully detached, return 1. Assumes the caller has a single ref on
461 * this page.
462 */
463int remove_mapping(struct address_space *mapping, struct page *page)
464{
465 if (__remove_mapping(mapping, page)) {
466 /*
467 * Unfreezing the refcount with 1 rather than 2 effectively
468 * drops the pagecache ref for us without requiring another
469 * atomic operation.
470 */
471 page_unfreeze_refs(page, 1);
472 return 1;
473 }
474 return 0;
475}
476
894bc310
LS
477/**
478 * putback_lru_page - put previously isolated page onto appropriate LRU list
479 * @page: page to be put back to appropriate lru list
480 *
481 * Add previously isolated @page to appropriate LRU list.
482 * Page may still be unevictable for other reasons.
483 *
484 * lru_lock must not be held, interrupts must be enabled.
485 */
486#ifdef CONFIG_UNEVICTABLE_LRU
487void putback_lru_page(struct page *page)
488{
489 int lru;
490 int active = !!TestClearPageActive(page);
bbfd28ee 491 int was_unevictable = PageUnevictable(page);
894bc310
LS
492
493 VM_BUG_ON(PageLRU(page));
494
495redo:
496 ClearPageUnevictable(page);
497
498 if (page_evictable(page, NULL)) {
499 /*
500 * For evictable pages, we can use the cache.
501 * In event of a race, worst case is we end up with an
502 * unevictable page on [in]active list.
503 * We know how to handle that.
504 */
505 lru = active + page_is_file_cache(page);
506 lru_cache_add_lru(page, lru);
507 } else {
508 /*
509 * Put unevictable pages directly on zone's unevictable
510 * list.
511 */
512 lru = LRU_UNEVICTABLE;
513 add_page_to_unevictable_list(page);
514 }
515 mem_cgroup_move_lists(page, lru);
516
517 /*
518 * page's status can change while we move it among lru. If an evictable
519 * page is on unevictable list, it never be freed. To avoid that,
520 * check after we added it to the list, again.
521 */
522 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
523 if (!isolate_lru_page(page)) {
524 put_page(page);
525 goto redo;
526 }
527 /* This means someone else dropped this page from LRU
528 * So, it will be freed or putback to LRU again. There is
529 * nothing to do here.
530 */
531 }
532
bbfd28ee
LS
533 if (was_unevictable && lru != LRU_UNEVICTABLE)
534 count_vm_event(UNEVICTABLE_PGRESCUED);
535 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
536 count_vm_event(UNEVICTABLE_PGCULLED);
537
894bc310
LS
538 put_page(page); /* drop ref from isolate */
539}
540
541#else /* CONFIG_UNEVICTABLE_LRU */
542
543void putback_lru_page(struct page *page)
544{
545 int lru;
546 VM_BUG_ON(PageLRU(page));
547
548 lru = !!TestClearPageActive(page) + page_is_file_cache(page);
549 lru_cache_add_lru(page, lru);
550 mem_cgroup_move_lists(page, lru);
551 put_page(page);
552}
553#endif /* CONFIG_UNEVICTABLE_LRU */
554
555
1da177e4 556/*
1742f19f 557 * shrink_page_list() returns the number of reclaimed pages
1da177e4 558 */
1742f19f 559static unsigned long shrink_page_list(struct list_head *page_list,
c661b078
AW
560 struct scan_control *sc,
561 enum pageout_io sync_writeback)
1da177e4
LT
562{
563 LIST_HEAD(ret_pages);
564 struct pagevec freed_pvec;
565 int pgactivate = 0;
05ff5137 566 unsigned long nr_reclaimed = 0;
1da177e4
LT
567
568 cond_resched();
569
570 pagevec_init(&freed_pvec, 1);
571 while (!list_empty(page_list)) {
572 struct address_space *mapping;
573 struct page *page;
574 int may_enter_fs;
575 int referenced;
576
577 cond_resched();
578
579 page = lru_to_page(page_list);
580 list_del(&page->lru);
581
529ae9aa 582 if (!trylock_page(page))
1da177e4
LT
583 goto keep;
584
725d704e 585 VM_BUG_ON(PageActive(page));
1da177e4
LT
586
587 sc->nr_scanned++;
80e43426 588
b291f000
NP
589 if (unlikely(!page_evictable(page, NULL)))
590 goto cull_mlocked;
894bc310 591
80e43426
CL
592 if (!sc->may_swap && page_mapped(page))
593 goto keep_locked;
594
1da177e4
LT
595 /* Double the slab pressure for mapped and swapcache pages */
596 if (page_mapped(page) || PageSwapCache(page))
597 sc->nr_scanned++;
598
c661b078
AW
599 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
600 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
601
602 if (PageWriteback(page)) {
603 /*
604 * Synchronous reclaim is performed in two passes,
605 * first an asynchronous pass over the list to
606 * start parallel writeback, and a second synchronous
607 * pass to wait for the IO to complete. Wait here
608 * for any page for which writeback has already
609 * started.
610 */
611 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
612 wait_on_page_writeback(page);
4dd4b920 613 else
c661b078
AW
614 goto keep_locked;
615 }
1da177e4 616
bed7161a 617 referenced = page_referenced(page, 1, sc->mem_cgroup);
1da177e4 618 /* In active use or really unfreeable? Activate it. */
5ad333eb
AW
619 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
620 referenced && page_mapping_inuse(page))
1da177e4
LT
621 goto activate_locked;
622
1da177e4
LT
623 /*
624 * Anonymous process memory has backing store?
625 * Try to allocate it some swap space here.
626 */
b291f000 627 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
628 if (!(sc->gfp_mask & __GFP_IO))
629 goto keep_locked;
ac47b003 630 if (!add_to_swap(page))
1da177e4 631 goto activate_locked;
63eb6b93 632 may_enter_fs = 1;
b291f000 633 }
1da177e4
LT
634
635 mapping = page_mapping(page);
1da177e4
LT
636
637 /*
638 * The page is mapped into the page tables of one or more
639 * processes. Try to unmap it here.
640 */
641 if (page_mapped(page) && mapping) {
a48d07af 642 switch (try_to_unmap(page, 0)) {
1da177e4
LT
643 case SWAP_FAIL:
644 goto activate_locked;
645 case SWAP_AGAIN:
646 goto keep_locked;
b291f000
NP
647 case SWAP_MLOCK:
648 goto cull_mlocked;
1da177e4
LT
649 case SWAP_SUCCESS:
650 ; /* try to free the page below */
651 }
652 }
653
654 if (PageDirty(page)) {
5ad333eb 655 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
1da177e4 656 goto keep_locked;
4dd4b920 657 if (!may_enter_fs)
1da177e4 658 goto keep_locked;
52a8363e 659 if (!sc->may_writepage)
1da177e4
LT
660 goto keep_locked;
661
662 /* Page is dirty, try to write it out here */
c661b078 663 switch (pageout(page, mapping, sync_writeback)) {
1da177e4
LT
664 case PAGE_KEEP:
665 goto keep_locked;
666 case PAGE_ACTIVATE:
667 goto activate_locked;
668 case PAGE_SUCCESS:
4dd4b920 669 if (PageWriteback(page) || PageDirty(page))
1da177e4
LT
670 goto keep;
671 /*
672 * A synchronous write - probably a ramdisk. Go
673 * ahead and try to reclaim the page.
674 */
529ae9aa 675 if (!trylock_page(page))
1da177e4
LT
676 goto keep;
677 if (PageDirty(page) || PageWriteback(page))
678 goto keep_locked;
679 mapping = page_mapping(page);
680 case PAGE_CLEAN:
681 ; /* try to free the page below */
682 }
683 }
684
685 /*
686 * If the page has buffers, try to free the buffer mappings
687 * associated with this page. If we succeed we try to free
688 * the page as well.
689 *
690 * We do this even if the page is PageDirty().
691 * try_to_release_page() does not perform I/O, but it is
692 * possible for a page to have PageDirty set, but it is actually
693 * clean (all its buffers are clean). This happens if the
694 * buffers were written out directly, with submit_bh(). ext3
894bc310 695 * will do this, as well as the blockdev mapping.
1da177e4
LT
696 * try_to_release_page() will discover that cleanness and will
697 * drop the buffers and mark the page clean - it can be freed.
698 *
699 * Rarely, pages can have buffers and no ->mapping. These are
700 * the pages which were not successfully invalidated in
701 * truncate_complete_page(). We try to drop those buffers here
702 * and if that worked, and the page is no longer mapped into
703 * process address space (page_count == 1) it can be freed.
704 * Otherwise, leave the page on the LRU so it is swappable.
705 */
706 if (PagePrivate(page)) {
707 if (!try_to_release_page(page, sc->gfp_mask))
708 goto activate_locked;
e286781d
NP
709 if (!mapping && page_count(page) == 1) {
710 unlock_page(page);
711 if (put_page_testzero(page))
712 goto free_it;
713 else {
714 /*
715 * rare race with speculative reference.
716 * the speculative reference will free
717 * this page shortly, so we may
718 * increment nr_reclaimed here (and
719 * leave it off the LRU).
720 */
721 nr_reclaimed++;
722 continue;
723 }
724 }
1da177e4
LT
725 }
726
e286781d 727 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 728 goto keep_locked;
1da177e4 729
a978d6f5
NP
730 /*
731 * At this point, we have no other references and there is
732 * no way to pick any more up (removed from LRU, removed
733 * from pagecache). Can use non-atomic bitops now (and
734 * we obviously don't have to worry about waking up a process
735 * waiting on the page lock, because there are no references.
736 */
737 __clear_page_locked(page);
e286781d 738free_it:
05ff5137 739 nr_reclaimed++;
e286781d
NP
740 if (!pagevec_add(&freed_pvec, page)) {
741 __pagevec_free(&freed_pvec);
742 pagevec_reinit(&freed_pvec);
743 }
1da177e4
LT
744 continue;
745
b291f000 746cull_mlocked:
63d6c5ad
HD
747 if (PageSwapCache(page))
748 try_to_free_swap(page);
b291f000
NP
749 unlock_page(page);
750 putback_lru_page(page);
751 continue;
752
1da177e4 753activate_locked:
68a22394
RR
754 /* Not a candidate for swapping, so reclaim swap space. */
755 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 756 try_to_free_swap(page);
894bc310 757 VM_BUG_ON(PageActive(page));
1da177e4
LT
758 SetPageActive(page);
759 pgactivate++;
760keep_locked:
761 unlock_page(page);
762keep:
763 list_add(&page->lru, &ret_pages);
b291f000 764 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4
LT
765 }
766 list_splice(&ret_pages, page_list);
767 if (pagevec_count(&freed_pvec))
e286781d 768 __pagevec_free(&freed_pvec);
f8891e5e 769 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 770 return nr_reclaimed;
1da177e4
LT
771}
772
5ad333eb
AW
773/* LRU Isolation modes. */
774#define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
775#define ISOLATE_ACTIVE 1 /* Isolate active pages. */
776#define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
777
778/*
779 * Attempt to remove the specified page from its LRU. Only take this page
780 * if it is of the appropriate PageActive status. Pages which are being
781 * freed elsewhere are also ignored.
782 *
783 * page: page to consider
784 * mode: one of the LRU isolation modes defined above
785 *
786 * returns 0 on success, -ve errno on failure.
787 */
4f98a2fe 788int __isolate_lru_page(struct page *page, int mode, int file)
5ad333eb
AW
789{
790 int ret = -EINVAL;
791
792 /* Only take pages on the LRU. */
793 if (!PageLRU(page))
794 return ret;
795
796 /*
797 * When checking the active state, we need to be sure we are
798 * dealing with comparible boolean values. Take the logical not
799 * of each.
800 */
801 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
802 return ret;
803
4f98a2fe
RR
804 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
805 return ret;
806
894bc310
LS
807 /*
808 * When this function is being called for lumpy reclaim, we
809 * initially look into all LRU pages, active, inactive and
810 * unevictable; only give shrink_page_list evictable pages.
811 */
812 if (PageUnevictable(page))
813 return ret;
814
5ad333eb
AW
815 ret = -EBUSY;
816 if (likely(get_page_unless_zero(page))) {
817 /*
818 * Be careful not to clear PageLRU until after we're
819 * sure the page is not being freed elsewhere -- the
820 * page release code relies on it.
821 */
822 ClearPageLRU(page);
823 ret = 0;
824 }
825
826 return ret;
827}
828
1da177e4
LT
829/*
830 * zone->lru_lock is heavily contended. Some of the functions that
831 * shrink the lists perform better by taking out a batch of pages
832 * and working on them outside the LRU lock.
833 *
834 * For pagecache intensive workloads, this function is the hottest
835 * spot in the kernel (apart from copy_*_user functions).
836 *
837 * Appropriate locks must be held before calling this function.
838 *
839 * @nr_to_scan: The number of pages to look through on the list.
840 * @src: The LRU list to pull pages off.
841 * @dst: The temp list to put pages on to.
842 * @scanned: The number of pages that were scanned.
5ad333eb
AW
843 * @order: The caller's attempted allocation order
844 * @mode: One of the LRU isolation modes
4f98a2fe 845 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
846 *
847 * returns how many pages were moved onto *@dst.
848 */
69e05944
AM
849static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
850 struct list_head *src, struct list_head *dst,
4f98a2fe 851 unsigned long *scanned, int order, int mode, int file)
1da177e4 852{
69e05944 853 unsigned long nr_taken = 0;
c9b02d97 854 unsigned long scan;
1da177e4 855
c9b02d97 856 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
857 struct page *page;
858 unsigned long pfn;
859 unsigned long end_pfn;
860 unsigned long page_pfn;
861 int zone_id;
862
1da177e4
LT
863 page = lru_to_page(src);
864 prefetchw_prev_lru_page(page, src, flags);
865
725d704e 866 VM_BUG_ON(!PageLRU(page));
8d438f96 867
4f98a2fe 868 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
869 case 0:
870 list_move(&page->lru, dst);
7c8ee9a8 871 nr_taken++;
5ad333eb
AW
872 break;
873
874 case -EBUSY:
875 /* else it is being freed elsewhere */
876 list_move(&page->lru, src);
877 continue;
46453a6e 878
5ad333eb
AW
879 default:
880 BUG();
881 }
882
883 if (!order)
884 continue;
885
886 /*
887 * Attempt to take all pages in the order aligned region
888 * surrounding the tag page. Only take those pages of
889 * the same active state as that tag page. We may safely
890 * round the target page pfn down to the requested order
891 * as the mem_map is guarenteed valid out to MAX_ORDER,
892 * where that page is in a different zone we will detect
893 * it from its zone id and abort this block scan.
894 */
895 zone_id = page_zone_id(page);
896 page_pfn = page_to_pfn(page);
897 pfn = page_pfn & ~((1 << order) - 1);
898 end_pfn = pfn + (1 << order);
899 for (; pfn < end_pfn; pfn++) {
900 struct page *cursor_page;
901
902 /* The target page is in the block, ignore it. */
903 if (unlikely(pfn == page_pfn))
904 continue;
905
906 /* Avoid holes within the zone. */
907 if (unlikely(!pfn_valid_within(pfn)))
908 break;
909
910 cursor_page = pfn_to_page(pfn);
4f98a2fe 911
5ad333eb
AW
912 /* Check that we have not crossed a zone boundary. */
913 if (unlikely(page_zone_id(cursor_page) != zone_id))
914 continue;
4f98a2fe 915 switch (__isolate_lru_page(cursor_page, mode, file)) {
5ad333eb
AW
916 case 0:
917 list_move(&cursor_page->lru, dst);
918 nr_taken++;
919 scan++;
920 break;
921
922 case -EBUSY:
923 /* else it is being freed elsewhere */
924 list_move(&cursor_page->lru, src);
925 default:
894bc310 926 break; /* ! on LRU or wrong list */
5ad333eb
AW
927 }
928 }
1da177e4
LT
929 }
930
931 *scanned = scan;
932 return nr_taken;
933}
934
66e1707b
BS
935static unsigned long isolate_pages_global(unsigned long nr,
936 struct list_head *dst,
937 unsigned long *scanned, int order,
938 int mode, struct zone *z,
939 struct mem_cgroup *mem_cont,
4f98a2fe 940 int active, int file)
66e1707b 941{
4f98a2fe 942 int lru = LRU_BASE;
66e1707b 943 if (active)
4f98a2fe
RR
944 lru += LRU_ACTIVE;
945 if (file)
946 lru += LRU_FILE;
947 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
948 mode, !!file);
66e1707b
BS
949}
950
5ad333eb
AW
951/*
952 * clear_active_flags() is a helper for shrink_active_list(), clearing
953 * any active bits from the pages in the list.
954 */
4f98a2fe
RR
955static unsigned long clear_active_flags(struct list_head *page_list,
956 unsigned int *count)
5ad333eb
AW
957{
958 int nr_active = 0;
4f98a2fe 959 int lru;
5ad333eb
AW
960 struct page *page;
961
4f98a2fe
RR
962 list_for_each_entry(page, page_list, lru) {
963 lru = page_is_file_cache(page);
5ad333eb 964 if (PageActive(page)) {
4f98a2fe 965 lru += LRU_ACTIVE;
5ad333eb
AW
966 ClearPageActive(page);
967 nr_active++;
968 }
4f98a2fe
RR
969 count[lru]++;
970 }
5ad333eb
AW
971
972 return nr_active;
973}
974
62695a84
NP
975/**
976 * isolate_lru_page - tries to isolate a page from its LRU list
977 * @page: page to isolate from its LRU list
978 *
979 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
980 * vmstat statistic corresponding to whatever LRU list the page was on.
981 *
982 * Returns 0 if the page was removed from an LRU list.
983 * Returns -EBUSY if the page was not on an LRU list.
984 *
985 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
986 * the active list, it will have PageActive set. If it was found on
987 * the unevictable list, it will have the PageUnevictable bit set. That flag
988 * may need to be cleared by the caller before letting the page go.
62695a84
NP
989 *
990 * The vmstat statistic corresponding to the list on which the page was
991 * found will be decremented.
992 *
993 * Restrictions:
994 * (1) Must be called with an elevated refcount on the page. This is a
995 * fundamentnal difference from isolate_lru_pages (which is called
996 * without a stable reference).
997 * (2) the lru_lock must not be held.
998 * (3) interrupts must be enabled.
999 */
1000int isolate_lru_page(struct page *page)
1001{
1002 int ret = -EBUSY;
1003
1004 if (PageLRU(page)) {
1005 struct zone *zone = page_zone(page);
1006
1007 spin_lock_irq(&zone->lru_lock);
1008 if (PageLRU(page) && get_page_unless_zero(page)) {
894bc310 1009 int lru = page_lru(page);
62695a84
NP
1010 ret = 0;
1011 ClearPageLRU(page);
4f98a2fe 1012
4f98a2fe 1013 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1014 }
1015 spin_unlock_irq(&zone->lru_lock);
1016 }
1017 return ret;
1018}
1019
1da177e4 1020/*
1742f19f
AM
1021 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1022 * of reclaimed pages
1da177e4 1023 */
1742f19f 1024static unsigned long shrink_inactive_list(unsigned long max_scan,
33c120ed
RR
1025 struct zone *zone, struct scan_control *sc,
1026 int priority, int file)
1da177e4
LT
1027{
1028 LIST_HEAD(page_list);
1029 struct pagevec pvec;
69e05944 1030 unsigned long nr_scanned = 0;
05ff5137 1031 unsigned long nr_reclaimed = 0;
1da177e4
LT
1032
1033 pagevec_init(&pvec, 1);
1034
1035 lru_add_drain();
1036 spin_lock_irq(&zone->lru_lock);
69e05944 1037 do {
1da177e4 1038 struct page *page;
69e05944
AM
1039 unsigned long nr_taken;
1040 unsigned long nr_scan;
1041 unsigned long nr_freed;
5ad333eb 1042 unsigned long nr_active;
4f98a2fe 1043 unsigned int count[NR_LRU_LISTS] = { 0, };
33c120ed
RR
1044 int mode = ISOLATE_INACTIVE;
1045
1046 /*
1047 * If we need a large contiguous chunk of memory, or have
1048 * trouble getting a small set of contiguous pages, we
1049 * will reclaim both active and inactive pages.
1050 *
1051 * We use the same threshold as pageout congestion_wait below.
1052 */
1053 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1054 mode = ISOLATE_BOTH;
1055 else if (sc->order && priority < DEF_PRIORITY - 2)
1056 mode = ISOLATE_BOTH;
1da177e4 1057
66e1707b 1058 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
4f98a2fe
RR
1059 &page_list, &nr_scan, sc->order, mode,
1060 zone, sc->mem_cgroup, 0, file);
1061 nr_active = clear_active_flags(&page_list, count);
e9187bdc 1062 __count_vm_events(PGDEACTIVATE, nr_active);
5ad333eb 1063
4f98a2fe
RR
1064 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1065 -count[LRU_ACTIVE_FILE]);
1066 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1067 -count[LRU_INACTIVE_FILE]);
1068 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1069 -count[LRU_ACTIVE_ANON]);
1070 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1071 -count[LRU_INACTIVE_ANON]);
1072
1073 if (scan_global_lru(sc)) {
1cfb419b 1074 zone->pages_scanned += nr_scan;
4f98a2fe
RR
1075 zone->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1076 zone->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1077 zone->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1078 zone->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1079 }
1da177e4
LT
1080 spin_unlock_irq(&zone->lru_lock);
1081
69e05944 1082 nr_scanned += nr_scan;
c661b078
AW
1083 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1084
1085 /*
1086 * If we are direct reclaiming for contiguous pages and we do
1087 * not reclaim everything in the list, try again and wait
1088 * for IO to complete. This will stall high-order allocations
1089 * but that should be acceptable to the caller
1090 */
1091 if (nr_freed < nr_taken && !current_is_kswapd() &&
1092 sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1093 congestion_wait(WRITE, HZ/10);
1094
1095 /*
1096 * The attempt at page out may have made some
1097 * of the pages active, mark them inactive again.
1098 */
4f98a2fe 1099 nr_active = clear_active_flags(&page_list, count);
c661b078
AW
1100 count_vm_events(PGDEACTIVATE, nr_active);
1101
1102 nr_freed += shrink_page_list(&page_list, sc,
1103 PAGEOUT_IO_SYNC);
1104 }
1105
05ff5137 1106 nr_reclaimed += nr_freed;
a74609fa
NP
1107 local_irq_disable();
1108 if (current_is_kswapd()) {
f8891e5e
CL
1109 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1110 __count_vm_events(KSWAPD_STEAL, nr_freed);
1cfb419b 1111 } else if (scan_global_lru(sc))
f8891e5e 1112 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1cfb419b 1113
918d3f90 1114 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
a74609fa 1115
fb8d14e1
WF
1116 if (nr_taken == 0)
1117 goto done;
1118
a74609fa 1119 spin_lock(&zone->lru_lock);
1da177e4
LT
1120 /*
1121 * Put back any unfreeable pages.
1122 */
1123 while (!list_empty(&page_list)) {
894bc310 1124 int lru;
1da177e4 1125 page = lru_to_page(&page_list);
725d704e 1126 VM_BUG_ON(PageLRU(page));
1da177e4 1127 list_del(&page->lru);
894bc310
LS
1128 if (unlikely(!page_evictable(page, NULL))) {
1129 spin_unlock_irq(&zone->lru_lock);
1130 putback_lru_page(page);
1131 spin_lock_irq(&zone->lru_lock);
1132 continue;
1133 }
1134 SetPageLRU(page);
1135 lru = page_lru(page);
1136 add_page_to_lru_list(zone, page, lru);
1137 mem_cgroup_move_lists(page, lru);
4f98a2fe
RR
1138 if (PageActive(page) && scan_global_lru(sc)) {
1139 int file = !!page_is_file_cache(page);
1140 zone->recent_rotated[file]++;
1141 }
1da177e4
LT
1142 if (!pagevec_add(&pvec, page)) {
1143 spin_unlock_irq(&zone->lru_lock);
1144 __pagevec_release(&pvec);
1145 spin_lock_irq(&zone->lru_lock);
1146 }
1147 }
69e05944 1148 } while (nr_scanned < max_scan);
fb8d14e1 1149 spin_unlock(&zone->lru_lock);
1da177e4 1150done:
fb8d14e1 1151 local_irq_enable();
1da177e4 1152 pagevec_release(&pvec);
05ff5137 1153 return nr_reclaimed;
1da177e4
LT
1154}
1155
3bb1a852
MB
1156/*
1157 * We are about to scan this zone at a certain priority level. If that priority
1158 * level is smaller (ie: more urgent) than the previous priority, then note
1159 * that priority level within the zone. This is done so that when the next
1160 * process comes in to scan this zone, it will immediately start out at this
1161 * priority level rather than having to build up its own scanning priority.
1162 * Here, this priority affects only the reclaim-mapped threshold.
1163 */
1164static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1165{
1166 if (priority < zone->prev_priority)
1167 zone->prev_priority = priority;
1168}
1169
4ff1ffb4
NP
1170static inline int zone_is_near_oom(struct zone *zone)
1171{
4f98a2fe 1172 return zone->pages_scanned >= (zone_lru_pages(zone) * 3);
1cfb419b
KH
1173}
1174
1da177e4
LT
1175/*
1176 * This moves pages from the active list to the inactive list.
1177 *
1178 * We move them the other way if the page is referenced by one or more
1179 * processes, from rmap.
1180 *
1181 * If the pages are mostly unmapped, the processing is fast and it is
1182 * appropriate to hold zone->lru_lock across the whole operation. But if
1183 * the pages are mapped, the processing is slow (page_referenced()) so we
1184 * should drop zone->lru_lock around each page. It's impossible to balance
1185 * this, so instead we remove the pages from the LRU while processing them.
1186 * It is safe to rely on PG_active against the non-LRU pages in here because
1187 * nobody will play with that bit on a non-LRU page.
1188 *
1189 * The downside is that we have to touch page->_count against each page.
1190 * But we had to alter page->flags anyway.
1191 */
1cfb419b
KH
1192
1193
1742f19f 1194static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1195 struct scan_control *sc, int priority, int file)
1da177e4 1196{
69e05944 1197 unsigned long pgmoved;
1da177e4 1198 int pgdeactivate = 0;
69e05944 1199 unsigned long pgscanned;
1da177e4 1200 LIST_HEAD(l_hold); /* The pages which were snipped off */
b69408e8 1201 LIST_HEAD(l_inactive);
1da177e4
LT
1202 struct page *page;
1203 struct pagevec pvec;
4f98a2fe 1204 enum lru_list lru;
1da177e4
LT
1205
1206 lru_add_drain();
1207 spin_lock_irq(&zone->lru_lock);
66e1707b
BS
1208 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1209 ISOLATE_ACTIVE, zone,
4f98a2fe 1210 sc->mem_cgroup, 1, file);
1cfb419b
KH
1211 /*
1212 * zone->pages_scanned is used for detect zone's oom
1213 * mem_cgroup remembers nr_scan by itself.
1214 */
4f98a2fe 1215 if (scan_global_lru(sc)) {
1cfb419b 1216 zone->pages_scanned += pgscanned;
4f98a2fe
RR
1217 zone->recent_scanned[!!file] += pgmoved;
1218 }
1cfb419b 1219
4f98a2fe
RR
1220 if (file)
1221 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1222 else
1223 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1da177e4
LT
1224 spin_unlock_irq(&zone->lru_lock);
1225
556adecb 1226 pgmoved = 0;
1da177e4
LT
1227 while (!list_empty(&l_hold)) {
1228 cond_resched();
1229 page = lru_to_page(&l_hold);
1230 list_del(&page->lru);
7e9cd484 1231
894bc310
LS
1232 if (unlikely(!page_evictable(page, NULL))) {
1233 putback_lru_page(page);
1234 continue;
1235 }
1236
7e9cd484
RR
1237 /* page_referenced clears PageReferenced */
1238 if (page_mapping_inuse(page) &&
1239 page_referenced(page, 0, sc->mem_cgroup))
1240 pgmoved++;
1241
1da177e4
LT
1242 list_add(&page->lru, &l_inactive);
1243 }
1244
2a1dc509 1245 spin_lock_irq(&zone->lru_lock);
556adecb 1246 /*
7e9cd484
RR
1247 * Count referenced pages from currently used mappings as
1248 * rotated, even though they are moved to the inactive list.
1249 * This helps balance scan pressure between file and anonymous
1250 * pages in get_scan_ratio.
1251 */
077cbc58
KM
1252 if (scan_global_lru(sc))
1253 zone->recent_rotated[!!file] += pgmoved;
556adecb 1254
4f98a2fe 1255 /*
7e9cd484 1256 * Move the pages to the [file or anon] inactive list.
4f98a2fe 1257 */
1da177e4 1258 pagevec_init(&pvec, 1);
7e9cd484 1259
1da177e4 1260 pgmoved = 0;
4f98a2fe 1261 lru = LRU_BASE + file * LRU_FILE;
1da177e4
LT
1262 while (!list_empty(&l_inactive)) {
1263 page = lru_to_page(&l_inactive);
1264 prefetchw_prev_lru_page(page, &l_inactive, flags);
725d704e 1265 VM_BUG_ON(PageLRU(page));
8d438f96 1266 SetPageLRU(page);
725d704e 1267 VM_BUG_ON(!PageActive(page));
4c84cacf
NP
1268 ClearPageActive(page);
1269
4f98a2fe 1270 list_move(&page->lru, &zone->lru[lru].list);
894bc310 1271 mem_cgroup_move_lists(page, lru);
1da177e4
LT
1272 pgmoved++;
1273 if (!pagevec_add(&pvec, page)) {
4f98a2fe 1274 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1da177e4
LT
1275 spin_unlock_irq(&zone->lru_lock);
1276 pgdeactivate += pgmoved;
1277 pgmoved = 0;
1278 if (buffer_heads_over_limit)
1279 pagevec_strip(&pvec);
1280 __pagevec_release(&pvec);
1281 spin_lock_irq(&zone->lru_lock);
1282 }
1283 }
4f98a2fe 1284 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1da177e4
LT
1285 pgdeactivate += pgmoved;
1286 if (buffer_heads_over_limit) {
1287 spin_unlock_irq(&zone->lru_lock);
1288 pagevec_strip(&pvec);
1289 spin_lock_irq(&zone->lru_lock);
1290 }
f8891e5e
CL
1291 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1292 __count_vm_events(PGDEACTIVATE, pgdeactivate);
1293 spin_unlock_irq(&zone->lru_lock);
68a22394
RR
1294 if (vm_swap_full())
1295 pagevec_swap_free(&pvec);
1da177e4 1296
a74609fa 1297 pagevec_release(&pvec);
1da177e4
LT
1298}
1299
4f98a2fe 1300static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1301 struct zone *zone, struct scan_control *sc, int priority)
1302{
4f98a2fe
RR
1303 int file = is_file_lru(lru);
1304
556adecb
RR
1305 if (lru == LRU_ACTIVE_FILE) {
1306 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1307 return 0;
1308 }
1309
1310 if (lru == LRU_ACTIVE_ANON &&
1311 (!scan_global_lru(sc) || inactive_anon_is_low(zone))) {
4f98a2fe 1312 shrink_active_list(nr_to_scan, zone, sc, priority, file);
b69408e8
CL
1313 return 0;
1314 }
33c120ed 1315 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1316}
1317
1318/*
1319 * Determine how aggressively the anon and file LRU lists should be
1320 * scanned. The relative value of each set of LRU lists is determined
1321 * by looking at the fraction of the pages scanned we did rotate back
1322 * onto the active list instead of evict.
1323 *
1324 * percent[0] specifies how much pressure to put on ram/swap backed
1325 * memory, while percent[1] determines pressure on the file LRUs.
1326 */
1327static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1328 unsigned long *percent)
1329{
1330 unsigned long anon, file, free;
1331 unsigned long anon_prio, file_prio;
1332 unsigned long ap, fp;
1333
4f98a2fe
RR
1334 /* If we have no swap space, do not bother scanning anon pages. */
1335 if (nr_swap_pages <= 0) {
1336 percent[0] = 0;
1337 percent[1] = 100;
1338 return;
1339 }
1340
b962716b
HD
1341 anon = zone_page_state(zone, NR_ACTIVE_ANON) +
1342 zone_page_state(zone, NR_INACTIVE_ANON);
1343 file = zone_page_state(zone, NR_ACTIVE_FILE) +
1344 zone_page_state(zone, NR_INACTIVE_FILE);
1345 free = zone_page_state(zone, NR_FREE_PAGES);
1346
4f98a2fe
RR
1347 /* If we have very few page cache pages, force-scan anon pages. */
1348 if (unlikely(file + free <= zone->pages_high)) {
1349 percent[0] = 100;
1350 percent[1] = 0;
1351 return;
1352 }
1353
1354 /*
1355 * OK, so we have swap space and a fair amount of page cache
1356 * pages. We use the recently rotated / recently scanned
1357 * ratios to determine how valuable each cache is.
1358 *
1359 * Because workloads change over time (and to avoid overflow)
1360 * we keep these statistics as a floating average, which ends
1361 * up weighing recent references more than old ones.
1362 *
1363 * anon in [0], file in [1]
1364 */
1365 if (unlikely(zone->recent_scanned[0] > anon / 4)) {
1366 spin_lock_irq(&zone->lru_lock);
1367 zone->recent_scanned[0] /= 2;
1368 zone->recent_rotated[0] /= 2;
1369 spin_unlock_irq(&zone->lru_lock);
1370 }
1371
1372 if (unlikely(zone->recent_scanned[1] > file / 4)) {
1373 spin_lock_irq(&zone->lru_lock);
1374 zone->recent_scanned[1] /= 2;
1375 zone->recent_rotated[1] /= 2;
1376 spin_unlock_irq(&zone->lru_lock);
1377 }
1378
1379 /*
1380 * With swappiness at 100, anonymous and file have the same priority.
1381 * This scanning priority is essentially the inverse of IO cost.
1382 */
1383 anon_prio = sc->swappiness;
1384 file_prio = 200 - sc->swappiness;
1385
1386 /*
00d8089c
RR
1387 * The amount of pressure on anon vs file pages is inversely
1388 * proportional to the fraction of recently scanned pages on
1389 * each list that were recently referenced and in active use.
4f98a2fe
RR
1390 */
1391 ap = (anon_prio + 1) * (zone->recent_scanned[0] + 1);
1392 ap /= zone->recent_rotated[0] + 1;
1393
1394 fp = (file_prio + 1) * (zone->recent_scanned[1] + 1);
1395 fp /= zone->recent_rotated[1] + 1;
1396
1397 /* Normalize to percentages */
1398 percent[0] = 100 * ap / (ap + fp + 1);
1399 percent[1] = 100 - percent[0];
b69408e8
CL
1400}
1401
4f98a2fe 1402
1da177e4
LT
1403/*
1404 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1405 */
a79311c1 1406static void shrink_zone(int priority, struct zone *zone,
05ff5137 1407 struct scan_control *sc)
1da177e4 1408{
b69408e8 1409 unsigned long nr[NR_LRU_LISTS];
8695949a 1410 unsigned long nr_to_scan;
4f98a2fe 1411 unsigned long percent[2]; /* anon @ 0; file @ 1 */
b69408e8 1412 enum lru_list l;
1da177e4 1413
4f98a2fe
RR
1414 get_scan_ratio(zone, sc, percent);
1415
894bc310 1416 for_each_evictable_lru(l) {
4f98a2fe
RR
1417 if (scan_global_lru(sc)) {
1418 int file = is_file_lru(l);
1419 int scan;
e0f79b8f 1420
4f98a2fe
RR
1421 scan = zone_page_state(zone, NR_LRU_BASE + l);
1422 if (priority) {
1423 scan >>= priority;
1424 scan = (scan * percent[file]) / 100;
1425 }
e0f79b8f 1426 zone->lru[l].nr_scan += scan;
b69408e8
CL
1427 nr[l] = zone->lru[l].nr_scan;
1428 if (nr[l] >= sc->swap_cluster_max)
1429 zone->lru[l].nr_scan = 0;
1430 else
1431 nr[l] = 0;
4f98a2fe
RR
1432 } else {
1433 /*
1434 * This reclaim occurs not because zone memory shortage
1435 * but because memory controller hits its limit.
1436 * Don't modify zone reclaim related data.
1437 */
1438 nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone,
1439 priority, l);
b69408e8 1440 }
1cfb419b 1441 }
1da177e4 1442
556adecb
RR
1443 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1444 nr[LRU_INACTIVE_FILE]) {
894bc310 1445 for_each_evictable_lru(l) {
b69408e8
CL
1446 if (nr[l]) {
1447 nr_to_scan = min(nr[l],
1da177e4 1448 (unsigned long)sc->swap_cluster_max);
b69408e8 1449 nr[l] -= nr_to_scan;
1da177e4 1450
a79311c1 1451 sc->nr_reclaimed += shrink_list(l, nr_to_scan,
b69408e8
CL
1452 zone, sc, priority);
1453 }
1da177e4 1454 }
a79311c1
RR
1455 /*
1456 * On large memory systems, scan >> priority can become
1457 * really large. This is fine for the starting priority;
1458 * we want to put equal scanning pressure on each zone.
1459 * However, if the VM has a harder time of freeing pages,
1460 * with multiple processes reclaiming pages, the total
1461 * freeing target can get unreasonably large.
1462 */
1463 if (sc->nr_reclaimed > sc->swap_cluster_max &&
1464 priority < DEF_PRIORITY && !current_is_kswapd())
1465 break;
1da177e4
LT
1466 }
1467
556adecb
RR
1468 /*
1469 * Even if we did not try to evict anon pages at all, we want to
1470 * rebalance the anon lru active/inactive ratio.
1471 */
1472 if (!scan_global_lru(sc) || inactive_anon_is_low(zone))
1473 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1474 else if (!scan_global_lru(sc))
1475 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1476
232ea4d6 1477 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1478}
1479
1480/*
1481 * This is the direct reclaim path, for page-allocating processes. We only
1482 * try to reclaim pages from zones which will satisfy the caller's allocation
1483 * request.
1484 *
1485 * We reclaim from a zone even if that zone is over pages_high. Because:
1486 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1487 * allocation or
1488 * b) The zones may be over pages_high but they must go *over* pages_high to
1489 * satisfy the `incremental min' zone defense algorithm.
1490 *
1da177e4
LT
1491 * If a zone is deemed to be full of pinned pages then just give it a light
1492 * scan then give up on it.
1493 */
a79311c1 1494static void shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 1495 struct scan_control *sc)
1da177e4 1496{
54a6eb5c 1497 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
dd1a239f 1498 struct zoneref *z;
54a6eb5c 1499 struct zone *zone;
1cfb419b 1500
408d8544 1501 sc->all_unreclaimable = 1;
54a6eb5c 1502 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
f3fe6512 1503 if (!populated_zone(zone))
1da177e4 1504 continue;
1cfb419b
KH
1505 /*
1506 * Take care memory controller reclaiming has small influence
1507 * to global LRU.
1508 */
1509 if (scan_global_lru(sc)) {
1510 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1511 continue;
1512 note_zone_scanning_priority(zone, priority);
1da177e4 1513
1cfb419b
KH
1514 if (zone_is_all_unreclaimable(zone) &&
1515 priority != DEF_PRIORITY)
1516 continue; /* Let kswapd poll it */
1517 sc->all_unreclaimable = 0;
1518 } else {
1519 /*
1520 * Ignore cpuset limitation here. We just want to reduce
1521 * # of used pages by us regardless of memory shortage.
1522 */
1523 sc->all_unreclaimable = 0;
1524 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1525 priority);
1526 }
408d8544 1527
a79311c1 1528 shrink_zone(priority, zone, sc);
1da177e4
LT
1529 }
1530}
4f98a2fe 1531
1da177e4
LT
1532/*
1533 * This is the main entry point to direct page reclaim.
1534 *
1535 * If a full scan of the inactive list fails to free enough memory then we
1536 * are "out of memory" and something needs to be killed.
1537 *
1538 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1539 * high - the zone may be full of dirty or under-writeback pages, which this
1540 * caller can't do much about. We kick pdflush and take explicit naps in the
1541 * hope that some of these pages can be written. But if the allocating task
1542 * holds filesystem locks which prevent writeout this might not work, and the
1543 * allocation attempt will fail.
a41f24ea
NA
1544 *
1545 * returns: 0, if no pages reclaimed
1546 * else, the number of pages reclaimed
1da177e4 1547 */
dac1d27b 1548static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
dd1a239f 1549 struct scan_control *sc)
1da177e4
LT
1550{
1551 int priority;
c700be3d 1552 unsigned long ret = 0;
69e05944 1553 unsigned long total_scanned = 0;
1da177e4 1554 struct reclaim_state *reclaim_state = current->reclaim_state;
1da177e4 1555 unsigned long lru_pages = 0;
dd1a239f 1556 struct zoneref *z;
54a6eb5c 1557 struct zone *zone;
dd1a239f 1558 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1da177e4 1559
873b4771
KK
1560 delayacct_freepages_start();
1561
1cfb419b
KH
1562 if (scan_global_lru(sc))
1563 count_vm_event(ALLOCSTALL);
1564 /*
1565 * mem_cgroup will not do shrink_slab.
1566 */
1567 if (scan_global_lru(sc)) {
54a6eb5c 1568 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1da177e4 1569
1cfb419b
KH
1570 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1571 continue;
1da177e4 1572
4f98a2fe 1573 lru_pages += zone_lru_pages(zone);
1cfb419b 1574 }
1da177e4
LT
1575 }
1576
1577 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 1578 sc->nr_scanned = 0;
f7b7fd8f
RR
1579 if (!priority)
1580 disable_swap_token();
a79311c1 1581 shrink_zones(priority, zonelist, sc);
66e1707b
BS
1582 /*
1583 * Don't shrink slabs when reclaiming memory from
1584 * over limit cgroups
1585 */
91a45470 1586 if (scan_global_lru(sc)) {
dd1a239f 1587 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
91a45470 1588 if (reclaim_state) {
a79311c1 1589 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
1590 reclaim_state->reclaimed_slab = 0;
1591 }
1da177e4 1592 }
66e1707b 1593 total_scanned += sc->nr_scanned;
a79311c1
RR
1594 if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1595 ret = sc->nr_reclaimed;
1da177e4
LT
1596 goto out;
1597 }
1598
1599 /*
1600 * Try to write back as many pages as we just scanned. This
1601 * tends to cause slow streaming writers to write data to the
1602 * disk smoothly, at the dirtying rate, which is nice. But
1603 * that's undesirable in laptop mode, where we *want* lumpy
1604 * writeout. So in laptop mode, write out the whole world.
1605 */
66e1707b
BS
1606 if (total_scanned > sc->swap_cluster_max +
1607 sc->swap_cluster_max / 2) {
687a21ce 1608 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
66e1707b 1609 sc->may_writepage = 1;
1da177e4
LT
1610 }
1611
1612 /* Take a nap, wait for some writeback to complete */
4dd4b920 1613 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
3fcfab16 1614 congestion_wait(WRITE, HZ/10);
1da177e4 1615 }
87547ee9 1616 /* top priority shrink_zones still had more to do? don't OOM, then */
91a45470 1617 if (!sc->all_unreclaimable && scan_global_lru(sc))
a79311c1 1618 ret = sc->nr_reclaimed;
1da177e4 1619out:
3bb1a852
MB
1620 /*
1621 * Now that we've scanned all the zones at this priority level, note
1622 * that level within the zone so that the next thread which performs
1623 * scanning of this zone will immediately start out at this priority
1624 * level. This affects only the decision whether or not to bring
1625 * mapped pages onto the inactive list.
1626 */
1627 if (priority < 0)
1628 priority = 0;
1da177e4 1629
1cfb419b 1630 if (scan_global_lru(sc)) {
54a6eb5c 1631 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1cfb419b
KH
1632
1633 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1634 continue;
1635
1636 zone->prev_priority = priority;
1637 }
1638 } else
1639 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1da177e4 1640
873b4771
KK
1641 delayacct_freepages_end();
1642
1da177e4
LT
1643 return ret;
1644}
1645
dac1d27b
MG
1646unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1647 gfp_t gfp_mask)
66e1707b
BS
1648{
1649 struct scan_control sc = {
1650 .gfp_mask = gfp_mask,
1651 .may_writepage = !laptop_mode,
1652 .swap_cluster_max = SWAP_CLUSTER_MAX,
1653 .may_swap = 1,
1654 .swappiness = vm_swappiness,
1655 .order = order,
1656 .mem_cgroup = NULL,
1657 .isolate_pages = isolate_pages_global,
1658 };
1659
dd1a239f 1660 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1661}
1662
00f0b825 1663#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 1664
e1a1cd59
BS
1665unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1666 gfp_t gfp_mask)
66e1707b
BS
1667{
1668 struct scan_control sc = {
66e1707b
BS
1669 .may_writepage = !laptop_mode,
1670 .may_swap = 1,
1671 .swap_cluster_max = SWAP_CLUSTER_MAX,
1672 .swappiness = vm_swappiness,
1673 .order = 0,
1674 .mem_cgroup = mem_cont,
1675 .isolate_pages = mem_cgroup_isolate_pages,
1676 };
dac1d27b 1677 struct zonelist *zonelist;
66e1707b 1678
dd1a239f
MG
1679 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1680 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1681 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1682 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1683}
1684#endif
1685
1da177e4
LT
1686/*
1687 * For kswapd, balance_pgdat() will work across all this node's zones until
1688 * they are all at pages_high.
1689 *
1da177e4
LT
1690 * Returns the number of pages which were actually freed.
1691 *
1692 * There is special handling here for zones which are full of pinned pages.
1693 * This can happen if the pages are all mlocked, or if they are all used by
1694 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1695 * What we do is to detect the case where all pages in the zone have been
1696 * scanned twice and there has been zero successful reclaim. Mark the zone as
1697 * dead and from now on, only perform a short scan. Basically we're polling
1698 * the zone for when the problem goes away.
1699 *
1700 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1701 * zones which have free_pages > pages_high, but once a zone is found to have
1702 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1703 * of the number of free pages in the lower zones. This interoperates with
1704 * the page allocator fallback scheme to ensure that aging of pages is balanced
1705 * across the zones.
1706 */
d6277db4 1707static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1da177e4 1708{
1da177e4
LT
1709 int all_zones_ok;
1710 int priority;
1711 int i;
69e05944 1712 unsigned long total_scanned;
1da177e4 1713 struct reclaim_state *reclaim_state = current->reclaim_state;
179e9639
AM
1714 struct scan_control sc = {
1715 .gfp_mask = GFP_KERNEL,
1716 .may_swap = 1,
d6277db4
RW
1717 .swap_cluster_max = SWAP_CLUSTER_MAX,
1718 .swappiness = vm_swappiness,
5ad333eb 1719 .order = order,
66e1707b
BS
1720 .mem_cgroup = NULL,
1721 .isolate_pages = isolate_pages_global,
179e9639 1722 };
3bb1a852
MB
1723 /*
1724 * temp_priority is used to remember the scanning priority at which
1725 * this zone was successfully refilled to free_pages == pages_high.
1726 */
1727 int temp_priority[MAX_NR_ZONES];
1da177e4
LT
1728
1729loop_again:
1730 total_scanned = 0;
a79311c1 1731 sc.nr_reclaimed = 0;
c0bbbc73 1732 sc.may_writepage = !laptop_mode;
f8891e5e 1733 count_vm_event(PAGEOUTRUN);
1da177e4 1734
3bb1a852
MB
1735 for (i = 0; i < pgdat->nr_zones; i++)
1736 temp_priority[i] = DEF_PRIORITY;
1da177e4
LT
1737
1738 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1739 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1740 unsigned long lru_pages = 0;
1741
f7b7fd8f
RR
1742 /* The swap token gets in the way of swapout... */
1743 if (!priority)
1744 disable_swap_token();
1745
1da177e4
LT
1746 all_zones_ok = 1;
1747
d6277db4
RW
1748 /*
1749 * Scan in the highmem->dma direction for the highest
1750 * zone which needs scanning
1751 */
1752 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1753 struct zone *zone = pgdat->node_zones + i;
1da177e4 1754
d6277db4
RW
1755 if (!populated_zone(zone))
1756 continue;
1da177e4 1757
e815af95
DR
1758 if (zone_is_all_unreclaimable(zone) &&
1759 priority != DEF_PRIORITY)
d6277db4 1760 continue;
1da177e4 1761
556adecb
RR
1762 /*
1763 * Do some background aging of the anon list, to give
1764 * pages a chance to be referenced before reclaiming.
1765 */
1766 if (inactive_anon_is_low(zone))
1767 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1768 &sc, priority, 0);
1769
d6277db4
RW
1770 if (!zone_watermark_ok(zone, order, zone->pages_high,
1771 0, 0)) {
1772 end_zone = i;
e1dbeda6 1773 break;
1da177e4 1774 }
1da177e4 1775 }
e1dbeda6
AM
1776 if (i < 0)
1777 goto out;
1778
1da177e4
LT
1779 for (i = 0; i <= end_zone; i++) {
1780 struct zone *zone = pgdat->node_zones + i;
1781
4f98a2fe 1782 lru_pages += zone_lru_pages(zone);
1da177e4
LT
1783 }
1784
1785 /*
1786 * Now scan the zone in the dma->highmem direction, stopping
1787 * at the last zone which needs scanning.
1788 *
1789 * We do this because the page allocator works in the opposite
1790 * direction. This prevents the page allocator from allocating
1791 * pages behind kswapd's direction of progress, which would
1792 * cause too much scanning of the lower zones.
1793 */
1794 for (i = 0; i <= end_zone; i++) {
1795 struct zone *zone = pgdat->node_zones + i;
b15e0905 1796 int nr_slab;
1da177e4 1797
f3fe6512 1798 if (!populated_zone(zone))
1da177e4
LT
1799 continue;
1800
e815af95
DR
1801 if (zone_is_all_unreclaimable(zone) &&
1802 priority != DEF_PRIORITY)
1da177e4
LT
1803 continue;
1804
d6277db4
RW
1805 if (!zone_watermark_ok(zone, order, zone->pages_high,
1806 end_zone, 0))
1807 all_zones_ok = 0;
3bb1a852 1808 temp_priority[i] = priority;
1da177e4 1809 sc.nr_scanned = 0;
3bb1a852 1810 note_zone_scanning_priority(zone, priority);
32a4330d
RR
1811 /*
1812 * We put equal pressure on every zone, unless one
1813 * zone has way too many pages free already.
1814 */
1815 if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1816 end_zone, 0))
a79311c1 1817 shrink_zone(priority, zone, &sc);
1da177e4 1818 reclaim_state->reclaimed_slab = 0;
b15e0905 1819 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1820 lru_pages);
a79311c1 1821 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4 1822 total_scanned += sc.nr_scanned;
e815af95 1823 if (zone_is_all_unreclaimable(zone))
1da177e4 1824 continue;
b15e0905 1825 if (nr_slab == 0 && zone->pages_scanned >=
4f98a2fe 1826 (zone_lru_pages(zone) * 6))
e815af95
DR
1827 zone_set_flag(zone,
1828 ZONE_ALL_UNRECLAIMABLE);
1da177e4
LT
1829 /*
1830 * If we've done a decent amount of scanning and
1831 * the reclaim ratio is low, start doing writepage
1832 * even in laptop mode
1833 */
1834 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 1835 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4
LT
1836 sc.may_writepage = 1;
1837 }
1da177e4
LT
1838 if (all_zones_ok)
1839 break; /* kswapd: all done */
1840 /*
1841 * OK, kswapd is getting into trouble. Take a nap, then take
1842 * another pass across the zones.
1843 */
4dd4b920 1844 if (total_scanned && priority < DEF_PRIORITY - 2)
3fcfab16 1845 congestion_wait(WRITE, HZ/10);
1da177e4
LT
1846
1847 /*
1848 * We do this so kswapd doesn't build up large priorities for
1849 * example when it is freeing in parallel with allocators. It
1850 * matches the direct reclaim path behaviour in terms of impact
1851 * on zone->*_priority.
1852 */
a79311c1 1853 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
1854 break;
1855 }
1856out:
3bb1a852
MB
1857 /*
1858 * Note within each zone the priority level at which this zone was
1859 * brought into a happy state. So that the next thread which scans this
1860 * zone will start out at that priority level.
1861 */
1da177e4
LT
1862 for (i = 0; i < pgdat->nr_zones; i++) {
1863 struct zone *zone = pgdat->node_zones + i;
1864
3bb1a852 1865 zone->prev_priority = temp_priority[i];
1da177e4
LT
1866 }
1867 if (!all_zones_ok) {
1868 cond_resched();
8357376d
RW
1869
1870 try_to_freeze();
1871
1da177e4
LT
1872 goto loop_again;
1873 }
1874
a79311c1 1875 return sc.nr_reclaimed;
1da177e4
LT
1876}
1877
1878/*
1879 * The background pageout daemon, started as a kernel thread
4f98a2fe 1880 * from the init process.
1da177e4
LT
1881 *
1882 * This basically trickles out pages so that we have _some_
1883 * free memory available even if there is no other activity
1884 * that frees anything up. This is needed for things like routing
1885 * etc, where we otherwise might have all activity going on in
1886 * asynchronous contexts that cannot page things out.
1887 *
1888 * If there are applications that are active memory-allocators
1889 * (most normal use), this basically shouldn't matter.
1890 */
1891static int kswapd(void *p)
1892{
1893 unsigned long order;
1894 pg_data_t *pgdat = (pg_data_t*)p;
1895 struct task_struct *tsk = current;
1896 DEFINE_WAIT(wait);
1897 struct reclaim_state reclaim_state = {
1898 .reclaimed_slab = 0,
1899 };
c5f59f08 1900 node_to_cpumask_ptr(cpumask, pgdat->node_id);
1da177e4 1901
174596a0 1902 if (!cpumask_empty(cpumask))
c5f59f08 1903 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
1904 current->reclaim_state = &reclaim_state;
1905
1906 /*
1907 * Tell the memory management that we're a "memory allocator",
1908 * and that if we need more memory we should get access to it
1909 * regardless (see "__alloc_pages()"). "kswapd" should
1910 * never get caught in the normal page freeing logic.
1911 *
1912 * (Kswapd normally doesn't need memory anyway, but sometimes
1913 * you need a small amount of memory in order to be able to
1914 * page out something else, and this flag essentially protects
1915 * us from recursively trying to free more memory as we're
1916 * trying to free the first piece of memory in the first place).
1917 */
930d9152 1918 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 1919 set_freezable();
1da177e4
LT
1920
1921 order = 0;
1922 for ( ; ; ) {
1923 unsigned long new_order;
3e1d1d28 1924
1da177e4
LT
1925 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1926 new_order = pgdat->kswapd_max_order;
1927 pgdat->kswapd_max_order = 0;
1928 if (order < new_order) {
1929 /*
1930 * Don't sleep if someone wants a larger 'order'
1931 * allocation
1932 */
1933 order = new_order;
1934 } else {
b1296cc4
RW
1935 if (!freezing(current))
1936 schedule();
1937
1da177e4
LT
1938 order = pgdat->kswapd_max_order;
1939 }
1940 finish_wait(&pgdat->kswapd_wait, &wait);
1941
b1296cc4
RW
1942 if (!try_to_freeze()) {
1943 /* We can speed up thawing tasks if we don't call
1944 * balance_pgdat after returning from the refrigerator
1945 */
1946 balance_pgdat(pgdat, order);
1947 }
1da177e4
LT
1948 }
1949 return 0;
1950}
1951
1952/*
1953 * A zone is low on free memory, so wake its kswapd task to service it.
1954 */
1955void wakeup_kswapd(struct zone *zone, int order)
1956{
1957 pg_data_t *pgdat;
1958
f3fe6512 1959 if (!populated_zone(zone))
1da177e4
LT
1960 return;
1961
1962 pgdat = zone->zone_pgdat;
7fb1d9fc 1963 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1da177e4
LT
1964 return;
1965 if (pgdat->kswapd_max_order < order)
1966 pgdat->kswapd_max_order = order;
02a0e53d 1967 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 1968 return;
8d0986e2 1969 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 1970 return;
8d0986e2 1971 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
1972}
1973
4f98a2fe
RR
1974unsigned long global_lru_pages(void)
1975{
1976 return global_page_state(NR_ACTIVE_ANON)
1977 + global_page_state(NR_ACTIVE_FILE)
1978 + global_page_state(NR_INACTIVE_ANON)
1979 + global_page_state(NR_INACTIVE_FILE);
1980}
1981
1da177e4
LT
1982#ifdef CONFIG_PM
1983/*
d6277db4
RW
1984 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1985 * from LRU lists system-wide, for given pass and priority, and returns the
1986 * number of reclaimed pages
1987 *
1988 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1989 */
e07aa05b
NC
1990static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1991 int pass, struct scan_control *sc)
d6277db4
RW
1992{
1993 struct zone *zone;
1994 unsigned long nr_to_scan, ret = 0;
b69408e8 1995 enum lru_list l;
d6277db4
RW
1996
1997 for_each_zone(zone) {
1998
1999 if (!populated_zone(zone))
2000 continue;
2001
e815af95 2002 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
d6277db4
RW
2003 continue;
2004
894bc310
LS
2005 for_each_evictable_lru(l) {
2006 /* For pass = 0, we don't shrink the active list */
4f98a2fe
RR
2007 if (pass == 0 &&
2008 (l == LRU_ACTIVE || l == LRU_ACTIVE_FILE))
b69408e8
CL
2009 continue;
2010
2011 zone->lru[l].nr_scan +=
2012 (zone_page_state(zone, NR_LRU_BASE + l)
2013 >> prio) + 1;
2014 if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
2015 zone->lru[l].nr_scan = 0;
c8785385 2016 nr_to_scan = min(nr_pages,
b69408e8
CL
2017 zone_page_state(zone,
2018 NR_LRU_BASE + l));
2019 ret += shrink_list(l, nr_to_scan, zone,
2020 sc, prio);
2021 if (ret >= nr_pages)
2022 return ret;
d6277db4
RW
2023 }
2024 }
d6277db4
RW
2025 }
2026
2027 return ret;
2028}
2029
2030/*
2031 * Try to free `nr_pages' of memory, system-wide, and return the number of
2032 * freed pages.
2033 *
2034 * Rather than trying to age LRUs the aim is to preserve the overall
2035 * LRU order by reclaiming preferentially
2036 * inactive > active > active referenced > active mapped
1da177e4 2037 */
69e05944 2038unsigned long shrink_all_memory(unsigned long nr_pages)
1da177e4 2039{
d6277db4 2040 unsigned long lru_pages, nr_slab;
69e05944 2041 unsigned long ret = 0;
d6277db4
RW
2042 int pass;
2043 struct reclaim_state reclaim_state;
d6277db4
RW
2044 struct scan_control sc = {
2045 .gfp_mask = GFP_KERNEL,
2046 .may_swap = 0,
2047 .swap_cluster_max = nr_pages,
2048 .may_writepage = 1,
2049 .swappiness = vm_swappiness,
66e1707b 2050 .isolate_pages = isolate_pages_global,
1da177e4
LT
2051 };
2052
2053 current->reclaim_state = &reclaim_state;
69e05944 2054
4f98a2fe 2055 lru_pages = global_lru_pages();
972d1a7b 2056 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
d6277db4
RW
2057 /* If slab caches are huge, it's better to hit them first */
2058 while (nr_slab >= lru_pages) {
2059 reclaim_state.reclaimed_slab = 0;
2060 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2061 if (!reclaim_state.reclaimed_slab)
1da177e4 2062 break;
d6277db4
RW
2063
2064 ret += reclaim_state.reclaimed_slab;
2065 if (ret >= nr_pages)
2066 goto out;
2067
2068 nr_slab -= reclaim_state.reclaimed_slab;
1da177e4 2069 }
d6277db4
RW
2070
2071 /*
2072 * We try to shrink LRUs in 5 passes:
2073 * 0 = Reclaim from inactive_list only
2074 * 1 = Reclaim from active list but don't reclaim mapped
2075 * 2 = 2nd pass of type 1
2076 * 3 = Reclaim mapped (normal reclaim)
2077 * 4 = 2nd pass of type 3
2078 */
2079 for (pass = 0; pass < 5; pass++) {
2080 int prio;
2081
d6277db4
RW
2082 /* Force reclaiming mapped pages in the passes #3 and #4 */
2083 if (pass > 2) {
2084 sc.may_swap = 1;
2085 sc.swappiness = 100;
2086 }
2087
2088 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2089 unsigned long nr_to_scan = nr_pages - ret;
2090
d6277db4 2091 sc.nr_scanned = 0;
d6277db4
RW
2092 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
2093 if (ret >= nr_pages)
2094 goto out;
2095
2096 reclaim_state.reclaimed_slab = 0;
76395d37 2097 shrink_slab(sc.nr_scanned, sc.gfp_mask,
4f98a2fe 2098 global_lru_pages());
d6277db4
RW
2099 ret += reclaim_state.reclaimed_slab;
2100 if (ret >= nr_pages)
2101 goto out;
2102
2103 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
3fcfab16 2104 congestion_wait(WRITE, HZ / 10);
d6277db4 2105 }
248a0301 2106 }
d6277db4
RW
2107
2108 /*
2109 * If ret = 0, we could not shrink LRUs, but there may be something
2110 * in slab caches
2111 */
76395d37 2112 if (!ret) {
d6277db4
RW
2113 do {
2114 reclaim_state.reclaimed_slab = 0;
4f98a2fe 2115 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
d6277db4
RW
2116 ret += reclaim_state.reclaimed_slab;
2117 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
76395d37 2118 }
d6277db4
RW
2119
2120out:
1da177e4 2121 current->reclaim_state = NULL;
d6277db4 2122
1da177e4
LT
2123 return ret;
2124}
2125#endif
2126
1da177e4
LT
2127/* It's optimal to keep kswapds on the same CPUs as their memory, but
2128 not required for correctness. So if the last cpu in a node goes
2129 away, we get changed to run anywhere: as the first one comes back,
2130 restore their cpu bindings. */
9c7b216d 2131static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2132 unsigned long action, void *hcpu)
1da177e4 2133{
58c0a4a7 2134 int nid;
1da177e4 2135
8bb78442 2136 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2137 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08
MT
2138 pg_data_t *pgdat = NODE_DATA(nid);
2139 node_to_cpumask_ptr(mask, pgdat->node_id);
2140
3e597945 2141 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2142 /* One of our CPUs online: restore mask */
c5f59f08 2143 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2144 }
2145 }
2146 return NOTIFY_OK;
2147}
1da177e4 2148
3218ae14
YG
2149/*
2150 * This kswapd start function will be called by init and node-hot-add.
2151 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2152 */
2153int kswapd_run(int nid)
2154{
2155 pg_data_t *pgdat = NODE_DATA(nid);
2156 int ret = 0;
2157
2158 if (pgdat->kswapd)
2159 return 0;
2160
2161 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2162 if (IS_ERR(pgdat->kswapd)) {
2163 /* failure at boot is fatal */
2164 BUG_ON(system_state == SYSTEM_BOOTING);
2165 printk("Failed to start kswapd on node %d\n",nid);
2166 ret = -1;
2167 }
2168 return ret;
2169}
2170
1da177e4
LT
2171static int __init kswapd_init(void)
2172{
3218ae14 2173 int nid;
69e05944 2174
1da177e4 2175 swap_setup();
9422ffba 2176 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 2177 kswapd_run(nid);
1da177e4
LT
2178 hotcpu_notifier(cpu_callback, 0);
2179 return 0;
2180}
2181
2182module_init(kswapd_init)
9eeff239
CL
2183
2184#ifdef CONFIG_NUMA
2185/*
2186 * Zone reclaim mode
2187 *
2188 * If non-zero call zone_reclaim when the number of free pages falls below
2189 * the watermarks.
9eeff239
CL
2190 */
2191int zone_reclaim_mode __read_mostly;
2192
1b2ffb78 2193#define RECLAIM_OFF 0
7d03431c 2194#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
2195#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2196#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2197
a92f7126
CL
2198/*
2199 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2200 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2201 * a zone.
2202 */
2203#define ZONE_RECLAIM_PRIORITY 4
2204
9614634f
CL
2205/*
2206 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2207 * occur.
2208 */
2209int sysctl_min_unmapped_ratio = 1;
2210
0ff38490
CL
2211/*
2212 * If the number of slab pages in a zone grows beyond this percentage then
2213 * slab reclaim needs to occur.
2214 */
2215int sysctl_min_slab_ratio = 5;
2216
9eeff239
CL
2217/*
2218 * Try to free up some pages from this zone through reclaim.
2219 */
179e9639 2220static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 2221{
7fb2d46d 2222 /* Minimum pages needed in order to stay on node */
69e05944 2223 const unsigned long nr_pages = 1 << order;
9eeff239
CL
2224 struct task_struct *p = current;
2225 struct reclaim_state reclaim_state;
8695949a 2226 int priority;
179e9639
AM
2227 struct scan_control sc = {
2228 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2229 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
69e05944
AM
2230 .swap_cluster_max = max_t(unsigned long, nr_pages,
2231 SWAP_CLUSTER_MAX),
179e9639 2232 .gfp_mask = gfp_mask,
d6277db4 2233 .swappiness = vm_swappiness,
66e1707b 2234 .isolate_pages = isolate_pages_global,
179e9639 2235 };
83e33a47 2236 unsigned long slab_reclaimable;
9eeff239
CL
2237
2238 disable_swap_token();
9eeff239 2239 cond_resched();
d4f7796e
CL
2240 /*
2241 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2242 * and we also need to be able to write out pages for RECLAIM_WRITE
2243 * and RECLAIM_SWAP.
2244 */
2245 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
9eeff239
CL
2246 reclaim_state.reclaimed_slab = 0;
2247 p->reclaim_state = &reclaim_state;
c84db23c 2248
0ff38490
CL
2249 if (zone_page_state(zone, NR_FILE_PAGES) -
2250 zone_page_state(zone, NR_FILE_MAPPED) >
2251 zone->min_unmapped_pages) {
2252 /*
2253 * Free memory by calling shrink zone with increasing
2254 * priorities until we have enough memory freed.
2255 */
2256 priority = ZONE_RECLAIM_PRIORITY;
2257 do {
3bb1a852 2258 note_zone_scanning_priority(zone, priority);
a79311c1 2259 shrink_zone(priority, zone, &sc);
0ff38490 2260 priority--;
a79311c1 2261 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 2262 }
c84db23c 2263
83e33a47
CL
2264 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2265 if (slab_reclaimable > zone->min_slab_pages) {
2a16e3f4 2266 /*
7fb2d46d 2267 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
2268 * many pages were freed in this zone. So we take the current
2269 * number of slab pages and shake the slab until it is reduced
2270 * by the same nr_pages that we used for reclaiming unmapped
2271 * pages.
2a16e3f4 2272 *
0ff38490
CL
2273 * Note that shrink_slab will free memory on all zones and may
2274 * take a long time.
2a16e3f4 2275 */
0ff38490 2276 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
83e33a47
CL
2277 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2278 slab_reclaimable - nr_pages)
0ff38490 2279 ;
83e33a47
CL
2280
2281 /*
2282 * Update nr_reclaimed by the number of slab pages we
2283 * reclaimed from this zone.
2284 */
a79311c1 2285 sc.nr_reclaimed += slab_reclaimable -
83e33a47 2286 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2a16e3f4
CL
2287 }
2288
9eeff239 2289 p->reclaim_state = NULL;
d4f7796e 2290 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
a79311c1 2291 return sc.nr_reclaimed >= nr_pages;
9eeff239 2292}
179e9639
AM
2293
2294int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2295{
179e9639 2296 int node_id;
d773ed6b 2297 int ret;
179e9639
AM
2298
2299 /*
0ff38490
CL
2300 * Zone reclaim reclaims unmapped file backed pages and
2301 * slab pages if we are over the defined limits.
34aa1330 2302 *
9614634f
CL
2303 * A small portion of unmapped file backed pages is needed for
2304 * file I/O otherwise pages read by file I/O will be immediately
2305 * thrown out if the zone is overallocated. So we do not reclaim
2306 * if less than a specified percentage of the zone is used by
2307 * unmapped file backed pages.
179e9639 2308 */
34aa1330 2309 if (zone_page_state(zone, NR_FILE_PAGES) -
0ff38490
CL
2310 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2311 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2312 <= zone->min_slab_pages)
9614634f 2313 return 0;
179e9639 2314
d773ed6b
DR
2315 if (zone_is_all_unreclaimable(zone))
2316 return 0;
2317
179e9639 2318 /*
d773ed6b 2319 * Do not scan if the allocation should not be delayed.
179e9639 2320 */
d773ed6b 2321 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
179e9639
AM
2322 return 0;
2323
2324 /*
2325 * Only run zone reclaim on the local zone or on zones that do not
2326 * have associated processors. This will favor the local processor
2327 * over remote processors and spread off node memory allocations
2328 * as wide as possible.
2329 */
89fa3024 2330 node_id = zone_to_nid(zone);
37c0708d 2331 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
179e9639 2332 return 0;
d773ed6b
DR
2333
2334 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2335 return 0;
2336 ret = __zone_reclaim(zone, gfp_mask, order);
2337 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2338
2339 return ret;
179e9639 2340}
9eeff239 2341#endif
894bc310
LS
2342
2343#ifdef CONFIG_UNEVICTABLE_LRU
2344/*
2345 * page_evictable - test whether a page is evictable
2346 * @page: the page to test
2347 * @vma: the VMA in which the page is or will be mapped, may be NULL
2348 *
2349 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
2350 * lists vs unevictable list. The vma argument is !NULL when called from the
2351 * fault path to determine how to instantate a new page.
894bc310
LS
2352 *
2353 * Reasons page might not be evictable:
ba9ddf49 2354 * (1) page's mapping marked unevictable
b291f000 2355 * (2) page is part of an mlocked VMA
ba9ddf49 2356 *
894bc310
LS
2357 */
2358int page_evictable(struct page *page, struct vm_area_struct *vma)
2359{
2360
ba9ddf49
LS
2361 if (mapping_unevictable(page_mapping(page)))
2362 return 0;
2363
b291f000
NP
2364 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2365 return 0;
894bc310
LS
2366
2367 return 1;
2368}
89e004ea
LS
2369
2370/**
2371 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2372 * @page: page to check evictability and move to appropriate lru list
2373 * @zone: zone page is in
2374 *
2375 * Checks a page for evictability and moves the page to the appropriate
2376 * zone lru list.
2377 *
2378 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2379 * have PageUnevictable set.
2380 */
2381static void check_move_unevictable_page(struct page *page, struct zone *zone)
2382{
2383 VM_BUG_ON(PageActive(page));
2384
2385retry:
2386 ClearPageUnevictable(page);
2387 if (page_evictable(page, NULL)) {
2388 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
af936a16 2389
89e004ea
LS
2390 __dec_zone_state(zone, NR_UNEVICTABLE);
2391 list_move(&page->lru, &zone->lru[l].list);
2392 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2393 __count_vm_event(UNEVICTABLE_PGRESCUED);
2394 } else {
2395 /*
2396 * rotate unevictable list
2397 */
2398 SetPageUnevictable(page);
2399 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2400 if (page_evictable(page, NULL))
2401 goto retry;
2402 }
2403}
2404
2405/**
2406 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2407 * @mapping: struct address_space to scan for evictable pages
2408 *
2409 * Scan all pages in mapping. Check unevictable pages for
2410 * evictability and move them to the appropriate zone lru list.
2411 */
2412void scan_mapping_unevictable_pages(struct address_space *mapping)
2413{
2414 pgoff_t next = 0;
2415 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2416 PAGE_CACHE_SHIFT;
2417 struct zone *zone;
2418 struct pagevec pvec;
2419
2420 if (mapping->nrpages == 0)
2421 return;
2422
2423 pagevec_init(&pvec, 0);
2424 while (next < end &&
2425 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2426 int i;
2427 int pg_scanned = 0;
2428
2429 zone = NULL;
2430
2431 for (i = 0; i < pagevec_count(&pvec); i++) {
2432 struct page *page = pvec.pages[i];
2433 pgoff_t page_index = page->index;
2434 struct zone *pagezone = page_zone(page);
2435
2436 pg_scanned++;
2437 if (page_index > next)
2438 next = page_index;
2439 next++;
2440
2441 if (pagezone != zone) {
2442 if (zone)
2443 spin_unlock_irq(&zone->lru_lock);
2444 zone = pagezone;
2445 spin_lock_irq(&zone->lru_lock);
2446 }
2447
2448 if (PageLRU(page) && PageUnevictable(page))
2449 check_move_unevictable_page(page, zone);
2450 }
2451 if (zone)
2452 spin_unlock_irq(&zone->lru_lock);
2453 pagevec_release(&pvec);
2454
2455 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2456 }
2457
2458}
af936a16
LS
2459
2460/**
2461 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2462 * @zone - zone of which to scan the unevictable list
2463 *
2464 * Scan @zone's unevictable LRU lists to check for pages that have become
2465 * evictable. Move those that have to @zone's inactive list where they
2466 * become candidates for reclaim, unless shrink_inactive_zone() decides
2467 * to reactivate them. Pages that are still unevictable are rotated
2468 * back onto @zone's unevictable list.
2469 */
2470#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
14b90b22 2471static void scan_zone_unevictable_pages(struct zone *zone)
af936a16
LS
2472{
2473 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2474 unsigned long scan;
2475 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2476
2477 while (nr_to_scan > 0) {
2478 unsigned long batch_size = min(nr_to_scan,
2479 SCAN_UNEVICTABLE_BATCH_SIZE);
2480
2481 spin_lock_irq(&zone->lru_lock);
2482 for (scan = 0; scan < batch_size; scan++) {
2483 struct page *page = lru_to_page(l_unevictable);
2484
2485 if (!trylock_page(page))
2486 continue;
2487
2488 prefetchw_prev_lru_page(page, l_unevictable, flags);
2489
2490 if (likely(PageLRU(page) && PageUnevictable(page)))
2491 check_move_unevictable_page(page, zone);
2492
2493 unlock_page(page);
2494 }
2495 spin_unlock_irq(&zone->lru_lock);
2496
2497 nr_to_scan -= batch_size;
2498 }
2499}
2500
2501
2502/**
2503 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2504 *
2505 * A really big hammer: scan all zones' unevictable LRU lists to check for
2506 * pages that have become evictable. Move those back to the zones'
2507 * inactive list where they become candidates for reclaim.
2508 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2509 * and we add swap to the system. As such, it runs in the context of a task
2510 * that has possibly/probably made some previously unevictable pages
2511 * evictable.
2512 */
ff30153b 2513static void scan_all_zones_unevictable_pages(void)
af936a16
LS
2514{
2515 struct zone *zone;
2516
2517 for_each_zone(zone) {
2518 scan_zone_unevictable_pages(zone);
2519 }
2520}
2521
2522/*
2523 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2524 * all nodes' unevictable lists for evictable pages
2525 */
2526unsigned long scan_unevictable_pages;
2527
2528int scan_unevictable_handler(struct ctl_table *table, int write,
2529 struct file *file, void __user *buffer,
2530 size_t *length, loff_t *ppos)
2531{
2532 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2533
2534 if (write && *(unsigned long *)table->data)
2535 scan_all_zones_unevictable_pages();
2536
2537 scan_unevictable_pages = 0;
2538 return 0;
2539}
2540
2541/*
2542 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2543 * a specified node's per zone unevictable lists for evictable pages.
2544 */
2545
2546static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2547 struct sysdev_attribute *attr,
2548 char *buf)
2549{
2550 return sprintf(buf, "0\n"); /* always zero; should fit... */
2551}
2552
2553static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2554 struct sysdev_attribute *attr,
2555 const char *buf, size_t count)
2556{
2557 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2558 struct zone *zone;
2559 unsigned long res;
2560 unsigned long req = strict_strtoul(buf, 10, &res);
2561
2562 if (!req)
2563 return 1; /* zero is no-op */
2564
2565 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2566 if (!populated_zone(zone))
2567 continue;
2568 scan_zone_unevictable_pages(zone);
2569 }
2570 return 1;
2571}
2572
2573
2574static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2575 read_scan_unevictable_node,
2576 write_scan_unevictable_node);
2577
2578int scan_unevictable_register_node(struct node *node)
2579{
2580 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2581}
2582
2583void scan_unevictable_unregister_node(struct node *node)
2584{
2585 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2586}
2587
894bc310 2588#endif