]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/vmscan.c
Revert "mm: bail out in shrink_inactive_list()"
[mirror_ubuntu-bionic-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4
LT
16#include <linux/mm.h>
17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
268bb0ce 47#include <linux/prefetch.h>
b1de0d13 48#include <linux/printk.h>
f9fe48be 49#include <linux/dax.h>
1da177e4
LT
50
51#include <asm/tlbflush.h>
52#include <asm/div64.h>
53
54#include <linux/swapops.h>
117aad1e 55#include <linux/balloon_compaction.h>
1da177e4 56
0f8053a5
NP
57#include "internal.h"
58
33906bc5
MG
59#define CREATE_TRACE_POINTS
60#include <trace/events/vmscan.h>
61
1da177e4 62struct scan_control {
22fba335
KM
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
1da177e4 66 /* This context's GFP mask */
6daa0e28 67 gfp_t gfp_mask;
1da177e4 68
ee814fe2 69 /* Allocation order */
5ad333eb 70 int order;
66e1707b 71
ee814fe2
JW
72 /*
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 * are scanned.
75 */
76 nodemask_t *nodemask;
9e3b2f8c 77
f16015fb
JW
78 /*
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
81 */
82 struct mem_cgroup *target_mem_cgroup;
66e1707b 83
ee814fe2
JW
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
86
b2e18757
MG
87 /* The highest zone to isolate pages for reclaim from */
88 enum zone_type reclaim_idx;
89
ee814fe2
JW
90 unsigned int may_writepage:1;
91
92 /* Can mapped pages be reclaimed? */
93 unsigned int may_unmap:1;
94
95 /* Can pages be swapped as part of reclaim? */
96 unsigned int may_swap:1;
97
241994ed
JW
98 /* Can cgroups be reclaimed below their normal consumption range? */
99 unsigned int may_thrash:1;
100
ee814fe2
JW
101 unsigned int hibernation_mode:1;
102
103 /* One of the zones is ready for compaction */
104 unsigned int compaction_ready:1;
105
106 /* Incremented by the number of inactive pages that were scanned */
107 unsigned long nr_scanned;
108
109 /* Number of pages freed so far during a call to shrink_zones() */
110 unsigned long nr_reclaimed;
1da177e4
LT
111};
112
1da177e4
LT
113#ifdef ARCH_HAS_PREFETCH
114#define prefetch_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetch(&prev->_field); \
121 } \
122 } while (0)
123#else
124#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127#ifdef ARCH_HAS_PREFETCHW
128#define prefetchw_prev_lru_page(_page, _base, _field) \
129 do { \
130 if ((_page)->lru.prev != _base) { \
131 struct page *prev; \
132 \
133 prev = lru_to_page(&(_page->lru)); \
134 prefetchw(&prev->_field); \
135 } \
136 } while (0)
137#else
138#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
139#endif
140
141/*
142 * From 0 .. 100. Higher means more swappy.
143 */
144int vm_swappiness = 60;
d0480be4
WSH
145/*
146 * The total number of pages which are beyond the high watermark within all
147 * zones.
148 */
149unsigned long vm_total_pages;
1da177e4
LT
150
151static LIST_HEAD(shrinker_list);
152static DECLARE_RWSEM(shrinker_rwsem);
153
c255a458 154#ifdef CONFIG_MEMCG
89b5fae5
JW
155static bool global_reclaim(struct scan_control *sc)
156{
f16015fb 157 return !sc->target_mem_cgroup;
89b5fae5 158}
97c9341f
TH
159
160/**
161 * sane_reclaim - is the usual dirty throttling mechanism operational?
162 * @sc: scan_control in question
163 *
164 * The normal page dirty throttling mechanism in balance_dirty_pages() is
165 * completely broken with the legacy memcg and direct stalling in
166 * shrink_page_list() is used for throttling instead, which lacks all the
167 * niceties such as fairness, adaptive pausing, bandwidth proportional
168 * allocation and configurability.
169 *
170 * This function tests whether the vmscan currently in progress can assume
171 * that the normal dirty throttling mechanism is operational.
172 */
173static bool sane_reclaim(struct scan_control *sc)
174{
175 struct mem_cgroup *memcg = sc->target_mem_cgroup;
176
177 if (!memcg)
178 return true;
179#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 180 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
181 return true;
182#endif
183 return false;
184}
91a45470 185#else
89b5fae5
JW
186static bool global_reclaim(struct scan_control *sc)
187{
188 return true;
189}
97c9341f
TH
190
191static bool sane_reclaim(struct scan_control *sc)
192{
193 return true;
194}
91a45470
KH
195#endif
196
5a1c84b4
MG
197/*
198 * This misses isolated pages which are not accounted for to save counters.
199 * As the data only determines if reclaim or compaction continues, it is
200 * not expected that isolated pages will be a dominating factor.
201 */
202unsigned long zone_reclaimable_pages(struct zone *zone)
203{
204 unsigned long nr;
205
206 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
207 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
208 if (get_nr_swap_pages() > 0)
209 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
210 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
211
212 return nr;
213}
214
599d0c95
MG
215unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
216{
217 unsigned long nr;
218
219 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
220 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
221 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
6e543d57
LD
222
223 if (get_nr_swap_pages() > 0)
599d0c95
MG
224 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
225 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
226 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
6e543d57
LD
227
228 return nr;
229}
230
599d0c95 231bool pgdat_reclaimable(struct pglist_data *pgdat)
6e543d57 232{
599d0c95
MG
233 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
234 pgdat_reclaimable_pages(pgdat) * 6;
6e543d57
LD
235}
236
fd538803
MH
237/**
238 * lruvec_lru_size - Returns the number of pages on the given LRU list.
239 * @lruvec: lru vector
240 * @lru: lru to use
241 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
242 */
243unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 244{
fd538803
MH
245 unsigned long lru_size;
246 int zid;
247
c3c787e8 248 if (!mem_cgroup_disabled())
fd538803
MH
249 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
250 else
251 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
a3d8e054 252
fd538803
MH
253 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
254 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
255 unsigned long size;
c9f299d9 256
fd538803
MH
257 if (!managed_zone(zone))
258 continue;
259
260 if (!mem_cgroup_disabled())
261 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
262 else
263 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
264 NR_ZONE_LRU_BASE + lru);
265 lru_size -= min(size, lru_size);
266 }
267
268 return lru_size;
b4536f0c 269
b4536f0c
MH
270}
271
1da177e4 272/*
1d3d4437 273 * Add a shrinker callback to be called from the vm.
1da177e4 274 */
1d3d4437 275int register_shrinker(struct shrinker *shrinker)
1da177e4 276{
1d3d4437
GC
277 size_t size = sizeof(*shrinker->nr_deferred);
278
1d3d4437
GC
279 if (shrinker->flags & SHRINKER_NUMA_AWARE)
280 size *= nr_node_ids;
281
282 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
283 if (!shrinker->nr_deferred)
284 return -ENOMEM;
285
8e1f936b
RR
286 down_write(&shrinker_rwsem);
287 list_add_tail(&shrinker->list, &shrinker_list);
288 up_write(&shrinker_rwsem);
1d3d4437 289 return 0;
1da177e4 290}
8e1f936b 291EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
292
293/*
294 * Remove one
295 */
8e1f936b 296void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
297{
298 down_write(&shrinker_rwsem);
299 list_del(&shrinker->list);
300 up_write(&shrinker_rwsem);
ae393321 301 kfree(shrinker->nr_deferred);
1da177e4 302}
8e1f936b 303EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
304
305#define SHRINK_BATCH 128
1d3d4437 306
cb731d6c
VD
307static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
308 struct shrinker *shrinker,
309 unsigned long nr_scanned,
310 unsigned long nr_eligible)
1d3d4437
GC
311{
312 unsigned long freed = 0;
313 unsigned long long delta;
314 long total_scan;
d5bc5fd3 315 long freeable;
1d3d4437
GC
316 long nr;
317 long new_nr;
318 int nid = shrinkctl->nid;
319 long batch_size = shrinker->batch ? shrinker->batch
320 : SHRINK_BATCH;
5f33a080 321 long scanned = 0, next_deferred;
1d3d4437 322
d5bc5fd3
VD
323 freeable = shrinker->count_objects(shrinker, shrinkctl);
324 if (freeable == 0)
1d3d4437
GC
325 return 0;
326
327 /*
328 * copy the current shrinker scan count into a local variable
329 * and zero it so that other concurrent shrinker invocations
330 * don't also do this scanning work.
331 */
332 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
333
334 total_scan = nr;
6b4f7799 335 delta = (4 * nr_scanned) / shrinker->seeks;
d5bc5fd3 336 delta *= freeable;
6b4f7799 337 do_div(delta, nr_eligible + 1);
1d3d4437
GC
338 total_scan += delta;
339 if (total_scan < 0) {
8612c663 340 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 341 shrinker->scan_objects, total_scan);
d5bc5fd3 342 total_scan = freeable;
5f33a080
SL
343 next_deferred = nr;
344 } else
345 next_deferred = total_scan;
1d3d4437
GC
346
347 /*
348 * We need to avoid excessive windup on filesystem shrinkers
349 * due to large numbers of GFP_NOFS allocations causing the
350 * shrinkers to return -1 all the time. This results in a large
351 * nr being built up so when a shrink that can do some work
352 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 353 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
354 * memory.
355 *
356 * Hence only allow the shrinker to scan the entire cache when
357 * a large delta change is calculated directly.
358 */
d5bc5fd3
VD
359 if (delta < freeable / 4)
360 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
361
362 /*
363 * Avoid risking looping forever due to too large nr value:
364 * never try to free more than twice the estimate number of
365 * freeable entries.
366 */
d5bc5fd3
VD
367 if (total_scan > freeable * 2)
368 total_scan = freeable * 2;
1d3d4437
GC
369
370 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
6b4f7799
JW
371 nr_scanned, nr_eligible,
372 freeable, delta, total_scan);
1d3d4437 373
0b1fb40a
VD
374 /*
375 * Normally, we should not scan less than batch_size objects in one
376 * pass to avoid too frequent shrinker calls, but if the slab has less
377 * than batch_size objects in total and we are really tight on memory,
378 * we will try to reclaim all available objects, otherwise we can end
379 * up failing allocations although there are plenty of reclaimable
380 * objects spread over several slabs with usage less than the
381 * batch_size.
382 *
383 * We detect the "tight on memory" situations by looking at the total
384 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 385 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
386 * scanning at high prio and therefore should try to reclaim as much as
387 * possible.
388 */
389 while (total_scan >= batch_size ||
d5bc5fd3 390 total_scan >= freeable) {
a0b02131 391 unsigned long ret;
0b1fb40a 392 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 393
0b1fb40a 394 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
395 ret = shrinker->scan_objects(shrinker, shrinkctl);
396 if (ret == SHRINK_STOP)
397 break;
398 freed += ret;
1d3d4437 399
0b1fb40a
VD
400 count_vm_events(SLABS_SCANNED, nr_to_scan);
401 total_scan -= nr_to_scan;
5f33a080 402 scanned += nr_to_scan;
1d3d4437
GC
403
404 cond_resched();
405 }
406
5f33a080
SL
407 if (next_deferred >= scanned)
408 next_deferred -= scanned;
409 else
410 next_deferred = 0;
1d3d4437
GC
411 /*
412 * move the unused scan count back into the shrinker in a
413 * manner that handles concurrent updates. If we exhausted the
414 * scan, there is no need to do an update.
415 */
5f33a080
SL
416 if (next_deferred > 0)
417 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
418 &shrinker->nr_deferred[nid]);
419 else
420 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
421
df9024a8 422 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 423 return freed;
1495f230
YH
424}
425
6b4f7799 426/**
cb731d6c 427 * shrink_slab - shrink slab caches
6b4f7799
JW
428 * @gfp_mask: allocation context
429 * @nid: node whose slab caches to target
cb731d6c 430 * @memcg: memory cgroup whose slab caches to target
6b4f7799
JW
431 * @nr_scanned: pressure numerator
432 * @nr_eligible: pressure denominator
1da177e4 433 *
6b4f7799 434 * Call the shrink functions to age shrinkable caches.
1da177e4 435 *
6b4f7799
JW
436 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
437 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 438 *
cb731d6c
VD
439 * @memcg specifies the memory cgroup to target. If it is not NULL,
440 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
0fc9f58a
VD
441 * objects from the memory cgroup specified. Otherwise, only unaware
442 * shrinkers are called.
cb731d6c 443 *
6b4f7799
JW
444 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
445 * the available objects should be scanned. Page reclaim for example
446 * passes the number of pages scanned and the number of pages on the
447 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
448 * when it encountered mapped pages. The ratio is further biased by
449 * the ->seeks setting of the shrink function, which indicates the
450 * cost to recreate an object relative to that of an LRU page.
b15e0905 451 *
6b4f7799 452 * Returns the number of reclaimed slab objects.
1da177e4 453 */
cb731d6c
VD
454static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
455 struct mem_cgroup *memcg,
456 unsigned long nr_scanned,
457 unsigned long nr_eligible)
1da177e4
LT
458{
459 struct shrinker *shrinker;
24f7c6b9 460 unsigned long freed = 0;
1da177e4 461
0fc9f58a 462 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
cb731d6c
VD
463 return 0;
464
6b4f7799
JW
465 if (nr_scanned == 0)
466 nr_scanned = SWAP_CLUSTER_MAX;
1da177e4 467
f06590bd 468 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
469 /*
470 * If we would return 0, our callers would understand that we
471 * have nothing else to shrink and give up trying. By returning
472 * 1 we keep it going and assume we'll be able to shrink next
473 * time.
474 */
475 freed = 1;
f06590bd
MK
476 goto out;
477 }
1da177e4
LT
478
479 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
480 struct shrink_control sc = {
481 .gfp_mask = gfp_mask,
482 .nid = nid,
cb731d6c 483 .memcg = memcg,
6b4f7799 484 };
ec97097b 485
0fc9f58a
VD
486 /*
487 * If kernel memory accounting is disabled, we ignore
488 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
489 * passing NULL for memcg.
490 */
491 if (memcg_kmem_enabled() &&
492 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
cb731d6c
VD
493 continue;
494
6b4f7799
JW
495 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
496 sc.nid = 0;
1da177e4 497
cb731d6c 498 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
1da177e4 499 }
6b4f7799 500
1da177e4 501 up_read(&shrinker_rwsem);
f06590bd
MK
502out:
503 cond_resched();
24f7c6b9 504 return freed;
1da177e4
LT
505}
506
cb731d6c
VD
507void drop_slab_node(int nid)
508{
509 unsigned long freed;
510
511 do {
512 struct mem_cgroup *memcg = NULL;
513
514 freed = 0;
515 do {
516 freed += shrink_slab(GFP_KERNEL, nid, memcg,
517 1000, 1000);
518 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
519 } while (freed > 10);
520}
521
522void drop_slab(void)
523{
524 int nid;
525
526 for_each_online_node(nid)
527 drop_slab_node(nid);
528}
529
1da177e4
LT
530static inline int is_page_cache_freeable(struct page *page)
531{
ceddc3a5
JW
532 /*
533 * A freeable page cache page is referenced only by the caller
534 * that isolated the page, the page cache radix tree and
535 * optional buffer heads at page->private.
536 */
edcf4748 537 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
538}
539
703c2708 540static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 541{
930d9152 542 if (current->flags & PF_SWAPWRITE)
1da177e4 543 return 1;
703c2708 544 if (!inode_write_congested(inode))
1da177e4 545 return 1;
703c2708 546 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
547 return 1;
548 return 0;
549}
550
551/*
552 * We detected a synchronous write error writing a page out. Probably
553 * -ENOSPC. We need to propagate that into the address_space for a subsequent
554 * fsync(), msync() or close().
555 *
556 * The tricky part is that after writepage we cannot touch the mapping: nothing
557 * prevents it from being freed up. But we have a ref on the page and once
558 * that page is locked, the mapping is pinned.
559 *
560 * We're allowed to run sleeping lock_page() here because we know the caller has
561 * __GFP_FS.
562 */
563static void handle_write_error(struct address_space *mapping,
564 struct page *page, int error)
565{
7eaceacc 566 lock_page(page);
3e9f45bd
GC
567 if (page_mapping(page) == mapping)
568 mapping_set_error(mapping, error);
1da177e4
LT
569 unlock_page(page);
570}
571
04e62a29
CL
572/* possible outcome of pageout() */
573typedef enum {
574 /* failed to write page out, page is locked */
575 PAGE_KEEP,
576 /* move page to the active list, page is locked */
577 PAGE_ACTIVATE,
578 /* page has been sent to the disk successfully, page is unlocked */
579 PAGE_SUCCESS,
580 /* page is clean and locked */
581 PAGE_CLEAN,
582} pageout_t;
583
1da177e4 584/*
1742f19f
AM
585 * pageout is called by shrink_page_list() for each dirty page.
586 * Calls ->writepage().
1da177e4 587 */
c661b078 588static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 589 struct scan_control *sc)
1da177e4
LT
590{
591 /*
592 * If the page is dirty, only perform writeback if that write
593 * will be non-blocking. To prevent this allocation from being
594 * stalled by pagecache activity. But note that there may be
595 * stalls if we need to run get_block(). We could test
596 * PagePrivate for that.
597 *
8174202b 598 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
599 * this page's queue, we can perform writeback even if that
600 * will block.
601 *
602 * If the page is swapcache, write it back even if that would
603 * block, for some throttling. This happens by accident, because
604 * swap_backing_dev_info is bust: it doesn't reflect the
605 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
606 */
607 if (!is_page_cache_freeable(page))
608 return PAGE_KEEP;
609 if (!mapping) {
610 /*
611 * Some data journaling orphaned pages can have
612 * page->mapping == NULL while being dirty with clean buffers.
613 */
266cf658 614 if (page_has_private(page)) {
1da177e4
LT
615 if (try_to_free_buffers(page)) {
616 ClearPageDirty(page);
b1de0d13 617 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
618 return PAGE_CLEAN;
619 }
620 }
621 return PAGE_KEEP;
622 }
623 if (mapping->a_ops->writepage == NULL)
624 return PAGE_ACTIVATE;
703c2708 625 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
626 return PAGE_KEEP;
627
628 if (clear_page_dirty_for_io(page)) {
629 int res;
630 struct writeback_control wbc = {
631 .sync_mode = WB_SYNC_NONE,
632 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
633 .range_start = 0,
634 .range_end = LLONG_MAX,
1da177e4
LT
635 .for_reclaim = 1,
636 };
637
638 SetPageReclaim(page);
639 res = mapping->a_ops->writepage(page, &wbc);
640 if (res < 0)
641 handle_write_error(mapping, page, res);
994fc28c 642 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
643 ClearPageReclaim(page);
644 return PAGE_ACTIVATE;
645 }
c661b078 646
1da177e4
LT
647 if (!PageWriteback(page)) {
648 /* synchronous write or broken a_ops? */
649 ClearPageReclaim(page);
650 }
3aa23851 651 trace_mm_vmscan_writepage(page);
c4a25635 652 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
653 return PAGE_SUCCESS;
654 }
655
656 return PAGE_CLEAN;
657}
658
a649fd92 659/*
e286781d
NP
660 * Same as remove_mapping, but if the page is removed from the mapping, it
661 * gets returned with a refcount of 0.
a649fd92 662 */
a528910e
JW
663static int __remove_mapping(struct address_space *mapping, struct page *page,
664 bool reclaimed)
49d2e9cc 665{
c4843a75 666 unsigned long flags;
c4843a75 667
28e4d965
NP
668 BUG_ON(!PageLocked(page));
669 BUG_ON(mapping != page_mapping(page));
49d2e9cc 670
c4843a75 671 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 672 /*
0fd0e6b0
NP
673 * The non racy check for a busy page.
674 *
675 * Must be careful with the order of the tests. When someone has
676 * a ref to the page, it may be possible that they dirty it then
677 * drop the reference. So if PageDirty is tested before page_count
678 * here, then the following race may occur:
679 *
680 * get_user_pages(&page);
681 * [user mapping goes away]
682 * write_to(page);
683 * !PageDirty(page) [good]
684 * SetPageDirty(page);
685 * put_page(page);
686 * !page_count(page) [good, discard it]
687 *
688 * [oops, our write_to data is lost]
689 *
690 * Reversing the order of the tests ensures such a situation cannot
691 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 692 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
693 *
694 * Note that if SetPageDirty is always performed via set_page_dirty,
695 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 696 */
fe896d18 697 if (!page_ref_freeze(page, 2))
49d2e9cc 698 goto cannot_free;
e286781d
NP
699 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
700 if (unlikely(PageDirty(page))) {
fe896d18 701 page_ref_unfreeze(page, 2);
49d2e9cc 702 goto cannot_free;
e286781d 703 }
49d2e9cc
CL
704
705 if (PageSwapCache(page)) {
706 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 707 mem_cgroup_swapout(page, swap);
49d2e9cc 708 __delete_from_swap_cache(page);
c4843a75 709 spin_unlock_irqrestore(&mapping->tree_lock, flags);
0a31bc97 710 swapcache_free(swap);
e286781d 711 } else {
6072d13c 712 void (*freepage)(struct page *);
a528910e 713 void *shadow = NULL;
6072d13c
LT
714
715 freepage = mapping->a_ops->freepage;
a528910e
JW
716 /*
717 * Remember a shadow entry for reclaimed file cache in
718 * order to detect refaults, thus thrashing, later on.
719 *
720 * But don't store shadows in an address space that is
721 * already exiting. This is not just an optizimation,
722 * inode reclaim needs to empty out the radix tree or
723 * the nodes are lost. Don't plant shadows behind its
724 * back.
f9fe48be
RZ
725 *
726 * We also don't store shadows for DAX mappings because the
727 * only page cache pages found in these are zero pages
728 * covering holes, and because we don't want to mix DAX
729 * exceptional entries and shadow exceptional entries in the
730 * same page_tree.
a528910e
JW
731 */
732 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 733 !mapping_exiting(mapping) && !dax_mapping(mapping))
a528910e 734 shadow = workingset_eviction(mapping, page);
62cccb8c 735 __delete_from_page_cache(page, shadow);
c4843a75 736 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
737
738 if (freepage != NULL)
739 freepage(page);
49d2e9cc
CL
740 }
741
49d2e9cc
CL
742 return 1;
743
744cannot_free:
c4843a75 745 spin_unlock_irqrestore(&mapping->tree_lock, flags);
49d2e9cc
CL
746 return 0;
747}
748
e286781d
NP
749/*
750 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
751 * someone else has a ref on the page, abort and return 0. If it was
752 * successfully detached, return 1. Assumes the caller has a single ref on
753 * this page.
754 */
755int remove_mapping(struct address_space *mapping, struct page *page)
756{
a528910e 757 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
758 /*
759 * Unfreezing the refcount with 1 rather than 2 effectively
760 * drops the pagecache ref for us without requiring another
761 * atomic operation.
762 */
fe896d18 763 page_ref_unfreeze(page, 1);
e286781d
NP
764 return 1;
765 }
766 return 0;
767}
768
894bc310
LS
769/**
770 * putback_lru_page - put previously isolated page onto appropriate LRU list
771 * @page: page to be put back to appropriate lru list
772 *
773 * Add previously isolated @page to appropriate LRU list.
774 * Page may still be unevictable for other reasons.
775 *
776 * lru_lock must not be held, interrupts must be enabled.
777 */
894bc310
LS
778void putback_lru_page(struct page *page)
779{
0ec3b74c 780 bool is_unevictable;
bbfd28ee 781 int was_unevictable = PageUnevictable(page);
894bc310 782
309381fe 783 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
784
785redo:
786 ClearPageUnevictable(page);
787
39b5f29a 788 if (page_evictable(page)) {
894bc310
LS
789 /*
790 * For evictable pages, we can use the cache.
791 * In event of a race, worst case is we end up with an
792 * unevictable page on [in]active list.
793 * We know how to handle that.
794 */
0ec3b74c 795 is_unevictable = false;
c53954a0 796 lru_cache_add(page);
894bc310
LS
797 } else {
798 /*
799 * Put unevictable pages directly on zone's unevictable
800 * list.
801 */
0ec3b74c 802 is_unevictable = true;
894bc310 803 add_page_to_unevictable_list(page);
6a7b9548 804 /*
21ee9f39
MK
805 * When racing with an mlock or AS_UNEVICTABLE clearing
806 * (page is unlocked) make sure that if the other thread
807 * does not observe our setting of PG_lru and fails
24513264 808 * isolation/check_move_unevictable_pages,
21ee9f39 809 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
810 * the page back to the evictable list.
811 *
21ee9f39 812 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
813 */
814 smp_mb();
894bc310 815 }
894bc310
LS
816
817 /*
818 * page's status can change while we move it among lru. If an evictable
819 * page is on unevictable list, it never be freed. To avoid that,
820 * check after we added it to the list, again.
821 */
0ec3b74c 822 if (is_unevictable && page_evictable(page)) {
894bc310
LS
823 if (!isolate_lru_page(page)) {
824 put_page(page);
825 goto redo;
826 }
827 /* This means someone else dropped this page from LRU
828 * So, it will be freed or putback to LRU again. There is
829 * nothing to do here.
830 */
831 }
832
0ec3b74c 833 if (was_unevictable && !is_unevictable)
bbfd28ee 834 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 835 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
836 count_vm_event(UNEVICTABLE_PGCULLED);
837
894bc310
LS
838 put_page(page); /* drop ref from isolate */
839}
840
dfc8d636
JW
841enum page_references {
842 PAGEREF_RECLAIM,
843 PAGEREF_RECLAIM_CLEAN,
64574746 844 PAGEREF_KEEP,
dfc8d636
JW
845 PAGEREF_ACTIVATE,
846};
847
848static enum page_references page_check_references(struct page *page,
849 struct scan_control *sc)
850{
64574746 851 int referenced_ptes, referenced_page;
dfc8d636 852 unsigned long vm_flags;
dfc8d636 853
c3ac9a8a
JW
854 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
855 &vm_flags);
64574746 856 referenced_page = TestClearPageReferenced(page);
dfc8d636 857
dfc8d636
JW
858 /*
859 * Mlock lost the isolation race with us. Let try_to_unmap()
860 * move the page to the unevictable list.
861 */
862 if (vm_flags & VM_LOCKED)
863 return PAGEREF_RECLAIM;
864
64574746 865 if (referenced_ptes) {
e4898273 866 if (PageSwapBacked(page))
64574746
JW
867 return PAGEREF_ACTIVATE;
868 /*
869 * All mapped pages start out with page table
870 * references from the instantiating fault, so we need
871 * to look twice if a mapped file page is used more
872 * than once.
873 *
874 * Mark it and spare it for another trip around the
875 * inactive list. Another page table reference will
876 * lead to its activation.
877 *
878 * Note: the mark is set for activated pages as well
879 * so that recently deactivated but used pages are
880 * quickly recovered.
881 */
882 SetPageReferenced(page);
883
34dbc67a 884 if (referenced_page || referenced_ptes > 1)
64574746
JW
885 return PAGEREF_ACTIVATE;
886
c909e993
KK
887 /*
888 * Activate file-backed executable pages after first usage.
889 */
890 if (vm_flags & VM_EXEC)
891 return PAGEREF_ACTIVATE;
892
64574746
JW
893 return PAGEREF_KEEP;
894 }
dfc8d636
JW
895
896 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 897 if (referenced_page && !PageSwapBacked(page))
64574746
JW
898 return PAGEREF_RECLAIM_CLEAN;
899
900 return PAGEREF_RECLAIM;
dfc8d636
JW
901}
902
e2be15f6
MG
903/* Check if a page is dirty or under writeback */
904static void page_check_dirty_writeback(struct page *page,
905 bool *dirty, bool *writeback)
906{
b4597226
MG
907 struct address_space *mapping;
908
e2be15f6
MG
909 /*
910 * Anonymous pages are not handled by flushers and must be written
911 * from reclaim context. Do not stall reclaim based on them
912 */
913 if (!page_is_file_cache(page)) {
914 *dirty = false;
915 *writeback = false;
916 return;
917 }
918
919 /* By default assume that the page flags are accurate */
920 *dirty = PageDirty(page);
921 *writeback = PageWriteback(page);
b4597226
MG
922
923 /* Verify dirty/writeback state if the filesystem supports it */
924 if (!page_has_private(page))
925 return;
926
927 mapping = page_mapping(page);
928 if (mapping && mapping->a_ops->is_dirty_writeback)
929 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
930}
931
3c710c1a
MH
932struct reclaim_stat {
933 unsigned nr_dirty;
934 unsigned nr_unqueued_dirty;
935 unsigned nr_congested;
936 unsigned nr_writeback;
937 unsigned nr_immediate;
5bccd166
MH
938 unsigned nr_activate;
939 unsigned nr_ref_keep;
940 unsigned nr_unmap_fail;
3c710c1a
MH
941};
942
1da177e4 943/*
1742f19f 944 * shrink_page_list() returns the number of reclaimed pages
1da177e4 945 */
1742f19f 946static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 947 struct pglist_data *pgdat,
f84f6e2b 948 struct scan_control *sc,
02c6de8d 949 enum ttu_flags ttu_flags,
3c710c1a 950 struct reclaim_stat *stat,
02c6de8d 951 bool force_reclaim)
1da177e4
LT
952{
953 LIST_HEAD(ret_pages);
abe4c3b5 954 LIST_HEAD(free_pages);
1da177e4 955 int pgactivate = 0;
3c710c1a
MH
956 unsigned nr_unqueued_dirty = 0;
957 unsigned nr_dirty = 0;
958 unsigned nr_congested = 0;
959 unsigned nr_reclaimed = 0;
960 unsigned nr_writeback = 0;
961 unsigned nr_immediate = 0;
5bccd166
MH
962 unsigned nr_ref_keep = 0;
963 unsigned nr_unmap_fail = 0;
1da177e4
LT
964
965 cond_resched();
966
1da177e4
LT
967 while (!list_empty(page_list)) {
968 struct address_space *mapping;
969 struct page *page;
970 int may_enter_fs;
02c6de8d 971 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 972 bool dirty, writeback;
854e9ed0
MK
973 bool lazyfree = false;
974 int ret = SWAP_SUCCESS;
1da177e4
LT
975
976 cond_resched();
977
978 page = lru_to_page(page_list);
979 list_del(&page->lru);
980
529ae9aa 981 if (!trylock_page(page))
1da177e4
LT
982 goto keep;
983
309381fe 984 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
985
986 sc->nr_scanned++;
80e43426 987
39b5f29a 988 if (unlikely(!page_evictable(page)))
b291f000 989 goto cull_mlocked;
894bc310 990
a6dc60f8 991 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
992 goto keep_locked;
993
1da177e4
LT
994 /* Double the slab pressure for mapped and swapcache pages */
995 if (page_mapped(page) || PageSwapCache(page))
996 sc->nr_scanned++;
997
c661b078
AW
998 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
999 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1000
e2be15f6
MG
1001 /*
1002 * The number of dirty pages determines if a zone is marked
1003 * reclaim_congested which affects wait_iff_congested. kswapd
1004 * will stall and start writing pages if the tail of the LRU
1005 * is all dirty unqueued pages.
1006 */
1007 page_check_dirty_writeback(page, &dirty, &writeback);
1008 if (dirty || writeback)
1009 nr_dirty++;
1010
1011 if (dirty && !writeback)
1012 nr_unqueued_dirty++;
1013
d04e8acd
MG
1014 /*
1015 * Treat this page as congested if the underlying BDI is or if
1016 * pages are cycling through the LRU so quickly that the
1017 * pages marked for immediate reclaim are making it to the
1018 * end of the LRU a second time.
1019 */
e2be15f6 1020 mapping = page_mapping(page);
1da58ee2 1021 if (((dirty || writeback) && mapping &&
703c2708 1022 inode_write_congested(mapping->host)) ||
d04e8acd 1023 (writeback && PageReclaim(page)))
e2be15f6
MG
1024 nr_congested++;
1025
283aba9f
MG
1026 /*
1027 * If a page at the tail of the LRU is under writeback, there
1028 * are three cases to consider.
1029 *
1030 * 1) If reclaim is encountering an excessive number of pages
1031 * under writeback and this page is both under writeback and
1032 * PageReclaim then it indicates that pages are being queued
1033 * for IO but are being recycled through the LRU before the
1034 * IO can complete. Waiting on the page itself risks an
1035 * indefinite stall if it is impossible to writeback the
1036 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1037 * note that the LRU is being scanned too quickly and the
1038 * caller can stall after page list has been processed.
283aba9f 1039 *
97c9341f 1040 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1041 * not marked for immediate reclaim, or the caller does not
1042 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1043 * not to fs). In this case mark the page for immediate
97c9341f 1044 * reclaim and continue scanning.
283aba9f 1045 *
ecf5fc6e
MH
1046 * Require may_enter_fs because we would wait on fs, which
1047 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1048 * enter reclaim, and deadlock if it waits on a page for
1049 * which it is needed to do the write (loop masks off
1050 * __GFP_IO|__GFP_FS for this reason); but more thought
1051 * would probably show more reasons.
1052 *
7fadc820 1053 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1054 * PageReclaim. memcg does not have any dirty pages
1055 * throttling so we could easily OOM just because too many
1056 * pages are in writeback and there is nothing else to
1057 * reclaim. Wait for the writeback to complete.
1058 */
c661b078 1059 if (PageWriteback(page)) {
283aba9f
MG
1060 /* Case 1 above */
1061 if (current_is_kswapd() &&
1062 PageReclaim(page) &&
599d0c95 1063 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
b1a6f21e
MG
1064 nr_immediate++;
1065 goto keep_locked;
283aba9f
MG
1066
1067 /* Case 2 above */
97c9341f 1068 } else if (sane_reclaim(sc) ||
ecf5fc6e 1069 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1070 /*
1071 * This is slightly racy - end_page_writeback()
1072 * might have just cleared PageReclaim, then
1073 * setting PageReclaim here end up interpreted
1074 * as PageReadahead - but that does not matter
1075 * enough to care. What we do want is for this
1076 * page to have PageReclaim set next time memcg
1077 * reclaim reaches the tests above, so it will
1078 * then wait_on_page_writeback() to avoid OOM;
1079 * and it's also appropriate in global reclaim.
1080 */
1081 SetPageReclaim(page);
e62e384e 1082 nr_writeback++;
c3b94f44 1083 goto keep_locked;
283aba9f
MG
1084
1085 /* Case 3 above */
1086 } else {
7fadc820 1087 unlock_page(page);
283aba9f 1088 wait_on_page_writeback(page);
7fadc820
HD
1089 /* then go back and try same page again */
1090 list_add_tail(&page->lru, page_list);
1091 continue;
e62e384e 1092 }
c661b078 1093 }
1da177e4 1094
02c6de8d
MK
1095 if (!force_reclaim)
1096 references = page_check_references(page, sc);
1097
dfc8d636
JW
1098 switch (references) {
1099 case PAGEREF_ACTIVATE:
1da177e4 1100 goto activate_locked;
64574746 1101 case PAGEREF_KEEP:
5bccd166 1102 nr_ref_keep++;
64574746 1103 goto keep_locked;
dfc8d636
JW
1104 case PAGEREF_RECLAIM:
1105 case PAGEREF_RECLAIM_CLEAN:
1106 ; /* try to reclaim the page below */
1107 }
1da177e4 1108
1da177e4
LT
1109 /*
1110 * Anonymous process memory has backing store?
1111 * Try to allocate it some swap space here.
1112 */
b291f000 1113 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
1114 if (!(sc->gfp_mask & __GFP_IO))
1115 goto keep_locked;
5bc7b8ac 1116 if (!add_to_swap(page, page_list))
1da177e4 1117 goto activate_locked;
854e9ed0 1118 lazyfree = true;
63eb6b93 1119 may_enter_fs = 1;
1da177e4 1120
e2be15f6
MG
1121 /* Adding to swap updated mapping */
1122 mapping = page_mapping(page);
7751b2da
KS
1123 } else if (unlikely(PageTransHuge(page))) {
1124 /* Split file THP */
1125 if (split_huge_page_to_list(page, page_list))
1126 goto keep_locked;
e2be15f6 1127 }
1da177e4 1128
7751b2da
KS
1129 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1130
1da177e4
LT
1131 /*
1132 * The page is mapped into the page tables of one or more
1133 * processes. Try to unmap it here.
1134 */
1135 if (page_mapped(page) && mapping) {
854e9ed0
MK
1136 switch (ret = try_to_unmap(page, lazyfree ?
1137 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1138 (ttu_flags | TTU_BATCH_FLUSH))) {
1da177e4 1139 case SWAP_FAIL:
5bccd166 1140 nr_unmap_fail++;
1da177e4
LT
1141 goto activate_locked;
1142 case SWAP_AGAIN:
1143 goto keep_locked;
b291f000
NP
1144 case SWAP_MLOCK:
1145 goto cull_mlocked;
854e9ed0
MK
1146 case SWAP_LZFREE:
1147 goto lazyfree;
1da177e4
LT
1148 case SWAP_SUCCESS:
1149 ; /* try to free the page below */
1150 }
1151 }
1152
1153 if (PageDirty(page)) {
ee72886d
MG
1154 /*
1155 * Only kswapd can writeback filesystem pages to
d43006d5
MG
1156 * avoid risk of stack overflow but only writeback
1157 * if many dirty pages have been encountered.
ee72886d 1158 */
f84f6e2b 1159 if (page_is_file_cache(page) &&
9e3b2f8c 1160 (!current_is_kswapd() ||
599d0c95 1161 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1162 /*
1163 * Immediately reclaim when written back.
1164 * Similar in principal to deactivate_page()
1165 * except we already have the page isolated
1166 * and know it's dirty
1167 */
c4a25635 1168 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1169 SetPageReclaim(page);
1170
ee72886d
MG
1171 goto keep_locked;
1172 }
1173
dfc8d636 1174 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1175 goto keep_locked;
4dd4b920 1176 if (!may_enter_fs)
1da177e4 1177 goto keep_locked;
52a8363e 1178 if (!sc->may_writepage)
1da177e4
LT
1179 goto keep_locked;
1180
d950c947
MG
1181 /*
1182 * Page is dirty. Flush the TLB if a writable entry
1183 * potentially exists to avoid CPU writes after IO
1184 * starts and then write it out here.
1185 */
1186 try_to_unmap_flush_dirty();
7d3579e8 1187 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1188 case PAGE_KEEP:
1189 goto keep_locked;
1190 case PAGE_ACTIVATE:
1191 goto activate_locked;
1192 case PAGE_SUCCESS:
7d3579e8 1193 if (PageWriteback(page))
41ac1999 1194 goto keep;
7d3579e8 1195 if (PageDirty(page))
1da177e4 1196 goto keep;
7d3579e8 1197
1da177e4
LT
1198 /*
1199 * A synchronous write - probably a ramdisk. Go
1200 * ahead and try to reclaim the page.
1201 */
529ae9aa 1202 if (!trylock_page(page))
1da177e4
LT
1203 goto keep;
1204 if (PageDirty(page) || PageWriteback(page))
1205 goto keep_locked;
1206 mapping = page_mapping(page);
1207 case PAGE_CLEAN:
1208 ; /* try to free the page below */
1209 }
1210 }
1211
1212 /*
1213 * If the page has buffers, try to free the buffer mappings
1214 * associated with this page. If we succeed we try to free
1215 * the page as well.
1216 *
1217 * We do this even if the page is PageDirty().
1218 * try_to_release_page() does not perform I/O, but it is
1219 * possible for a page to have PageDirty set, but it is actually
1220 * clean (all its buffers are clean). This happens if the
1221 * buffers were written out directly, with submit_bh(). ext3
894bc310 1222 * will do this, as well as the blockdev mapping.
1da177e4
LT
1223 * try_to_release_page() will discover that cleanness and will
1224 * drop the buffers and mark the page clean - it can be freed.
1225 *
1226 * Rarely, pages can have buffers and no ->mapping. These are
1227 * the pages which were not successfully invalidated in
1228 * truncate_complete_page(). We try to drop those buffers here
1229 * and if that worked, and the page is no longer mapped into
1230 * process address space (page_count == 1) it can be freed.
1231 * Otherwise, leave the page on the LRU so it is swappable.
1232 */
266cf658 1233 if (page_has_private(page)) {
1da177e4
LT
1234 if (!try_to_release_page(page, sc->gfp_mask))
1235 goto activate_locked;
e286781d
NP
1236 if (!mapping && page_count(page) == 1) {
1237 unlock_page(page);
1238 if (put_page_testzero(page))
1239 goto free_it;
1240 else {
1241 /*
1242 * rare race with speculative reference.
1243 * the speculative reference will free
1244 * this page shortly, so we may
1245 * increment nr_reclaimed here (and
1246 * leave it off the LRU).
1247 */
1248 nr_reclaimed++;
1249 continue;
1250 }
1251 }
1da177e4
LT
1252 }
1253
854e9ed0 1254lazyfree:
a528910e 1255 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1256 goto keep_locked;
1da177e4 1257
a978d6f5
NP
1258 /*
1259 * At this point, we have no other references and there is
1260 * no way to pick any more up (removed from LRU, removed
1261 * from pagecache). Can use non-atomic bitops now (and
1262 * we obviously don't have to worry about waking up a process
1263 * waiting on the page lock, because there are no references.
1264 */
48c935ad 1265 __ClearPageLocked(page);
e286781d 1266free_it:
854e9ed0
MK
1267 if (ret == SWAP_LZFREE)
1268 count_vm_event(PGLAZYFREED);
1269
05ff5137 1270 nr_reclaimed++;
abe4c3b5
MG
1271
1272 /*
1273 * Is there need to periodically free_page_list? It would
1274 * appear not as the counts should be low
1275 */
1276 list_add(&page->lru, &free_pages);
1da177e4
LT
1277 continue;
1278
b291f000 1279cull_mlocked:
63d6c5ad
HD
1280 if (PageSwapCache(page))
1281 try_to_free_swap(page);
b291f000 1282 unlock_page(page);
c54839a7 1283 list_add(&page->lru, &ret_pages);
b291f000
NP
1284 continue;
1285
1da177e4 1286activate_locked:
68a22394 1287 /* Not a candidate for swapping, so reclaim swap space. */
5ccc5aba 1288 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
a2c43eed 1289 try_to_free_swap(page);
309381fe 1290 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1291 SetPageActive(page);
1292 pgactivate++;
1293keep_locked:
1294 unlock_page(page);
1295keep:
1296 list_add(&page->lru, &ret_pages);
309381fe 1297 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1298 }
abe4c3b5 1299
747db954 1300 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1301 try_to_unmap_flush();
b745bc85 1302 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1303
1da177e4 1304 list_splice(&ret_pages, page_list);
f8891e5e 1305 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1306
3c710c1a
MH
1307 if (stat) {
1308 stat->nr_dirty = nr_dirty;
1309 stat->nr_congested = nr_congested;
1310 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1311 stat->nr_writeback = nr_writeback;
1312 stat->nr_immediate = nr_immediate;
5bccd166
MH
1313 stat->nr_activate = pgactivate;
1314 stat->nr_ref_keep = nr_ref_keep;
1315 stat->nr_unmap_fail = nr_unmap_fail;
3c710c1a 1316 }
05ff5137 1317 return nr_reclaimed;
1da177e4
LT
1318}
1319
02c6de8d
MK
1320unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1321 struct list_head *page_list)
1322{
1323 struct scan_control sc = {
1324 .gfp_mask = GFP_KERNEL,
1325 .priority = DEF_PRIORITY,
1326 .may_unmap = 1,
1327 };
3c710c1a 1328 unsigned long ret;
02c6de8d
MK
1329 struct page *page, *next;
1330 LIST_HEAD(clean_pages);
1331
1332 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1333 if (page_is_file_cache(page) && !PageDirty(page) &&
b1123ea6 1334 !__PageMovable(page)) {
02c6de8d
MK
1335 ClearPageActive(page);
1336 list_move(&page->lru, &clean_pages);
1337 }
1338 }
1339
599d0c95 1340 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
3c710c1a 1341 TTU_UNMAP|TTU_IGNORE_ACCESS, NULL, true);
02c6de8d 1342 list_splice(&clean_pages, page_list);
599d0c95 1343 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1344 return ret;
1345}
1346
5ad333eb
AW
1347/*
1348 * Attempt to remove the specified page from its LRU. Only take this page
1349 * if it is of the appropriate PageActive status. Pages which are being
1350 * freed elsewhere are also ignored.
1351 *
1352 * page: page to consider
1353 * mode: one of the LRU isolation modes defined above
1354 *
1355 * returns 0 on success, -ve errno on failure.
1356 */
f3fd4a61 1357int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1358{
1359 int ret = -EINVAL;
1360
1361 /* Only take pages on the LRU. */
1362 if (!PageLRU(page))
1363 return ret;
1364
e46a2879
MK
1365 /* Compaction should not handle unevictable pages but CMA can do so */
1366 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1367 return ret;
1368
5ad333eb 1369 ret = -EBUSY;
08e552c6 1370
c8244935
MG
1371 /*
1372 * To minimise LRU disruption, the caller can indicate that it only
1373 * wants to isolate pages it will be able to operate on without
1374 * blocking - clean pages for the most part.
1375 *
1376 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1377 * is used by reclaim when it is cannot write to backing storage
1378 *
1379 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1380 * that it is possible to migrate without blocking
1381 */
1382 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1383 /* All the caller can do on PageWriteback is block */
1384 if (PageWriteback(page))
1385 return ret;
1386
1387 if (PageDirty(page)) {
1388 struct address_space *mapping;
1389
1390 /* ISOLATE_CLEAN means only clean pages */
1391 if (mode & ISOLATE_CLEAN)
1392 return ret;
1393
1394 /*
1395 * Only pages without mappings or that have a
1396 * ->migratepage callback are possible to migrate
1397 * without blocking
1398 */
1399 mapping = page_mapping(page);
1400 if (mapping && !mapping->a_ops->migratepage)
1401 return ret;
1402 }
1403 }
39deaf85 1404
f80c0673
MK
1405 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1406 return ret;
1407
5ad333eb
AW
1408 if (likely(get_page_unless_zero(page))) {
1409 /*
1410 * Be careful not to clear PageLRU until after we're
1411 * sure the page is not being freed elsewhere -- the
1412 * page release code relies on it.
1413 */
1414 ClearPageLRU(page);
1415 ret = 0;
1416 }
1417
1418 return ret;
1419}
1420
7ee36a14
MG
1421
1422/*
1423 * Update LRU sizes after isolating pages. The LRU size updates must
1424 * be complete before mem_cgroup_update_lru_size due to a santity check.
1425 */
1426static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1427 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1428{
7ee36a14
MG
1429 int zid;
1430
7ee36a14
MG
1431 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1432 if (!nr_zone_taken[zid])
1433 continue;
1434
1435 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1436#ifdef CONFIG_MEMCG
b4536f0c 1437 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1438#endif
b4536f0c
MH
1439 }
1440
7ee36a14
MG
1441}
1442
1da177e4 1443/*
a52633d8 1444 * zone_lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1445 * shrink the lists perform better by taking out a batch of pages
1446 * and working on them outside the LRU lock.
1447 *
1448 * For pagecache intensive workloads, this function is the hottest
1449 * spot in the kernel (apart from copy_*_user functions).
1450 *
1451 * Appropriate locks must be held before calling this function.
1452 *
1453 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1454 * @lruvec: The LRU vector to pull pages from.
1da177e4 1455 * @dst: The temp list to put pages on to.
f626012d 1456 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1457 * @sc: The scan_control struct for this reclaim session
5ad333eb 1458 * @mode: One of the LRU isolation modes
3cb99451 1459 * @lru: LRU list id for isolating
1da177e4
LT
1460 *
1461 * returns how many pages were moved onto *@dst.
1462 */
69e05944 1463static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1464 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1465 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1466 isolate_mode_t mode, enum lru_list lru)
1da177e4 1467{
75b00af7 1468 struct list_head *src = &lruvec->lists[lru];
69e05944 1469 unsigned long nr_taken = 0;
599d0c95 1470 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1471 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1265e3a6 1472 unsigned long skipped = 0, total_skipped = 0;
599d0c95 1473 unsigned long scan, nr_pages;
b2e18757 1474 LIST_HEAD(pages_skipped);
1da177e4 1475
0b802f10 1476 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
d7f05528 1477 !list_empty(src);) {
5ad333eb 1478 struct page *page;
5ad333eb 1479
1da177e4
LT
1480 page = lru_to_page(src);
1481 prefetchw_prev_lru_page(page, src, flags);
1482
309381fe 1483 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1484
b2e18757
MG
1485 if (page_zonenum(page) > sc->reclaim_idx) {
1486 list_move(&page->lru, &pages_skipped);
7cc30fcf 1487 nr_skipped[page_zonenum(page)]++;
b2e18757
MG
1488 continue;
1489 }
1490
d7f05528
MG
1491 /*
1492 * Account for scanned and skipped separetly to avoid the pgdat
1493 * being prematurely marked unreclaimable by pgdat_reclaimable.
1494 */
1495 scan++;
1496
f3fd4a61 1497 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1498 case 0:
599d0c95
MG
1499 nr_pages = hpage_nr_pages(page);
1500 nr_taken += nr_pages;
1501 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1502 list_move(&page->lru, dst);
5ad333eb
AW
1503 break;
1504
1505 case -EBUSY:
1506 /* else it is being freed elsewhere */
1507 list_move(&page->lru, src);
1508 continue;
46453a6e 1509
5ad333eb
AW
1510 default:
1511 BUG();
1512 }
1da177e4
LT
1513 }
1514
b2e18757
MG
1515 /*
1516 * Splice any skipped pages to the start of the LRU list. Note that
1517 * this disrupts the LRU order when reclaiming for lower zones but
1518 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1519 * scanning would soon rescan the same pages to skip and put the
1520 * system at risk of premature OOM.
1521 */
7cc30fcf
MG
1522 if (!list_empty(&pages_skipped)) {
1523 int zid;
1524
7cc30fcf
MG
1525 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1526 if (!nr_skipped[zid])
1527 continue;
1528
1529 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1530 skipped += nr_skipped[zid];
7cc30fcf 1531 }
d7f05528
MG
1532
1533 /*
1534 * Account skipped pages as a partial scan as the pgdat may be
1535 * close to unreclaimable. If the LRU list is empty, account
1536 * skipped pages as a full scan.
1537 */
1265e3a6 1538 total_skipped = list_empty(src) ? skipped : skipped >> 2;
d7f05528
MG
1539
1540 list_splice(&pages_skipped, src);
7cc30fcf 1541 }
1265e3a6
MH
1542 *nr_scanned = scan + total_skipped;
1543 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
32b3f297 1544 scan, skipped, nr_taken, mode, lru);
b4536f0c 1545 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1546 return nr_taken;
1547}
1548
62695a84
NP
1549/**
1550 * isolate_lru_page - tries to isolate a page from its LRU list
1551 * @page: page to isolate from its LRU list
1552 *
1553 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1554 * vmstat statistic corresponding to whatever LRU list the page was on.
1555 *
1556 * Returns 0 if the page was removed from an LRU list.
1557 * Returns -EBUSY if the page was not on an LRU list.
1558 *
1559 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1560 * the active list, it will have PageActive set. If it was found on
1561 * the unevictable list, it will have the PageUnevictable bit set. That flag
1562 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1563 *
1564 * The vmstat statistic corresponding to the list on which the page was
1565 * found will be decremented.
1566 *
1567 * Restrictions:
1568 * (1) Must be called with an elevated refcount on the page. This is a
1569 * fundamentnal difference from isolate_lru_pages (which is called
1570 * without a stable reference).
1571 * (2) the lru_lock must not be held.
1572 * (3) interrupts must be enabled.
1573 */
1574int isolate_lru_page(struct page *page)
1575{
1576 int ret = -EBUSY;
1577
309381fe 1578 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1579 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1580
62695a84
NP
1581 if (PageLRU(page)) {
1582 struct zone *zone = page_zone(page);
fa9add64 1583 struct lruvec *lruvec;
62695a84 1584
a52633d8 1585 spin_lock_irq(zone_lru_lock(zone));
599d0c95 1586 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0c917313 1587 if (PageLRU(page)) {
894bc310 1588 int lru = page_lru(page);
0c917313 1589 get_page(page);
62695a84 1590 ClearPageLRU(page);
fa9add64
HD
1591 del_page_from_lru_list(page, lruvec, lru);
1592 ret = 0;
62695a84 1593 }
a52633d8 1594 spin_unlock_irq(zone_lru_lock(zone));
62695a84
NP
1595 }
1596 return ret;
1597}
1598
35cd7815 1599/*
d37dd5dc
FW
1600 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1601 * then get resheduled. When there are massive number of tasks doing page
1602 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1603 * the LRU list will go small and be scanned faster than necessary, leading to
1604 * unnecessary swapping, thrashing and OOM.
35cd7815 1605 */
599d0c95 1606static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1607 struct scan_control *sc)
1608{
1609 unsigned long inactive, isolated;
1610
1611 if (current_is_kswapd())
1612 return 0;
1613
97c9341f 1614 if (!sane_reclaim(sc))
35cd7815
RR
1615 return 0;
1616
1617 if (file) {
599d0c95
MG
1618 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1619 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1620 } else {
599d0c95
MG
1621 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1622 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1623 }
1624
3cf23841
FW
1625 /*
1626 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1627 * won't get blocked by normal direct-reclaimers, forming a circular
1628 * deadlock.
1629 */
d0164adc 1630 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1631 inactive >>= 3;
1632
35cd7815
RR
1633 return isolated > inactive;
1634}
1635
66635629 1636static noinline_for_stack void
75b00af7 1637putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1638{
27ac81d8 1639 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
599d0c95 1640 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3f79768f 1641 LIST_HEAD(pages_to_free);
66635629 1642
66635629
MG
1643 /*
1644 * Put back any unfreeable pages.
1645 */
66635629 1646 while (!list_empty(page_list)) {
3f79768f 1647 struct page *page = lru_to_page(page_list);
66635629 1648 int lru;
3f79768f 1649
309381fe 1650 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1651 list_del(&page->lru);
39b5f29a 1652 if (unlikely(!page_evictable(page))) {
599d0c95 1653 spin_unlock_irq(&pgdat->lru_lock);
66635629 1654 putback_lru_page(page);
599d0c95 1655 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1656 continue;
1657 }
fa9add64 1658
599d0c95 1659 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1660
7a608572 1661 SetPageLRU(page);
66635629 1662 lru = page_lru(page);
fa9add64
HD
1663 add_page_to_lru_list(page, lruvec, lru);
1664
66635629
MG
1665 if (is_active_lru(lru)) {
1666 int file = is_file_lru(lru);
9992af10
RR
1667 int numpages = hpage_nr_pages(page);
1668 reclaim_stat->recent_rotated[file] += numpages;
66635629 1669 }
2bcf8879
HD
1670 if (put_page_testzero(page)) {
1671 __ClearPageLRU(page);
1672 __ClearPageActive(page);
fa9add64 1673 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1674
1675 if (unlikely(PageCompound(page))) {
599d0c95 1676 spin_unlock_irq(&pgdat->lru_lock);
747db954 1677 mem_cgroup_uncharge(page);
2bcf8879 1678 (*get_compound_page_dtor(page))(page);
599d0c95 1679 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1680 } else
1681 list_add(&page->lru, &pages_to_free);
66635629
MG
1682 }
1683 }
66635629 1684
3f79768f
HD
1685 /*
1686 * To save our caller's stack, now use input list for pages to free.
1687 */
1688 list_splice(&pages_to_free, page_list);
66635629
MG
1689}
1690
399ba0b9
N
1691/*
1692 * If a kernel thread (such as nfsd for loop-back mounts) services
1693 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1694 * In that case we should only throttle if the backing device it is
1695 * writing to is congested. In other cases it is safe to throttle.
1696 */
1697static int current_may_throttle(void)
1698{
1699 return !(current->flags & PF_LESS_THROTTLE) ||
1700 current->backing_dev_info == NULL ||
1701 bdi_write_congested(current->backing_dev_info);
1702}
1703
1da177e4 1704/*
b2e18757 1705 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1706 * of reclaimed pages
1da177e4 1707 */
66635629 1708static noinline_for_stack unsigned long
1a93be0e 1709shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1710 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1711{
1712 LIST_HEAD(page_list);
e247dbce 1713 unsigned long nr_scanned;
05ff5137 1714 unsigned long nr_reclaimed = 0;
e247dbce 1715 unsigned long nr_taken;
3c710c1a 1716 struct reclaim_stat stat = {};
f3fd4a61 1717 isolate_mode_t isolate_mode = 0;
3cb99451 1718 int file = is_file_lru(lru);
599d0c95 1719 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1720 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1721
599d0c95 1722 while (unlikely(too_many_isolated(pgdat, file, sc))) {
58355c78 1723 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1724
1725 /* We are about to die and free our memory. Return now. */
1726 if (fatal_signal_pending(current))
1727 return SWAP_CLUSTER_MAX;
1728 }
1729
1da177e4 1730 lru_add_drain();
f80c0673
MK
1731
1732 if (!sc->may_unmap)
61317289 1733 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1734 if (!sc->may_writepage)
61317289 1735 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1736
599d0c95 1737 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1738
5dc35979
KK
1739 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1740 &nr_scanned, sc, isolate_mode, lru);
95d918fc 1741
599d0c95 1742 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1743 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1744
89b5fae5 1745 if (global_reclaim(sc)) {
599d0c95 1746 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
e247dbce 1747 if (current_is_kswapd())
599d0c95 1748 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
e247dbce 1749 else
599d0c95 1750 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
e247dbce 1751 }
599d0c95 1752 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1753
d563c050 1754 if (nr_taken == 0)
66635629 1755 return 0;
5ad333eb 1756
599d0c95 1757 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
3c710c1a 1758 &stat, false);
c661b078 1759
599d0c95 1760 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1761
904249aa
YH
1762 if (global_reclaim(sc)) {
1763 if (current_is_kswapd())
599d0c95 1764 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
904249aa 1765 else
599d0c95 1766 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
904249aa 1767 }
a74609fa 1768
27ac81d8 1769 putback_inactive_pages(lruvec, &page_list);
3f79768f 1770
599d0c95 1771 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1772
599d0c95 1773 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1774
747db954 1775 mem_cgroup_uncharge_list(&page_list);
b745bc85 1776 free_hot_cold_page_list(&page_list, true);
e11da5b4 1777
92df3a72
MG
1778 /*
1779 * If reclaim is isolating dirty pages under writeback, it implies
1780 * that the long-lived page allocation rate is exceeding the page
1781 * laundering rate. Either the global limits are not being effective
1782 * at throttling processes due to the page distribution throughout
1783 * zones or there is heavy usage of a slow backing device. The
1784 * only option is to throttle from reclaim context which is not ideal
1785 * as there is no guarantee the dirtying process is throttled in the
1786 * same way balance_dirty_pages() manages.
1787 *
8e950282
MG
1788 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1789 * of pages under pages flagged for immediate reclaim and stall if any
1790 * are encountered in the nr_immediate check below.
92df3a72 1791 */
3c710c1a 1792 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
599d0c95 1793 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
92df3a72 1794
d43006d5 1795 /*
97c9341f
TH
1796 * Legacy memcg will stall in page writeback so avoid forcibly
1797 * stalling here.
d43006d5 1798 */
97c9341f 1799 if (sane_reclaim(sc)) {
8e950282
MG
1800 /*
1801 * Tag a zone as congested if all the dirty pages scanned were
1802 * backed by a congested BDI and wait_iff_congested will stall.
1803 */
3c710c1a 1804 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
599d0c95 1805 set_bit(PGDAT_CONGESTED, &pgdat->flags);
8e950282 1806
b1a6f21e
MG
1807 /*
1808 * If dirty pages are scanned that are not queued for IO, it
1809 * implies that flushers are not keeping up. In this case, flag
599d0c95 1810 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
57054651 1811 * reclaim context.
b1a6f21e 1812 */
3c710c1a 1813 if (stat.nr_unqueued_dirty == nr_taken)
599d0c95 1814 set_bit(PGDAT_DIRTY, &pgdat->flags);
b1a6f21e
MG
1815
1816 /*
b738d764
LT
1817 * If kswapd scans pages marked marked for immediate
1818 * reclaim and under writeback (nr_immediate), it implies
1819 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1820 * they are written so also forcibly stall.
1821 */
3c710c1a 1822 if (stat.nr_immediate && current_may_throttle())
b1a6f21e 1823 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1824 }
d43006d5 1825
8e950282
MG
1826 /*
1827 * Stall direct reclaim for IO completions if underlying BDIs or zone
1828 * is congested. Allow kswapd to continue until it starts encountering
1829 * unqueued dirty pages or cycling through the LRU too quickly.
1830 */
399ba0b9
N
1831 if (!sc->hibernation_mode && !current_is_kswapd() &&
1832 current_may_throttle())
599d0c95 1833 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
8e950282 1834
599d0c95
MG
1835 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1836 nr_scanned, nr_reclaimed,
5bccd166
MH
1837 stat.nr_dirty, stat.nr_writeback,
1838 stat.nr_congested, stat.nr_immediate,
1839 stat.nr_activate, stat.nr_ref_keep,
1840 stat.nr_unmap_fail,
ba5e9579 1841 sc->priority, file);
05ff5137 1842 return nr_reclaimed;
1da177e4
LT
1843}
1844
1845/*
1846 * This moves pages from the active list to the inactive list.
1847 *
1848 * We move them the other way if the page is referenced by one or more
1849 * processes, from rmap.
1850 *
1851 * If the pages are mostly unmapped, the processing is fast and it is
a52633d8 1852 * appropriate to hold zone_lru_lock across the whole operation. But if
1da177e4 1853 * the pages are mapped, the processing is slow (page_referenced()) so we
a52633d8 1854 * should drop zone_lru_lock around each page. It's impossible to balance
1da177e4
LT
1855 * this, so instead we remove the pages from the LRU while processing them.
1856 * It is safe to rely on PG_active against the non-LRU pages in here because
1857 * nobody will play with that bit on a non-LRU page.
1858 *
0139aa7b 1859 * The downside is that we have to touch page->_refcount against each page.
1da177e4 1860 * But we had to alter page->flags anyway.
9d998b4f
MH
1861 *
1862 * Returns the number of pages moved to the given lru.
1da177e4 1863 */
1cfb419b 1864
9d998b4f 1865static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1866 struct list_head *list,
2bcf8879 1867 struct list_head *pages_to_free,
3eb4140f
WF
1868 enum lru_list lru)
1869{
599d0c95 1870 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3eb4140f 1871 struct page *page;
fa9add64 1872 int nr_pages;
9d998b4f 1873 int nr_moved = 0;
3eb4140f 1874
3eb4140f
WF
1875 while (!list_empty(list)) {
1876 page = lru_to_page(list);
599d0c95 1877 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3eb4140f 1878
309381fe 1879 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1880 SetPageLRU(page);
1881
fa9add64 1882 nr_pages = hpage_nr_pages(page);
599d0c95 1883 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
925b7673 1884 list_move(&page->lru, &lruvec->lists[lru]);
3eb4140f 1885
2bcf8879
HD
1886 if (put_page_testzero(page)) {
1887 __ClearPageLRU(page);
1888 __ClearPageActive(page);
fa9add64 1889 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1890
1891 if (unlikely(PageCompound(page))) {
599d0c95 1892 spin_unlock_irq(&pgdat->lru_lock);
747db954 1893 mem_cgroup_uncharge(page);
2bcf8879 1894 (*get_compound_page_dtor(page))(page);
599d0c95 1895 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1896 } else
1897 list_add(&page->lru, pages_to_free);
9d998b4f
MH
1898 } else {
1899 nr_moved += nr_pages;
3eb4140f
WF
1900 }
1901 }
9d5e6a9f 1902
3eb4140f 1903 if (!is_active_lru(lru))
f0958906 1904 __count_vm_events(PGDEACTIVATE, nr_moved);
9d998b4f
MH
1905
1906 return nr_moved;
3eb4140f 1907}
1cfb419b 1908
f626012d 1909static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1910 struct lruvec *lruvec,
f16015fb 1911 struct scan_control *sc,
9e3b2f8c 1912 enum lru_list lru)
1da177e4 1913{
44c241f1 1914 unsigned long nr_taken;
f626012d 1915 unsigned long nr_scanned;
6fe6b7e3 1916 unsigned long vm_flags;
1da177e4 1917 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1918 LIST_HEAD(l_active);
b69408e8 1919 LIST_HEAD(l_inactive);
1da177e4 1920 struct page *page;
1a93be0e 1921 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
9d998b4f
MH
1922 unsigned nr_deactivate, nr_activate;
1923 unsigned nr_rotated = 0;
f3fd4a61 1924 isolate_mode_t isolate_mode = 0;
3cb99451 1925 int file = is_file_lru(lru);
599d0c95 1926 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
1927
1928 lru_add_drain();
f80c0673
MK
1929
1930 if (!sc->may_unmap)
61317289 1931 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1932 if (!sc->may_writepage)
61317289 1933 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1934
599d0c95 1935 spin_lock_irq(&pgdat->lru_lock);
925b7673 1936
5dc35979
KK
1937 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1938 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1939
599d0c95 1940 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 1941 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1942
9d5e6a9f 1943 if (global_reclaim(sc))
599d0c95
MG
1944 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1945 __count_vm_events(PGREFILL, nr_scanned);
9d5e6a9f 1946
599d0c95 1947 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 1948
1da177e4
LT
1949 while (!list_empty(&l_hold)) {
1950 cond_resched();
1951 page = lru_to_page(&l_hold);
1952 list_del(&page->lru);
7e9cd484 1953
39b5f29a 1954 if (unlikely(!page_evictable(page))) {
894bc310
LS
1955 putback_lru_page(page);
1956 continue;
1957 }
1958
cc715d99
MG
1959 if (unlikely(buffer_heads_over_limit)) {
1960 if (page_has_private(page) && trylock_page(page)) {
1961 if (page_has_private(page))
1962 try_to_release_page(page, 0);
1963 unlock_page(page);
1964 }
1965 }
1966
c3ac9a8a
JW
1967 if (page_referenced(page, 0, sc->target_mem_cgroup,
1968 &vm_flags)) {
9992af10 1969 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1970 /*
1971 * Identify referenced, file-backed active pages and
1972 * give them one more trip around the active list. So
1973 * that executable code get better chances to stay in
1974 * memory under moderate memory pressure. Anon pages
1975 * are not likely to be evicted by use-once streaming
1976 * IO, plus JVM can create lots of anon VM_EXEC pages,
1977 * so we ignore them here.
1978 */
41e20983 1979 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1980 list_add(&page->lru, &l_active);
1981 continue;
1982 }
1983 }
7e9cd484 1984
5205e56e 1985 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1986 list_add(&page->lru, &l_inactive);
1987 }
1988
b555749a 1989 /*
8cab4754 1990 * Move pages back to the lru list.
b555749a 1991 */
599d0c95 1992 spin_lock_irq(&pgdat->lru_lock);
556adecb 1993 /*
8cab4754
WF
1994 * Count referenced pages from currently used mappings as rotated,
1995 * even though only some of them are actually re-activated. This
1996 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 1997 * get_scan_count.
7e9cd484 1998 */
b7c46d15 1999 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 2000
9d998b4f
MH
2001 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2002 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
599d0c95
MG
2003 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2004 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 2005
747db954 2006 mem_cgroup_uncharge_list(&l_hold);
b745bc85 2007 free_hot_cold_page_list(&l_hold, true);
9d998b4f
MH
2008 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2009 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2010}
2011
59dc76b0
RR
2012/*
2013 * The inactive anon list should be small enough that the VM never has
2014 * to do too much work.
14797e23 2015 *
59dc76b0
RR
2016 * The inactive file list should be small enough to leave most memory
2017 * to the established workingset on the scan-resistant active list,
2018 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2019 *
59dc76b0
RR
2020 * Both inactive lists should also be large enough that each inactive
2021 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2022 *
59dc76b0
RR
2023 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2024 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2025 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2026 *
59dc76b0
RR
2027 * total target max
2028 * memory ratio inactive
2029 * -------------------------------------
2030 * 10MB 1 5MB
2031 * 100MB 1 50MB
2032 * 1GB 3 250MB
2033 * 10GB 10 0.9GB
2034 * 100GB 31 3GB
2035 * 1TB 101 10GB
2036 * 10TB 320 32GB
56e49d21 2037 */
f8d1a311 2038static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
dcec0b60 2039 struct scan_control *sc, bool trace)
56e49d21 2040{
59dc76b0 2041 unsigned long inactive_ratio;
fd538803
MH
2042 unsigned long inactive, active;
2043 enum lru_list inactive_lru = file * LRU_FILE;
2044 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
59dc76b0 2045 unsigned long gb;
e3790144 2046
59dc76b0
RR
2047 /*
2048 * If we don't have swap space, anonymous page deactivation
2049 * is pointless.
2050 */
2051 if (!file && !total_swap_pages)
2052 return false;
56e49d21 2053
fd538803
MH
2054 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2055 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
f8d1a311 2056
59dc76b0
RR
2057 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2058 if (gb)
2059 inactive_ratio = int_sqrt(10 * gb);
b39415b2 2060 else
59dc76b0
RR
2061 inactive_ratio = 1;
2062
dcec0b60 2063 if (trace)
fd538803 2064 trace_mm_vmscan_inactive_list_is_low(lruvec_pgdat(lruvec)->node_id,
dcec0b60 2065 sc->reclaim_idx,
fd538803
MH
2066 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2067 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2068 inactive_ratio, file);
2069
59dc76b0 2070 return inactive * inactive_ratio < active;
b39415b2
RR
2071}
2072
4f98a2fe 2073static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 2074 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 2075{
b39415b2 2076 if (is_active_lru(lru)) {
dcec0b60 2077 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
1a93be0e 2078 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
2079 return 0;
2080 }
2081
1a93be0e 2082 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
2083}
2084
9a265114
JW
2085enum scan_balance {
2086 SCAN_EQUAL,
2087 SCAN_FRACT,
2088 SCAN_ANON,
2089 SCAN_FILE,
2090};
2091
4f98a2fe
RR
2092/*
2093 * Determine how aggressively the anon and file LRU lists should be
2094 * scanned. The relative value of each set of LRU lists is determined
2095 * by looking at the fraction of the pages scanned we did rotate back
2096 * onto the active list instead of evict.
2097 *
be7bd59d
WL
2098 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2099 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2100 */
33377678 2101static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
2102 struct scan_control *sc, unsigned long *nr,
2103 unsigned long *lru_pages)
4f98a2fe 2104{
33377678 2105 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2106 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2107 u64 fraction[2];
2108 u64 denominator = 0; /* gcc */
599d0c95 2109 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2110 unsigned long anon_prio, file_prio;
9a265114 2111 enum scan_balance scan_balance;
0bf1457f 2112 unsigned long anon, file;
9a265114 2113 bool force_scan = false;
4f98a2fe 2114 unsigned long ap, fp;
4111304d 2115 enum lru_list lru;
6f04f48d
SS
2116 bool some_scanned;
2117 int pass;
246e87a9 2118
f11c0ca5
JW
2119 /*
2120 * If the zone or memcg is small, nr[l] can be 0. This
2121 * results in no scanning on this priority and a potential
2122 * priority drop. Global direct reclaim can go to the next
2123 * zone and tends to have no problems. Global kswapd is for
2124 * zone balancing and it needs to scan a minimum amount. When
2125 * reclaiming for a memcg, a priority drop can cause high
2126 * latencies, so it's better to scan a minimum amount there as
2127 * well.
2128 */
90cbc250 2129 if (current_is_kswapd()) {
599d0c95 2130 if (!pgdat_reclaimable(pgdat))
90cbc250 2131 force_scan = true;
eb01aaab 2132 if (!mem_cgroup_online(memcg))
90cbc250
VD
2133 force_scan = true;
2134 }
89b5fae5 2135 if (!global_reclaim(sc))
a4d3e9e7 2136 force_scan = true;
76a33fc3
SL
2137
2138 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2139 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2140 scan_balance = SCAN_FILE;
76a33fc3
SL
2141 goto out;
2142 }
4f98a2fe 2143
10316b31
JW
2144 /*
2145 * Global reclaim will swap to prevent OOM even with no
2146 * swappiness, but memcg users want to use this knob to
2147 * disable swapping for individual groups completely when
2148 * using the memory controller's swap limit feature would be
2149 * too expensive.
2150 */
02695175 2151 if (!global_reclaim(sc) && !swappiness) {
9a265114 2152 scan_balance = SCAN_FILE;
10316b31
JW
2153 goto out;
2154 }
2155
2156 /*
2157 * Do not apply any pressure balancing cleverness when the
2158 * system is close to OOM, scan both anon and file equally
2159 * (unless the swappiness setting disagrees with swapping).
2160 */
02695175 2161 if (!sc->priority && swappiness) {
9a265114 2162 scan_balance = SCAN_EQUAL;
10316b31
JW
2163 goto out;
2164 }
2165
62376251
JW
2166 /*
2167 * Prevent the reclaimer from falling into the cache trap: as
2168 * cache pages start out inactive, every cache fault will tip
2169 * the scan balance towards the file LRU. And as the file LRU
2170 * shrinks, so does the window for rotation from references.
2171 * This means we have a runaway feedback loop where a tiny
2172 * thrashing file LRU becomes infinitely more attractive than
2173 * anon pages. Try to detect this based on file LRU size.
2174 */
2175 if (global_reclaim(sc)) {
599d0c95
MG
2176 unsigned long pgdatfile;
2177 unsigned long pgdatfree;
2178 int z;
2179 unsigned long total_high_wmark = 0;
2ab051e1 2180
599d0c95
MG
2181 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2182 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2183 node_page_state(pgdat, NR_INACTIVE_FILE);
2184
2185 for (z = 0; z < MAX_NR_ZONES; z++) {
2186 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2187 if (!managed_zone(zone))
599d0c95
MG
2188 continue;
2189
2190 total_high_wmark += high_wmark_pages(zone);
2191 }
62376251 2192
599d0c95 2193 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
62376251
JW
2194 scan_balance = SCAN_ANON;
2195 goto out;
2196 }
2197 }
2198
7c5bd705 2199 /*
316bda0e
VD
2200 * If there is enough inactive page cache, i.e. if the size of the
2201 * inactive list is greater than that of the active list *and* the
2202 * inactive list actually has some pages to scan on this priority, we
2203 * do not reclaim anything from the anonymous working set right now.
2204 * Without the second condition we could end up never scanning an
2205 * lruvec even if it has plenty of old anonymous pages unless the
2206 * system is under heavy pressure.
7c5bd705 2207 */
dcec0b60 2208 if (!inactive_list_is_low(lruvec, true, sc, false) &&
71ab6cfe 2209 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
9a265114 2210 scan_balance = SCAN_FILE;
7c5bd705
JW
2211 goto out;
2212 }
2213
9a265114
JW
2214 scan_balance = SCAN_FRACT;
2215
58c37f6e
KM
2216 /*
2217 * With swappiness at 100, anonymous and file have the same priority.
2218 * This scanning priority is essentially the inverse of IO cost.
2219 */
02695175 2220 anon_prio = swappiness;
75b00af7 2221 file_prio = 200 - anon_prio;
58c37f6e 2222
4f98a2fe
RR
2223 /*
2224 * OK, so we have swap space and a fair amount of page cache
2225 * pages. We use the recently rotated / recently scanned
2226 * ratios to determine how valuable each cache is.
2227 *
2228 * Because workloads change over time (and to avoid overflow)
2229 * we keep these statistics as a floating average, which ends
2230 * up weighing recent references more than old ones.
2231 *
2232 * anon in [0], file in [1]
2233 */
2ab051e1 2234
fd538803
MH
2235 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2236 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2237 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2238 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2ab051e1 2239
599d0c95 2240 spin_lock_irq(&pgdat->lru_lock);
6e901571 2241 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2242 reclaim_stat->recent_scanned[0] /= 2;
2243 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2244 }
2245
6e901571 2246 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2247 reclaim_stat->recent_scanned[1] /= 2;
2248 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2249 }
2250
4f98a2fe 2251 /*
00d8089c
RR
2252 * The amount of pressure on anon vs file pages is inversely
2253 * proportional to the fraction of recently scanned pages on
2254 * each list that were recently referenced and in active use.
4f98a2fe 2255 */
fe35004f 2256 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2257 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2258
fe35004f 2259 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2260 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2261 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2262
76a33fc3
SL
2263 fraction[0] = ap;
2264 fraction[1] = fp;
2265 denominator = ap + fp + 1;
2266out:
6f04f48d
SS
2267 some_scanned = false;
2268 /* Only use force_scan on second pass. */
2269 for (pass = 0; !some_scanned && pass < 2; pass++) {
6b4f7799 2270 *lru_pages = 0;
6f04f48d
SS
2271 for_each_evictable_lru(lru) {
2272 int file = is_file_lru(lru);
2273 unsigned long size;
2274 unsigned long scan;
6e08a369 2275
71ab6cfe 2276 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
6f04f48d 2277 scan = size >> sc->priority;
9a265114 2278
6f04f48d
SS
2279 if (!scan && pass && force_scan)
2280 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2281
6f04f48d
SS
2282 switch (scan_balance) {
2283 case SCAN_EQUAL:
2284 /* Scan lists relative to size */
2285 break;
2286 case SCAN_FRACT:
2287 /*
2288 * Scan types proportional to swappiness and
2289 * their relative recent reclaim efficiency.
2290 */
2291 scan = div64_u64(scan * fraction[file],
2292 denominator);
2293 break;
2294 case SCAN_FILE:
2295 case SCAN_ANON:
2296 /* Scan one type exclusively */
6b4f7799
JW
2297 if ((scan_balance == SCAN_FILE) != file) {
2298 size = 0;
6f04f48d 2299 scan = 0;
6b4f7799 2300 }
6f04f48d
SS
2301 break;
2302 default:
2303 /* Look ma, no brain */
2304 BUG();
2305 }
6b4f7799
JW
2306
2307 *lru_pages += size;
6f04f48d 2308 nr[lru] = scan;
6b4f7799 2309
9a265114 2310 /*
6f04f48d
SS
2311 * Skip the second pass and don't force_scan,
2312 * if we found something to scan.
9a265114 2313 */
6f04f48d 2314 some_scanned |= !!scan;
9a265114 2315 }
76a33fc3 2316 }
6e08a369 2317}
4f98a2fe 2318
9b4f98cd 2319/*
a9dd0a83 2320 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
9b4f98cd 2321 */
a9dd0a83 2322static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
33377678 2323 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2324{
ef8f2327 2325 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
9b4f98cd 2326 unsigned long nr[NR_LRU_LISTS];
e82e0561 2327 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2328 unsigned long nr_to_scan;
2329 enum lru_list lru;
2330 unsigned long nr_reclaimed = 0;
2331 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2332 struct blk_plug plug;
1a501907 2333 bool scan_adjusted;
9b4f98cd 2334
33377678 2335 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2336
e82e0561
MG
2337 /* Record the original scan target for proportional adjustments later */
2338 memcpy(targets, nr, sizeof(nr));
2339
1a501907
MG
2340 /*
2341 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2342 * event that can occur when there is little memory pressure e.g.
2343 * multiple streaming readers/writers. Hence, we do not abort scanning
2344 * when the requested number of pages are reclaimed when scanning at
2345 * DEF_PRIORITY on the assumption that the fact we are direct
2346 * reclaiming implies that kswapd is not keeping up and it is best to
2347 * do a batch of work at once. For memcg reclaim one check is made to
2348 * abort proportional reclaim if either the file or anon lru has already
2349 * dropped to zero at the first pass.
2350 */
2351 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2352 sc->priority == DEF_PRIORITY);
2353
9b4f98cd
JW
2354 blk_start_plug(&plug);
2355 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2356 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2357 unsigned long nr_anon, nr_file, percentage;
2358 unsigned long nr_scanned;
2359
9b4f98cd
JW
2360 for_each_evictable_lru(lru) {
2361 if (nr[lru]) {
2362 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2363 nr[lru] -= nr_to_scan;
2364
2365 nr_reclaimed += shrink_list(lru, nr_to_scan,
2366 lruvec, sc);
2367 }
2368 }
e82e0561 2369
bd041733
MH
2370 cond_resched();
2371
e82e0561
MG
2372 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2373 continue;
2374
e82e0561
MG
2375 /*
2376 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2377 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2378 * proportionally what was requested by get_scan_count(). We
2379 * stop reclaiming one LRU and reduce the amount scanning
2380 * proportional to the original scan target.
2381 */
2382 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2383 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2384
1a501907
MG
2385 /*
2386 * It's just vindictive to attack the larger once the smaller
2387 * has gone to zero. And given the way we stop scanning the
2388 * smaller below, this makes sure that we only make one nudge
2389 * towards proportionality once we've got nr_to_reclaim.
2390 */
2391 if (!nr_file || !nr_anon)
2392 break;
2393
e82e0561
MG
2394 if (nr_file > nr_anon) {
2395 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2396 targets[LRU_ACTIVE_ANON] + 1;
2397 lru = LRU_BASE;
2398 percentage = nr_anon * 100 / scan_target;
2399 } else {
2400 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2401 targets[LRU_ACTIVE_FILE] + 1;
2402 lru = LRU_FILE;
2403 percentage = nr_file * 100 / scan_target;
2404 }
2405
2406 /* Stop scanning the smaller of the LRU */
2407 nr[lru] = 0;
2408 nr[lru + LRU_ACTIVE] = 0;
2409
2410 /*
2411 * Recalculate the other LRU scan count based on its original
2412 * scan target and the percentage scanning already complete
2413 */
2414 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2415 nr_scanned = targets[lru] - nr[lru];
2416 nr[lru] = targets[lru] * (100 - percentage) / 100;
2417 nr[lru] -= min(nr[lru], nr_scanned);
2418
2419 lru += LRU_ACTIVE;
2420 nr_scanned = targets[lru] - nr[lru];
2421 nr[lru] = targets[lru] * (100 - percentage) / 100;
2422 nr[lru] -= min(nr[lru], nr_scanned);
2423
2424 scan_adjusted = true;
9b4f98cd
JW
2425 }
2426 blk_finish_plug(&plug);
2427 sc->nr_reclaimed += nr_reclaimed;
2428
2429 /*
2430 * Even if we did not try to evict anon pages at all, we want to
2431 * rebalance the anon lru active/inactive ratio.
2432 */
dcec0b60 2433 if (inactive_list_is_low(lruvec, false, sc, true))
9b4f98cd
JW
2434 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2435 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2436}
2437
23b9da55 2438/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2439static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2440{
d84da3f9 2441 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2442 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2443 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2444 return true;
2445
2446 return false;
2447}
2448
3e7d3449 2449/*
23b9da55
MG
2450 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2451 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2452 * true if more pages should be reclaimed such that when the page allocator
2453 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2454 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2455 */
a9dd0a83 2456static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449
MG
2457 unsigned long nr_reclaimed,
2458 unsigned long nr_scanned,
2459 struct scan_control *sc)
2460{
2461 unsigned long pages_for_compaction;
2462 unsigned long inactive_lru_pages;
a9dd0a83 2463 int z;
3e7d3449
MG
2464
2465 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2466 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2467 return false;
2468
2876592f
MG
2469 /* Consider stopping depending on scan and reclaim activity */
2470 if (sc->gfp_mask & __GFP_REPEAT) {
2471 /*
2472 * For __GFP_REPEAT allocations, stop reclaiming if the
2473 * full LRU list has been scanned and we are still failing
2474 * to reclaim pages. This full LRU scan is potentially
2475 * expensive but a __GFP_REPEAT caller really wants to succeed
2476 */
2477 if (!nr_reclaimed && !nr_scanned)
2478 return false;
2479 } else {
2480 /*
2481 * For non-__GFP_REPEAT allocations which can presumably
2482 * fail without consequence, stop if we failed to reclaim
2483 * any pages from the last SWAP_CLUSTER_MAX number of
2484 * pages that were scanned. This will return to the
2485 * caller faster at the risk reclaim/compaction and
2486 * the resulting allocation attempt fails
2487 */
2488 if (!nr_reclaimed)
2489 return false;
2490 }
3e7d3449
MG
2491
2492 /*
2493 * If we have not reclaimed enough pages for compaction and the
2494 * inactive lists are large enough, continue reclaiming
2495 */
9861a62c 2496 pages_for_compaction = compact_gap(sc->order);
a9dd0a83 2497 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
ec8acf20 2498 if (get_nr_swap_pages() > 0)
a9dd0a83 2499 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3e7d3449
MG
2500 if (sc->nr_reclaimed < pages_for_compaction &&
2501 inactive_lru_pages > pages_for_compaction)
2502 return true;
2503
2504 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2505 for (z = 0; z <= sc->reclaim_idx; z++) {
2506 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2507 if (!managed_zone(zone))
a9dd0a83
MG
2508 continue;
2509
2510 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2511 case COMPACT_SUCCESS:
a9dd0a83
MG
2512 case COMPACT_CONTINUE:
2513 return false;
2514 default:
2515 /* check next zone */
2516 ;
2517 }
3e7d3449 2518 }
a9dd0a83 2519 return true;
3e7d3449
MG
2520}
2521
970a39a3 2522static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2523{
cb731d6c 2524 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2525 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2526 bool reclaimable = false;
1da177e4 2527
9b4f98cd
JW
2528 do {
2529 struct mem_cgroup *root = sc->target_mem_cgroup;
2530 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 2531 .pgdat = pgdat,
9b4f98cd
JW
2532 .priority = sc->priority,
2533 };
a9dd0a83 2534 unsigned long node_lru_pages = 0;
694fbc0f 2535 struct mem_cgroup *memcg;
3e7d3449 2536
9b4f98cd
JW
2537 nr_reclaimed = sc->nr_reclaimed;
2538 nr_scanned = sc->nr_scanned;
1da177e4 2539
694fbc0f
AM
2540 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2541 do {
6b4f7799 2542 unsigned long lru_pages;
8e8ae645 2543 unsigned long reclaimed;
cb731d6c 2544 unsigned long scanned;
5660048c 2545
241994ed
JW
2546 if (mem_cgroup_low(root, memcg)) {
2547 if (!sc->may_thrash)
2548 continue;
2549 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2550 }
2551
8e8ae645 2552 reclaimed = sc->nr_reclaimed;
cb731d6c 2553 scanned = sc->nr_scanned;
f9be23d6 2554
a9dd0a83
MG
2555 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2556 node_lru_pages += lru_pages;
f16015fb 2557
b5afba29 2558 if (memcg)
a9dd0a83 2559 shrink_slab(sc->gfp_mask, pgdat->node_id,
cb731d6c
VD
2560 memcg, sc->nr_scanned - scanned,
2561 lru_pages);
2562
8e8ae645
JW
2563 /* Record the group's reclaim efficiency */
2564 vmpressure(sc->gfp_mask, memcg, false,
2565 sc->nr_scanned - scanned,
2566 sc->nr_reclaimed - reclaimed);
2567
9b4f98cd 2568 /*
a394cb8e
MH
2569 * Direct reclaim and kswapd have to scan all memory
2570 * cgroups to fulfill the overall scan target for the
a9dd0a83 2571 * node.
a394cb8e
MH
2572 *
2573 * Limit reclaim, on the other hand, only cares about
2574 * nr_to_reclaim pages to be reclaimed and it will
2575 * retry with decreasing priority if one round over the
2576 * whole hierarchy is not sufficient.
9b4f98cd 2577 */
a394cb8e
MH
2578 if (!global_reclaim(sc) &&
2579 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2580 mem_cgroup_iter_break(root, memcg);
2581 break;
2582 }
241994ed 2583 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2584
6b4f7799
JW
2585 /*
2586 * Shrink the slab caches in the same proportion that
2587 * the eligible LRU pages were scanned.
2588 */
b2e18757 2589 if (global_reclaim(sc))
a9dd0a83 2590 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
cb731d6c 2591 sc->nr_scanned - nr_scanned,
a9dd0a83 2592 node_lru_pages);
cb731d6c
VD
2593
2594 if (reclaim_state) {
2595 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2596 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2597 }
2598
8e8ae645
JW
2599 /* Record the subtree's reclaim efficiency */
2600 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2601 sc->nr_scanned - nr_scanned,
2602 sc->nr_reclaimed - nr_reclaimed);
2603
2344d7e4
JW
2604 if (sc->nr_reclaimed - nr_reclaimed)
2605 reclaimable = true;
2606
a9dd0a83 2607 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
9b4f98cd 2608 sc->nr_scanned - nr_scanned, sc));
2344d7e4
JW
2609
2610 return reclaimable;
f16015fb
JW
2611}
2612
53853e2d 2613/*
fdd4c614
VB
2614 * Returns true if compaction should go ahead for a costly-order request, or
2615 * the allocation would already succeed without compaction. Return false if we
2616 * should reclaim first.
53853e2d 2617 */
4f588331 2618static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2619{
31483b6a 2620 unsigned long watermark;
fdd4c614 2621 enum compact_result suitable;
fe4b1b24 2622
fdd4c614
VB
2623 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2624 if (suitable == COMPACT_SUCCESS)
2625 /* Allocation should succeed already. Don't reclaim. */
2626 return true;
2627 if (suitable == COMPACT_SKIPPED)
2628 /* Compaction cannot yet proceed. Do reclaim. */
2629 return false;
fe4b1b24 2630
53853e2d 2631 /*
fdd4c614
VB
2632 * Compaction is already possible, but it takes time to run and there
2633 * are potentially other callers using the pages just freed. So proceed
2634 * with reclaim to make a buffer of free pages available to give
2635 * compaction a reasonable chance of completing and allocating the page.
2636 * Note that we won't actually reclaim the whole buffer in one attempt
2637 * as the target watermark in should_continue_reclaim() is lower. But if
2638 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2639 */
fdd4c614 2640 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2641
fdd4c614 2642 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2643}
2644
1da177e4
LT
2645/*
2646 * This is the direct reclaim path, for page-allocating processes. We only
2647 * try to reclaim pages from zones which will satisfy the caller's allocation
2648 * request.
2649 *
1da177e4
LT
2650 * If a zone is deemed to be full of pinned pages then just give it a light
2651 * scan then give up on it.
2652 */
0a0337e0 2653static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2654{
dd1a239f 2655 struct zoneref *z;
54a6eb5c 2656 struct zone *zone;
0608f43d
AM
2657 unsigned long nr_soft_reclaimed;
2658 unsigned long nr_soft_scanned;
619d0d76 2659 gfp_t orig_mask;
79dafcdc 2660 pg_data_t *last_pgdat = NULL;
1cfb419b 2661
cc715d99
MG
2662 /*
2663 * If the number of buffer_heads in the machine exceeds the maximum
2664 * allowed level, force direct reclaim to scan the highmem zone as
2665 * highmem pages could be pinning lowmem pages storing buffer_heads
2666 */
619d0d76 2667 orig_mask = sc->gfp_mask;
b2e18757 2668 if (buffer_heads_over_limit) {
cc715d99 2669 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2670 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2671 }
cc715d99 2672
d4debc66 2673 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2674 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2675 /*
2676 * Take care memory controller reclaiming has small influence
2677 * to global LRU.
2678 */
89b5fae5 2679 if (global_reclaim(sc)) {
344736f2
VD
2680 if (!cpuset_zone_allowed(zone,
2681 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2682 continue;
65ec02cb 2683
6e543d57 2684 if (sc->priority != DEF_PRIORITY &&
599d0c95 2685 !pgdat_reclaimable(zone->zone_pgdat))
1cfb419b 2686 continue; /* Let kswapd poll it */
0b06496a
JW
2687
2688 /*
2689 * If we already have plenty of memory free for
2690 * compaction in this zone, don't free any more.
2691 * Even though compaction is invoked for any
2692 * non-zero order, only frequent costly order
2693 * reclamation is disruptive enough to become a
2694 * noticeable problem, like transparent huge
2695 * page allocations.
2696 */
2697 if (IS_ENABLED(CONFIG_COMPACTION) &&
2698 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2699 compaction_ready(zone, sc)) {
0b06496a
JW
2700 sc->compaction_ready = true;
2701 continue;
e0887c19 2702 }
0b06496a 2703
79dafcdc
MG
2704 /*
2705 * Shrink each node in the zonelist once. If the
2706 * zonelist is ordered by zone (not the default) then a
2707 * node may be shrunk multiple times but in that case
2708 * the user prefers lower zones being preserved.
2709 */
2710 if (zone->zone_pgdat == last_pgdat)
2711 continue;
2712
0608f43d
AM
2713 /*
2714 * This steals pages from memory cgroups over softlimit
2715 * and returns the number of reclaimed pages and
2716 * scanned pages. This works for global memory pressure
2717 * and balancing, not for a memcg's limit.
2718 */
2719 nr_soft_scanned = 0;
ef8f2327 2720 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2721 sc->order, sc->gfp_mask,
2722 &nr_soft_scanned);
2723 sc->nr_reclaimed += nr_soft_reclaimed;
2724 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2725 /* need some check for avoid more shrink_zone() */
1cfb419b 2726 }
408d8544 2727
79dafcdc
MG
2728 /* See comment about same check for global reclaim above */
2729 if (zone->zone_pgdat == last_pgdat)
2730 continue;
2731 last_pgdat = zone->zone_pgdat;
970a39a3 2732 shrink_node(zone->zone_pgdat, sc);
1da177e4 2733 }
e0c23279 2734
619d0d76
WY
2735 /*
2736 * Restore to original mask to avoid the impact on the caller if we
2737 * promoted it to __GFP_HIGHMEM.
2738 */
2739 sc->gfp_mask = orig_mask;
1da177e4 2740}
4f98a2fe 2741
1da177e4
LT
2742/*
2743 * This is the main entry point to direct page reclaim.
2744 *
2745 * If a full scan of the inactive list fails to free enough memory then we
2746 * are "out of memory" and something needs to be killed.
2747 *
2748 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2749 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2750 * caller can't do much about. We kick the writeback threads and take explicit
2751 * naps in the hope that some of these pages can be written. But if the
2752 * allocating task holds filesystem locks which prevent writeout this might not
2753 * work, and the allocation attempt will fail.
a41f24ea
NA
2754 *
2755 * returns: 0, if no pages reclaimed
2756 * else, the number of pages reclaimed
1da177e4 2757 */
dac1d27b 2758static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2759 struct scan_control *sc)
1da177e4 2760{
241994ed 2761 int initial_priority = sc->priority;
69e05944 2762 unsigned long total_scanned = 0;
22fba335 2763 unsigned long writeback_threshold;
241994ed 2764retry:
873b4771
KK
2765 delayacct_freepages_start();
2766
89b5fae5 2767 if (global_reclaim(sc))
7cc30fcf 2768 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 2769
9e3b2f8c 2770 do {
70ddf637
AV
2771 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2772 sc->priority);
66e1707b 2773 sc->nr_scanned = 0;
0a0337e0 2774 shrink_zones(zonelist, sc);
c6a8a8c5 2775
66e1707b 2776 total_scanned += sc->nr_scanned;
bb21c7ce 2777 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2778 break;
2779
2780 if (sc->compaction_ready)
2781 break;
1da177e4 2782
0e50ce3b
MK
2783 /*
2784 * If we're getting trouble reclaiming, start doing
2785 * writepage even in laptop mode.
2786 */
2787 if (sc->priority < DEF_PRIORITY - 2)
2788 sc->may_writepage = 1;
2789
1da177e4
LT
2790 /*
2791 * Try to write back as many pages as we just scanned. This
2792 * tends to cause slow streaming writers to write data to the
2793 * disk smoothly, at the dirtying rate, which is nice. But
2794 * that's undesirable in laptop mode, where we *want* lumpy
2795 * writeout. So in laptop mode, write out the whole world.
2796 */
22fba335
KM
2797 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2798 if (total_scanned > writeback_threshold) {
0e175a18
CW
2799 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2800 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2801 sc->may_writepage = 1;
1da177e4 2802 }
0b06496a 2803 } while (--sc->priority >= 0);
bb21c7ce 2804
873b4771
KK
2805 delayacct_freepages_end();
2806
bb21c7ce
KM
2807 if (sc->nr_reclaimed)
2808 return sc->nr_reclaimed;
2809
0cee34fd 2810 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2811 if (sc->compaction_ready)
7335084d
MG
2812 return 1;
2813
241994ed
JW
2814 /* Untapped cgroup reserves? Don't OOM, retry. */
2815 if (!sc->may_thrash) {
2816 sc->priority = initial_priority;
2817 sc->may_thrash = 1;
2818 goto retry;
2819 }
2820
bb21c7ce 2821 return 0;
1da177e4
LT
2822}
2823
5515061d
MG
2824static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2825{
2826 struct zone *zone;
2827 unsigned long pfmemalloc_reserve = 0;
2828 unsigned long free_pages = 0;
2829 int i;
2830 bool wmark_ok;
2831
2832 for (i = 0; i <= ZONE_NORMAL; i++) {
2833 zone = &pgdat->node_zones[i];
6aa303de 2834 if (!managed_zone(zone) ||
599d0c95 2835 pgdat_reclaimable_pages(pgdat) == 0)
675becce
MG
2836 continue;
2837
5515061d
MG
2838 pfmemalloc_reserve += min_wmark_pages(zone);
2839 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2840 }
2841
675becce
MG
2842 /* If there are no reserves (unexpected config) then do not throttle */
2843 if (!pfmemalloc_reserve)
2844 return true;
2845
5515061d
MG
2846 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2847
2848 /* kswapd must be awake if processes are being throttled */
2849 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 2850 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
2851 (enum zone_type)ZONE_NORMAL);
2852 wake_up_interruptible(&pgdat->kswapd_wait);
2853 }
2854
2855 return wmark_ok;
2856}
2857
2858/*
2859 * Throttle direct reclaimers if backing storage is backed by the network
2860 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2861 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2862 * when the low watermark is reached.
2863 *
2864 * Returns true if a fatal signal was delivered during throttling. If this
2865 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2866 */
50694c28 2867static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2868 nodemask_t *nodemask)
2869{
675becce 2870 struct zoneref *z;
5515061d 2871 struct zone *zone;
675becce 2872 pg_data_t *pgdat = NULL;
5515061d
MG
2873
2874 /*
2875 * Kernel threads should not be throttled as they may be indirectly
2876 * responsible for cleaning pages necessary for reclaim to make forward
2877 * progress. kjournald for example may enter direct reclaim while
2878 * committing a transaction where throttling it could forcing other
2879 * processes to block on log_wait_commit().
2880 */
2881 if (current->flags & PF_KTHREAD)
50694c28
MG
2882 goto out;
2883
2884 /*
2885 * If a fatal signal is pending, this process should not throttle.
2886 * It should return quickly so it can exit and free its memory
2887 */
2888 if (fatal_signal_pending(current))
2889 goto out;
5515061d 2890
675becce
MG
2891 /*
2892 * Check if the pfmemalloc reserves are ok by finding the first node
2893 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2894 * GFP_KERNEL will be required for allocating network buffers when
2895 * swapping over the network so ZONE_HIGHMEM is unusable.
2896 *
2897 * Throttling is based on the first usable node and throttled processes
2898 * wait on a queue until kswapd makes progress and wakes them. There
2899 * is an affinity then between processes waking up and where reclaim
2900 * progress has been made assuming the process wakes on the same node.
2901 * More importantly, processes running on remote nodes will not compete
2902 * for remote pfmemalloc reserves and processes on different nodes
2903 * should make reasonable progress.
2904 */
2905 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2906 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2907 if (zone_idx(zone) > ZONE_NORMAL)
2908 continue;
2909
2910 /* Throttle based on the first usable node */
2911 pgdat = zone->zone_pgdat;
2912 if (pfmemalloc_watermark_ok(pgdat))
2913 goto out;
2914 break;
2915 }
2916
2917 /* If no zone was usable by the allocation flags then do not throttle */
2918 if (!pgdat)
50694c28 2919 goto out;
5515061d 2920
68243e76
MG
2921 /* Account for the throttling */
2922 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2923
5515061d
MG
2924 /*
2925 * If the caller cannot enter the filesystem, it's possible that it
2926 * is due to the caller holding an FS lock or performing a journal
2927 * transaction in the case of a filesystem like ext[3|4]. In this case,
2928 * it is not safe to block on pfmemalloc_wait as kswapd could be
2929 * blocked waiting on the same lock. Instead, throttle for up to a
2930 * second before continuing.
2931 */
2932 if (!(gfp_mask & __GFP_FS)) {
2933 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2934 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2935
2936 goto check_pending;
5515061d
MG
2937 }
2938
2939 /* Throttle until kswapd wakes the process */
2940 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2941 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2942
2943check_pending:
2944 if (fatal_signal_pending(current))
2945 return true;
2946
2947out:
2948 return false;
5515061d
MG
2949}
2950
dac1d27b 2951unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2952 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2953{
33906bc5 2954 unsigned long nr_reclaimed;
66e1707b 2955 struct scan_control sc = {
ee814fe2 2956 .nr_to_reclaim = SWAP_CLUSTER_MAX,
21caf2fc 2957 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
b2e18757 2958 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
2959 .order = order,
2960 .nodemask = nodemask,
2961 .priority = DEF_PRIORITY,
66e1707b 2962 .may_writepage = !laptop_mode,
a6dc60f8 2963 .may_unmap = 1,
2e2e4259 2964 .may_swap = 1,
66e1707b
BS
2965 };
2966
5515061d 2967 /*
50694c28
MG
2968 * Do not enter reclaim if fatal signal was delivered while throttled.
2969 * 1 is returned so that the page allocator does not OOM kill at this
2970 * point.
5515061d 2971 */
50694c28 2972 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2973 return 1;
2974
33906bc5
MG
2975 trace_mm_vmscan_direct_reclaim_begin(order,
2976 sc.may_writepage,
e5146b12
MG
2977 gfp_mask,
2978 sc.reclaim_idx);
33906bc5 2979
3115cd91 2980 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2981
2982 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2983
2984 return nr_reclaimed;
66e1707b
BS
2985}
2986
c255a458 2987#ifdef CONFIG_MEMCG
66e1707b 2988
a9dd0a83 2989unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 2990 gfp_t gfp_mask, bool noswap,
ef8f2327 2991 pg_data_t *pgdat,
0ae5e89c 2992 unsigned long *nr_scanned)
4e416953
BS
2993{
2994 struct scan_control sc = {
b8f5c566 2995 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 2996 .target_mem_cgroup = memcg,
4e416953
BS
2997 .may_writepage = !laptop_mode,
2998 .may_unmap = 1,
b2e18757 2999 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3000 .may_swap = !noswap,
4e416953 3001 };
6b4f7799 3002 unsigned long lru_pages;
0ae5e89c 3003
4e416953
BS
3004 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3005 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3006
9e3b2f8c 3007 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e 3008 sc.may_writepage,
e5146b12
MG
3009 sc.gfp_mask,
3010 sc.reclaim_idx);
bdce6d9e 3011
4e416953
BS
3012 /*
3013 * NOTE: Although we can get the priority field, using it
3014 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3015 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3016 * will pick up pages from other mem cgroup's as well. We hack
3017 * the priority and make it zero.
3018 */
ef8f2327 3019 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
bdce6d9e
KM
3020
3021 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3022
0ae5e89c 3023 *nr_scanned = sc.nr_scanned;
4e416953
BS
3024 return sc.nr_reclaimed;
3025}
3026
72835c86 3027unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3028 unsigned long nr_pages,
a7885eb8 3029 gfp_t gfp_mask,
b70a2a21 3030 bool may_swap)
66e1707b 3031{
4e416953 3032 struct zonelist *zonelist;
bdce6d9e 3033 unsigned long nr_reclaimed;
889976db 3034 int nid;
66e1707b 3035 struct scan_control sc = {
b70a2a21 3036 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
a09ed5e0
YH
3037 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3038 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3039 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3040 .target_mem_cgroup = memcg,
3041 .priority = DEF_PRIORITY,
3042 .may_writepage = !laptop_mode,
3043 .may_unmap = 1,
b70a2a21 3044 .may_swap = may_swap,
a09ed5e0 3045 };
66e1707b 3046
889976db
YH
3047 /*
3048 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3049 * take care of from where we get pages. So the node where we start the
3050 * scan does not need to be the current node.
3051 */
72835c86 3052 nid = mem_cgroup_select_victim_node(memcg);
889976db 3053
c9634cf0 3054 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
bdce6d9e
KM
3055
3056 trace_mm_vmscan_memcg_reclaim_begin(0,
3057 sc.may_writepage,
e5146b12
MG
3058 sc.gfp_mask,
3059 sc.reclaim_idx);
bdce6d9e 3060
89a28483 3061 current->flags |= PF_MEMALLOC;
3115cd91 3062 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
89a28483 3063 current->flags &= ~PF_MEMALLOC;
bdce6d9e
KM
3064
3065 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3066
3067 return nr_reclaimed;
66e1707b
BS
3068}
3069#endif
3070
1d82de61 3071static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3072 struct scan_control *sc)
f16015fb 3073{
b95a2f2d 3074 struct mem_cgroup *memcg;
f16015fb 3075
b95a2f2d
JW
3076 if (!total_swap_pages)
3077 return;
3078
3079 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3080 do {
ef8f2327 3081 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
b95a2f2d 3082
dcec0b60 3083 if (inactive_list_is_low(lruvec, false, sc, true))
1a93be0e 3084 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3085 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3086
3087 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3088 } while (memcg);
f16015fb
JW
3089}
3090
31483b6a 3091static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
60cefed4 3092{
31483b6a 3093 unsigned long mark = high_wmark_pages(zone);
60cefed4 3094
6256c6b4
MG
3095 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3096 return false;
3097
3098 /*
3099 * If any eligible zone is balanced then the node is not considered
3100 * to be congested or dirty
3101 */
3102 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3103 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3104
3105 return true;
60cefed4
JW
3106}
3107
5515061d
MG
3108/*
3109 * Prepare kswapd for sleeping. This verifies that there are no processes
3110 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3111 *
3112 * Returns true if kswapd is ready to sleep
3113 */
d9f21d42 3114static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3115{
1d82de61
MG
3116 int i;
3117
5515061d 3118 /*
9e5e3661
VB
3119 * The throttled processes are normally woken up in balance_pgdat() as
3120 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3121 * race between when kswapd checks the watermarks and a process gets
3122 * throttled. There is also a potential race if processes get
3123 * throttled, kswapd wakes, a large process exits thereby balancing the
3124 * zones, which causes kswapd to exit balance_pgdat() before reaching
3125 * the wake up checks. If kswapd is going to sleep, no process should
3126 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3127 * the wake up is premature, processes will wake kswapd and get
3128 * throttled again. The difference from wake ups in balance_pgdat() is
3129 * that here we are under prepare_to_wait().
5515061d 3130 */
9e5e3661
VB
3131 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3132 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3133
1d82de61
MG
3134 for (i = 0; i <= classzone_idx; i++) {
3135 struct zone *zone = pgdat->node_zones + i;
3136
6aa303de 3137 if (!managed_zone(zone))
1d82de61
MG
3138 continue;
3139
38087d9b
MG
3140 if (!zone_balanced(zone, order, classzone_idx))
3141 return false;
1d82de61
MG
3142 }
3143
38087d9b 3144 return true;
f50de2d3
MG
3145}
3146
75485363 3147/*
1d82de61
MG
3148 * kswapd shrinks a node of pages that are at or below the highest usable
3149 * zone that is currently unbalanced.
b8e83b94
MG
3150 *
3151 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3152 * reclaim or if the lack of progress was due to pages under writeback.
3153 * This is used to determine if the scanning priority needs to be raised.
75485363 3154 */
1d82de61 3155static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3156 struct scan_control *sc)
75485363 3157{
1d82de61
MG
3158 struct zone *zone;
3159 int z;
75485363 3160
1d82de61
MG
3161 /* Reclaim a number of pages proportional to the number of zones */
3162 sc->nr_to_reclaim = 0;
970a39a3 3163 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3164 zone = pgdat->node_zones + z;
6aa303de 3165 if (!managed_zone(zone))
1d82de61 3166 continue;
7c954f6d 3167
1d82de61
MG
3168 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3169 }
7c954f6d
MG
3170
3171 /*
1d82de61
MG
3172 * Historically care was taken to put equal pressure on all zones but
3173 * now pressure is applied based on node LRU order.
7c954f6d 3174 */
970a39a3 3175 shrink_node(pgdat, sc);
283aba9f 3176
7c954f6d 3177 /*
1d82de61
MG
3178 * Fragmentation may mean that the system cannot be rebalanced for
3179 * high-order allocations. If twice the allocation size has been
3180 * reclaimed then recheck watermarks only at order-0 to prevent
3181 * excessive reclaim. Assume that a process requested a high-order
3182 * can direct reclaim/compact.
7c954f6d 3183 */
9861a62c 3184 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3185 sc->order = 0;
7c954f6d 3186
b8e83b94 3187 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3188}
3189
1da177e4 3190/*
1d82de61
MG
3191 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3192 * that are eligible for use by the caller until at least one zone is
3193 * balanced.
1da177e4 3194 *
1d82de61 3195 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3196 *
3197 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3198 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1d82de61
MG
3199 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3200 * or lower is eligible for reclaim until at least one usable zone is
3201 * balanced.
1da177e4 3202 */
accf6242 3203static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3204{
1da177e4 3205 int i;
0608f43d
AM
3206 unsigned long nr_soft_reclaimed;
3207 unsigned long nr_soft_scanned;
1d82de61 3208 struct zone *zone;
179e9639
AM
3209 struct scan_control sc = {
3210 .gfp_mask = GFP_KERNEL,
ee814fe2 3211 .order = order,
b8e83b94 3212 .priority = DEF_PRIORITY,
ee814fe2 3213 .may_writepage = !laptop_mode,
a6dc60f8 3214 .may_unmap = 1,
2e2e4259 3215 .may_swap = 1,
179e9639 3216 };
f8891e5e 3217 count_vm_event(PAGEOUTRUN);
1da177e4 3218
9e3b2f8c 3219 do {
b8e83b94
MG
3220 bool raise_priority = true;
3221
3222 sc.nr_reclaimed = 0;
84c7a777 3223 sc.reclaim_idx = classzone_idx;
1da177e4 3224
86c79f6b 3225 /*
84c7a777
MG
3226 * If the number of buffer_heads exceeds the maximum allowed
3227 * then consider reclaiming from all zones. This has a dual
3228 * purpose -- on 64-bit systems it is expected that
3229 * buffer_heads are stripped during active rotation. On 32-bit
3230 * systems, highmem pages can pin lowmem memory and shrinking
3231 * buffers can relieve lowmem pressure. Reclaim may still not
3232 * go ahead if all eligible zones for the original allocation
3233 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3234 */
3235 if (buffer_heads_over_limit) {
3236 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3237 zone = pgdat->node_zones + i;
6aa303de 3238 if (!managed_zone(zone))
86c79f6b 3239 continue;
cc715d99 3240
970a39a3 3241 sc.reclaim_idx = i;
e1dbeda6 3242 break;
1da177e4 3243 }
1da177e4 3244 }
dafcb73e 3245
86c79f6b
MG
3246 /*
3247 * Only reclaim if there are no eligible zones. Check from
3248 * high to low zone as allocations prefer higher zones.
3249 * Scanning from low to high zone would allow congestion to be
3250 * cleared during a very small window when a small low
3251 * zone was balanced even under extreme pressure when the
84c7a777
MG
3252 * overall node may be congested. Note that sc.reclaim_idx
3253 * is not used as buffer_heads_over_limit may have adjusted
3254 * it.
86c79f6b 3255 */
84c7a777 3256 for (i = classzone_idx; i >= 0; i--) {
86c79f6b 3257 zone = pgdat->node_zones + i;
6aa303de 3258 if (!managed_zone(zone))
86c79f6b
MG
3259 continue;
3260
84c7a777 3261 if (zone_balanced(zone, sc.order, classzone_idx))
86c79f6b
MG
3262 goto out;
3263 }
e1dbeda6 3264
1d82de61
MG
3265 /*
3266 * Do some background aging of the anon list, to give
3267 * pages a chance to be referenced before reclaiming. All
3268 * pages are rotated regardless of classzone as this is
3269 * about consistent aging.
3270 */
ef8f2327 3271 age_active_anon(pgdat, &sc);
1d82de61 3272
b7ea3c41
MG
3273 /*
3274 * If we're getting trouble reclaiming, start doing writepage
3275 * even in laptop mode.
3276 */
1d82de61 3277 if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
b7ea3c41
MG
3278 sc.may_writepage = 1;
3279
1d82de61
MG
3280 /* Call soft limit reclaim before calling shrink_node. */
3281 sc.nr_scanned = 0;
3282 nr_soft_scanned = 0;
ef8f2327 3283 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3284 sc.gfp_mask, &nr_soft_scanned);
3285 sc.nr_reclaimed += nr_soft_reclaimed;
3286
1da177e4 3287 /*
1d82de61
MG
3288 * There should be no need to raise the scanning priority if
3289 * enough pages are already being scanned that that high
3290 * watermark would be met at 100% efficiency.
1da177e4 3291 */
970a39a3 3292 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3293 raise_priority = false;
5515061d
MG
3294
3295 /*
3296 * If the low watermark is met there is no need for processes
3297 * to be throttled on pfmemalloc_wait as they should not be
3298 * able to safely make forward progress. Wake them
3299 */
3300 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3301 pfmemalloc_watermark_ok(pgdat))
cfc51155 3302 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3303
b8e83b94
MG
3304 /* Check if kswapd should be suspending */
3305 if (try_to_freeze() || kthread_should_stop())
3306 break;
8357376d 3307
73ce02e9 3308 /*
b8e83b94
MG
3309 * Raise priority if scanning rate is too low or there was no
3310 * progress in reclaiming pages
73ce02e9 3311 */
b8e83b94
MG
3312 if (raise_priority || !sc.nr_reclaimed)
3313 sc.priority--;
1d82de61 3314 } while (sc.priority >= 1);
1da177e4 3315
b8e83b94 3316out:
0abdee2b 3317 /*
1d82de61
MG
3318 * Return the order kswapd stopped reclaiming at as
3319 * prepare_kswapd_sleep() takes it into account. If another caller
3320 * entered the allocator slow path while kswapd was awake, order will
3321 * remain at the higher level.
0abdee2b 3322 */
1d82de61 3323 return sc.order;
1da177e4
LT
3324}
3325
38087d9b
MG
3326static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3327 unsigned int classzone_idx)
f0bc0a60
KM
3328{
3329 long remaining = 0;
3330 DEFINE_WAIT(wait);
3331
3332 if (freezing(current) || kthread_should_stop())
3333 return;
3334
3335 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3336
3337 /* Try to sleep for a short interval */
d9f21d42 3338 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3339 /*
3340 * Compaction records what page blocks it recently failed to
3341 * isolate pages from and skips them in the future scanning.
3342 * When kswapd is going to sleep, it is reasonable to assume
3343 * that pages and compaction may succeed so reset the cache.
3344 */
3345 reset_isolation_suitable(pgdat);
3346
3347 /*
3348 * We have freed the memory, now we should compact it to make
3349 * allocation of the requested order possible.
3350 */
38087d9b 3351 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3352
f0bc0a60 3353 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3354
3355 /*
3356 * If woken prematurely then reset kswapd_classzone_idx and
3357 * order. The values will either be from a wakeup request or
3358 * the previous request that slept prematurely.
3359 */
3360 if (remaining) {
3361 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3362 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3363 }
3364
f0bc0a60
KM
3365 finish_wait(&pgdat->kswapd_wait, &wait);
3366 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3367 }
3368
3369 /*
3370 * After a short sleep, check if it was a premature sleep. If not, then
3371 * go fully to sleep until explicitly woken up.
3372 */
d9f21d42
MG
3373 if (!remaining &&
3374 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3375 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3376
3377 /*
3378 * vmstat counters are not perfectly accurate and the estimated
3379 * value for counters such as NR_FREE_PAGES can deviate from the
3380 * true value by nr_online_cpus * threshold. To avoid the zone
3381 * watermarks being breached while under pressure, we reduce the
3382 * per-cpu vmstat threshold while kswapd is awake and restore
3383 * them before going back to sleep.
3384 */
3385 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3386
3387 if (!kthread_should_stop())
3388 schedule();
3389
f0bc0a60
KM
3390 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3391 } else {
3392 if (remaining)
3393 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3394 else
3395 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3396 }
3397 finish_wait(&pgdat->kswapd_wait, &wait);
3398}
3399
1da177e4
LT
3400/*
3401 * The background pageout daemon, started as a kernel thread
4f98a2fe 3402 * from the init process.
1da177e4
LT
3403 *
3404 * This basically trickles out pages so that we have _some_
3405 * free memory available even if there is no other activity
3406 * that frees anything up. This is needed for things like routing
3407 * etc, where we otherwise might have all activity going on in
3408 * asynchronous contexts that cannot page things out.
3409 *
3410 * If there are applications that are active memory-allocators
3411 * (most normal use), this basically shouldn't matter.
3412 */
3413static int kswapd(void *p)
3414{
38087d9b 3415 unsigned int alloc_order, reclaim_order, classzone_idx;
1da177e4
LT
3416 pg_data_t *pgdat = (pg_data_t*)p;
3417 struct task_struct *tsk = current;
f0bc0a60 3418
1da177e4
LT
3419 struct reclaim_state reclaim_state = {
3420 .reclaimed_slab = 0,
3421 };
a70f7302 3422 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3423
cf40bd16
NP
3424 lockdep_set_current_reclaim_state(GFP_KERNEL);
3425
174596a0 3426 if (!cpumask_empty(cpumask))
c5f59f08 3427 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3428 current->reclaim_state = &reclaim_state;
3429
3430 /*
3431 * Tell the memory management that we're a "memory allocator",
3432 * and that if we need more memory we should get access to it
3433 * regardless (see "__alloc_pages()"). "kswapd" should
3434 * never get caught in the normal page freeing logic.
3435 *
3436 * (Kswapd normally doesn't need memory anyway, but sometimes
3437 * you need a small amount of memory in order to be able to
3438 * page out something else, and this flag essentially protects
3439 * us from recursively trying to free more memory as we're
3440 * trying to free the first piece of memory in the first place).
3441 */
930d9152 3442 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3443 set_freezable();
1da177e4 3444
38087d9b
MG
3445 pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3446 pgdat->kswapd_classzone_idx = classzone_idx = 0;
1da177e4 3447 for ( ; ; ) {
6f6313d4 3448 bool ret;
3e1d1d28 3449
38087d9b
MG
3450kswapd_try_sleep:
3451 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3452 classzone_idx);
215ddd66 3453
38087d9b
MG
3454 /* Read the new order and classzone_idx */
3455 alloc_order = reclaim_order = pgdat->kswapd_order;
3456 classzone_idx = pgdat->kswapd_classzone_idx;
3457 pgdat->kswapd_order = 0;
3458 pgdat->kswapd_classzone_idx = 0;
1da177e4 3459
8fe23e05
DR
3460 ret = try_to_freeze();
3461 if (kthread_should_stop())
3462 break;
3463
3464 /*
3465 * We can speed up thawing tasks if we don't call balance_pgdat
3466 * after returning from the refrigerator
3467 */
38087d9b
MG
3468 if (ret)
3469 continue;
3470
3471 /*
3472 * Reclaim begins at the requested order but if a high-order
3473 * reclaim fails then kswapd falls back to reclaiming for
3474 * order-0. If that happens, kswapd will consider sleeping
3475 * for the order it finished reclaiming at (reclaim_order)
3476 * but kcompactd is woken to compact for the original
3477 * request (alloc_order).
3478 */
e5146b12
MG
3479 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3480 alloc_order);
38087d9b
MG
3481 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3482 if (reclaim_order < alloc_order)
3483 goto kswapd_try_sleep;
1d82de61 3484
38087d9b
MG
3485 alloc_order = reclaim_order = pgdat->kswapd_order;
3486 classzone_idx = pgdat->kswapd_classzone_idx;
1da177e4 3487 }
b0a8cc58 3488
71abdc15 3489 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3490 current->reclaim_state = NULL;
71abdc15
JW
3491 lockdep_clear_current_reclaim_state();
3492
1da177e4
LT
3493 return 0;
3494}
3495
3496/*
3497 * A zone is low on free memory, so wake its kswapd task to service it.
3498 */
99504748 3499void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3500{
3501 pg_data_t *pgdat;
e1a55637 3502 int z;
1da177e4 3503
6aa303de 3504 if (!managed_zone(zone))
1da177e4
LT
3505 return;
3506
344736f2 3507 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3508 return;
88f5acf8 3509 pgdat = zone->zone_pgdat;
38087d9b
MG
3510 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3511 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3512 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3513 return;
e1a55637
MG
3514
3515 /* Only wake kswapd if all zones are unbalanced */
3516 for (z = 0; z <= classzone_idx; z++) {
3517 zone = pgdat->node_zones + z;
6aa303de 3518 if (!managed_zone(zone))
e1a55637
MG
3519 continue;
3520
3521 if (zone_balanced(zone, order, classzone_idx))
3522 return;
3523 }
88f5acf8
MG
3524
3525 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3526 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3527}
3528
c6f37f12 3529#ifdef CONFIG_HIBERNATION
1da177e4 3530/*
7b51755c 3531 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3532 * freed pages.
3533 *
3534 * Rather than trying to age LRUs the aim is to preserve the overall
3535 * LRU order by reclaiming preferentially
3536 * inactive > active > active referenced > active mapped
1da177e4 3537 */
7b51755c 3538unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3539{
d6277db4 3540 struct reclaim_state reclaim_state;
d6277db4 3541 struct scan_control sc = {
ee814fe2 3542 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3543 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3544 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3545 .priority = DEF_PRIORITY,
d6277db4 3546 .may_writepage = 1,
ee814fe2
JW
3547 .may_unmap = 1,
3548 .may_swap = 1,
7b51755c 3549 .hibernation_mode = 1,
1da177e4 3550 };
a09ed5e0 3551 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3552 struct task_struct *p = current;
3553 unsigned long nr_reclaimed;
1da177e4 3554
7b51755c
KM
3555 p->flags |= PF_MEMALLOC;
3556 lockdep_set_current_reclaim_state(sc.gfp_mask);
3557 reclaim_state.reclaimed_slab = 0;
3558 p->reclaim_state = &reclaim_state;
d6277db4 3559
3115cd91 3560 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3561
7b51755c
KM
3562 p->reclaim_state = NULL;
3563 lockdep_clear_current_reclaim_state();
3564 p->flags &= ~PF_MEMALLOC;
d6277db4 3565
7b51755c 3566 return nr_reclaimed;
1da177e4 3567}
c6f37f12 3568#endif /* CONFIG_HIBERNATION */
1da177e4 3569
1da177e4
LT
3570/* It's optimal to keep kswapds on the same CPUs as their memory, but
3571 not required for correctness. So if the last cpu in a node goes
3572 away, we get changed to run anywhere: as the first one comes back,
3573 restore their cpu bindings. */
517bbed9 3574static int kswapd_cpu_online(unsigned int cpu)
1da177e4 3575{
58c0a4a7 3576 int nid;
1da177e4 3577
517bbed9
SAS
3578 for_each_node_state(nid, N_MEMORY) {
3579 pg_data_t *pgdat = NODE_DATA(nid);
3580 const struct cpumask *mask;
a70f7302 3581
517bbed9 3582 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3583
517bbed9
SAS
3584 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3585 /* One of our CPUs online: restore mask */
3586 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4 3587 }
517bbed9 3588 return 0;
1da177e4 3589}
1da177e4 3590
3218ae14
YG
3591/*
3592 * This kswapd start function will be called by init and node-hot-add.
3593 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3594 */
3595int kswapd_run(int nid)
3596{
3597 pg_data_t *pgdat = NODE_DATA(nid);
3598 int ret = 0;
3599
3600 if (pgdat->kswapd)
3601 return 0;
3602
3603 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3604 if (IS_ERR(pgdat->kswapd)) {
3605 /* failure at boot is fatal */
3606 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3607 pr_err("Failed to start kswapd on node %d\n", nid);
3608 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3609 pgdat->kswapd = NULL;
3218ae14
YG
3610 }
3611 return ret;
3612}
3613
8fe23e05 3614/*
d8adde17 3615 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3616 * hold mem_hotplug_begin/end().
8fe23e05
DR
3617 */
3618void kswapd_stop(int nid)
3619{
3620 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3621
d8adde17 3622 if (kswapd) {
8fe23e05 3623 kthread_stop(kswapd);
d8adde17
JL
3624 NODE_DATA(nid)->kswapd = NULL;
3625 }
8fe23e05
DR
3626}
3627
1da177e4
LT
3628static int __init kswapd_init(void)
3629{
517bbed9 3630 int nid, ret;
69e05944 3631
1da177e4 3632 swap_setup();
48fb2e24 3633 for_each_node_state(nid, N_MEMORY)
3218ae14 3634 kswapd_run(nid);
517bbed9
SAS
3635 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3636 "mm/vmscan:online", kswapd_cpu_online,
3637 NULL);
3638 WARN_ON(ret < 0);
1da177e4
LT
3639 return 0;
3640}
3641
3642module_init(kswapd_init)
9eeff239
CL
3643
3644#ifdef CONFIG_NUMA
3645/*
a5f5f91d 3646 * Node reclaim mode
9eeff239 3647 *
a5f5f91d 3648 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 3649 * the watermarks.
9eeff239 3650 */
a5f5f91d 3651int node_reclaim_mode __read_mostly;
9eeff239 3652
1b2ffb78 3653#define RECLAIM_OFF 0
7d03431c 3654#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3655#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3656#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3657
a92f7126 3658/*
a5f5f91d 3659 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
3660 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3661 * a zone.
3662 */
a5f5f91d 3663#define NODE_RECLAIM_PRIORITY 4
a92f7126 3664
9614634f 3665/*
a5f5f91d 3666 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
3667 * occur.
3668 */
3669int sysctl_min_unmapped_ratio = 1;
3670
0ff38490
CL
3671/*
3672 * If the number of slab pages in a zone grows beyond this percentage then
3673 * slab reclaim needs to occur.
3674 */
3675int sysctl_min_slab_ratio = 5;
3676
11fb9989 3677static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 3678{
11fb9989
MG
3679 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3680 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3681 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
3682
3683 /*
3684 * It's possible for there to be more file mapped pages than
3685 * accounted for by the pages on the file LRU lists because
3686 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3687 */
3688 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3689}
3690
3691/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 3692static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 3693{
d031a157
AM
3694 unsigned long nr_pagecache_reclaimable;
3695 unsigned long delta = 0;
90afa5de
MG
3696
3697 /*
95bbc0c7 3698 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 3699 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 3700 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
3701 * a better estimate
3702 */
a5f5f91d
MG
3703 if (node_reclaim_mode & RECLAIM_UNMAP)
3704 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 3705 else
a5f5f91d 3706 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
3707
3708 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
3709 if (!(node_reclaim_mode & RECLAIM_WRITE))
3710 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
3711
3712 /* Watch for any possible underflows due to delta */
3713 if (unlikely(delta > nr_pagecache_reclaimable))
3714 delta = nr_pagecache_reclaimable;
3715
3716 return nr_pagecache_reclaimable - delta;
3717}
3718
9eeff239 3719/*
a5f5f91d 3720 * Try to free up some pages from this node through reclaim.
9eeff239 3721 */
a5f5f91d 3722static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 3723{
7fb2d46d 3724 /* Minimum pages needed in order to stay on node */
69e05944 3725 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3726 struct task_struct *p = current;
3727 struct reclaim_state reclaim_state;
a5f5f91d 3728 int classzone_idx = gfp_zone(gfp_mask);
179e9639 3729 struct scan_control sc = {
62b726c1 3730 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3731 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3732 .order = order,
a5f5f91d
MG
3733 .priority = NODE_RECLAIM_PRIORITY,
3734 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3735 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 3736 .may_swap = 1,
a5f5f91d 3737 .reclaim_idx = classzone_idx,
179e9639 3738 };
9eeff239 3739
9eeff239 3740 cond_resched();
d4f7796e 3741 /*
95bbc0c7 3742 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 3743 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 3744 * and RECLAIM_UNMAP.
d4f7796e
CL
3745 */
3746 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3747 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3748 reclaim_state.reclaimed_slab = 0;
3749 p->reclaim_state = &reclaim_state;
c84db23c 3750
a5f5f91d 3751 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490
CL
3752 /*
3753 * Free memory by calling shrink zone with increasing
3754 * priorities until we have enough memory freed.
3755 */
0ff38490 3756 do {
970a39a3 3757 shrink_node(pgdat, &sc);
9e3b2f8c 3758 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3759 }
c84db23c 3760
9eeff239 3761 p->reclaim_state = NULL;
d4f7796e 3762 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3763 lockdep_clear_current_reclaim_state();
a79311c1 3764 return sc.nr_reclaimed >= nr_pages;
9eeff239 3765}
179e9639 3766
a5f5f91d 3767int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 3768{
d773ed6b 3769 int ret;
179e9639
AM
3770
3771 /*
a5f5f91d 3772 * Node reclaim reclaims unmapped file backed pages and
0ff38490 3773 * slab pages if we are over the defined limits.
34aa1330 3774 *
9614634f
CL
3775 * A small portion of unmapped file backed pages is needed for
3776 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
3777 * thrown out if the node is overallocated. So we do not reclaim
3778 * if less than a specified percentage of the node is used by
9614634f 3779 * unmapped file backed pages.
179e9639 3780 */
a5f5f91d
MG
3781 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3782 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3783 return NODE_RECLAIM_FULL;
179e9639 3784
a5f5f91d
MG
3785 if (!pgdat_reclaimable(pgdat))
3786 return NODE_RECLAIM_FULL;
d773ed6b 3787
179e9639 3788 /*
d773ed6b 3789 * Do not scan if the allocation should not be delayed.
179e9639 3790 */
d0164adc 3791 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 3792 return NODE_RECLAIM_NOSCAN;
179e9639
AM
3793
3794 /*
a5f5f91d 3795 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
3796 * have associated processors. This will favor the local processor
3797 * over remote processors and spread off node memory allocations
3798 * as wide as possible.
3799 */
a5f5f91d
MG
3800 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3801 return NODE_RECLAIM_NOSCAN;
d773ed6b 3802
a5f5f91d
MG
3803 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3804 return NODE_RECLAIM_NOSCAN;
fa5e084e 3805
a5f5f91d
MG
3806 ret = __node_reclaim(pgdat, gfp_mask, order);
3807 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 3808
24cf7251
MG
3809 if (!ret)
3810 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3811
d773ed6b 3812 return ret;
179e9639 3813}
9eeff239 3814#endif
894bc310 3815
894bc310
LS
3816/*
3817 * page_evictable - test whether a page is evictable
3818 * @page: the page to test
894bc310
LS
3819 *
3820 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3821 * lists vs unevictable list.
894bc310
LS
3822 *
3823 * Reasons page might not be evictable:
ba9ddf49 3824 * (1) page's mapping marked unevictable
b291f000 3825 * (2) page is part of an mlocked VMA
ba9ddf49 3826 *
894bc310 3827 */
39b5f29a 3828int page_evictable(struct page *page)
894bc310 3829{
39b5f29a 3830 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3831}
89e004ea 3832
85046579 3833#ifdef CONFIG_SHMEM
89e004ea 3834/**
24513264
HD
3835 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3836 * @pages: array of pages to check
3837 * @nr_pages: number of pages to check
89e004ea 3838 *
24513264 3839 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3840 *
3841 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3842 */
24513264 3843void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3844{
925b7673 3845 struct lruvec *lruvec;
785b99fe 3846 struct pglist_data *pgdat = NULL;
24513264
HD
3847 int pgscanned = 0;
3848 int pgrescued = 0;
3849 int i;
89e004ea 3850
24513264
HD
3851 for (i = 0; i < nr_pages; i++) {
3852 struct page *page = pages[i];
785b99fe 3853 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 3854
24513264 3855 pgscanned++;
785b99fe
MG
3856 if (pagepgdat != pgdat) {
3857 if (pgdat)
3858 spin_unlock_irq(&pgdat->lru_lock);
3859 pgdat = pagepgdat;
3860 spin_lock_irq(&pgdat->lru_lock);
24513264 3861 }
785b99fe 3862 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 3863
24513264
HD
3864 if (!PageLRU(page) || !PageUnevictable(page))
3865 continue;
89e004ea 3866
39b5f29a 3867 if (page_evictable(page)) {
24513264
HD
3868 enum lru_list lru = page_lru_base_type(page);
3869
309381fe 3870 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3871 ClearPageUnevictable(page);
fa9add64
HD
3872 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3873 add_page_to_lru_list(page, lruvec, lru);
24513264 3874 pgrescued++;
89e004ea 3875 }
24513264 3876 }
89e004ea 3877
785b99fe 3878 if (pgdat) {
24513264
HD
3879 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3880 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 3881 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 3882 }
89e004ea 3883}
85046579 3884#endif /* CONFIG_SHMEM */