]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/vmscan.c
mm/vmscan.c: generalize shrink_slab() calls in shrink_node()
[mirror_ubuntu-kernels.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
b1de0d13
MH
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
1da177e4 17#include <linux/mm.h>
5b3cc15a 18#include <linux/sched/mm.h>
1da177e4 19#include <linux/module.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/kernel_stat.h>
22#include <linux/swap.h>
23#include <linux/pagemap.h>
24#include <linux/init.h>
25#include <linux/highmem.h>
70ddf637 26#include <linux/vmpressure.h>
e129b5c2 27#include <linux/vmstat.h>
1da177e4
LT
28#include <linux/file.h>
29#include <linux/writeback.h>
30#include <linux/blkdev.h>
31#include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33#include <linux/mm_inline.h>
1da177e4
LT
34#include <linux/backing-dev.h>
35#include <linux/rmap.h>
36#include <linux/topology.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
3e7d3449 39#include <linux/compaction.h>
1da177e4
LT
40#include <linux/notifier.h>
41#include <linux/rwsem.h>
248a0301 42#include <linux/delay.h>
3218ae14 43#include <linux/kthread.h>
7dfb7103 44#include <linux/freezer.h>
66e1707b 45#include <linux/memcontrol.h>
873b4771 46#include <linux/delayacct.h>
af936a16 47#include <linux/sysctl.h>
929bea7c 48#include <linux/oom.h>
268bb0ce 49#include <linux/prefetch.h>
b1de0d13 50#include <linux/printk.h>
f9fe48be 51#include <linux/dax.h>
1da177e4
LT
52
53#include <asm/tlbflush.h>
54#include <asm/div64.h>
55
56#include <linux/swapops.h>
117aad1e 57#include <linux/balloon_compaction.h>
1da177e4 58
0f8053a5
NP
59#include "internal.h"
60
33906bc5
MG
61#define CREATE_TRACE_POINTS
62#include <trace/events/vmscan.h>
63
1da177e4 64struct scan_control {
22fba335
KM
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
ee814fe2
JW
68 /*
69 * Nodemask of nodes allowed by the caller. If NULL, all nodes
70 * are scanned.
71 */
72 nodemask_t *nodemask;
9e3b2f8c 73
f16015fb
JW
74 /*
75 * The memory cgroup that hit its limit and as a result is the
76 * primary target of this reclaim invocation.
77 */
78 struct mem_cgroup *target_mem_cgroup;
66e1707b 79
1276ad68 80 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
81 unsigned int may_writepage:1;
82
83 /* Can mapped pages be reclaimed? */
84 unsigned int may_unmap:1;
85
86 /* Can pages be swapped as part of reclaim? */
87 unsigned int may_swap:1;
88
d6622f63
YX
89 /*
90 * Cgroups are not reclaimed below their configured memory.low,
91 * unless we threaten to OOM. If any cgroups are skipped due to
92 * memory.low and nothing was reclaimed, go back for memory.low.
93 */
94 unsigned int memcg_low_reclaim:1;
95 unsigned int memcg_low_skipped:1;
241994ed 96
ee814fe2
JW
97 unsigned int hibernation_mode:1;
98
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready:1;
101
bb451fdf
GT
102 /* Allocation order */
103 s8 order;
104
105 /* Scan (total_size >> priority) pages at once */
106 s8 priority;
107
108 /* The highest zone to isolate pages for reclaim from */
109 s8 reclaim_idx;
110
111 /* This context's GFP mask */
112 gfp_t gfp_mask;
113
ee814fe2
JW
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned;
116
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed;
d108c772
AR
119
120 struct {
121 unsigned int dirty;
122 unsigned int unqueued_dirty;
123 unsigned int congested;
124 unsigned int writeback;
125 unsigned int immediate;
126 unsigned int file_taken;
127 unsigned int taken;
128 } nr;
1da177e4
LT
129};
130
1da177e4
LT
131#ifdef ARCH_HAS_PREFETCH
132#define prefetch_prev_lru_page(_page, _base, _field) \
133 do { \
134 if ((_page)->lru.prev != _base) { \
135 struct page *prev; \
136 \
137 prev = lru_to_page(&(_page->lru)); \
138 prefetch(&prev->_field); \
139 } \
140 } while (0)
141#else
142#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
143#endif
144
145#ifdef ARCH_HAS_PREFETCHW
146#define prefetchw_prev_lru_page(_page, _base, _field) \
147 do { \
148 if ((_page)->lru.prev != _base) { \
149 struct page *prev; \
150 \
151 prev = lru_to_page(&(_page->lru)); \
152 prefetchw(&prev->_field); \
153 } \
154 } while (0)
155#else
156#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
157#endif
158
159/*
160 * From 0 .. 100. Higher means more swappy.
161 */
162int vm_swappiness = 60;
d0480be4
WSH
163/*
164 * The total number of pages which are beyond the high watermark within all
165 * zones.
166 */
167unsigned long vm_total_pages;
1da177e4
LT
168
169static LIST_HEAD(shrinker_list);
170static DECLARE_RWSEM(shrinker_rwsem);
171
b4c2b231
KT
172#ifdef CONFIG_MEMCG_KMEM
173static DEFINE_IDR(shrinker_idr);
174static int shrinker_nr_max;
175
176static int prealloc_memcg_shrinker(struct shrinker *shrinker)
177{
178 int id, ret = -ENOMEM;
179
180 down_write(&shrinker_rwsem);
181 /* This may call shrinker, so it must use down_read_trylock() */
182 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
183 if (id < 0)
184 goto unlock;
185
0a4465d3
KT
186 if (id >= shrinker_nr_max) {
187 if (memcg_expand_shrinker_maps(id)) {
188 idr_remove(&shrinker_idr, id);
189 goto unlock;
190 }
191
b4c2b231 192 shrinker_nr_max = id + 1;
0a4465d3 193 }
b4c2b231
KT
194 shrinker->id = id;
195 ret = 0;
196unlock:
197 up_write(&shrinker_rwsem);
198 return ret;
199}
200
201static void unregister_memcg_shrinker(struct shrinker *shrinker)
202{
203 int id = shrinker->id;
204
205 BUG_ON(id < 0);
206
207 down_write(&shrinker_rwsem);
208 idr_remove(&shrinker_idr, id);
209 up_write(&shrinker_rwsem);
210}
211#else /* CONFIG_MEMCG_KMEM */
212static int prealloc_memcg_shrinker(struct shrinker *shrinker)
213{
214 return 0;
215}
216
217static void unregister_memcg_shrinker(struct shrinker *shrinker)
218{
219}
220#endif /* CONFIG_MEMCG_KMEM */
221
c255a458 222#ifdef CONFIG_MEMCG
89b5fae5
JW
223static bool global_reclaim(struct scan_control *sc)
224{
f16015fb 225 return !sc->target_mem_cgroup;
89b5fae5 226}
97c9341f
TH
227
228/**
229 * sane_reclaim - is the usual dirty throttling mechanism operational?
230 * @sc: scan_control in question
231 *
232 * The normal page dirty throttling mechanism in balance_dirty_pages() is
233 * completely broken with the legacy memcg and direct stalling in
234 * shrink_page_list() is used for throttling instead, which lacks all the
235 * niceties such as fairness, adaptive pausing, bandwidth proportional
236 * allocation and configurability.
237 *
238 * This function tests whether the vmscan currently in progress can assume
239 * that the normal dirty throttling mechanism is operational.
240 */
241static bool sane_reclaim(struct scan_control *sc)
242{
243 struct mem_cgroup *memcg = sc->target_mem_cgroup;
244
245 if (!memcg)
246 return true;
247#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 248 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
249 return true;
250#endif
251 return false;
252}
e3c1ac58
AR
253
254static void set_memcg_congestion(pg_data_t *pgdat,
255 struct mem_cgroup *memcg,
256 bool congested)
257{
258 struct mem_cgroup_per_node *mn;
259
260 if (!memcg)
261 return;
262
263 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
264 WRITE_ONCE(mn->congested, congested);
265}
266
267static bool memcg_congested(pg_data_t *pgdat,
268 struct mem_cgroup *memcg)
269{
270 struct mem_cgroup_per_node *mn;
271
272 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
273 return READ_ONCE(mn->congested);
274
275}
91a45470 276#else
89b5fae5
JW
277static bool global_reclaim(struct scan_control *sc)
278{
279 return true;
280}
97c9341f
TH
281
282static bool sane_reclaim(struct scan_control *sc)
283{
284 return true;
285}
e3c1ac58
AR
286
287static inline void set_memcg_congestion(struct pglist_data *pgdat,
288 struct mem_cgroup *memcg, bool congested)
289{
290}
291
292static inline bool memcg_congested(struct pglist_data *pgdat,
293 struct mem_cgroup *memcg)
294{
295 return false;
296
297}
91a45470
KH
298#endif
299
5a1c84b4
MG
300/*
301 * This misses isolated pages which are not accounted for to save counters.
302 * As the data only determines if reclaim or compaction continues, it is
303 * not expected that isolated pages will be a dominating factor.
304 */
305unsigned long zone_reclaimable_pages(struct zone *zone)
306{
307 unsigned long nr;
308
309 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
310 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
311 if (get_nr_swap_pages() > 0)
312 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
313 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
314
315 return nr;
316}
317
fd538803
MH
318/**
319 * lruvec_lru_size - Returns the number of pages on the given LRU list.
320 * @lruvec: lru vector
321 * @lru: lru to use
322 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
323 */
324unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 325{
fd538803
MH
326 unsigned long lru_size;
327 int zid;
328
c3c787e8 329 if (!mem_cgroup_disabled())
fd538803
MH
330 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
331 else
332 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
a3d8e054 333
fd538803
MH
334 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
335 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
336 unsigned long size;
c9f299d9 337
fd538803
MH
338 if (!managed_zone(zone))
339 continue;
340
341 if (!mem_cgroup_disabled())
342 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
343 else
344 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
345 NR_ZONE_LRU_BASE + lru);
346 lru_size -= min(size, lru_size);
347 }
348
349 return lru_size;
b4536f0c 350
b4536f0c
MH
351}
352
1da177e4 353/*
1d3d4437 354 * Add a shrinker callback to be called from the vm.
1da177e4 355 */
8e04944f 356int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 357{
1d3d4437
GC
358 size_t size = sizeof(*shrinker->nr_deferred);
359
1d3d4437
GC
360 if (shrinker->flags & SHRINKER_NUMA_AWARE)
361 size *= nr_node_ids;
362
363 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
364 if (!shrinker->nr_deferred)
365 return -ENOMEM;
b4c2b231 366
b0dedc49
KT
367 /*
368 * There is a window between prealloc_shrinker()
369 * and register_shrinker_prepared(). We don't want
370 * to clear bit of a shrinker in such the state
371 * in shrink_slab_memcg(), since this will impose
372 * restrictions on a code registering a shrinker
373 * (they would have to guarantee, their LRU lists
374 * are empty till shrinker is completely registered).
375 * So, we differ the situation, when 1)a shrinker
376 * is semi-registered (id is assigned, but it has
377 * not yet linked to shrinker_list) and 2)shrinker
378 * is not registered (id is not assigned).
379 */
380 INIT_LIST_HEAD(&shrinker->list);
381
b4c2b231
KT
382 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
383 if (prealloc_memcg_shrinker(shrinker))
384 goto free_deferred;
385 }
386
8e04944f 387 return 0;
b4c2b231
KT
388
389free_deferred:
390 kfree(shrinker->nr_deferred);
391 shrinker->nr_deferred = NULL;
392 return -ENOMEM;
8e04944f
TH
393}
394
395void free_prealloced_shrinker(struct shrinker *shrinker)
396{
b4c2b231
KT
397 if (!shrinker->nr_deferred)
398 return;
399
400 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
401 unregister_memcg_shrinker(shrinker);
402
8e04944f
TH
403 kfree(shrinker->nr_deferred);
404 shrinker->nr_deferred = NULL;
405}
1d3d4437 406
8e04944f
TH
407void register_shrinker_prepared(struct shrinker *shrinker)
408{
8e1f936b
RR
409 down_write(&shrinker_rwsem);
410 list_add_tail(&shrinker->list, &shrinker_list);
411 up_write(&shrinker_rwsem);
8e04944f
TH
412}
413
414int register_shrinker(struct shrinker *shrinker)
415{
416 int err = prealloc_shrinker(shrinker);
417
418 if (err)
419 return err;
420 register_shrinker_prepared(shrinker);
1d3d4437 421 return 0;
1da177e4 422}
8e1f936b 423EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
424
425/*
426 * Remove one
427 */
8e1f936b 428void unregister_shrinker(struct shrinker *shrinker)
1da177e4 429{
bb422a73
TH
430 if (!shrinker->nr_deferred)
431 return;
b4c2b231
KT
432 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
433 unregister_memcg_shrinker(shrinker);
1da177e4
LT
434 down_write(&shrinker_rwsem);
435 list_del(&shrinker->list);
436 up_write(&shrinker_rwsem);
ae393321 437 kfree(shrinker->nr_deferred);
bb422a73 438 shrinker->nr_deferred = NULL;
1da177e4 439}
8e1f936b 440EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
441
442#define SHRINK_BATCH 128
1d3d4437 443
cb731d6c 444static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 445 struct shrinker *shrinker, int priority)
1d3d4437
GC
446{
447 unsigned long freed = 0;
448 unsigned long long delta;
449 long total_scan;
d5bc5fd3 450 long freeable;
1d3d4437
GC
451 long nr;
452 long new_nr;
453 int nid = shrinkctl->nid;
454 long batch_size = shrinker->batch ? shrinker->batch
455 : SHRINK_BATCH;
5f33a080 456 long scanned = 0, next_deferred;
1d3d4437 457
d5bc5fd3
VD
458 freeable = shrinker->count_objects(shrinker, shrinkctl);
459 if (freeable == 0)
1d3d4437
GC
460 return 0;
461
462 /*
463 * copy the current shrinker scan count into a local variable
464 * and zero it so that other concurrent shrinker invocations
465 * don't also do this scanning work.
466 */
467 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
468
469 total_scan = nr;
9092c71b
JB
470 delta = freeable >> priority;
471 delta *= 4;
472 do_div(delta, shrinker->seeks);
1d3d4437
GC
473 total_scan += delta;
474 if (total_scan < 0) {
8612c663 475 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 476 shrinker->scan_objects, total_scan);
d5bc5fd3 477 total_scan = freeable;
5f33a080
SL
478 next_deferred = nr;
479 } else
480 next_deferred = total_scan;
1d3d4437
GC
481
482 /*
483 * We need to avoid excessive windup on filesystem shrinkers
484 * due to large numbers of GFP_NOFS allocations causing the
485 * shrinkers to return -1 all the time. This results in a large
486 * nr being built up so when a shrink that can do some work
487 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 488 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
489 * memory.
490 *
491 * Hence only allow the shrinker to scan the entire cache when
492 * a large delta change is calculated directly.
493 */
d5bc5fd3
VD
494 if (delta < freeable / 4)
495 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
496
497 /*
498 * Avoid risking looping forever due to too large nr value:
499 * never try to free more than twice the estimate number of
500 * freeable entries.
501 */
d5bc5fd3
VD
502 if (total_scan > freeable * 2)
503 total_scan = freeable * 2;
1d3d4437
GC
504
505 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 506 freeable, delta, total_scan, priority);
1d3d4437 507
0b1fb40a
VD
508 /*
509 * Normally, we should not scan less than batch_size objects in one
510 * pass to avoid too frequent shrinker calls, but if the slab has less
511 * than batch_size objects in total and we are really tight on memory,
512 * we will try to reclaim all available objects, otherwise we can end
513 * up failing allocations although there are plenty of reclaimable
514 * objects spread over several slabs with usage less than the
515 * batch_size.
516 *
517 * We detect the "tight on memory" situations by looking at the total
518 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 519 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
520 * scanning at high prio and therefore should try to reclaim as much as
521 * possible.
522 */
523 while (total_scan >= batch_size ||
d5bc5fd3 524 total_scan >= freeable) {
a0b02131 525 unsigned long ret;
0b1fb40a 526 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 527
0b1fb40a 528 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 529 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
530 ret = shrinker->scan_objects(shrinker, shrinkctl);
531 if (ret == SHRINK_STOP)
532 break;
533 freed += ret;
1d3d4437 534
d460acb5
CW
535 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
536 total_scan -= shrinkctl->nr_scanned;
537 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
538
539 cond_resched();
540 }
541
5f33a080
SL
542 if (next_deferred >= scanned)
543 next_deferred -= scanned;
544 else
545 next_deferred = 0;
1d3d4437
GC
546 /*
547 * move the unused scan count back into the shrinker in a
548 * manner that handles concurrent updates. If we exhausted the
549 * scan, there is no need to do an update.
550 */
5f33a080
SL
551 if (next_deferred > 0)
552 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
553 &shrinker->nr_deferred[nid]);
554 else
555 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
556
df9024a8 557 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 558 return freed;
1495f230
YH
559}
560
b0dedc49
KT
561#ifdef CONFIG_MEMCG_KMEM
562static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
563 struct mem_cgroup *memcg, int priority)
564{
565 struct memcg_shrinker_map *map;
566 unsigned long freed = 0;
567 int ret, i;
568
569 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
570 return 0;
571
572 if (!down_read_trylock(&shrinker_rwsem))
573 return 0;
574
575 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
576 true);
577 if (unlikely(!map))
578 goto unlock;
579
580 for_each_set_bit(i, map->map, shrinker_nr_max) {
581 struct shrink_control sc = {
582 .gfp_mask = gfp_mask,
583 .nid = nid,
584 .memcg = memcg,
585 };
586 struct shrinker *shrinker;
587
588 shrinker = idr_find(&shrinker_idr, i);
589 if (unlikely(!shrinker)) {
590 clear_bit(i, map->map);
591 continue;
592 }
593
594 /* See comment in prealloc_shrinker() */
595 if (unlikely(list_empty(&shrinker->list)))
596 continue;
597
598 ret = do_shrink_slab(&sc, shrinker, priority);
599 freed += ret;
600
601 if (rwsem_is_contended(&shrinker_rwsem)) {
602 freed = freed ? : 1;
603 break;
604 }
605 }
606unlock:
607 up_read(&shrinker_rwsem);
608 return freed;
609}
610#else /* CONFIG_MEMCG_KMEM */
611static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
612 struct mem_cgroup *memcg, int priority)
613{
614 return 0;
615}
616#endif /* CONFIG_MEMCG_KMEM */
617
6b4f7799 618/**
cb731d6c 619 * shrink_slab - shrink slab caches
6b4f7799
JW
620 * @gfp_mask: allocation context
621 * @nid: node whose slab caches to target
cb731d6c 622 * @memcg: memory cgroup whose slab caches to target
9092c71b 623 * @priority: the reclaim priority
1da177e4 624 *
6b4f7799 625 * Call the shrink functions to age shrinkable caches.
1da177e4 626 *
6b4f7799
JW
627 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
628 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 629 *
aeed1d32
VD
630 * @memcg specifies the memory cgroup to target. Unaware shrinkers
631 * are called only if it is the root cgroup.
cb731d6c 632 *
9092c71b
JB
633 * @priority is sc->priority, we take the number of objects and >> by priority
634 * in order to get the scan target.
b15e0905 635 *
6b4f7799 636 * Returns the number of reclaimed slab objects.
1da177e4 637 */
cb731d6c
VD
638static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
639 struct mem_cgroup *memcg,
9092c71b 640 int priority)
1da177e4
LT
641{
642 struct shrinker *shrinker;
24f7c6b9 643 unsigned long freed = 0;
1da177e4 644
aeed1d32 645 if (!mem_cgroup_is_root(memcg))
b0dedc49 646 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 647
e830c63a 648 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 649 goto out;
1da177e4
LT
650
651 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
652 struct shrink_control sc = {
653 .gfp_mask = gfp_mask,
654 .nid = nid,
cb731d6c 655 .memcg = memcg,
6b4f7799 656 };
ec97097b 657
6b4f7799
JW
658 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
659 sc.nid = 0;
1da177e4 660
9092c71b 661 freed += do_shrink_slab(&sc, shrinker, priority);
e496612c
MK
662 /*
663 * Bail out if someone want to register a new shrinker to
664 * prevent the regsitration from being stalled for long periods
665 * by parallel ongoing shrinking.
666 */
667 if (rwsem_is_contended(&shrinker_rwsem)) {
668 freed = freed ? : 1;
669 break;
670 }
1da177e4 671 }
6b4f7799 672
1da177e4 673 up_read(&shrinker_rwsem);
f06590bd
MK
674out:
675 cond_resched();
24f7c6b9 676 return freed;
1da177e4
LT
677}
678
cb731d6c
VD
679void drop_slab_node(int nid)
680{
681 unsigned long freed;
682
683 do {
684 struct mem_cgroup *memcg = NULL;
685
686 freed = 0;
aeed1d32 687 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 688 do {
9092c71b 689 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c
VD
690 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
691 } while (freed > 10);
692}
693
694void drop_slab(void)
695{
696 int nid;
697
698 for_each_online_node(nid)
699 drop_slab_node(nid);
700}
701
1da177e4
LT
702static inline int is_page_cache_freeable(struct page *page)
703{
ceddc3a5
JW
704 /*
705 * A freeable page cache page is referenced only by the caller
706 * that isolated the page, the page cache radix tree and
707 * optional buffer heads at page->private.
708 */
bd4c82c2
HY
709 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
710 HPAGE_PMD_NR : 1;
711 return page_count(page) - page_has_private(page) == 1 + radix_pins;
1da177e4
LT
712}
713
703c2708 714static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 715{
930d9152 716 if (current->flags & PF_SWAPWRITE)
1da177e4 717 return 1;
703c2708 718 if (!inode_write_congested(inode))
1da177e4 719 return 1;
703c2708 720 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
721 return 1;
722 return 0;
723}
724
725/*
726 * We detected a synchronous write error writing a page out. Probably
727 * -ENOSPC. We need to propagate that into the address_space for a subsequent
728 * fsync(), msync() or close().
729 *
730 * The tricky part is that after writepage we cannot touch the mapping: nothing
731 * prevents it from being freed up. But we have a ref on the page and once
732 * that page is locked, the mapping is pinned.
733 *
734 * We're allowed to run sleeping lock_page() here because we know the caller has
735 * __GFP_FS.
736 */
737static void handle_write_error(struct address_space *mapping,
738 struct page *page, int error)
739{
7eaceacc 740 lock_page(page);
3e9f45bd
GC
741 if (page_mapping(page) == mapping)
742 mapping_set_error(mapping, error);
1da177e4
LT
743 unlock_page(page);
744}
745
04e62a29
CL
746/* possible outcome of pageout() */
747typedef enum {
748 /* failed to write page out, page is locked */
749 PAGE_KEEP,
750 /* move page to the active list, page is locked */
751 PAGE_ACTIVATE,
752 /* page has been sent to the disk successfully, page is unlocked */
753 PAGE_SUCCESS,
754 /* page is clean and locked */
755 PAGE_CLEAN,
756} pageout_t;
757
1da177e4 758/*
1742f19f
AM
759 * pageout is called by shrink_page_list() for each dirty page.
760 * Calls ->writepage().
1da177e4 761 */
c661b078 762static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 763 struct scan_control *sc)
1da177e4
LT
764{
765 /*
766 * If the page is dirty, only perform writeback if that write
767 * will be non-blocking. To prevent this allocation from being
768 * stalled by pagecache activity. But note that there may be
769 * stalls if we need to run get_block(). We could test
770 * PagePrivate for that.
771 *
8174202b 772 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
773 * this page's queue, we can perform writeback even if that
774 * will block.
775 *
776 * If the page is swapcache, write it back even if that would
777 * block, for some throttling. This happens by accident, because
778 * swap_backing_dev_info is bust: it doesn't reflect the
779 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
780 */
781 if (!is_page_cache_freeable(page))
782 return PAGE_KEEP;
783 if (!mapping) {
784 /*
785 * Some data journaling orphaned pages can have
786 * page->mapping == NULL while being dirty with clean buffers.
787 */
266cf658 788 if (page_has_private(page)) {
1da177e4
LT
789 if (try_to_free_buffers(page)) {
790 ClearPageDirty(page);
b1de0d13 791 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
792 return PAGE_CLEAN;
793 }
794 }
795 return PAGE_KEEP;
796 }
797 if (mapping->a_ops->writepage == NULL)
798 return PAGE_ACTIVATE;
703c2708 799 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
800 return PAGE_KEEP;
801
802 if (clear_page_dirty_for_io(page)) {
803 int res;
804 struct writeback_control wbc = {
805 .sync_mode = WB_SYNC_NONE,
806 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
807 .range_start = 0,
808 .range_end = LLONG_MAX,
1da177e4
LT
809 .for_reclaim = 1,
810 };
811
812 SetPageReclaim(page);
813 res = mapping->a_ops->writepage(page, &wbc);
814 if (res < 0)
815 handle_write_error(mapping, page, res);
994fc28c 816 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
817 ClearPageReclaim(page);
818 return PAGE_ACTIVATE;
819 }
c661b078 820
1da177e4
LT
821 if (!PageWriteback(page)) {
822 /* synchronous write or broken a_ops? */
823 ClearPageReclaim(page);
824 }
3aa23851 825 trace_mm_vmscan_writepage(page);
c4a25635 826 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
827 return PAGE_SUCCESS;
828 }
829
830 return PAGE_CLEAN;
831}
832
a649fd92 833/*
e286781d
NP
834 * Same as remove_mapping, but if the page is removed from the mapping, it
835 * gets returned with a refcount of 0.
a649fd92 836 */
a528910e
JW
837static int __remove_mapping(struct address_space *mapping, struct page *page,
838 bool reclaimed)
49d2e9cc 839{
c4843a75 840 unsigned long flags;
bd4c82c2 841 int refcount;
c4843a75 842
28e4d965
NP
843 BUG_ON(!PageLocked(page));
844 BUG_ON(mapping != page_mapping(page));
49d2e9cc 845
b93b0163 846 xa_lock_irqsave(&mapping->i_pages, flags);
49d2e9cc 847 /*
0fd0e6b0
NP
848 * The non racy check for a busy page.
849 *
850 * Must be careful with the order of the tests. When someone has
851 * a ref to the page, it may be possible that they dirty it then
852 * drop the reference. So if PageDirty is tested before page_count
853 * here, then the following race may occur:
854 *
855 * get_user_pages(&page);
856 * [user mapping goes away]
857 * write_to(page);
858 * !PageDirty(page) [good]
859 * SetPageDirty(page);
860 * put_page(page);
861 * !page_count(page) [good, discard it]
862 *
863 * [oops, our write_to data is lost]
864 *
865 * Reversing the order of the tests ensures such a situation cannot
866 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 867 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
868 *
869 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 870 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 871 */
bd4c82c2
HY
872 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
873 refcount = 1 + HPAGE_PMD_NR;
874 else
875 refcount = 2;
876 if (!page_ref_freeze(page, refcount))
49d2e9cc 877 goto cannot_free;
e286781d
NP
878 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
879 if (unlikely(PageDirty(page))) {
bd4c82c2 880 page_ref_unfreeze(page, refcount);
49d2e9cc 881 goto cannot_free;
e286781d 882 }
49d2e9cc
CL
883
884 if (PageSwapCache(page)) {
885 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 886 mem_cgroup_swapout(page, swap);
49d2e9cc 887 __delete_from_swap_cache(page);
b93b0163 888 xa_unlock_irqrestore(&mapping->i_pages, flags);
75f6d6d2 889 put_swap_page(page, swap);
e286781d 890 } else {
6072d13c 891 void (*freepage)(struct page *);
a528910e 892 void *shadow = NULL;
6072d13c
LT
893
894 freepage = mapping->a_ops->freepage;
a528910e
JW
895 /*
896 * Remember a shadow entry for reclaimed file cache in
897 * order to detect refaults, thus thrashing, later on.
898 *
899 * But don't store shadows in an address space that is
900 * already exiting. This is not just an optizimation,
901 * inode reclaim needs to empty out the radix tree or
902 * the nodes are lost. Don't plant shadows behind its
903 * back.
f9fe48be
RZ
904 *
905 * We also don't store shadows for DAX mappings because the
906 * only page cache pages found in these are zero pages
907 * covering holes, and because we don't want to mix DAX
908 * exceptional entries and shadow exceptional entries in the
b93b0163 909 * same address_space.
a528910e
JW
910 */
911 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 912 !mapping_exiting(mapping) && !dax_mapping(mapping))
a528910e 913 shadow = workingset_eviction(mapping, page);
62cccb8c 914 __delete_from_page_cache(page, shadow);
b93b0163 915 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c
LT
916
917 if (freepage != NULL)
918 freepage(page);
49d2e9cc
CL
919 }
920
49d2e9cc
CL
921 return 1;
922
923cannot_free:
b93b0163 924 xa_unlock_irqrestore(&mapping->i_pages, flags);
49d2e9cc
CL
925 return 0;
926}
927
e286781d
NP
928/*
929 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
930 * someone else has a ref on the page, abort and return 0. If it was
931 * successfully detached, return 1. Assumes the caller has a single ref on
932 * this page.
933 */
934int remove_mapping(struct address_space *mapping, struct page *page)
935{
a528910e 936 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
937 /*
938 * Unfreezing the refcount with 1 rather than 2 effectively
939 * drops the pagecache ref for us without requiring another
940 * atomic operation.
941 */
fe896d18 942 page_ref_unfreeze(page, 1);
e286781d
NP
943 return 1;
944 }
945 return 0;
946}
947
894bc310
LS
948/**
949 * putback_lru_page - put previously isolated page onto appropriate LRU list
950 * @page: page to be put back to appropriate lru list
951 *
952 * Add previously isolated @page to appropriate LRU list.
953 * Page may still be unevictable for other reasons.
954 *
955 * lru_lock must not be held, interrupts must be enabled.
956 */
894bc310
LS
957void putback_lru_page(struct page *page)
958{
9c4e6b1a 959 lru_cache_add(page);
894bc310
LS
960 put_page(page); /* drop ref from isolate */
961}
962
dfc8d636
JW
963enum page_references {
964 PAGEREF_RECLAIM,
965 PAGEREF_RECLAIM_CLEAN,
64574746 966 PAGEREF_KEEP,
dfc8d636
JW
967 PAGEREF_ACTIVATE,
968};
969
970static enum page_references page_check_references(struct page *page,
971 struct scan_control *sc)
972{
64574746 973 int referenced_ptes, referenced_page;
dfc8d636 974 unsigned long vm_flags;
dfc8d636 975
c3ac9a8a
JW
976 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
977 &vm_flags);
64574746 978 referenced_page = TestClearPageReferenced(page);
dfc8d636 979
dfc8d636
JW
980 /*
981 * Mlock lost the isolation race with us. Let try_to_unmap()
982 * move the page to the unevictable list.
983 */
984 if (vm_flags & VM_LOCKED)
985 return PAGEREF_RECLAIM;
986
64574746 987 if (referenced_ptes) {
e4898273 988 if (PageSwapBacked(page))
64574746
JW
989 return PAGEREF_ACTIVATE;
990 /*
991 * All mapped pages start out with page table
992 * references from the instantiating fault, so we need
993 * to look twice if a mapped file page is used more
994 * than once.
995 *
996 * Mark it and spare it for another trip around the
997 * inactive list. Another page table reference will
998 * lead to its activation.
999 *
1000 * Note: the mark is set for activated pages as well
1001 * so that recently deactivated but used pages are
1002 * quickly recovered.
1003 */
1004 SetPageReferenced(page);
1005
34dbc67a 1006 if (referenced_page || referenced_ptes > 1)
64574746
JW
1007 return PAGEREF_ACTIVATE;
1008
c909e993
KK
1009 /*
1010 * Activate file-backed executable pages after first usage.
1011 */
1012 if (vm_flags & VM_EXEC)
1013 return PAGEREF_ACTIVATE;
1014
64574746
JW
1015 return PAGEREF_KEEP;
1016 }
dfc8d636
JW
1017
1018 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 1019 if (referenced_page && !PageSwapBacked(page))
64574746
JW
1020 return PAGEREF_RECLAIM_CLEAN;
1021
1022 return PAGEREF_RECLAIM;
dfc8d636
JW
1023}
1024
e2be15f6
MG
1025/* Check if a page is dirty or under writeback */
1026static void page_check_dirty_writeback(struct page *page,
1027 bool *dirty, bool *writeback)
1028{
b4597226
MG
1029 struct address_space *mapping;
1030
e2be15f6
MG
1031 /*
1032 * Anonymous pages are not handled by flushers and must be written
1033 * from reclaim context. Do not stall reclaim based on them
1034 */
802a3a92
SL
1035 if (!page_is_file_cache(page) ||
1036 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
1037 *dirty = false;
1038 *writeback = false;
1039 return;
1040 }
1041
1042 /* By default assume that the page flags are accurate */
1043 *dirty = PageDirty(page);
1044 *writeback = PageWriteback(page);
b4597226
MG
1045
1046 /* Verify dirty/writeback state if the filesystem supports it */
1047 if (!page_has_private(page))
1048 return;
1049
1050 mapping = page_mapping(page);
1051 if (mapping && mapping->a_ops->is_dirty_writeback)
1052 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
1053}
1054
1da177e4 1055/*
1742f19f 1056 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1057 */
1742f19f 1058static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 1059 struct pglist_data *pgdat,
f84f6e2b 1060 struct scan_control *sc,
02c6de8d 1061 enum ttu_flags ttu_flags,
3c710c1a 1062 struct reclaim_stat *stat,
02c6de8d 1063 bool force_reclaim)
1da177e4
LT
1064{
1065 LIST_HEAD(ret_pages);
abe4c3b5 1066 LIST_HEAD(free_pages);
1da177e4 1067 int pgactivate = 0;
3c710c1a
MH
1068 unsigned nr_unqueued_dirty = 0;
1069 unsigned nr_dirty = 0;
1070 unsigned nr_congested = 0;
1071 unsigned nr_reclaimed = 0;
1072 unsigned nr_writeback = 0;
1073 unsigned nr_immediate = 0;
5bccd166
MH
1074 unsigned nr_ref_keep = 0;
1075 unsigned nr_unmap_fail = 0;
1da177e4
LT
1076
1077 cond_resched();
1078
1da177e4
LT
1079 while (!list_empty(page_list)) {
1080 struct address_space *mapping;
1081 struct page *page;
1082 int may_enter_fs;
02c6de8d 1083 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 1084 bool dirty, writeback;
1da177e4
LT
1085
1086 cond_resched();
1087
1088 page = lru_to_page(page_list);
1089 list_del(&page->lru);
1090
529ae9aa 1091 if (!trylock_page(page))
1da177e4
LT
1092 goto keep;
1093
309381fe 1094 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1095
1096 sc->nr_scanned++;
80e43426 1097
39b5f29a 1098 if (unlikely(!page_evictable(page)))
ad6b6704 1099 goto activate_locked;
894bc310 1100
a6dc60f8 1101 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1102 goto keep_locked;
1103
1da177e4 1104 /* Double the slab pressure for mapped and swapcache pages */
802a3a92
SL
1105 if ((page_mapped(page) || PageSwapCache(page)) &&
1106 !(PageAnon(page) && !PageSwapBacked(page)))
1da177e4
LT
1107 sc->nr_scanned++;
1108
c661b078
AW
1109 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1110 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1111
e2be15f6 1112 /*
894befec 1113 * The number of dirty pages determines if a node is marked
e2be15f6
MG
1114 * reclaim_congested which affects wait_iff_congested. kswapd
1115 * will stall and start writing pages if the tail of the LRU
1116 * is all dirty unqueued pages.
1117 */
1118 page_check_dirty_writeback(page, &dirty, &writeback);
1119 if (dirty || writeback)
1120 nr_dirty++;
1121
1122 if (dirty && !writeback)
1123 nr_unqueued_dirty++;
1124
d04e8acd
MG
1125 /*
1126 * Treat this page as congested if the underlying BDI is or if
1127 * pages are cycling through the LRU so quickly that the
1128 * pages marked for immediate reclaim are making it to the
1129 * end of the LRU a second time.
1130 */
e2be15f6 1131 mapping = page_mapping(page);
1da58ee2 1132 if (((dirty || writeback) && mapping &&
703c2708 1133 inode_write_congested(mapping->host)) ||
d04e8acd 1134 (writeback && PageReclaim(page)))
e2be15f6
MG
1135 nr_congested++;
1136
283aba9f
MG
1137 /*
1138 * If a page at the tail of the LRU is under writeback, there
1139 * are three cases to consider.
1140 *
1141 * 1) If reclaim is encountering an excessive number of pages
1142 * under writeback and this page is both under writeback and
1143 * PageReclaim then it indicates that pages are being queued
1144 * for IO but are being recycled through the LRU before the
1145 * IO can complete. Waiting on the page itself risks an
1146 * indefinite stall if it is impossible to writeback the
1147 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1148 * note that the LRU is being scanned too quickly and the
1149 * caller can stall after page list has been processed.
283aba9f 1150 *
97c9341f 1151 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1152 * not marked for immediate reclaim, or the caller does not
1153 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1154 * not to fs). In this case mark the page for immediate
97c9341f 1155 * reclaim and continue scanning.
283aba9f 1156 *
ecf5fc6e
MH
1157 * Require may_enter_fs because we would wait on fs, which
1158 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1159 * enter reclaim, and deadlock if it waits on a page for
1160 * which it is needed to do the write (loop masks off
1161 * __GFP_IO|__GFP_FS for this reason); but more thought
1162 * would probably show more reasons.
1163 *
7fadc820 1164 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1165 * PageReclaim. memcg does not have any dirty pages
1166 * throttling so we could easily OOM just because too many
1167 * pages are in writeback and there is nothing else to
1168 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1169 *
1170 * In cases 1) and 2) we activate the pages to get them out of
1171 * the way while we continue scanning for clean pages on the
1172 * inactive list and refilling from the active list. The
1173 * observation here is that waiting for disk writes is more
1174 * expensive than potentially causing reloads down the line.
1175 * Since they're marked for immediate reclaim, they won't put
1176 * memory pressure on the cache working set any longer than it
1177 * takes to write them to disk.
283aba9f 1178 */
c661b078 1179 if (PageWriteback(page)) {
283aba9f
MG
1180 /* Case 1 above */
1181 if (current_is_kswapd() &&
1182 PageReclaim(page) &&
599d0c95 1183 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
b1a6f21e 1184 nr_immediate++;
c55e8d03 1185 goto activate_locked;
283aba9f
MG
1186
1187 /* Case 2 above */
97c9341f 1188 } else if (sane_reclaim(sc) ||
ecf5fc6e 1189 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1190 /*
1191 * This is slightly racy - end_page_writeback()
1192 * might have just cleared PageReclaim, then
1193 * setting PageReclaim here end up interpreted
1194 * as PageReadahead - but that does not matter
1195 * enough to care. What we do want is for this
1196 * page to have PageReclaim set next time memcg
1197 * reclaim reaches the tests above, so it will
1198 * then wait_on_page_writeback() to avoid OOM;
1199 * and it's also appropriate in global reclaim.
1200 */
1201 SetPageReclaim(page);
e62e384e 1202 nr_writeback++;
c55e8d03 1203 goto activate_locked;
283aba9f
MG
1204
1205 /* Case 3 above */
1206 } else {
7fadc820 1207 unlock_page(page);
283aba9f 1208 wait_on_page_writeback(page);
7fadc820
HD
1209 /* then go back and try same page again */
1210 list_add_tail(&page->lru, page_list);
1211 continue;
e62e384e 1212 }
c661b078 1213 }
1da177e4 1214
02c6de8d
MK
1215 if (!force_reclaim)
1216 references = page_check_references(page, sc);
1217
dfc8d636
JW
1218 switch (references) {
1219 case PAGEREF_ACTIVATE:
1da177e4 1220 goto activate_locked;
64574746 1221 case PAGEREF_KEEP:
5bccd166 1222 nr_ref_keep++;
64574746 1223 goto keep_locked;
dfc8d636
JW
1224 case PAGEREF_RECLAIM:
1225 case PAGEREF_RECLAIM_CLEAN:
1226 ; /* try to reclaim the page below */
1227 }
1da177e4 1228
1da177e4
LT
1229 /*
1230 * Anonymous process memory has backing store?
1231 * Try to allocate it some swap space here.
802a3a92 1232 * Lazyfree page could be freed directly
1da177e4 1233 */
bd4c82c2
HY
1234 if (PageAnon(page) && PageSwapBacked(page)) {
1235 if (!PageSwapCache(page)) {
1236 if (!(sc->gfp_mask & __GFP_IO))
1237 goto keep_locked;
1238 if (PageTransHuge(page)) {
1239 /* cannot split THP, skip it */
1240 if (!can_split_huge_page(page, NULL))
1241 goto activate_locked;
1242 /*
1243 * Split pages without a PMD map right
1244 * away. Chances are some or all of the
1245 * tail pages can be freed without IO.
1246 */
1247 if (!compound_mapcount(page) &&
1248 split_huge_page_to_list(page,
1249 page_list))
1250 goto activate_locked;
1251 }
1252 if (!add_to_swap(page)) {
1253 if (!PageTransHuge(page))
1254 goto activate_locked;
1255 /* Fallback to swap normal pages */
1256 if (split_huge_page_to_list(page,
1257 page_list))
1258 goto activate_locked;
fe490cc0
HY
1259#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1260 count_vm_event(THP_SWPOUT_FALLBACK);
1261#endif
bd4c82c2
HY
1262 if (!add_to_swap(page))
1263 goto activate_locked;
1264 }
0f074658 1265
bd4c82c2 1266 may_enter_fs = 1;
1da177e4 1267
bd4c82c2
HY
1268 /* Adding to swap updated mapping */
1269 mapping = page_mapping(page);
1270 }
7751b2da
KS
1271 } else if (unlikely(PageTransHuge(page))) {
1272 /* Split file THP */
1273 if (split_huge_page_to_list(page, page_list))
1274 goto keep_locked;
e2be15f6 1275 }
1da177e4
LT
1276
1277 /*
1278 * The page is mapped into the page tables of one or more
1279 * processes. Try to unmap it here.
1280 */
802a3a92 1281 if (page_mapped(page)) {
bd4c82c2
HY
1282 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1283
1284 if (unlikely(PageTransHuge(page)))
1285 flags |= TTU_SPLIT_HUGE_PMD;
1286 if (!try_to_unmap(page, flags)) {
5bccd166 1287 nr_unmap_fail++;
1da177e4 1288 goto activate_locked;
1da177e4
LT
1289 }
1290 }
1291
1292 if (PageDirty(page)) {
ee72886d 1293 /*
4eda4823
JW
1294 * Only kswapd can writeback filesystem pages
1295 * to avoid risk of stack overflow. But avoid
1296 * injecting inefficient single-page IO into
1297 * flusher writeback as much as possible: only
1298 * write pages when we've encountered many
1299 * dirty pages, and when we've already scanned
1300 * the rest of the LRU for clean pages and see
1301 * the same dirty pages again (PageReclaim).
ee72886d 1302 */
f84f6e2b 1303 if (page_is_file_cache(page) &&
4eda4823
JW
1304 (!current_is_kswapd() || !PageReclaim(page) ||
1305 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1306 /*
1307 * Immediately reclaim when written back.
1308 * Similar in principal to deactivate_page()
1309 * except we already have the page isolated
1310 * and know it's dirty
1311 */
c4a25635 1312 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1313 SetPageReclaim(page);
1314
c55e8d03 1315 goto activate_locked;
ee72886d
MG
1316 }
1317
dfc8d636 1318 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1319 goto keep_locked;
4dd4b920 1320 if (!may_enter_fs)
1da177e4 1321 goto keep_locked;
52a8363e 1322 if (!sc->may_writepage)
1da177e4
LT
1323 goto keep_locked;
1324
d950c947
MG
1325 /*
1326 * Page is dirty. Flush the TLB if a writable entry
1327 * potentially exists to avoid CPU writes after IO
1328 * starts and then write it out here.
1329 */
1330 try_to_unmap_flush_dirty();
7d3579e8 1331 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1332 case PAGE_KEEP:
1333 goto keep_locked;
1334 case PAGE_ACTIVATE:
1335 goto activate_locked;
1336 case PAGE_SUCCESS:
7d3579e8 1337 if (PageWriteback(page))
41ac1999 1338 goto keep;
7d3579e8 1339 if (PageDirty(page))
1da177e4 1340 goto keep;
7d3579e8 1341
1da177e4
LT
1342 /*
1343 * A synchronous write - probably a ramdisk. Go
1344 * ahead and try to reclaim the page.
1345 */
529ae9aa 1346 if (!trylock_page(page))
1da177e4
LT
1347 goto keep;
1348 if (PageDirty(page) || PageWriteback(page))
1349 goto keep_locked;
1350 mapping = page_mapping(page);
1351 case PAGE_CLEAN:
1352 ; /* try to free the page below */
1353 }
1354 }
1355
1356 /*
1357 * If the page has buffers, try to free the buffer mappings
1358 * associated with this page. If we succeed we try to free
1359 * the page as well.
1360 *
1361 * We do this even if the page is PageDirty().
1362 * try_to_release_page() does not perform I/O, but it is
1363 * possible for a page to have PageDirty set, but it is actually
1364 * clean (all its buffers are clean). This happens if the
1365 * buffers were written out directly, with submit_bh(). ext3
894bc310 1366 * will do this, as well as the blockdev mapping.
1da177e4
LT
1367 * try_to_release_page() will discover that cleanness and will
1368 * drop the buffers and mark the page clean - it can be freed.
1369 *
1370 * Rarely, pages can have buffers and no ->mapping. These are
1371 * the pages which were not successfully invalidated in
1372 * truncate_complete_page(). We try to drop those buffers here
1373 * and if that worked, and the page is no longer mapped into
1374 * process address space (page_count == 1) it can be freed.
1375 * Otherwise, leave the page on the LRU so it is swappable.
1376 */
266cf658 1377 if (page_has_private(page)) {
1da177e4
LT
1378 if (!try_to_release_page(page, sc->gfp_mask))
1379 goto activate_locked;
e286781d
NP
1380 if (!mapping && page_count(page) == 1) {
1381 unlock_page(page);
1382 if (put_page_testzero(page))
1383 goto free_it;
1384 else {
1385 /*
1386 * rare race with speculative reference.
1387 * the speculative reference will free
1388 * this page shortly, so we may
1389 * increment nr_reclaimed here (and
1390 * leave it off the LRU).
1391 */
1392 nr_reclaimed++;
1393 continue;
1394 }
1395 }
1da177e4
LT
1396 }
1397
802a3a92
SL
1398 if (PageAnon(page) && !PageSwapBacked(page)) {
1399 /* follow __remove_mapping for reference */
1400 if (!page_ref_freeze(page, 1))
1401 goto keep_locked;
1402 if (PageDirty(page)) {
1403 page_ref_unfreeze(page, 1);
1404 goto keep_locked;
1405 }
1da177e4 1406
802a3a92 1407 count_vm_event(PGLAZYFREED);
2262185c 1408 count_memcg_page_event(page, PGLAZYFREED);
802a3a92
SL
1409 } else if (!mapping || !__remove_mapping(mapping, page, true))
1410 goto keep_locked;
a978d6f5
NP
1411 /*
1412 * At this point, we have no other references and there is
1413 * no way to pick any more up (removed from LRU, removed
1414 * from pagecache). Can use non-atomic bitops now (and
1415 * we obviously don't have to worry about waking up a process
1416 * waiting on the page lock, because there are no references.
1417 */
48c935ad 1418 __ClearPageLocked(page);
e286781d 1419free_it:
05ff5137 1420 nr_reclaimed++;
abe4c3b5
MG
1421
1422 /*
1423 * Is there need to periodically free_page_list? It would
1424 * appear not as the counts should be low
1425 */
bd4c82c2
HY
1426 if (unlikely(PageTransHuge(page))) {
1427 mem_cgroup_uncharge(page);
1428 (*get_compound_page_dtor(page))(page);
1429 } else
1430 list_add(&page->lru, &free_pages);
1da177e4
LT
1431 continue;
1432
1433activate_locked:
68a22394 1434 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1435 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1436 PageMlocked(page)))
a2c43eed 1437 try_to_free_swap(page);
309381fe 1438 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704
MK
1439 if (!PageMlocked(page)) {
1440 SetPageActive(page);
1441 pgactivate++;
2262185c 1442 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1443 }
1da177e4
LT
1444keep_locked:
1445 unlock_page(page);
1446keep:
1447 list_add(&page->lru, &ret_pages);
309381fe 1448 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1449 }
abe4c3b5 1450
747db954 1451 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1452 try_to_unmap_flush();
2d4894b5 1453 free_unref_page_list(&free_pages);
abe4c3b5 1454
1da177e4 1455 list_splice(&ret_pages, page_list);
f8891e5e 1456 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1457
3c710c1a
MH
1458 if (stat) {
1459 stat->nr_dirty = nr_dirty;
1460 stat->nr_congested = nr_congested;
1461 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1462 stat->nr_writeback = nr_writeback;
1463 stat->nr_immediate = nr_immediate;
5bccd166
MH
1464 stat->nr_activate = pgactivate;
1465 stat->nr_ref_keep = nr_ref_keep;
1466 stat->nr_unmap_fail = nr_unmap_fail;
3c710c1a 1467 }
05ff5137 1468 return nr_reclaimed;
1da177e4
LT
1469}
1470
02c6de8d
MK
1471unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1472 struct list_head *page_list)
1473{
1474 struct scan_control sc = {
1475 .gfp_mask = GFP_KERNEL,
1476 .priority = DEF_PRIORITY,
1477 .may_unmap = 1,
1478 };
3c710c1a 1479 unsigned long ret;
02c6de8d
MK
1480 struct page *page, *next;
1481 LIST_HEAD(clean_pages);
1482
1483 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1484 if (page_is_file_cache(page) && !PageDirty(page) &&
b1123ea6 1485 !__PageMovable(page)) {
02c6de8d
MK
1486 ClearPageActive(page);
1487 list_move(&page->lru, &clean_pages);
1488 }
1489 }
1490
599d0c95 1491 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
a128ca71 1492 TTU_IGNORE_ACCESS, NULL, true);
02c6de8d 1493 list_splice(&clean_pages, page_list);
599d0c95 1494 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1495 return ret;
1496}
1497
5ad333eb
AW
1498/*
1499 * Attempt to remove the specified page from its LRU. Only take this page
1500 * if it is of the appropriate PageActive status. Pages which are being
1501 * freed elsewhere are also ignored.
1502 *
1503 * page: page to consider
1504 * mode: one of the LRU isolation modes defined above
1505 *
1506 * returns 0 on success, -ve errno on failure.
1507 */
f3fd4a61 1508int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1509{
1510 int ret = -EINVAL;
1511
1512 /* Only take pages on the LRU. */
1513 if (!PageLRU(page))
1514 return ret;
1515
e46a2879
MK
1516 /* Compaction should not handle unevictable pages but CMA can do so */
1517 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1518 return ret;
1519
5ad333eb 1520 ret = -EBUSY;
08e552c6 1521
c8244935
MG
1522 /*
1523 * To minimise LRU disruption, the caller can indicate that it only
1524 * wants to isolate pages it will be able to operate on without
1525 * blocking - clean pages for the most part.
1526 *
c8244935
MG
1527 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1528 * that it is possible to migrate without blocking
1529 */
1276ad68 1530 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1531 /* All the caller can do on PageWriteback is block */
1532 if (PageWriteback(page))
1533 return ret;
1534
1535 if (PageDirty(page)) {
1536 struct address_space *mapping;
69d763fc 1537 bool migrate_dirty;
c8244935 1538
c8244935
MG
1539 /*
1540 * Only pages without mappings or that have a
1541 * ->migratepage callback are possible to migrate
69d763fc
MG
1542 * without blocking. However, we can be racing with
1543 * truncation so it's necessary to lock the page
1544 * to stabilise the mapping as truncation holds
1545 * the page lock until after the page is removed
1546 * from the page cache.
c8244935 1547 */
69d763fc
MG
1548 if (!trylock_page(page))
1549 return ret;
1550
c8244935 1551 mapping = page_mapping(page);
145e1a71 1552 migrate_dirty = !mapping || mapping->a_ops->migratepage;
69d763fc
MG
1553 unlock_page(page);
1554 if (!migrate_dirty)
c8244935
MG
1555 return ret;
1556 }
1557 }
39deaf85 1558
f80c0673
MK
1559 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1560 return ret;
1561
5ad333eb
AW
1562 if (likely(get_page_unless_zero(page))) {
1563 /*
1564 * Be careful not to clear PageLRU until after we're
1565 * sure the page is not being freed elsewhere -- the
1566 * page release code relies on it.
1567 */
1568 ClearPageLRU(page);
1569 ret = 0;
1570 }
1571
1572 return ret;
1573}
1574
7ee36a14
MG
1575
1576/*
1577 * Update LRU sizes after isolating pages. The LRU size updates must
1578 * be complete before mem_cgroup_update_lru_size due to a santity check.
1579 */
1580static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1581 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1582{
7ee36a14
MG
1583 int zid;
1584
7ee36a14
MG
1585 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1586 if (!nr_zone_taken[zid])
1587 continue;
1588
1589 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1590#ifdef CONFIG_MEMCG
b4536f0c 1591 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1592#endif
b4536f0c
MH
1593 }
1594
7ee36a14
MG
1595}
1596
1da177e4 1597/*
a52633d8 1598 * zone_lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1599 * shrink the lists perform better by taking out a batch of pages
1600 * and working on them outside the LRU lock.
1601 *
1602 * For pagecache intensive workloads, this function is the hottest
1603 * spot in the kernel (apart from copy_*_user functions).
1604 *
1605 * Appropriate locks must be held before calling this function.
1606 *
791b48b6 1607 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1608 * @lruvec: The LRU vector to pull pages from.
1da177e4 1609 * @dst: The temp list to put pages on to.
f626012d 1610 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1611 * @sc: The scan_control struct for this reclaim session
5ad333eb 1612 * @mode: One of the LRU isolation modes
3cb99451 1613 * @lru: LRU list id for isolating
1da177e4
LT
1614 *
1615 * returns how many pages were moved onto *@dst.
1616 */
69e05944 1617static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1618 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1619 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1620 isolate_mode_t mode, enum lru_list lru)
1da177e4 1621{
75b00af7 1622 struct list_head *src = &lruvec->lists[lru];
69e05944 1623 unsigned long nr_taken = 0;
599d0c95 1624 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1625 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1626 unsigned long skipped = 0;
791b48b6 1627 unsigned long scan, total_scan, nr_pages;
b2e18757 1628 LIST_HEAD(pages_skipped);
1da177e4 1629
791b48b6
MK
1630 scan = 0;
1631 for (total_scan = 0;
1632 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1633 total_scan++) {
5ad333eb 1634 struct page *page;
5ad333eb 1635
1da177e4
LT
1636 page = lru_to_page(src);
1637 prefetchw_prev_lru_page(page, src, flags);
1638
309381fe 1639 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1640
b2e18757
MG
1641 if (page_zonenum(page) > sc->reclaim_idx) {
1642 list_move(&page->lru, &pages_skipped);
7cc30fcf 1643 nr_skipped[page_zonenum(page)]++;
b2e18757
MG
1644 continue;
1645 }
1646
791b48b6
MK
1647 /*
1648 * Do not count skipped pages because that makes the function
1649 * return with no isolated pages if the LRU mostly contains
1650 * ineligible pages. This causes the VM to not reclaim any
1651 * pages, triggering a premature OOM.
1652 */
1653 scan++;
f3fd4a61 1654 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1655 case 0:
599d0c95
MG
1656 nr_pages = hpage_nr_pages(page);
1657 nr_taken += nr_pages;
1658 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1659 list_move(&page->lru, dst);
5ad333eb
AW
1660 break;
1661
1662 case -EBUSY:
1663 /* else it is being freed elsewhere */
1664 list_move(&page->lru, src);
1665 continue;
46453a6e 1666
5ad333eb
AW
1667 default:
1668 BUG();
1669 }
1da177e4
LT
1670 }
1671
b2e18757
MG
1672 /*
1673 * Splice any skipped pages to the start of the LRU list. Note that
1674 * this disrupts the LRU order when reclaiming for lower zones but
1675 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1676 * scanning would soon rescan the same pages to skip and put the
1677 * system at risk of premature OOM.
1678 */
7cc30fcf
MG
1679 if (!list_empty(&pages_skipped)) {
1680 int zid;
1681
3db65812 1682 list_splice(&pages_skipped, src);
7cc30fcf
MG
1683 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1684 if (!nr_skipped[zid])
1685 continue;
1686
1687 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1688 skipped += nr_skipped[zid];
7cc30fcf
MG
1689 }
1690 }
791b48b6 1691 *nr_scanned = total_scan;
1265e3a6 1692 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 1693 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 1694 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1695 return nr_taken;
1696}
1697
62695a84
NP
1698/**
1699 * isolate_lru_page - tries to isolate a page from its LRU list
1700 * @page: page to isolate from its LRU list
1701 *
1702 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1703 * vmstat statistic corresponding to whatever LRU list the page was on.
1704 *
1705 * Returns 0 if the page was removed from an LRU list.
1706 * Returns -EBUSY if the page was not on an LRU list.
1707 *
1708 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1709 * the active list, it will have PageActive set. If it was found on
1710 * the unevictable list, it will have the PageUnevictable bit set. That flag
1711 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1712 *
1713 * The vmstat statistic corresponding to the list on which the page was
1714 * found will be decremented.
1715 *
1716 * Restrictions:
a5d09bed 1717 *
62695a84
NP
1718 * (1) Must be called with an elevated refcount on the page. This is a
1719 * fundamentnal difference from isolate_lru_pages (which is called
1720 * without a stable reference).
1721 * (2) the lru_lock must not be held.
1722 * (3) interrupts must be enabled.
1723 */
1724int isolate_lru_page(struct page *page)
1725{
1726 int ret = -EBUSY;
1727
309381fe 1728 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1729 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1730
62695a84
NP
1731 if (PageLRU(page)) {
1732 struct zone *zone = page_zone(page);
fa9add64 1733 struct lruvec *lruvec;
62695a84 1734
a52633d8 1735 spin_lock_irq(zone_lru_lock(zone));
599d0c95 1736 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0c917313 1737 if (PageLRU(page)) {
894bc310 1738 int lru = page_lru(page);
0c917313 1739 get_page(page);
62695a84 1740 ClearPageLRU(page);
fa9add64
HD
1741 del_page_from_lru_list(page, lruvec, lru);
1742 ret = 0;
62695a84 1743 }
a52633d8 1744 spin_unlock_irq(zone_lru_lock(zone));
62695a84
NP
1745 }
1746 return ret;
1747}
1748
35cd7815 1749/*
d37dd5dc
FW
1750 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1751 * then get resheduled. When there are massive number of tasks doing page
1752 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1753 * the LRU list will go small and be scanned faster than necessary, leading to
1754 * unnecessary swapping, thrashing and OOM.
35cd7815 1755 */
599d0c95 1756static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1757 struct scan_control *sc)
1758{
1759 unsigned long inactive, isolated;
1760
1761 if (current_is_kswapd())
1762 return 0;
1763
97c9341f 1764 if (!sane_reclaim(sc))
35cd7815
RR
1765 return 0;
1766
1767 if (file) {
599d0c95
MG
1768 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1769 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1770 } else {
599d0c95
MG
1771 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1772 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1773 }
1774
3cf23841
FW
1775 /*
1776 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1777 * won't get blocked by normal direct-reclaimers, forming a circular
1778 * deadlock.
1779 */
d0164adc 1780 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1781 inactive >>= 3;
1782
35cd7815
RR
1783 return isolated > inactive;
1784}
1785
66635629 1786static noinline_for_stack void
75b00af7 1787putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1788{
27ac81d8 1789 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
599d0c95 1790 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3f79768f 1791 LIST_HEAD(pages_to_free);
66635629 1792
66635629
MG
1793 /*
1794 * Put back any unfreeable pages.
1795 */
66635629 1796 while (!list_empty(page_list)) {
3f79768f 1797 struct page *page = lru_to_page(page_list);
66635629 1798 int lru;
3f79768f 1799
309381fe 1800 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1801 list_del(&page->lru);
39b5f29a 1802 if (unlikely(!page_evictable(page))) {
599d0c95 1803 spin_unlock_irq(&pgdat->lru_lock);
66635629 1804 putback_lru_page(page);
599d0c95 1805 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1806 continue;
1807 }
fa9add64 1808
599d0c95 1809 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1810
7a608572 1811 SetPageLRU(page);
66635629 1812 lru = page_lru(page);
fa9add64
HD
1813 add_page_to_lru_list(page, lruvec, lru);
1814
66635629
MG
1815 if (is_active_lru(lru)) {
1816 int file = is_file_lru(lru);
9992af10
RR
1817 int numpages = hpage_nr_pages(page);
1818 reclaim_stat->recent_rotated[file] += numpages;
66635629 1819 }
2bcf8879
HD
1820 if (put_page_testzero(page)) {
1821 __ClearPageLRU(page);
1822 __ClearPageActive(page);
fa9add64 1823 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1824
1825 if (unlikely(PageCompound(page))) {
599d0c95 1826 spin_unlock_irq(&pgdat->lru_lock);
747db954 1827 mem_cgroup_uncharge(page);
2bcf8879 1828 (*get_compound_page_dtor(page))(page);
599d0c95 1829 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1830 } else
1831 list_add(&page->lru, &pages_to_free);
66635629
MG
1832 }
1833 }
66635629 1834
3f79768f
HD
1835 /*
1836 * To save our caller's stack, now use input list for pages to free.
1837 */
1838 list_splice(&pages_to_free, page_list);
66635629
MG
1839}
1840
399ba0b9
N
1841/*
1842 * If a kernel thread (such as nfsd for loop-back mounts) services
1843 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1844 * In that case we should only throttle if the backing device it is
1845 * writing to is congested. In other cases it is safe to throttle.
1846 */
1847static int current_may_throttle(void)
1848{
1849 return !(current->flags & PF_LESS_THROTTLE) ||
1850 current->backing_dev_info == NULL ||
1851 bdi_write_congested(current->backing_dev_info);
1852}
1853
1da177e4 1854/*
b2e18757 1855 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1856 * of reclaimed pages
1da177e4 1857 */
66635629 1858static noinline_for_stack unsigned long
1a93be0e 1859shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1860 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1861{
1862 LIST_HEAD(page_list);
e247dbce 1863 unsigned long nr_scanned;
05ff5137 1864 unsigned long nr_reclaimed = 0;
e247dbce 1865 unsigned long nr_taken;
3c710c1a 1866 struct reclaim_stat stat = {};
f3fd4a61 1867 isolate_mode_t isolate_mode = 0;
3cb99451 1868 int file = is_file_lru(lru);
599d0c95 1869 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1870 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
db73ee0d 1871 bool stalled = false;
78dc583d 1872
599d0c95 1873 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
1874 if (stalled)
1875 return 0;
1876
1877 /* wait a bit for the reclaimer. */
1878 msleep(100);
1879 stalled = true;
35cd7815
RR
1880
1881 /* We are about to die and free our memory. Return now. */
1882 if (fatal_signal_pending(current))
1883 return SWAP_CLUSTER_MAX;
1884 }
1885
1da177e4 1886 lru_add_drain();
f80c0673
MK
1887
1888 if (!sc->may_unmap)
61317289 1889 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1890
599d0c95 1891 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1892
5dc35979
KK
1893 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1894 &nr_scanned, sc, isolate_mode, lru);
95d918fc 1895
599d0c95 1896 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1897 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1898
2262185c
RG
1899 if (current_is_kswapd()) {
1900 if (global_reclaim(sc))
599d0c95 1901 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
2262185c
RG
1902 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1903 nr_scanned);
1904 } else {
1905 if (global_reclaim(sc))
599d0c95 1906 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
2262185c
RG
1907 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1908 nr_scanned);
e247dbce 1909 }
599d0c95 1910 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1911
d563c050 1912 if (nr_taken == 0)
66635629 1913 return 0;
5ad333eb 1914
a128ca71 1915 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
3c710c1a 1916 &stat, false);
c661b078 1917
599d0c95 1918 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1919
2262185c
RG
1920 if (current_is_kswapd()) {
1921 if (global_reclaim(sc))
599d0c95 1922 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
2262185c
RG
1923 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1924 nr_reclaimed);
1925 } else {
1926 if (global_reclaim(sc))
599d0c95 1927 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
2262185c
RG
1928 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1929 nr_reclaimed);
904249aa 1930 }
a74609fa 1931
27ac81d8 1932 putback_inactive_pages(lruvec, &page_list);
3f79768f 1933
599d0c95 1934 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1935
599d0c95 1936 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1937
747db954 1938 mem_cgroup_uncharge_list(&page_list);
2d4894b5 1939 free_unref_page_list(&page_list);
e11da5b4 1940
1c610d5f
AR
1941 /*
1942 * If dirty pages are scanned that are not queued for IO, it
1943 * implies that flushers are not doing their job. This can
1944 * happen when memory pressure pushes dirty pages to the end of
1945 * the LRU before the dirty limits are breached and the dirty
1946 * data has expired. It can also happen when the proportion of
1947 * dirty pages grows not through writes but through memory
1948 * pressure reclaiming all the clean cache. And in some cases,
1949 * the flushers simply cannot keep up with the allocation
1950 * rate. Nudge the flusher threads in case they are asleep.
1951 */
1952 if (stat.nr_unqueued_dirty == nr_taken)
1953 wakeup_flusher_threads(WB_REASON_VMSCAN);
1954
d108c772
AR
1955 sc->nr.dirty += stat.nr_dirty;
1956 sc->nr.congested += stat.nr_congested;
1957 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1958 sc->nr.writeback += stat.nr_writeback;
1959 sc->nr.immediate += stat.nr_immediate;
1960 sc->nr.taken += nr_taken;
1961 if (file)
1962 sc->nr.file_taken += nr_taken;
8e950282 1963
599d0c95 1964 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 1965 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 1966 return nr_reclaimed;
1da177e4
LT
1967}
1968
1969/*
1970 * This moves pages from the active list to the inactive list.
1971 *
1972 * We move them the other way if the page is referenced by one or more
1973 * processes, from rmap.
1974 *
1975 * If the pages are mostly unmapped, the processing is fast and it is
a52633d8 1976 * appropriate to hold zone_lru_lock across the whole operation. But if
1da177e4 1977 * the pages are mapped, the processing is slow (page_referenced()) so we
a52633d8 1978 * should drop zone_lru_lock around each page. It's impossible to balance
1da177e4
LT
1979 * this, so instead we remove the pages from the LRU while processing them.
1980 * It is safe to rely on PG_active against the non-LRU pages in here because
1981 * nobody will play with that bit on a non-LRU page.
1982 *
0139aa7b 1983 * The downside is that we have to touch page->_refcount against each page.
1da177e4 1984 * But we had to alter page->flags anyway.
9d998b4f
MH
1985 *
1986 * Returns the number of pages moved to the given lru.
1da177e4 1987 */
1cfb419b 1988
9d998b4f 1989static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1990 struct list_head *list,
2bcf8879 1991 struct list_head *pages_to_free,
3eb4140f
WF
1992 enum lru_list lru)
1993{
599d0c95 1994 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3eb4140f 1995 struct page *page;
fa9add64 1996 int nr_pages;
9d998b4f 1997 int nr_moved = 0;
3eb4140f 1998
3eb4140f
WF
1999 while (!list_empty(list)) {
2000 page = lru_to_page(list);
599d0c95 2001 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3eb4140f 2002
309381fe 2003 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
2004 SetPageLRU(page);
2005
fa9add64 2006 nr_pages = hpage_nr_pages(page);
599d0c95 2007 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
925b7673 2008 list_move(&page->lru, &lruvec->lists[lru]);
3eb4140f 2009
2bcf8879
HD
2010 if (put_page_testzero(page)) {
2011 __ClearPageLRU(page);
2012 __ClearPageActive(page);
fa9add64 2013 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
2014
2015 if (unlikely(PageCompound(page))) {
599d0c95 2016 spin_unlock_irq(&pgdat->lru_lock);
747db954 2017 mem_cgroup_uncharge(page);
2bcf8879 2018 (*get_compound_page_dtor(page))(page);
599d0c95 2019 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
2020 } else
2021 list_add(&page->lru, pages_to_free);
9d998b4f
MH
2022 } else {
2023 nr_moved += nr_pages;
3eb4140f
WF
2024 }
2025 }
9d5e6a9f 2026
2262185c 2027 if (!is_active_lru(lru)) {
f0958906 2028 __count_vm_events(PGDEACTIVATE, nr_moved);
2262185c
RG
2029 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2030 nr_moved);
2031 }
9d998b4f
MH
2032
2033 return nr_moved;
3eb4140f 2034}
1cfb419b 2035
f626012d 2036static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2037 struct lruvec *lruvec,
f16015fb 2038 struct scan_control *sc,
9e3b2f8c 2039 enum lru_list lru)
1da177e4 2040{
44c241f1 2041 unsigned long nr_taken;
f626012d 2042 unsigned long nr_scanned;
6fe6b7e3 2043 unsigned long vm_flags;
1da177e4 2044 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2045 LIST_HEAD(l_active);
b69408e8 2046 LIST_HEAD(l_inactive);
1da177e4 2047 struct page *page;
1a93be0e 2048 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
9d998b4f
MH
2049 unsigned nr_deactivate, nr_activate;
2050 unsigned nr_rotated = 0;
f3fd4a61 2051 isolate_mode_t isolate_mode = 0;
3cb99451 2052 int file = is_file_lru(lru);
599d0c95 2053 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2054
2055 lru_add_drain();
f80c0673
MK
2056
2057 if (!sc->may_unmap)
61317289 2058 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 2059
599d0c95 2060 spin_lock_irq(&pgdat->lru_lock);
925b7673 2061
5dc35979
KK
2062 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2063 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 2064
599d0c95 2065 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 2066 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 2067
599d0c95 2068 __count_vm_events(PGREFILL, nr_scanned);
2262185c 2069 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2070
599d0c95 2071 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 2072
1da177e4
LT
2073 while (!list_empty(&l_hold)) {
2074 cond_resched();
2075 page = lru_to_page(&l_hold);
2076 list_del(&page->lru);
7e9cd484 2077
39b5f29a 2078 if (unlikely(!page_evictable(page))) {
894bc310
LS
2079 putback_lru_page(page);
2080 continue;
2081 }
2082
cc715d99
MG
2083 if (unlikely(buffer_heads_over_limit)) {
2084 if (page_has_private(page) && trylock_page(page)) {
2085 if (page_has_private(page))
2086 try_to_release_page(page, 0);
2087 unlock_page(page);
2088 }
2089 }
2090
c3ac9a8a
JW
2091 if (page_referenced(page, 0, sc->target_mem_cgroup,
2092 &vm_flags)) {
9992af10 2093 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
2094 /*
2095 * Identify referenced, file-backed active pages and
2096 * give them one more trip around the active list. So
2097 * that executable code get better chances to stay in
2098 * memory under moderate memory pressure. Anon pages
2099 * are not likely to be evicted by use-once streaming
2100 * IO, plus JVM can create lots of anon VM_EXEC pages,
2101 * so we ignore them here.
2102 */
41e20983 2103 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
2104 list_add(&page->lru, &l_active);
2105 continue;
2106 }
2107 }
7e9cd484 2108
5205e56e 2109 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
2110 list_add(&page->lru, &l_inactive);
2111 }
2112
b555749a 2113 /*
8cab4754 2114 * Move pages back to the lru list.
b555749a 2115 */
599d0c95 2116 spin_lock_irq(&pgdat->lru_lock);
556adecb 2117 /*
8cab4754
WF
2118 * Count referenced pages from currently used mappings as rotated,
2119 * even though only some of them are actually re-activated. This
2120 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 2121 * get_scan_count.
7e9cd484 2122 */
b7c46d15 2123 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 2124
9d998b4f
MH
2125 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2126 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
599d0c95
MG
2127 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2128 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 2129
747db954 2130 mem_cgroup_uncharge_list(&l_hold);
2d4894b5 2131 free_unref_page_list(&l_hold);
9d998b4f
MH
2132 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2133 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2134}
2135
59dc76b0
RR
2136/*
2137 * The inactive anon list should be small enough that the VM never has
2138 * to do too much work.
14797e23 2139 *
59dc76b0
RR
2140 * The inactive file list should be small enough to leave most memory
2141 * to the established workingset on the scan-resistant active list,
2142 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2143 *
59dc76b0
RR
2144 * Both inactive lists should also be large enough that each inactive
2145 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2146 *
2a2e4885
JW
2147 * If that fails and refaulting is observed, the inactive list grows.
2148 *
59dc76b0 2149 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2150 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2151 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2152 *
59dc76b0
RR
2153 * total target max
2154 * memory ratio inactive
2155 * -------------------------------------
2156 * 10MB 1 5MB
2157 * 100MB 1 50MB
2158 * 1GB 3 250MB
2159 * 10GB 10 0.9GB
2160 * 100GB 31 3GB
2161 * 1TB 101 10GB
2162 * 10TB 320 32GB
56e49d21 2163 */
f8d1a311 2164static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2a2e4885
JW
2165 struct mem_cgroup *memcg,
2166 struct scan_control *sc, bool actual_reclaim)
56e49d21 2167{
fd538803 2168 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2a2e4885
JW
2169 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2170 enum lru_list inactive_lru = file * LRU_FILE;
2171 unsigned long inactive, active;
2172 unsigned long inactive_ratio;
2173 unsigned long refaults;
59dc76b0 2174 unsigned long gb;
e3790144 2175
59dc76b0
RR
2176 /*
2177 * If we don't have swap space, anonymous page deactivation
2178 * is pointless.
2179 */
2180 if (!file && !total_swap_pages)
2181 return false;
56e49d21 2182
fd538803
MH
2183 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2184 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
f8d1a311 2185
2a2e4885 2186 if (memcg)
ccda7f43 2187 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
b39415b2 2188 else
2a2e4885
JW
2189 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2190
2191 /*
2192 * When refaults are being observed, it means a new workingset
2193 * is being established. Disable active list protection to get
2194 * rid of the stale workingset quickly.
2195 */
2196 if (file && actual_reclaim && lruvec->refaults != refaults) {
2197 inactive_ratio = 0;
2198 } else {
2199 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2200 if (gb)
2201 inactive_ratio = int_sqrt(10 * gb);
2202 else
2203 inactive_ratio = 1;
2204 }
59dc76b0 2205
2a2e4885
JW
2206 if (actual_reclaim)
2207 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2208 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2209 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2210 inactive_ratio, file);
fd538803 2211
59dc76b0 2212 return inactive * inactive_ratio < active;
b39415b2
RR
2213}
2214
4f98a2fe 2215static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2a2e4885
JW
2216 struct lruvec *lruvec, struct mem_cgroup *memcg,
2217 struct scan_control *sc)
b69408e8 2218{
b39415b2 2219 if (is_active_lru(lru)) {
2a2e4885
JW
2220 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2221 memcg, sc, true))
1a93be0e 2222 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
2223 return 0;
2224 }
2225
1a93be0e 2226 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
2227}
2228
9a265114
JW
2229enum scan_balance {
2230 SCAN_EQUAL,
2231 SCAN_FRACT,
2232 SCAN_ANON,
2233 SCAN_FILE,
2234};
2235
4f98a2fe
RR
2236/*
2237 * Determine how aggressively the anon and file LRU lists should be
2238 * scanned. The relative value of each set of LRU lists is determined
2239 * by looking at the fraction of the pages scanned we did rotate back
2240 * onto the active list instead of evict.
2241 *
be7bd59d
WL
2242 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2243 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2244 */
33377678 2245static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
2246 struct scan_control *sc, unsigned long *nr,
2247 unsigned long *lru_pages)
4f98a2fe 2248{
33377678 2249 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2250 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2251 u64 fraction[2];
2252 u64 denominator = 0; /* gcc */
599d0c95 2253 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2254 unsigned long anon_prio, file_prio;
9a265114 2255 enum scan_balance scan_balance;
0bf1457f 2256 unsigned long anon, file;
4f98a2fe 2257 unsigned long ap, fp;
4111304d 2258 enum lru_list lru;
76a33fc3
SL
2259
2260 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2261 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2262 scan_balance = SCAN_FILE;
76a33fc3
SL
2263 goto out;
2264 }
4f98a2fe 2265
10316b31
JW
2266 /*
2267 * Global reclaim will swap to prevent OOM even with no
2268 * swappiness, but memcg users want to use this knob to
2269 * disable swapping for individual groups completely when
2270 * using the memory controller's swap limit feature would be
2271 * too expensive.
2272 */
02695175 2273 if (!global_reclaim(sc) && !swappiness) {
9a265114 2274 scan_balance = SCAN_FILE;
10316b31
JW
2275 goto out;
2276 }
2277
2278 /*
2279 * Do not apply any pressure balancing cleverness when the
2280 * system is close to OOM, scan both anon and file equally
2281 * (unless the swappiness setting disagrees with swapping).
2282 */
02695175 2283 if (!sc->priority && swappiness) {
9a265114 2284 scan_balance = SCAN_EQUAL;
10316b31
JW
2285 goto out;
2286 }
2287
62376251
JW
2288 /*
2289 * Prevent the reclaimer from falling into the cache trap: as
2290 * cache pages start out inactive, every cache fault will tip
2291 * the scan balance towards the file LRU. And as the file LRU
2292 * shrinks, so does the window for rotation from references.
2293 * This means we have a runaway feedback loop where a tiny
2294 * thrashing file LRU becomes infinitely more attractive than
2295 * anon pages. Try to detect this based on file LRU size.
2296 */
2297 if (global_reclaim(sc)) {
599d0c95
MG
2298 unsigned long pgdatfile;
2299 unsigned long pgdatfree;
2300 int z;
2301 unsigned long total_high_wmark = 0;
2ab051e1 2302
599d0c95
MG
2303 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2304 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2305 node_page_state(pgdat, NR_INACTIVE_FILE);
2306
2307 for (z = 0; z < MAX_NR_ZONES; z++) {
2308 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2309 if (!managed_zone(zone))
599d0c95
MG
2310 continue;
2311
2312 total_high_wmark += high_wmark_pages(zone);
2313 }
62376251 2314
599d0c95 2315 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
06226226
DR
2316 /*
2317 * Force SCAN_ANON if there are enough inactive
2318 * anonymous pages on the LRU in eligible zones.
2319 * Otherwise, the small LRU gets thrashed.
2320 */
2321 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2322 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2323 >> sc->priority) {
2324 scan_balance = SCAN_ANON;
2325 goto out;
2326 }
62376251
JW
2327 }
2328 }
2329
7c5bd705 2330 /*
316bda0e
VD
2331 * If there is enough inactive page cache, i.e. if the size of the
2332 * inactive list is greater than that of the active list *and* the
2333 * inactive list actually has some pages to scan on this priority, we
2334 * do not reclaim anything from the anonymous working set right now.
2335 * Without the second condition we could end up never scanning an
2336 * lruvec even if it has plenty of old anonymous pages unless the
2337 * system is under heavy pressure.
7c5bd705 2338 */
2a2e4885 2339 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
71ab6cfe 2340 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
9a265114 2341 scan_balance = SCAN_FILE;
7c5bd705
JW
2342 goto out;
2343 }
2344
9a265114
JW
2345 scan_balance = SCAN_FRACT;
2346
58c37f6e
KM
2347 /*
2348 * With swappiness at 100, anonymous and file have the same priority.
2349 * This scanning priority is essentially the inverse of IO cost.
2350 */
02695175 2351 anon_prio = swappiness;
75b00af7 2352 file_prio = 200 - anon_prio;
58c37f6e 2353
4f98a2fe
RR
2354 /*
2355 * OK, so we have swap space and a fair amount of page cache
2356 * pages. We use the recently rotated / recently scanned
2357 * ratios to determine how valuable each cache is.
2358 *
2359 * Because workloads change over time (and to avoid overflow)
2360 * we keep these statistics as a floating average, which ends
2361 * up weighing recent references more than old ones.
2362 *
2363 * anon in [0], file in [1]
2364 */
2ab051e1 2365
fd538803
MH
2366 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2367 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2368 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2369 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2ab051e1 2370
599d0c95 2371 spin_lock_irq(&pgdat->lru_lock);
6e901571 2372 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2373 reclaim_stat->recent_scanned[0] /= 2;
2374 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2375 }
2376
6e901571 2377 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2378 reclaim_stat->recent_scanned[1] /= 2;
2379 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2380 }
2381
4f98a2fe 2382 /*
00d8089c
RR
2383 * The amount of pressure on anon vs file pages is inversely
2384 * proportional to the fraction of recently scanned pages on
2385 * each list that were recently referenced and in active use.
4f98a2fe 2386 */
fe35004f 2387 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2388 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2389
fe35004f 2390 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2391 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2392 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2393
76a33fc3
SL
2394 fraction[0] = ap;
2395 fraction[1] = fp;
2396 denominator = ap + fp + 1;
2397out:
688035f7
JW
2398 *lru_pages = 0;
2399 for_each_evictable_lru(lru) {
2400 int file = is_file_lru(lru);
2401 unsigned long size;
2402 unsigned long scan;
6b4f7799 2403
688035f7
JW
2404 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2405 scan = size >> sc->priority;
2406 /*
2407 * If the cgroup's already been deleted, make sure to
2408 * scrape out the remaining cache.
2409 */
2410 if (!scan && !mem_cgroup_online(memcg))
2411 scan = min(size, SWAP_CLUSTER_MAX);
6b4f7799 2412
688035f7
JW
2413 switch (scan_balance) {
2414 case SCAN_EQUAL:
2415 /* Scan lists relative to size */
2416 break;
2417 case SCAN_FRACT:
9a265114 2418 /*
688035f7
JW
2419 * Scan types proportional to swappiness and
2420 * their relative recent reclaim efficiency.
9a265114 2421 */
688035f7
JW
2422 scan = div64_u64(scan * fraction[file],
2423 denominator);
2424 break;
2425 case SCAN_FILE:
2426 case SCAN_ANON:
2427 /* Scan one type exclusively */
2428 if ((scan_balance == SCAN_FILE) != file) {
2429 size = 0;
2430 scan = 0;
2431 }
2432 break;
2433 default:
2434 /* Look ma, no brain */
2435 BUG();
9a265114 2436 }
688035f7
JW
2437
2438 *lru_pages += size;
2439 nr[lru] = scan;
76a33fc3 2440 }
6e08a369 2441}
4f98a2fe 2442
9b4f98cd 2443/*
a9dd0a83 2444 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
9b4f98cd 2445 */
a9dd0a83 2446static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
33377678 2447 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2448{
ef8f2327 2449 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
9b4f98cd 2450 unsigned long nr[NR_LRU_LISTS];
e82e0561 2451 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2452 unsigned long nr_to_scan;
2453 enum lru_list lru;
2454 unsigned long nr_reclaimed = 0;
2455 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2456 struct blk_plug plug;
1a501907 2457 bool scan_adjusted;
9b4f98cd 2458
33377678 2459 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2460
e82e0561
MG
2461 /* Record the original scan target for proportional adjustments later */
2462 memcpy(targets, nr, sizeof(nr));
2463
1a501907
MG
2464 /*
2465 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2466 * event that can occur when there is little memory pressure e.g.
2467 * multiple streaming readers/writers. Hence, we do not abort scanning
2468 * when the requested number of pages are reclaimed when scanning at
2469 * DEF_PRIORITY on the assumption that the fact we are direct
2470 * reclaiming implies that kswapd is not keeping up and it is best to
2471 * do a batch of work at once. For memcg reclaim one check is made to
2472 * abort proportional reclaim if either the file or anon lru has already
2473 * dropped to zero at the first pass.
2474 */
2475 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2476 sc->priority == DEF_PRIORITY);
2477
9b4f98cd
JW
2478 blk_start_plug(&plug);
2479 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2480 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2481 unsigned long nr_anon, nr_file, percentage;
2482 unsigned long nr_scanned;
2483
9b4f98cd
JW
2484 for_each_evictable_lru(lru) {
2485 if (nr[lru]) {
2486 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2487 nr[lru] -= nr_to_scan;
2488
2489 nr_reclaimed += shrink_list(lru, nr_to_scan,
2a2e4885 2490 lruvec, memcg, sc);
9b4f98cd
JW
2491 }
2492 }
e82e0561 2493
bd041733
MH
2494 cond_resched();
2495
e82e0561
MG
2496 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2497 continue;
2498
e82e0561
MG
2499 /*
2500 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2501 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2502 * proportionally what was requested by get_scan_count(). We
2503 * stop reclaiming one LRU and reduce the amount scanning
2504 * proportional to the original scan target.
2505 */
2506 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2507 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2508
1a501907
MG
2509 /*
2510 * It's just vindictive to attack the larger once the smaller
2511 * has gone to zero. And given the way we stop scanning the
2512 * smaller below, this makes sure that we only make one nudge
2513 * towards proportionality once we've got nr_to_reclaim.
2514 */
2515 if (!nr_file || !nr_anon)
2516 break;
2517
e82e0561
MG
2518 if (nr_file > nr_anon) {
2519 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2520 targets[LRU_ACTIVE_ANON] + 1;
2521 lru = LRU_BASE;
2522 percentage = nr_anon * 100 / scan_target;
2523 } else {
2524 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2525 targets[LRU_ACTIVE_FILE] + 1;
2526 lru = LRU_FILE;
2527 percentage = nr_file * 100 / scan_target;
2528 }
2529
2530 /* Stop scanning the smaller of the LRU */
2531 nr[lru] = 0;
2532 nr[lru + LRU_ACTIVE] = 0;
2533
2534 /*
2535 * Recalculate the other LRU scan count based on its original
2536 * scan target and the percentage scanning already complete
2537 */
2538 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2539 nr_scanned = targets[lru] - nr[lru];
2540 nr[lru] = targets[lru] * (100 - percentage) / 100;
2541 nr[lru] -= min(nr[lru], nr_scanned);
2542
2543 lru += LRU_ACTIVE;
2544 nr_scanned = targets[lru] - nr[lru];
2545 nr[lru] = targets[lru] * (100 - percentage) / 100;
2546 nr[lru] -= min(nr[lru], nr_scanned);
2547
2548 scan_adjusted = true;
9b4f98cd
JW
2549 }
2550 blk_finish_plug(&plug);
2551 sc->nr_reclaimed += nr_reclaimed;
2552
2553 /*
2554 * Even if we did not try to evict anon pages at all, we want to
2555 * rebalance the anon lru active/inactive ratio.
2556 */
2a2e4885 2557 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
9b4f98cd
JW
2558 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2559 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2560}
2561
23b9da55 2562/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2563static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2564{
d84da3f9 2565 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2566 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2567 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2568 return true;
2569
2570 return false;
2571}
2572
3e7d3449 2573/*
23b9da55
MG
2574 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2575 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2576 * true if more pages should be reclaimed such that when the page allocator
2577 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2578 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2579 */
a9dd0a83 2580static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449
MG
2581 unsigned long nr_reclaimed,
2582 unsigned long nr_scanned,
2583 struct scan_control *sc)
2584{
2585 unsigned long pages_for_compaction;
2586 unsigned long inactive_lru_pages;
a9dd0a83 2587 int z;
3e7d3449
MG
2588
2589 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2590 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2591 return false;
2592
2876592f 2593 /* Consider stopping depending on scan and reclaim activity */
dcda9b04 2594 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2876592f 2595 /*
dcda9b04 2596 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2876592f
MG
2597 * full LRU list has been scanned and we are still failing
2598 * to reclaim pages. This full LRU scan is potentially
dcda9b04 2599 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2876592f
MG
2600 */
2601 if (!nr_reclaimed && !nr_scanned)
2602 return false;
2603 } else {
2604 /*
dcda9b04 2605 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2876592f
MG
2606 * fail without consequence, stop if we failed to reclaim
2607 * any pages from the last SWAP_CLUSTER_MAX number of
2608 * pages that were scanned. This will return to the
2609 * caller faster at the risk reclaim/compaction and
2610 * the resulting allocation attempt fails
2611 */
2612 if (!nr_reclaimed)
2613 return false;
2614 }
3e7d3449
MG
2615
2616 /*
2617 * If we have not reclaimed enough pages for compaction and the
2618 * inactive lists are large enough, continue reclaiming
2619 */
9861a62c 2620 pages_for_compaction = compact_gap(sc->order);
a9dd0a83 2621 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
ec8acf20 2622 if (get_nr_swap_pages() > 0)
a9dd0a83 2623 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3e7d3449
MG
2624 if (sc->nr_reclaimed < pages_for_compaction &&
2625 inactive_lru_pages > pages_for_compaction)
2626 return true;
2627
2628 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2629 for (z = 0; z <= sc->reclaim_idx; z++) {
2630 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2631 if (!managed_zone(zone))
a9dd0a83
MG
2632 continue;
2633
2634 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2635 case COMPACT_SUCCESS:
a9dd0a83
MG
2636 case COMPACT_CONTINUE:
2637 return false;
2638 default:
2639 /* check next zone */
2640 ;
2641 }
3e7d3449 2642 }
a9dd0a83 2643 return true;
3e7d3449
MG
2644}
2645
e3c1ac58
AR
2646static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2647{
2648 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2649 (memcg && memcg_congested(pgdat, memcg));
2650}
2651
970a39a3 2652static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2653{
cb731d6c 2654 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2655 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2656 bool reclaimable = false;
1da177e4 2657
9b4f98cd
JW
2658 do {
2659 struct mem_cgroup *root = sc->target_mem_cgroup;
2660 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 2661 .pgdat = pgdat,
9b4f98cd
JW
2662 .priority = sc->priority,
2663 };
a9dd0a83 2664 unsigned long node_lru_pages = 0;
694fbc0f 2665 struct mem_cgroup *memcg;
3e7d3449 2666
d108c772
AR
2667 memset(&sc->nr, 0, sizeof(sc->nr));
2668
9b4f98cd
JW
2669 nr_reclaimed = sc->nr_reclaimed;
2670 nr_scanned = sc->nr_scanned;
1da177e4 2671
694fbc0f
AM
2672 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2673 do {
6b4f7799 2674 unsigned long lru_pages;
8e8ae645 2675 unsigned long reclaimed;
cb731d6c 2676 unsigned long scanned;
5660048c 2677
bf8d5d52
RG
2678 switch (mem_cgroup_protected(root, memcg)) {
2679 case MEMCG_PROT_MIN:
2680 /*
2681 * Hard protection.
2682 * If there is no reclaimable memory, OOM.
2683 */
2684 continue;
2685 case MEMCG_PROT_LOW:
2686 /*
2687 * Soft protection.
2688 * Respect the protection only as long as
2689 * there is an unprotected supply
2690 * of reclaimable memory from other cgroups.
2691 */
d6622f63
YX
2692 if (!sc->memcg_low_reclaim) {
2693 sc->memcg_low_skipped = 1;
241994ed 2694 continue;
d6622f63 2695 }
e27be240 2696 memcg_memory_event(memcg, MEMCG_LOW);
bf8d5d52
RG
2697 break;
2698 case MEMCG_PROT_NONE:
2699 break;
241994ed
JW
2700 }
2701
8e8ae645 2702 reclaimed = sc->nr_reclaimed;
cb731d6c 2703 scanned = sc->nr_scanned;
a9dd0a83
MG
2704 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2705 node_lru_pages += lru_pages;
f16015fb 2706
aeed1d32
VD
2707 shrink_slab(sc->gfp_mask, pgdat->node_id,
2708 memcg, sc->priority);
cb731d6c 2709
8e8ae645
JW
2710 /* Record the group's reclaim efficiency */
2711 vmpressure(sc->gfp_mask, memcg, false,
2712 sc->nr_scanned - scanned,
2713 sc->nr_reclaimed - reclaimed);
2714
9b4f98cd 2715 /*
a394cb8e
MH
2716 * Direct reclaim and kswapd have to scan all memory
2717 * cgroups to fulfill the overall scan target for the
a9dd0a83 2718 * node.
a394cb8e
MH
2719 *
2720 * Limit reclaim, on the other hand, only cares about
2721 * nr_to_reclaim pages to be reclaimed and it will
2722 * retry with decreasing priority if one round over the
2723 * whole hierarchy is not sufficient.
9b4f98cd 2724 */
a394cb8e
MH
2725 if (!global_reclaim(sc) &&
2726 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2727 mem_cgroup_iter_break(root, memcg);
2728 break;
2729 }
241994ed 2730 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2731
cb731d6c
VD
2732 if (reclaim_state) {
2733 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2734 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2735 }
2736
8e8ae645
JW
2737 /* Record the subtree's reclaim efficiency */
2738 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2739 sc->nr_scanned - nr_scanned,
2740 sc->nr_reclaimed - nr_reclaimed);
2741
2344d7e4
JW
2742 if (sc->nr_reclaimed - nr_reclaimed)
2743 reclaimable = true;
2744
e3c1ac58
AR
2745 if (current_is_kswapd()) {
2746 /*
2747 * If reclaim is isolating dirty pages under writeback,
2748 * it implies that the long-lived page allocation rate
2749 * is exceeding the page laundering rate. Either the
2750 * global limits are not being effective at throttling
2751 * processes due to the page distribution throughout
2752 * zones or there is heavy usage of a slow backing
2753 * device. The only option is to throttle from reclaim
2754 * context which is not ideal as there is no guarantee
2755 * the dirtying process is throttled in the same way
2756 * balance_dirty_pages() manages.
2757 *
2758 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2759 * count the number of pages under pages flagged for
2760 * immediate reclaim and stall if any are encountered
2761 * in the nr_immediate check below.
2762 */
2763 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2764 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 2765
d108c772
AR
2766 /*
2767 * Tag a node as congested if all the dirty pages
2768 * scanned were backed by a congested BDI and
2769 * wait_iff_congested will stall.
2770 */
2771 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2772 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2773
2774 /* Allow kswapd to start writing pages during reclaim.*/
2775 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2776 set_bit(PGDAT_DIRTY, &pgdat->flags);
2777
2778 /*
2779 * If kswapd scans pages marked marked for immediate
2780 * reclaim and under writeback (nr_immediate), it
2781 * implies that pages are cycling through the LRU
2782 * faster than they are written so also forcibly stall.
2783 */
2784 if (sc->nr.immediate)
2785 congestion_wait(BLK_RW_ASYNC, HZ/10);
2786 }
2787
e3c1ac58
AR
2788 /*
2789 * Legacy memcg will stall in page writeback so avoid forcibly
2790 * stalling in wait_iff_congested().
2791 */
2792 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2793 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2794 set_memcg_congestion(pgdat, root, true);
2795
d108c772
AR
2796 /*
2797 * Stall direct reclaim for IO completions if underlying BDIs
2798 * and node is congested. Allow kswapd to continue until it
2799 * starts encountering unqueued dirty pages or cycling through
2800 * the LRU too quickly.
2801 */
2802 if (!sc->hibernation_mode && !current_is_kswapd() &&
e3c1ac58
AR
2803 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2804 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
d108c772 2805
a9dd0a83 2806 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
9b4f98cd 2807 sc->nr_scanned - nr_scanned, sc));
2344d7e4 2808
c73322d0
JW
2809 /*
2810 * Kswapd gives up on balancing particular nodes after too
2811 * many failures to reclaim anything from them and goes to
2812 * sleep. On reclaim progress, reset the failure counter. A
2813 * successful direct reclaim run will revive a dormant kswapd.
2814 */
2815 if (reclaimable)
2816 pgdat->kswapd_failures = 0;
2817
2344d7e4 2818 return reclaimable;
f16015fb
JW
2819}
2820
53853e2d 2821/*
fdd4c614
VB
2822 * Returns true if compaction should go ahead for a costly-order request, or
2823 * the allocation would already succeed without compaction. Return false if we
2824 * should reclaim first.
53853e2d 2825 */
4f588331 2826static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2827{
31483b6a 2828 unsigned long watermark;
fdd4c614 2829 enum compact_result suitable;
fe4b1b24 2830
fdd4c614
VB
2831 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2832 if (suitable == COMPACT_SUCCESS)
2833 /* Allocation should succeed already. Don't reclaim. */
2834 return true;
2835 if (suitable == COMPACT_SKIPPED)
2836 /* Compaction cannot yet proceed. Do reclaim. */
2837 return false;
fe4b1b24 2838
53853e2d 2839 /*
fdd4c614
VB
2840 * Compaction is already possible, but it takes time to run and there
2841 * are potentially other callers using the pages just freed. So proceed
2842 * with reclaim to make a buffer of free pages available to give
2843 * compaction a reasonable chance of completing and allocating the page.
2844 * Note that we won't actually reclaim the whole buffer in one attempt
2845 * as the target watermark in should_continue_reclaim() is lower. But if
2846 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2847 */
fdd4c614 2848 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2849
fdd4c614 2850 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2851}
2852
1da177e4
LT
2853/*
2854 * This is the direct reclaim path, for page-allocating processes. We only
2855 * try to reclaim pages from zones which will satisfy the caller's allocation
2856 * request.
2857 *
1da177e4
LT
2858 * If a zone is deemed to be full of pinned pages then just give it a light
2859 * scan then give up on it.
2860 */
0a0337e0 2861static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2862{
dd1a239f 2863 struct zoneref *z;
54a6eb5c 2864 struct zone *zone;
0608f43d
AM
2865 unsigned long nr_soft_reclaimed;
2866 unsigned long nr_soft_scanned;
619d0d76 2867 gfp_t orig_mask;
79dafcdc 2868 pg_data_t *last_pgdat = NULL;
1cfb419b 2869
cc715d99
MG
2870 /*
2871 * If the number of buffer_heads in the machine exceeds the maximum
2872 * allowed level, force direct reclaim to scan the highmem zone as
2873 * highmem pages could be pinning lowmem pages storing buffer_heads
2874 */
619d0d76 2875 orig_mask = sc->gfp_mask;
b2e18757 2876 if (buffer_heads_over_limit) {
cc715d99 2877 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2878 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2879 }
cc715d99 2880
d4debc66 2881 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2882 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2883 /*
2884 * Take care memory controller reclaiming has small influence
2885 * to global LRU.
2886 */
89b5fae5 2887 if (global_reclaim(sc)) {
344736f2
VD
2888 if (!cpuset_zone_allowed(zone,
2889 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2890 continue;
65ec02cb 2891
0b06496a
JW
2892 /*
2893 * If we already have plenty of memory free for
2894 * compaction in this zone, don't free any more.
2895 * Even though compaction is invoked for any
2896 * non-zero order, only frequent costly order
2897 * reclamation is disruptive enough to become a
2898 * noticeable problem, like transparent huge
2899 * page allocations.
2900 */
2901 if (IS_ENABLED(CONFIG_COMPACTION) &&
2902 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2903 compaction_ready(zone, sc)) {
0b06496a
JW
2904 sc->compaction_ready = true;
2905 continue;
e0887c19 2906 }
0b06496a 2907
79dafcdc
MG
2908 /*
2909 * Shrink each node in the zonelist once. If the
2910 * zonelist is ordered by zone (not the default) then a
2911 * node may be shrunk multiple times but in that case
2912 * the user prefers lower zones being preserved.
2913 */
2914 if (zone->zone_pgdat == last_pgdat)
2915 continue;
2916
0608f43d
AM
2917 /*
2918 * This steals pages from memory cgroups over softlimit
2919 * and returns the number of reclaimed pages and
2920 * scanned pages. This works for global memory pressure
2921 * and balancing, not for a memcg's limit.
2922 */
2923 nr_soft_scanned = 0;
ef8f2327 2924 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2925 sc->order, sc->gfp_mask,
2926 &nr_soft_scanned);
2927 sc->nr_reclaimed += nr_soft_reclaimed;
2928 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2929 /* need some check for avoid more shrink_zone() */
1cfb419b 2930 }
408d8544 2931
79dafcdc
MG
2932 /* See comment about same check for global reclaim above */
2933 if (zone->zone_pgdat == last_pgdat)
2934 continue;
2935 last_pgdat = zone->zone_pgdat;
970a39a3 2936 shrink_node(zone->zone_pgdat, sc);
1da177e4 2937 }
e0c23279 2938
619d0d76
WY
2939 /*
2940 * Restore to original mask to avoid the impact on the caller if we
2941 * promoted it to __GFP_HIGHMEM.
2942 */
2943 sc->gfp_mask = orig_mask;
1da177e4 2944}
4f98a2fe 2945
2a2e4885
JW
2946static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2947{
2948 struct mem_cgroup *memcg;
2949
2950 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2951 do {
2952 unsigned long refaults;
2953 struct lruvec *lruvec;
2954
2955 if (memcg)
ccda7f43 2956 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2a2e4885
JW
2957 else
2958 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2959
2960 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2961 lruvec->refaults = refaults;
2962 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2963}
2964
1da177e4
LT
2965/*
2966 * This is the main entry point to direct page reclaim.
2967 *
2968 * If a full scan of the inactive list fails to free enough memory then we
2969 * are "out of memory" and something needs to be killed.
2970 *
2971 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2972 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2973 * caller can't do much about. We kick the writeback threads and take explicit
2974 * naps in the hope that some of these pages can be written. But if the
2975 * allocating task holds filesystem locks which prevent writeout this might not
2976 * work, and the allocation attempt will fail.
a41f24ea
NA
2977 *
2978 * returns: 0, if no pages reclaimed
2979 * else, the number of pages reclaimed
1da177e4 2980 */
dac1d27b 2981static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2982 struct scan_control *sc)
1da177e4 2983{
241994ed 2984 int initial_priority = sc->priority;
2a2e4885
JW
2985 pg_data_t *last_pgdat;
2986 struct zoneref *z;
2987 struct zone *zone;
241994ed 2988retry:
873b4771
KK
2989 delayacct_freepages_start();
2990
89b5fae5 2991 if (global_reclaim(sc))
7cc30fcf 2992 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 2993
9e3b2f8c 2994 do {
70ddf637
AV
2995 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2996 sc->priority);
66e1707b 2997 sc->nr_scanned = 0;
0a0337e0 2998 shrink_zones(zonelist, sc);
c6a8a8c5 2999
bb21c7ce 3000 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3001 break;
3002
3003 if (sc->compaction_ready)
3004 break;
1da177e4 3005
0e50ce3b
MK
3006 /*
3007 * If we're getting trouble reclaiming, start doing
3008 * writepage even in laptop mode.
3009 */
3010 if (sc->priority < DEF_PRIORITY - 2)
3011 sc->may_writepage = 1;
0b06496a 3012 } while (--sc->priority >= 0);
bb21c7ce 3013
2a2e4885
JW
3014 last_pgdat = NULL;
3015 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3016 sc->nodemask) {
3017 if (zone->zone_pgdat == last_pgdat)
3018 continue;
3019 last_pgdat = zone->zone_pgdat;
3020 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
e3c1ac58 3021 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2a2e4885
JW
3022 }
3023
873b4771
KK
3024 delayacct_freepages_end();
3025
bb21c7ce
KM
3026 if (sc->nr_reclaimed)
3027 return sc->nr_reclaimed;
3028
0cee34fd 3029 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3030 if (sc->compaction_ready)
7335084d
MG
3031 return 1;
3032
241994ed 3033 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3034 if (sc->memcg_low_skipped) {
241994ed 3035 sc->priority = initial_priority;
d6622f63
YX
3036 sc->memcg_low_reclaim = 1;
3037 sc->memcg_low_skipped = 0;
241994ed
JW
3038 goto retry;
3039 }
3040
bb21c7ce 3041 return 0;
1da177e4
LT
3042}
3043
c73322d0 3044static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3045{
3046 struct zone *zone;
3047 unsigned long pfmemalloc_reserve = 0;
3048 unsigned long free_pages = 0;
3049 int i;
3050 bool wmark_ok;
3051
c73322d0
JW
3052 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3053 return true;
3054
5515061d
MG
3055 for (i = 0; i <= ZONE_NORMAL; i++) {
3056 zone = &pgdat->node_zones[i];
d450abd8
JW
3057 if (!managed_zone(zone))
3058 continue;
3059
3060 if (!zone_reclaimable_pages(zone))
675becce
MG
3061 continue;
3062
5515061d
MG
3063 pfmemalloc_reserve += min_wmark_pages(zone);
3064 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3065 }
3066
675becce
MG
3067 /* If there are no reserves (unexpected config) then do not throttle */
3068 if (!pfmemalloc_reserve)
3069 return true;
3070
5515061d
MG
3071 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3072
3073 /* kswapd must be awake if processes are being throttled */
3074 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 3075 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
3076 (enum zone_type)ZONE_NORMAL);
3077 wake_up_interruptible(&pgdat->kswapd_wait);
3078 }
3079
3080 return wmark_ok;
3081}
3082
3083/*
3084 * Throttle direct reclaimers if backing storage is backed by the network
3085 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3086 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3087 * when the low watermark is reached.
3088 *
3089 * Returns true if a fatal signal was delivered during throttling. If this
3090 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3091 */
50694c28 3092static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3093 nodemask_t *nodemask)
3094{
675becce 3095 struct zoneref *z;
5515061d 3096 struct zone *zone;
675becce 3097 pg_data_t *pgdat = NULL;
5515061d
MG
3098
3099 /*
3100 * Kernel threads should not be throttled as they may be indirectly
3101 * responsible for cleaning pages necessary for reclaim to make forward
3102 * progress. kjournald for example may enter direct reclaim while
3103 * committing a transaction where throttling it could forcing other
3104 * processes to block on log_wait_commit().
3105 */
3106 if (current->flags & PF_KTHREAD)
50694c28
MG
3107 goto out;
3108
3109 /*
3110 * If a fatal signal is pending, this process should not throttle.
3111 * It should return quickly so it can exit and free its memory
3112 */
3113 if (fatal_signal_pending(current))
3114 goto out;
5515061d 3115
675becce
MG
3116 /*
3117 * Check if the pfmemalloc reserves are ok by finding the first node
3118 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3119 * GFP_KERNEL will be required for allocating network buffers when
3120 * swapping over the network so ZONE_HIGHMEM is unusable.
3121 *
3122 * Throttling is based on the first usable node and throttled processes
3123 * wait on a queue until kswapd makes progress and wakes them. There
3124 * is an affinity then between processes waking up and where reclaim
3125 * progress has been made assuming the process wakes on the same node.
3126 * More importantly, processes running on remote nodes will not compete
3127 * for remote pfmemalloc reserves and processes on different nodes
3128 * should make reasonable progress.
3129 */
3130 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3131 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3132 if (zone_idx(zone) > ZONE_NORMAL)
3133 continue;
3134
3135 /* Throttle based on the first usable node */
3136 pgdat = zone->zone_pgdat;
c73322d0 3137 if (allow_direct_reclaim(pgdat))
675becce
MG
3138 goto out;
3139 break;
3140 }
3141
3142 /* If no zone was usable by the allocation flags then do not throttle */
3143 if (!pgdat)
50694c28 3144 goto out;
5515061d 3145
68243e76
MG
3146 /* Account for the throttling */
3147 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3148
5515061d
MG
3149 /*
3150 * If the caller cannot enter the filesystem, it's possible that it
3151 * is due to the caller holding an FS lock or performing a journal
3152 * transaction in the case of a filesystem like ext[3|4]. In this case,
3153 * it is not safe to block on pfmemalloc_wait as kswapd could be
3154 * blocked waiting on the same lock. Instead, throttle for up to a
3155 * second before continuing.
3156 */
3157 if (!(gfp_mask & __GFP_FS)) {
3158 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3159 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
3160
3161 goto check_pending;
5515061d
MG
3162 }
3163
3164 /* Throttle until kswapd wakes the process */
3165 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 3166 allow_direct_reclaim(pgdat));
50694c28
MG
3167
3168check_pending:
3169 if (fatal_signal_pending(current))
3170 return true;
3171
3172out:
3173 return false;
5515061d
MG
3174}
3175
dac1d27b 3176unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3177 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3178{
33906bc5 3179 unsigned long nr_reclaimed;
66e1707b 3180 struct scan_control sc = {
ee814fe2 3181 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3182 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3183 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3184 .order = order,
3185 .nodemask = nodemask,
3186 .priority = DEF_PRIORITY,
66e1707b 3187 .may_writepage = !laptop_mode,
a6dc60f8 3188 .may_unmap = 1,
2e2e4259 3189 .may_swap = 1,
66e1707b
BS
3190 };
3191
bb451fdf
GT
3192 /*
3193 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3194 * Confirm they are large enough for max values.
3195 */
3196 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3197 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3198 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3199
5515061d 3200 /*
50694c28
MG
3201 * Do not enter reclaim if fatal signal was delivered while throttled.
3202 * 1 is returned so that the page allocator does not OOM kill at this
3203 * point.
5515061d 3204 */
f2f43e56 3205 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3206 return 1;
3207
33906bc5
MG
3208 trace_mm_vmscan_direct_reclaim_begin(order,
3209 sc.may_writepage,
f2f43e56 3210 sc.gfp_mask,
e5146b12 3211 sc.reclaim_idx);
33906bc5 3212
3115cd91 3213 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3214
3215 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3216
3217 return nr_reclaimed;
66e1707b
BS
3218}
3219
c255a458 3220#ifdef CONFIG_MEMCG
66e1707b 3221
a9dd0a83 3222unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3223 gfp_t gfp_mask, bool noswap,
ef8f2327 3224 pg_data_t *pgdat,
0ae5e89c 3225 unsigned long *nr_scanned)
4e416953
BS
3226{
3227 struct scan_control sc = {
b8f5c566 3228 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3229 .target_mem_cgroup = memcg,
4e416953
BS
3230 .may_writepage = !laptop_mode,
3231 .may_unmap = 1,
b2e18757 3232 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3233 .may_swap = !noswap,
4e416953 3234 };
6b4f7799 3235 unsigned long lru_pages;
0ae5e89c 3236
4e416953
BS
3237 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3238 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3239
9e3b2f8c 3240 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e 3241 sc.may_writepage,
e5146b12
MG
3242 sc.gfp_mask,
3243 sc.reclaim_idx);
bdce6d9e 3244
4e416953
BS
3245 /*
3246 * NOTE: Although we can get the priority field, using it
3247 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3248 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3249 * will pick up pages from other mem cgroup's as well. We hack
3250 * the priority and make it zero.
3251 */
ef8f2327 3252 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
bdce6d9e
KM
3253
3254 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3255
0ae5e89c 3256 *nr_scanned = sc.nr_scanned;
4e416953
BS
3257 return sc.nr_reclaimed;
3258}
3259
72835c86 3260unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3261 unsigned long nr_pages,
a7885eb8 3262 gfp_t gfp_mask,
b70a2a21 3263 bool may_swap)
66e1707b 3264{
4e416953 3265 struct zonelist *zonelist;
bdce6d9e 3266 unsigned long nr_reclaimed;
889976db 3267 int nid;
499118e9 3268 unsigned int noreclaim_flag;
66e1707b 3269 struct scan_control sc = {
b70a2a21 3270 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3271 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3272 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3273 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3274 .target_mem_cgroup = memcg,
3275 .priority = DEF_PRIORITY,
3276 .may_writepage = !laptop_mode,
3277 .may_unmap = 1,
b70a2a21 3278 .may_swap = may_swap,
a09ed5e0 3279 };
66e1707b 3280
889976db
YH
3281 /*
3282 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3283 * take care of from where we get pages. So the node where we start the
3284 * scan does not need to be the current node.
3285 */
72835c86 3286 nid = mem_cgroup_select_victim_node(memcg);
889976db 3287
c9634cf0 3288 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
bdce6d9e
KM
3289
3290 trace_mm_vmscan_memcg_reclaim_begin(0,
3291 sc.may_writepage,
e5146b12
MG
3292 sc.gfp_mask,
3293 sc.reclaim_idx);
bdce6d9e 3294
499118e9 3295 noreclaim_flag = memalloc_noreclaim_save();
3115cd91 3296 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
499118e9 3297 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e
KM
3298
3299 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3300
3301 return nr_reclaimed;
66e1707b
BS
3302}
3303#endif
3304
1d82de61 3305static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3306 struct scan_control *sc)
f16015fb 3307{
b95a2f2d 3308 struct mem_cgroup *memcg;
f16015fb 3309
b95a2f2d
JW
3310 if (!total_swap_pages)
3311 return;
3312
3313 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3314 do {
ef8f2327 3315 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
b95a2f2d 3316
2a2e4885 3317 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
1a93be0e 3318 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3319 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3320
3321 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3322 } while (memcg);
f16015fb
JW
3323}
3324
e716f2eb
MG
3325/*
3326 * Returns true if there is an eligible zone balanced for the request order
3327 * and classzone_idx
3328 */
3329static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
60cefed4 3330{
e716f2eb
MG
3331 int i;
3332 unsigned long mark = -1;
3333 struct zone *zone;
60cefed4 3334
e716f2eb
MG
3335 for (i = 0; i <= classzone_idx; i++) {
3336 zone = pgdat->node_zones + i;
6256c6b4 3337
e716f2eb
MG
3338 if (!managed_zone(zone))
3339 continue;
3340
3341 mark = high_wmark_pages(zone);
3342 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3343 return true;
3344 }
3345
3346 /*
3347 * If a node has no populated zone within classzone_idx, it does not
3348 * need balancing by definition. This can happen if a zone-restricted
3349 * allocation tries to wake a remote kswapd.
3350 */
3351 if (mark == -1)
3352 return true;
3353
3354 return false;
60cefed4
JW
3355}
3356
631b6e08
MG
3357/* Clear pgdat state for congested, dirty or under writeback. */
3358static void clear_pgdat_congested(pg_data_t *pgdat)
3359{
3360 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3361 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3362 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3363}
3364
5515061d
MG
3365/*
3366 * Prepare kswapd for sleeping. This verifies that there are no processes
3367 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3368 *
3369 * Returns true if kswapd is ready to sleep
3370 */
d9f21d42 3371static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3372{
5515061d 3373 /*
9e5e3661 3374 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3375 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3376 * race between when kswapd checks the watermarks and a process gets
3377 * throttled. There is also a potential race if processes get
3378 * throttled, kswapd wakes, a large process exits thereby balancing the
3379 * zones, which causes kswapd to exit balance_pgdat() before reaching
3380 * the wake up checks. If kswapd is going to sleep, no process should
3381 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3382 * the wake up is premature, processes will wake kswapd and get
3383 * throttled again. The difference from wake ups in balance_pgdat() is
3384 * that here we are under prepare_to_wait().
5515061d 3385 */
9e5e3661
VB
3386 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3387 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3388
c73322d0
JW
3389 /* Hopeless node, leave it to direct reclaim */
3390 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3391 return true;
3392
e716f2eb
MG
3393 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3394 clear_pgdat_congested(pgdat);
3395 return true;
1d82de61
MG
3396 }
3397
333b0a45 3398 return false;
f50de2d3
MG
3399}
3400
75485363 3401/*
1d82de61
MG
3402 * kswapd shrinks a node of pages that are at or below the highest usable
3403 * zone that is currently unbalanced.
b8e83b94
MG
3404 *
3405 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3406 * reclaim or if the lack of progress was due to pages under writeback.
3407 * This is used to determine if the scanning priority needs to be raised.
75485363 3408 */
1d82de61 3409static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3410 struct scan_control *sc)
75485363 3411{
1d82de61
MG
3412 struct zone *zone;
3413 int z;
75485363 3414
1d82de61
MG
3415 /* Reclaim a number of pages proportional to the number of zones */
3416 sc->nr_to_reclaim = 0;
970a39a3 3417 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3418 zone = pgdat->node_zones + z;
6aa303de 3419 if (!managed_zone(zone))
1d82de61 3420 continue;
7c954f6d 3421
1d82de61
MG
3422 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3423 }
7c954f6d
MG
3424
3425 /*
1d82de61
MG
3426 * Historically care was taken to put equal pressure on all zones but
3427 * now pressure is applied based on node LRU order.
7c954f6d 3428 */
970a39a3 3429 shrink_node(pgdat, sc);
283aba9f 3430
7c954f6d 3431 /*
1d82de61
MG
3432 * Fragmentation may mean that the system cannot be rebalanced for
3433 * high-order allocations. If twice the allocation size has been
3434 * reclaimed then recheck watermarks only at order-0 to prevent
3435 * excessive reclaim. Assume that a process requested a high-order
3436 * can direct reclaim/compact.
7c954f6d 3437 */
9861a62c 3438 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3439 sc->order = 0;
7c954f6d 3440
b8e83b94 3441 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3442}
3443
1da177e4 3444/*
1d82de61
MG
3445 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3446 * that are eligible for use by the caller until at least one zone is
3447 * balanced.
1da177e4 3448 *
1d82de61 3449 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3450 *
3451 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3452 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1d82de61
MG
3453 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3454 * or lower is eligible for reclaim until at least one usable zone is
3455 * balanced.
1da177e4 3456 */
accf6242 3457static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3458{
1da177e4 3459 int i;
0608f43d
AM
3460 unsigned long nr_soft_reclaimed;
3461 unsigned long nr_soft_scanned;
1d82de61 3462 struct zone *zone;
179e9639
AM
3463 struct scan_control sc = {
3464 .gfp_mask = GFP_KERNEL,
ee814fe2 3465 .order = order,
b8e83b94 3466 .priority = DEF_PRIORITY,
ee814fe2 3467 .may_writepage = !laptop_mode,
a6dc60f8 3468 .may_unmap = 1,
2e2e4259 3469 .may_swap = 1,
179e9639 3470 };
93781325
OS
3471
3472 __fs_reclaim_acquire();
3473
f8891e5e 3474 count_vm_event(PAGEOUTRUN);
1da177e4 3475
9e3b2f8c 3476 do {
c73322d0 3477 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 3478 bool raise_priority = true;
93781325 3479 bool ret;
b8e83b94 3480
84c7a777 3481 sc.reclaim_idx = classzone_idx;
1da177e4 3482
86c79f6b 3483 /*
84c7a777
MG
3484 * If the number of buffer_heads exceeds the maximum allowed
3485 * then consider reclaiming from all zones. This has a dual
3486 * purpose -- on 64-bit systems it is expected that
3487 * buffer_heads are stripped during active rotation. On 32-bit
3488 * systems, highmem pages can pin lowmem memory and shrinking
3489 * buffers can relieve lowmem pressure. Reclaim may still not
3490 * go ahead if all eligible zones for the original allocation
3491 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3492 */
3493 if (buffer_heads_over_limit) {
3494 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3495 zone = pgdat->node_zones + i;
6aa303de 3496 if (!managed_zone(zone))
86c79f6b 3497 continue;
cc715d99 3498
970a39a3 3499 sc.reclaim_idx = i;
e1dbeda6 3500 break;
1da177e4 3501 }
1da177e4 3502 }
dafcb73e 3503
86c79f6b 3504 /*
e716f2eb
MG
3505 * Only reclaim if there are no eligible zones. Note that
3506 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3507 * have adjusted it.
86c79f6b 3508 */
e716f2eb
MG
3509 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3510 goto out;
e1dbeda6 3511
1d82de61
MG
3512 /*
3513 * Do some background aging of the anon list, to give
3514 * pages a chance to be referenced before reclaiming. All
3515 * pages are rotated regardless of classzone as this is
3516 * about consistent aging.
3517 */
ef8f2327 3518 age_active_anon(pgdat, &sc);
1d82de61 3519
b7ea3c41
MG
3520 /*
3521 * If we're getting trouble reclaiming, start doing writepage
3522 * even in laptop mode.
3523 */
047d72c3 3524 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3525 sc.may_writepage = 1;
3526
1d82de61
MG
3527 /* Call soft limit reclaim before calling shrink_node. */
3528 sc.nr_scanned = 0;
3529 nr_soft_scanned = 0;
ef8f2327 3530 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3531 sc.gfp_mask, &nr_soft_scanned);
3532 sc.nr_reclaimed += nr_soft_reclaimed;
3533
1da177e4 3534 /*
1d82de61
MG
3535 * There should be no need to raise the scanning priority if
3536 * enough pages are already being scanned that that high
3537 * watermark would be met at 100% efficiency.
1da177e4 3538 */
970a39a3 3539 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3540 raise_priority = false;
5515061d
MG
3541
3542 /*
3543 * If the low watermark is met there is no need for processes
3544 * to be throttled on pfmemalloc_wait as they should not be
3545 * able to safely make forward progress. Wake them
3546 */
3547 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3548 allow_direct_reclaim(pgdat))
cfc51155 3549 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3550
b8e83b94 3551 /* Check if kswapd should be suspending */
93781325
OS
3552 __fs_reclaim_release();
3553 ret = try_to_freeze();
3554 __fs_reclaim_acquire();
3555 if (ret || kthread_should_stop())
b8e83b94 3556 break;
8357376d 3557
73ce02e9 3558 /*
b8e83b94
MG
3559 * Raise priority if scanning rate is too low or there was no
3560 * progress in reclaiming pages
73ce02e9 3561 */
c73322d0
JW
3562 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3563 if (raise_priority || !nr_reclaimed)
b8e83b94 3564 sc.priority--;
1d82de61 3565 } while (sc.priority >= 1);
1da177e4 3566
c73322d0
JW
3567 if (!sc.nr_reclaimed)
3568 pgdat->kswapd_failures++;
3569
b8e83b94 3570out:
2a2e4885 3571 snapshot_refaults(NULL, pgdat);
93781325 3572 __fs_reclaim_release();
0abdee2b 3573 /*
1d82de61
MG
3574 * Return the order kswapd stopped reclaiming at as
3575 * prepare_kswapd_sleep() takes it into account. If another caller
3576 * entered the allocator slow path while kswapd was awake, order will
3577 * remain at the higher level.
0abdee2b 3578 */
1d82de61 3579 return sc.order;
1da177e4
LT
3580}
3581
e716f2eb
MG
3582/*
3583 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3584 * allocation request woke kswapd for. When kswapd has not woken recently,
3585 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3586 * given classzone and returns it or the highest classzone index kswapd
3587 * was recently woke for.
3588 */
3589static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3590 enum zone_type classzone_idx)
3591{
3592 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3593 return classzone_idx;
3594
3595 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3596}
3597
38087d9b
MG
3598static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3599 unsigned int classzone_idx)
f0bc0a60
KM
3600{
3601 long remaining = 0;
3602 DEFINE_WAIT(wait);
3603
3604 if (freezing(current) || kthread_should_stop())
3605 return;
3606
3607 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3608
333b0a45
SG
3609 /*
3610 * Try to sleep for a short interval. Note that kcompactd will only be
3611 * woken if it is possible to sleep for a short interval. This is
3612 * deliberate on the assumption that if reclaim cannot keep an
3613 * eligible zone balanced that it's also unlikely that compaction will
3614 * succeed.
3615 */
d9f21d42 3616 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3617 /*
3618 * Compaction records what page blocks it recently failed to
3619 * isolate pages from and skips them in the future scanning.
3620 * When kswapd is going to sleep, it is reasonable to assume
3621 * that pages and compaction may succeed so reset the cache.
3622 */
3623 reset_isolation_suitable(pgdat);
3624
3625 /*
3626 * We have freed the memory, now we should compact it to make
3627 * allocation of the requested order possible.
3628 */
38087d9b 3629 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3630
f0bc0a60 3631 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3632
3633 /*
3634 * If woken prematurely then reset kswapd_classzone_idx and
3635 * order. The values will either be from a wakeup request or
3636 * the previous request that slept prematurely.
3637 */
3638 if (remaining) {
e716f2eb 3639 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b
MG
3640 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3641 }
3642
f0bc0a60
KM
3643 finish_wait(&pgdat->kswapd_wait, &wait);
3644 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3645 }
3646
3647 /*
3648 * After a short sleep, check if it was a premature sleep. If not, then
3649 * go fully to sleep until explicitly woken up.
3650 */
d9f21d42
MG
3651 if (!remaining &&
3652 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3653 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3654
3655 /*
3656 * vmstat counters are not perfectly accurate and the estimated
3657 * value for counters such as NR_FREE_PAGES can deviate from the
3658 * true value by nr_online_cpus * threshold. To avoid the zone
3659 * watermarks being breached while under pressure, we reduce the
3660 * per-cpu vmstat threshold while kswapd is awake and restore
3661 * them before going back to sleep.
3662 */
3663 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3664
3665 if (!kthread_should_stop())
3666 schedule();
3667
f0bc0a60
KM
3668 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3669 } else {
3670 if (remaining)
3671 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3672 else
3673 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3674 }
3675 finish_wait(&pgdat->kswapd_wait, &wait);
3676}
3677
1da177e4
LT
3678/*
3679 * The background pageout daemon, started as a kernel thread
4f98a2fe 3680 * from the init process.
1da177e4
LT
3681 *
3682 * This basically trickles out pages so that we have _some_
3683 * free memory available even if there is no other activity
3684 * that frees anything up. This is needed for things like routing
3685 * etc, where we otherwise might have all activity going on in
3686 * asynchronous contexts that cannot page things out.
3687 *
3688 * If there are applications that are active memory-allocators
3689 * (most normal use), this basically shouldn't matter.
3690 */
3691static int kswapd(void *p)
3692{
e716f2eb
MG
3693 unsigned int alloc_order, reclaim_order;
3694 unsigned int classzone_idx = MAX_NR_ZONES - 1;
1da177e4
LT
3695 pg_data_t *pgdat = (pg_data_t*)p;
3696 struct task_struct *tsk = current;
f0bc0a60 3697
1da177e4
LT
3698 struct reclaim_state reclaim_state = {
3699 .reclaimed_slab = 0,
3700 };
a70f7302 3701 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3702
174596a0 3703 if (!cpumask_empty(cpumask))
c5f59f08 3704 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3705 current->reclaim_state = &reclaim_state;
3706
3707 /*
3708 * Tell the memory management that we're a "memory allocator",
3709 * and that if we need more memory we should get access to it
3710 * regardless (see "__alloc_pages()"). "kswapd" should
3711 * never get caught in the normal page freeing logic.
3712 *
3713 * (Kswapd normally doesn't need memory anyway, but sometimes
3714 * you need a small amount of memory in order to be able to
3715 * page out something else, and this flag essentially protects
3716 * us from recursively trying to free more memory as we're
3717 * trying to free the first piece of memory in the first place).
3718 */
930d9152 3719 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3720 set_freezable();
1da177e4 3721
e716f2eb
MG
3722 pgdat->kswapd_order = 0;
3723 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3724 for ( ; ; ) {
6f6313d4 3725 bool ret;
3e1d1d28 3726
e716f2eb
MG
3727 alloc_order = reclaim_order = pgdat->kswapd_order;
3728 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3729
38087d9b
MG
3730kswapd_try_sleep:
3731 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3732 classzone_idx);
215ddd66 3733
38087d9b
MG
3734 /* Read the new order and classzone_idx */
3735 alloc_order = reclaim_order = pgdat->kswapd_order;
e716f2eb 3736 classzone_idx = kswapd_classzone_idx(pgdat, 0);
38087d9b 3737 pgdat->kswapd_order = 0;
e716f2eb 3738 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3739
8fe23e05
DR
3740 ret = try_to_freeze();
3741 if (kthread_should_stop())
3742 break;
3743
3744 /*
3745 * We can speed up thawing tasks if we don't call balance_pgdat
3746 * after returning from the refrigerator
3747 */
38087d9b
MG
3748 if (ret)
3749 continue;
3750
3751 /*
3752 * Reclaim begins at the requested order but if a high-order
3753 * reclaim fails then kswapd falls back to reclaiming for
3754 * order-0. If that happens, kswapd will consider sleeping
3755 * for the order it finished reclaiming at (reclaim_order)
3756 * but kcompactd is woken to compact for the original
3757 * request (alloc_order).
3758 */
e5146b12
MG
3759 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3760 alloc_order);
38087d9b
MG
3761 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3762 if (reclaim_order < alloc_order)
3763 goto kswapd_try_sleep;
1da177e4 3764 }
b0a8cc58 3765
71abdc15 3766 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3767 current->reclaim_state = NULL;
71abdc15 3768
1da177e4
LT
3769 return 0;
3770}
3771
3772/*
5ecd9d40
DR
3773 * A zone is low on free memory or too fragmented for high-order memory. If
3774 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3775 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3776 * has failed or is not needed, still wake up kcompactd if only compaction is
3777 * needed.
1da177e4 3778 */
5ecd9d40
DR
3779void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3780 enum zone_type classzone_idx)
1da177e4
LT
3781{
3782 pg_data_t *pgdat;
3783
6aa303de 3784 if (!managed_zone(zone))
1da177e4
LT
3785 return;
3786
5ecd9d40 3787 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 3788 return;
88f5acf8 3789 pgdat = zone->zone_pgdat;
e716f2eb
MG
3790 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3791 classzone_idx);
38087d9b 3792 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3793 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3794 return;
e1a55637 3795
5ecd9d40
DR
3796 /* Hopeless node, leave it to direct reclaim if possible */
3797 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3798 pgdat_balanced(pgdat, order, classzone_idx)) {
3799 /*
3800 * There may be plenty of free memory available, but it's too
3801 * fragmented for high-order allocations. Wake up kcompactd
3802 * and rely on compaction_suitable() to determine if it's
3803 * needed. If it fails, it will defer subsequent attempts to
3804 * ratelimit its work.
3805 */
3806 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3807 wakeup_kcompactd(pgdat, order, classzone_idx);
e716f2eb 3808 return;
5ecd9d40 3809 }
88f5acf8 3810
5ecd9d40
DR
3811 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3812 gfp_flags);
8d0986e2 3813 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3814}
3815
c6f37f12 3816#ifdef CONFIG_HIBERNATION
1da177e4 3817/*
7b51755c 3818 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3819 * freed pages.
3820 *
3821 * Rather than trying to age LRUs the aim is to preserve the overall
3822 * LRU order by reclaiming preferentially
3823 * inactive > active > active referenced > active mapped
1da177e4 3824 */
7b51755c 3825unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3826{
d6277db4 3827 struct reclaim_state reclaim_state;
d6277db4 3828 struct scan_control sc = {
ee814fe2 3829 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3830 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3831 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3832 .priority = DEF_PRIORITY,
d6277db4 3833 .may_writepage = 1,
ee814fe2
JW
3834 .may_unmap = 1,
3835 .may_swap = 1,
7b51755c 3836 .hibernation_mode = 1,
1da177e4 3837 };
a09ed5e0 3838 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3839 struct task_struct *p = current;
3840 unsigned long nr_reclaimed;
499118e9 3841 unsigned int noreclaim_flag;
1da177e4 3842
d92a8cfc 3843 fs_reclaim_acquire(sc.gfp_mask);
93781325 3844 noreclaim_flag = memalloc_noreclaim_save();
7b51755c
KM
3845 reclaim_state.reclaimed_slab = 0;
3846 p->reclaim_state = &reclaim_state;
d6277db4 3847
3115cd91 3848 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3849
7b51755c 3850 p->reclaim_state = NULL;
499118e9 3851 memalloc_noreclaim_restore(noreclaim_flag);
93781325 3852 fs_reclaim_release(sc.gfp_mask);
d6277db4 3853
7b51755c 3854 return nr_reclaimed;
1da177e4 3855}
c6f37f12 3856#endif /* CONFIG_HIBERNATION */
1da177e4 3857
1da177e4
LT
3858/* It's optimal to keep kswapds on the same CPUs as their memory, but
3859 not required for correctness. So if the last cpu in a node goes
3860 away, we get changed to run anywhere: as the first one comes back,
3861 restore their cpu bindings. */
517bbed9 3862static int kswapd_cpu_online(unsigned int cpu)
1da177e4 3863{
58c0a4a7 3864 int nid;
1da177e4 3865
517bbed9
SAS
3866 for_each_node_state(nid, N_MEMORY) {
3867 pg_data_t *pgdat = NODE_DATA(nid);
3868 const struct cpumask *mask;
a70f7302 3869
517bbed9 3870 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3871
517bbed9
SAS
3872 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3873 /* One of our CPUs online: restore mask */
3874 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4 3875 }
517bbed9 3876 return 0;
1da177e4 3877}
1da177e4 3878
3218ae14
YG
3879/*
3880 * This kswapd start function will be called by init and node-hot-add.
3881 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3882 */
3883int kswapd_run(int nid)
3884{
3885 pg_data_t *pgdat = NODE_DATA(nid);
3886 int ret = 0;
3887
3888 if (pgdat->kswapd)
3889 return 0;
3890
3891 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3892 if (IS_ERR(pgdat->kswapd)) {
3893 /* failure at boot is fatal */
c6202adf 3894 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
3895 pr_err("Failed to start kswapd on node %d\n", nid);
3896 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3897 pgdat->kswapd = NULL;
3218ae14
YG
3898 }
3899 return ret;
3900}
3901
8fe23e05 3902/*
d8adde17 3903 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3904 * hold mem_hotplug_begin/end().
8fe23e05
DR
3905 */
3906void kswapd_stop(int nid)
3907{
3908 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3909
d8adde17 3910 if (kswapd) {
8fe23e05 3911 kthread_stop(kswapd);
d8adde17
JL
3912 NODE_DATA(nid)->kswapd = NULL;
3913 }
8fe23e05
DR
3914}
3915
1da177e4
LT
3916static int __init kswapd_init(void)
3917{
517bbed9 3918 int nid, ret;
69e05944 3919
1da177e4 3920 swap_setup();
48fb2e24 3921 for_each_node_state(nid, N_MEMORY)
3218ae14 3922 kswapd_run(nid);
517bbed9
SAS
3923 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3924 "mm/vmscan:online", kswapd_cpu_online,
3925 NULL);
3926 WARN_ON(ret < 0);
1da177e4
LT
3927 return 0;
3928}
3929
3930module_init(kswapd_init)
9eeff239
CL
3931
3932#ifdef CONFIG_NUMA
3933/*
a5f5f91d 3934 * Node reclaim mode
9eeff239 3935 *
a5f5f91d 3936 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 3937 * the watermarks.
9eeff239 3938 */
a5f5f91d 3939int node_reclaim_mode __read_mostly;
9eeff239 3940
1b2ffb78 3941#define RECLAIM_OFF 0
7d03431c 3942#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3943#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3944#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3945
a92f7126 3946/*
a5f5f91d 3947 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
3948 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3949 * a zone.
3950 */
a5f5f91d 3951#define NODE_RECLAIM_PRIORITY 4
a92f7126 3952
9614634f 3953/*
a5f5f91d 3954 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
3955 * occur.
3956 */
3957int sysctl_min_unmapped_ratio = 1;
3958
0ff38490
CL
3959/*
3960 * If the number of slab pages in a zone grows beyond this percentage then
3961 * slab reclaim needs to occur.
3962 */
3963int sysctl_min_slab_ratio = 5;
3964
11fb9989 3965static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 3966{
11fb9989
MG
3967 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3968 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3969 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
3970
3971 /*
3972 * It's possible for there to be more file mapped pages than
3973 * accounted for by the pages on the file LRU lists because
3974 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3975 */
3976 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3977}
3978
3979/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 3980static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 3981{
d031a157
AM
3982 unsigned long nr_pagecache_reclaimable;
3983 unsigned long delta = 0;
90afa5de
MG
3984
3985 /*
95bbc0c7 3986 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 3987 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 3988 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
3989 * a better estimate
3990 */
a5f5f91d
MG
3991 if (node_reclaim_mode & RECLAIM_UNMAP)
3992 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 3993 else
a5f5f91d 3994 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
3995
3996 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
3997 if (!(node_reclaim_mode & RECLAIM_WRITE))
3998 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
3999
4000 /* Watch for any possible underflows due to delta */
4001 if (unlikely(delta > nr_pagecache_reclaimable))
4002 delta = nr_pagecache_reclaimable;
4003
4004 return nr_pagecache_reclaimable - delta;
4005}
4006
9eeff239 4007/*
a5f5f91d 4008 * Try to free up some pages from this node through reclaim.
9eeff239 4009 */
a5f5f91d 4010static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4011{
7fb2d46d 4012 /* Minimum pages needed in order to stay on node */
69e05944 4013 const unsigned long nr_pages = 1 << order;
9eeff239
CL
4014 struct task_struct *p = current;
4015 struct reclaim_state reclaim_state;
499118e9 4016 unsigned int noreclaim_flag;
179e9639 4017 struct scan_control sc = {
62b726c1 4018 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4019 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4020 .order = order,
a5f5f91d
MG
4021 .priority = NODE_RECLAIM_PRIORITY,
4022 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4023 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4024 .may_swap = 1,
f2f43e56 4025 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4026 };
9eeff239 4027
9eeff239 4028 cond_resched();
93781325 4029 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4030 /*
95bbc0c7 4031 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4032 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 4033 * and RECLAIM_UNMAP.
d4f7796e 4034 */
499118e9
VB
4035 noreclaim_flag = memalloc_noreclaim_save();
4036 p->flags |= PF_SWAPWRITE;
9eeff239
CL
4037 reclaim_state.reclaimed_slab = 0;
4038 p->reclaim_state = &reclaim_state;
c84db23c 4039
a5f5f91d 4040 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 4041 /*
894befec 4042 * Free memory by calling shrink node with increasing
0ff38490
CL
4043 * priorities until we have enough memory freed.
4044 */
0ff38490 4045 do {
970a39a3 4046 shrink_node(pgdat, &sc);
9e3b2f8c 4047 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4048 }
c84db23c 4049
9eeff239 4050 p->reclaim_state = NULL;
499118e9
VB
4051 current->flags &= ~PF_SWAPWRITE;
4052 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4053 fs_reclaim_release(sc.gfp_mask);
a79311c1 4054 return sc.nr_reclaimed >= nr_pages;
9eeff239 4055}
179e9639 4056
a5f5f91d 4057int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4058{
d773ed6b 4059 int ret;
179e9639
AM
4060
4061 /*
a5f5f91d 4062 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4063 * slab pages if we are over the defined limits.
34aa1330 4064 *
9614634f
CL
4065 * A small portion of unmapped file backed pages is needed for
4066 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4067 * thrown out if the node is overallocated. So we do not reclaim
4068 * if less than a specified percentage of the node is used by
9614634f 4069 * unmapped file backed pages.
179e9639 4070 */
a5f5f91d 4071 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
385386cf 4072 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
a5f5f91d 4073 return NODE_RECLAIM_FULL;
179e9639
AM
4074
4075 /*
d773ed6b 4076 * Do not scan if the allocation should not be delayed.
179e9639 4077 */
d0164adc 4078 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4079 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4080
4081 /*
a5f5f91d 4082 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4083 * have associated processors. This will favor the local processor
4084 * over remote processors and spread off node memory allocations
4085 * as wide as possible.
4086 */
a5f5f91d
MG
4087 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4088 return NODE_RECLAIM_NOSCAN;
d773ed6b 4089
a5f5f91d
MG
4090 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4091 return NODE_RECLAIM_NOSCAN;
fa5e084e 4092
a5f5f91d
MG
4093 ret = __node_reclaim(pgdat, gfp_mask, order);
4094 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4095
24cf7251
MG
4096 if (!ret)
4097 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4098
d773ed6b 4099 return ret;
179e9639 4100}
9eeff239 4101#endif
894bc310 4102
894bc310
LS
4103/*
4104 * page_evictable - test whether a page is evictable
4105 * @page: the page to test
894bc310
LS
4106 *
4107 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 4108 * lists vs unevictable list.
894bc310
LS
4109 *
4110 * Reasons page might not be evictable:
ba9ddf49 4111 * (1) page's mapping marked unevictable
b291f000 4112 * (2) page is part of an mlocked VMA
ba9ddf49 4113 *
894bc310 4114 */
39b5f29a 4115int page_evictable(struct page *page)
894bc310 4116{
e92bb4dd
HY
4117 int ret;
4118
4119 /* Prevent address_space of inode and swap cache from being freed */
4120 rcu_read_lock();
4121 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4122 rcu_read_unlock();
4123 return ret;
894bc310 4124}
89e004ea 4125
85046579 4126#ifdef CONFIG_SHMEM
89e004ea 4127/**
24513264
HD
4128 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
4129 * @pages: array of pages to check
4130 * @nr_pages: number of pages to check
89e004ea 4131 *
24513264 4132 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
4133 *
4134 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 4135 */
24513264 4136void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 4137{
925b7673 4138 struct lruvec *lruvec;
785b99fe 4139 struct pglist_data *pgdat = NULL;
24513264
HD
4140 int pgscanned = 0;
4141 int pgrescued = 0;
4142 int i;
89e004ea 4143
24513264
HD
4144 for (i = 0; i < nr_pages; i++) {
4145 struct page *page = pages[i];
785b99fe 4146 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 4147
24513264 4148 pgscanned++;
785b99fe
MG
4149 if (pagepgdat != pgdat) {
4150 if (pgdat)
4151 spin_unlock_irq(&pgdat->lru_lock);
4152 pgdat = pagepgdat;
4153 spin_lock_irq(&pgdat->lru_lock);
24513264 4154 }
785b99fe 4155 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 4156
24513264
HD
4157 if (!PageLRU(page) || !PageUnevictable(page))
4158 continue;
89e004ea 4159
39b5f29a 4160 if (page_evictable(page)) {
24513264
HD
4161 enum lru_list lru = page_lru_base_type(page);
4162
309381fe 4163 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 4164 ClearPageUnevictable(page);
fa9add64
HD
4165 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4166 add_page_to_lru_list(page, lruvec, lru);
24513264 4167 pgrescued++;
89e004ea 4168 }
24513264 4169 }
89e004ea 4170
785b99fe 4171 if (pgdat) {
24513264
HD
4172 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4173 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 4174 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 4175 }
89e004ea 4176}
85046579 4177#endif /* CONFIG_SHMEM */