]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/vmscan.c
mm: vmscan: remove double slab pressure by inc'ing sc->nr_scanned
[mirror_ubuntu-kernels.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
b1de0d13
MH
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
1da177e4 17#include <linux/mm.h>
5b3cc15a 18#include <linux/sched/mm.h>
1da177e4 19#include <linux/module.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/kernel_stat.h>
22#include <linux/swap.h>
23#include <linux/pagemap.h>
24#include <linux/init.h>
25#include <linux/highmem.h>
70ddf637 26#include <linux/vmpressure.h>
e129b5c2 27#include <linux/vmstat.h>
1da177e4
LT
28#include <linux/file.h>
29#include <linux/writeback.h>
30#include <linux/blkdev.h>
31#include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33#include <linux/mm_inline.h>
1da177e4
LT
34#include <linux/backing-dev.h>
35#include <linux/rmap.h>
36#include <linux/topology.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
3e7d3449 39#include <linux/compaction.h>
1da177e4
LT
40#include <linux/notifier.h>
41#include <linux/rwsem.h>
248a0301 42#include <linux/delay.h>
3218ae14 43#include <linux/kthread.h>
7dfb7103 44#include <linux/freezer.h>
66e1707b 45#include <linux/memcontrol.h>
873b4771 46#include <linux/delayacct.h>
af936a16 47#include <linux/sysctl.h>
929bea7c 48#include <linux/oom.h>
64e3d12f 49#include <linux/pagevec.h>
268bb0ce 50#include <linux/prefetch.h>
b1de0d13 51#include <linux/printk.h>
f9fe48be 52#include <linux/dax.h>
eb414681 53#include <linux/psi.h>
1da177e4
LT
54
55#include <asm/tlbflush.h>
56#include <asm/div64.h>
57
58#include <linux/swapops.h>
117aad1e 59#include <linux/balloon_compaction.h>
1da177e4 60
0f8053a5
NP
61#include "internal.h"
62
33906bc5
MG
63#define CREATE_TRACE_POINTS
64#include <trace/events/vmscan.h>
65
1da177e4 66struct scan_control {
22fba335
KM
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
69
ee814fe2
JW
70 /*
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 * are scanned.
73 */
74 nodemask_t *nodemask;
9e3b2f8c 75
f16015fb
JW
76 /*
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
79 */
80 struct mem_cgroup *target_mem_cgroup;
66e1707b 81
1276ad68 82 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
83 unsigned int may_writepage:1;
84
85 /* Can mapped pages be reclaimed? */
86 unsigned int may_unmap:1;
87
88 /* Can pages be swapped as part of reclaim? */
89 unsigned int may_swap:1;
90
1c30844d
MG
91 /* e.g. boosted watermark reclaim leaves slabs alone */
92 unsigned int may_shrinkslab:1;
93
d6622f63
YX
94 /*
95 * Cgroups are not reclaimed below their configured memory.low,
96 * unless we threaten to OOM. If any cgroups are skipped due to
97 * memory.low and nothing was reclaimed, go back for memory.low.
98 */
99 unsigned int memcg_low_reclaim:1;
100 unsigned int memcg_low_skipped:1;
241994ed 101
ee814fe2
JW
102 unsigned int hibernation_mode:1;
103
104 /* One of the zones is ready for compaction */
105 unsigned int compaction_ready:1;
106
bb451fdf
GT
107 /* Allocation order */
108 s8 order;
109
110 /* Scan (total_size >> priority) pages at once */
111 s8 priority;
112
113 /* The highest zone to isolate pages for reclaim from */
114 s8 reclaim_idx;
115
116 /* This context's GFP mask */
117 gfp_t gfp_mask;
118
ee814fe2
JW
119 /* Incremented by the number of inactive pages that were scanned */
120 unsigned long nr_scanned;
121
122 /* Number of pages freed so far during a call to shrink_zones() */
123 unsigned long nr_reclaimed;
d108c772
AR
124
125 struct {
126 unsigned int dirty;
127 unsigned int unqueued_dirty;
128 unsigned int congested;
129 unsigned int writeback;
130 unsigned int immediate;
131 unsigned int file_taken;
132 unsigned int taken;
133 } nr;
1da177e4
LT
134};
135
1da177e4
LT
136#ifdef ARCH_HAS_PREFETCH
137#define prefetch_prev_lru_page(_page, _base, _field) \
138 do { \
139 if ((_page)->lru.prev != _base) { \
140 struct page *prev; \
141 \
142 prev = lru_to_page(&(_page->lru)); \
143 prefetch(&prev->_field); \
144 } \
145 } while (0)
146#else
147#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
148#endif
149
150#ifdef ARCH_HAS_PREFETCHW
151#define prefetchw_prev_lru_page(_page, _base, _field) \
152 do { \
153 if ((_page)->lru.prev != _base) { \
154 struct page *prev; \
155 \
156 prev = lru_to_page(&(_page->lru)); \
157 prefetchw(&prev->_field); \
158 } \
159 } while (0)
160#else
161#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
162#endif
163
164/*
165 * From 0 .. 100. Higher means more swappy.
166 */
167int vm_swappiness = 60;
d0480be4
WSH
168/*
169 * The total number of pages which are beyond the high watermark within all
170 * zones.
171 */
172unsigned long vm_total_pages;
1da177e4
LT
173
174static LIST_HEAD(shrinker_list);
175static DECLARE_RWSEM(shrinker_rwsem);
176
b4c2b231 177#ifdef CONFIG_MEMCG_KMEM
7e010df5
KT
178
179/*
180 * We allow subsystems to populate their shrinker-related
181 * LRU lists before register_shrinker_prepared() is called
182 * for the shrinker, since we don't want to impose
183 * restrictions on their internal registration order.
184 * In this case shrink_slab_memcg() may find corresponding
185 * bit is set in the shrinkers map.
186 *
187 * This value is used by the function to detect registering
188 * shrinkers and to skip do_shrink_slab() calls for them.
189 */
190#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
191
b4c2b231
KT
192static DEFINE_IDR(shrinker_idr);
193static int shrinker_nr_max;
194
195static int prealloc_memcg_shrinker(struct shrinker *shrinker)
196{
197 int id, ret = -ENOMEM;
198
199 down_write(&shrinker_rwsem);
200 /* This may call shrinker, so it must use down_read_trylock() */
7e010df5 201 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
b4c2b231
KT
202 if (id < 0)
203 goto unlock;
204
0a4465d3
KT
205 if (id >= shrinker_nr_max) {
206 if (memcg_expand_shrinker_maps(id)) {
207 idr_remove(&shrinker_idr, id);
208 goto unlock;
209 }
210
b4c2b231 211 shrinker_nr_max = id + 1;
0a4465d3 212 }
b4c2b231
KT
213 shrinker->id = id;
214 ret = 0;
215unlock:
216 up_write(&shrinker_rwsem);
217 return ret;
218}
219
220static void unregister_memcg_shrinker(struct shrinker *shrinker)
221{
222 int id = shrinker->id;
223
224 BUG_ON(id < 0);
225
226 down_write(&shrinker_rwsem);
227 idr_remove(&shrinker_idr, id);
228 up_write(&shrinker_rwsem);
229}
230#else /* CONFIG_MEMCG_KMEM */
231static int prealloc_memcg_shrinker(struct shrinker *shrinker)
232{
233 return 0;
234}
235
236static void unregister_memcg_shrinker(struct shrinker *shrinker)
237{
238}
239#endif /* CONFIG_MEMCG_KMEM */
240
c255a458 241#ifdef CONFIG_MEMCG
89b5fae5
JW
242static bool global_reclaim(struct scan_control *sc)
243{
f16015fb 244 return !sc->target_mem_cgroup;
89b5fae5 245}
97c9341f
TH
246
247/**
248 * sane_reclaim - is the usual dirty throttling mechanism operational?
249 * @sc: scan_control in question
250 *
251 * The normal page dirty throttling mechanism in balance_dirty_pages() is
252 * completely broken with the legacy memcg and direct stalling in
253 * shrink_page_list() is used for throttling instead, which lacks all the
254 * niceties such as fairness, adaptive pausing, bandwidth proportional
255 * allocation and configurability.
256 *
257 * This function tests whether the vmscan currently in progress can assume
258 * that the normal dirty throttling mechanism is operational.
259 */
260static bool sane_reclaim(struct scan_control *sc)
261{
262 struct mem_cgroup *memcg = sc->target_mem_cgroup;
263
264 if (!memcg)
265 return true;
266#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 267 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
268 return true;
269#endif
270 return false;
271}
e3c1ac58
AR
272
273static void set_memcg_congestion(pg_data_t *pgdat,
274 struct mem_cgroup *memcg,
275 bool congested)
276{
277 struct mem_cgroup_per_node *mn;
278
279 if (!memcg)
280 return;
281
282 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
283 WRITE_ONCE(mn->congested, congested);
284}
285
286static bool memcg_congested(pg_data_t *pgdat,
287 struct mem_cgroup *memcg)
288{
289 struct mem_cgroup_per_node *mn;
290
291 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
292 return READ_ONCE(mn->congested);
293
294}
91a45470 295#else
89b5fae5
JW
296static bool global_reclaim(struct scan_control *sc)
297{
298 return true;
299}
97c9341f
TH
300
301static bool sane_reclaim(struct scan_control *sc)
302{
303 return true;
304}
e3c1ac58
AR
305
306static inline void set_memcg_congestion(struct pglist_data *pgdat,
307 struct mem_cgroup *memcg, bool congested)
308{
309}
310
311static inline bool memcg_congested(struct pglist_data *pgdat,
312 struct mem_cgroup *memcg)
313{
314 return false;
315
316}
91a45470
KH
317#endif
318
5a1c84b4
MG
319/*
320 * This misses isolated pages which are not accounted for to save counters.
321 * As the data only determines if reclaim or compaction continues, it is
322 * not expected that isolated pages will be a dominating factor.
323 */
324unsigned long zone_reclaimable_pages(struct zone *zone)
325{
326 unsigned long nr;
327
328 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
329 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
330 if (get_nr_swap_pages() > 0)
331 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
332 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
333
334 return nr;
335}
336
fd538803
MH
337/**
338 * lruvec_lru_size - Returns the number of pages on the given LRU list.
339 * @lruvec: lru vector
340 * @lru: lru to use
341 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
342 */
343unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 344{
fd538803
MH
345 unsigned long lru_size;
346 int zid;
347
c3c787e8 348 if (!mem_cgroup_disabled())
205b20cc 349 lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
fd538803
MH
350 else
351 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
a3d8e054 352
fd538803
MH
353 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
354 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
355 unsigned long size;
c9f299d9 356
fd538803
MH
357 if (!managed_zone(zone))
358 continue;
359
360 if (!mem_cgroup_disabled())
361 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
362 else
363 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
364 NR_ZONE_LRU_BASE + lru);
365 lru_size -= min(size, lru_size);
366 }
367
368 return lru_size;
b4536f0c 369
b4536f0c
MH
370}
371
1da177e4 372/*
1d3d4437 373 * Add a shrinker callback to be called from the vm.
1da177e4 374 */
8e04944f 375int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 376{
b9726c26 377 unsigned int size = sizeof(*shrinker->nr_deferred);
1d3d4437 378
1d3d4437
GC
379 if (shrinker->flags & SHRINKER_NUMA_AWARE)
380 size *= nr_node_ids;
381
382 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
383 if (!shrinker->nr_deferred)
384 return -ENOMEM;
b4c2b231
KT
385
386 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
387 if (prealloc_memcg_shrinker(shrinker))
388 goto free_deferred;
389 }
390
8e04944f 391 return 0;
b4c2b231
KT
392
393free_deferred:
394 kfree(shrinker->nr_deferred);
395 shrinker->nr_deferred = NULL;
396 return -ENOMEM;
8e04944f
TH
397}
398
399void free_prealloced_shrinker(struct shrinker *shrinker)
400{
b4c2b231
KT
401 if (!shrinker->nr_deferred)
402 return;
403
404 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
405 unregister_memcg_shrinker(shrinker);
406
8e04944f
TH
407 kfree(shrinker->nr_deferred);
408 shrinker->nr_deferred = NULL;
409}
1d3d4437 410
8e04944f
TH
411void register_shrinker_prepared(struct shrinker *shrinker)
412{
8e1f936b
RR
413 down_write(&shrinker_rwsem);
414 list_add_tail(&shrinker->list, &shrinker_list);
7e010df5 415#ifdef CONFIG_MEMCG_KMEM
8df4a44c
KT
416 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
417 idr_replace(&shrinker_idr, shrinker, shrinker->id);
7e010df5 418#endif
8e1f936b 419 up_write(&shrinker_rwsem);
8e04944f
TH
420}
421
422int register_shrinker(struct shrinker *shrinker)
423{
424 int err = prealloc_shrinker(shrinker);
425
426 if (err)
427 return err;
428 register_shrinker_prepared(shrinker);
1d3d4437 429 return 0;
1da177e4 430}
8e1f936b 431EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
432
433/*
434 * Remove one
435 */
8e1f936b 436void unregister_shrinker(struct shrinker *shrinker)
1da177e4 437{
bb422a73
TH
438 if (!shrinker->nr_deferred)
439 return;
b4c2b231
KT
440 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
441 unregister_memcg_shrinker(shrinker);
1da177e4
LT
442 down_write(&shrinker_rwsem);
443 list_del(&shrinker->list);
444 up_write(&shrinker_rwsem);
ae393321 445 kfree(shrinker->nr_deferred);
bb422a73 446 shrinker->nr_deferred = NULL;
1da177e4 447}
8e1f936b 448EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
449
450#define SHRINK_BATCH 128
1d3d4437 451
cb731d6c 452static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 453 struct shrinker *shrinker, int priority)
1d3d4437
GC
454{
455 unsigned long freed = 0;
456 unsigned long long delta;
457 long total_scan;
d5bc5fd3 458 long freeable;
1d3d4437
GC
459 long nr;
460 long new_nr;
461 int nid = shrinkctl->nid;
462 long batch_size = shrinker->batch ? shrinker->batch
463 : SHRINK_BATCH;
5f33a080 464 long scanned = 0, next_deferred;
1d3d4437 465
ac7fb3ad
KT
466 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
467 nid = 0;
468
d5bc5fd3 469 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
470 if (freeable == 0 || freeable == SHRINK_EMPTY)
471 return freeable;
1d3d4437
GC
472
473 /*
474 * copy the current shrinker scan count into a local variable
475 * and zero it so that other concurrent shrinker invocations
476 * don't also do this scanning work.
477 */
478 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
479
480 total_scan = nr;
4b85afbd
JW
481 if (shrinker->seeks) {
482 delta = freeable >> priority;
483 delta *= 4;
484 do_div(delta, shrinker->seeks);
485 } else {
486 /*
487 * These objects don't require any IO to create. Trim
488 * them aggressively under memory pressure to keep
489 * them from causing refetches in the IO caches.
490 */
491 delta = freeable / 2;
492 }
172b06c3 493
1d3d4437
GC
494 total_scan += delta;
495 if (total_scan < 0) {
d75f773c 496 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
a0b02131 497 shrinker->scan_objects, total_scan);
d5bc5fd3 498 total_scan = freeable;
5f33a080
SL
499 next_deferred = nr;
500 } else
501 next_deferred = total_scan;
1d3d4437
GC
502
503 /*
504 * We need to avoid excessive windup on filesystem shrinkers
505 * due to large numbers of GFP_NOFS allocations causing the
506 * shrinkers to return -1 all the time. This results in a large
507 * nr being built up so when a shrink that can do some work
508 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 509 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
510 * memory.
511 *
512 * Hence only allow the shrinker to scan the entire cache when
513 * a large delta change is calculated directly.
514 */
d5bc5fd3
VD
515 if (delta < freeable / 4)
516 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
517
518 /*
519 * Avoid risking looping forever due to too large nr value:
520 * never try to free more than twice the estimate number of
521 * freeable entries.
522 */
d5bc5fd3
VD
523 if (total_scan > freeable * 2)
524 total_scan = freeable * 2;
1d3d4437
GC
525
526 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 527 freeable, delta, total_scan, priority);
1d3d4437 528
0b1fb40a
VD
529 /*
530 * Normally, we should not scan less than batch_size objects in one
531 * pass to avoid too frequent shrinker calls, but if the slab has less
532 * than batch_size objects in total and we are really tight on memory,
533 * we will try to reclaim all available objects, otherwise we can end
534 * up failing allocations although there are plenty of reclaimable
535 * objects spread over several slabs with usage less than the
536 * batch_size.
537 *
538 * We detect the "tight on memory" situations by looking at the total
539 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 540 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
541 * scanning at high prio and therefore should try to reclaim as much as
542 * possible.
543 */
544 while (total_scan >= batch_size ||
d5bc5fd3 545 total_scan >= freeable) {
a0b02131 546 unsigned long ret;
0b1fb40a 547 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 548
0b1fb40a 549 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 550 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
551 ret = shrinker->scan_objects(shrinker, shrinkctl);
552 if (ret == SHRINK_STOP)
553 break;
554 freed += ret;
1d3d4437 555
d460acb5
CW
556 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
557 total_scan -= shrinkctl->nr_scanned;
558 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
559
560 cond_resched();
561 }
562
5f33a080
SL
563 if (next_deferred >= scanned)
564 next_deferred -= scanned;
565 else
566 next_deferred = 0;
1d3d4437
GC
567 /*
568 * move the unused scan count back into the shrinker in a
569 * manner that handles concurrent updates. If we exhausted the
570 * scan, there is no need to do an update.
571 */
5f33a080
SL
572 if (next_deferred > 0)
573 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
574 &shrinker->nr_deferred[nid]);
575 else
576 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
577
df9024a8 578 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 579 return freed;
1495f230
YH
580}
581
b0dedc49
KT
582#ifdef CONFIG_MEMCG_KMEM
583static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
584 struct mem_cgroup *memcg, int priority)
585{
586 struct memcg_shrinker_map *map;
b8e57efa
KT
587 unsigned long ret, freed = 0;
588 int i;
b0dedc49
KT
589
590 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
591 return 0;
592
593 if (!down_read_trylock(&shrinker_rwsem))
594 return 0;
595
596 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
597 true);
598 if (unlikely(!map))
599 goto unlock;
600
601 for_each_set_bit(i, map->map, shrinker_nr_max) {
602 struct shrink_control sc = {
603 .gfp_mask = gfp_mask,
604 .nid = nid,
605 .memcg = memcg,
606 };
607 struct shrinker *shrinker;
608
609 shrinker = idr_find(&shrinker_idr, i);
7e010df5
KT
610 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
611 if (!shrinker)
612 clear_bit(i, map->map);
b0dedc49
KT
613 continue;
614 }
615
b0dedc49 616 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6
KT
617 if (ret == SHRINK_EMPTY) {
618 clear_bit(i, map->map);
619 /*
620 * After the shrinker reported that it had no objects to
621 * free, but before we cleared the corresponding bit in
622 * the memcg shrinker map, a new object might have been
623 * added. To make sure, we have the bit set in this
624 * case, we invoke the shrinker one more time and reset
625 * the bit if it reports that it is not empty anymore.
626 * The memory barrier here pairs with the barrier in
627 * memcg_set_shrinker_bit():
628 *
629 * list_lru_add() shrink_slab_memcg()
630 * list_add_tail() clear_bit()
631 * <MB> <MB>
632 * set_bit() do_shrink_slab()
633 */
634 smp_mb__after_atomic();
635 ret = do_shrink_slab(&sc, shrinker, priority);
636 if (ret == SHRINK_EMPTY)
637 ret = 0;
638 else
639 memcg_set_shrinker_bit(memcg, nid, i);
640 }
b0dedc49
KT
641 freed += ret;
642
643 if (rwsem_is_contended(&shrinker_rwsem)) {
644 freed = freed ? : 1;
645 break;
646 }
647 }
648unlock:
649 up_read(&shrinker_rwsem);
650 return freed;
651}
652#else /* CONFIG_MEMCG_KMEM */
653static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
654 struct mem_cgroup *memcg, int priority)
655{
656 return 0;
657}
658#endif /* CONFIG_MEMCG_KMEM */
659
6b4f7799 660/**
cb731d6c 661 * shrink_slab - shrink slab caches
6b4f7799
JW
662 * @gfp_mask: allocation context
663 * @nid: node whose slab caches to target
cb731d6c 664 * @memcg: memory cgroup whose slab caches to target
9092c71b 665 * @priority: the reclaim priority
1da177e4 666 *
6b4f7799 667 * Call the shrink functions to age shrinkable caches.
1da177e4 668 *
6b4f7799
JW
669 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
670 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 671 *
aeed1d32
VD
672 * @memcg specifies the memory cgroup to target. Unaware shrinkers
673 * are called only if it is the root cgroup.
cb731d6c 674 *
9092c71b
JB
675 * @priority is sc->priority, we take the number of objects and >> by priority
676 * in order to get the scan target.
b15e0905 677 *
6b4f7799 678 * Returns the number of reclaimed slab objects.
1da177e4 679 */
cb731d6c
VD
680static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
681 struct mem_cgroup *memcg,
9092c71b 682 int priority)
1da177e4 683{
b8e57efa 684 unsigned long ret, freed = 0;
1da177e4
LT
685 struct shrinker *shrinker;
686
aeed1d32 687 if (!mem_cgroup_is_root(memcg))
b0dedc49 688 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 689
e830c63a 690 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 691 goto out;
1da177e4
LT
692
693 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
694 struct shrink_control sc = {
695 .gfp_mask = gfp_mask,
696 .nid = nid,
cb731d6c 697 .memcg = memcg,
6b4f7799 698 };
ec97097b 699
9b996468
KT
700 ret = do_shrink_slab(&sc, shrinker, priority);
701 if (ret == SHRINK_EMPTY)
702 ret = 0;
703 freed += ret;
e496612c
MK
704 /*
705 * Bail out if someone want to register a new shrinker to
706 * prevent the regsitration from being stalled for long periods
707 * by parallel ongoing shrinking.
708 */
709 if (rwsem_is_contended(&shrinker_rwsem)) {
710 freed = freed ? : 1;
711 break;
712 }
1da177e4 713 }
6b4f7799 714
1da177e4 715 up_read(&shrinker_rwsem);
f06590bd
MK
716out:
717 cond_resched();
24f7c6b9 718 return freed;
1da177e4
LT
719}
720
cb731d6c
VD
721void drop_slab_node(int nid)
722{
723 unsigned long freed;
724
725 do {
726 struct mem_cgroup *memcg = NULL;
727
728 freed = 0;
aeed1d32 729 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 730 do {
9092c71b 731 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c
VD
732 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
733 } while (freed > 10);
734}
735
736void drop_slab(void)
737{
738 int nid;
739
740 for_each_online_node(nid)
741 drop_slab_node(nid);
742}
743
1da177e4
LT
744static inline int is_page_cache_freeable(struct page *page)
745{
ceddc3a5
JW
746 /*
747 * A freeable page cache page is referenced only by the caller
67891fff
MW
748 * that isolated the page, the page cache and optional buffer
749 * heads at page->private.
ceddc3a5 750 */
67891fff 751 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
bd4c82c2 752 HPAGE_PMD_NR : 1;
67891fff 753 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
1da177e4
LT
754}
755
703c2708 756static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 757{
930d9152 758 if (current->flags & PF_SWAPWRITE)
1da177e4 759 return 1;
703c2708 760 if (!inode_write_congested(inode))
1da177e4 761 return 1;
703c2708 762 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
763 return 1;
764 return 0;
765}
766
767/*
768 * We detected a synchronous write error writing a page out. Probably
769 * -ENOSPC. We need to propagate that into the address_space for a subsequent
770 * fsync(), msync() or close().
771 *
772 * The tricky part is that after writepage we cannot touch the mapping: nothing
773 * prevents it from being freed up. But we have a ref on the page and once
774 * that page is locked, the mapping is pinned.
775 *
776 * We're allowed to run sleeping lock_page() here because we know the caller has
777 * __GFP_FS.
778 */
779static void handle_write_error(struct address_space *mapping,
780 struct page *page, int error)
781{
7eaceacc 782 lock_page(page);
3e9f45bd
GC
783 if (page_mapping(page) == mapping)
784 mapping_set_error(mapping, error);
1da177e4
LT
785 unlock_page(page);
786}
787
04e62a29
CL
788/* possible outcome of pageout() */
789typedef enum {
790 /* failed to write page out, page is locked */
791 PAGE_KEEP,
792 /* move page to the active list, page is locked */
793 PAGE_ACTIVATE,
794 /* page has been sent to the disk successfully, page is unlocked */
795 PAGE_SUCCESS,
796 /* page is clean and locked */
797 PAGE_CLEAN,
798} pageout_t;
799
1da177e4 800/*
1742f19f
AM
801 * pageout is called by shrink_page_list() for each dirty page.
802 * Calls ->writepage().
1da177e4 803 */
c661b078 804static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 805 struct scan_control *sc)
1da177e4
LT
806{
807 /*
808 * If the page is dirty, only perform writeback if that write
809 * will be non-blocking. To prevent this allocation from being
810 * stalled by pagecache activity. But note that there may be
811 * stalls if we need to run get_block(). We could test
812 * PagePrivate for that.
813 *
8174202b 814 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
815 * this page's queue, we can perform writeback even if that
816 * will block.
817 *
818 * If the page is swapcache, write it back even if that would
819 * block, for some throttling. This happens by accident, because
820 * swap_backing_dev_info is bust: it doesn't reflect the
821 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
822 */
823 if (!is_page_cache_freeable(page))
824 return PAGE_KEEP;
825 if (!mapping) {
826 /*
827 * Some data journaling orphaned pages can have
828 * page->mapping == NULL while being dirty with clean buffers.
829 */
266cf658 830 if (page_has_private(page)) {
1da177e4
LT
831 if (try_to_free_buffers(page)) {
832 ClearPageDirty(page);
b1de0d13 833 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
834 return PAGE_CLEAN;
835 }
836 }
837 return PAGE_KEEP;
838 }
839 if (mapping->a_ops->writepage == NULL)
840 return PAGE_ACTIVATE;
703c2708 841 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
842 return PAGE_KEEP;
843
844 if (clear_page_dirty_for_io(page)) {
845 int res;
846 struct writeback_control wbc = {
847 .sync_mode = WB_SYNC_NONE,
848 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
849 .range_start = 0,
850 .range_end = LLONG_MAX,
1da177e4
LT
851 .for_reclaim = 1,
852 };
853
854 SetPageReclaim(page);
855 res = mapping->a_ops->writepage(page, &wbc);
856 if (res < 0)
857 handle_write_error(mapping, page, res);
994fc28c 858 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
859 ClearPageReclaim(page);
860 return PAGE_ACTIVATE;
861 }
c661b078 862
1da177e4
LT
863 if (!PageWriteback(page)) {
864 /* synchronous write or broken a_ops? */
865 ClearPageReclaim(page);
866 }
3aa23851 867 trace_mm_vmscan_writepage(page);
c4a25635 868 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
869 return PAGE_SUCCESS;
870 }
871
872 return PAGE_CLEAN;
873}
874
a649fd92 875/*
e286781d
NP
876 * Same as remove_mapping, but if the page is removed from the mapping, it
877 * gets returned with a refcount of 0.
a649fd92 878 */
a528910e
JW
879static int __remove_mapping(struct address_space *mapping, struct page *page,
880 bool reclaimed)
49d2e9cc 881{
c4843a75 882 unsigned long flags;
bd4c82c2 883 int refcount;
c4843a75 884
28e4d965
NP
885 BUG_ON(!PageLocked(page));
886 BUG_ON(mapping != page_mapping(page));
49d2e9cc 887
b93b0163 888 xa_lock_irqsave(&mapping->i_pages, flags);
49d2e9cc 889 /*
0fd0e6b0
NP
890 * The non racy check for a busy page.
891 *
892 * Must be careful with the order of the tests. When someone has
893 * a ref to the page, it may be possible that they dirty it then
894 * drop the reference. So if PageDirty is tested before page_count
895 * here, then the following race may occur:
896 *
897 * get_user_pages(&page);
898 * [user mapping goes away]
899 * write_to(page);
900 * !PageDirty(page) [good]
901 * SetPageDirty(page);
902 * put_page(page);
903 * !page_count(page) [good, discard it]
904 *
905 * [oops, our write_to data is lost]
906 *
907 * Reversing the order of the tests ensures such a situation cannot
908 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 909 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
910 *
911 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 912 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 913 */
bd4c82c2
HY
914 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
915 refcount = 1 + HPAGE_PMD_NR;
916 else
917 refcount = 2;
918 if (!page_ref_freeze(page, refcount))
49d2e9cc 919 goto cannot_free;
1c4c3b99 920 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
e286781d 921 if (unlikely(PageDirty(page))) {
bd4c82c2 922 page_ref_unfreeze(page, refcount);
49d2e9cc 923 goto cannot_free;
e286781d 924 }
49d2e9cc
CL
925
926 if (PageSwapCache(page)) {
927 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 928 mem_cgroup_swapout(page, swap);
4e17ec25 929 __delete_from_swap_cache(page, swap);
b93b0163 930 xa_unlock_irqrestore(&mapping->i_pages, flags);
75f6d6d2 931 put_swap_page(page, swap);
e286781d 932 } else {
6072d13c 933 void (*freepage)(struct page *);
a528910e 934 void *shadow = NULL;
6072d13c
LT
935
936 freepage = mapping->a_ops->freepage;
a528910e
JW
937 /*
938 * Remember a shadow entry for reclaimed file cache in
939 * order to detect refaults, thus thrashing, later on.
940 *
941 * But don't store shadows in an address space that is
942 * already exiting. This is not just an optizimation,
943 * inode reclaim needs to empty out the radix tree or
944 * the nodes are lost. Don't plant shadows behind its
945 * back.
f9fe48be
RZ
946 *
947 * We also don't store shadows for DAX mappings because the
948 * only page cache pages found in these are zero pages
949 * covering holes, and because we don't want to mix DAX
950 * exceptional entries and shadow exceptional entries in the
b93b0163 951 * same address_space.
a528910e
JW
952 */
953 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 954 !mapping_exiting(mapping) && !dax_mapping(mapping))
a7ca12f9 955 shadow = workingset_eviction(page);
62cccb8c 956 __delete_from_page_cache(page, shadow);
b93b0163 957 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c
LT
958
959 if (freepage != NULL)
960 freepage(page);
49d2e9cc
CL
961 }
962
49d2e9cc
CL
963 return 1;
964
965cannot_free:
b93b0163 966 xa_unlock_irqrestore(&mapping->i_pages, flags);
49d2e9cc
CL
967 return 0;
968}
969
e286781d
NP
970/*
971 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
972 * someone else has a ref on the page, abort and return 0. If it was
973 * successfully detached, return 1. Assumes the caller has a single ref on
974 * this page.
975 */
976int remove_mapping(struct address_space *mapping, struct page *page)
977{
a528910e 978 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
979 /*
980 * Unfreezing the refcount with 1 rather than 2 effectively
981 * drops the pagecache ref for us without requiring another
982 * atomic operation.
983 */
fe896d18 984 page_ref_unfreeze(page, 1);
e286781d
NP
985 return 1;
986 }
987 return 0;
988}
989
894bc310
LS
990/**
991 * putback_lru_page - put previously isolated page onto appropriate LRU list
992 * @page: page to be put back to appropriate lru list
993 *
994 * Add previously isolated @page to appropriate LRU list.
995 * Page may still be unevictable for other reasons.
996 *
997 * lru_lock must not be held, interrupts must be enabled.
998 */
894bc310
LS
999void putback_lru_page(struct page *page)
1000{
9c4e6b1a 1001 lru_cache_add(page);
894bc310
LS
1002 put_page(page); /* drop ref from isolate */
1003}
1004
dfc8d636
JW
1005enum page_references {
1006 PAGEREF_RECLAIM,
1007 PAGEREF_RECLAIM_CLEAN,
64574746 1008 PAGEREF_KEEP,
dfc8d636
JW
1009 PAGEREF_ACTIVATE,
1010};
1011
1012static enum page_references page_check_references(struct page *page,
1013 struct scan_control *sc)
1014{
64574746 1015 int referenced_ptes, referenced_page;
dfc8d636 1016 unsigned long vm_flags;
dfc8d636 1017
c3ac9a8a
JW
1018 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1019 &vm_flags);
64574746 1020 referenced_page = TestClearPageReferenced(page);
dfc8d636 1021
dfc8d636
JW
1022 /*
1023 * Mlock lost the isolation race with us. Let try_to_unmap()
1024 * move the page to the unevictable list.
1025 */
1026 if (vm_flags & VM_LOCKED)
1027 return PAGEREF_RECLAIM;
1028
64574746 1029 if (referenced_ptes) {
e4898273 1030 if (PageSwapBacked(page))
64574746
JW
1031 return PAGEREF_ACTIVATE;
1032 /*
1033 * All mapped pages start out with page table
1034 * references from the instantiating fault, so we need
1035 * to look twice if a mapped file page is used more
1036 * than once.
1037 *
1038 * Mark it and spare it for another trip around the
1039 * inactive list. Another page table reference will
1040 * lead to its activation.
1041 *
1042 * Note: the mark is set for activated pages as well
1043 * so that recently deactivated but used pages are
1044 * quickly recovered.
1045 */
1046 SetPageReferenced(page);
1047
34dbc67a 1048 if (referenced_page || referenced_ptes > 1)
64574746
JW
1049 return PAGEREF_ACTIVATE;
1050
c909e993
KK
1051 /*
1052 * Activate file-backed executable pages after first usage.
1053 */
1054 if (vm_flags & VM_EXEC)
1055 return PAGEREF_ACTIVATE;
1056
64574746
JW
1057 return PAGEREF_KEEP;
1058 }
dfc8d636
JW
1059
1060 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 1061 if (referenced_page && !PageSwapBacked(page))
64574746
JW
1062 return PAGEREF_RECLAIM_CLEAN;
1063
1064 return PAGEREF_RECLAIM;
dfc8d636
JW
1065}
1066
e2be15f6
MG
1067/* Check if a page is dirty or under writeback */
1068static void page_check_dirty_writeback(struct page *page,
1069 bool *dirty, bool *writeback)
1070{
b4597226
MG
1071 struct address_space *mapping;
1072
e2be15f6
MG
1073 /*
1074 * Anonymous pages are not handled by flushers and must be written
1075 * from reclaim context. Do not stall reclaim based on them
1076 */
802a3a92
SL
1077 if (!page_is_file_cache(page) ||
1078 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
1079 *dirty = false;
1080 *writeback = false;
1081 return;
1082 }
1083
1084 /* By default assume that the page flags are accurate */
1085 *dirty = PageDirty(page);
1086 *writeback = PageWriteback(page);
b4597226
MG
1087
1088 /* Verify dirty/writeback state if the filesystem supports it */
1089 if (!page_has_private(page))
1090 return;
1091
1092 mapping = page_mapping(page);
1093 if (mapping && mapping->a_ops->is_dirty_writeback)
1094 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
1095}
1096
1da177e4 1097/*
1742f19f 1098 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1099 */
1742f19f 1100static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 1101 struct pglist_data *pgdat,
f84f6e2b 1102 struct scan_control *sc,
02c6de8d 1103 enum ttu_flags ttu_flags,
3c710c1a 1104 struct reclaim_stat *stat,
02c6de8d 1105 bool force_reclaim)
1da177e4
LT
1106{
1107 LIST_HEAD(ret_pages);
abe4c3b5 1108 LIST_HEAD(free_pages);
3c710c1a 1109 unsigned nr_reclaimed = 0;
886cf190 1110 unsigned pgactivate = 0;
1da177e4 1111
060f005f 1112 memset(stat, 0, sizeof(*stat));
1da177e4
LT
1113 cond_resched();
1114
1da177e4
LT
1115 while (!list_empty(page_list)) {
1116 struct address_space *mapping;
1117 struct page *page;
1118 int may_enter_fs;
02c6de8d 1119 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 1120 bool dirty, writeback;
1da177e4
LT
1121
1122 cond_resched();
1123
1124 page = lru_to_page(page_list);
1125 list_del(&page->lru);
1126
529ae9aa 1127 if (!trylock_page(page))
1da177e4
LT
1128 goto keep;
1129
309381fe 1130 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1131
1132 sc->nr_scanned++;
80e43426 1133
39b5f29a 1134 if (unlikely(!page_evictable(page)))
ad6b6704 1135 goto activate_locked;
894bc310 1136
a6dc60f8 1137 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1138 goto keep_locked;
1139
c661b078
AW
1140 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1141 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1142
e2be15f6 1143 /*
894befec 1144 * The number of dirty pages determines if a node is marked
e2be15f6
MG
1145 * reclaim_congested which affects wait_iff_congested. kswapd
1146 * will stall and start writing pages if the tail of the LRU
1147 * is all dirty unqueued pages.
1148 */
1149 page_check_dirty_writeback(page, &dirty, &writeback);
1150 if (dirty || writeback)
060f005f 1151 stat->nr_dirty++;
e2be15f6
MG
1152
1153 if (dirty && !writeback)
060f005f 1154 stat->nr_unqueued_dirty++;
e2be15f6 1155
d04e8acd
MG
1156 /*
1157 * Treat this page as congested if the underlying BDI is or if
1158 * pages are cycling through the LRU so quickly that the
1159 * pages marked for immediate reclaim are making it to the
1160 * end of the LRU a second time.
1161 */
e2be15f6 1162 mapping = page_mapping(page);
1da58ee2 1163 if (((dirty || writeback) && mapping &&
703c2708 1164 inode_write_congested(mapping->host)) ||
d04e8acd 1165 (writeback && PageReclaim(page)))
060f005f 1166 stat->nr_congested++;
e2be15f6 1167
283aba9f
MG
1168 /*
1169 * If a page at the tail of the LRU is under writeback, there
1170 * are three cases to consider.
1171 *
1172 * 1) If reclaim is encountering an excessive number of pages
1173 * under writeback and this page is both under writeback and
1174 * PageReclaim then it indicates that pages are being queued
1175 * for IO but are being recycled through the LRU before the
1176 * IO can complete. Waiting on the page itself risks an
1177 * indefinite stall if it is impossible to writeback the
1178 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1179 * note that the LRU is being scanned too quickly and the
1180 * caller can stall after page list has been processed.
283aba9f 1181 *
97c9341f 1182 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1183 * not marked for immediate reclaim, or the caller does not
1184 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1185 * not to fs). In this case mark the page for immediate
97c9341f 1186 * reclaim and continue scanning.
283aba9f 1187 *
ecf5fc6e
MH
1188 * Require may_enter_fs because we would wait on fs, which
1189 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1190 * enter reclaim, and deadlock if it waits on a page for
1191 * which it is needed to do the write (loop masks off
1192 * __GFP_IO|__GFP_FS for this reason); but more thought
1193 * would probably show more reasons.
1194 *
7fadc820 1195 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1196 * PageReclaim. memcg does not have any dirty pages
1197 * throttling so we could easily OOM just because too many
1198 * pages are in writeback and there is nothing else to
1199 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1200 *
1201 * In cases 1) and 2) we activate the pages to get them out of
1202 * the way while we continue scanning for clean pages on the
1203 * inactive list and refilling from the active list. The
1204 * observation here is that waiting for disk writes is more
1205 * expensive than potentially causing reloads down the line.
1206 * Since they're marked for immediate reclaim, they won't put
1207 * memory pressure on the cache working set any longer than it
1208 * takes to write them to disk.
283aba9f 1209 */
c661b078 1210 if (PageWriteback(page)) {
283aba9f
MG
1211 /* Case 1 above */
1212 if (current_is_kswapd() &&
1213 PageReclaim(page) &&
599d0c95 1214 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
060f005f 1215 stat->nr_immediate++;
c55e8d03 1216 goto activate_locked;
283aba9f
MG
1217
1218 /* Case 2 above */
97c9341f 1219 } else if (sane_reclaim(sc) ||
ecf5fc6e 1220 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1221 /*
1222 * This is slightly racy - end_page_writeback()
1223 * might have just cleared PageReclaim, then
1224 * setting PageReclaim here end up interpreted
1225 * as PageReadahead - but that does not matter
1226 * enough to care. What we do want is for this
1227 * page to have PageReclaim set next time memcg
1228 * reclaim reaches the tests above, so it will
1229 * then wait_on_page_writeback() to avoid OOM;
1230 * and it's also appropriate in global reclaim.
1231 */
1232 SetPageReclaim(page);
060f005f 1233 stat->nr_writeback++;
c55e8d03 1234 goto activate_locked;
283aba9f
MG
1235
1236 /* Case 3 above */
1237 } else {
7fadc820 1238 unlock_page(page);
283aba9f 1239 wait_on_page_writeback(page);
7fadc820
HD
1240 /* then go back and try same page again */
1241 list_add_tail(&page->lru, page_list);
1242 continue;
e62e384e 1243 }
c661b078 1244 }
1da177e4 1245
02c6de8d
MK
1246 if (!force_reclaim)
1247 references = page_check_references(page, sc);
1248
dfc8d636
JW
1249 switch (references) {
1250 case PAGEREF_ACTIVATE:
1da177e4 1251 goto activate_locked;
64574746 1252 case PAGEREF_KEEP:
060f005f 1253 stat->nr_ref_keep++;
64574746 1254 goto keep_locked;
dfc8d636
JW
1255 case PAGEREF_RECLAIM:
1256 case PAGEREF_RECLAIM_CLEAN:
1257 ; /* try to reclaim the page below */
1258 }
1da177e4 1259
1da177e4
LT
1260 /*
1261 * Anonymous process memory has backing store?
1262 * Try to allocate it some swap space here.
802a3a92 1263 * Lazyfree page could be freed directly
1da177e4 1264 */
bd4c82c2
HY
1265 if (PageAnon(page) && PageSwapBacked(page)) {
1266 if (!PageSwapCache(page)) {
1267 if (!(sc->gfp_mask & __GFP_IO))
1268 goto keep_locked;
1269 if (PageTransHuge(page)) {
1270 /* cannot split THP, skip it */
1271 if (!can_split_huge_page(page, NULL))
1272 goto activate_locked;
1273 /*
1274 * Split pages without a PMD map right
1275 * away. Chances are some or all of the
1276 * tail pages can be freed without IO.
1277 */
1278 if (!compound_mapcount(page) &&
1279 split_huge_page_to_list(page,
1280 page_list))
1281 goto activate_locked;
1282 }
1283 if (!add_to_swap(page)) {
1284 if (!PageTransHuge(page))
1285 goto activate_locked;
1286 /* Fallback to swap normal pages */
1287 if (split_huge_page_to_list(page,
1288 page_list))
1289 goto activate_locked;
fe490cc0
HY
1290#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1291 count_vm_event(THP_SWPOUT_FALLBACK);
1292#endif
bd4c82c2
HY
1293 if (!add_to_swap(page))
1294 goto activate_locked;
1295 }
0f074658 1296
bd4c82c2 1297 may_enter_fs = 1;
1da177e4 1298
bd4c82c2
HY
1299 /* Adding to swap updated mapping */
1300 mapping = page_mapping(page);
1301 }
7751b2da
KS
1302 } else if (unlikely(PageTransHuge(page))) {
1303 /* Split file THP */
1304 if (split_huge_page_to_list(page, page_list))
1305 goto keep_locked;
e2be15f6 1306 }
1da177e4
LT
1307
1308 /*
1309 * The page is mapped into the page tables of one or more
1310 * processes. Try to unmap it here.
1311 */
802a3a92 1312 if (page_mapped(page)) {
bd4c82c2
HY
1313 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1314
1315 if (unlikely(PageTransHuge(page)))
1316 flags |= TTU_SPLIT_HUGE_PMD;
1317 if (!try_to_unmap(page, flags)) {
060f005f 1318 stat->nr_unmap_fail++;
1da177e4 1319 goto activate_locked;
1da177e4
LT
1320 }
1321 }
1322
1323 if (PageDirty(page)) {
ee72886d 1324 /*
4eda4823
JW
1325 * Only kswapd can writeback filesystem pages
1326 * to avoid risk of stack overflow. But avoid
1327 * injecting inefficient single-page IO into
1328 * flusher writeback as much as possible: only
1329 * write pages when we've encountered many
1330 * dirty pages, and when we've already scanned
1331 * the rest of the LRU for clean pages and see
1332 * the same dirty pages again (PageReclaim).
ee72886d 1333 */
f84f6e2b 1334 if (page_is_file_cache(page) &&
4eda4823
JW
1335 (!current_is_kswapd() || !PageReclaim(page) ||
1336 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1337 /*
1338 * Immediately reclaim when written back.
1339 * Similar in principal to deactivate_page()
1340 * except we already have the page isolated
1341 * and know it's dirty
1342 */
c4a25635 1343 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1344 SetPageReclaim(page);
1345
c55e8d03 1346 goto activate_locked;
ee72886d
MG
1347 }
1348
dfc8d636 1349 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1350 goto keep_locked;
4dd4b920 1351 if (!may_enter_fs)
1da177e4 1352 goto keep_locked;
52a8363e 1353 if (!sc->may_writepage)
1da177e4
LT
1354 goto keep_locked;
1355
d950c947
MG
1356 /*
1357 * Page is dirty. Flush the TLB if a writable entry
1358 * potentially exists to avoid CPU writes after IO
1359 * starts and then write it out here.
1360 */
1361 try_to_unmap_flush_dirty();
7d3579e8 1362 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1363 case PAGE_KEEP:
1364 goto keep_locked;
1365 case PAGE_ACTIVATE:
1366 goto activate_locked;
1367 case PAGE_SUCCESS:
7d3579e8 1368 if (PageWriteback(page))
41ac1999 1369 goto keep;
7d3579e8 1370 if (PageDirty(page))
1da177e4 1371 goto keep;
7d3579e8 1372
1da177e4
LT
1373 /*
1374 * A synchronous write - probably a ramdisk. Go
1375 * ahead and try to reclaim the page.
1376 */
529ae9aa 1377 if (!trylock_page(page))
1da177e4
LT
1378 goto keep;
1379 if (PageDirty(page) || PageWriteback(page))
1380 goto keep_locked;
1381 mapping = page_mapping(page);
1382 case PAGE_CLEAN:
1383 ; /* try to free the page below */
1384 }
1385 }
1386
1387 /*
1388 * If the page has buffers, try to free the buffer mappings
1389 * associated with this page. If we succeed we try to free
1390 * the page as well.
1391 *
1392 * We do this even if the page is PageDirty().
1393 * try_to_release_page() does not perform I/O, but it is
1394 * possible for a page to have PageDirty set, but it is actually
1395 * clean (all its buffers are clean). This happens if the
1396 * buffers were written out directly, with submit_bh(). ext3
894bc310 1397 * will do this, as well as the blockdev mapping.
1da177e4
LT
1398 * try_to_release_page() will discover that cleanness and will
1399 * drop the buffers and mark the page clean - it can be freed.
1400 *
1401 * Rarely, pages can have buffers and no ->mapping. These are
1402 * the pages which were not successfully invalidated in
1403 * truncate_complete_page(). We try to drop those buffers here
1404 * and if that worked, and the page is no longer mapped into
1405 * process address space (page_count == 1) it can be freed.
1406 * Otherwise, leave the page on the LRU so it is swappable.
1407 */
266cf658 1408 if (page_has_private(page)) {
1da177e4
LT
1409 if (!try_to_release_page(page, sc->gfp_mask))
1410 goto activate_locked;
e286781d
NP
1411 if (!mapping && page_count(page) == 1) {
1412 unlock_page(page);
1413 if (put_page_testzero(page))
1414 goto free_it;
1415 else {
1416 /*
1417 * rare race with speculative reference.
1418 * the speculative reference will free
1419 * this page shortly, so we may
1420 * increment nr_reclaimed here (and
1421 * leave it off the LRU).
1422 */
1423 nr_reclaimed++;
1424 continue;
1425 }
1426 }
1da177e4
LT
1427 }
1428
802a3a92
SL
1429 if (PageAnon(page) && !PageSwapBacked(page)) {
1430 /* follow __remove_mapping for reference */
1431 if (!page_ref_freeze(page, 1))
1432 goto keep_locked;
1433 if (PageDirty(page)) {
1434 page_ref_unfreeze(page, 1);
1435 goto keep_locked;
1436 }
1da177e4 1437
802a3a92 1438 count_vm_event(PGLAZYFREED);
2262185c 1439 count_memcg_page_event(page, PGLAZYFREED);
802a3a92
SL
1440 } else if (!mapping || !__remove_mapping(mapping, page, true))
1441 goto keep_locked;
9a1ea439
HD
1442
1443 unlock_page(page);
e286781d 1444free_it:
05ff5137 1445 nr_reclaimed++;
abe4c3b5
MG
1446
1447 /*
1448 * Is there need to periodically free_page_list? It would
1449 * appear not as the counts should be low
1450 */
bd4c82c2
HY
1451 if (unlikely(PageTransHuge(page))) {
1452 mem_cgroup_uncharge(page);
1453 (*get_compound_page_dtor(page))(page);
1454 } else
1455 list_add(&page->lru, &free_pages);
1da177e4
LT
1456 continue;
1457
1458activate_locked:
68a22394 1459 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1460 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1461 PageMlocked(page)))
a2c43eed 1462 try_to_free_swap(page);
309381fe 1463 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704 1464 if (!PageMlocked(page)) {
886cf190 1465 int type = page_is_file_cache(page);
ad6b6704 1466 SetPageActive(page);
886cf190
KT
1467 pgactivate++;
1468 stat->nr_activate[type] += hpage_nr_pages(page);
2262185c 1469 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1470 }
1da177e4
LT
1471keep_locked:
1472 unlock_page(page);
1473keep:
1474 list_add(&page->lru, &ret_pages);
309381fe 1475 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1476 }
abe4c3b5 1477
747db954 1478 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1479 try_to_unmap_flush();
2d4894b5 1480 free_unref_page_list(&free_pages);
abe4c3b5 1481
1da177e4 1482 list_splice(&ret_pages, page_list);
886cf190 1483 count_vm_events(PGACTIVATE, pgactivate);
060f005f 1484
05ff5137 1485 return nr_reclaimed;
1da177e4
LT
1486}
1487
02c6de8d
MK
1488unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1489 struct list_head *page_list)
1490{
1491 struct scan_control sc = {
1492 .gfp_mask = GFP_KERNEL,
1493 .priority = DEF_PRIORITY,
1494 .may_unmap = 1,
1495 };
060f005f 1496 struct reclaim_stat dummy_stat;
3c710c1a 1497 unsigned long ret;
02c6de8d
MK
1498 struct page *page, *next;
1499 LIST_HEAD(clean_pages);
1500
1501 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1502 if (page_is_file_cache(page) && !PageDirty(page) &&
a58f2cef 1503 !__PageMovable(page) && !PageUnevictable(page)) {
02c6de8d
MK
1504 ClearPageActive(page);
1505 list_move(&page->lru, &clean_pages);
1506 }
1507 }
1508
599d0c95 1509 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
060f005f 1510 TTU_IGNORE_ACCESS, &dummy_stat, true);
02c6de8d 1511 list_splice(&clean_pages, page_list);
599d0c95 1512 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1513 return ret;
1514}
1515
5ad333eb
AW
1516/*
1517 * Attempt to remove the specified page from its LRU. Only take this page
1518 * if it is of the appropriate PageActive status. Pages which are being
1519 * freed elsewhere are also ignored.
1520 *
1521 * page: page to consider
1522 * mode: one of the LRU isolation modes defined above
1523 *
1524 * returns 0 on success, -ve errno on failure.
1525 */
f3fd4a61 1526int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1527{
1528 int ret = -EINVAL;
1529
1530 /* Only take pages on the LRU. */
1531 if (!PageLRU(page))
1532 return ret;
1533
e46a2879
MK
1534 /* Compaction should not handle unevictable pages but CMA can do so */
1535 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1536 return ret;
1537
5ad333eb 1538 ret = -EBUSY;
08e552c6 1539
c8244935
MG
1540 /*
1541 * To minimise LRU disruption, the caller can indicate that it only
1542 * wants to isolate pages it will be able to operate on without
1543 * blocking - clean pages for the most part.
1544 *
c8244935
MG
1545 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1546 * that it is possible to migrate without blocking
1547 */
1276ad68 1548 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1549 /* All the caller can do on PageWriteback is block */
1550 if (PageWriteback(page))
1551 return ret;
1552
1553 if (PageDirty(page)) {
1554 struct address_space *mapping;
69d763fc 1555 bool migrate_dirty;
c8244935 1556
c8244935
MG
1557 /*
1558 * Only pages without mappings or that have a
1559 * ->migratepage callback are possible to migrate
69d763fc
MG
1560 * without blocking. However, we can be racing with
1561 * truncation so it's necessary to lock the page
1562 * to stabilise the mapping as truncation holds
1563 * the page lock until after the page is removed
1564 * from the page cache.
c8244935 1565 */
69d763fc
MG
1566 if (!trylock_page(page))
1567 return ret;
1568
c8244935 1569 mapping = page_mapping(page);
145e1a71 1570 migrate_dirty = !mapping || mapping->a_ops->migratepage;
69d763fc
MG
1571 unlock_page(page);
1572 if (!migrate_dirty)
c8244935
MG
1573 return ret;
1574 }
1575 }
39deaf85 1576
f80c0673
MK
1577 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1578 return ret;
1579
5ad333eb
AW
1580 if (likely(get_page_unless_zero(page))) {
1581 /*
1582 * Be careful not to clear PageLRU until after we're
1583 * sure the page is not being freed elsewhere -- the
1584 * page release code relies on it.
1585 */
1586 ClearPageLRU(page);
1587 ret = 0;
1588 }
1589
1590 return ret;
1591}
1592
7ee36a14
MG
1593
1594/*
1595 * Update LRU sizes after isolating pages. The LRU size updates must
1596 * be complete before mem_cgroup_update_lru_size due to a santity check.
1597 */
1598static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1599 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1600{
7ee36a14
MG
1601 int zid;
1602
7ee36a14
MG
1603 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1604 if (!nr_zone_taken[zid])
1605 continue;
1606
1607 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1608#ifdef CONFIG_MEMCG
b4536f0c 1609 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1610#endif
b4536f0c
MH
1611 }
1612
7ee36a14
MG
1613}
1614
f4b7e272
AR
1615/**
1616 * pgdat->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1617 * shrink the lists perform better by taking out a batch of pages
1618 * and working on them outside the LRU lock.
1619 *
1620 * For pagecache intensive workloads, this function is the hottest
1621 * spot in the kernel (apart from copy_*_user functions).
1622 *
1623 * Appropriate locks must be held before calling this function.
1624 *
791b48b6 1625 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1626 * @lruvec: The LRU vector to pull pages from.
1da177e4 1627 * @dst: The temp list to put pages on to.
f626012d 1628 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1629 * @sc: The scan_control struct for this reclaim session
5ad333eb 1630 * @mode: One of the LRU isolation modes
3cb99451 1631 * @lru: LRU list id for isolating
1da177e4
LT
1632 *
1633 * returns how many pages were moved onto *@dst.
1634 */
69e05944 1635static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1636 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1637 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 1638 enum lru_list lru)
1da177e4 1639{
75b00af7 1640 struct list_head *src = &lruvec->lists[lru];
69e05944 1641 unsigned long nr_taken = 0;
599d0c95 1642 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1643 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1644 unsigned long skipped = 0;
791b48b6 1645 unsigned long scan, total_scan, nr_pages;
b2e18757 1646 LIST_HEAD(pages_skipped);
a9e7c39f 1647 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1da177e4 1648
791b48b6
MK
1649 scan = 0;
1650 for (total_scan = 0;
1651 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1652 total_scan++) {
5ad333eb 1653 struct page *page;
5ad333eb 1654
1da177e4
LT
1655 page = lru_to_page(src);
1656 prefetchw_prev_lru_page(page, src, flags);
1657
309381fe 1658 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1659
b2e18757
MG
1660 if (page_zonenum(page) > sc->reclaim_idx) {
1661 list_move(&page->lru, &pages_skipped);
7cc30fcf 1662 nr_skipped[page_zonenum(page)]++;
b2e18757
MG
1663 continue;
1664 }
1665
791b48b6
MK
1666 /*
1667 * Do not count skipped pages because that makes the function
1668 * return with no isolated pages if the LRU mostly contains
1669 * ineligible pages. This causes the VM to not reclaim any
1670 * pages, triggering a premature OOM.
1671 */
1672 scan++;
f3fd4a61 1673 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1674 case 0:
599d0c95
MG
1675 nr_pages = hpage_nr_pages(page);
1676 nr_taken += nr_pages;
1677 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1678 list_move(&page->lru, dst);
5ad333eb
AW
1679 break;
1680
1681 case -EBUSY:
1682 /* else it is being freed elsewhere */
1683 list_move(&page->lru, src);
1684 continue;
46453a6e 1685
5ad333eb
AW
1686 default:
1687 BUG();
1688 }
1da177e4
LT
1689 }
1690
b2e18757
MG
1691 /*
1692 * Splice any skipped pages to the start of the LRU list. Note that
1693 * this disrupts the LRU order when reclaiming for lower zones but
1694 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1695 * scanning would soon rescan the same pages to skip and put the
1696 * system at risk of premature OOM.
1697 */
7cc30fcf
MG
1698 if (!list_empty(&pages_skipped)) {
1699 int zid;
1700
3db65812 1701 list_splice(&pages_skipped, src);
7cc30fcf
MG
1702 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1703 if (!nr_skipped[zid])
1704 continue;
1705
1706 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1707 skipped += nr_skipped[zid];
7cc30fcf
MG
1708 }
1709 }
791b48b6 1710 *nr_scanned = total_scan;
1265e3a6 1711 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 1712 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 1713 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1714 return nr_taken;
1715}
1716
62695a84
NP
1717/**
1718 * isolate_lru_page - tries to isolate a page from its LRU list
1719 * @page: page to isolate from its LRU list
1720 *
1721 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1722 * vmstat statistic corresponding to whatever LRU list the page was on.
1723 *
1724 * Returns 0 if the page was removed from an LRU list.
1725 * Returns -EBUSY if the page was not on an LRU list.
1726 *
1727 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1728 * the active list, it will have PageActive set. If it was found on
1729 * the unevictable list, it will have the PageUnevictable bit set. That flag
1730 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1731 *
1732 * The vmstat statistic corresponding to the list on which the page was
1733 * found will be decremented.
1734 *
1735 * Restrictions:
a5d09bed 1736 *
62695a84
NP
1737 * (1) Must be called with an elevated refcount on the page. This is a
1738 * fundamentnal difference from isolate_lru_pages (which is called
1739 * without a stable reference).
1740 * (2) the lru_lock must not be held.
1741 * (3) interrupts must be enabled.
1742 */
1743int isolate_lru_page(struct page *page)
1744{
1745 int ret = -EBUSY;
1746
309381fe 1747 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1748 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1749
62695a84 1750 if (PageLRU(page)) {
f4b7e272 1751 pg_data_t *pgdat = page_pgdat(page);
fa9add64 1752 struct lruvec *lruvec;
62695a84 1753
f4b7e272
AR
1754 spin_lock_irq(&pgdat->lru_lock);
1755 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0c917313 1756 if (PageLRU(page)) {
894bc310 1757 int lru = page_lru(page);
0c917313 1758 get_page(page);
62695a84 1759 ClearPageLRU(page);
fa9add64
HD
1760 del_page_from_lru_list(page, lruvec, lru);
1761 ret = 0;
62695a84 1762 }
f4b7e272 1763 spin_unlock_irq(&pgdat->lru_lock);
62695a84
NP
1764 }
1765 return ret;
1766}
1767
35cd7815 1768/*
d37dd5dc
FW
1769 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1770 * then get resheduled. When there are massive number of tasks doing page
1771 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1772 * the LRU list will go small and be scanned faster than necessary, leading to
1773 * unnecessary swapping, thrashing and OOM.
35cd7815 1774 */
599d0c95 1775static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1776 struct scan_control *sc)
1777{
1778 unsigned long inactive, isolated;
1779
1780 if (current_is_kswapd())
1781 return 0;
1782
97c9341f 1783 if (!sane_reclaim(sc))
35cd7815
RR
1784 return 0;
1785
1786 if (file) {
599d0c95
MG
1787 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1788 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1789 } else {
599d0c95
MG
1790 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1791 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1792 }
1793
3cf23841
FW
1794 /*
1795 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1796 * won't get blocked by normal direct-reclaimers, forming a circular
1797 * deadlock.
1798 */
d0164adc 1799 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1800 inactive >>= 3;
1801
35cd7815
RR
1802 return isolated > inactive;
1803}
1804
a222f341
KT
1805/*
1806 * This moves pages from @list to corresponding LRU list.
1807 *
1808 * We move them the other way if the page is referenced by one or more
1809 * processes, from rmap.
1810 *
1811 * If the pages are mostly unmapped, the processing is fast and it is
1812 * appropriate to hold zone_lru_lock across the whole operation. But if
1813 * the pages are mapped, the processing is slow (page_referenced()) so we
1814 * should drop zone_lru_lock around each page. It's impossible to balance
1815 * this, so instead we remove the pages from the LRU while processing them.
1816 * It is safe to rely on PG_active against the non-LRU pages in here because
1817 * nobody will play with that bit on a non-LRU page.
1818 *
1819 * The downside is that we have to touch page->_refcount against each page.
1820 * But we had to alter page->flags anyway.
1821 *
1822 * Returns the number of pages moved to the given lruvec.
1823 */
1824
1825static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1826 struct list_head *list)
66635629 1827{
599d0c95 1828 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
a222f341 1829 int nr_pages, nr_moved = 0;
3f79768f 1830 LIST_HEAD(pages_to_free);
a222f341
KT
1831 struct page *page;
1832 enum lru_list lru;
66635629 1833
a222f341
KT
1834 while (!list_empty(list)) {
1835 page = lru_to_page(list);
309381fe 1836 VM_BUG_ON_PAGE(PageLRU(page), page);
39b5f29a 1837 if (unlikely(!page_evictable(page))) {
a222f341 1838 list_del(&page->lru);
599d0c95 1839 spin_unlock_irq(&pgdat->lru_lock);
66635629 1840 putback_lru_page(page);
599d0c95 1841 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1842 continue;
1843 }
599d0c95 1844 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1845
7a608572 1846 SetPageLRU(page);
66635629 1847 lru = page_lru(page);
a222f341
KT
1848
1849 nr_pages = hpage_nr_pages(page);
1850 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1851 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1852
2bcf8879
HD
1853 if (put_page_testzero(page)) {
1854 __ClearPageLRU(page);
1855 __ClearPageActive(page);
fa9add64 1856 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1857
1858 if (unlikely(PageCompound(page))) {
599d0c95 1859 spin_unlock_irq(&pgdat->lru_lock);
747db954 1860 mem_cgroup_uncharge(page);
2bcf8879 1861 (*get_compound_page_dtor(page))(page);
599d0c95 1862 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1863 } else
1864 list_add(&page->lru, &pages_to_free);
a222f341
KT
1865 } else {
1866 nr_moved += nr_pages;
66635629
MG
1867 }
1868 }
66635629 1869
3f79768f
HD
1870 /*
1871 * To save our caller's stack, now use input list for pages to free.
1872 */
a222f341
KT
1873 list_splice(&pages_to_free, list);
1874
1875 return nr_moved;
66635629
MG
1876}
1877
399ba0b9
N
1878/*
1879 * If a kernel thread (such as nfsd for loop-back mounts) services
1880 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1881 * In that case we should only throttle if the backing device it is
1882 * writing to is congested. In other cases it is safe to throttle.
1883 */
1884static int current_may_throttle(void)
1885{
1886 return !(current->flags & PF_LESS_THROTTLE) ||
1887 current->backing_dev_info == NULL ||
1888 bdi_write_congested(current->backing_dev_info);
1889}
1890
1da177e4 1891/*
b2e18757 1892 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1893 * of reclaimed pages
1da177e4 1894 */
66635629 1895static noinline_for_stack unsigned long
1a93be0e 1896shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1897 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1898{
1899 LIST_HEAD(page_list);
e247dbce 1900 unsigned long nr_scanned;
05ff5137 1901 unsigned long nr_reclaimed = 0;
e247dbce 1902 unsigned long nr_taken;
060f005f 1903 struct reclaim_stat stat;
3cb99451 1904 int file = is_file_lru(lru);
f46b7912 1905 enum vm_event_item item;
599d0c95 1906 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1907 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
db73ee0d 1908 bool stalled = false;
78dc583d 1909
599d0c95 1910 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
1911 if (stalled)
1912 return 0;
1913
1914 /* wait a bit for the reclaimer. */
1915 msleep(100);
1916 stalled = true;
35cd7815
RR
1917
1918 /* We are about to die and free our memory. Return now. */
1919 if (fatal_signal_pending(current))
1920 return SWAP_CLUSTER_MAX;
1921 }
1922
1da177e4 1923 lru_add_drain();
f80c0673 1924
599d0c95 1925 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1926
5dc35979 1927 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 1928 &nr_scanned, sc, lru);
95d918fc 1929
599d0c95 1930 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1931 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1932
f46b7912
KT
1933 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1934 if (global_reclaim(sc))
1935 __count_vm_events(item, nr_scanned);
1936 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
599d0c95 1937 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1938
d563c050 1939 if (nr_taken == 0)
66635629 1940 return 0;
5ad333eb 1941
a128ca71 1942 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
3c710c1a 1943 &stat, false);
c661b078 1944
599d0c95 1945 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1946
f46b7912
KT
1947 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1948 if (global_reclaim(sc))
1949 __count_vm_events(item, nr_reclaimed);
1950 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
b17f18af
KT
1951 reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
1952 reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
a74609fa 1953
a222f341 1954 move_pages_to_lru(lruvec, &page_list);
3f79768f 1955
599d0c95 1956 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1957
599d0c95 1958 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1959
747db954 1960 mem_cgroup_uncharge_list(&page_list);
2d4894b5 1961 free_unref_page_list(&page_list);
e11da5b4 1962
1c610d5f
AR
1963 /*
1964 * If dirty pages are scanned that are not queued for IO, it
1965 * implies that flushers are not doing their job. This can
1966 * happen when memory pressure pushes dirty pages to the end of
1967 * the LRU before the dirty limits are breached and the dirty
1968 * data has expired. It can also happen when the proportion of
1969 * dirty pages grows not through writes but through memory
1970 * pressure reclaiming all the clean cache. And in some cases,
1971 * the flushers simply cannot keep up with the allocation
1972 * rate. Nudge the flusher threads in case they are asleep.
1973 */
1974 if (stat.nr_unqueued_dirty == nr_taken)
1975 wakeup_flusher_threads(WB_REASON_VMSCAN);
1976
d108c772
AR
1977 sc->nr.dirty += stat.nr_dirty;
1978 sc->nr.congested += stat.nr_congested;
1979 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1980 sc->nr.writeback += stat.nr_writeback;
1981 sc->nr.immediate += stat.nr_immediate;
1982 sc->nr.taken += nr_taken;
1983 if (file)
1984 sc->nr.file_taken += nr_taken;
8e950282 1985
599d0c95 1986 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 1987 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 1988 return nr_reclaimed;
1da177e4
LT
1989}
1990
f626012d 1991static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1992 struct lruvec *lruvec,
f16015fb 1993 struct scan_control *sc,
9e3b2f8c 1994 enum lru_list lru)
1da177e4 1995{
44c241f1 1996 unsigned long nr_taken;
f626012d 1997 unsigned long nr_scanned;
6fe6b7e3 1998 unsigned long vm_flags;
1da177e4 1999 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2000 LIST_HEAD(l_active);
b69408e8 2001 LIST_HEAD(l_inactive);
1da177e4 2002 struct page *page;
1a93be0e 2003 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
9d998b4f
MH
2004 unsigned nr_deactivate, nr_activate;
2005 unsigned nr_rotated = 0;
3cb99451 2006 int file = is_file_lru(lru);
599d0c95 2007 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2008
2009 lru_add_drain();
f80c0673 2010
599d0c95 2011 spin_lock_irq(&pgdat->lru_lock);
925b7673 2012
5dc35979 2013 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2014 &nr_scanned, sc, lru);
89b5fae5 2015
599d0c95 2016 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 2017 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 2018
599d0c95 2019 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2020 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2021
599d0c95 2022 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 2023
1da177e4
LT
2024 while (!list_empty(&l_hold)) {
2025 cond_resched();
2026 page = lru_to_page(&l_hold);
2027 list_del(&page->lru);
7e9cd484 2028
39b5f29a 2029 if (unlikely(!page_evictable(page))) {
894bc310
LS
2030 putback_lru_page(page);
2031 continue;
2032 }
2033
cc715d99
MG
2034 if (unlikely(buffer_heads_over_limit)) {
2035 if (page_has_private(page) && trylock_page(page)) {
2036 if (page_has_private(page))
2037 try_to_release_page(page, 0);
2038 unlock_page(page);
2039 }
2040 }
2041
c3ac9a8a
JW
2042 if (page_referenced(page, 0, sc->target_mem_cgroup,
2043 &vm_flags)) {
9992af10 2044 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
2045 /*
2046 * Identify referenced, file-backed active pages and
2047 * give them one more trip around the active list. So
2048 * that executable code get better chances to stay in
2049 * memory under moderate memory pressure. Anon pages
2050 * are not likely to be evicted by use-once streaming
2051 * IO, plus JVM can create lots of anon VM_EXEC pages,
2052 * so we ignore them here.
2053 */
41e20983 2054 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
2055 list_add(&page->lru, &l_active);
2056 continue;
2057 }
2058 }
7e9cd484 2059
5205e56e 2060 ClearPageActive(page); /* we are de-activating */
1899ad18 2061 SetPageWorkingset(page);
1da177e4
LT
2062 list_add(&page->lru, &l_inactive);
2063 }
2064
b555749a 2065 /*
8cab4754 2066 * Move pages back to the lru list.
b555749a 2067 */
599d0c95 2068 spin_lock_irq(&pgdat->lru_lock);
556adecb 2069 /*
8cab4754
WF
2070 * Count referenced pages from currently used mappings as rotated,
2071 * even though only some of them are actually re-activated. This
2072 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 2073 * get_scan_count.
7e9cd484 2074 */
b7c46d15 2075 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 2076
a222f341
KT
2077 nr_activate = move_pages_to_lru(lruvec, &l_active);
2078 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
f372d89e
KT
2079 /* Keep all free pages in l_active list */
2080 list_splice(&l_inactive, &l_active);
9851ac13
KT
2081
2082 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2083 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2084
599d0c95
MG
2085 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2086 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 2087
f372d89e
KT
2088 mem_cgroup_uncharge_list(&l_active);
2089 free_unref_page_list(&l_active);
9d998b4f
MH
2090 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2091 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2092}
2093
59dc76b0
RR
2094/*
2095 * The inactive anon list should be small enough that the VM never has
2096 * to do too much work.
14797e23 2097 *
59dc76b0
RR
2098 * The inactive file list should be small enough to leave most memory
2099 * to the established workingset on the scan-resistant active list,
2100 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2101 *
59dc76b0
RR
2102 * Both inactive lists should also be large enough that each inactive
2103 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2104 *
2a2e4885
JW
2105 * If that fails and refaulting is observed, the inactive list grows.
2106 *
59dc76b0 2107 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2108 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2109 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2110 *
59dc76b0
RR
2111 * total target max
2112 * memory ratio inactive
2113 * -------------------------------------
2114 * 10MB 1 5MB
2115 * 100MB 1 50MB
2116 * 1GB 3 250MB
2117 * 10GB 10 0.9GB
2118 * 100GB 31 3GB
2119 * 1TB 101 10GB
2120 * 10TB 320 32GB
56e49d21 2121 */
f8d1a311 2122static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2c012a4a 2123 struct scan_control *sc, bool trace)
56e49d21 2124{
fd538803 2125 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2a2e4885
JW
2126 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2127 enum lru_list inactive_lru = file * LRU_FILE;
2128 unsigned long inactive, active;
2129 unsigned long inactive_ratio;
2130 unsigned long refaults;
59dc76b0 2131 unsigned long gb;
e3790144 2132
59dc76b0
RR
2133 /*
2134 * If we don't have swap space, anonymous page deactivation
2135 * is pointless.
2136 */
2137 if (!file && !total_swap_pages)
2138 return false;
56e49d21 2139
fd538803
MH
2140 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2141 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
f8d1a311 2142
2a2e4885
JW
2143 /*
2144 * When refaults are being observed, it means a new workingset
2145 * is being established. Disable active list protection to get
2146 * rid of the stale workingset quickly.
2147 */
205b20cc 2148 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2c012a4a 2149 if (file && lruvec->refaults != refaults) {
2a2e4885
JW
2150 inactive_ratio = 0;
2151 } else {
2152 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2153 if (gb)
2154 inactive_ratio = int_sqrt(10 * gb);
2155 else
2156 inactive_ratio = 1;
2157 }
59dc76b0 2158
2c012a4a 2159 if (trace)
2a2e4885
JW
2160 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2161 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2162 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2163 inactive_ratio, file);
fd538803 2164
59dc76b0 2165 return inactive * inactive_ratio < active;
b39415b2
RR
2166}
2167
4f98a2fe 2168static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
3b991208 2169 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 2170{
b39415b2 2171 if (is_active_lru(lru)) {
3b991208 2172 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
1a93be0e 2173 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
2174 return 0;
2175 }
2176
1a93be0e 2177 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
2178}
2179
9a265114
JW
2180enum scan_balance {
2181 SCAN_EQUAL,
2182 SCAN_FRACT,
2183 SCAN_ANON,
2184 SCAN_FILE,
2185};
2186
4f98a2fe
RR
2187/*
2188 * Determine how aggressively the anon and file LRU lists should be
2189 * scanned. The relative value of each set of LRU lists is determined
2190 * by looking at the fraction of the pages scanned we did rotate back
2191 * onto the active list instead of evict.
2192 *
be7bd59d
WL
2193 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2194 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2195 */
33377678 2196static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
2197 struct scan_control *sc, unsigned long *nr,
2198 unsigned long *lru_pages)
4f98a2fe 2199{
33377678 2200 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2201 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2202 u64 fraction[2];
2203 u64 denominator = 0; /* gcc */
599d0c95 2204 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2205 unsigned long anon_prio, file_prio;
9a265114 2206 enum scan_balance scan_balance;
0bf1457f 2207 unsigned long anon, file;
4f98a2fe 2208 unsigned long ap, fp;
4111304d 2209 enum lru_list lru;
76a33fc3
SL
2210
2211 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2212 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2213 scan_balance = SCAN_FILE;
76a33fc3
SL
2214 goto out;
2215 }
4f98a2fe 2216
10316b31
JW
2217 /*
2218 * Global reclaim will swap to prevent OOM even with no
2219 * swappiness, but memcg users want to use this knob to
2220 * disable swapping for individual groups completely when
2221 * using the memory controller's swap limit feature would be
2222 * too expensive.
2223 */
02695175 2224 if (!global_reclaim(sc) && !swappiness) {
9a265114 2225 scan_balance = SCAN_FILE;
10316b31
JW
2226 goto out;
2227 }
2228
2229 /*
2230 * Do not apply any pressure balancing cleverness when the
2231 * system is close to OOM, scan both anon and file equally
2232 * (unless the swappiness setting disagrees with swapping).
2233 */
02695175 2234 if (!sc->priority && swappiness) {
9a265114 2235 scan_balance = SCAN_EQUAL;
10316b31
JW
2236 goto out;
2237 }
2238
62376251
JW
2239 /*
2240 * Prevent the reclaimer from falling into the cache trap: as
2241 * cache pages start out inactive, every cache fault will tip
2242 * the scan balance towards the file LRU. And as the file LRU
2243 * shrinks, so does the window for rotation from references.
2244 * This means we have a runaway feedback loop where a tiny
2245 * thrashing file LRU becomes infinitely more attractive than
2246 * anon pages. Try to detect this based on file LRU size.
2247 */
2248 if (global_reclaim(sc)) {
599d0c95
MG
2249 unsigned long pgdatfile;
2250 unsigned long pgdatfree;
2251 int z;
2252 unsigned long total_high_wmark = 0;
2ab051e1 2253
599d0c95
MG
2254 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2255 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2256 node_page_state(pgdat, NR_INACTIVE_FILE);
2257
2258 for (z = 0; z < MAX_NR_ZONES; z++) {
2259 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2260 if (!managed_zone(zone))
599d0c95
MG
2261 continue;
2262
2263 total_high_wmark += high_wmark_pages(zone);
2264 }
62376251 2265
599d0c95 2266 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
06226226
DR
2267 /*
2268 * Force SCAN_ANON if there are enough inactive
2269 * anonymous pages on the LRU in eligible zones.
2270 * Otherwise, the small LRU gets thrashed.
2271 */
3b991208 2272 if (!inactive_list_is_low(lruvec, false, sc, false) &&
06226226
DR
2273 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2274 >> sc->priority) {
2275 scan_balance = SCAN_ANON;
2276 goto out;
2277 }
62376251
JW
2278 }
2279 }
2280
7c5bd705 2281 /*
316bda0e
VD
2282 * If there is enough inactive page cache, i.e. if the size of the
2283 * inactive list is greater than that of the active list *and* the
2284 * inactive list actually has some pages to scan on this priority, we
2285 * do not reclaim anything from the anonymous working set right now.
2286 * Without the second condition we could end up never scanning an
2287 * lruvec even if it has plenty of old anonymous pages unless the
2288 * system is under heavy pressure.
7c5bd705 2289 */
3b991208 2290 if (!inactive_list_is_low(lruvec, true, sc, false) &&
71ab6cfe 2291 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
9a265114 2292 scan_balance = SCAN_FILE;
7c5bd705
JW
2293 goto out;
2294 }
2295
9a265114
JW
2296 scan_balance = SCAN_FRACT;
2297
58c37f6e
KM
2298 /*
2299 * With swappiness at 100, anonymous and file have the same priority.
2300 * This scanning priority is essentially the inverse of IO cost.
2301 */
02695175 2302 anon_prio = swappiness;
75b00af7 2303 file_prio = 200 - anon_prio;
58c37f6e 2304
4f98a2fe
RR
2305 /*
2306 * OK, so we have swap space and a fair amount of page cache
2307 * pages. We use the recently rotated / recently scanned
2308 * ratios to determine how valuable each cache is.
2309 *
2310 * Because workloads change over time (and to avoid overflow)
2311 * we keep these statistics as a floating average, which ends
2312 * up weighing recent references more than old ones.
2313 *
2314 * anon in [0], file in [1]
2315 */
2ab051e1 2316
fd538803
MH
2317 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2318 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2319 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2320 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2ab051e1 2321
599d0c95 2322 spin_lock_irq(&pgdat->lru_lock);
6e901571 2323 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2324 reclaim_stat->recent_scanned[0] /= 2;
2325 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2326 }
2327
6e901571 2328 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2329 reclaim_stat->recent_scanned[1] /= 2;
2330 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2331 }
2332
4f98a2fe 2333 /*
00d8089c
RR
2334 * The amount of pressure on anon vs file pages is inversely
2335 * proportional to the fraction of recently scanned pages on
2336 * each list that were recently referenced and in active use.
4f98a2fe 2337 */
fe35004f 2338 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2339 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2340
fe35004f 2341 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2342 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2343 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2344
76a33fc3
SL
2345 fraction[0] = ap;
2346 fraction[1] = fp;
2347 denominator = ap + fp + 1;
2348out:
688035f7
JW
2349 *lru_pages = 0;
2350 for_each_evictable_lru(lru) {
2351 int file = is_file_lru(lru);
2352 unsigned long size;
2353 unsigned long scan;
6b4f7799 2354
688035f7
JW
2355 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2356 scan = size >> sc->priority;
2357 /*
2358 * If the cgroup's already been deleted, make sure to
2359 * scrape out the remaining cache.
2360 */
2361 if (!scan && !mem_cgroup_online(memcg))
2362 scan = min(size, SWAP_CLUSTER_MAX);
6b4f7799 2363
688035f7
JW
2364 switch (scan_balance) {
2365 case SCAN_EQUAL:
2366 /* Scan lists relative to size */
2367 break;
2368 case SCAN_FRACT:
9a265114 2369 /*
688035f7
JW
2370 * Scan types proportional to swappiness and
2371 * their relative recent reclaim efficiency.
68600f62
RG
2372 * Make sure we don't miss the last page
2373 * because of a round-off error.
9a265114 2374 */
68600f62
RG
2375 scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2376 denominator);
688035f7
JW
2377 break;
2378 case SCAN_FILE:
2379 case SCAN_ANON:
2380 /* Scan one type exclusively */
2381 if ((scan_balance == SCAN_FILE) != file) {
2382 size = 0;
2383 scan = 0;
2384 }
2385 break;
2386 default:
2387 /* Look ma, no brain */
2388 BUG();
9a265114 2389 }
688035f7
JW
2390
2391 *lru_pages += size;
2392 nr[lru] = scan;
76a33fc3 2393 }
6e08a369 2394}
4f98a2fe 2395
9b4f98cd 2396/*
a9dd0a83 2397 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
9b4f98cd 2398 */
a9dd0a83 2399static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
33377678 2400 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2401{
ef8f2327 2402 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
9b4f98cd 2403 unsigned long nr[NR_LRU_LISTS];
e82e0561 2404 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2405 unsigned long nr_to_scan;
2406 enum lru_list lru;
2407 unsigned long nr_reclaimed = 0;
2408 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2409 struct blk_plug plug;
1a501907 2410 bool scan_adjusted;
9b4f98cd 2411
33377678 2412 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2413
e82e0561
MG
2414 /* Record the original scan target for proportional adjustments later */
2415 memcpy(targets, nr, sizeof(nr));
2416
1a501907
MG
2417 /*
2418 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2419 * event that can occur when there is little memory pressure e.g.
2420 * multiple streaming readers/writers. Hence, we do not abort scanning
2421 * when the requested number of pages are reclaimed when scanning at
2422 * DEF_PRIORITY on the assumption that the fact we are direct
2423 * reclaiming implies that kswapd is not keeping up and it is best to
2424 * do a batch of work at once. For memcg reclaim one check is made to
2425 * abort proportional reclaim if either the file or anon lru has already
2426 * dropped to zero at the first pass.
2427 */
2428 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2429 sc->priority == DEF_PRIORITY);
2430
9b4f98cd
JW
2431 blk_start_plug(&plug);
2432 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2433 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2434 unsigned long nr_anon, nr_file, percentage;
2435 unsigned long nr_scanned;
2436
9b4f98cd
JW
2437 for_each_evictable_lru(lru) {
2438 if (nr[lru]) {
2439 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2440 nr[lru] -= nr_to_scan;
2441
2442 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2443 lruvec, sc);
9b4f98cd
JW
2444 }
2445 }
e82e0561 2446
bd041733
MH
2447 cond_resched();
2448
e82e0561
MG
2449 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2450 continue;
2451
e82e0561
MG
2452 /*
2453 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2454 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2455 * proportionally what was requested by get_scan_count(). We
2456 * stop reclaiming one LRU and reduce the amount scanning
2457 * proportional to the original scan target.
2458 */
2459 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2460 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2461
1a501907
MG
2462 /*
2463 * It's just vindictive to attack the larger once the smaller
2464 * has gone to zero. And given the way we stop scanning the
2465 * smaller below, this makes sure that we only make one nudge
2466 * towards proportionality once we've got nr_to_reclaim.
2467 */
2468 if (!nr_file || !nr_anon)
2469 break;
2470
e82e0561
MG
2471 if (nr_file > nr_anon) {
2472 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2473 targets[LRU_ACTIVE_ANON] + 1;
2474 lru = LRU_BASE;
2475 percentage = nr_anon * 100 / scan_target;
2476 } else {
2477 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2478 targets[LRU_ACTIVE_FILE] + 1;
2479 lru = LRU_FILE;
2480 percentage = nr_file * 100 / scan_target;
2481 }
2482
2483 /* Stop scanning the smaller of the LRU */
2484 nr[lru] = 0;
2485 nr[lru + LRU_ACTIVE] = 0;
2486
2487 /*
2488 * Recalculate the other LRU scan count based on its original
2489 * scan target and the percentage scanning already complete
2490 */
2491 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2492 nr_scanned = targets[lru] - nr[lru];
2493 nr[lru] = targets[lru] * (100 - percentage) / 100;
2494 nr[lru] -= min(nr[lru], nr_scanned);
2495
2496 lru += LRU_ACTIVE;
2497 nr_scanned = targets[lru] - nr[lru];
2498 nr[lru] = targets[lru] * (100 - percentage) / 100;
2499 nr[lru] -= min(nr[lru], nr_scanned);
2500
2501 scan_adjusted = true;
9b4f98cd
JW
2502 }
2503 blk_finish_plug(&plug);
2504 sc->nr_reclaimed += nr_reclaimed;
2505
2506 /*
2507 * Even if we did not try to evict anon pages at all, we want to
2508 * rebalance the anon lru active/inactive ratio.
2509 */
3b991208 2510 if (inactive_list_is_low(lruvec, false, sc, true))
9b4f98cd
JW
2511 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2512 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2513}
2514
23b9da55 2515/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2516static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2517{
d84da3f9 2518 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2519 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2520 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2521 return true;
2522
2523 return false;
2524}
2525
3e7d3449 2526/*
23b9da55
MG
2527 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2528 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2529 * true if more pages should be reclaimed such that when the page allocator
2530 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2531 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2532 */
a9dd0a83 2533static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449
MG
2534 unsigned long nr_reclaimed,
2535 unsigned long nr_scanned,
2536 struct scan_control *sc)
2537{
2538 unsigned long pages_for_compaction;
2539 unsigned long inactive_lru_pages;
a9dd0a83 2540 int z;
3e7d3449
MG
2541
2542 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2543 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2544 return false;
2545
2876592f 2546 /* Consider stopping depending on scan and reclaim activity */
dcda9b04 2547 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2876592f 2548 /*
dcda9b04 2549 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2876592f
MG
2550 * full LRU list has been scanned and we are still failing
2551 * to reclaim pages. This full LRU scan is potentially
dcda9b04 2552 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2876592f
MG
2553 */
2554 if (!nr_reclaimed && !nr_scanned)
2555 return false;
2556 } else {
2557 /*
dcda9b04 2558 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2876592f
MG
2559 * fail without consequence, stop if we failed to reclaim
2560 * any pages from the last SWAP_CLUSTER_MAX number of
2561 * pages that were scanned. This will return to the
2562 * caller faster at the risk reclaim/compaction and
2563 * the resulting allocation attempt fails
2564 */
2565 if (!nr_reclaimed)
2566 return false;
2567 }
3e7d3449
MG
2568
2569 /*
2570 * If we have not reclaimed enough pages for compaction and the
2571 * inactive lists are large enough, continue reclaiming
2572 */
9861a62c 2573 pages_for_compaction = compact_gap(sc->order);
a9dd0a83 2574 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
ec8acf20 2575 if (get_nr_swap_pages() > 0)
a9dd0a83 2576 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3e7d3449
MG
2577 if (sc->nr_reclaimed < pages_for_compaction &&
2578 inactive_lru_pages > pages_for_compaction)
2579 return true;
2580
2581 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2582 for (z = 0; z <= sc->reclaim_idx; z++) {
2583 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2584 if (!managed_zone(zone))
a9dd0a83
MG
2585 continue;
2586
2587 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2588 case COMPACT_SUCCESS:
a9dd0a83
MG
2589 case COMPACT_CONTINUE:
2590 return false;
2591 default:
2592 /* check next zone */
2593 ;
2594 }
3e7d3449 2595 }
a9dd0a83 2596 return true;
3e7d3449
MG
2597}
2598
e3c1ac58
AR
2599static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2600{
2601 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2602 (memcg && memcg_congested(pgdat, memcg));
2603}
2604
970a39a3 2605static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2606{
cb731d6c 2607 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2608 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2609 bool reclaimable = false;
1da177e4 2610
9b4f98cd
JW
2611 do {
2612 struct mem_cgroup *root = sc->target_mem_cgroup;
2613 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 2614 .pgdat = pgdat,
9b4f98cd
JW
2615 .priority = sc->priority,
2616 };
a9dd0a83 2617 unsigned long node_lru_pages = 0;
694fbc0f 2618 struct mem_cgroup *memcg;
3e7d3449 2619
d108c772
AR
2620 memset(&sc->nr, 0, sizeof(sc->nr));
2621
9b4f98cd
JW
2622 nr_reclaimed = sc->nr_reclaimed;
2623 nr_scanned = sc->nr_scanned;
1da177e4 2624
694fbc0f
AM
2625 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2626 do {
6b4f7799 2627 unsigned long lru_pages;
8e8ae645 2628 unsigned long reclaimed;
cb731d6c 2629 unsigned long scanned;
5660048c 2630
bf8d5d52
RG
2631 switch (mem_cgroup_protected(root, memcg)) {
2632 case MEMCG_PROT_MIN:
2633 /*
2634 * Hard protection.
2635 * If there is no reclaimable memory, OOM.
2636 */
2637 continue;
2638 case MEMCG_PROT_LOW:
2639 /*
2640 * Soft protection.
2641 * Respect the protection only as long as
2642 * there is an unprotected supply
2643 * of reclaimable memory from other cgroups.
2644 */
d6622f63
YX
2645 if (!sc->memcg_low_reclaim) {
2646 sc->memcg_low_skipped = 1;
241994ed 2647 continue;
d6622f63 2648 }
e27be240 2649 memcg_memory_event(memcg, MEMCG_LOW);
bf8d5d52
RG
2650 break;
2651 case MEMCG_PROT_NONE:
2652 break;
241994ed
JW
2653 }
2654
8e8ae645 2655 reclaimed = sc->nr_reclaimed;
cb731d6c 2656 scanned = sc->nr_scanned;
a9dd0a83
MG
2657 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2658 node_lru_pages += lru_pages;
f16015fb 2659
1c30844d
MG
2660 if (sc->may_shrinkslab) {
2661 shrink_slab(sc->gfp_mask, pgdat->node_id,
aeed1d32 2662 memcg, sc->priority);
1c30844d 2663 }
cb731d6c 2664
8e8ae645
JW
2665 /* Record the group's reclaim efficiency */
2666 vmpressure(sc->gfp_mask, memcg, false,
2667 sc->nr_scanned - scanned,
2668 sc->nr_reclaimed - reclaimed);
2669
9b4f98cd 2670 /*
2bb0f34f
YS
2671 * Kswapd have to scan all memory cgroups to fulfill
2672 * the overall scan target for the node.
a394cb8e
MH
2673 *
2674 * Limit reclaim, on the other hand, only cares about
2675 * nr_to_reclaim pages to be reclaimed and it will
2676 * retry with decreasing priority if one round over the
2677 * whole hierarchy is not sufficient.
9b4f98cd 2678 */
2bb0f34f 2679 if (!current_is_kswapd() &&
a394cb8e 2680 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2681 mem_cgroup_iter_break(root, memcg);
2682 break;
2683 }
241994ed 2684 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2685
cb731d6c
VD
2686 if (reclaim_state) {
2687 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2688 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2689 }
2690
8e8ae645
JW
2691 /* Record the subtree's reclaim efficiency */
2692 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2693 sc->nr_scanned - nr_scanned,
2694 sc->nr_reclaimed - nr_reclaimed);
2695
2344d7e4
JW
2696 if (sc->nr_reclaimed - nr_reclaimed)
2697 reclaimable = true;
2698
e3c1ac58
AR
2699 if (current_is_kswapd()) {
2700 /*
2701 * If reclaim is isolating dirty pages under writeback,
2702 * it implies that the long-lived page allocation rate
2703 * is exceeding the page laundering rate. Either the
2704 * global limits are not being effective at throttling
2705 * processes due to the page distribution throughout
2706 * zones or there is heavy usage of a slow backing
2707 * device. The only option is to throttle from reclaim
2708 * context which is not ideal as there is no guarantee
2709 * the dirtying process is throttled in the same way
2710 * balance_dirty_pages() manages.
2711 *
2712 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2713 * count the number of pages under pages flagged for
2714 * immediate reclaim and stall if any are encountered
2715 * in the nr_immediate check below.
2716 */
2717 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2718 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 2719
d108c772
AR
2720 /*
2721 * Tag a node as congested if all the dirty pages
2722 * scanned were backed by a congested BDI and
2723 * wait_iff_congested will stall.
2724 */
2725 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2726 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2727
2728 /* Allow kswapd to start writing pages during reclaim.*/
2729 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2730 set_bit(PGDAT_DIRTY, &pgdat->flags);
2731
2732 /*
2733 * If kswapd scans pages marked marked for immediate
2734 * reclaim and under writeback (nr_immediate), it
2735 * implies that pages are cycling through the LRU
2736 * faster than they are written so also forcibly stall.
2737 */
2738 if (sc->nr.immediate)
2739 congestion_wait(BLK_RW_ASYNC, HZ/10);
2740 }
2741
e3c1ac58
AR
2742 /*
2743 * Legacy memcg will stall in page writeback so avoid forcibly
2744 * stalling in wait_iff_congested().
2745 */
2746 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2747 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2748 set_memcg_congestion(pgdat, root, true);
2749
d108c772
AR
2750 /*
2751 * Stall direct reclaim for IO completions if underlying BDIs
2752 * and node is congested. Allow kswapd to continue until it
2753 * starts encountering unqueued dirty pages or cycling through
2754 * the LRU too quickly.
2755 */
2756 if (!sc->hibernation_mode && !current_is_kswapd() &&
e3c1ac58
AR
2757 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2758 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
d108c772 2759
a9dd0a83 2760 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
9b4f98cd 2761 sc->nr_scanned - nr_scanned, sc));
2344d7e4 2762
c73322d0
JW
2763 /*
2764 * Kswapd gives up on balancing particular nodes after too
2765 * many failures to reclaim anything from them and goes to
2766 * sleep. On reclaim progress, reset the failure counter. A
2767 * successful direct reclaim run will revive a dormant kswapd.
2768 */
2769 if (reclaimable)
2770 pgdat->kswapd_failures = 0;
2771
2344d7e4 2772 return reclaimable;
f16015fb
JW
2773}
2774
53853e2d 2775/*
fdd4c614
VB
2776 * Returns true if compaction should go ahead for a costly-order request, or
2777 * the allocation would already succeed without compaction. Return false if we
2778 * should reclaim first.
53853e2d 2779 */
4f588331 2780static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2781{
31483b6a 2782 unsigned long watermark;
fdd4c614 2783 enum compact_result suitable;
fe4b1b24 2784
fdd4c614
VB
2785 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2786 if (suitable == COMPACT_SUCCESS)
2787 /* Allocation should succeed already. Don't reclaim. */
2788 return true;
2789 if (suitable == COMPACT_SKIPPED)
2790 /* Compaction cannot yet proceed. Do reclaim. */
2791 return false;
fe4b1b24 2792
53853e2d 2793 /*
fdd4c614
VB
2794 * Compaction is already possible, but it takes time to run and there
2795 * are potentially other callers using the pages just freed. So proceed
2796 * with reclaim to make a buffer of free pages available to give
2797 * compaction a reasonable chance of completing and allocating the page.
2798 * Note that we won't actually reclaim the whole buffer in one attempt
2799 * as the target watermark in should_continue_reclaim() is lower. But if
2800 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2801 */
fdd4c614 2802 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2803
fdd4c614 2804 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2805}
2806
1da177e4
LT
2807/*
2808 * This is the direct reclaim path, for page-allocating processes. We only
2809 * try to reclaim pages from zones which will satisfy the caller's allocation
2810 * request.
2811 *
1da177e4
LT
2812 * If a zone is deemed to be full of pinned pages then just give it a light
2813 * scan then give up on it.
2814 */
0a0337e0 2815static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2816{
dd1a239f 2817 struct zoneref *z;
54a6eb5c 2818 struct zone *zone;
0608f43d
AM
2819 unsigned long nr_soft_reclaimed;
2820 unsigned long nr_soft_scanned;
619d0d76 2821 gfp_t orig_mask;
79dafcdc 2822 pg_data_t *last_pgdat = NULL;
1cfb419b 2823
cc715d99
MG
2824 /*
2825 * If the number of buffer_heads in the machine exceeds the maximum
2826 * allowed level, force direct reclaim to scan the highmem zone as
2827 * highmem pages could be pinning lowmem pages storing buffer_heads
2828 */
619d0d76 2829 orig_mask = sc->gfp_mask;
b2e18757 2830 if (buffer_heads_over_limit) {
cc715d99 2831 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2832 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2833 }
cc715d99 2834
d4debc66 2835 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2836 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2837 /*
2838 * Take care memory controller reclaiming has small influence
2839 * to global LRU.
2840 */
89b5fae5 2841 if (global_reclaim(sc)) {
344736f2
VD
2842 if (!cpuset_zone_allowed(zone,
2843 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2844 continue;
65ec02cb 2845
0b06496a
JW
2846 /*
2847 * If we already have plenty of memory free for
2848 * compaction in this zone, don't free any more.
2849 * Even though compaction is invoked for any
2850 * non-zero order, only frequent costly order
2851 * reclamation is disruptive enough to become a
2852 * noticeable problem, like transparent huge
2853 * page allocations.
2854 */
2855 if (IS_ENABLED(CONFIG_COMPACTION) &&
2856 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2857 compaction_ready(zone, sc)) {
0b06496a
JW
2858 sc->compaction_ready = true;
2859 continue;
e0887c19 2860 }
0b06496a 2861
79dafcdc
MG
2862 /*
2863 * Shrink each node in the zonelist once. If the
2864 * zonelist is ordered by zone (not the default) then a
2865 * node may be shrunk multiple times but in that case
2866 * the user prefers lower zones being preserved.
2867 */
2868 if (zone->zone_pgdat == last_pgdat)
2869 continue;
2870
0608f43d
AM
2871 /*
2872 * This steals pages from memory cgroups over softlimit
2873 * and returns the number of reclaimed pages and
2874 * scanned pages. This works for global memory pressure
2875 * and balancing, not for a memcg's limit.
2876 */
2877 nr_soft_scanned = 0;
ef8f2327 2878 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2879 sc->order, sc->gfp_mask,
2880 &nr_soft_scanned);
2881 sc->nr_reclaimed += nr_soft_reclaimed;
2882 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2883 /* need some check for avoid more shrink_zone() */
1cfb419b 2884 }
408d8544 2885
79dafcdc
MG
2886 /* See comment about same check for global reclaim above */
2887 if (zone->zone_pgdat == last_pgdat)
2888 continue;
2889 last_pgdat = zone->zone_pgdat;
970a39a3 2890 shrink_node(zone->zone_pgdat, sc);
1da177e4 2891 }
e0c23279 2892
619d0d76
WY
2893 /*
2894 * Restore to original mask to avoid the impact on the caller if we
2895 * promoted it to __GFP_HIGHMEM.
2896 */
2897 sc->gfp_mask = orig_mask;
1da177e4 2898}
4f98a2fe 2899
2a2e4885
JW
2900static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2901{
2902 struct mem_cgroup *memcg;
2903
2904 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2905 do {
2906 unsigned long refaults;
2907 struct lruvec *lruvec;
2908
2a2e4885 2909 lruvec = mem_cgroup_lruvec(pgdat, memcg);
205b20cc 2910 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2a2e4885
JW
2911 lruvec->refaults = refaults;
2912 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2913}
2914
1da177e4
LT
2915/*
2916 * This is the main entry point to direct page reclaim.
2917 *
2918 * If a full scan of the inactive list fails to free enough memory then we
2919 * are "out of memory" and something needs to be killed.
2920 *
2921 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2922 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2923 * caller can't do much about. We kick the writeback threads and take explicit
2924 * naps in the hope that some of these pages can be written. But if the
2925 * allocating task holds filesystem locks which prevent writeout this might not
2926 * work, and the allocation attempt will fail.
a41f24ea
NA
2927 *
2928 * returns: 0, if no pages reclaimed
2929 * else, the number of pages reclaimed
1da177e4 2930 */
dac1d27b 2931static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2932 struct scan_control *sc)
1da177e4 2933{
241994ed 2934 int initial_priority = sc->priority;
2a2e4885
JW
2935 pg_data_t *last_pgdat;
2936 struct zoneref *z;
2937 struct zone *zone;
241994ed 2938retry:
873b4771
KK
2939 delayacct_freepages_start();
2940
89b5fae5 2941 if (global_reclaim(sc))
7cc30fcf 2942 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 2943
9e3b2f8c 2944 do {
70ddf637
AV
2945 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2946 sc->priority);
66e1707b 2947 sc->nr_scanned = 0;
0a0337e0 2948 shrink_zones(zonelist, sc);
c6a8a8c5 2949
bb21c7ce 2950 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2951 break;
2952
2953 if (sc->compaction_ready)
2954 break;
1da177e4 2955
0e50ce3b
MK
2956 /*
2957 * If we're getting trouble reclaiming, start doing
2958 * writepage even in laptop mode.
2959 */
2960 if (sc->priority < DEF_PRIORITY - 2)
2961 sc->may_writepage = 1;
0b06496a 2962 } while (--sc->priority >= 0);
bb21c7ce 2963
2a2e4885
JW
2964 last_pgdat = NULL;
2965 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2966 sc->nodemask) {
2967 if (zone->zone_pgdat == last_pgdat)
2968 continue;
2969 last_pgdat = zone->zone_pgdat;
2970 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
e3c1ac58 2971 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2a2e4885
JW
2972 }
2973
873b4771
KK
2974 delayacct_freepages_end();
2975
bb21c7ce
KM
2976 if (sc->nr_reclaimed)
2977 return sc->nr_reclaimed;
2978
0cee34fd 2979 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2980 if (sc->compaction_ready)
7335084d
MG
2981 return 1;
2982
241994ed 2983 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 2984 if (sc->memcg_low_skipped) {
241994ed 2985 sc->priority = initial_priority;
d6622f63
YX
2986 sc->memcg_low_reclaim = 1;
2987 sc->memcg_low_skipped = 0;
241994ed
JW
2988 goto retry;
2989 }
2990
bb21c7ce 2991 return 0;
1da177e4
LT
2992}
2993
c73322d0 2994static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
2995{
2996 struct zone *zone;
2997 unsigned long pfmemalloc_reserve = 0;
2998 unsigned long free_pages = 0;
2999 int i;
3000 bool wmark_ok;
3001
c73322d0
JW
3002 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3003 return true;
3004
5515061d
MG
3005 for (i = 0; i <= ZONE_NORMAL; i++) {
3006 zone = &pgdat->node_zones[i];
d450abd8
JW
3007 if (!managed_zone(zone))
3008 continue;
3009
3010 if (!zone_reclaimable_pages(zone))
675becce
MG
3011 continue;
3012
5515061d
MG
3013 pfmemalloc_reserve += min_wmark_pages(zone);
3014 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3015 }
3016
675becce
MG
3017 /* If there are no reserves (unexpected config) then do not throttle */
3018 if (!pfmemalloc_reserve)
3019 return true;
3020
5515061d
MG
3021 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3022
3023 /* kswapd must be awake if processes are being throttled */
3024 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 3025 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
3026 (enum zone_type)ZONE_NORMAL);
3027 wake_up_interruptible(&pgdat->kswapd_wait);
3028 }
3029
3030 return wmark_ok;
3031}
3032
3033/*
3034 * Throttle direct reclaimers if backing storage is backed by the network
3035 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3036 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3037 * when the low watermark is reached.
3038 *
3039 * Returns true if a fatal signal was delivered during throttling. If this
3040 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3041 */
50694c28 3042static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3043 nodemask_t *nodemask)
3044{
675becce 3045 struct zoneref *z;
5515061d 3046 struct zone *zone;
675becce 3047 pg_data_t *pgdat = NULL;
5515061d
MG
3048
3049 /*
3050 * Kernel threads should not be throttled as they may be indirectly
3051 * responsible for cleaning pages necessary for reclaim to make forward
3052 * progress. kjournald for example may enter direct reclaim while
3053 * committing a transaction where throttling it could forcing other
3054 * processes to block on log_wait_commit().
3055 */
3056 if (current->flags & PF_KTHREAD)
50694c28
MG
3057 goto out;
3058
3059 /*
3060 * If a fatal signal is pending, this process should not throttle.
3061 * It should return quickly so it can exit and free its memory
3062 */
3063 if (fatal_signal_pending(current))
3064 goto out;
5515061d 3065
675becce
MG
3066 /*
3067 * Check if the pfmemalloc reserves are ok by finding the first node
3068 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3069 * GFP_KERNEL will be required for allocating network buffers when
3070 * swapping over the network so ZONE_HIGHMEM is unusable.
3071 *
3072 * Throttling is based on the first usable node and throttled processes
3073 * wait on a queue until kswapd makes progress and wakes them. There
3074 * is an affinity then between processes waking up and where reclaim
3075 * progress has been made assuming the process wakes on the same node.
3076 * More importantly, processes running on remote nodes will not compete
3077 * for remote pfmemalloc reserves and processes on different nodes
3078 * should make reasonable progress.
3079 */
3080 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3081 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3082 if (zone_idx(zone) > ZONE_NORMAL)
3083 continue;
3084
3085 /* Throttle based on the first usable node */
3086 pgdat = zone->zone_pgdat;
c73322d0 3087 if (allow_direct_reclaim(pgdat))
675becce
MG
3088 goto out;
3089 break;
3090 }
3091
3092 /* If no zone was usable by the allocation flags then do not throttle */
3093 if (!pgdat)
50694c28 3094 goto out;
5515061d 3095
68243e76
MG
3096 /* Account for the throttling */
3097 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3098
5515061d
MG
3099 /*
3100 * If the caller cannot enter the filesystem, it's possible that it
3101 * is due to the caller holding an FS lock or performing a journal
3102 * transaction in the case of a filesystem like ext[3|4]. In this case,
3103 * it is not safe to block on pfmemalloc_wait as kswapd could be
3104 * blocked waiting on the same lock. Instead, throttle for up to a
3105 * second before continuing.
3106 */
3107 if (!(gfp_mask & __GFP_FS)) {
3108 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3109 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
3110
3111 goto check_pending;
5515061d
MG
3112 }
3113
3114 /* Throttle until kswapd wakes the process */
3115 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 3116 allow_direct_reclaim(pgdat));
50694c28
MG
3117
3118check_pending:
3119 if (fatal_signal_pending(current))
3120 return true;
3121
3122out:
3123 return false;
5515061d
MG
3124}
3125
dac1d27b 3126unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3127 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3128{
33906bc5 3129 unsigned long nr_reclaimed;
66e1707b 3130 struct scan_control sc = {
ee814fe2 3131 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3132 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3133 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3134 .order = order,
3135 .nodemask = nodemask,
3136 .priority = DEF_PRIORITY,
66e1707b 3137 .may_writepage = !laptop_mode,
a6dc60f8 3138 .may_unmap = 1,
2e2e4259 3139 .may_swap = 1,
1c30844d 3140 .may_shrinkslab = 1,
66e1707b
BS
3141 };
3142
bb451fdf
GT
3143 /*
3144 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3145 * Confirm they are large enough for max values.
3146 */
3147 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3148 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3149 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3150
5515061d 3151 /*
50694c28
MG
3152 * Do not enter reclaim if fatal signal was delivered while throttled.
3153 * 1 is returned so that the page allocator does not OOM kill at this
3154 * point.
5515061d 3155 */
f2f43e56 3156 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3157 return 1;
3158
3481c37f 3159 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3160
3115cd91 3161 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3162
3163 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3164
3165 return nr_reclaimed;
66e1707b
BS
3166}
3167
c255a458 3168#ifdef CONFIG_MEMCG
66e1707b 3169
a9dd0a83 3170unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3171 gfp_t gfp_mask, bool noswap,
ef8f2327 3172 pg_data_t *pgdat,
0ae5e89c 3173 unsigned long *nr_scanned)
4e416953
BS
3174{
3175 struct scan_control sc = {
b8f5c566 3176 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3177 .target_mem_cgroup = memcg,
4e416953
BS
3178 .may_writepage = !laptop_mode,
3179 .may_unmap = 1,
b2e18757 3180 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3181 .may_swap = !noswap,
1c30844d 3182 .may_shrinkslab = 1,
4e416953 3183 };
6b4f7799 3184 unsigned long lru_pages;
0ae5e89c 3185
4e416953
BS
3186 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3187 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3188
9e3b2f8c 3189 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3190 sc.gfp_mask);
bdce6d9e 3191
4e416953
BS
3192 /*
3193 * NOTE: Although we can get the priority field, using it
3194 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3195 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3196 * will pick up pages from other mem cgroup's as well. We hack
3197 * the priority and make it zero.
3198 */
ef8f2327 3199 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
bdce6d9e
KM
3200
3201 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3202
0ae5e89c 3203 *nr_scanned = sc.nr_scanned;
4e416953
BS
3204 return sc.nr_reclaimed;
3205}
3206
72835c86 3207unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3208 unsigned long nr_pages,
a7885eb8 3209 gfp_t gfp_mask,
b70a2a21 3210 bool may_swap)
66e1707b 3211{
4e416953 3212 struct zonelist *zonelist;
bdce6d9e 3213 unsigned long nr_reclaimed;
eb414681 3214 unsigned long pflags;
889976db 3215 int nid;
499118e9 3216 unsigned int noreclaim_flag;
66e1707b 3217 struct scan_control sc = {
b70a2a21 3218 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3219 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3220 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3221 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3222 .target_mem_cgroup = memcg,
3223 .priority = DEF_PRIORITY,
3224 .may_writepage = !laptop_mode,
3225 .may_unmap = 1,
b70a2a21 3226 .may_swap = may_swap,
1c30844d 3227 .may_shrinkslab = 1,
a09ed5e0 3228 };
66e1707b 3229
889976db
YH
3230 /*
3231 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3232 * take care of from where we get pages. So the node where we start the
3233 * scan does not need to be the current node.
3234 */
72835c86 3235 nid = mem_cgroup_select_victim_node(memcg);
889976db 3236
c9634cf0 3237 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
bdce6d9e 3238
3481c37f 3239 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
bdce6d9e 3240
eb414681 3241 psi_memstall_enter(&pflags);
499118e9 3242 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3243
3115cd91 3244 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3245
499118e9 3246 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3247 psi_memstall_leave(&pflags);
bdce6d9e
KM
3248
3249 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3250
3251 return nr_reclaimed;
66e1707b
BS
3252}
3253#endif
3254
1d82de61 3255static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3256 struct scan_control *sc)
f16015fb 3257{
b95a2f2d 3258 struct mem_cgroup *memcg;
f16015fb 3259
b95a2f2d
JW
3260 if (!total_swap_pages)
3261 return;
3262
3263 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3264 do {
ef8f2327 3265 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
b95a2f2d 3266
3b991208 3267 if (inactive_list_is_low(lruvec, false, sc, true))
1a93be0e 3268 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3269 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3270
3271 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3272 } while (memcg);
f16015fb
JW
3273}
3274
1c30844d
MG
3275static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3276{
3277 int i;
3278 struct zone *zone;
3279
3280 /*
3281 * Check for watermark boosts top-down as the higher zones
3282 * are more likely to be boosted. Both watermarks and boosts
3283 * should not be checked at the time time as reclaim would
3284 * start prematurely when there is no boosting and a lower
3285 * zone is balanced.
3286 */
3287 for (i = classzone_idx; i >= 0; i--) {
3288 zone = pgdat->node_zones + i;
3289 if (!managed_zone(zone))
3290 continue;
3291
3292 if (zone->watermark_boost)
3293 return true;
3294 }
3295
3296 return false;
3297}
3298
e716f2eb
MG
3299/*
3300 * Returns true if there is an eligible zone balanced for the request order
3301 * and classzone_idx
3302 */
3303static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
60cefed4 3304{
e716f2eb
MG
3305 int i;
3306 unsigned long mark = -1;
3307 struct zone *zone;
60cefed4 3308
1c30844d
MG
3309 /*
3310 * Check watermarks bottom-up as lower zones are more likely to
3311 * meet watermarks.
3312 */
e716f2eb
MG
3313 for (i = 0; i <= classzone_idx; i++) {
3314 zone = pgdat->node_zones + i;
6256c6b4 3315
e716f2eb
MG
3316 if (!managed_zone(zone))
3317 continue;
3318
3319 mark = high_wmark_pages(zone);
3320 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3321 return true;
3322 }
3323
3324 /*
3325 * If a node has no populated zone within classzone_idx, it does not
3326 * need balancing by definition. This can happen if a zone-restricted
3327 * allocation tries to wake a remote kswapd.
3328 */
3329 if (mark == -1)
3330 return true;
3331
3332 return false;
60cefed4
JW
3333}
3334
631b6e08
MG
3335/* Clear pgdat state for congested, dirty or under writeback. */
3336static void clear_pgdat_congested(pg_data_t *pgdat)
3337{
3338 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3339 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3340 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3341}
3342
5515061d
MG
3343/*
3344 * Prepare kswapd for sleeping. This verifies that there are no processes
3345 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3346 *
3347 * Returns true if kswapd is ready to sleep
3348 */
d9f21d42 3349static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3350{
5515061d 3351 /*
9e5e3661 3352 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3353 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3354 * race between when kswapd checks the watermarks and a process gets
3355 * throttled. There is also a potential race if processes get
3356 * throttled, kswapd wakes, a large process exits thereby balancing the
3357 * zones, which causes kswapd to exit balance_pgdat() before reaching
3358 * the wake up checks. If kswapd is going to sleep, no process should
3359 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3360 * the wake up is premature, processes will wake kswapd and get
3361 * throttled again. The difference from wake ups in balance_pgdat() is
3362 * that here we are under prepare_to_wait().
5515061d 3363 */
9e5e3661
VB
3364 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3365 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3366
c73322d0
JW
3367 /* Hopeless node, leave it to direct reclaim */
3368 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3369 return true;
3370
e716f2eb
MG
3371 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3372 clear_pgdat_congested(pgdat);
3373 return true;
1d82de61
MG
3374 }
3375
333b0a45 3376 return false;
f50de2d3
MG
3377}
3378
75485363 3379/*
1d82de61
MG
3380 * kswapd shrinks a node of pages that are at or below the highest usable
3381 * zone that is currently unbalanced.
b8e83b94
MG
3382 *
3383 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3384 * reclaim or if the lack of progress was due to pages under writeback.
3385 * This is used to determine if the scanning priority needs to be raised.
75485363 3386 */
1d82de61 3387static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3388 struct scan_control *sc)
75485363 3389{
1d82de61
MG
3390 struct zone *zone;
3391 int z;
75485363 3392
1d82de61
MG
3393 /* Reclaim a number of pages proportional to the number of zones */
3394 sc->nr_to_reclaim = 0;
970a39a3 3395 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3396 zone = pgdat->node_zones + z;
6aa303de 3397 if (!managed_zone(zone))
1d82de61 3398 continue;
7c954f6d 3399
1d82de61
MG
3400 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3401 }
7c954f6d
MG
3402
3403 /*
1d82de61
MG
3404 * Historically care was taken to put equal pressure on all zones but
3405 * now pressure is applied based on node LRU order.
7c954f6d 3406 */
970a39a3 3407 shrink_node(pgdat, sc);
283aba9f 3408
7c954f6d 3409 /*
1d82de61
MG
3410 * Fragmentation may mean that the system cannot be rebalanced for
3411 * high-order allocations. If twice the allocation size has been
3412 * reclaimed then recheck watermarks only at order-0 to prevent
3413 * excessive reclaim. Assume that a process requested a high-order
3414 * can direct reclaim/compact.
7c954f6d 3415 */
9861a62c 3416 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3417 sc->order = 0;
7c954f6d 3418
b8e83b94 3419 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3420}
3421
1da177e4 3422/*
1d82de61
MG
3423 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3424 * that are eligible for use by the caller until at least one zone is
3425 * balanced.
1da177e4 3426 *
1d82de61 3427 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3428 *
3429 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3430 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 3431 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
3432 * or lower is eligible for reclaim until at least one usable zone is
3433 * balanced.
1da177e4 3434 */
accf6242 3435static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3436{
1da177e4 3437 int i;
0608f43d
AM
3438 unsigned long nr_soft_reclaimed;
3439 unsigned long nr_soft_scanned;
eb414681 3440 unsigned long pflags;
1c30844d
MG
3441 unsigned long nr_boost_reclaim;
3442 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3443 bool boosted;
1d82de61 3444 struct zone *zone;
179e9639
AM
3445 struct scan_control sc = {
3446 .gfp_mask = GFP_KERNEL,
ee814fe2 3447 .order = order,
a6dc60f8 3448 .may_unmap = 1,
179e9639 3449 };
93781325 3450
eb414681 3451 psi_memstall_enter(&pflags);
93781325
OS
3452 __fs_reclaim_acquire();
3453
f8891e5e 3454 count_vm_event(PAGEOUTRUN);
1da177e4 3455
1c30844d
MG
3456 /*
3457 * Account for the reclaim boost. Note that the zone boost is left in
3458 * place so that parallel allocations that are near the watermark will
3459 * stall or direct reclaim until kswapd is finished.
3460 */
3461 nr_boost_reclaim = 0;
3462 for (i = 0; i <= classzone_idx; i++) {
3463 zone = pgdat->node_zones + i;
3464 if (!managed_zone(zone))
3465 continue;
3466
3467 nr_boost_reclaim += zone->watermark_boost;
3468 zone_boosts[i] = zone->watermark_boost;
3469 }
3470 boosted = nr_boost_reclaim;
3471
3472restart:
3473 sc.priority = DEF_PRIORITY;
9e3b2f8c 3474 do {
c73322d0 3475 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 3476 bool raise_priority = true;
1c30844d 3477 bool balanced;
93781325 3478 bool ret;
b8e83b94 3479
84c7a777 3480 sc.reclaim_idx = classzone_idx;
1da177e4 3481
86c79f6b 3482 /*
84c7a777
MG
3483 * If the number of buffer_heads exceeds the maximum allowed
3484 * then consider reclaiming from all zones. This has a dual
3485 * purpose -- on 64-bit systems it is expected that
3486 * buffer_heads are stripped during active rotation. On 32-bit
3487 * systems, highmem pages can pin lowmem memory and shrinking
3488 * buffers can relieve lowmem pressure. Reclaim may still not
3489 * go ahead if all eligible zones for the original allocation
3490 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3491 */
3492 if (buffer_heads_over_limit) {
3493 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3494 zone = pgdat->node_zones + i;
6aa303de 3495 if (!managed_zone(zone))
86c79f6b 3496 continue;
cc715d99 3497
970a39a3 3498 sc.reclaim_idx = i;
e1dbeda6 3499 break;
1da177e4 3500 }
1da177e4 3501 }
dafcb73e 3502
86c79f6b 3503 /*
1c30844d
MG
3504 * If the pgdat is imbalanced then ignore boosting and preserve
3505 * the watermarks for a later time and restart. Note that the
3506 * zone watermarks will be still reset at the end of balancing
3507 * on the grounds that the normal reclaim should be enough to
3508 * re-evaluate if boosting is required when kswapd next wakes.
3509 */
3510 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3511 if (!balanced && nr_boost_reclaim) {
3512 nr_boost_reclaim = 0;
3513 goto restart;
3514 }
3515
3516 /*
3517 * If boosting is not active then only reclaim if there are no
3518 * eligible zones. Note that sc.reclaim_idx is not used as
3519 * buffer_heads_over_limit may have adjusted it.
86c79f6b 3520 */
1c30844d 3521 if (!nr_boost_reclaim && balanced)
e716f2eb 3522 goto out;
e1dbeda6 3523
1c30844d
MG
3524 /* Limit the priority of boosting to avoid reclaim writeback */
3525 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3526 raise_priority = false;
3527
3528 /*
3529 * Do not writeback or swap pages for boosted reclaim. The
3530 * intent is to relieve pressure not issue sub-optimal IO
3531 * from reclaim context. If no pages are reclaimed, the
3532 * reclaim will be aborted.
3533 */
3534 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3535 sc.may_swap = !nr_boost_reclaim;
3536 sc.may_shrinkslab = !nr_boost_reclaim;
3537
1d82de61
MG
3538 /*
3539 * Do some background aging of the anon list, to give
3540 * pages a chance to be referenced before reclaiming. All
3541 * pages are rotated regardless of classzone as this is
3542 * about consistent aging.
3543 */
ef8f2327 3544 age_active_anon(pgdat, &sc);
1d82de61 3545
b7ea3c41
MG
3546 /*
3547 * If we're getting trouble reclaiming, start doing writepage
3548 * even in laptop mode.
3549 */
047d72c3 3550 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3551 sc.may_writepage = 1;
3552
1d82de61
MG
3553 /* Call soft limit reclaim before calling shrink_node. */
3554 sc.nr_scanned = 0;
3555 nr_soft_scanned = 0;
ef8f2327 3556 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3557 sc.gfp_mask, &nr_soft_scanned);
3558 sc.nr_reclaimed += nr_soft_reclaimed;
3559
1da177e4 3560 /*
1d82de61
MG
3561 * There should be no need to raise the scanning priority if
3562 * enough pages are already being scanned that that high
3563 * watermark would be met at 100% efficiency.
1da177e4 3564 */
970a39a3 3565 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3566 raise_priority = false;
5515061d
MG
3567
3568 /*
3569 * If the low watermark is met there is no need for processes
3570 * to be throttled on pfmemalloc_wait as they should not be
3571 * able to safely make forward progress. Wake them
3572 */
3573 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3574 allow_direct_reclaim(pgdat))
cfc51155 3575 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3576
b8e83b94 3577 /* Check if kswapd should be suspending */
93781325
OS
3578 __fs_reclaim_release();
3579 ret = try_to_freeze();
3580 __fs_reclaim_acquire();
3581 if (ret || kthread_should_stop())
b8e83b94 3582 break;
8357376d 3583
73ce02e9 3584 /*
b8e83b94
MG
3585 * Raise priority if scanning rate is too low or there was no
3586 * progress in reclaiming pages
73ce02e9 3587 */
c73322d0 3588 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
3589 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3590
3591 /*
3592 * If reclaim made no progress for a boost, stop reclaim as
3593 * IO cannot be queued and it could be an infinite loop in
3594 * extreme circumstances.
3595 */
3596 if (nr_boost_reclaim && !nr_reclaimed)
3597 break;
3598
c73322d0 3599 if (raise_priority || !nr_reclaimed)
b8e83b94 3600 sc.priority--;
1d82de61 3601 } while (sc.priority >= 1);
1da177e4 3602
c73322d0
JW
3603 if (!sc.nr_reclaimed)
3604 pgdat->kswapd_failures++;
3605
b8e83b94 3606out:
1c30844d
MG
3607 /* If reclaim was boosted, account for the reclaim done in this pass */
3608 if (boosted) {
3609 unsigned long flags;
3610
3611 for (i = 0; i <= classzone_idx; i++) {
3612 if (!zone_boosts[i])
3613 continue;
3614
3615 /* Increments are under the zone lock */
3616 zone = pgdat->node_zones + i;
3617 spin_lock_irqsave(&zone->lock, flags);
3618 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3619 spin_unlock_irqrestore(&zone->lock, flags);
3620 }
3621
3622 /*
3623 * As there is now likely space, wakeup kcompact to defragment
3624 * pageblocks.
3625 */
3626 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3627 }
3628
2a2e4885 3629 snapshot_refaults(NULL, pgdat);
93781325 3630 __fs_reclaim_release();
eb414681 3631 psi_memstall_leave(&pflags);
0abdee2b 3632 /*
1d82de61
MG
3633 * Return the order kswapd stopped reclaiming at as
3634 * prepare_kswapd_sleep() takes it into account. If another caller
3635 * entered the allocator slow path while kswapd was awake, order will
3636 * remain at the higher level.
0abdee2b 3637 */
1d82de61 3638 return sc.order;
1da177e4
LT
3639}
3640
e716f2eb 3641/*
dffcac2c
SB
3642 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3643 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3644 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3645 * after previous reclaim attempt (node is still unbalanced). In that case
3646 * return the zone index of the previous kswapd reclaim cycle.
e716f2eb
MG
3647 */
3648static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
dffcac2c 3649 enum zone_type prev_classzone_idx)
e716f2eb
MG
3650{
3651 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
dffcac2c
SB
3652 return prev_classzone_idx;
3653 return pgdat->kswapd_classzone_idx;
e716f2eb
MG
3654}
3655
38087d9b
MG
3656static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3657 unsigned int classzone_idx)
f0bc0a60
KM
3658{
3659 long remaining = 0;
3660 DEFINE_WAIT(wait);
3661
3662 if (freezing(current) || kthread_should_stop())
3663 return;
3664
3665 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3666
333b0a45
SG
3667 /*
3668 * Try to sleep for a short interval. Note that kcompactd will only be
3669 * woken if it is possible to sleep for a short interval. This is
3670 * deliberate on the assumption that if reclaim cannot keep an
3671 * eligible zone balanced that it's also unlikely that compaction will
3672 * succeed.
3673 */
d9f21d42 3674 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3675 /*
3676 * Compaction records what page blocks it recently failed to
3677 * isolate pages from and skips them in the future scanning.
3678 * When kswapd is going to sleep, it is reasonable to assume
3679 * that pages and compaction may succeed so reset the cache.
3680 */
3681 reset_isolation_suitable(pgdat);
3682
3683 /*
3684 * We have freed the memory, now we should compact it to make
3685 * allocation of the requested order possible.
3686 */
38087d9b 3687 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3688
f0bc0a60 3689 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3690
3691 /*
3692 * If woken prematurely then reset kswapd_classzone_idx and
3693 * order. The values will either be from a wakeup request or
3694 * the previous request that slept prematurely.
3695 */
3696 if (remaining) {
e716f2eb 3697 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b
MG
3698 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3699 }
3700
f0bc0a60
KM
3701 finish_wait(&pgdat->kswapd_wait, &wait);
3702 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3703 }
3704
3705 /*
3706 * After a short sleep, check if it was a premature sleep. If not, then
3707 * go fully to sleep until explicitly woken up.
3708 */
d9f21d42
MG
3709 if (!remaining &&
3710 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3711 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3712
3713 /*
3714 * vmstat counters are not perfectly accurate and the estimated
3715 * value for counters such as NR_FREE_PAGES can deviate from the
3716 * true value by nr_online_cpus * threshold. To avoid the zone
3717 * watermarks being breached while under pressure, we reduce the
3718 * per-cpu vmstat threshold while kswapd is awake and restore
3719 * them before going back to sleep.
3720 */
3721 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3722
3723 if (!kthread_should_stop())
3724 schedule();
3725
f0bc0a60
KM
3726 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3727 } else {
3728 if (remaining)
3729 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3730 else
3731 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3732 }
3733 finish_wait(&pgdat->kswapd_wait, &wait);
3734}
3735
1da177e4
LT
3736/*
3737 * The background pageout daemon, started as a kernel thread
4f98a2fe 3738 * from the init process.
1da177e4
LT
3739 *
3740 * This basically trickles out pages so that we have _some_
3741 * free memory available even if there is no other activity
3742 * that frees anything up. This is needed for things like routing
3743 * etc, where we otherwise might have all activity going on in
3744 * asynchronous contexts that cannot page things out.
3745 *
3746 * If there are applications that are active memory-allocators
3747 * (most normal use), this basically shouldn't matter.
3748 */
3749static int kswapd(void *p)
3750{
e716f2eb
MG
3751 unsigned int alloc_order, reclaim_order;
3752 unsigned int classzone_idx = MAX_NR_ZONES - 1;
1da177e4
LT
3753 pg_data_t *pgdat = (pg_data_t*)p;
3754 struct task_struct *tsk = current;
f0bc0a60 3755
1da177e4
LT
3756 struct reclaim_state reclaim_state = {
3757 .reclaimed_slab = 0,
3758 };
a70f7302 3759 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3760
174596a0 3761 if (!cpumask_empty(cpumask))
c5f59f08 3762 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3763 current->reclaim_state = &reclaim_state;
3764
3765 /*
3766 * Tell the memory management that we're a "memory allocator",
3767 * and that if we need more memory we should get access to it
3768 * regardless (see "__alloc_pages()"). "kswapd" should
3769 * never get caught in the normal page freeing logic.
3770 *
3771 * (Kswapd normally doesn't need memory anyway, but sometimes
3772 * you need a small amount of memory in order to be able to
3773 * page out something else, and this flag essentially protects
3774 * us from recursively trying to free more memory as we're
3775 * trying to free the first piece of memory in the first place).
3776 */
930d9152 3777 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3778 set_freezable();
1da177e4 3779
e716f2eb
MG
3780 pgdat->kswapd_order = 0;
3781 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3782 for ( ; ; ) {
6f6313d4 3783 bool ret;
3e1d1d28 3784
e716f2eb
MG
3785 alloc_order = reclaim_order = pgdat->kswapd_order;
3786 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3787
38087d9b
MG
3788kswapd_try_sleep:
3789 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3790 classzone_idx);
215ddd66 3791
38087d9b
MG
3792 /* Read the new order and classzone_idx */
3793 alloc_order = reclaim_order = pgdat->kswapd_order;
dffcac2c 3794 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b 3795 pgdat->kswapd_order = 0;
e716f2eb 3796 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3797
8fe23e05
DR
3798 ret = try_to_freeze();
3799 if (kthread_should_stop())
3800 break;
3801
3802 /*
3803 * We can speed up thawing tasks if we don't call balance_pgdat
3804 * after returning from the refrigerator
3805 */
38087d9b
MG
3806 if (ret)
3807 continue;
3808
3809 /*
3810 * Reclaim begins at the requested order but if a high-order
3811 * reclaim fails then kswapd falls back to reclaiming for
3812 * order-0. If that happens, kswapd will consider sleeping
3813 * for the order it finished reclaiming at (reclaim_order)
3814 * but kcompactd is woken to compact for the original
3815 * request (alloc_order).
3816 */
e5146b12
MG
3817 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3818 alloc_order);
38087d9b
MG
3819 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3820 if (reclaim_order < alloc_order)
3821 goto kswapd_try_sleep;
1da177e4 3822 }
b0a8cc58 3823
71abdc15 3824 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3825 current->reclaim_state = NULL;
71abdc15 3826
1da177e4
LT
3827 return 0;
3828}
3829
3830/*
5ecd9d40
DR
3831 * A zone is low on free memory or too fragmented for high-order memory. If
3832 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3833 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3834 * has failed or is not needed, still wake up kcompactd if only compaction is
3835 * needed.
1da177e4 3836 */
5ecd9d40
DR
3837void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3838 enum zone_type classzone_idx)
1da177e4
LT
3839{
3840 pg_data_t *pgdat;
3841
6aa303de 3842 if (!managed_zone(zone))
1da177e4
LT
3843 return;
3844
5ecd9d40 3845 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 3846 return;
88f5acf8 3847 pgdat = zone->zone_pgdat;
dffcac2c
SB
3848
3849 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3850 pgdat->kswapd_classzone_idx = classzone_idx;
3851 else
3852 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3853 classzone_idx);
38087d9b 3854 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3855 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3856 return;
e1a55637 3857
5ecd9d40
DR
3858 /* Hopeless node, leave it to direct reclaim if possible */
3859 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
1c30844d
MG
3860 (pgdat_balanced(pgdat, order, classzone_idx) &&
3861 !pgdat_watermark_boosted(pgdat, classzone_idx))) {
5ecd9d40
DR
3862 /*
3863 * There may be plenty of free memory available, but it's too
3864 * fragmented for high-order allocations. Wake up kcompactd
3865 * and rely on compaction_suitable() to determine if it's
3866 * needed. If it fails, it will defer subsequent attempts to
3867 * ratelimit its work.
3868 */
3869 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3870 wakeup_kcompactd(pgdat, order, classzone_idx);
e716f2eb 3871 return;
5ecd9d40 3872 }
88f5acf8 3873
5ecd9d40
DR
3874 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3875 gfp_flags);
8d0986e2 3876 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3877}
3878
c6f37f12 3879#ifdef CONFIG_HIBERNATION
1da177e4 3880/*
7b51755c 3881 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3882 * freed pages.
3883 *
3884 * Rather than trying to age LRUs the aim is to preserve the overall
3885 * LRU order by reclaiming preferentially
3886 * inactive > active > active referenced > active mapped
1da177e4 3887 */
7b51755c 3888unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3889{
d6277db4 3890 struct reclaim_state reclaim_state;
d6277db4 3891 struct scan_control sc = {
ee814fe2 3892 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3893 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3894 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3895 .priority = DEF_PRIORITY,
d6277db4 3896 .may_writepage = 1,
ee814fe2
JW
3897 .may_unmap = 1,
3898 .may_swap = 1,
7b51755c 3899 .hibernation_mode = 1,
1da177e4 3900 };
a09ed5e0 3901 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3902 struct task_struct *p = current;
3903 unsigned long nr_reclaimed;
499118e9 3904 unsigned int noreclaim_flag;
1da177e4 3905
d92a8cfc 3906 fs_reclaim_acquire(sc.gfp_mask);
93781325 3907 noreclaim_flag = memalloc_noreclaim_save();
7b51755c
KM
3908 reclaim_state.reclaimed_slab = 0;
3909 p->reclaim_state = &reclaim_state;
d6277db4 3910
3115cd91 3911 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3912
7b51755c 3913 p->reclaim_state = NULL;
499118e9 3914 memalloc_noreclaim_restore(noreclaim_flag);
93781325 3915 fs_reclaim_release(sc.gfp_mask);
d6277db4 3916
7b51755c 3917 return nr_reclaimed;
1da177e4 3918}
c6f37f12 3919#endif /* CONFIG_HIBERNATION */
1da177e4 3920
1da177e4
LT
3921/* It's optimal to keep kswapds on the same CPUs as their memory, but
3922 not required for correctness. So if the last cpu in a node goes
3923 away, we get changed to run anywhere: as the first one comes back,
3924 restore their cpu bindings. */
517bbed9 3925static int kswapd_cpu_online(unsigned int cpu)
1da177e4 3926{
58c0a4a7 3927 int nid;
1da177e4 3928
517bbed9
SAS
3929 for_each_node_state(nid, N_MEMORY) {
3930 pg_data_t *pgdat = NODE_DATA(nid);
3931 const struct cpumask *mask;
a70f7302 3932
517bbed9 3933 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3934
517bbed9
SAS
3935 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3936 /* One of our CPUs online: restore mask */
3937 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4 3938 }
517bbed9 3939 return 0;
1da177e4 3940}
1da177e4 3941
3218ae14
YG
3942/*
3943 * This kswapd start function will be called by init and node-hot-add.
3944 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3945 */
3946int kswapd_run(int nid)
3947{
3948 pg_data_t *pgdat = NODE_DATA(nid);
3949 int ret = 0;
3950
3951 if (pgdat->kswapd)
3952 return 0;
3953
3954 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3955 if (IS_ERR(pgdat->kswapd)) {
3956 /* failure at boot is fatal */
c6202adf 3957 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
3958 pr_err("Failed to start kswapd on node %d\n", nid);
3959 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3960 pgdat->kswapd = NULL;
3218ae14
YG
3961 }
3962 return ret;
3963}
3964
8fe23e05 3965/*
d8adde17 3966 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3967 * hold mem_hotplug_begin/end().
8fe23e05
DR
3968 */
3969void kswapd_stop(int nid)
3970{
3971 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3972
d8adde17 3973 if (kswapd) {
8fe23e05 3974 kthread_stop(kswapd);
d8adde17
JL
3975 NODE_DATA(nid)->kswapd = NULL;
3976 }
8fe23e05
DR
3977}
3978
1da177e4
LT
3979static int __init kswapd_init(void)
3980{
517bbed9 3981 int nid, ret;
69e05944 3982
1da177e4 3983 swap_setup();
48fb2e24 3984 for_each_node_state(nid, N_MEMORY)
3218ae14 3985 kswapd_run(nid);
517bbed9
SAS
3986 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3987 "mm/vmscan:online", kswapd_cpu_online,
3988 NULL);
3989 WARN_ON(ret < 0);
1da177e4
LT
3990 return 0;
3991}
3992
3993module_init(kswapd_init)
9eeff239
CL
3994
3995#ifdef CONFIG_NUMA
3996/*
a5f5f91d 3997 * Node reclaim mode
9eeff239 3998 *
a5f5f91d 3999 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4000 * the watermarks.
9eeff239 4001 */
a5f5f91d 4002int node_reclaim_mode __read_mostly;
9eeff239 4003
1b2ffb78 4004#define RECLAIM_OFF 0
7d03431c 4005#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 4006#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 4007#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 4008
a92f7126 4009/*
a5f5f91d 4010 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4011 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4012 * a zone.
4013 */
a5f5f91d 4014#define NODE_RECLAIM_PRIORITY 4
a92f7126 4015
9614634f 4016/*
a5f5f91d 4017 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4018 * occur.
4019 */
4020int sysctl_min_unmapped_ratio = 1;
4021
0ff38490
CL
4022/*
4023 * If the number of slab pages in a zone grows beyond this percentage then
4024 * slab reclaim needs to occur.
4025 */
4026int sysctl_min_slab_ratio = 5;
4027
11fb9989 4028static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4029{
11fb9989
MG
4030 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4031 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4032 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4033
4034 /*
4035 * It's possible for there to be more file mapped pages than
4036 * accounted for by the pages on the file LRU lists because
4037 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4038 */
4039 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4040}
4041
4042/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4043static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4044{
d031a157
AM
4045 unsigned long nr_pagecache_reclaimable;
4046 unsigned long delta = 0;
90afa5de
MG
4047
4048 /*
95bbc0c7 4049 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4050 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4051 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4052 * a better estimate
4053 */
a5f5f91d
MG
4054 if (node_reclaim_mode & RECLAIM_UNMAP)
4055 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4056 else
a5f5f91d 4057 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4058
4059 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4060 if (!(node_reclaim_mode & RECLAIM_WRITE))
4061 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4062
4063 /* Watch for any possible underflows due to delta */
4064 if (unlikely(delta > nr_pagecache_reclaimable))
4065 delta = nr_pagecache_reclaimable;
4066
4067 return nr_pagecache_reclaimable - delta;
4068}
4069
9eeff239 4070/*
a5f5f91d 4071 * Try to free up some pages from this node through reclaim.
9eeff239 4072 */
a5f5f91d 4073static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4074{
7fb2d46d 4075 /* Minimum pages needed in order to stay on node */
69e05944 4076 const unsigned long nr_pages = 1 << order;
9eeff239
CL
4077 struct task_struct *p = current;
4078 struct reclaim_state reclaim_state;
499118e9 4079 unsigned int noreclaim_flag;
179e9639 4080 struct scan_control sc = {
62b726c1 4081 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4082 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4083 .order = order,
a5f5f91d
MG
4084 .priority = NODE_RECLAIM_PRIORITY,
4085 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4086 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4087 .may_swap = 1,
f2f43e56 4088 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4089 };
9eeff239 4090
132bb8cf
YS
4091 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4092 sc.gfp_mask);
4093
9eeff239 4094 cond_resched();
93781325 4095 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4096 /*
95bbc0c7 4097 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4098 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 4099 * and RECLAIM_UNMAP.
d4f7796e 4100 */
499118e9
VB
4101 noreclaim_flag = memalloc_noreclaim_save();
4102 p->flags |= PF_SWAPWRITE;
9eeff239
CL
4103 reclaim_state.reclaimed_slab = 0;
4104 p->reclaim_state = &reclaim_state;
c84db23c 4105
a5f5f91d 4106 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 4107 /*
894befec 4108 * Free memory by calling shrink node with increasing
0ff38490
CL
4109 * priorities until we have enough memory freed.
4110 */
0ff38490 4111 do {
970a39a3 4112 shrink_node(pgdat, &sc);
9e3b2f8c 4113 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4114 }
c84db23c 4115
9eeff239 4116 p->reclaim_state = NULL;
499118e9
VB
4117 current->flags &= ~PF_SWAPWRITE;
4118 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4119 fs_reclaim_release(sc.gfp_mask);
132bb8cf
YS
4120
4121 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4122
a79311c1 4123 return sc.nr_reclaimed >= nr_pages;
9eeff239 4124}
179e9639 4125
a5f5f91d 4126int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4127{
d773ed6b 4128 int ret;
179e9639
AM
4129
4130 /*
a5f5f91d 4131 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4132 * slab pages if we are over the defined limits.
34aa1330 4133 *
9614634f
CL
4134 * A small portion of unmapped file backed pages is needed for
4135 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4136 * thrown out if the node is overallocated. So we do not reclaim
4137 * if less than a specified percentage of the node is used by
9614634f 4138 * unmapped file backed pages.
179e9639 4139 */
a5f5f91d 4140 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
385386cf 4141 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
a5f5f91d 4142 return NODE_RECLAIM_FULL;
179e9639
AM
4143
4144 /*
d773ed6b 4145 * Do not scan if the allocation should not be delayed.
179e9639 4146 */
d0164adc 4147 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4148 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4149
4150 /*
a5f5f91d 4151 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4152 * have associated processors. This will favor the local processor
4153 * over remote processors and spread off node memory allocations
4154 * as wide as possible.
4155 */
a5f5f91d
MG
4156 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4157 return NODE_RECLAIM_NOSCAN;
d773ed6b 4158
a5f5f91d
MG
4159 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4160 return NODE_RECLAIM_NOSCAN;
fa5e084e 4161
a5f5f91d
MG
4162 ret = __node_reclaim(pgdat, gfp_mask, order);
4163 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4164
24cf7251
MG
4165 if (!ret)
4166 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4167
d773ed6b 4168 return ret;
179e9639 4169}
9eeff239 4170#endif
894bc310 4171
894bc310
LS
4172/*
4173 * page_evictable - test whether a page is evictable
4174 * @page: the page to test
894bc310
LS
4175 *
4176 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 4177 * lists vs unevictable list.
894bc310
LS
4178 *
4179 * Reasons page might not be evictable:
ba9ddf49 4180 * (1) page's mapping marked unevictable
b291f000 4181 * (2) page is part of an mlocked VMA
ba9ddf49 4182 *
894bc310 4183 */
39b5f29a 4184int page_evictable(struct page *page)
894bc310 4185{
e92bb4dd
HY
4186 int ret;
4187
4188 /* Prevent address_space of inode and swap cache from being freed */
4189 rcu_read_lock();
4190 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4191 rcu_read_unlock();
4192 return ret;
894bc310 4193}
89e004ea
LS
4194
4195/**
64e3d12f
KHY
4196 * check_move_unevictable_pages - check pages for evictability and move to
4197 * appropriate zone lru list
4198 * @pvec: pagevec with lru pages to check
89e004ea 4199 *
64e3d12f
KHY
4200 * Checks pages for evictability, if an evictable page is in the unevictable
4201 * lru list, moves it to the appropriate evictable lru list. This function
4202 * should be only used for lru pages.
89e004ea 4203 */
64e3d12f 4204void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4205{
925b7673 4206 struct lruvec *lruvec;
785b99fe 4207 struct pglist_data *pgdat = NULL;
24513264
HD
4208 int pgscanned = 0;
4209 int pgrescued = 0;
4210 int i;
89e004ea 4211
64e3d12f
KHY
4212 for (i = 0; i < pvec->nr; i++) {
4213 struct page *page = pvec->pages[i];
785b99fe 4214 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 4215
24513264 4216 pgscanned++;
785b99fe
MG
4217 if (pagepgdat != pgdat) {
4218 if (pgdat)
4219 spin_unlock_irq(&pgdat->lru_lock);
4220 pgdat = pagepgdat;
4221 spin_lock_irq(&pgdat->lru_lock);
24513264 4222 }
785b99fe 4223 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 4224
24513264
HD
4225 if (!PageLRU(page) || !PageUnevictable(page))
4226 continue;
89e004ea 4227
39b5f29a 4228 if (page_evictable(page)) {
24513264
HD
4229 enum lru_list lru = page_lru_base_type(page);
4230
309381fe 4231 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 4232 ClearPageUnevictable(page);
fa9add64
HD
4233 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4234 add_page_to_lru_list(page, lruvec, lru);
24513264 4235 pgrescued++;
89e004ea 4236 }
24513264 4237 }
89e004ea 4238
785b99fe 4239 if (pgdat) {
24513264
HD
4240 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4241 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 4242 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 4243 }
89e004ea 4244}
64e3d12f 4245EXPORT_SYMBOL_GPL(check_move_unevictable_pages);