]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/vmscan.c
mm: vmscan: naming fixes: global_reclaim() and sane_reclaim()
[mirror_ubuntu-hirsute-kernel.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
b1de0d13
MH
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
1da177e4 17#include <linux/mm.h>
5b3cc15a 18#include <linux/sched/mm.h>
1da177e4 19#include <linux/module.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/kernel_stat.h>
22#include <linux/swap.h>
23#include <linux/pagemap.h>
24#include <linux/init.h>
25#include <linux/highmem.h>
70ddf637 26#include <linux/vmpressure.h>
e129b5c2 27#include <linux/vmstat.h>
1da177e4
LT
28#include <linux/file.h>
29#include <linux/writeback.h>
30#include <linux/blkdev.h>
31#include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33#include <linux/mm_inline.h>
1da177e4
LT
34#include <linux/backing-dev.h>
35#include <linux/rmap.h>
36#include <linux/topology.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
3e7d3449 39#include <linux/compaction.h>
1da177e4
LT
40#include <linux/notifier.h>
41#include <linux/rwsem.h>
248a0301 42#include <linux/delay.h>
3218ae14 43#include <linux/kthread.h>
7dfb7103 44#include <linux/freezer.h>
66e1707b 45#include <linux/memcontrol.h>
873b4771 46#include <linux/delayacct.h>
af936a16 47#include <linux/sysctl.h>
929bea7c 48#include <linux/oom.h>
64e3d12f 49#include <linux/pagevec.h>
268bb0ce 50#include <linux/prefetch.h>
b1de0d13 51#include <linux/printk.h>
f9fe48be 52#include <linux/dax.h>
eb414681 53#include <linux/psi.h>
1da177e4
LT
54
55#include <asm/tlbflush.h>
56#include <asm/div64.h>
57
58#include <linux/swapops.h>
117aad1e 59#include <linux/balloon_compaction.h>
1da177e4 60
0f8053a5
NP
61#include "internal.h"
62
33906bc5
MG
63#define CREATE_TRACE_POINTS
64#include <trace/events/vmscan.h>
65
1da177e4 66struct scan_control {
22fba335
KM
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
69
ee814fe2
JW
70 /*
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 * are scanned.
73 */
74 nodemask_t *nodemask;
9e3b2f8c 75
f16015fb
JW
76 /*
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
79 */
80 struct mem_cgroup *target_mem_cgroup;
66e1707b 81
1276ad68 82 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
83 unsigned int may_writepage:1;
84
85 /* Can mapped pages be reclaimed? */
86 unsigned int may_unmap:1;
87
88 /* Can pages be swapped as part of reclaim? */
89 unsigned int may_swap:1;
90
d6622f63
YX
91 /*
92 * Cgroups are not reclaimed below their configured memory.low,
93 * unless we threaten to OOM. If any cgroups are skipped due to
94 * memory.low and nothing was reclaimed, go back for memory.low.
95 */
96 unsigned int memcg_low_reclaim:1;
97 unsigned int memcg_low_skipped:1;
241994ed 98
ee814fe2
JW
99 unsigned int hibernation_mode:1;
100
101 /* One of the zones is ready for compaction */
102 unsigned int compaction_ready:1;
103
bb451fdf
GT
104 /* Allocation order */
105 s8 order;
106
107 /* Scan (total_size >> priority) pages at once */
108 s8 priority;
109
110 /* The highest zone to isolate pages for reclaim from */
111 s8 reclaim_idx;
112
113 /* This context's GFP mask */
114 gfp_t gfp_mask;
115
ee814fe2
JW
116 /* Incremented by the number of inactive pages that were scanned */
117 unsigned long nr_scanned;
118
119 /* Number of pages freed so far during a call to shrink_zones() */
120 unsigned long nr_reclaimed;
d108c772
AR
121
122 struct {
123 unsigned int dirty;
124 unsigned int unqueued_dirty;
125 unsigned int congested;
126 unsigned int writeback;
127 unsigned int immediate;
128 unsigned int file_taken;
129 unsigned int taken;
130 } nr;
e5ca8071
YS
131
132 /* for recording the reclaimed slab by now */
133 struct reclaim_state reclaim_state;
1da177e4
LT
134};
135
1da177e4
LT
136#ifdef ARCH_HAS_PREFETCH
137#define prefetch_prev_lru_page(_page, _base, _field) \
138 do { \
139 if ((_page)->lru.prev != _base) { \
140 struct page *prev; \
141 \
142 prev = lru_to_page(&(_page->lru)); \
143 prefetch(&prev->_field); \
144 } \
145 } while (0)
146#else
147#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
148#endif
149
150#ifdef ARCH_HAS_PREFETCHW
151#define prefetchw_prev_lru_page(_page, _base, _field) \
152 do { \
153 if ((_page)->lru.prev != _base) { \
154 struct page *prev; \
155 \
156 prev = lru_to_page(&(_page->lru)); \
157 prefetchw(&prev->_field); \
158 } \
159 } while (0)
160#else
161#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
162#endif
163
164/*
165 * From 0 .. 100. Higher means more swappy.
166 */
167int vm_swappiness = 60;
d0480be4
WSH
168/*
169 * The total number of pages which are beyond the high watermark within all
170 * zones.
171 */
172unsigned long vm_total_pages;
1da177e4 173
0a432dcb
YS
174static void set_task_reclaim_state(struct task_struct *task,
175 struct reclaim_state *rs)
176{
177 /* Check for an overwrite */
178 WARN_ON_ONCE(rs && task->reclaim_state);
179
180 /* Check for the nulling of an already-nulled member */
181 WARN_ON_ONCE(!rs && !task->reclaim_state);
182
183 task->reclaim_state = rs;
184}
185
1da177e4
LT
186static LIST_HEAD(shrinker_list);
187static DECLARE_RWSEM(shrinker_rwsem);
188
0a432dcb 189#ifdef CONFIG_MEMCG
7e010df5
KT
190/*
191 * We allow subsystems to populate their shrinker-related
192 * LRU lists before register_shrinker_prepared() is called
193 * for the shrinker, since we don't want to impose
194 * restrictions on their internal registration order.
195 * In this case shrink_slab_memcg() may find corresponding
196 * bit is set in the shrinkers map.
197 *
198 * This value is used by the function to detect registering
199 * shrinkers and to skip do_shrink_slab() calls for them.
200 */
201#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
202
b4c2b231
KT
203static DEFINE_IDR(shrinker_idr);
204static int shrinker_nr_max;
205
206static int prealloc_memcg_shrinker(struct shrinker *shrinker)
207{
208 int id, ret = -ENOMEM;
209
210 down_write(&shrinker_rwsem);
211 /* This may call shrinker, so it must use down_read_trylock() */
7e010df5 212 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
b4c2b231
KT
213 if (id < 0)
214 goto unlock;
215
0a4465d3
KT
216 if (id >= shrinker_nr_max) {
217 if (memcg_expand_shrinker_maps(id)) {
218 idr_remove(&shrinker_idr, id);
219 goto unlock;
220 }
221
b4c2b231 222 shrinker_nr_max = id + 1;
0a4465d3 223 }
b4c2b231
KT
224 shrinker->id = id;
225 ret = 0;
226unlock:
227 up_write(&shrinker_rwsem);
228 return ret;
229}
230
231static void unregister_memcg_shrinker(struct shrinker *shrinker)
232{
233 int id = shrinker->id;
234
235 BUG_ON(id < 0);
236
237 down_write(&shrinker_rwsem);
238 idr_remove(&shrinker_idr, id);
239 up_write(&shrinker_rwsem);
240}
b4c2b231 241
b5ead35e 242static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 243{
b5ead35e 244 return sc->target_mem_cgroup;
89b5fae5 245}
97c9341f
TH
246
247/**
b5ead35e 248 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
97c9341f
TH
249 * @sc: scan_control in question
250 *
251 * The normal page dirty throttling mechanism in balance_dirty_pages() is
252 * completely broken with the legacy memcg and direct stalling in
253 * shrink_page_list() is used for throttling instead, which lacks all the
254 * niceties such as fairness, adaptive pausing, bandwidth proportional
255 * allocation and configurability.
256 *
257 * This function tests whether the vmscan currently in progress can assume
258 * that the normal dirty throttling mechanism is operational.
259 */
b5ead35e 260static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f 261{
b5ead35e 262 if (!cgroup_reclaim(sc))
97c9341f
TH
263 return true;
264#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 265 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
266 return true;
267#endif
268 return false;
269}
e3c1ac58
AR
270
271static void set_memcg_congestion(pg_data_t *pgdat,
272 struct mem_cgroup *memcg,
273 bool congested)
274{
275 struct mem_cgroup_per_node *mn;
276
277 if (!memcg)
278 return;
279
280 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
281 WRITE_ONCE(mn->congested, congested);
282}
283
284static bool memcg_congested(pg_data_t *pgdat,
285 struct mem_cgroup *memcg)
286{
287 struct mem_cgroup_per_node *mn;
288
289 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
290 return READ_ONCE(mn->congested);
291
292}
91a45470 293#else
0a432dcb
YS
294static int prealloc_memcg_shrinker(struct shrinker *shrinker)
295{
296 return 0;
297}
298
299static void unregister_memcg_shrinker(struct shrinker *shrinker)
300{
301}
302
b5ead35e 303static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 304{
b5ead35e 305 return false;
89b5fae5 306}
97c9341f 307
b5ead35e 308static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f
TH
309{
310 return true;
311}
e3c1ac58
AR
312
313static inline void set_memcg_congestion(struct pglist_data *pgdat,
314 struct mem_cgroup *memcg, bool congested)
315{
316}
317
318static inline bool memcg_congested(struct pglist_data *pgdat,
319 struct mem_cgroup *memcg)
320{
321 return false;
322
323}
91a45470
KH
324#endif
325
5a1c84b4
MG
326/*
327 * This misses isolated pages which are not accounted for to save counters.
328 * As the data only determines if reclaim or compaction continues, it is
329 * not expected that isolated pages will be a dominating factor.
330 */
331unsigned long zone_reclaimable_pages(struct zone *zone)
332{
333 unsigned long nr;
334
335 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
336 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
337 if (get_nr_swap_pages() > 0)
338 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
339 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
340
341 return nr;
342}
343
fd538803
MH
344/**
345 * lruvec_lru_size - Returns the number of pages on the given LRU list.
346 * @lruvec: lru vector
347 * @lru: lru to use
348 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
349 */
350unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 351{
de3b0150 352 unsigned long size = 0;
fd538803
MH
353 int zid;
354
de3b0150 355 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
fd538803 356 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
c9f299d9 357
fd538803
MH
358 if (!managed_zone(zone))
359 continue;
360
361 if (!mem_cgroup_disabled())
de3b0150 362 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
fd538803 363 else
de3b0150 364 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
fd538803 365 }
de3b0150 366 return size;
b4536f0c
MH
367}
368
1da177e4 369/*
1d3d4437 370 * Add a shrinker callback to be called from the vm.
1da177e4 371 */
8e04944f 372int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 373{
b9726c26 374 unsigned int size = sizeof(*shrinker->nr_deferred);
1d3d4437 375
1d3d4437
GC
376 if (shrinker->flags & SHRINKER_NUMA_AWARE)
377 size *= nr_node_ids;
378
379 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
380 if (!shrinker->nr_deferred)
381 return -ENOMEM;
b4c2b231
KT
382
383 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
384 if (prealloc_memcg_shrinker(shrinker))
385 goto free_deferred;
386 }
387
8e04944f 388 return 0;
b4c2b231
KT
389
390free_deferred:
391 kfree(shrinker->nr_deferred);
392 shrinker->nr_deferred = NULL;
393 return -ENOMEM;
8e04944f
TH
394}
395
396void free_prealloced_shrinker(struct shrinker *shrinker)
397{
b4c2b231
KT
398 if (!shrinker->nr_deferred)
399 return;
400
401 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
402 unregister_memcg_shrinker(shrinker);
403
8e04944f
TH
404 kfree(shrinker->nr_deferred);
405 shrinker->nr_deferred = NULL;
406}
1d3d4437 407
8e04944f
TH
408void register_shrinker_prepared(struct shrinker *shrinker)
409{
8e1f936b
RR
410 down_write(&shrinker_rwsem);
411 list_add_tail(&shrinker->list, &shrinker_list);
7e010df5 412#ifdef CONFIG_MEMCG_KMEM
8df4a44c
KT
413 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
414 idr_replace(&shrinker_idr, shrinker, shrinker->id);
7e010df5 415#endif
8e1f936b 416 up_write(&shrinker_rwsem);
8e04944f
TH
417}
418
419int register_shrinker(struct shrinker *shrinker)
420{
421 int err = prealloc_shrinker(shrinker);
422
423 if (err)
424 return err;
425 register_shrinker_prepared(shrinker);
1d3d4437 426 return 0;
1da177e4 427}
8e1f936b 428EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
429
430/*
431 * Remove one
432 */
8e1f936b 433void unregister_shrinker(struct shrinker *shrinker)
1da177e4 434{
bb422a73
TH
435 if (!shrinker->nr_deferred)
436 return;
b4c2b231
KT
437 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
438 unregister_memcg_shrinker(shrinker);
1da177e4
LT
439 down_write(&shrinker_rwsem);
440 list_del(&shrinker->list);
441 up_write(&shrinker_rwsem);
ae393321 442 kfree(shrinker->nr_deferred);
bb422a73 443 shrinker->nr_deferred = NULL;
1da177e4 444}
8e1f936b 445EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
446
447#define SHRINK_BATCH 128
1d3d4437 448
cb731d6c 449static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 450 struct shrinker *shrinker, int priority)
1d3d4437
GC
451{
452 unsigned long freed = 0;
453 unsigned long long delta;
454 long total_scan;
d5bc5fd3 455 long freeable;
1d3d4437
GC
456 long nr;
457 long new_nr;
458 int nid = shrinkctl->nid;
459 long batch_size = shrinker->batch ? shrinker->batch
460 : SHRINK_BATCH;
5f33a080 461 long scanned = 0, next_deferred;
1d3d4437 462
ac7fb3ad
KT
463 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
464 nid = 0;
465
d5bc5fd3 466 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
467 if (freeable == 0 || freeable == SHRINK_EMPTY)
468 return freeable;
1d3d4437
GC
469
470 /*
471 * copy the current shrinker scan count into a local variable
472 * and zero it so that other concurrent shrinker invocations
473 * don't also do this scanning work.
474 */
475 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
476
477 total_scan = nr;
4b85afbd
JW
478 if (shrinker->seeks) {
479 delta = freeable >> priority;
480 delta *= 4;
481 do_div(delta, shrinker->seeks);
482 } else {
483 /*
484 * These objects don't require any IO to create. Trim
485 * them aggressively under memory pressure to keep
486 * them from causing refetches in the IO caches.
487 */
488 delta = freeable / 2;
489 }
172b06c3 490
1d3d4437
GC
491 total_scan += delta;
492 if (total_scan < 0) {
d75f773c 493 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
a0b02131 494 shrinker->scan_objects, total_scan);
d5bc5fd3 495 total_scan = freeable;
5f33a080
SL
496 next_deferred = nr;
497 } else
498 next_deferred = total_scan;
1d3d4437
GC
499
500 /*
501 * We need to avoid excessive windup on filesystem shrinkers
502 * due to large numbers of GFP_NOFS allocations causing the
503 * shrinkers to return -1 all the time. This results in a large
504 * nr being built up so when a shrink that can do some work
505 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 506 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
507 * memory.
508 *
509 * Hence only allow the shrinker to scan the entire cache when
510 * a large delta change is calculated directly.
511 */
d5bc5fd3
VD
512 if (delta < freeable / 4)
513 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
514
515 /*
516 * Avoid risking looping forever due to too large nr value:
517 * never try to free more than twice the estimate number of
518 * freeable entries.
519 */
d5bc5fd3
VD
520 if (total_scan > freeable * 2)
521 total_scan = freeable * 2;
1d3d4437
GC
522
523 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 524 freeable, delta, total_scan, priority);
1d3d4437 525
0b1fb40a
VD
526 /*
527 * Normally, we should not scan less than batch_size objects in one
528 * pass to avoid too frequent shrinker calls, but if the slab has less
529 * than batch_size objects in total and we are really tight on memory,
530 * we will try to reclaim all available objects, otherwise we can end
531 * up failing allocations although there are plenty of reclaimable
532 * objects spread over several slabs with usage less than the
533 * batch_size.
534 *
535 * We detect the "tight on memory" situations by looking at the total
536 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 537 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
538 * scanning at high prio and therefore should try to reclaim as much as
539 * possible.
540 */
541 while (total_scan >= batch_size ||
d5bc5fd3 542 total_scan >= freeable) {
a0b02131 543 unsigned long ret;
0b1fb40a 544 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 545
0b1fb40a 546 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 547 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
548 ret = shrinker->scan_objects(shrinker, shrinkctl);
549 if (ret == SHRINK_STOP)
550 break;
551 freed += ret;
1d3d4437 552
d460acb5
CW
553 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
554 total_scan -= shrinkctl->nr_scanned;
555 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
556
557 cond_resched();
558 }
559
5f33a080
SL
560 if (next_deferred >= scanned)
561 next_deferred -= scanned;
562 else
563 next_deferred = 0;
1d3d4437
GC
564 /*
565 * move the unused scan count back into the shrinker in a
566 * manner that handles concurrent updates. If we exhausted the
567 * scan, there is no need to do an update.
568 */
5f33a080
SL
569 if (next_deferred > 0)
570 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
571 &shrinker->nr_deferred[nid]);
572 else
573 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
574
df9024a8 575 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 576 return freed;
1495f230
YH
577}
578
0a432dcb 579#ifdef CONFIG_MEMCG
b0dedc49
KT
580static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
581 struct mem_cgroup *memcg, int priority)
582{
583 struct memcg_shrinker_map *map;
b8e57efa
KT
584 unsigned long ret, freed = 0;
585 int i;
b0dedc49 586
0a432dcb 587 if (!mem_cgroup_online(memcg))
b0dedc49
KT
588 return 0;
589
590 if (!down_read_trylock(&shrinker_rwsem))
591 return 0;
592
593 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
594 true);
595 if (unlikely(!map))
596 goto unlock;
597
598 for_each_set_bit(i, map->map, shrinker_nr_max) {
599 struct shrink_control sc = {
600 .gfp_mask = gfp_mask,
601 .nid = nid,
602 .memcg = memcg,
603 };
604 struct shrinker *shrinker;
605
606 shrinker = idr_find(&shrinker_idr, i);
7e010df5
KT
607 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
608 if (!shrinker)
609 clear_bit(i, map->map);
b0dedc49
KT
610 continue;
611 }
612
0a432dcb
YS
613 /* Call non-slab shrinkers even though kmem is disabled */
614 if (!memcg_kmem_enabled() &&
615 !(shrinker->flags & SHRINKER_NONSLAB))
616 continue;
617
b0dedc49 618 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6
KT
619 if (ret == SHRINK_EMPTY) {
620 clear_bit(i, map->map);
621 /*
622 * After the shrinker reported that it had no objects to
623 * free, but before we cleared the corresponding bit in
624 * the memcg shrinker map, a new object might have been
625 * added. To make sure, we have the bit set in this
626 * case, we invoke the shrinker one more time and reset
627 * the bit if it reports that it is not empty anymore.
628 * The memory barrier here pairs with the barrier in
629 * memcg_set_shrinker_bit():
630 *
631 * list_lru_add() shrink_slab_memcg()
632 * list_add_tail() clear_bit()
633 * <MB> <MB>
634 * set_bit() do_shrink_slab()
635 */
636 smp_mb__after_atomic();
637 ret = do_shrink_slab(&sc, shrinker, priority);
638 if (ret == SHRINK_EMPTY)
639 ret = 0;
640 else
641 memcg_set_shrinker_bit(memcg, nid, i);
642 }
b0dedc49
KT
643 freed += ret;
644
645 if (rwsem_is_contended(&shrinker_rwsem)) {
646 freed = freed ? : 1;
647 break;
648 }
649 }
650unlock:
651 up_read(&shrinker_rwsem);
652 return freed;
653}
0a432dcb 654#else /* CONFIG_MEMCG */
b0dedc49
KT
655static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
656 struct mem_cgroup *memcg, int priority)
657{
658 return 0;
659}
0a432dcb 660#endif /* CONFIG_MEMCG */
b0dedc49 661
6b4f7799 662/**
cb731d6c 663 * shrink_slab - shrink slab caches
6b4f7799
JW
664 * @gfp_mask: allocation context
665 * @nid: node whose slab caches to target
cb731d6c 666 * @memcg: memory cgroup whose slab caches to target
9092c71b 667 * @priority: the reclaim priority
1da177e4 668 *
6b4f7799 669 * Call the shrink functions to age shrinkable caches.
1da177e4 670 *
6b4f7799
JW
671 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
672 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 673 *
aeed1d32
VD
674 * @memcg specifies the memory cgroup to target. Unaware shrinkers
675 * are called only if it is the root cgroup.
cb731d6c 676 *
9092c71b
JB
677 * @priority is sc->priority, we take the number of objects and >> by priority
678 * in order to get the scan target.
b15e0905 679 *
6b4f7799 680 * Returns the number of reclaimed slab objects.
1da177e4 681 */
cb731d6c
VD
682static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
683 struct mem_cgroup *memcg,
9092c71b 684 int priority)
1da177e4 685{
b8e57efa 686 unsigned long ret, freed = 0;
1da177e4
LT
687 struct shrinker *shrinker;
688
fa1e512f
YS
689 /*
690 * The root memcg might be allocated even though memcg is disabled
691 * via "cgroup_disable=memory" boot parameter. This could make
692 * mem_cgroup_is_root() return false, then just run memcg slab
693 * shrink, but skip global shrink. This may result in premature
694 * oom.
695 */
696 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 697 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 698
e830c63a 699 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 700 goto out;
1da177e4
LT
701
702 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
703 struct shrink_control sc = {
704 .gfp_mask = gfp_mask,
705 .nid = nid,
cb731d6c 706 .memcg = memcg,
6b4f7799 707 };
ec97097b 708
9b996468
KT
709 ret = do_shrink_slab(&sc, shrinker, priority);
710 if (ret == SHRINK_EMPTY)
711 ret = 0;
712 freed += ret;
e496612c
MK
713 /*
714 * Bail out if someone want to register a new shrinker to
715 * prevent the regsitration from being stalled for long periods
716 * by parallel ongoing shrinking.
717 */
718 if (rwsem_is_contended(&shrinker_rwsem)) {
719 freed = freed ? : 1;
720 break;
721 }
1da177e4 722 }
6b4f7799 723
1da177e4 724 up_read(&shrinker_rwsem);
f06590bd
MK
725out:
726 cond_resched();
24f7c6b9 727 return freed;
1da177e4
LT
728}
729
cb731d6c
VD
730void drop_slab_node(int nid)
731{
732 unsigned long freed;
733
734 do {
735 struct mem_cgroup *memcg = NULL;
736
737 freed = 0;
aeed1d32 738 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 739 do {
9092c71b 740 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c
VD
741 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
742 } while (freed > 10);
743}
744
745void drop_slab(void)
746{
747 int nid;
748
749 for_each_online_node(nid)
750 drop_slab_node(nid);
751}
752
1da177e4
LT
753static inline int is_page_cache_freeable(struct page *page)
754{
ceddc3a5
JW
755 /*
756 * A freeable page cache page is referenced only by the caller
67891fff
MW
757 * that isolated the page, the page cache and optional buffer
758 * heads at page->private.
ceddc3a5 759 */
67891fff 760 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
bd4c82c2 761 HPAGE_PMD_NR : 1;
67891fff 762 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
1da177e4
LT
763}
764
cb16556d 765static int may_write_to_inode(struct inode *inode)
1da177e4 766{
930d9152 767 if (current->flags & PF_SWAPWRITE)
1da177e4 768 return 1;
703c2708 769 if (!inode_write_congested(inode))
1da177e4 770 return 1;
703c2708 771 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
772 return 1;
773 return 0;
774}
775
776/*
777 * We detected a synchronous write error writing a page out. Probably
778 * -ENOSPC. We need to propagate that into the address_space for a subsequent
779 * fsync(), msync() or close().
780 *
781 * The tricky part is that after writepage we cannot touch the mapping: nothing
782 * prevents it from being freed up. But we have a ref on the page and once
783 * that page is locked, the mapping is pinned.
784 *
785 * We're allowed to run sleeping lock_page() here because we know the caller has
786 * __GFP_FS.
787 */
788static void handle_write_error(struct address_space *mapping,
789 struct page *page, int error)
790{
7eaceacc 791 lock_page(page);
3e9f45bd
GC
792 if (page_mapping(page) == mapping)
793 mapping_set_error(mapping, error);
1da177e4
LT
794 unlock_page(page);
795}
796
04e62a29
CL
797/* possible outcome of pageout() */
798typedef enum {
799 /* failed to write page out, page is locked */
800 PAGE_KEEP,
801 /* move page to the active list, page is locked */
802 PAGE_ACTIVATE,
803 /* page has been sent to the disk successfully, page is unlocked */
804 PAGE_SUCCESS,
805 /* page is clean and locked */
806 PAGE_CLEAN,
807} pageout_t;
808
1da177e4 809/*
1742f19f
AM
810 * pageout is called by shrink_page_list() for each dirty page.
811 * Calls ->writepage().
1da177e4 812 */
cb16556d 813static pageout_t pageout(struct page *page, struct address_space *mapping)
1da177e4
LT
814{
815 /*
816 * If the page is dirty, only perform writeback if that write
817 * will be non-blocking. To prevent this allocation from being
818 * stalled by pagecache activity. But note that there may be
819 * stalls if we need to run get_block(). We could test
820 * PagePrivate for that.
821 *
8174202b 822 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
823 * this page's queue, we can perform writeback even if that
824 * will block.
825 *
826 * If the page is swapcache, write it back even if that would
827 * block, for some throttling. This happens by accident, because
828 * swap_backing_dev_info is bust: it doesn't reflect the
829 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
830 */
831 if (!is_page_cache_freeable(page))
832 return PAGE_KEEP;
833 if (!mapping) {
834 /*
835 * Some data journaling orphaned pages can have
836 * page->mapping == NULL while being dirty with clean buffers.
837 */
266cf658 838 if (page_has_private(page)) {
1da177e4
LT
839 if (try_to_free_buffers(page)) {
840 ClearPageDirty(page);
b1de0d13 841 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
842 return PAGE_CLEAN;
843 }
844 }
845 return PAGE_KEEP;
846 }
847 if (mapping->a_ops->writepage == NULL)
848 return PAGE_ACTIVATE;
cb16556d 849 if (!may_write_to_inode(mapping->host))
1da177e4
LT
850 return PAGE_KEEP;
851
852 if (clear_page_dirty_for_io(page)) {
853 int res;
854 struct writeback_control wbc = {
855 .sync_mode = WB_SYNC_NONE,
856 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
857 .range_start = 0,
858 .range_end = LLONG_MAX,
1da177e4
LT
859 .for_reclaim = 1,
860 };
861
862 SetPageReclaim(page);
863 res = mapping->a_ops->writepage(page, &wbc);
864 if (res < 0)
865 handle_write_error(mapping, page, res);
994fc28c 866 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
867 ClearPageReclaim(page);
868 return PAGE_ACTIVATE;
869 }
c661b078 870
1da177e4
LT
871 if (!PageWriteback(page)) {
872 /* synchronous write or broken a_ops? */
873 ClearPageReclaim(page);
874 }
3aa23851 875 trace_mm_vmscan_writepage(page);
c4a25635 876 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
877 return PAGE_SUCCESS;
878 }
879
880 return PAGE_CLEAN;
881}
882
a649fd92 883/*
e286781d
NP
884 * Same as remove_mapping, but if the page is removed from the mapping, it
885 * gets returned with a refcount of 0.
a649fd92 886 */
a528910e
JW
887static int __remove_mapping(struct address_space *mapping, struct page *page,
888 bool reclaimed)
49d2e9cc 889{
c4843a75 890 unsigned long flags;
bd4c82c2 891 int refcount;
c4843a75 892
28e4d965
NP
893 BUG_ON(!PageLocked(page));
894 BUG_ON(mapping != page_mapping(page));
49d2e9cc 895
b93b0163 896 xa_lock_irqsave(&mapping->i_pages, flags);
49d2e9cc 897 /*
0fd0e6b0
NP
898 * The non racy check for a busy page.
899 *
900 * Must be careful with the order of the tests. When someone has
901 * a ref to the page, it may be possible that they dirty it then
902 * drop the reference. So if PageDirty is tested before page_count
903 * here, then the following race may occur:
904 *
905 * get_user_pages(&page);
906 * [user mapping goes away]
907 * write_to(page);
908 * !PageDirty(page) [good]
909 * SetPageDirty(page);
910 * put_page(page);
911 * !page_count(page) [good, discard it]
912 *
913 * [oops, our write_to data is lost]
914 *
915 * Reversing the order of the tests ensures such a situation cannot
916 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 917 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
918 *
919 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 920 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 921 */
906d278d 922 refcount = 1 + compound_nr(page);
bd4c82c2 923 if (!page_ref_freeze(page, refcount))
49d2e9cc 924 goto cannot_free;
1c4c3b99 925 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
e286781d 926 if (unlikely(PageDirty(page))) {
bd4c82c2 927 page_ref_unfreeze(page, refcount);
49d2e9cc 928 goto cannot_free;
e286781d 929 }
49d2e9cc
CL
930
931 if (PageSwapCache(page)) {
932 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 933 mem_cgroup_swapout(page, swap);
4e17ec25 934 __delete_from_swap_cache(page, swap);
b93b0163 935 xa_unlock_irqrestore(&mapping->i_pages, flags);
75f6d6d2 936 put_swap_page(page, swap);
e286781d 937 } else {
6072d13c 938 void (*freepage)(struct page *);
a528910e 939 void *shadow = NULL;
6072d13c
LT
940
941 freepage = mapping->a_ops->freepage;
a528910e
JW
942 /*
943 * Remember a shadow entry for reclaimed file cache in
944 * order to detect refaults, thus thrashing, later on.
945 *
946 * But don't store shadows in an address space that is
947 * already exiting. This is not just an optizimation,
948 * inode reclaim needs to empty out the radix tree or
949 * the nodes are lost. Don't plant shadows behind its
950 * back.
f9fe48be
RZ
951 *
952 * We also don't store shadows for DAX mappings because the
953 * only page cache pages found in these are zero pages
954 * covering holes, and because we don't want to mix DAX
955 * exceptional entries and shadow exceptional entries in the
b93b0163 956 * same address_space.
a528910e
JW
957 */
958 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 959 !mapping_exiting(mapping) && !dax_mapping(mapping))
a7ca12f9 960 shadow = workingset_eviction(page);
62cccb8c 961 __delete_from_page_cache(page, shadow);
b93b0163 962 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c
LT
963
964 if (freepage != NULL)
965 freepage(page);
49d2e9cc
CL
966 }
967
49d2e9cc
CL
968 return 1;
969
970cannot_free:
b93b0163 971 xa_unlock_irqrestore(&mapping->i_pages, flags);
49d2e9cc
CL
972 return 0;
973}
974
e286781d
NP
975/*
976 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
977 * someone else has a ref on the page, abort and return 0. If it was
978 * successfully detached, return 1. Assumes the caller has a single ref on
979 * this page.
980 */
981int remove_mapping(struct address_space *mapping, struct page *page)
982{
a528910e 983 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
984 /*
985 * Unfreezing the refcount with 1 rather than 2 effectively
986 * drops the pagecache ref for us without requiring another
987 * atomic operation.
988 */
fe896d18 989 page_ref_unfreeze(page, 1);
e286781d
NP
990 return 1;
991 }
992 return 0;
993}
994
894bc310
LS
995/**
996 * putback_lru_page - put previously isolated page onto appropriate LRU list
997 * @page: page to be put back to appropriate lru list
998 *
999 * Add previously isolated @page to appropriate LRU list.
1000 * Page may still be unevictable for other reasons.
1001 *
1002 * lru_lock must not be held, interrupts must be enabled.
1003 */
894bc310
LS
1004void putback_lru_page(struct page *page)
1005{
9c4e6b1a 1006 lru_cache_add(page);
894bc310
LS
1007 put_page(page); /* drop ref from isolate */
1008}
1009
dfc8d636
JW
1010enum page_references {
1011 PAGEREF_RECLAIM,
1012 PAGEREF_RECLAIM_CLEAN,
64574746 1013 PAGEREF_KEEP,
dfc8d636
JW
1014 PAGEREF_ACTIVATE,
1015};
1016
1017static enum page_references page_check_references(struct page *page,
1018 struct scan_control *sc)
1019{
64574746 1020 int referenced_ptes, referenced_page;
dfc8d636 1021 unsigned long vm_flags;
dfc8d636 1022
c3ac9a8a
JW
1023 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1024 &vm_flags);
64574746 1025 referenced_page = TestClearPageReferenced(page);
dfc8d636 1026
dfc8d636
JW
1027 /*
1028 * Mlock lost the isolation race with us. Let try_to_unmap()
1029 * move the page to the unevictable list.
1030 */
1031 if (vm_flags & VM_LOCKED)
1032 return PAGEREF_RECLAIM;
1033
64574746 1034 if (referenced_ptes) {
e4898273 1035 if (PageSwapBacked(page))
64574746
JW
1036 return PAGEREF_ACTIVATE;
1037 /*
1038 * All mapped pages start out with page table
1039 * references from the instantiating fault, so we need
1040 * to look twice if a mapped file page is used more
1041 * than once.
1042 *
1043 * Mark it and spare it for another trip around the
1044 * inactive list. Another page table reference will
1045 * lead to its activation.
1046 *
1047 * Note: the mark is set for activated pages as well
1048 * so that recently deactivated but used pages are
1049 * quickly recovered.
1050 */
1051 SetPageReferenced(page);
1052
34dbc67a 1053 if (referenced_page || referenced_ptes > 1)
64574746
JW
1054 return PAGEREF_ACTIVATE;
1055
c909e993
KK
1056 /*
1057 * Activate file-backed executable pages after first usage.
1058 */
1059 if (vm_flags & VM_EXEC)
1060 return PAGEREF_ACTIVATE;
1061
64574746
JW
1062 return PAGEREF_KEEP;
1063 }
dfc8d636
JW
1064
1065 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 1066 if (referenced_page && !PageSwapBacked(page))
64574746
JW
1067 return PAGEREF_RECLAIM_CLEAN;
1068
1069 return PAGEREF_RECLAIM;
dfc8d636
JW
1070}
1071
e2be15f6
MG
1072/* Check if a page is dirty or under writeback */
1073static void page_check_dirty_writeback(struct page *page,
1074 bool *dirty, bool *writeback)
1075{
b4597226
MG
1076 struct address_space *mapping;
1077
e2be15f6
MG
1078 /*
1079 * Anonymous pages are not handled by flushers and must be written
1080 * from reclaim context. Do not stall reclaim based on them
1081 */
802a3a92
SL
1082 if (!page_is_file_cache(page) ||
1083 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
1084 *dirty = false;
1085 *writeback = false;
1086 return;
1087 }
1088
1089 /* By default assume that the page flags are accurate */
1090 *dirty = PageDirty(page);
1091 *writeback = PageWriteback(page);
b4597226
MG
1092
1093 /* Verify dirty/writeback state if the filesystem supports it */
1094 if (!page_has_private(page))
1095 return;
1096
1097 mapping = page_mapping(page);
1098 if (mapping && mapping->a_ops->is_dirty_writeback)
1099 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
1100}
1101
1da177e4 1102/*
1742f19f 1103 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1104 */
1742f19f 1105static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 1106 struct pglist_data *pgdat,
f84f6e2b 1107 struct scan_control *sc,
02c6de8d 1108 enum ttu_flags ttu_flags,
3c710c1a 1109 struct reclaim_stat *stat,
8940b34a 1110 bool ignore_references)
1da177e4
LT
1111{
1112 LIST_HEAD(ret_pages);
abe4c3b5 1113 LIST_HEAD(free_pages);
3c710c1a 1114 unsigned nr_reclaimed = 0;
886cf190 1115 unsigned pgactivate = 0;
1da177e4 1116
060f005f 1117 memset(stat, 0, sizeof(*stat));
1da177e4
LT
1118 cond_resched();
1119
1da177e4
LT
1120 while (!list_empty(page_list)) {
1121 struct address_space *mapping;
1122 struct page *page;
1123 int may_enter_fs;
8940b34a 1124 enum page_references references = PAGEREF_RECLAIM;
e2be15f6 1125 bool dirty, writeback;
98879b3b 1126 unsigned int nr_pages;
1da177e4
LT
1127
1128 cond_resched();
1129
1130 page = lru_to_page(page_list);
1131 list_del(&page->lru);
1132
529ae9aa 1133 if (!trylock_page(page))
1da177e4
LT
1134 goto keep;
1135
309381fe 1136 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4 1137
d8c6546b 1138 nr_pages = compound_nr(page);
98879b3b
YS
1139
1140 /* Account the number of base pages even though THP */
1141 sc->nr_scanned += nr_pages;
80e43426 1142
39b5f29a 1143 if (unlikely(!page_evictable(page)))
ad6b6704 1144 goto activate_locked;
894bc310 1145
a6dc60f8 1146 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1147 goto keep_locked;
1148
c661b078
AW
1149 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1150 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1151
e2be15f6 1152 /*
894befec 1153 * The number of dirty pages determines if a node is marked
e2be15f6
MG
1154 * reclaim_congested which affects wait_iff_congested. kswapd
1155 * will stall and start writing pages if the tail of the LRU
1156 * is all dirty unqueued pages.
1157 */
1158 page_check_dirty_writeback(page, &dirty, &writeback);
1159 if (dirty || writeback)
060f005f 1160 stat->nr_dirty++;
e2be15f6
MG
1161
1162 if (dirty && !writeback)
060f005f 1163 stat->nr_unqueued_dirty++;
e2be15f6 1164
d04e8acd
MG
1165 /*
1166 * Treat this page as congested if the underlying BDI is or if
1167 * pages are cycling through the LRU so quickly that the
1168 * pages marked for immediate reclaim are making it to the
1169 * end of the LRU a second time.
1170 */
e2be15f6 1171 mapping = page_mapping(page);
1da58ee2 1172 if (((dirty || writeback) && mapping &&
703c2708 1173 inode_write_congested(mapping->host)) ||
d04e8acd 1174 (writeback && PageReclaim(page)))
060f005f 1175 stat->nr_congested++;
e2be15f6 1176
283aba9f
MG
1177 /*
1178 * If a page at the tail of the LRU is under writeback, there
1179 * are three cases to consider.
1180 *
1181 * 1) If reclaim is encountering an excessive number of pages
1182 * under writeback and this page is both under writeback and
1183 * PageReclaim then it indicates that pages are being queued
1184 * for IO but are being recycled through the LRU before the
1185 * IO can complete. Waiting on the page itself risks an
1186 * indefinite stall if it is impossible to writeback the
1187 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1188 * note that the LRU is being scanned too quickly and the
1189 * caller can stall after page list has been processed.
283aba9f 1190 *
97c9341f 1191 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1192 * not marked for immediate reclaim, or the caller does not
1193 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1194 * not to fs). In this case mark the page for immediate
97c9341f 1195 * reclaim and continue scanning.
283aba9f 1196 *
ecf5fc6e
MH
1197 * Require may_enter_fs because we would wait on fs, which
1198 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1199 * enter reclaim, and deadlock if it waits on a page for
1200 * which it is needed to do the write (loop masks off
1201 * __GFP_IO|__GFP_FS for this reason); but more thought
1202 * would probably show more reasons.
1203 *
7fadc820 1204 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1205 * PageReclaim. memcg does not have any dirty pages
1206 * throttling so we could easily OOM just because too many
1207 * pages are in writeback and there is nothing else to
1208 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1209 *
1210 * In cases 1) and 2) we activate the pages to get them out of
1211 * the way while we continue scanning for clean pages on the
1212 * inactive list and refilling from the active list. The
1213 * observation here is that waiting for disk writes is more
1214 * expensive than potentially causing reloads down the line.
1215 * Since they're marked for immediate reclaim, they won't put
1216 * memory pressure on the cache working set any longer than it
1217 * takes to write them to disk.
283aba9f 1218 */
c661b078 1219 if (PageWriteback(page)) {
283aba9f
MG
1220 /* Case 1 above */
1221 if (current_is_kswapd() &&
1222 PageReclaim(page) &&
599d0c95 1223 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
060f005f 1224 stat->nr_immediate++;
c55e8d03 1225 goto activate_locked;
283aba9f
MG
1226
1227 /* Case 2 above */
b5ead35e 1228 } else if (writeback_throttling_sane(sc) ||
ecf5fc6e 1229 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1230 /*
1231 * This is slightly racy - end_page_writeback()
1232 * might have just cleared PageReclaim, then
1233 * setting PageReclaim here end up interpreted
1234 * as PageReadahead - but that does not matter
1235 * enough to care. What we do want is for this
1236 * page to have PageReclaim set next time memcg
1237 * reclaim reaches the tests above, so it will
1238 * then wait_on_page_writeback() to avoid OOM;
1239 * and it's also appropriate in global reclaim.
1240 */
1241 SetPageReclaim(page);
060f005f 1242 stat->nr_writeback++;
c55e8d03 1243 goto activate_locked;
283aba9f
MG
1244
1245 /* Case 3 above */
1246 } else {
7fadc820 1247 unlock_page(page);
283aba9f 1248 wait_on_page_writeback(page);
7fadc820
HD
1249 /* then go back and try same page again */
1250 list_add_tail(&page->lru, page_list);
1251 continue;
e62e384e 1252 }
c661b078 1253 }
1da177e4 1254
8940b34a 1255 if (!ignore_references)
02c6de8d
MK
1256 references = page_check_references(page, sc);
1257
dfc8d636
JW
1258 switch (references) {
1259 case PAGEREF_ACTIVATE:
1da177e4 1260 goto activate_locked;
64574746 1261 case PAGEREF_KEEP:
98879b3b 1262 stat->nr_ref_keep += nr_pages;
64574746 1263 goto keep_locked;
dfc8d636
JW
1264 case PAGEREF_RECLAIM:
1265 case PAGEREF_RECLAIM_CLEAN:
1266 ; /* try to reclaim the page below */
1267 }
1da177e4 1268
1da177e4
LT
1269 /*
1270 * Anonymous process memory has backing store?
1271 * Try to allocate it some swap space here.
802a3a92 1272 * Lazyfree page could be freed directly
1da177e4 1273 */
bd4c82c2
HY
1274 if (PageAnon(page) && PageSwapBacked(page)) {
1275 if (!PageSwapCache(page)) {
1276 if (!(sc->gfp_mask & __GFP_IO))
1277 goto keep_locked;
1278 if (PageTransHuge(page)) {
1279 /* cannot split THP, skip it */
1280 if (!can_split_huge_page(page, NULL))
1281 goto activate_locked;
1282 /*
1283 * Split pages without a PMD map right
1284 * away. Chances are some or all of the
1285 * tail pages can be freed without IO.
1286 */
1287 if (!compound_mapcount(page) &&
1288 split_huge_page_to_list(page,
1289 page_list))
1290 goto activate_locked;
1291 }
1292 if (!add_to_swap(page)) {
1293 if (!PageTransHuge(page))
98879b3b 1294 goto activate_locked_split;
bd4c82c2
HY
1295 /* Fallback to swap normal pages */
1296 if (split_huge_page_to_list(page,
1297 page_list))
1298 goto activate_locked;
fe490cc0
HY
1299#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1300 count_vm_event(THP_SWPOUT_FALLBACK);
1301#endif
bd4c82c2 1302 if (!add_to_swap(page))
98879b3b 1303 goto activate_locked_split;
bd4c82c2 1304 }
0f074658 1305
bd4c82c2 1306 may_enter_fs = 1;
1da177e4 1307
bd4c82c2
HY
1308 /* Adding to swap updated mapping */
1309 mapping = page_mapping(page);
1310 }
7751b2da
KS
1311 } else if (unlikely(PageTransHuge(page))) {
1312 /* Split file THP */
1313 if (split_huge_page_to_list(page, page_list))
1314 goto keep_locked;
e2be15f6 1315 }
1da177e4 1316
98879b3b
YS
1317 /*
1318 * THP may get split above, need minus tail pages and update
1319 * nr_pages to avoid accounting tail pages twice.
1320 *
1321 * The tail pages that are added into swap cache successfully
1322 * reach here.
1323 */
1324 if ((nr_pages > 1) && !PageTransHuge(page)) {
1325 sc->nr_scanned -= (nr_pages - 1);
1326 nr_pages = 1;
1327 }
1328
1da177e4
LT
1329 /*
1330 * The page is mapped into the page tables of one or more
1331 * processes. Try to unmap it here.
1332 */
802a3a92 1333 if (page_mapped(page)) {
bd4c82c2
HY
1334 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1335
1336 if (unlikely(PageTransHuge(page)))
1337 flags |= TTU_SPLIT_HUGE_PMD;
1338 if (!try_to_unmap(page, flags)) {
98879b3b 1339 stat->nr_unmap_fail += nr_pages;
1da177e4 1340 goto activate_locked;
1da177e4
LT
1341 }
1342 }
1343
1344 if (PageDirty(page)) {
ee72886d 1345 /*
4eda4823
JW
1346 * Only kswapd can writeback filesystem pages
1347 * to avoid risk of stack overflow. But avoid
1348 * injecting inefficient single-page IO into
1349 * flusher writeback as much as possible: only
1350 * write pages when we've encountered many
1351 * dirty pages, and when we've already scanned
1352 * the rest of the LRU for clean pages and see
1353 * the same dirty pages again (PageReclaim).
ee72886d 1354 */
f84f6e2b 1355 if (page_is_file_cache(page) &&
4eda4823
JW
1356 (!current_is_kswapd() || !PageReclaim(page) ||
1357 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1358 /*
1359 * Immediately reclaim when written back.
1360 * Similar in principal to deactivate_page()
1361 * except we already have the page isolated
1362 * and know it's dirty
1363 */
c4a25635 1364 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1365 SetPageReclaim(page);
1366
c55e8d03 1367 goto activate_locked;
ee72886d
MG
1368 }
1369
dfc8d636 1370 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1371 goto keep_locked;
4dd4b920 1372 if (!may_enter_fs)
1da177e4 1373 goto keep_locked;
52a8363e 1374 if (!sc->may_writepage)
1da177e4
LT
1375 goto keep_locked;
1376
d950c947
MG
1377 /*
1378 * Page is dirty. Flush the TLB if a writable entry
1379 * potentially exists to avoid CPU writes after IO
1380 * starts and then write it out here.
1381 */
1382 try_to_unmap_flush_dirty();
cb16556d 1383 switch (pageout(page, mapping)) {
1da177e4
LT
1384 case PAGE_KEEP:
1385 goto keep_locked;
1386 case PAGE_ACTIVATE:
1387 goto activate_locked;
1388 case PAGE_SUCCESS:
7d3579e8 1389 if (PageWriteback(page))
41ac1999 1390 goto keep;
7d3579e8 1391 if (PageDirty(page))
1da177e4 1392 goto keep;
7d3579e8 1393
1da177e4
LT
1394 /*
1395 * A synchronous write - probably a ramdisk. Go
1396 * ahead and try to reclaim the page.
1397 */
529ae9aa 1398 if (!trylock_page(page))
1da177e4
LT
1399 goto keep;
1400 if (PageDirty(page) || PageWriteback(page))
1401 goto keep_locked;
1402 mapping = page_mapping(page);
1403 case PAGE_CLEAN:
1404 ; /* try to free the page below */
1405 }
1406 }
1407
1408 /*
1409 * If the page has buffers, try to free the buffer mappings
1410 * associated with this page. If we succeed we try to free
1411 * the page as well.
1412 *
1413 * We do this even if the page is PageDirty().
1414 * try_to_release_page() does not perform I/O, but it is
1415 * possible for a page to have PageDirty set, but it is actually
1416 * clean (all its buffers are clean). This happens if the
1417 * buffers were written out directly, with submit_bh(). ext3
894bc310 1418 * will do this, as well as the blockdev mapping.
1da177e4
LT
1419 * try_to_release_page() will discover that cleanness and will
1420 * drop the buffers and mark the page clean - it can be freed.
1421 *
1422 * Rarely, pages can have buffers and no ->mapping. These are
1423 * the pages which were not successfully invalidated in
1424 * truncate_complete_page(). We try to drop those buffers here
1425 * and if that worked, and the page is no longer mapped into
1426 * process address space (page_count == 1) it can be freed.
1427 * Otherwise, leave the page on the LRU so it is swappable.
1428 */
266cf658 1429 if (page_has_private(page)) {
1da177e4
LT
1430 if (!try_to_release_page(page, sc->gfp_mask))
1431 goto activate_locked;
e286781d
NP
1432 if (!mapping && page_count(page) == 1) {
1433 unlock_page(page);
1434 if (put_page_testzero(page))
1435 goto free_it;
1436 else {
1437 /*
1438 * rare race with speculative reference.
1439 * the speculative reference will free
1440 * this page shortly, so we may
1441 * increment nr_reclaimed here (and
1442 * leave it off the LRU).
1443 */
1444 nr_reclaimed++;
1445 continue;
1446 }
1447 }
1da177e4
LT
1448 }
1449
802a3a92
SL
1450 if (PageAnon(page) && !PageSwapBacked(page)) {
1451 /* follow __remove_mapping for reference */
1452 if (!page_ref_freeze(page, 1))
1453 goto keep_locked;
1454 if (PageDirty(page)) {
1455 page_ref_unfreeze(page, 1);
1456 goto keep_locked;
1457 }
1da177e4 1458
802a3a92 1459 count_vm_event(PGLAZYFREED);
2262185c 1460 count_memcg_page_event(page, PGLAZYFREED);
802a3a92
SL
1461 } else if (!mapping || !__remove_mapping(mapping, page, true))
1462 goto keep_locked;
9a1ea439
HD
1463
1464 unlock_page(page);
e286781d 1465free_it:
98879b3b
YS
1466 /*
1467 * THP may get swapped out in a whole, need account
1468 * all base pages.
1469 */
1470 nr_reclaimed += nr_pages;
abe4c3b5
MG
1471
1472 /*
1473 * Is there need to periodically free_page_list? It would
1474 * appear not as the counts should be low
1475 */
7ae88534 1476 if (unlikely(PageTransHuge(page)))
bd4c82c2 1477 (*get_compound_page_dtor(page))(page);
7ae88534 1478 else
bd4c82c2 1479 list_add(&page->lru, &free_pages);
1da177e4
LT
1480 continue;
1481
98879b3b
YS
1482activate_locked_split:
1483 /*
1484 * The tail pages that are failed to add into swap cache
1485 * reach here. Fixup nr_scanned and nr_pages.
1486 */
1487 if (nr_pages > 1) {
1488 sc->nr_scanned -= (nr_pages - 1);
1489 nr_pages = 1;
1490 }
1da177e4 1491activate_locked:
68a22394 1492 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1493 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1494 PageMlocked(page)))
a2c43eed 1495 try_to_free_swap(page);
309381fe 1496 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704 1497 if (!PageMlocked(page)) {
886cf190 1498 int type = page_is_file_cache(page);
ad6b6704 1499 SetPageActive(page);
98879b3b 1500 stat->nr_activate[type] += nr_pages;
2262185c 1501 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1502 }
1da177e4
LT
1503keep_locked:
1504 unlock_page(page);
1505keep:
1506 list_add(&page->lru, &ret_pages);
309381fe 1507 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1508 }
abe4c3b5 1509
98879b3b
YS
1510 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1511
747db954 1512 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1513 try_to_unmap_flush();
2d4894b5 1514 free_unref_page_list(&free_pages);
abe4c3b5 1515
1da177e4 1516 list_splice(&ret_pages, page_list);
886cf190 1517 count_vm_events(PGACTIVATE, pgactivate);
060f005f 1518
05ff5137 1519 return nr_reclaimed;
1da177e4
LT
1520}
1521
02c6de8d
MK
1522unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1523 struct list_head *page_list)
1524{
1525 struct scan_control sc = {
1526 .gfp_mask = GFP_KERNEL,
1527 .priority = DEF_PRIORITY,
1528 .may_unmap = 1,
1529 };
060f005f 1530 struct reclaim_stat dummy_stat;
3c710c1a 1531 unsigned long ret;
02c6de8d
MK
1532 struct page *page, *next;
1533 LIST_HEAD(clean_pages);
1534
1535 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1536 if (page_is_file_cache(page) && !PageDirty(page) &&
a58f2cef 1537 !__PageMovable(page) && !PageUnevictable(page)) {
02c6de8d
MK
1538 ClearPageActive(page);
1539 list_move(&page->lru, &clean_pages);
1540 }
1541 }
1542
599d0c95 1543 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
060f005f 1544 TTU_IGNORE_ACCESS, &dummy_stat, true);
02c6de8d 1545 list_splice(&clean_pages, page_list);
599d0c95 1546 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1547 return ret;
1548}
1549
5ad333eb
AW
1550/*
1551 * Attempt to remove the specified page from its LRU. Only take this page
1552 * if it is of the appropriate PageActive status. Pages which are being
1553 * freed elsewhere are also ignored.
1554 *
1555 * page: page to consider
1556 * mode: one of the LRU isolation modes defined above
1557 *
1558 * returns 0 on success, -ve errno on failure.
1559 */
f3fd4a61 1560int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1561{
1562 int ret = -EINVAL;
1563
1564 /* Only take pages on the LRU. */
1565 if (!PageLRU(page))
1566 return ret;
1567
e46a2879
MK
1568 /* Compaction should not handle unevictable pages but CMA can do so */
1569 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1570 return ret;
1571
5ad333eb 1572 ret = -EBUSY;
08e552c6 1573
c8244935
MG
1574 /*
1575 * To minimise LRU disruption, the caller can indicate that it only
1576 * wants to isolate pages it will be able to operate on without
1577 * blocking - clean pages for the most part.
1578 *
c8244935
MG
1579 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1580 * that it is possible to migrate without blocking
1581 */
1276ad68 1582 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1583 /* All the caller can do on PageWriteback is block */
1584 if (PageWriteback(page))
1585 return ret;
1586
1587 if (PageDirty(page)) {
1588 struct address_space *mapping;
69d763fc 1589 bool migrate_dirty;
c8244935 1590
c8244935
MG
1591 /*
1592 * Only pages without mappings or that have a
1593 * ->migratepage callback are possible to migrate
69d763fc
MG
1594 * without blocking. However, we can be racing with
1595 * truncation so it's necessary to lock the page
1596 * to stabilise the mapping as truncation holds
1597 * the page lock until after the page is removed
1598 * from the page cache.
c8244935 1599 */
69d763fc
MG
1600 if (!trylock_page(page))
1601 return ret;
1602
c8244935 1603 mapping = page_mapping(page);
145e1a71 1604 migrate_dirty = !mapping || mapping->a_ops->migratepage;
69d763fc
MG
1605 unlock_page(page);
1606 if (!migrate_dirty)
c8244935
MG
1607 return ret;
1608 }
1609 }
39deaf85 1610
f80c0673
MK
1611 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1612 return ret;
1613
5ad333eb
AW
1614 if (likely(get_page_unless_zero(page))) {
1615 /*
1616 * Be careful not to clear PageLRU until after we're
1617 * sure the page is not being freed elsewhere -- the
1618 * page release code relies on it.
1619 */
1620 ClearPageLRU(page);
1621 ret = 0;
1622 }
1623
1624 return ret;
1625}
1626
7ee36a14
MG
1627
1628/*
1629 * Update LRU sizes after isolating pages. The LRU size updates must
1630 * be complete before mem_cgroup_update_lru_size due to a santity check.
1631 */
1632static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1633 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1634{
7ee36a14
MG
1635 int zid;
1636
7ee36a14
MG
1637 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1638 if (!nr_zone_taken[zid])
1639 continue;
1640
1641 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1642#ifdef CONFIG_MEMCG
b4536f0c 1643 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1644#endif
b4536f0c
MH
1645 }
1646
7ee36a14
MG
1647}
1648
f4b7e272
AR
1649/**
1650 * pgdat->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1651 * shrink the lists perform better by taking out a batch of pages
1652 * and working on them outside the LRU lock.
1653 *
1654 * For pagecache intensive workloads, this function is the hottest
1655 * spot in the kernel (apart from copy_*_user functions).
1656 *
1657 * Appropriate locks must be held before calling this function.
1658 *
791b48b6 1659 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1660 * @lruvec: The LRU vector to pull pages from.
1da177e4 1661 * @dst: The temp list to put pages on to.
f626012d 1662 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1663 * @sc: The scan_control struct for this reclaim session
5ad333eb 1664 * @mode: One of the LRU isolation modes
3cb99451 1665 * @lru: LRU list id for isolating
1da177e4
LT
1666 *
1667 * returns how many pages were moved onto *@dst.
1668 */
69e05944 1669static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1670 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1671 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 1672 enum lru_list lru)
1da177e4 1673{
75b00af7 1674 struct list_head *src = &lruvec->lists[lru];
69e05944 1675 unsigned long nr_taken = 0;
599d0c95 1676 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1677 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1678 unsigned long skipped = 0;
791b48b6 1679 unsigned long scan, total_scan, nr_pages;
b2e18757 1680 LIST_HEAD(pages_skipped);
a9e7c39f 1681 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1da177e4 1682
98879b3b 1683 total_scan = 0;
791b48b6 1684 scan = 0;
98879b3b 1685 while (scan < nr_to_scan && !list_empty(src)) {
5ad333eb 1686 struct page *page;
5ad333eb 1687
1da177e4
LT
1688 page = lru_to_page(src);
1689 prefetchw_prev_lru_page(page, src, flags);
1690
309381fe 1691 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1692
d8c6546b 1693 nr_pages = compound_nr(page);
98879b3b
YS
1694 total_scan += nr_pages;
1695
b2e18757
MG
1696 if (page_zonenum(page) > sc->reclaim_idx) {
1697 list_move(&page->lru, &pages_skipped);
98879b3b 1698 nr_skipped[page_zonenum(page)] += nr_pages;
b2e18757
MG
1699 continue;
1700 }
1701
791b48b6
MK
1702 /*
1703 * Do not count skipped pages because that makes the function
1704 * return with no isolated pages if the LRU mostly contains
1705 * ineligible pages. This causes the VM to not reclaim any
1706 * pages, triggering a premature OOM.
98879b3b
YS
1707 *
1708 * Account all tail pages of THP. This would not cause
1709 * premature OOM since __isolate_lru_page() returns -EBUSY
1710 * only when the page is being freed somewhere else.
791b48b6 1711 */
98879b3b 1712 scan += nr_pages;
f3fd4a61 1713 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1714 case 0:
599d0c95
MG
1715 nr_taken += nr_pages;
1716 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1717 list_move(&page->lru, dst);
5ad333eb
AW
1718 break;
1719
1720 case -EBUSY:
1721 /* else it is being freed elsewhere */
1722 list_move(&page->lru, src);
1723 continue;
46453a6e 1724
5ad333eb
AW
1725 default:
1726 BUG();
1727 }
1da177e4
LT
1728 }
1729
b2e18757
MG
1730 /*
1731 * Splice any skipped pages to the start of the LRU list. Note that
1732 * this disrupts the LRU order when reclaiming for lower zones but
1733 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1734 * scanning would soon rescan the same pages to skip and put the
1735 * system at risk of premature OOM.
1736 */
7cc30fcf
MG
1737 if (!list_empty(&pages_skipped)) {
1738 int zid;
1739
3db65812 1740 list_splice(&pages_skipped, src);
7cc30fcf
MG
1741 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1742 if (!nr_skipped[zid])
1743 continue;
1744
1745 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1746 skipped += nr_skipped[zid];
7cc30fcf
MG
1747 }
1748 }
791b48b6 1749 *nr_scanned = total_scan;
1265e3a6 1750 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 1751 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 1752 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1753 return nr_taken;
1754}
1755
62695a84
NP
1756/**
1757 * isolate_lru_page - tries to isolate a page from its LRU list
1758 * @page: page to isolate from its LRU list
1759 *
1760 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1761 * vmstat statistic corresponding to whatever LRU list the page was on.
1762 *
1763 * Returns 0 if the page was removed from an LRU list.
1764 * Returns -EBUSY if the page was not on an LRU list.
1765 *
1766 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1767 * the active list, it will have PageActive set. If it was found on
1768 * the unevictable list, it will have the PageUnevictable bit set. That flag
1769 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1770 *
1771 * The vmstat statistic corresponding to the list on which the page was
1772 * found will be decremented.
1773 *
1774 * Restrictions:
a5d09bed 1775 *
62695a84
NP
1776 * (1) Must be called with an elevated refcount on the page. This is a
1777 * fundamentnal difference from isolate_lru_pages (which is called
1778 * without a stable reference).
1779 * (2) the lru_lock must not be held.
1780 * (3) interrupts must be enabled.
1781 */
1782int isolate_lru_page(struct page *page)
1783{
1784 int ret = -EBUSY;
1785
309381fe 1786 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1787 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1788
62695a84 1789 if (PageLRU(page)) {
f4b7e272 1790 pg_data_t *pgdat = page_pgdat(page);
fa9add64 1791 struct lruvec *lruvec;
62695a84 1792
f4b7e272
AR
1793 spin_lock_irq(&pgdat->lru_lock);
1794 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0c917313 1795 if (PageLRU(page)) {
894bc310 1796 int lru = page_lru(page);
0c917313 1797 get_page(page);
62695a84 1798 ClearPageLRU(page);
fa9add64
HD
1799 del_page_from_lru_list(page, lruvec, lru);
1800 ret = 0;
62695a84 1801 }
f4b7e272 1802 spin_unlock_irq(&pgdat->lru_lock);
62695a84
NP
1803 }
1804 return ret;
1805}
1806
35cd7815 1807/*
d37dd5dc
FW
1808 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1809 * then get resheduled. When there are massive number of tasks doing page
1810 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1811 * the LRU list will go small and be scanned faster than necessary, leading to
1812 * unnecessary swapping, thrashing and OOM.
35cd7815 1813 */
599d0c95 1814static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1815 struct scan_control *sc)
1816{
1817 unsigned long inactive, isolated;
1818
1819 if (current_is_kswapd())
1820 return 0;
1821
b5ead35e 1822 if (!writeback_throttling_sane(sc))
35cd7815
RR
1823 return 0;
1824
1825 if (file) {
599d0c95
MG
1826 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1827 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1828 } else {
599d0c95
MG
1829 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1830 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1831 }
1832
3cf23841
FW
1833 /*
1834 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1835 * won't get blocked by normal direct-reclaimers, forming a circular
1836 * deadlock.
1837 */
d0164adc 1838 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1839 inactive >>= 3;
1840
35cd7815
RR
1841 return isolated > inactive;
1842}
1843
a222f341
KT
1844/*
1845 * This moves pages from @list to corresponding LRU list.
1846 *
1847 * We move them the other way if the page is referenced by one or more
1848 * processes, from rmap.
1849 *
1850 * If the pages are mostly unmapped, the processing is fast and it is
1851 * appropriate to hold zone_lru_lock across the whole operation. But if
1852 * the pages are mapped, the processing is slow (page_referenced()) so we
1853 * should drop zone_lru_lock around each page. It's impossible to balance
1854 * this, so instead we remove the pages from the LRU while processing them.
1855 * It is safe to rely on PG_active against the non-LRU pages in here because
1856 * nobody will play with that bit on a non-LRU page.
1857 *
1858 * The downside is that we have to touch page->_refcount against each page.
1859 * But we had to alter page->flags anyway.
1860 *
1861 * Returns the number of pages moved to the given lruvec.
1862 */
1863
1864static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1865 struct list_head *list)
66635629 1866{
599d0c95 1867 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
a222f341 1868 int nr_pages, nr_moved = 0;
3f79768f 1869 LIST_HEAD(pages_to_free);
a222f341
KT
1870 struct page *page;
1871 enum lru_list lru;
66635629 1872
a222f341
KT
1873 while (!list_empty(list)) {
1874 page = lru_to_page(list);
309381fe 1875 VM_BUG_ON_PAGE(PageLRU(page), page);
39b5f29a 1876 if (unlikely(!page_evictable(page))) {
a222f341 1877 list_del(&page->lru);
599d0c95 1878 spin_unlock_irq(&pgdat->lru_lock);
66635629 1879 putback_lru_page(page);
599d0c95 1880 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1881 continue;
1882 }
599d0c95 1883 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1884
7a608572 1885 SetPageLRU(page);
66635629 1886 lru = page_lru(page);
a222f341
KT
1887
1888 nr_pages = hpage_nr_pages(page);
1889 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1890 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1891
2bcf8879
HD
1892 if (put_page_testzero(page)) {
1893 __ClearPageLRU(page);
1894 __ClearPageActive(page);
fa9add64 1895 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1896
1897 if (unlikely(PageCompound(page))) {
599d0c95 1898 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 1899 (*get_compound_page_dtor(page))(page);
599d0c95 1900 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1901 } else
1902 list_add(&page->lru, &pages_to_free);
a222f341
KT
1903 } else {
1904 nr_moved += nr_pages;
66635629
MG
1905 }
1906 }
66635629 1907
3f79768f
HD
1908 /*
1909 * To save our caller's stack, now use input list for pages to free.
1910 */
a222f341
KT
1911 list_splice(&pages_to_free, list);
1912
1913 return nr_moved;
66635629
MG
1914}
1915
399ba0b9
N
1916/*
1917 * If a kernel thread (such as nfsd for loop-back mounts) services
1918 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1919 * In that case we should only throttle if the backing device it is
1920 * writing to is congested. In other cases it is safe to throttle.
1921 */
1922static int current_may_throttle(void)
1923{
1924 return !(current->flags & PF_LESS_THROTTLE) ||
1925 current->backing_dev_info == NULL ||
1926 bdi_write_congested(current->backing_dev_info);
1927}
1928
1da177e4 1929/*
b2e18757 1930 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1931 * of reclaimed pages
1da177e4 1932 */
66635629 1933static noinline_for_stack unsigned long
1a93be0e 1934shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1935 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1936{
1937 LIST_HEAD(page_list);
e247dbce 1938 unsigned long nr_scanned;
05ff5137 1939 unsigned long nr_reclaimed = 0;
e247dbce 1940 unsigned long nr_taken;
060f005f 1941 struct reclaim_stat stat;
3cb99451 1942 int file = is_file_lru(lru);
f46b7912 1943 enum vm_event_item item;
599d0c95 1944 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1945 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
db73ee0d 1946 bool stalled = false;
78dc583d 1947
599d0c95 1948 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
1949 if (stalled)
1950 return 0;
1951
1952 /* wait a bit for the reclaimer. */
1953 msleep(100);
1954 stalled = true;
35cd7815
RR
1955
1956 /* We are about to die and free our memory. Return now. */
1957 if (fatal_signal_pending(current))
1958 return SWAP_CLUSTER_MAX;
1959 }
1960
1da177e4 1961 lru_add_drain();
f80c0673 1962
599d0c95 1963 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1964
5dc35979 1965 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 1966 &nr_scanned, sc, lru);
95d918fc 1967
599d0c95 1968 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1969 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1970
f46b7912 1971 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
b5ead35e 1972 if (!cgroup_reclaim(sc))
f46b7912
KT
1973 __count_vm_events(item, nr_scanned);
1974 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
599d0c95 1975 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1976
d563c050 1977 if (nr_taken == 0)
66635629 1978 return 0;
5ad333eb 1979
a128ca71 1980 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
3c710c1a 1981 &stat, false);
c661b078 1982
599d0c95 1983 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1984
f46b7912 1985 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
b5ead35e 1986 if (!cgroup_reclaim(sc))
f46b7912
KT
1987 __count_vm_events(item, nr_reclaimed);
1988 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
b17f18af
KT
1989 reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
1990 reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
a74609fa 1991
a222f341 1992 move_pages_to_lru(lruvec, &page_list);
3f79768f 1993
599d0c95 1994 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1995
599d0c95 1996 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1997
747db954 1998 mem_cgroup_uncharge_list(&page_list);
2d4894b5 1999 free_unref_page_list(&page_list);
e11da5b4 2000
1c610d5f
AR
2001 /*
2002 * If dirty pages are scanned that are not queued for IO, it
2003 * implies that flushers are not doing their job. This can
2004 * happen when memory pressure pushes dirty pages to the end of
2005 * the LRU before the dirty limits are breached and the dirty
2006 * data has expired. It can also happen when the proportion of
2007 * dirty pages grows not through writes but through memory
2008 * pressure reclaiming all the clean cache. And in some cases,
2009 * the flushers simply cannot keep up with the allocation
2010 * rate. Nudge the flusher threads in case they are asleep.
2011 */
2012 if (stat.nr_unqueued_dirty == nr_taken)
2013 wakeup_flusher_threads(WB_REASON_VMSCAN);
2014
d108c772
AR
2015 sc->nr.dirty += stat.nr_dirty;
2016 sc->nr.congested += stat.nr_congested;
2017 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2018 sc->nr.writeback += stat.nr_writeback;
2019 sc->nr.immediate += stat.nr_immediate;
2020 sc->nr.taken += nr_taken;
2021 if (file)
2022 sc->nr.file_taken += nr_taken;
8e950282 2023
599d0c95 2024 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2025 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2026 return nr_reclaimed;
1da177e4
LT
2027}
2028
f626012d 2029static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2030 struct lruvec *lruvec,
f16015fb 2031 struct scan_control *sc,
9e3b2f8c 2032 enum lru_list lru)
1da177e4 2033{
44c241f1 2034 unsigned long nr_taken;
f626012d 2035 unsigned long nr_scanned;
6fe6b7e3 2036 unsigned long vm_flags;
1da177e4 2037 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2038 LIST_HEAD(l_active);
b69408e8 2039 LIST_HEAD(l_inactive);
1da177e4 2040 struct page *page;
1a93be0e 2041 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
9d998b4f
MH
2042 unsigned nr_deactivate, nr_activate;
2043 unsigned nr_rotated = 0;
3cb99451 2044 int file = is_file_lru(lru);
599d0c95 2045 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2046
2047 lru_add_drain();
f80c0673 2048
599d0c95 2049 spin_lock_irq(&pgdat->lru_lock);
925b7673 2050
5dc35979 2051 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2052 &nr_scanned, sc, lru);
89b5fae5 2053
599d0c95 2054 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 2055 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 2056
599d0c95 2057 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2058 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2059
599d0c95 2060 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 2061
1da177e4
LT
2062 while (!list_empty(&l_hold)) {
2063 cond_resched();
2064 page = lru_to_page(&l_hold);
2065 list_del(&page->lru);
7e9cd484 2066
39b5f29a 2067 if (unlikely(!page_evictable(page))) {
894bc310
LS
2068 putback_lru_page(page);
2069 continue;
2070 }
2071
cc715d99
MG
2072 if (unlikely(buffer_heads_over_limit)) {
2073 if (page_has_private(page) && trylock_page(page)) {
2074 if (page_has_private(page))
2075 try_to_release_page(page, 0);
2076 unlock_page(page);
2077 }
2078 }
2079
c3ac9a8a
JW
2080 if (page_referenced(page, 0, sc->target_mem_cgroup,
2081 &vm_flags)) {
9992af10 2082 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
2083 /*
2084 * Identify referenced, file-backed active pages and
2085 * give them one more trip around the active list. So
2086 * that executable code get better chances to stay in
2087 * memory under moderate memory pressure. Anon pages
2088 * are not likely to be evicted by use-once streaming
2089 * IO, plus JVM can create lots of anon VM_EXEC pages,
2090 * so we ignore them here.
2091 */
41e20983 2092 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
2093 list_add(&page->lru, &l_active);
2094 continue;
2095 }
2096 }
7e9cd484 2097
5205e56e 2098 ClearPageActive(page); /* we are de-activating */
1899ad18 2099 SetPageWorkingset(page);
1da177e4
LT
2100 list_add(&page->lru, &l_inactive);
2101 }
2102
b555749a 2103 /*
8cab4754 2104 * Move pages back to the lru list.
b555749a 2105 */
599d0c95 2106 spin_lock_irq(&pgdat->lru_lock);
556adecb 2107 /*
8cab4754
WF
2108 * Count referenced pages from currently used mappings as rotated,
2109 * even though only some of them are actually re-activated. This
2110 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 2111 * get_scan_count.
7e9cd484 2112 */
b7c46d15 2113 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 2114
a222f341
KT
2115 nr_activate = move_pages_to_lru(lruvec, &l_active);
2116 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
f372d89e
KT
2117 /* Keep all free pages in l_active list */
2118 list_splice(&l_inactive, &l_active);
9851ac13
KT
2119
2120 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2121 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2122
599d0c95
MG
2123 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2124 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 2125
f372d89e
KT
2126 mem_cgroup_uncharge_list(&l_active);
2127 free_unref_page_list(&l_active);
9d998b4f
MH
2128 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2129 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2130}
2131
1a4e58cc
MK
2132unsigned long reclaim_pages(struct list_head *page_list)
2133{
2134 int nid = -1;
2135 unsigned long nr_reclaimed = 0;
2136 LIST_HEAD(node_page_list);
2137 struct reclaim_stat dummy_stat;
2138 struct page *page;
2139 struct scan_control sc = {
2140 .gfp_mask = GFP_KERNEL,
2141 .priority = DEF_PRIORITY,
2142 .may_writepage = 1,
2143 .may_unmap = 1,
2144 .may_swap = 1,
2145 };
2146
2147 while (!list_empty(page_list)) {
2148 page = lru_to_page(page_list);
2149 if (nid == -1) {
2150 nid = page_to_nid(page);
2151 INIT_LIST_HEAD(&node_page_list);
2152 }
2153
2154 if (nid == page_to_nid(page)) {
2155 ClearPageActive(page);
2156 list_move(&page->lru, &node_page_list);
2157 continue;
2158 }
2159
2160 nr_reclaimed += shrink_page_list(&node_page_list,
2161 NODE_DATA(nid),
2162 &sc, 0,
2163 &dummy_stat, false);
2164 while (!list_empty(&node_page_list)) {
2165 page = lru_to_page(&node_page_list);
2166 list_del(&page->lru);
2167 putback_lru_page(page);
2168 }
2169
2170 nid = -1;
2171 }
2172
2173 if (!list_empty(&node_page_list)) {
2174 nr_reclaimed += shrink_page_list(&node_page_list,
2175 NODE_DATA(nid),
2176 &sc, 0,
2177 &dummy_stat, false);
2178 while (!list_empty(&node_page_list)) {
2179 page = lru_to_page(&node_page_list);
2180 list_del(&page->lru);
2181 putback_lru_page(page);
2182 }
2183 }
2184
2185 return nr_reclaimed;
2186}
2187
59dc76b0
RR
2188/*
2189 * The inactive anon list should be small enough that the VM never has
2190 * to do too much work.
14797e23 2191 *
59dc76b0
RR
2192 * The inactive file list should be small enough to leave most memory
2193 * to the established workingset on the scan-resistant active list,
2194 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2195 *
59dc76b0
RR
2196 * Both inactive lists should also be large enough that each inactive
2197 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2198 *
2a2e4885
JW
2199 * If that fails and refaulting is observed, the inactive list grows.
2200 *
59dc76b0 2201 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2202 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2203 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2204 *
59dc76b0
RR
2205 * total target max
2206 * memory ratio inactive
2207 * -------------------------------------
2208 * 10MB 1 5MB
2209 * 100MB 1 50MB
2210 * 1GB 3 250MB
2211 * 10GB 10 0.9GB
2212 * 100GB 31 3GB
2213 * 1TB 101 10GB
2214 * 10TB 320 32GB
56e49d21 2215 */
f8d1a311 2216static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2c012a4a 2217 struct scan_control *sc, bool trace)
56e49d21 2218{
fd538803 2219 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2a2e4885
JW
2220 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2221 enum lru_list inactive_lru = file * LRU_FILE;
2222 unsigned long inactive, active;
2223 unsigned long inactive_ratio;
2224 unsigned long refaults;
59dc76b0 2225 unsigned long gb;
e3790144 2226
fd538803
MH
2227 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2228 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
f8d1a311 2229
2a2e4885
JW
2230 /*
2231 * When refaults are being observed, it means a new workingset
2232 * is being established. Disable active list protection to get
2233 * rid of the stale workingset quickly.
2234 */
205b20cc 2235 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2c012a4a 2236 if (file && lruvec->refaults != refaults) {
2a2e4885
JW
2237 inactive_ratio = 0;
2238 } else {
2239 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2240 if (gb)
2241 inactive_ratio = int_sqrt(10 * gb);
2242 else
2243 inactive_ratio = 1;
2244 }
59dc76b0 2245
2c012a4a 2246 if (trace)
2a2e4885
JW
2247 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2248 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2249 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2250 inactive_ratio, file);
fd538803 2251
59dc76b0 2252 return inactive * inactive_ratio < active;
b39415b2
RR
2253}
2254
4f98a2fe 2255static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
3b991208 2256 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 2257{
b39415b2 2258 if (is_active_lru(lru)) {
3b991208 2259 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
1a93be0e 2260 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
2261 return 0;
2262 }
2263
1a93be0e 2264 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
2265}
2266
9a265114
JW
2267enum scan_balance {
2268 SCAN_EQUAL,
2269 SCAN_FRACT,
2270 SCAN_ANON,
2271 SCAN_FILE,
2272};
2273
4f98a2fe
RR
2274/*
2275 * Determine how aggressively the anon and file LRU lists should be
2276 * scanned. The relative value of each set of LRU lists is determined
2277 * by looking at the fraction of the pages scanned we did rotate back
2278 * onto the active list instead of evict.
2279 *
be7bd59d
WL
2280 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2281 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2282 */
33377678 2283static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
f87bccde 2284 struct scan_control *sc, unsigned long *nr)
4f98a2fe 2285{
33377678 2286 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2287 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2288 u64 fraction[2];
2289 u64 denominator = 0; /* gcc */
599d0c95 2290 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2291 unsigned long anon_prio, file_prio;
9a265114 2292 enum scan_balance scan_balance;
0bf1457f 2293 unsigned long anon, file;
4f98a2fe 2294 unsigned long ap, fp;
4111304d 2295 enum lru_list lru;
76a33fc3
SL
2296
2297 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2298 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2299 scan_balance = SCAN_FILE;
76a33fc3
SL
2300 goto out;
2301 }
4f98a2fe 2302
10316b31
JW
2303 /*
2304 * Global reclaim will swap to prevent OOM even with no
2305 * swappiness, but memcg users want to use this knob to
2306 * disable swapping for individual groups completely when
2307 * using the memory controller's swap limit feature would be
2308 * too expensive.
2309 */
b5ead35e 2310 if (cgroup_reclaim(sc) && !swappiness) {
9a265114 2311 scan_balance = SCAN_FILE;
10316b31
JW
2312 goto out;
2313 }
2314
2315 /*
2316 * Do not apply any pressure balancing cleverness when the
2317 * system is close to OOM, scan both anon and file equally
2318 * (unless the swappiness setting disagrees with swapping).
2319 */
02695175 2320 if (!sc->priority && swappiness) {
9a265114 2321 scan_balance = SCAN_EQUAL;
10316b31
JW
2322 goto out;
2323 }
2324
62376251
JW
2325 /*
2326 * Prevent the reclaimer from falling into the cache trap: as
2327 * cache pages start out inactive, every cache fault will tip
2328 * the scan balance towards the file LRU. And as the file LRU
2329 * shrinks, so does the window for rotation from references.
2330 * This means we have a runaway feedback loop where a tiny
2331 * thrashing file LRU becomes infinitely more attractive than
2332 * anon pages. Try to detect this based on file LRU size.
2333 */
b5ead35e 2334 if (!cgroup_reclaim(sc)) {
599d0c95
MG
2335 unsigned long pgdatfile;
2336 unsigned long pgdatfree;
2337 int z;
2338 unsigned long total_high_wmark = 0;
2ab051e1 2339
599d0c95
MG
2340 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2341 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2342 node_page_state(pgdat, NR_INACTIVE_FILE);
2343
2344 for (z = 0; z < MAX_NR_ZONES; z++) {
2345 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2346 if (!managed_zone(zone))
599d0c95
MG
2347 continue;
2348
2349 total_high_wmark += high_wmark_pages(zone);
2350 }
62376251 2351
599d0c95 2352 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
06226226
DR
2353 /*
2354 * Force SCAN_ANON if there are enough inactive
2355 * anonymous pages on the LRU in eligible zones.
2356 * Otherwise, the small LRU gets thrashed.
2357 */
3b991208 2358 if (!inactive_list_is_low(lruvec, false, sc, false) &&
06226226
DR
2359 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2360 >> sc->priority) {
2361 scan_balance = SCAN_ANON;
2362 goto out;
2363 }
62376251
JW
2364 }
2365 }
2366
7c5bd705 2367 /*
316bda0e
VD
2368 * If there is enough inactive page cache, i.e. if the size of the
2369 * inactive list is greater than that of the active list *and* the
2370 * inactive list actually has some pages to scan on this priority, we
2371 * do not reclaim anything from the anonymous working set right now.
2372 * Without the second condition we could end up never scanning an
2373 * lruvec even if it has plenty of old anonymous pages unless the
2374 * system is under heavy pressure.
7c5bd705 2375 */
3b991208 2376 if (!inactive_list_is_low(lruvec, true, sc, false) &&
71ab6cfe 2377 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
9a265114 2378 scan_balance = SCAN_FILE;
7c5bd705
JW
2379 goto out;
2380 }
2381
9a265114
JW
2382 scan_balance = SCAN_FRACT;
2383
58c37f6e
KM
2384 /*
2385 * With swappiness at 100, anonymous and file have the same priority.
2386 * This scanning priority is essentially the inverse of IO cost.
2387 */
02695175 2388 anon_prio = swappiness;
75b00af7 2389 file_prio = 200 - anon_prio;
58c37f6e 2390
4f98a2fe
RR
2391 /*
2392 * OK, so we have swap space and a fair amount of page cache
2393 * pages. We use the recently rotated / recently scanned
2394 * ratios to determine how valuable each cache is.
2395 *
2396 * Because workloads change over time (and to avoid overflow)
2397 * we keep these statistics as a floating average, which ends
2398 * up weighing recent references more than old ones.
2399 *
2400 * anon in [0], file in [1]
2401 */
2ab051e1 2402
fd538803
MH
2403 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2404 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2405 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2406 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2ab051e1 2407
599d0c95 2408 spin_lock_irq(&pgdat->lru_lock);
6e901571 2409 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2410 reclaim_stat->recent_scanned[0] /= 2;
2411 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2412 }
2413
6e901571 2414 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2415 reclaim_stat->recent_scanned[1] /= 2;
2416 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2417 }
2418
4f98a2fe 2419 /*
00d8089c
RR
2420 * The amount of pressure on anon vs file pages is inversely
2421 * proportional to the fraction of recently scanned pages on
2422 * each list that were recently referenced and in active use.
4f98a2fe 2423 */
fe35004f 2424 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2425 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2426
fe35004f 2427 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2428 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2429 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2430
76a33fc3
SL
2431 fraction[0] = ap;
2432 fraction[1] = fp;
2433 denominator = ap + fp + 1;
2434out:
688035f7
JW
2435 for_each_evictable_lru(lru) {
2436 int file = is_file_lru(lru);
9783aa99 2437 unsigned long lruvec_size;
688035f7 2438 unsigned long scan;
1bc63fb1 2439 unsigned long protection;
9783aa99
CD
2440
2441 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
1bc63fb1
CD
2442 protection = mem_cgroup_protection(memcg,
2443 sc->memcg_low_reclaim);
9783aa99 2444
1bc63fb1 2445 if (protection) {
9783aa99
CD
2446 /*
2447 * Scale a cgroup's reclaim pressure by proportioning
2448 * its current usage to its memory.low or memory.min
2449 * setting.
2450 *
2451 * This is important, as otherwise scanning aggression
2452 * becomes extremely binary -- from nothing as we
2453 * approach the memory protection threshold, to totally
2454 * nominal as we exceed it. This results in requiring
2455 * setting extremely liberal protection thresholds. It
2456 * also means we simply get no protection at all if we
2457 * set it too low, which is not ideal.
1bc63fb1
CD
2458 *
2459 * If there is any protection in place, we reduce scan
2460 * pressure by how much of the total memory used is
2461 * within protection thresholds.
9783aa99 2462 *
9de7ca46
CD
2463 * There is one special case: in the first reclaim pass,
2464 * we skip over all groups that are within their low
2465 * protection. If that fails to reclaim enough pages to
2466 * satisfy the reclaim goal, we come back and override
2467 * the best-effort low protection. However, we still
2468 * ideally want to honor how well-behaved groups are in
2469 * that case instead of simply punishing them all
2470 * equally. As such, we reclaim them based on how much
1bc63fb1
CD
2471 * memory they are using, reducing the scan pressure
2472 * again by how much of the total memory used is under
2473 * hard protection.
9783aa99 2474 */
1bc63fb1
CD
2475 unsigned long cgroup_size = mem_cgroup_size(memcg);
2476
2477 /* Avoid TOCTOU with earlier protection check */
2478 cgroup_size = max(cgroup_size, protection);
2479
2480 scan = lruvec_size - lruvec_size * protection /
2481 cgroup_size;
9783aa99
CD
2482
2483 /*
1bc63fb1 2484 * Minimally target SWAP_CLUSTER_MAX pages to keep
9de7ca46
CD
2485 * reclaim moving forwards, avoiding decremeting
2486 * sc->priority further than desirable.
9783aa99 2487 */
1bc63fb1 2488 scan = max(scan, SWAP_CLUSTER_MAX);
9783aa99
CD
2489 } else {
2490 scan = lruvec_size;
2491 }
2492
2493 scan >>= sc->priority;
6b4f7799 2494
688035f7
JW
2495 /*
2496 * If the cgroup's already been deleted, make sure to
2497 * scrape out the remaining cache.
2498 */
2499 if (!scan && !mem_cgroup_online(memcg))
9783aa99 2500 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
6b4f7799 2501
688035f7
JW
2502 switch (scan_balance) {
2503 case SCAN_EQUAL:
2504 /* Scan lists relative to size */
2505 break;
2506 case SCAN_FRACT:
9a265114 2507 /*
688035f7
JW
2508 * Scan types proportional to swappiness and
2509 * their relative recent reclaim efficiency.
68600f62
RG
2510 * Make sure we don't miss the last page
2511 * because of a round-off error.
9a265114 2512 */
68600f62
RG
2513 scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2514 denominator);
688035f7
JW
2515 break;
2516 case SCAN_FILE:
2517 case SCAN_ANON:
2518 /* Scan one type exclusively */
2519 if ((scan_balance == SCAN_FILE) != file) {
9783aa99 2520 lruvec_size = 0;
688035f7
JW
2521 scan = 0;
2522 }
2523 break;
2524 default:
2525 /* Look ma, no brain */
2526 BUG();
9a265114 2527 }
688035f7 2528
688035f7 2529 nr[lru] = scan;
76a33fc3 2530 }
6e08a369 2531}
4f98a2fe 2532
9b4f98cd 2533/*
a9dd0a83 2534 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
9b4f98cd 2535 */
a9dd0a83 2536static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
f87bccde 2537 struct scan_control *sc)
9b4f98cd 2538{
867e5e1d 2539 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
9b4f98cd 2540 unsigned long nr[NR_LRU_LISTS];
e82e0561 2541 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2542 unsigned long nr_to_scan;
2543 enum lru_list lru;
2544 unsigned long nr_reclaimed = 0;
2545 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2546 struct blk_plug plug;
1a501907 2547 bool scan_adjusted;
9b4f98cd 2548
f87bccde 2549 get_scan_count(lruvec, memcg, sc, nr);
9b4f98cd 2550
e82e0561
MG
2551 /* Record the original scan target for proportional adjustments later */
2552 memcpy(targets, nr, sizeof(nr));
2553
1a501907
MG
2554 /*
2555 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2556 * event that can occur when there is little memory pressure e.g.
2557 * multiple streaming readers/writers. Hence, we do not abort scanning
2558 * when the requested number of pages are reclaimed when scanning at
2559 * DEF_PRIORITY on the assumption that the fact we are direct
2560 * reclaiming implies that kswapd is not keeping up and it is best to
2561 * do a batch of work at once. For memcg reclaim one check is made to
2562 * abort proportional reclaim if either the file or anon lru has already
2563 * dropped to zero at the first pass.
2564 */
b5ead35e 2565 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
1a501907
MG
2566 sc->priority == DEF_PRIORITY);
2567
9b4f98cd
JW
2568 blk_start_plug(&plug);
2569 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2570 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2571 unsigned long nr_anon, nr_file, percentage;
2572 unsigned long nr_scanned;
2573
9b4f98cd
JW
2574 for_each_evictable_lru(lru) {
2575 if (nr[lru]) {
2576 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2577 nr[lru] -= nr_to_scan;
2578
2579 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2580 lruvec, sc);
9b4f98cd
JW
2581 }
2582 }
e82e0561 2583
bd041733
MH
2584 cond_resched();
2585
e82e0561
MG
2586 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2587 continue;
2588
e82e0561
MG
2589 /*
2590 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2591 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2592 * proportionally what was requested by get_scan_count(). We
2593 * stop reclaiming one LRU and reduce the amount scanning
2594 * proportional to the original scan target.
2595 */
2596 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2597 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2598
1a501907
MG
2599 /*
2600 * It's just vindictive to attack the larger once the smaller
2601 * has gone to zero. And given the way we stop scanning the
2602 * smaller below, this makes sure that we only make one nudge
2603 * towards proportionality once we've got nr_to_reclaim.
2604 */
2605 if (!nr_file || !nr_anon)
2606 break;
2607
e82e0561
MG
2608 if (nr_file > nr_anon) {
2609 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2610 targets[LRU_ACTIVE_ANON] + 1;
2611 lru = LRU_BASE;
2612 percentage = nr_anon * 100 / scan_target;
2613 } else {
2614 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2615 targets[LRU_ACTIVE_FILE] + 1;
2616 lru = LRU_FILE;
2617 percentage = nr_file * 100 / scan_target;
2618 }
2619
2620 /* Stop scanning the smaller of the LRU */
2621 nr[lru] = 0;
2622 nr[lru + LRU_ACTIVE] = 0;
2623
2624 /*
2625 * Recalculate the other LRU scan count based on its original
2626 * scan target and the percentage scanning already complete
2627 */
2628 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2629 nr_scanned = targets[lru] - nr[lru];
2630 nr[lru] = targets[lru] * (100 - percentage) / 100;
2631 nr[lru] -= min(nr[lru], nr_scanned);
2632
2633 lru += LRU_ACTIVE;
2634 nr_scanned = targets[lru] - nr[lru];
2635 nr[lru] = targets[lru] * (100 - percentage) / 100;
2636 nr[lru] -= min(nr[lru], nr_scanned);
2637
2638 scan_adjusted = true;
9b4f98cd
JW
2639 }
2640 blk_finish_plug(&plug);
2641 sc->nr_reclaimed += nr_reclaimed;
2642
2643 /*
2644 * Even if we did not try to evict anon pages at all, we want to
2645 * rebalance the anon lru active/inactive ratio.
2646 */
a1086291 2647 if (total_swap_pages && inactive_list_is_low(lruvec, false, sc, true))
9b4f98cd
JW
2648 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2649 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2650}
2651
23b9da55 2652/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2653static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2654{
d84da3f9 2655 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2656 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2657 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2658 return true;
2659
2660 return false;
2661}
2662
3e7d3449 2663/*
23b9da55
MG
2664 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2665 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2666 * true if more pages should be reclaimed such that when the page allocator
2667 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2668 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2669 */
a9dd0a83 2670static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449 2671 unsigned long nr_reclaimed,
3e7d3449
MG
2672 struct scan_control *sc)
2673{
2674 unsigned long pages_for_compaction;
2675 unsigned long inactive_lru_pages;
a9dd0a83 2676 int z;
3e7d3449
MG
2677
2678 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2679 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2680 return false;
2681
5ee04716
VB
2682 /*
2683 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2684 * number of pages that were scanned. This will return to the caller
2685 * with the risk reclaim/compaction and the resulting allocation attempt
2686 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2687 * allocations through requiring that the full LRU list has been scanned
2688 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2689 * scan, but that approximation was wrong, and there were corner cases
2690 * where always a non-zero amount of pages were scanned.
2691 */
2692 if (!nr_reclaimed)
2693 return false;
3e7d3449 2694
3e7d3449 2695 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2696 for (z = 0; z <= sc->reclaim_idx; z++) {
2697 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2698 if (!managed_zone(zone))
a9dd0a83
MG
2699 continue;
2700
2701 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2702 case COMPACT_SUCCESS:
a9dd0a83
MG
2703 case COMPACT_CONTINUE:
2704 return false;
2705 default:
2706 /* check next zone */
2707 ;
2708 }
3e7d3449 2709 }
1c6c1597
HD
2710
2711 /*
2712 * If we have not reclaimed enough pages for compaction and the
2713 * inactive lists are large enough, continue reclaiming
2714 */
2715 pages_for_compaction = compact_gap(sc->order);
2716 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2717 if (get_nr_swap_pages() > 0)
2718 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2719
5ee04716 2720 return inactive_lru_pages > pages_for_compaction;
3e7d3449
MG
2721}
2722
e3c1ac58
AR
2723static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2724{
2725 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2726 (memcg && memcg_congested(pgdat, memcg));
2727}
2728
970a39a3 2729static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2730{
cb731d6c 2731 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2732 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2733 bool reclaimable = false;
1da177e4 2734
9b4f98cd
JW
2735 do {
2736 struct mem_cgroup *root = sc->target_mem_cgroup;
694fbc0f 2737 struct mem_cgroup *memcg;
3e7d3449 2738
d108c772
AR
2739 memset(&sc->nr, 0, sizeof(sc->nr));
2740
9b4f98cd
JW
2741 nr_reclaimed = sc->nr_reclaimed;
2742 nr_scanned = sc->nr_scanned;
1da177e4 2743
1ba6fc9a 2744 memcg = mem_cgroup_iter(root, NULL, NULL);
694fbc0f 2745 do {
8e8ae645 2746 unsigned long reclaimed;
cb731d6c 2747 unsigned long scanned;
5660048c 2748
bf8d5d52
RG
2749 switch (mem_cgroup_protected(root, memcg)) {
2750 case MEMCG_PROT_MIN:
2751 /*
2752 * Hard protection.
2753 * If there is no reclaimable memory, OOM.
2754 */
2755 continue;
2756 case MEMCG_PROT_LOW:
2757 /*
2758 * Soft protection.
2759 * Respect the protection only as long as
2760 * there is an unprotected supply
2761 * of reclaimable memory from other cgroups.
2762 */
d6622f63
YX
2763 if (!sc->memcg_low_reclaim) {
2764 sc->memcg_low_skipped = 1;
241994ed 2765 continue;
d6622f63 2766 }
e27be240 2767 memcg_memory_event(memcg, MEMCG_LOW);
bf8d5d52
RG
2768 break;
2769 case MEMCG_PROT_NONE:
9783aa99
CD
2770 /*
2771 * All protection thresholds breached. We may
2772 * still choose to vary the scan pressure
2773 * applied based on by how much the cgroup in
2774 * question has exceeded its protection
2775 * thresholds (see get_scan_count).
2776 */
bf8d5d52 2777 break;
241994ed
JW
2778 }
2779
8e8ae645 2780 reclaimed = sc->nr_reclaimed;
cb731d6c 2781 scanned = sc->nr_scanned;
f87bccde 2782 shrink_node_memcg(pgdat, memcg, sc);
f16015fb 2783
28360f39
MG
2784 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2785 sc->priority);
cb731d6c 2786
8e8ae645
JW
2787 /* Record the group's reclaim efficiency */
2788 vmpressure(sc->gfp_mask, memcg, false,
2789 sc->nr_scanned - scanned,
2790 sc->nr_reclaimed - reclaimed);
2791
1ba6fc9a 2792 } while ((memcg = mem_cgroup_iter(root, memcg, NULL)));
70ddf637 2793
cb731d6c
VD
2794 if (reclaim_state) {
2795 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2796 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2797 }
2798
8e8ae645
JW
2799 /* Record the subtree's reclaim efficiency */
2800 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2801 sc->nr_scanned - nr_scanned,
2802 sc->nr_reclaimed - nr_reclaimed);
2803
2344d7e4
JW
2804 if (sc->nr_reclaimed - nr_reclaimed)
2805 reclaimable = true;
2806
e3c1ac58
AR
2807 if (current_is_kswapd()) {
2808 /*
2809 * If reclaim is isolating dirty pages under writeback,
2810 * it implies that the long-lived page allocation rate
2811 * is exceeding the page laundering rate. Either the
2812 * global limits are not being effective at throttling
2813 * processes due to the page distribution throughout
2814 * zones or there is heavy usage of a slow backing
2815 * device. The only option is to throttle from reclaim
2816 * context which is not ideal as there is no guarantee
2817 * the dirtying process is throttled in the same way
2818 * balance_dirty_pages() manages.
2819 *
2820 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2821 * count the number of pages under pages flagged for
2822 * immediate reclaim and stall if any are encountered
2823 * in the nr_immediate check below.
2824 */
2825 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2826 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 2827
d108c772
AR
2828 /*
2829 * Tag a node as congested if all the dirty pages
2830 * scanned were backed by a congested BDI and
2831 * wait_iff_congested will stall.
2832 */
2833 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2834 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2835
2836 /* Allow kswapd to start writing pages during reclaim.*/
2837 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2838 set_bit(PGDAT_DIRTY, &pgdat->flags);
2839
2840 /*
2841 * If kswapd scans pages marked marked for immediate
2842 * reclaim and under writeback (nr_immediate), it
2843 * implies that pages are cycling through the LRU
2844 * faster than they are written so also forcibly stall.
2845 */
2846 if (sc->nr.immediate)
2847 congestion_wait(BLK_RW_ASYNC, HZ/10);
2848 }
2849
e3c1ac58
AR
2850 /*
2851 * Legacy memcg will stall in page writeback so avoid forcibly
2852 * stalling in wait_iff_congested().
2853 */
b5ead35e 2854 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc) &&
e3c1ac58
AR
2855 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2856 set_memcg_congestion(pgdat, root, true);
2857
d108c772
AR
2858 /*
2859 * Stall direct reclaim for IO completions if underlying BDIs
2860 * and node is congested. Allow kswapd to continue until it
2861 * starts encountering unqueued dirty pages or cycling through
2862 * the LRU too quickly.
2863 */
2864 if (!sc->hibernation_mode && !current_is_kswapd() &&
e3c1ac58
AR
2865 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2866 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
d108c772 2867
a9dd0a83 2868 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
5ee04716 2869 sc));
2344d7e4 2870
c73322d0
JW
2871 /*
2872 * Kswapd gives up on balancing particular nodes after too
2873 * many failures to reclaim anything from them and goes to
2874 * sleep. On reclaim progress, reset the failure counter. A
2875 * successful direct reclaim run will revive a dormant kswapd.
2876 */
2877 if (reclaimable)
2878 pgdat->kswapd_failures = 0;
2879
2344d7e4 2880 return reclaimable;
f16015fb
JW
2881}
2882
53853e2d 2883/*
fdd4c614
VB
2884 * Returns true if compaction should go ahead for a costly-order request, or
2885 * the allocation would already succeed without compaction. Return false if we
2886 * should reclaim first.
53853e2d 2887 */
4f588331 2888static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2889{
31483b6a 2890 unsigned long watermark;
fdd4c614 2891 enum compact_result suitable;
fe4b1b24 2892
fdd4c614
VB
2893 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2894 if (suitable == COMPACT_SUCCESS)
2895 /* Allocation should succeed already. Don't reclaim. */
2896 return true;
2897 if (suitable == COMPACT_SKIPPED)
2898 /* Compaction cannot yet proceed. Do reclaim. */
2899 return false;
fe4b1b24 2900
53853e2d 2901 /*
fdd4c614
VB
2902 * Compaction is already possible, but it takes time to run and there
2903 * are potentially other callers using the pages just freed. So proceed
2904 * with reclaim to make a buffer of free pages available to give
2905 * compaction a reasonable chance of completing and allocating the page.
2906 * Note that we won't actually reclaim the whole buffer in one attempt
2907 * as the target watermark in should_continue_reclaim() is lower. But if
2908 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2909 */
fdd4c614 2910 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2911
fdd4c614 2912 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2913}
2914
1da177e4
LT
2915/*
2916 * This is the direct reclaim path, for page-allocating processes. We only
2917 * try to reclaim pages from zones which will satisfy the caller's allocation
2918 * request.
2919 *
1da177e4
LT
2920 * If a zone is deemed to be full of pinned pages then just give it a light
2921 * scan then give up on it.
2922 */
0a0337e0 2923static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2924{
dd1a239f 2925 struct zoneref *z;
54a6eb5c 2926 struct zone *zone;
0608f43d
AM
2927 unsigned long nr_soft_reclaimed;
2928 unsigned long nr_soft_scanned;
619d0d76 2929 gfp_t orig_mask;
79dafcdc 2930 pg_data_t *last_pgdat = NULL;
1cfb419b 2931
cc715d99
MG
2932 /*
2933 * If the number of buffer_heads in the machine exceeds the maximum
2934 * allowed level, force direct reclaim to scan the highmem zone as
2935 * highmem pages could be pinning lowmem pages storing buffer_heads
2936 */
619d0d76 2937 orig_mask = sc->gfp_mask;
b2e18757 2938 if (buffer_heads_over_limit) {
cc715d99 2939 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2940 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2941 }
cc715d99 2942
d4debc66 2943 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2944 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2945 /*
2946 * Take care memory controller reclaiming has small influence
2947 * to global LRU.
2948 */
b5ead35e 2949 if (!cgroup_reclaim(sc)) {
344736f2
VD
2950 if (!cpuset_zone_allowed(zone,
2951 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2952 continue;
65ec02cb 2953
0b06496a
JW
2954 /*
2955 * If we already have plenty of memory free for
2956 * compaction in this zone, don't free any more.
2957 * Even though compaction is invoked for any
2958 * non-zero order, only frequent costly order
2959 * reclamation is disruptive enough to become a
2960 * noticeable problem, like transparent huge
2961 * page allocations.
2962 */
2963 if (IS_ENABLED(CONFIG_COMPACTION) &&
2964 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2965 compaction_ready(zone, sc)) {
0b06496a
JW
2966 sc->compaction_ready = true;
2967 continue;
e0887c19 2968 }
0b06496a 2969
79dafcdc
MG
2970 /*
2971 * Shrink each node in the zonelist once. If the
2972 * zonelist is ordered by zone (not the default) then a
2973 * node may be shrunk multiple times but in that case
2974 * the user prefers lower zones being preserved.
2975 */
2976 if (zone->zone_pgdat == last_pgdat)
2977 continue;
2978
0608f43d
AM
2979 /*
2980 * This steals pages from memory cgroups over softlimit
2981 * and returns the number of reclaimed pages and
2982 * scanned pages. This works for global memory pressure
2983 * and balancing, not for a memcg's limit.
2984 */
2985 nr_soft_scanned = 0;
ef8f2327 2986 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2987 sc->order, sc->gfp_mask,
2988 &nr_soft_scanned);
2989 sc->nr_reclaimed += nr_soft_reclaimed;
2990 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2991 /* need some check for avoid more shrink_zone() */
1cfb419b 2992 }
408d8544 2993
79dafcdc
MG
2994 /* See comment about same check for global reclaim above */
2995 if (zone->zone_pgdat == last_pgdat)
2996 continue;
2997 last_pgdat = zone->zone_pgdat;
970a39a3 2998 shrink_node(zone->zone_pgdat, sc);
1da177e4 2999 }
e0c23279 3000
619d0d76
WY
3001 /*
3002 * Restore to original mask to avoid the impact on the caller if we
3003 * promoted it to __GFP_HIGHMEM.
3004 */
3005 sc->gfp_mask = orig_mask;
1da177e4 3006}
4f98a2fe 3007
2a2e4885
JW
3008static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
3009{
3010 struct mem_cgroup *memcg;
3011
3012 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
3013 do {
3014 unsigned long refaults;
3015 struct lruvec *lruvec;
3016
867e5e1d 3017 lruvec = mem_cgroup_lruvec(memcg, pgdat);
205b20cc 3018 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2a2e4885
JW
3019 lruvec->refaults = refaults;
3020 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
3021}
3022
1da177e4
LT
3023/*
3024 * This is the main entry point to direct page reclaim.
3025 *
3026 * If a full scan of the inactive list fails to free enough memory then we
3027 * are "out of memory" and something needs to be killed.
3028 *
3029 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3030 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
3031 * caller can't do much about. We kick the writeback threads and take explicit
3032 * naps in the hope that some of these pages can be written. But if the
3033 * allocating task holds filesystem locks which prevent writeout this might not
3034 * work, and the allocation attempt will fail.
a41f24ea
NA
3035 *
3036 * returns: 0, if no pages reclaimed
3037 * else, the number of pages reclaimed
1da177e4 3038 */
dac1d27b 3039static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 3040 struct scan_control *sc)
1da177e4 3041{
241994ed 3042 int initial_priority = sc->priority;
2a2e4885
JW
3043 pg_data_t *last_pgdat;
3044 struct zoneref *z;
3045 struct zone *zone;
241994ed 3046retry:
873b4771
KK
3047 delayacct_freepages_start();
3048
b5ead35e 3049 if (!cgroup_reclaim(sc))
7cc30fcf 3050 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 3051
9e3b2f8c 3052 do {
70ddf637
AV
3053 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3054 sc->priority);
66e1707b 3055 sc->nr_scanned = 0;
0a0337e0 3056 shrink_zones(zonelist, sc);
c6a8a8c5 3057
bb21c7ce 3058 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3059 break;
3060
3061 if (sc->compaction_ready)
3062 break;
1da177e4 3063
0e50ce3b
MK
3064 /*
3065 * If we're getting trouble reclaiming, start doing
3066 * writepage even in laptop mode.
3067 */
3068 if (sc->priority < DEF_PRIORITY - 2)
3069 sc->may_writepage = 1;
0b06496a 3070 } while (--sc->priority >= 0);
bb21c7ce 3071
2a2e4885
JW
3072 last_pgdat = NULL;
3073 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3074 sc->nodemask) {
3075 if (zone->zone_pgdat == last_pgdat)
3076 continue;
3077 last_pgdat = zone->zone_pgdat;
3078 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
e3c1ac58 3079 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2a2e4885
JW
3080 }
3081
873b4771
KK
3082 delayacct_freepages_end();
3083
bb21c7ce
KM
3084 if (sc->nr_reclaimed)
3085 return sc->nr_reclaimed;
3086
0cee34fd 3087 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3088 if (sc->compaction_ready)
7335084d
MG
3089 return 1;
3090
241994ed 3091 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3092 if (sc->memcg_low_skipped) {
241994ed 3093 sc->priority = initial_priority;
d6622f63
YX
3094 sc->memcg_low_reclaim = 1;
3095 sc->memcg_low_skipped = 0;
241994ed
JW
3096 goto retry;
3097 }
3098
bb21c7ce 3099 return 0;
1da177e4
LT
3100}
3101
c73322d0 3102static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3103{
3104 struct zone *zone;
3105 unsigned long pfmemalloc_reserve = 0;
3106 unsigned long free_pages = 0;
3107 int i;
3108 bool wmark_ok;
3109
c73322d0
JW
3110 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3111 return true;
3112
5515061d
MG
3113 for (i = 0; i <= ZONE_NORMAL; i++) {
3114 zone = &pgdat->node_zones[i];
d450abd8
JW
3115 if (!managed_zone(zone))
3116 continue;
3117
3118 if (!zone_reclaimable_pages(zone))
675becce
MG
3119 continue;
3120
5515061d
MG
3121 pfmemalloc_reserve += min_wmark_pages(zone);
3122 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3123 }
3124
675becce
MG
3125 /* If there are no reserves (unexpected config) then do not throttle */
3126 if (!pfmemalloc_reserve)
3127 return true;
3128
5515061d
MG
3129 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3130
3131 /* kswapd must be awake if processes are being throttled */
3132 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 3133 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
3134 (enum zone_type)ZONE_NORMAL);
3135 wake_up_interruptible(&pgdat->kswapd_wait);
3136 }
3137
3138 return wmark_ok;
3139}
3140
3141/*
3142 * Throttle direct reclaimers if backing storage is backed by the network
3143 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3144 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3145 * when the low watermark is reached.
3146 *
3147 * Returns true if a fatal signal was delivered during throttling. If this
3148 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3149 */
50694c28 3150static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3151 nodemask_t *nodemask)
3152{
675becce 3153 struct zoneref *z;
5515061d 3154 struct zone *zone;
675becce 3155 pg_data_t *pgdat = NULL;
5515061d
MG
3156
3157 /*
3158 * Kernel threads should not be throttled as they may be indirectly
3159 * responsible for cleaning pages necessary for reclaim to make forward
3160 * progress. kjournald for example may enter direct reclaim while
3161 * committing a transaction where throttling it could forcing other
3162 * processes to block on log_wait_commit().
3163 */
3164 if (current->flags & PF_KTHREAD)
50694c28
MG
3165 goto out;
3166
3167 /*
3168 * If a fatal signal is pending, this process should not throttle.
3169 * It should return quickly so it can exit and free its memory
3170 */
3171 if (fatal_signal_pending(current))
3172 goto out;
5515061d 3173
675becce
MG
3174 /*
3175 * Check if the pfmemalloc reserves are ok by finding the first node
3176 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3177 * GFP_KERNEL will be required for allocating network buffers when
3178 * swapping over the network so ZONE_HIGHMEM is unusable.
3179 *
3180 * Throttling is based on the first usable node and throttled processes
3181 * wait on a queue until kswapd makes progress and wakes them. There
3182 * is an affinity then between processes waking up and where reclaim
3183 * progress has been made assuming the process wakes on the same node.
3184 * More importantly, processes running on remote nodes will not compete
3185 * for remote pfmemalloc reserves and processes on different nodes
3186 * should make reasonable progress.
3187 */
3188 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3189 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3190 if (zone_idx(zone) > ZONE_NORMAL)
3191 continue;
3192
3193 /* Throttle based on the first usable node */
3194 pgdat = zone->zone_pgdat;
c73322d0 3195 if (allow_direct_reclaim(pgdat))
675becce
MG
3196 goto out;
3197 break;
3198 }
3199
3200 /* If no zone was usable by the allocation flags then do not throttle */
3201 if (!pgdat)
50694c28 3202 goto out;
5515061d 3203
68243e76
MG
3204 /* Account for the throttling */
3205 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3206
5515061d
MG
3207 /*
3208 * If the caller cannot enter the filesystem, it's possible that it
3209 * is due to the caller holding an FS lock or performing a journal
3210 * transaction in the case of a filesystem like ext[3|4]. In this case,
3211 * it is not safe to block on pfmemalloc_wait as kswapd could be
3212 * blocked waiting on the same lock. Instead, throttle for up to a
3213 * second before continuing.
3214 */
3215 if (!(gfp_mask & __GFP_FS)) {
3216 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3217 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
3218
3219 goto check_pending;
5515061d
MG
3220 }
3221
3222 /* Throttle until kswapd wakes the process */
3223 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 3224 allow_direct_reclaim(pgdat));
50694c28
MG
3225
3226check_pending:
3227 if (fatal_signal_pending(current))
3228 return true;
3229
3230out:
3231 return false;
5515061d
MG
3232}
3233
dac1d27b 3234unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3235 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3236{
33906bc5 3237 unsigned long nr_reclaimed;
66e1707b 3238 struct scan_control sc = {
ee814fe2 3239 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3240 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3241 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3242 .order = order,
3243 .nodemask = nodemask,
3244 .priority = DEF_PRIORITY,
66e1707b 3245 .may_writepage = !laptop_mode,
a6dc60f8 3246 .may_unmap = 1,
2e2e4259 3247 .may_swap = 1,
66e1707b
BS
3248 };
3249
bb451fdf
GT
3250 /*
3251 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3252 * Confirm they are large enough for max values.
3253 */
3254 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3255 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3256 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3257
5515061d 3258 /*
50694c28
MG
3259 * Do not enter reclaim if fatal signal was delivered while throttled.
3260 * 1 is returned so that the page allocator does not OOM kill at this
3261 * point.
5515061d 3262 */
f2f43e56 3263 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3264 return 1;
3265
1732d2b0 3266 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3267 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3268
3115cd91 3269 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3270
3271 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 3272 set_task_reclaim_state(current, NULL);
33906bc5
MG
3273
3274 return nr_reclaimed;
66e1707b
BS
3275}
3276
c255a458 3277#ifdef CONFIG_MEMCG
66e1707b 3278
d2e5fb92 3279/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 3280unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3281 gfp_t gfp_mask, bool noswap,
ef8f2327 3282 pg_data_t *pgdat,
0ae5e89c 3283 unsigned long *nr_scanned)
4e416953
BS
3284{
3285 struct scan_control sc = {
b8f5c566 3286 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3287 .target_mem_cgroup = memcg,
4e416953
BS
3288 .may_writepage = !laptop_mode,
3289 .may_unmap = 1,
b2e18757 3290 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3291 .may_swap = !noswap,
4e416953 3292 };
0ae5e89c 3293
d2e5fb92
MH
3294 WARN_ON_ONCE(!current->reclaim_state);
3295
4e416953
BS
3296 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3297 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3298
9e3b2f8c 3299 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3300 sc.gfp_mask);
bdce6d9e 3301
4e416953
BS
3302 /*
3303 * NOTE: Although we can get the priority field, using it
3304 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3305 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3306 * will pick up pages from other mem cgroup's as well. We hack
3307 * the priority and make it zero.
3308 */
f87bccde 3309 shrink_node_memcg(pgdat, memcg, &sc);
bdce6d9e
KM
3310
3311 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3312
0ae5e89c 3313 *nr_scanned = sc.nr_scanned;
0308f7cf 3314
4e416953
BS
3315 return sc.nr_reclaimed;
3316}
3317
72835c86 3318unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3319 unsigned long nr_pages,
a7885eb8 3320 gfp_t gfp_mask,
b70a2a21 3321 bool may_swap)
66e1707b 3322{
bdce6d9e 3323 unsigned long nr_reclaimed;
eb414681 3324 unsigned long pflags;
499118e9 3325 unsigned int noreclaim_flag;
66e1707b 3326 struct scan_control sc = {
b70a2a21 3327 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3328 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3329 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3330 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3331 .target_mem_cgroup = memcg,
3332 .priority = DEF_PRIORITY,
3333 .may_writepage = !laptop_mode,
3334 .may_unmap = 1,
b70a2a21 3335 .may_swap = may_swap,
a09ed5e0 3336 };
889976db 3337 /*
fa40d1ee
SB
3338 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3339 * equal pressure on all the nodes. This is based on the assumption that
3340 * the reclaim does not bail out early.
889976db 3341 */
fa40d1ee 3342 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
889976db 3343
fa40d1ee 3344 set_task_reclaim_state(current, &sc.reclaim_state);
bdce6d9e 3345
3481c37f 3346 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
bdce6d9e 3347
eb414681 3348 psi_memstall_enter(&pflags);
499118e9 3349 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3350
3115cd91 3351 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3352
499118e9 3353 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3354 psi_memstall_leave(&pflags);
bdce6d9e
KM
3355
3356 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 3357 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
3358
3359 return nr_reclaimed;
66e1707b
BS
3360}
3361#endif
3362
1d82de61 3363static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3364 struct scan_control *sc)
f16015fb 3365{
b95a2f2d 3366 struct mem_cgroup *memcg;
f16015fb 3367
b95a2f2d
JW
3368 if (!total_swap_pages)
3369 return;
3370
3371 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3372 do {
867e5e1d 3373 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
b95a2f2d 3374
3b991208 3375 if (inactive_list_is_low(lruvec, false, sc, true))
1a93be0e 3376 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3377 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3378
3379 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3380 } while (memcg);
f16015fb
JW
3381}
3382
1c30844d
MG
3383static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3384{
3385 int i;
3386 struct zone *zone;
3387
3388 /*
3389 * Check for watermark boosts top-down as the higher zones
3390 * are more likely to be boosted. Both watermarks and boosts
3391 * should not be checked at the time time as reclaim would
3392 * start prematurely when there is no boosting and a lower
3393 * zone is balanced.
3394 */
3395 for (i = classzone_idx; i >= 0; i--) {
3396 zone = pgdat->node_zones + i;
3397 if (!managed_zone(zone))
3398 continue;
3399
3400 if (zone->watermark_boost)
3401 return true;
3402 }
3403
3404 return false;
3405}
3406
e716f2eb
MG
3407/*
3408 * Returns true if there is an eligible zone balanced for the request order
3409 * and classzone_idx
3410 */
3411static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
60cefed4 3412{
e716f2eb
MG
3413 int i;
3414 unsigned long mark = -1;
3415 struct zone *zone;
60cefed4 3416
1c30844d
MG
3417 /*
3418 * Check watermarks bottom-up as lower zones are more likely to
3419 * meet watermarks.
3420 */
e716f2eb
MG
3421 for (i = 0; i <= classzone_idx; i++) {
3422 zone = pgdat->node_zones + i;
6256c6b4 3423
e716f2eb
MG
3424 if (!managed_zone(zone))
3425 continue;
3426
3427 mark = high_wmark_pages(zone);
3428 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3429 return true;
3430 }
3431
3432 /*
3433 * If a node has no populated zone within classzone_idx, it does not
3434 * need balancing by definition. This can happen if a zone-restricted
3435 * allocation tries to wake a remote kswapd.
3436 */
3437 if (mark == -1)
3438 return true;
3439
3440 return false;
60cefed4
JW
3441}
3442
631b6e08
MG
3443/* Clear pgdat state for congested, dirty or under writeback. */
3444static void clear_pgdat_congested(pg_data_t *pgdat)
3445{
3446 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3447 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3448 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3449}
3450
5515061d
MG
3451/*
3452 * Prepare kswapd for sleeping. This verifies that there are no processes
3453 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3454 *
3455 * Returns true if kswapd is ready to sleep
3456 */
d9f21d42 3457static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3458{
5515061d 3459 /*
9e5e3661 3460 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3461 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3462 * race between when kswapd checks the watermarks and a process gets
3463 * throttled. There is also a potential race if processes get
3464 * throttled, kswapd wakes, a large process exits thereby balancing the
3465 * zones, which causes kswapd to exit balance_pgdat() before reaching
3466 * the wake up checks. If kswapd is going to sleep, no process should
3467 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3468 * the wake up is premature, processes will wake kswapd and get
3469 * throttled again. The difference from wake ups in balance_pgdat() is
3470 * that here we are under prepare_to_wait().
5515061d 3471 */
9e5e3661
VB
3472 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3473 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3474
c73322d0
JW
3475 /* Hopeless node, leave it to direct reclaim */
3476 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3477 return true;
3478
e716f2eb
MG
3479 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3480 clear_pgdat_congested(pgdat);
3481 return true;
1d82de61
MG
3482 }
3483
333b0a45 3484 return false;
f50de2d3
MG
3485}
3486
75485363 3487/*
1d82de61
MG
3488 * kswapd shrinks a node of pages that are at or below the highest usable
3489 * zone that is currently unbalanced.
b8e83b94
MG
3490 *
3491 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3492 * reclaim or if the lack of progress was due to pages under writeback.
3493 * This is used to determine if the scanning priority needs to be raised.
75485363 3494 */
1d82de61 3495static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3496 struct scan_control *sc)
75485363 3497{
1d82de61
MG
3498 struct zone *zone;
3499 int z;
75485363 3500
1d82de61
MG
3501 /* Reclaim a number of pages proportional to the number of zones */
3502 sc->nr_to_reclaim = 0;
970a39a3 3503 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3504 zone = pgdat->node_zones + z;
6aa303de 3505 if (!managed_zone(zone))
1d82de61 3506 continue;
7c954f6d 3507
1d82de61
MG
3508 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3509 }
7c954f6d
MG
3510
3511 /*
1d82de61
MG
3512 * Historically care was taken to put equal pressure on all zones but
3513 * now pressure is applied based on node LRU order.
7c954f6d 3514 */
970a39a3 3515 shrink_node(pgdat, sc);
283aba9f 3516
7c954f6d 3517 /*
1d82de61
MG
3518 * Fragmentation may mean that the system cannot be rebalanced for
3519 * high-order allocations. If twice the allocation size has been
3520 * reclaimed then recheck watermarks only at order-0 to prevent
3521 * excessive reclaim. Assume that a process requested a high-order
3522 * can direct reclaim/compact.
7c954f6d 3523 */
9861a62c 3524 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3525 sc->order = 0;
7c954f6d 3526
b8e83b94 3527 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3528}
3529
1da177e4 3530/*
1d82de61
MG
3531 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3532 * that are eligible for use by the caller until at least one zone is
3533 * balanced.
1da177e4 3534 *
1d82de61 3535 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3536 *
3537 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3538 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 3539 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
3540 * or lower is eligible for reclaim until at least one usable zone is
3541 * balanced.
1da177e4 3542 */
accf6242 3543static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3544{
1da177e4 3545 int i;
0608f43d
AM
3546 unsigned long nr_soft_reclaimed;
3547 unsigned long nr_soft_scanned;
eb414681 3548 unsigned long pflags;
1c30844d
MG
3549 unsigned long nr_boost_reclaim;
3550 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3551 bool boosted;
1d82de61 3552 struct zone *zone;
179e9639
AM
3553 struct scan_control sc = {
3554 .gfp_mask = GFP_KERNEL,
ee814fe2 3555 .order = order,
a6dc60f8 3556 .may_unmap = 1,
179e9639 3557 };
93781325 3558
1732d2b0 3559 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 3560 psi_memstall_enter(&pflags);
93781325
OS
3561 __fs_reclaim_acquire();
3562
f8891e5e 3563 count_vm_event(PAGEOUTRUN);
1da177e4 3564
1c30844d
MG
3565 /*
3566 * Account for the reclaim boost. Note that the zone boost is left in
3567 * place so that parallel allocations that are near the watermark will
3568 * stall or direct reclaim until kswapd is finished.
3569 */
3570 nr_boost_reclaim = 0;
3571 for (i = 0; i <= classzone_idx; i++) {
3572 zone = pgdat->node_zones + i;
3573 if (!managed_zone(zone))
3574 continue;
3575
3576 nr_boost_reclaim += zone->watermark_boost;
3577 zone_boosts[i] = zone->watermark_boost;
3578 }
3579 boosted = nr_boost_reclaim;
3580
3581restart:
3582 sc.priority = DEF_PRIORITY;
9e3b2f8c 3583 do {
c73322d0 3584 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 3585 bool raise_priority = true;
1c30844d 3586 bool balanced;
93781325 3587 bool ret;
b8e83b94 3588
84c7a777 3589 sc.reclaim_idx = classzone_idx;
1da177e4 3590
86c79f6b 3591 /*
84c7a777
MG
3592 * If the number of buffer_heads exceeds the maximum allowed
3593 * then consider reclaiming from all zones. This has a dual
3594 * purpose -- on 64-bit systems it is expected that
3595 * buffer_heads are stripped during active rotation. On 32-bit
3596 * systems, highmem pages can pin lowmem memory and shrinking
3597 * buffers can relieve lowmem pressure. Reclaim may still not
3598 * go ahead if all eligible zones for the original allocation
3599 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3600 */
3601 if (buffer_heads_over_limit) {
3602 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3603 zone = pgdat->node_zones + i;
6aa303de 3604 if (!managed_zone(zone))
86c79f6b 3605 continue;
cc715d99 3606
970a39a3 3607 sc.reclaim_idx = i;
e1dbeda6 3608 break;
1da177e4 3609 }
1da177e4 3610 }
dafcb73e 3611
86c79f6b 3612 /*
1c30844d
MG
3613 * If the pgdat is imbalanced then ignore boosting and preserve
3614 * the watermarks for a later time and restart. Note that the
3615 * zone watermarks will be still reset at the end of balancing
3616 * on the grounds that the normal reclaim should be enough to
3617 * re-evaluate if boosting is required when kswapd next wakes.
3618 */
3619 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3620 if (!balanced && nr_boost_reclaim) {
3621 nr_boost_reclaim = 0;
3622 goto restart;
3623 }
3624
3625 /*
3626 * If boosting is not active then only reclaim if there are no
3627 * eligible zones. Note that sc.reclaim_idx is not used as
3628 * buffer_heads_over_limit may have adjusted it.
86c79f6b 3629 */
1c30844d 3630 if (!nr_boost_reclaim && balanced)
e716f2eb 3631 goto out;
e1dbeda6 3632
1c30844d
MG
3633 /* Limit the priority of boosting to avoid reclaim writeback */
3634 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3635 raise_priority = false;
3636
3637 /*
3638 * Do not writeback or swap pages for boosted reclaim. The
3639 * intent is to relieve pressure not issue sub-optimal IO
3640 * from reclaim context. If no pages are reclaimed, the
3641 * reclaim will be aborted.
3642 */
3643 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3644 sc.may_swap = !nr_boost_reclaim;
1c30844d 3645
1d82de61
MG
3646 /*
3647 * Do some background aging of the anon list, to give
3648 * pages a chance to be referenced before reclaiming. All
3649 * pages are rotated regardless of classzone as this is
3650 * about consistent aging.
3651 */
ef8f2327 3652 age_active_anon(pgdat, &sc);
1d82de61 3653
b7ea3c41
MG
3654 /*
3655 * If we're getting trouble reclaiming, start doing writepage
3656 * even in laptop mode.
3657 */
047d72c3 3658 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3659 sc.may_writepage = 1;
3660
1d82de61
MG
3661 /* Call soft limit reclaim before calling shrink_node. */
3662 sc.nr_scanned = 0;
3663 nr_soft_scanned = 0;
ef8f2327 3664 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3665 sc.gfp_mask, &nr_soft_scanned);
3666 sc.nr_reclaimed += nr_soft_reclaimed;
3667
1da177e4 3668 /*
1d82de61
MG
3669 * There should be no need to raise the scanning priority if
3670 * enough pages are already being scanned that that high
3671 * watermark would be met at 100% efficiency.
1da177e4 3672 */
970a39a3 3673 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3674 raise_priority = false;
5515061d
MG
3675
3676 /*
3677 * If the low watermark is met there is no need for processes
3678 * to be throttled on pfmemalloc_wait as they should not be
3679 * able to safely make forward progress. Wake them
3680 */
3681 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3682 allow_direct_reclaim(pgdat))
cfc51155 3683 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3684
b8e83b94 3685 /* Check if kswapd should be suspending */
93781325
OS
3686 __fs_reclaim_release();
3687 ret = try_to_freeze();
3688 __fs_reclaim_acquire();
3689 if (ret || kthread_should_stop())
b8e83b94 3690 break;
8357376d 3691
73ce02e9 3692 /*
b8e83b94
MG
3693 * Raise priority if scanning rate is too low or there was no
3694 * progress in reclaiming pages
73ce02e9 3695 */
c73322d0 3696 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
3697 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3698
3699 /*
3700 * If reclaim made no progress for a boost, stop reclaim as
3701 * IO cannot be queued and it could be an infinite loop in
3702 * extreme circumstances.
3703 */
3704 if (nr_boost_reclaim && !nr_reclaimed)
3705 break;
3706
c73322d0 3707 if (raise_priority || !nr_reclaimed)
b8e83b94 3708 sc.priority--;
1d82de61 3709 } while (sc.priority >= 1);
1da177e4 3710
c73322d0
JW
3711 if (!sc.nr_reclaimed)
3712 pgdat->kswapd_failures++;
3713
b8e83b94 3714out:
1c30844d
MG
3715 /* If reclaim was boosted, account for the reclaim done in this pass */
3716 if (boosted) {
3717 unsigned long flags;
3718
3719 for (i = 0; i <= classzone_idx; i++) {
3720 if (!zone_boosts[i])
3721 continue;
3722
3723 /* Increments are under the zone lock */
3724 zone = pgdat->node_zones + i;
3725 spin_lock_irqsave(&zone->lock, flags);
3726 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3727 spin_unlock_irqrestore(&zone->lock, flags);
3728 }
3729
3730 /*
3731 * As there is now likely space, wakeup kcompact to defragment
3732 * pageblocks.
3733 */
3734 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3735 }
3736
2a2e4885 3737 snapshot_refaults(NULL, pgdat);
93781325 3738 __fs_reclaim_release();
eb414681 3739 psi_memstall_leave(&pflags);
1732d2b0 3740 set_task_reclaim_state(current, NULL);
e5ca8071 3741
0abdee2b 3742 /*
1d82de61
MG
3743 * Return the order kswapd stopped reclaiming at as
3744 * prepare_kswapd_sleep() takes it into account. If another caller
3745 * entered the allocator slow path while kswapd was awake, order will
3746 * remain at the higher level.
0abdee2b 3747 */
1d82de61 3748 return sc.order;
1da177e4
LT
3749}
3750
e716f2eb 3751/*
dffcac2c
SB
3752 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3753 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3754 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3755 * after previous reclaim attempt (node is still unbalanced). In that case
3756 * return the zone index of the previous kswapd reclaim cycle.
e716f2eb
MG
3757 */
3758static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
dffcac2c 3759 enum zone_type prev_classzone_idx)
e716f2eb
MG
3760{
3761 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
dffcac2c
SB
3762 return prev_classzone_idx;
3763 return pgdat->kswapd_classzone_idx;
e716f2eb
MG
3764}
3765
38087d9b
MG
3766static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3767 unsigned int classzone_idx)
f0bc0a60
KM
3768{
3769 long remaining = 0;
3770 DEFINE_WAIT(wait);
3771
3772 if (freezing(current) || kthread_should_stop())
3773 return;
3774
3775 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3776
333b0a45
SG
3777 /*
3778 * Try to sleep for a short interval. Note that kcompactd will only be
3779 * woken if it is possible to sleep for a short interval. This is
3780 * deliberate on the assumption that if reclaim cannot keep an
3781 * eligible zone balanced that it's also unlikely that compaction will
3782 * succeed.
3783 */
d9f21d42 3784 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3785 /*
3786 * Compaction records what page blocks it recently failed to
3787 * isolate pages from and skips them in the future scanning.
3788 * When kswapd is going to sleep, it is reasonable to assume
3789 * that pages and compaction may succeed so reset the cache.
3790 */
3791 reset_isolation_suitable(pgdat);
3792
3793 /*
3794 * We have freed the memory, now we should compact it to make
3795 * allocation of the requested order possible.
3796 */
38087d9b 3797 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3798
f0bc0a60 3799 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3800
3801 /*
3802 * If woken prematurely then reset kswapd_classzone_idx and
3803 * order. The values will either be from a wakeup request or
3804 * the previous request that slept prematurely.
3805 */
3806 if (remaining) {
e716f2eb 3807 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b
MG
3808 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3809 }
3810
f0bc0a60
KM
3811 finish_wait(&pgdat->kswapd_wait, &wait);
3812 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3813 }
3814
3815 /*
3816 * After a short sleep, check if it was a premature sleep. If not, then
3817 * go fully to sleep until explicitly woken up.
3818 */
d9f21d42
MG
3819 if (!remaining &&
3820 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3821 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3822
3823 /*
3824 * vmstat counters are not perfectly accurate and the estimated
3825 * value for counters such as NR_FREE_PAGES can deviate from the
3826 * true value by nr_online_cpus * threshold. To avoid the zone
3827 * watermarks being breached while under pressure, we reduce the
3828 * per-cpu vmstat threshold while kswapd is awake and restore
3829 * them before going back to sleep.
3830 */
3831 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3832
3833 if (!kthread_should_stop())
3834 schedule();
3835
f0bc0a60
KM
3836 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3837 } else {
3838 if (remaining)
3839 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3840 else
3841 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3842 }
3843 finish_wait(&pgdat->kswapd_wait, &wait);
3844}
3845
1da177e4
LT
3846/*
3847 * The background pageout daemon, started as a kernel thread
4f98a2fe 3848 * from the init process.
1da177e4
LT
3849 *
3850 * This basically trickles out pages so that we have _some_
3851 * free memory available even if there is no other activity
3852 * that frees anything up. This is needed for things like routing
3853 * etc, where we otherwise might have all activity going on in
3854 * asynchronous contexts that cannot page things out.
3855 *
3856 * If there are applications that are active memory-allocators
3857 * (most normal use), this basically shouldn't matter.
3858 */
3859static int kswapd(void *p)
3860{
e716f2eb
MG
3861 unsigned int alloc_order, reclaim_order;
3862 unsigned int classzone_idx = MAX_NR_ZONES - 1;
1da177e4
LT
3863 pg_data_t *pgdat = (pg_data_t*)p;
3864 struct task_struct *tsk = current;
a70f7302 3865 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3866
174596a0 3867 if (!cpumask_empty(cpumask))
c5f59f08 3868 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3869
3870 /*
3871 * Tell the memory management that we're a "memory allocator",
3872 * and that if we need more memory we should get access to it
3873 * regardless (see "__alloc_pages()"). "kswapd" should
3874 * never get caught in the normal page freeing logic.
3875 *
3876 * (Kswapd normally doesn't need memory anyway, but sometimes
3877 * you need a small amount of memory in order to be able to
3878 * page out something else, and this flag essentially protects
3879 * us from recursively trying to free more memory as we're
3880 * trying to free the first piece of memory in the first place).
3881 */
930d9152 3882 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3883 set_freezable();
1da177e4 3884
e716f2eb
MG
3885 pgdat->kswapd_order = 0;
3886 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3887 for ( ; ; ) {
6f6313d4 3888 bool ret;
3e1d1d28 3889
e716f2eb
MG
3890 alloc_order = reclaim_order = pgdat->kswapd_order;
3891 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3892
38087d9b
MG
3893kswapd_try_sleep:
3894 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3895 classzone_idx);
215ddd66 3896
38087d9b
MG
3897 /* Read the new order and classzone_idx */
3898 alloc_order = reclaim_order = pgdat->kswapd_order;
dffcac2c 3899 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b 3900 pgdat->kswapd_order = 0;
e716f2eb 3901 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3902
8fe23e05
DR
3903 ret = try_to_freeze();
3904 if (kthread_should_stop())
3905 break;
3906
3907 /*
3908 * We can speed up thawing tasks if we don't call balance_pgdat
3909 * after returning from the refrigerator
3910 */
38087d9b
MG
3911 if (ret)
3912 continue;
3913
3914 /*
3915 * Reclaim begins at the requested order but if a high-order
3916 * reclaim fails then kswapd falls back to reclaiming for
3917 * order-0. If that happens, kswapd will consider sleeping
3918 * for the order it finished reclaiming at (reclaim_order)
3919 * but kcompactd is woken to compact for the original
3920 * request (alloc_order).
3921 */
e5146b12
MG
3922 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3923 alloc_order);
38087d9b
MG
3924 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3925 if (reclaim_order < alloc_order)
3926 goto kswapd_try_sleep;
1da177e4 3927 }
b0a8cc58 3928
71abdc15 3929 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
71abdc15 3930
1da177e4
LT
3931 return 0;
3932}
3933
3934/*
5ecd9d40
DR
3935 * A zone is low on free memory or too fragmented for high-order memory. If
3936 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3937 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3938 * has failed or is not needed, still wake up kcompactd if only compaction is
3939 * needed.
1da177e4 3940 */
5ecd9d40
DR
3941void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3942 enum zone_type classzone_idx)
1da177e4
LT
3943{
3944 pg_data_t *pgdat;
3945
6aa303de 3946 if (!managed_zone(zone))
1da177e4
LT
3947 return;
3948
5ecd9d40 3949 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 3950 return;
88f5acf8 3951 pgdat = zone->zone_pgdat;
dffcac2c
SB
3952
3953 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3954 pgdat->kswapd_classzone_idx = classzone_idx;
3955 else
3956 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3957 classzone_idx);
38087d9b 3958 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3959 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3960 return;
e1a55637 3961
5ecd9d40
DR
3962 /* Hopeless node, leave it to direct reclaim if possible */
3963 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
1c30844d
MG
3964 (pgdat_balanced(pgdat, order, classzone_idx) &&
3965 !pgdat_watermark_boosted(pgdat, classzone_idx))) {
5ecd9d40
DR
3966 /*
3967 * There may be plenty of free memory available, but it's too
3968 * fragmented for high-order allocations. Wake up kcompactd
3969 * and rely on compaction_suitable() to determine if it's
3970 * needed. If it fails, it will defer subsequent attempts to
3971 * ratelimit its work.
3972 */
3973 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3974 wakeup_kcompactd(pgdat, order, classzone_idx);
e716f2eb 3975 return;
5ecd9d40 3976 }
88f5acf8 3977
5ecd9d40
DR
3978 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3979 gfp_flags);
8d0986e2 3980 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3981}
3982
c6f37f12 3983#ifdef CONFIG_HIBERNATION
1da177e4 3984/*
7b51755c 3985 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3986 * freed pages.
3987 *
3988 * Rather than trying to age LRUs the aim is to preserve the overall
3989 * LRU order by reclaiming preferentially
3990 * inactive > active > active referenced > active mapped
1da177e4 3991 */
7b51755c 3992unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3993{
d6277db4 3994 struct scan_control sc = {
ee814fe2 3995 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3996 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3997 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3998 .priority = DEF_PRIORITY,
d6277db4 3999 .may_writepage = 1,
ee814fe2
JW
4000 .may_unmap = 1,
4001 .may_swap = 1,
7b51755c 4002 .hibernation_mode = 1,
1da177e4 4003 };
a09ed5e0 4004 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 4005 unsigned long nr_reclaimed;
499118e9 4006 unsigned int noreclaim_flag;
1da177e4 4007
d92a8cfc 4008 fs_reclaim_acquire(sc.gfp_mask);
93781325 4009 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 4010 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 4011
3115cd91 4012 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 4013
1732d2b0 4014 set_task_reclaim_state(current, NULL);
499118e9 4015 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4016 fs_reclaim_release(sc.gfp_mask);
d6277db4 4017
7b51755c 4018 return nr_reclaimed;
1da177e4 4019}
c6f37f12 4020#endif /* CONFIG_HIBERNATION */
1da177e4 4021
1da177e4
LT
4022/* It's optimal to keep kswapds on the same CPUs as their memory, but
4023 not required for correctness. So if the last cpu in a node goes
4024 away, we get changed to run anywhere: as the first one comes back,
4025 restore their cpu bindings. */
517bbed9 4026static int kswapd_cpu_online(unsigned int cpu)
1da177e4 4027{
58c0a4a7 4028 int nid;
1da177e4 4029
517bbed9
SAS
4030 for_each_node_state(nid, N_MEMORY) {
4031 pg_data_t *pgdat = NODE_DATA(nid);
4032 const struct cpumask *mask;
a70f7302 4033
517bbed9 4034 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 4035
517bbed9
SAS
4036 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
4037 /* One of our CPUs online: restore mask */
4038 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4 4039 }
517bbed9 4040 return 0;
1da177e4 4041}
1da177e4 4042
3218ae14
YG
4043/*
4044 * This kswapd start function will be called by init and node-hot-add.
4045 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4046 */
4047int kswapd_run(int nid)
4048{
4049 pg_data_t *pgdat = NODE_DATA(nid);
4050 int ret = 0;
4051
4052 if (pgdat->kswapd)
4053 return 0;
4054
4055 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4056 if (IS_ERR(pgdat->kswapd)) {
4057 /* failure at boot is fatal */
c6202adf 4058 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
4059 pr_err("Failed to start kswapd on node %d\n", nid);
4060 ret = PTR_ERR(pgdat->kswapd);
d72515b8 4061 pgdat->kswapd = NULL;
3218ae14
YG
4062 }
4063 return ret;
4064}
4065
8fe23e05 4066/*
d8adde17 4067 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 4068 * hold mem_hotplug_begin/end().
8fe23e05
DR
4069 */
4070void kswapd_stop(int nid)
4071{
4072 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4073
d8adde17 4074 if (kswapd) {
8fe23e05 4075 kthread_stop(kswapd);
d8adde17
JL
4076 NODE_DATA(nid)->kswapd = NULL;
4077 }
8fe23e05
DR
4078}
4079
1da177e4
LT
4080static int __init kswapd_init(void)
4081{
517bbed9 4082 int nid, ret;
69e05944 4083
1da177e4 4084 swap_setup();
48fb2e24 4085 for_each_node_state(nid, N_MEMORY)
3218ae14 4086 kswapd_run(nid);
517bbed9
SAS
4087 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4088 "mm/vmscan:online", kswapd_cpu_online,
4089 NULL);
4090 WARN_ON(ret < 0);
1da177e4
LT
4091 return 0;
4092}
4093
4094module_init(kswapd_init)
9eeff239
CL
4095
4096#ifdef CONFIG_NUMA
4097/*
a5f5f91d 4098 * Node reclaim mode
9eeff239 4099 *
a5f5f91d 4100 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4101 * the watermarks.
9eeff239 4102 */
a5f5f91d 4103int node_reclaim_mode __read_mostly;
9eeff239 4104
1b2ffb78 4105#define RECLAIM_OFF 0
7d03431c 4106#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 4107#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 4108#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 4109
a92f7126 4110/*
a5f5f91d 4111 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4112 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4113 * a zone.
4114 */
a5f5f91d 4115#define NODE_RECLAIM_PRIORITY 4
a92f7126 4116
9614634f 4117/*
a5f5f91d 4118 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4119 * occur.
4120 */
4121int sysctl_min_unmapped_ratio = 1;
4122
0ff38490
CL
4123/*
4124 * If the number of slab pages in a zone grows beyond this percentage then
4125 * slab reclaim needs to occur.
4126 */
4127int sysctl_min_slab_ratio = 5;
4128
11fb9989 4129static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4130{
11fb9989
MG
4131 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4132 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4133 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4134
4135 /*
4136 * It's possible for there to be more file mapped pages than
4137 * accounted for by the pages on the file LRU lists because
4138 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4139 */
4140 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4141}
4142
4143/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4144static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4145{
d031a157
AM
4146 unsigned long nr_pagecache_reclaimable;
4147 unsigned long delta = 0;
90afa5de
MG
4148
4149 /*
95bbc0c7 4150 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4151 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4152 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4153 * a better estimate
4154 */
a5f5f91d
MG
4155 if (node_reclaim_mode & RECLAIM_UNMAP)
4156 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4157 else
a5f5f91d 4158 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4159
4160 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4161 if (!(node_reclaim_mode & RECLAIM_WRITE))
4162 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4163
4164 /* Watch for any possible underflows due to delta */
4165 if (unlikely(delta > nr_pagecache_reclaimable))
4166 delta = nr_pagecache_reclaimable;
4167
4168 return nr_pagecache_reclaimable - delta;
4169}
4170
9eeff239 4171/*
a5f5f91d 4172 * Try to free up some pages from this node through reclaim.
9eeff239 4173 */
a5f5f91d 4174static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4175{
7fb2d46d 4176 /* Minimum pages needed in order to stay on node */
69e05944 4177 const unsigned long nr_pages = 1 << order;
9eeff239 4178 struct task_struct *p = current;
499118e9 4179 unsigned int noreclaim_flag;
179e9639 4180 struct scan_control sc = {
62b726c1 4181 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4182 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4183 .order = order,
a5f5f91d
MG
4184 .priority = NODE_RECLAIM_PRIORITY,
4185 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4186 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4187 .may_swap = 1,
f2f43e56 4188 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4189 };
9eeff239 4190
132bb8cf
YS
4191 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4192 sc.gfp_mask);
4193
9eeff239 4194 cond_resched();
93781325 4195 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4196 /*
95bbc0c7 4197 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4198 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 4199 * and RECLAIM_UNMAP.
d4f7796e 4200 */
499118e9
VB
4201 noreclaim_flag = memalloc_noreclaim_save();
4202 p->flags |= PF_SWAPWRITE;
1732d2b0 4203 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 4204
a5f5f91d 4205 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 4206 /*
894befec 4207 * Free memory by calling shrink node with increasing
0ff38490
CL
4208 * priorities until we have enough memory freed.
4209 */
0ff38490 4210 do {
970a39a3 4211 shrink_node(pgdat, &sc);
9e3b2f8c 4212 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4213 }
c84db23c 4214
1732d2b0 4215 set_task_reclaim_state(p, NULL);
499118e9
VB
4216 current->flags &= ~PF_SWAPWRITE;
4217 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4218 fs_reclaim_release(sc.gfp_mask);
132bb8cf
YS
4219
4220 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4221
a79311c1 4222 return sc.nr_reclaimed >= nr_pages;
9eeff239 4223}
179e9639 4224
a5f5f91d 4225int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4226{
d773ed6b 4227 int ret;
179e9639
AM
4228
4229 /*
a5f5f91d 4230 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4231 * slab pages if we are over the defined limits.
34aa1330 4232 *
9614634f
CL
4233 * A small portion of unmapped file backed pages is needed for
4234 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4235 * thrown out if the node is overallocated. So we do not reclaim
4236 * if less than a specified percentage of the node is used by
9614634f 4237 * unmapped file backed pages.
179e9639 4238 */
a5f5f91d 4239 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
385386cf 4240 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
a5f5f91d 4241 return NODE_RECLAIM_FULL;
179e9639
AM
4242
4243 /*
d773ed6b 4244 * Do not scan if the allocation should not be delayed.
179e9639 4245 */
d0164adc 4246 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4247 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4248
4249 /*
a5f5f91d 4250 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4251 * have associated processors. This will favor the local processor
4252 * over remote processors and spread off node memory allocations
4253 * as wide as possible.
4254 */
a5f5f91d
MG
4255 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4256 return NODE_RECLAIM_NOSCAN;
d773ed6b 4257
a5f5f91d
MG
4258 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4259 return NODE_RECLAIM_NOSCAN;
fa5e084e 4260
a5f5f91d
MG
4261 ret = __node_reclaim(pgdat, gfp_mask, order);
4262 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4263
24cf7251
MG
4264 if (!ret)
4265 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4266
d773ed6b 4267 return ret;
179e9639 4268}
9eeff239 4269#endif
894bc310 4270
894bc310
LS
4271/*
4272 * page_evictable - test whether a page is evictable
4273 * @page: the page to test
894bc310
LS
4274 *
4275 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 4276 * lists vs unevictable list.
894bc310
LS
4277 *
4278 * Reasons page might not be evictable:
ba9ddf49 4279 * (1) page's mapping marked unevictable
b291f000 4280 * (2) page is part of an mlocked VMA
ba9ddf49 4281 *
894bc310 4282 */
39b5f29a 4283int page_evictable(struct page *page)
894bc310 4284{
e92bb4dd
HY
4285 int ret;
4286
4287 /* Prevent address_space of inode and swap cache from being freed */
4288 rcu_read_lock();
4289 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4290 rcu_read_unlock();
4291 return ret;
894bc310 4292}
89e004ea
LS
4293
4294/**
64e3d12f
KHY
4295 * check_move_unevictable_pages - check pages for evictability and move to
4296 * appropriate zone lru list
4297 * @pvec: pagevec with lru pages to check
89e004ea 4298 *
64e3d12f
KHY
4299 * Checks pages for evictability, if an evictable page is in the unevictable
4300 * lru list, moves it to the appropriate evictable lru list. This function
4301 * should be only used for lru pages.
89e004ea 4302 */
64e3d12f 4303void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4304{
925b7673 4305 struct lruvec *lruvec;
785b99fe 4306 struct pglist_data *pgdat = NULL;
24513264
HD
4307 int pgscanned = 0;
4308 int pgrescued = 0;
4309 int i;
89e004ea 4310
64e3d12f
KHY
4311 for (i = 0; i < pvec->nr; i++) {
4312 struct page *page = pvec->pages[i];
785b99fe 4313 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 4314
24513264 4315 pgscanned++;
785b99fe
MG
4316 if (pagepgdat != pgdat) {
4317 if (pgdat)
4318 spin_unlock_irq(&pgdat->lru_lock);
4319 pgdat = pagepgdat;
4320 spin_lock_irq(&pgdat->lru_lock);
24513264 4321 }
785b99fe 4322 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 4323
24513264
HD
4324 if (!PageLRU(page) || !PageUnevictable(page))
4325 continue;
89e004ea 4326
39b5f29a 4327 if (page_evictable(page)) {
24513264
HD
4328 enum lru_list lru = page_lru_base_type(page);
4329
309381fe 4330 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 4331 ClearPageUnevictable(page);
fa9add64
HD
4332 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4333 add_page_to_lru_list(page, lruvec, lru);
24513264 4334 pgrescued++;
89e004ea 4335 }
24513264 4336 }
89e004ea 4337
785b99fe 4338 if (pgdat) {
24513264
HD
4339 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4340 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 4341 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 4342 }
89e004ea 4343}
64e3d12f 4344EXPORT_SYMBOL_GPL(check_move_unevictable_pages);