]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmscan.c
mm: vmscan: check if kswapd should writepage once per pgdat scan
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
70ddf637 22#include <linux/vmpressure.h>
e129b5c2 23#include <linux/vmstat.h>
1da177e4
LT
24#include <linux/file.h>
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29#include <linux/mm_inline.h>
1da177e4
LT
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
3e7d3449 35#include <linux/compaction.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
248a0301 38#include <linux/delay.h>
3218ae14 39#include <linux/kthread.h>
7dfb7103 40#include <linux/freezer.h>
66e1707b 41#include <linux/memcontrol.h>
873b4771 42#include <linux/delayacct.h>
af936a16 43#include <linux/sysctl.h>
929bea7c 44#include <linux/oom.h>
268bb0ce 45#include <linux/prefetch.h>
1da177e4
LT
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
0f8053a5
NP
52#include "internal.h"
53
33906bc5
MG
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
1da177e4 57struct scan_control {
1da177e4
LT
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
60
a79311c1
RR
61 /* Number of pages freed so far during a call to shrink_zones() */
62 unsigned long nr_reclaimed;
63
22fba335
KM
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
66
7b51755c
KM
67 unsigned long hibernation_mode;
68
1da177e4 69 /* This context's GFP mask */
6daa0e28 70 gfp_t gfp_mask;
1da177e4
LT
71
72 int may_writepage;
73
a6dc60f8
JW
74 /* Can mapped pages be reclaimed? */
75 int may_unmap;
f1fd1067 76
2e2e4259
KM
77 /* Can pages be swapped as part of reclaim? */
78 int may_swap;
79
5ad333eb 80 int order;
66e1707b 81
9e3b2f8c
KK
82 /* Scan (total_size >> priority) pages at once */
83 int priority;
84
f16015fb
JW
85 /*
86 * The memory cgroup that hit its limit and as a result is the
87 * primary target of this reclaim invocation.
88 */
89 struct mem_cgroup *target_mem_cgroup;
66e1707b 90
327c0e96
KH
91 /*
92 * Nodemask of nodes allowed by the caller. If NULL, all nodes
93 * are scanned.
94 */
95 nodemask_t *nodemask;
1da177e4
LT
96};
97
1da177e4
LT
98#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100#ifdef ARCH_HAS_PREFETCH
101#define prefetch_prev_lru_page(_page, _base, _field) \
102 do { \
103 if ((_page)->lru.prev != _base) { \
104 struct page *prev; \
105 \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetch(&prev->_field); \
108 } \
109 } while (0)
110#else
111#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112#endif
113
114#ifdef ARCH_HAS_PREFETCHW
115#define prefetchw_prev_lru_page(_page, _base, _field) \
116 do { \
117 if ((_page)->lru.prev != _base) { \
118 struct page *prev; \
119 \
120 prev = lru_to_page(&(_page->lru)); \
121 prefetchw(&prev->_field); \
122 } \
123 } while (0)
124#else
125#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126#endif
127
128/*
129 * From 0 .. 100. Higher means more swappy.
130 */
131int vm_swappiness = 60;
b21e0b90 132unsigned long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
133
134static LIST_HEAD(shrinker_list);
135static DECLARE_RWSEM(shrinker_rwsem);
136
c255a458 137#ifdef CONFIG_MEMCG
89b5fae5
JW
138static bool global_reclaim(struct scan_control *sc)
139{
f16015fb 140 return !sc->target_mem_cgroup;
89b5fae5 141}
91a45470 142#else
89b5fae5
JW
143static bool global_reclaim(struct scan_control *sc)
144{
145 return true;
146}
91a45470
KH
147#endif
148
4d7dcca2 149static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 150{
c3c787e8 151 if (!mem_cgroup_disabled())
4d7dcca2 152 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 153
074291fe 154 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
155}
156
1da177e4
LT
157/*
158 * Add a shrinker callback to be called from the vm
159 */
8e1f936b 160void register_shrinker(struct shrinker *shrinker)
1da177e4 161{
83aeeada 162 atomic_long_set(&shrinker->nr_in_batch, 0);
8e1f936b
RR
163 down_write(&shrinker_rwsem);
164 list_add_tail(&shrinker->list, &shrinker_list);
165 up_write(&shrinker_rwsem);
1da177e4 166}
8e1f936b 167EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
168
169/*
170 * Remove one
171 */
8e1f936b 172void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
173{
174 down_write(&shrinker_rwsem);
175 list_del(&shrinker->list);
176 up_write(&shrinker_rwsem);
1da177e4 177}
8e1f936b 178EXPORT_SYMBOL(unregister_shrinker);
1da177e4 179
1495f230
YH
180static inline int do_shrinker_shrink(struct shrinker *shrinker,
181 struct shrink_control *sc,
182 unsigned long nr_to_scan)
183{
184 sc->nr_to_scan = nr_to_scan;
185 return (*shrinker->shrink)(shrinker, sc);
186}
187
1da177e4
LT
188#define SHRINK_BATCH 128
189/*
190 * Call the shrink functions to age shrinkable caches
191 *
192 * Here we assume it costs one seek to replace a lru page and that it also
193 * takes a seek to recreate a cache object. With this in mind we age equal
194 * percentages of the lru and ageable caches. This should balance the seeks
195 * generated by these structures.
196 *
183ff22b 197 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
198 * slab to avoid swapping.
199 *
200 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
201 *
202 * `lru_pages' represents the number of on-LRU pages in all the zones which
203 * are eligible for the caller's allocation attempt. It is used for balancing
204 * slab reclaim versus page reclaim.
b15e0905 205 *
206 * Returns the number of slab objects which we shrunk.
1da177e4 207 */
a09ed5e0 208unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 209 unsigned long nr_pages_scanned,
a09ed5e0 210 unsigned long lru_pages)
1da177e4
LT
211{
212 struct shrinker *shrinker;
69e05944 213 unsigned long ret = 0;
1da177e4 214
1495f230
YH
215 if (nr_pages_scanned == 0)
216 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 217
f06590bd
MK
218 if (!down_read_trylock(&shrinker_rwsem)) {
219 /* Assume we'll be able to shrink next time */
220 ret = 1;
221 goto out;
222 }
1da177e4
LT
223
224 list_for_each_entry(shrinker, &shrinker_list, list) {
225 unsigned long long delta;
635697c6
KK
226 long total_scan;
227 long max_pass;
09576073 228 int shrink_ret = 0;
acf92b48
DC
229 long nr;
230 long new_nr;
e9299f50
DC
231 long batch_size = shrinker->batch ? shrinker->batch
232 : SHRINK_BATCH;
1da177e4 233
635697c6
KK
234 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
235 if (max_pass <= 0)
236 continue;
237
acf92b48
DC
238 /*
239 * copy the current shrinker scan count into a local variable
240 * and zero it so that other concurrent shrinker invocations
241 * don't also do this scanning work.
242 */
83aeeada 243 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
acf92b48
DC
244
245 total_scan = nr;
1495f230 246 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 247 delta *= max_pass;
1da177e4 248 do_div(delta, lru_pages + 1);
acf92b48
DC
249 total_scan += delta;
250 if (total_scan < 0) {
88c3bd70
DR
251 printk(KERN_ERR "shrink_slab: %pF negative objects to "
252 "delete nr=%ld\n",
acf92b48
DC
253 shrinker->shrink, total_scan);
254 total_scan = max_pass;
ea164d73
AA
255 }
256
3567b59a
DC
257 /*
258 * We need to avoid excessive windup on filesystem shrinkers
259 * due to large numbers of GFP_NOFS allocations causing the
260 * shrinkers to return -1 all the time. This results in a large
261 * nr being built up so when a shrink that can do some work
262 * comes along it empties the entire cache due to nr >>>
263 * max_pass. This is bad for sustaining a working set in
264 * memory.
265 *
266 * Hence only allow the shrinker to scan the entire cache when
267 * a large delta change is calculated directly.
268 */
269 if (delta < max_pass / 4)
270 total_scan = min(total_scan, max_pass / 2);
271
ea164d73
AA
272 /*
273 * Avoid risking looping forever due to too large nr value:
274 * never try to free more than twice the estimate number of
275 * freeable entries.
276 */
acf92b48
DC
277 if (total_scan > max_pass * 2)
278 total_scan = max_pass * 2;
1da177e4 279
acf92b48 280 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
281 nr_pages_scanned, lru_pages,
282 max_pass, delta, total_scan);
283
e9299f50 284 while (total_scan >= batch_size) {
b15e0905 285 int nr_before;
1da177e4 286
1495f230
YH
287 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
288 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 289 batch_size);
1da177e4
LT
290 if (shrink_ret == -1)
291 break;
b15e0905 292 if (shrink_ret < nr_before)
293 ret += nr_before - shrink_ret;
e9299f50
DC
294 count_vm_events(SLABS_SCANNED, batch_size);
295 total_scan -= batch_size;
1da177e4
LT
296
297 cond_resched();
298 }
299
acf92b48
DC
300 /*
301 * move the unused scan count back into the shrinker in a
302 * manner that handles concurrent updates. If we exhausted the
303 * scan, there is no need to do an update.
304 */
83aeeada
KK
305 if (total_scan > 0)
306 new_nr = atomic_long_add_return(total_scan,
307 &shrinker->nr_in_batch);
308 else
309 new_nr = atomic_long_read(&shrinker->nr_in_batch);
acf92b48
DC
310
311 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
312 }
313 up_read(&shrinker_rwsem);
f06590bd
MK
314out:
315 cond_resched();
b15e0905 316 return ret;
1da177e4
LT
317}
318
1da177e4
LT
319static inline int is_page_cache_freeable(struct page *page)
320{
ceddc3a5
JW
321 /*
322 * A freeable page cache page is referenced only by the caller
323 * that isolated the page, the page cache radix tree and
324 * optional buffer heads at page->private.
325 */
edcf4748 326 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
327}
328
7d3579e8
KM
329static int may_write_to_queue(struct backing_dev_info *bdi,
330 struct scan_control *sc)
1da177e4 331{
930d9152 332 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
333 return 1;
334 if (!bdi_write_congested(bdi))
335 return 1;
336 if (bdi == current->backing_dev_info)
337 return 1;
338 return 0;
339}
340
341/*
342 * We detected a synchronous write error writing a page out. Probably
343 * -ENOSPC. We need to propagate that into the address_space for a subsequent
344 * fsync(), msync() or close().
345 *
346 * The tricky part is that after writepage we cannot touch the mapping: nothing
347 * prevents it from being freed up. But we have a ref on the page and once
348 * that page is locked, the mapping is pinned.
349 *
350 * We're allowed to run sleeping lock_page() here because we know the caller has
351 * __GFP_FS.
352 */
353static void handle_write_error(struct address_space *mapping,
354 struct page *page, int error)
355{
7eaceacc 356 lock_page(page);
3e9f45bd
GC
357 if (page_mapping(page) == mapping)
358 mapping_set_error(mapping, error);
1da177e4
LT
359 unlock_page(page);
360}
361
04e62a29
CL
362/* possible outcome of pageout() */
363typedef enum {
364 /* failed to write page out, page is locked */
365 PAGE_KEEP,
366 /* move page to the active list, page is locked */
367 PAGE_ACTIVATE,
368 /* page has been sent to the disk successfully, page is unlocked */
369 PAGE_SUCCESS,
370 /* page is clean and locked */
371 PAGE_CLEAN,
372} pageout_t;
373
1da177e4 374/*
1742f19f
AM
375 * pageout is called by shrink_page_list() for each dirty page.
376 * Calls ->writepage().
1da177e4 377 */
c661b078 378static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 379 struct scan_control *sc)
1da177e4
LT
380{
381 /*
382 * If the page is dirty, only perform writeback if that write
383 * will be non-blocking. To prevent this allocation from being
384 * stalled by pagecache activity. But note that there may be
385 * stalls if we need to run get_block(). We could test
386 * PagePrivate for that.
387 *
6aceb53b 388 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
389 * this page's queue, we can perform writeback even if that
390 * will block.
391 *
392 * If the page is swapcache, write it back even if that would
393 * block, for some throttling. This happens by accident, because
394 * swap_backing_dev_info is bust: it doesn't reflect the
395 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
396 */
397 if (!is_page_cache_freeable(page))
398 return PAGE_KEEP;
399 if (!mapping) {
400 /*
401 * Some data journaling orphaned pages can have
402 * page->mapping == NULL while being dirty with clean buffers.
403 */
266cf658 404 if (page_has_private(page)) {
1da177e4
LT
405 if (try_to_free_buffers(page)) {
406 ClearPageDirty(page);
d40cee24 407 printk("%s: orphaned page\n", __func__);
1da177e4
LT
408 return PAGE_CLEAN;
409 }
410 }
411 return PAGE_KEEP;
412 }
413 if (mapping->a_ops->writepage == NULL)
414 return PAGE_ACTIVATE;
0e093d99 415 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
416 return PAGE_KEEP;
417
418 if (clear_page_dirty_for_io(page)) {
419 int res;
420 struct writeback_control wbc = {
421 .sync_mode = WB_SYNC_NONE,
422 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
423 .range_start = 0,
424 .range_end = LLONG_MAX,
1da177e4
LT
425 .for_reclaim = 1,
426 };
427
428 SetPageReclaim(page);
429 res = mapping->a_ops->writepage(page, &wbc);
430 if (res < 0)
431 handle_write_error(mapping, page, res);
994fc28c 432 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
433 ClearPageReclaim(page);
434 return PAGE_ACTIVATE;
435 }
c661b078 436
1da177e4
LT
437 if (!PageWriteback(page)) {
438 /* synchronous write or broken a_ops? */
439 ClearPageReclaim(page);
440 }
23b9da55 441 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 442 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
443 return PAGE_SUCCESS;
444 }
445
446 return PAGE_CLEAN;
447}
448
a649fd92 449/*
e286781d
NP
450 * Same as remove_mapping, but if the page is removed from the mapping, it
451 * gets returned with a refcount of 0.
a649fd92 452 */
e286781d 453static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 454{
28e4d965
NP
455 BUG_ON(!PageLocked(page));
456 BUG_ON(mapping != page_mapping(page));
49d2e9cc 457
19fd6231 458 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 459 /*
0fd0e6b0
NP
460 * The non racy check for a busy page.
461 *
462 * Must be careful with the order of the tests. When someone has
463 * a ref to the page, it may be possible that they dirty it then
464 * drop the reference. So if PageDirty is tested before page_count
465 * here, then the following race may occur:
466 *
467 * get_user_pages(&page);
468 * [user mapping goes away]
469 * write_to(page);
470 * !PageDirty(page) [good]
471 * SetPageDirty(page);
472 * put_page(page);
473 * !page_count(page) [good, discard it]
474 *
475 * [oops, our write_to data is lost]
476 *
477 * Reversing the order of the tests ensures such a situation cannot
478 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
479 * load is not satisfied before that of page->_count.
480 *
481 * Note that if SetPageDirty is always performed via set_page_dirty,
482 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 483 */
e286781d 484 if (!page_freeze_refs(page, 2))
49d2e9cc 485 goto cannot_free;
e286781d
NP
486 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
487 if (unlikely(PageDirty(page))) {
488 page_unfreeze_refs(page, 2);
49d2e9cc 489 goto cannot_free;
e286781d 490 }
49d2e9cc
CL
491
492 if (PageSwapCache(page)) {
493 swp_entry_t swap = { .val = page_private(page) };
494 __delete_from_swap_cache(page);
19fd6231 495 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 496 swapcache_free(swap, page);
e286781d 497 } else {
6072d13c
LT
498 void (*freepage)(struct page *);
499
500 freepage = mapping->a_ops->freepage;
501
e64a782f 502 __delete_from_page_cache(page);
19fd6231 503 spin_unlock_irq(&mapping->tree_lock);
e767e056 504 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
505
506 if (freepage != NULL)
507 freepage(page);
49d2e9cc
CL
508 }
509
49d2e9cc
CL
510 return 1;
511
512cannot_free:
19fd6231 513 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
514 return 0;
515}
516
e286781d
NP
517/*
518 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
519 * someone else has a ref on the page, abort and return 0. If it was
520 * successfully detached, return 1. Assumes the caller has a single ref on
521 * this page.
522 */
523int remove_mapping(struct address_space *mapping, struct page *page)
524{
525 if (__remove_mapping(mapping, page)) {
526 /*
527 * Unfreezing the refcount with 1 rather than 2 effectively
528 * drops the pagecache ref for us without requiring another
529 * atomic operation.
530 */
531 page_unfreeze_refs(page, 1);
532 return 1;
533 }
534 return 0;
535}
536
894bc310
LS
537/**
538 * putback_lru_page - put previously isolated page onto appropriate LRU list
539 * @page: page to be put back to appropriate lru list
540 *
541 * Add previously isolated @page to appropriate LRU list.
542 * Page may still be unevictable for other reasons.
543 *
544 * lru_lock must not be held, interrupts must be enabled.
545 */
894bc310
LS
546void putback_lru_page(struct page *page)
547{
548 int lru;
549 int active = !!TestClearPageActive(page);
bbfd28ee 550 int was_unevictable = PageUnevictable(page);
894bc310
LS
551
552 VM_BUG_ON(PageLRU(page));
553
554redo:
555 ClearPageUnevictable(page);
556
39b5f29a 557 if (page_evictable(page)) {
894bc310
LS
558 /*
559 * For evictable pages, we can use the cache.
560 * In event of a race, worst case is we end up with an
561 * unevictable page on [in]active list.
562 * We know how to handle that.
563 */
401a8e1c 564 lru = active + page_lru_base_type(page);
894bc310
LS
565 lru_cache_add_lru(page, lru);
566 } else {
567 /*
568 * Put unevictable pages directly on zone's unevictable
569 * list.
570 */
571 lru = LRU_UNEVICTABLE;
572 add_page_to_unevictable_list(page);
6a7b9548 573 /*
21ee9f39
MK
574 * When racing with an mlock or AS_UNEVICTABLE clearing
575 * (page is unlocked) make sure that if the other thread
576 * does not observe our setting of PG_lru and fails
24513264 577 * isolation/check_move_unevictable_pages,
21ee9f39 578 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
579 * the page back to the evictable list.
580 *
21ee9f39 581 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
582 */
583 smp_mb();
894bc310 584 }
894bc310
LS
585
586 /*
587 * page's status can change while we move it among lru. If an evictable
588 * page is on unevictable list, it never be freed. To avoid that,
589 * check after we added it to the list, again.
590 */
39b5f29a 591 if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
894bc310
LS
592 if (!isolate_lru_page(page)) {
593 put_page(page);
594 goto redo;
595 }
596 /* This means someone else dropped this page from LRU
597 * So, it will be freed or putback to LRU again. There is
598 * nothing to do here.
599 */
600 }
601
bbfd28ee
LS
602 if (was_unevictable && lru != LRU_UNEVICTABLE)
603 count_vm_event(UNEVICTABLE_PGRESCUED);
604 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
605 count_vm_event(UNEVICTABLE_PGCULLED);
606
894bc310
LS
607 put_page(page); /* drop ref from isolate */
608}
609
dfc8d636
JW
610enum page_references {
611 PAGEREF_RECLAIM,
612 PAGEREF_RECLAIM_CLEAN,
64574746 613 PAGEREF_KEEP,
dfc8d636
JW
614 PAGEREF_ACTIVATE,
615};
616
617static enum page_references page_check_references(struct page *page,
618 struct scan_control *sc)
619{
64574746 620 int referenced_ptes, referenced_page;
dfc8d636 621 unsigned long vm_flags;
dfc8d636 622
c3ac9a8a
JW
623 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
624 &vm_flags);
64574746 625 referenced_page = TestClearPageReferenced(page);
dfc8d636 626
dfc8d636
JW
627 /*
628 * Mlock lost the isolation race with us. Let try_to_unmap()
629 * move the page to the unevictable list.
630 */
631 if (vm_flags & VM_LOCKED)
632 return PAGEREF_RECLAIM;
633
64574746 634 if (referenced_ptes) {
e4898273 635 if (PageSwapBacked(page))
64574746
JW
636 return PAGEREF_ACTIVATE;
637 /*
638 * All mapped pages start out with page table
639 * references from the instantiating fault, so we need
640 * to look twice if a mapped file page is used more
641 * than once.
642 *
643 * Mark it and spare it for another trip around the
644 * inactive list. Another page table reference will
645 * lead to its activation.
646 *
647 * Note: the mark is set for activated pages as well
648 * so that recently deactivated but used pages are
649 * quickly recovered.
650 */
651 SetPageReferenced(page);
652
34dbc67a 653 if (referenced_page || referenced_ptes > 1)
64574746
JW
654 return PAGEREF_ACTIVATE;
655
c909e993
KK
656 /*
657 * Activate file-backed executable pages after first usage.
658 */
659 if (vm_flags & VM_EXEC)
660 return PAGEREF_ACTIVATE;
661
64574746
JW
662 return PAGEREF_KEEP;
663 }
dfc8d636
JW
664
665 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 666 if (referenced_page && !PageSwapBacked(page))
64574746
JW
667 return PAGEREF_RECLAIM_CLEAN;
668
669 return PAGEREF_RECLAIM;
dfc8d636
JW
670}
671
1da177e4 672/*
1742f19f 673 * shrink_page_list() returns the number of reclaimed pages
1da177e4 674 */
1742f19f 675static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 676 struct zone *zone,
f84f6e2b 677 struct scan_control *sc,
02c6de8d 678 enum ttu_flags ttu_flags,
d43006d5 679 unsigned long *ret_nr_unqueued_dirty,
02c6de8d
MK
680 unsigned long *ret_nr_writeback,
681 bool force_reclaim)
1da177e4
LT
682{
683 LIST_HEAD(ret_pages);
abe4c3b5 684 LIST_HEAD(free_pages);
1da177e4 685 int pgactivate = 0;
d43006d5 686 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
687 unsigned long nr_dirty = 0;
688 unsigned long nr_congested = 0;
05ff5137 689 unsigned long nr_reclaimed = 0;
92df3a72 690 unsigned long nr_writeback = 0;
1da177e4
LT
691
692 cond_resched();
693
69980e31 694 mem_cgroup_uncharge_start();
1da177e4
LT
695 while (!list_empty(page_list)) {
696 struct address_space *mapping;
697 struct page *page;
698 int may_enter_fs;
02c6de8d 699 enum page_references references = PAGEREF_RECLAIM_CLEAN;
1da177e4
LT
700
701 cond_resched();
702
703 page = lru_to_page(page_list);
704 list_del(&page->lru);
705
529ae9aa 706 if (!trylock_page(page))
1da177e4
LT
707 goto keep;
708
725d704e 709 VM_BUG_ON(PageActive(page));
6a18adb3 710 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
711
712 sc->nr_scanned++;
80e43426 713
39b5f29a 714 if (unlikely(!page_evictable(page)))
b291f000 715 goto cull_mlocked;
894bc310 716
a6dc60f8 717 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
718 goto keep_locked;
719
1da177e4
LT
720 /* Double the slab pressure for mapped and swapcache pages */
721 if (page_mapped(page) || PageSwapCache(page))
722 sc->nr_scanned++;
723
c661b078
AW
724 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
725 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
726
283aba9f
MG
727 /*
728 * If a page at the tail of the LRU is under writeback, there
729 * are three cases to consider.
730 *
731 * 1) If reclaim is encountering an excessive number of pages
732 * under writeback and this page is both under writeback and
733 * PageReclaim then it indicates that pages are being queued
734 * for IO but are being recycled through the LRU before the
735 * IO can complete. Waiting on the page itself risks an
736 * indefinite stall if it is impossible to writeback the
737 * page due to IO error or disconnected storage so instead
738 * block for HZ/10 or until some IO completes then clear the
739 * ZONE_WRITEBACK flag to recheck if the condition exists.
740 *
741 * 2) Global reclaim encounters a page, memcg encounters a
742 * page that is not marked for immediate reclaim or
743 * the caller does not have __GFP_IO. In this case mark
744 * the page for immediate reclaim and continue scanning.
745 *
746 * __GFP_IO is checked because a loop driver thread might
747 * enter reclaim, and deadlock if it waits on a page for
748 * which it is needed to do the write (loop masks off
749 * __GFP_IO|__GFP_FS for this reason); but more thought
750 * would probably show more reasons.
751 *
752 * Don't require __GFP_FS, since we're not going into the
753 * FS, just waiting on its writeback completion. Worryingly,
754 * ext4 gfs2 and xfs allocate pages with
755 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
756 * may_enter_fs here is liable to OOM on them.
757 *
758 * 3) memcg encounters a page that is not already marked
759 * PageReclaim. memcg does not have any dirty pages
760 * throttling so we could easily OOM just because too many
761 * pages are in writeback and there is nothing else to
762 * reclaim. Wait for the writeback to complete.
763 */
c661b078 764 if (PageWriteback(page)) {
283aba9f
MG
765 /* Case 1 above */
766 if (current_is_kswapd() &&
767 PageReclaim(page) &&
768 zone_is_reclaim_writeback(zone)) {
769 unlock_page(page);
770 congestion_wait(BLK_RW_ASYNC, HZ/10);
771 zone_clear_flag(zone, ZONE_WRITEBACK);
772 goto keep;
773
774 /* Case 2 above */
775 } else if (global_reclaim(sc) ||
c3b94f44
HD
776 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
777 /*
778 * This is slightly racy - end_page_writeback()
779 * might have just cleared PageReclaim, then
780 * setting PageReclaim here end up interpreted
781 * as PageReadahead - but that does not matter
782 * enough to care. What we do want is for this
783 * page to have PageReclaim set next time memcg
784 * reclaim reaches the tests above, so it will
785 * then wait_on_page_writeback() to avoid OOM;
786 * and it's also appropriate in global reclaim.
787 */
788 SetPageReclaim(page);
e62e384e 789 nr_writeback++;
283aba9f 790
c3b94f44 791 goto keep_locked;
283aba9f
MG
792
793 /* Case 3 above */
794 } else {
795 wait_on_page_writeback(page);
e62e384e 796 }
c661b078 797 }
1da177e4 798
02c6de8d
MK
799 if (!force_reclaim)
800 references = page_check_references(page, sc);
801
dfc8d636
JW
802 switch (references) {
803 case PAGEREF_ACTIVATE:
1da177e4 804 goto activate_locked;
64574746
JW
805 case PAGEREF_KEEP:
806 goto keep_locked;
dfc8d636
JW
807 case PAGEREF_RECLAIM:
808 case PAGEREF_RECLAIM_CLEAN:
809 ; /* try to reclaim the page below */
810 }
1da177e4 811
1da177e4
LT
812 /*
813 * Anonymous process memory has backing store?
814 * Try to allocate it some swap space here.
815 */
b291f000 816 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
817 if (!(sc->gfp_mask & __GFP_IO))
818 goto keep_locked;
5bc7b8ac 819 if (!add_to_swap(page, page_list))
1da177e4 820 goto activate_locked;
63eb6b93 821 may_enter_fs = 1;
b291f000 822 }
1da177e4
LT
823
824 mapping = page_mapping(page);
1da177e4
LT
825
826 /*
827 * The page is mapped into the page tables of one or more
828 * processes. Try to unmap it here.
829 */
830 if (page_mapped(page) && mapping) {
02c6de8d 831 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
832 case SWAP_FAIL:
833 goto activate_locked;
834 case SWAP_AGAIN:
835 goto keep_locked;
b291f000
NP
836 case SWAP_MLOCK:
837 goto cull_mlocked;
1da177e4
LT
838 case SWAP_SUCCESS:
839 ; /* try to free the page below */
840 }
841 }
842
843 if (PageDirty(page)) {
0e093d99
MG
844 nr_dirty++;
845
d43006d5
MG
846 if (!PageWriteback(page))
847 nr_unqueued_dirty++;
848
ee72886d
MG
849 /*
850 * Only kswapd can writeback filesystem pages to
d43006d5
MG
851 * avoid risk of stack overflow but only writeback
852 * if many dirty pages have been encountered.
ee72886d 853 */
f84f6e2b 854 if (page_is_file_cache(page) &&
9e3b2f8c 855 (!current_is_kswapd() ||
d43006d5 856 !zone_is_reclaim_dirty(zone))) {
49ea7eb6
MG
857 /*
858 * Immediately reclaim when written back.
859 * Similar in principal to deactivate_page()
860 * except we already have the page isolated
861 * and know it's dirty
862 */
863 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
864 SetPageReclaim(page);
865
ee72886d
MG
866 goto keep_locked;
867 }
868
dfc8d636 869 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 870 goto keep_locked;
4dd4b920 871 if (!may_enter_fs)
1da177e4 872 goto keep_locked;
52a8363e 873 if (!sc->may_writepage)
1da177e4
LT
874 goto keep_locked;
875
876 /* Page is dirty, try to write it out here */
7d3579e8 877 switch (pageout(page, mapping, sc)) {
1da177e4 878 case PAGE_KEEP:
0e093d99 879 nr_congested++;
1da177e4
LT
880 goto keep_locked;
881 case PAGE_ACTIVATE:
882 goto activate_locked;
883 case PAGE_SUCCESS:
7d3579e8 884 if (PageWriteback(page))
41ac1999 885 goto keep;
7d3579e8 886 if (PageDirty(page))
1da177e4 887 goto keep;
7d3579e8 888
1da177e4
LT
889 /*
890 * A synchronous write - probably a ramdisk. Go
891 * ahead and try to reclaim the page.
892 */
529ae9aa 893 if (!trylock_page(page))
1da177e4
LT
894 goto keep;
895 if (PageDirty(page) || PageWriteback(page))
896 goto keep_locked;
897 mapping = page_mapping(page);
898 case PAGE_CLEAN:
899 ; /* try to free the page below */
900 }
901 }
902
903 /*
904 * If the page has buffers, try to free the buffer mappings
905 * associated with this page. If we succeed we try to free
906 * the page as well.
907 *
908 * We do this even if the page is PageDirty().
909 * try_to_release_page() does not perform I/O, but it is
910 * possible for a page to have PageDirty set, but it is actually
911 * clean (all its buffers are clean). This happens if the
912 * buffers were written out directly, with submit_bh(). ext3
894bc310 913 * will do this, as well as the blockdev mapping.
1da177e4
LT
914 * try_to_release_page() will discover that cleanness and will
915 * drop the buffers and mark the page clean - it can be freed.
916 *
917 * Rarely, pages can have buffers and no ->mapping. These are
918 * the pages which were not successfully invalidated in
919 * truncate_complete_page(). We try to drop those buffers here
920 * and if that worked, and the page is no longer mapped into
921 * process address space (page_count == 1) it can be freed.
922 * Otherwise, leave the page on the LRU so it is swappable.
923 */
266cf658 924 if (page_has_private(page)) {
1da177e4
LT
925 if (!try_to_release_page(page, sc->gfp_mask))
926 goto activate_locked;
e286781d
NP
927 if (!mapping && page_count(page) == 1) {
928 unlock_page(page);
929 if (put_page_testzero(page))
930 goto free_it;
931 else {
932 /*
933 * rare race with speculative reference.
934 * the speculative reference will free
935 * this page shortly, so we may
936 * increment nr_reclaimed here (and
937 * leave it off the LRU).
938 */
939 nr_reclaimed++;
940 continue;
941 }
942 }
1da177e4
LT
943 }
944
e286781d 945 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 946 goto keep_locked;
1da177e4 947
a978d6f5
NP
948 /*
949 * At this point, we have no other references and there is
950 * no way to pick any more up (removed from LRU, removed
951 * from pagecache). Can use non-atomic bitops now (and
952 * we obviously don't have to worry about waking up a process
953 * waiting on the page lock, because there are no references.
954 */
955 __clear_page_locked(page);
e286781d 956free_it:
05ff5137 957 nr_reclaimed++;
abe4c3b5
MG
958
959 /*
960 * Is there need to periodically free_page_list? It would
961 * appear not as the counts should be low
962 */
963 list_add(&page->lru, &free_pages);
1da177e4
LT
964 continue;
965
b291f000 966cull_mlocked:
63d6c5ad
HD
967 if (PageSwapCache(page))
968 try_to_free_swap(page);
b291f000
NP
969 unlock_page(page);
970 putback_lru_page(page);
971 continue;
972
1da177e4 973activate_locked:
68a22394
RR
974 /* Not a candidate for swapping, so reclaim swap space. */
975 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 976 try_to_free_swap(page);
894bc310 977 VM_BUG_ON(PageActive(page));
1da177e4
LT
978 SetPageActive(page);
979 pgactivate++;
980keep_locked:
981 unlock_page(page);
982keep:
983 list_add(&page->lru, &ret_pages);
b291f000 984 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 985 }
abe4c3b5 986
0e093d99
MG
987 /*
988 * Tag a zone as congested if all the dirty pages encountered were
989 * backed by a congested BDI. In this case, reclaimers should just
990 * back off and wait for congestion to clear because further reclaim
991 * will encounter the same problem
992 */
89b5fae5 993 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
6a18adb3 994 zone_set_flag(zone, ZONE_CONGESTED);
0e093d99 995
cc59850e 996 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 997
1da177e4 998 list_splice(&ret_pages, page_list);
f8891e5e 999 count_vm_events(PGACTIVATE, pgactivate);
69980e31 1000 mem_cgroup_uncharge_end();
d43006d5 1001 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1002 *ret_nr_writeback += nr_writeback;
05ff5137 1003 return nr_reclaimed;
1da177e4
LT
1004}
1005
02c6de8d
MK
1006unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1007 struct list_head *page_list)
1008{
1009 struct scan_control sc = {
1010 .gfp_mask = GFP_KERNEL,
1011 .priority = DEF_PRIORITY,
1012 .may_unmap = 1,
1013 };
1014 unsigned long ret, dummy1, dummy2;
1015 struct page *page, *next;
1016 LIST_HEAD(clean_pages);
1017
1018 list_for_each_entry_safe(page, next, page_list, lru) {
1019 if (page_is_file_cache(page) && !PageDirty(page)) {
1020 ClearPageActive(page);
1021 list_move(&page->lru, &clean_pages);
1022 }
1023 }
1024
1025 ret = shrink_page_list(&clean_pages, zone, &sc,
1026 TTU_UNMAP|TTU_IGNORE_ACCESS,
1027 &dummy1, &dummy2, true);
1028 list_splice(&clean_pages, page_list);
1029 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1030 return ret;
1031}
1032
5ad333eb
AW
1033/*
1034 * Attempt to remove the specified page from its LRU. Only take this page
1035 * if it is of the appropriate PageActive status. Pages which are being
1036 * freed elsewhere are also ignored.
1037 *
1038 * page: page to consider
1039 * mode: one of the LRU isolation modes defined above
1040 *
1041 * returns 0 on success, -ve errno on failure.
1042 */
f3fd4a61 1043int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1044{
1045 int ret = -EINVAL;
1046
1047 /* Only take pages on the LRU. */
1048 if (!PageLRU(page))
1049 return ret;
1050
e46a2879
MK
1051 /* Compaction should not handle unevictable pages but CMA can do so */
1052 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1053 return ret;
1054
5ad333eb 1055 ret = -EBUSY;
08e552c6 1056
c8244935
MG
1057 /*
1058 * To minimise LRU disruption, the caller can indicate that it only
1059 * wants to isolate pages it will be able to operate on without
1060 * blocking - clean pages for the most part.
1061 *
1062 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1063 * is used by reclaim when it is cannot write to backing storage
1064 *
1065 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1066 * that it is possible to migrate without blocking
1067 */
1068 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1069 /* All the caller can do on PageWriteback is block */
1070 if (PageWriteback(page))
1071 return ret;
1072
1073 if (PageDirty(page)) {
1074 struct address_space *mapping;
1075
1076 /* ISOLATE_CLEAN means only clean pages */
1077 if (mode & ISOLATE_CLEAN)
1078 return ret;
1079
1080 /*
1081 * Only pages without mappings or that have a
1082 * ->migratepage callback are possible to migrate
1083 * without blocking
1084 */
1085 mapping = page_mapping(page);
1086 if (mapping && !mapping->a_ops->migratepage)
1087 return ret;
1088 }
1089 }
39deaf85 1090
f80c0673
MK
1091 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1092 return ret;
1093
5ad333eb
AW
1094 if (likely(get_page_unless_zero(page))) {
1095 /*
1096 * Be careful not to clear PageLRU until after we're
1097 * sure the page is not being freed elsewhere -- the
1098 * page release code relies on it.
1099 */
1100 ClearPageLRU(page);
1101 ret = 0;
1102 }
1103
1104 return ret;
1105}
1106
1da177e4
LT
1107/*
1108 * zone->lru_lock is heavily contended. Some of the functions that
1109 * shrink the lists perform better by taking out a batch of pages
1110 * and working on them outside the LRU lock.
1111 *
1112 * For pagecache intensive workloads, this function is the hottest
1113 * spot in the kernel (apart from copy_*_user functions).
1114 *
1115 * Appropriate locks must be held before calling this function.
1116 *
1117 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1118 * @lruvec: The LRU vector to pull pages from.
1da177e4 1119 * @dst: The temp list to put pages on to.
f626012d 1120 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1121 * @sc: The scan_control struct for this reclaim session
5ad333eb 1122 * @mode: One of the LRU isolation modes
3cb99451 1123 * @lru: LRU list id for isolating
1da177e4
LT
1124 *
1125 * returns how many pages were moved onto *@dst.
1126 */
69e05944 1127static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1128 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1129 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1130 isolate_mode_t mode, enum lru_list lru)
1da177e4 1131{
75b00af7 1132 struct list_head *src = &lruvec->lists[lru];
69e05944 1133 unsigned long nr_taken = 0;
c9b02d97 1134 unsigned long scan;
1da177e4 1135
c9b02d97 1136 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1137 struct page *page;
fa9add64 1138 int nr_pages;
5ad333eb 1139
1da177e4
LT
1140 page = lru_to_page(src);
1141 prefetchw_prev_lru_page(page, src, flags);
1142
725d704e 1143 VM_BUG_ON(!PageLRU(page));
8d438f96 1144
f3fd4a61 1145 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1146 case 0:
fa9add64
HD
1147 nr_pages = hpage_nr_pages(page);
1148 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1149 list_move(&page->lru, dst);
fa9add64 1150 nr_taken += nr_pages;
5ad333eb
AW
1151 break;
1152
1153 case -EBUSY:
1154 /* else it is being freed elsewhere */
1155 list_move(&page->lru, src);
1156 continue;
46453a6e 1157
5ad333eb
AW
1158 default:
1159 BUG();
1160 }
1da177e4
LT
1161 }
1162
f626012d 1163 *nr_scanned = scan;
75b00af7
HD
1164 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1165 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1166 return nr_taken;
1167}
1168
62695a84
NP
1169/**
1170 * isolate_lru_page - tries to isolate a page from its LRU list
1171 * @page: page to isolate from its LRU list
1172 *
1173 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1174 * vmstat statistic corresponding to whatever LRU list the page was on.
1175 *
1176 * Returns 0 if the page was removed from an LRU list.
1177 * Returns -EBUSY if the page was not on an LRU list.
1178 *
1179 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1180 * the active list, it will have PageActive set. If it was found on
1181 * the unevictable list, it will have the PageUnevictable bit set. That flag
1182 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1183 *
1184 * The vmstat statistic corresponding to the list on which the page was
1185 * found will be decremented.
1186 *
1187 * Restrictions:
1188 * (1) Must be called with an elevated refcount on the page. This is a
1189 * fundamentnal difference from isolate_lru_pages (which is called
1190 * without a stable reference).
1191 * (2) the lru_lock must not be held.
1192 * (3) interrupts must be enabled.
1193 */
1194int isolate_lru_page(struct page *page)
1195{
1196 int ret = -EBUSY;
1197
0c917313
KK
1198 VM_BUG_ON(!page_count(page));
1199
62695a84
NP
1200 if (PageLRU(page)) {
1201 struct zone *zone = page_zone(page);
fa9add64 1202 struct lruvec *lruvec;
62695a84
NP
1203
1204 spin_lock_irq(&zone->lru_lock);
fa9add64 1205 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1206 if (PageLRU(page)) {
894bc310 1207 int lru = page_lru(page);
0c917313 1208 get_page(page);
62695a84 1209 ClearPageLRU(page);
fa9add64
HD
1210 del_page_from_lru_list(page, lruvec, lru);
1211 ret = 0;
62695a84
NP
1212 }
1213 spin_unlock_irq(&zone->lru_lock);
1214 }
1215 return ret;
1216}
1217
35cd7815 1218/*
d37dd5dc
FW
1219 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1220 * then get resheduled. When there are massive number of tasks doing page
1221 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1222 * the LRU list will go small and be scanned faster than necessary, leading to
1223 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1224 */
1225static int too_many_isolated(struct zone *zone, int file,
1226 struct scan_control *sc)
1227{
1228 unsigned long inactive, isolated;
1229
1230 if (current_is_kswapd())
1231 return 0;
1232
89b5fae5 1233 if (!global_reclaim(sc))
35cd7815
RR
1234 return 0;
1235
1236 if (file) {
1237 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1238 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1239 } else {
1240 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1241 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1242 }
1243
3cf23841
FW
1244 /*
1245 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1246 * won't get blocked by normal direct-reclaimers, forming a circular
1247 * deadlock.
1248 */
1249 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1250 inactive >>= 3;
1251
35cd7815
RR
1252 return isolated > inactive;
1253}
1254
66635629 1255static noinline_for_stack void
75b00af7 1256putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1257{
27ac81d8
KK
1258 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1259 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1260 LIST_HEAD(pages_to_free);
66635629 1261
66635629
MG
1262 /*
1263 * Put back any unfreeable pages.
1264 */
66635629 1265 while (!list_empty(page_list)) {
3f79768f 1266 struct page *page = lru_to_page(page_list);
66635629 1267 int lru;
3f79768f 1268
66635629
MG
1269 VM_BUG_ON(PageLRU(page));
1270 list_del(&page->lru);
39b5f29a 1271 if (unlikely(!page_evictable(page))) {
66635629
MG
1272 spin_unlock_irq(&zone->lru_lock);
1273 putback_lru_page(page);
1274 spin_lock_irq(&zone->lru_lock);
1275 continue;
1276 }
fa9add64
HD
1277
1278 lruvec = mem_cgroup_page_lruvec(page, zone);
1279
7a608572 1280 SetPageLRU(page);
66635629 1281 lru = page_lru(page);
fa9add64
HD
1282 add_page_to_lru_list(page, lruvec, lru);
1283
66635629
MG
1284 if (is_active_lru(lru)) {
1285 int file = is_file_lru(lru);
9992af10
RR
1286 int numpages = hpage_nr_pages(page);
1287 reclaim_stat->recent_rotated[file] += numpages;
66635629 1288 }
2bcf8879
HD
1289 if (put_page_testzero(page)) {
1290 __ClearPageLRU(page);
1291 __ClearPageActive(page);
fa9add64 1292 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1293
1294 if (unlikely(PageCompound(page))) {
1295 spin_unlock_irq(&zone->lru_lock);
1296 (*get_compound_page_dtor(page))(page);
1297 spin_lock_irq(&zone->lru_lock);
1298 } else
1299 list_add(&page->lru, &pages_to_free);
66635629
MG
1300 }
1301 }
66635629 1302
3f79768f
HD
1303 /*
1304 * To save our caller's stack, now use input list for pages to free.
1305 */
1306 list_splice(&pages_to_free, page_list);
66635629
MG
1307}
1308
1da177e4 1309/*
1742f19f
AM
1310 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1311 * of reclaimed pages
1da177e4 1312 */
66635629 1313static noinline_for_stack unsigned long
1a93be0e 1314shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1315 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1316{
1317 LIST_HEAD(page_list);
e247dbce 1318 unsigned long nr_scanned;
05ff5137 1319 unsigned long nr_reclaimed = 0;
e247dbce 1320 unsigned long nr_taken;
92df3a72
MG
1321 unsigned long nr_dirty = 0;
1322 unsigned long nr_writeback = 0;
f3fd4a61 1323 isolate_mode_t isolate_mode = 0;
3cb99451 1324 int file = is_file_lru(lru);
1a93be0e
KK
1325 struct zone *zone = lruvec_zone(lruvec);
1326 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1327
35cd7815 1328 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1329 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1330
1331 /* We are about to die and free our memory. Return now. */
1332 if (fatal_signal_pending(current))
1333 return SWAP_CLUSTER_MAX;
1334 }
1335
1da177e4 1336 lru_add_drain();
f80c0673
MK
1337
1338 if (!sc->may_unmap)
61317289 1339 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1340 if (!sc->may_writepage)
61317289 1341 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1342
1da177e4 1343 spin_lock_irq(&zone->lru_lock);
b35ea17b 1344
5dc35979
KK
1345 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1346 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1347
1348 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1349 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1350
89b5fae5 1351 if (global_reclaim(sc)) {
e247dbce
KM
1352 zone->pages_scanned += nr_scanned;
1353 if (current_is_kswapd())
75b00af7 1354 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1355 else
75b00af7 1356 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1357 }
d563c050 1358 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1359
d563c050 1360 if (nr_taken == 0)
66635629 1361 return 0;
5ad333eb 1362
02c6de8d
MK
1363 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1364 &nr_dirty, &nr_writeback, false);
c661b078 1365
3f79768f
HD
1366 spin_lock_irq(&zone->lru_lock);
1367
95d918fc 1368 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1369
904249aa
YH
1370 if (global_reclaim(sc)) {
1371 if (current_is_kswapd())
1372 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1373 nr_reclaimed);
1374 else
1375 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1376 nr_reclaimed);
1377 }
a74609fa 1378
27ac81d8 1379 putback_inactive_pages(lruvec, &page_list);
3f79768f 1380
95d918fc 1381 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1382
1383 spin_unlock_irq(&zone->lru_lock);
1384
1385 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1386
92df3a72
MG
1387 /*
1388 * If reclaim is isolating dirty pages under writeback, it implies
1389 * that the long-lived page allocation rate is exceeding the page
1390 * laundering rate. Either the global limits are not being effective
1391 * at throttling processes due to the page distribution throughout
1392 * zones or there is heavy usage of a slow backing device. The
1393 * only option is to throttle from reclaim context which is not ideal
1394 * as there is no guarantee the dirtying process is throttled in the
1395 * same way balance_dirty_pages() manages.
1396 *
1397 * This scales the number of dirty pages that must be under writeback
1398 * before throttling depending on priority. It is a simple backoff
1399 * function that has the most effect in the range DEF_PRIORITY to
1400 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1401 * in trouble and reclaim is considered to be in trouble.
1402 *
1403 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1404 * DEF_PRIORITY-1 50% must be PageWriteback
1405 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1406 * ...
1407 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1408 * isolated page is PageWriteback
1409 */
9e3b2f8c 1410 if (nr_writeback && nr_writeback >=
283aba9f 1411 (nr_taken >> (DEF_PRIORITY - sc->priority))) {
92df3a72 1412 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
283aba9f
MG
1413 zone_set_flag(zone, ZONE_WRITEBACK);
1414 }
92df3a72 1415
d43006d5
MG
1416 /*
1417 * Similarly, if many dirty pages are encountered that are not
1418 * currently being written then flag that kswapd should start
1419 * writing back pages.
1420 */
1421 if (global_reclaim(sc) && nr_dirty &&
1422 nr_dirty >= (nr_taken >> (DEF_PRIORITY - sc->priority)))
1423 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1424
e11da5b4
MG
1425 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1426 zone_idx(zone),
1427 nr_scanned, nr_reclaimed,
9e3b2f8c 1428 sc->priority,
23b9da55 1429 trace_shrink_flags(file));
05ff5137 1430 return nr_reclaimed;
1da177e4
LT
1431}
1432
1433/*
1434 * This moves pages from the active list to the inactive list.
1435 *
1436 * We move them the other way if the page is referenced by one or more
1437 * processes, from rmap.
1438 *
1439 * If the pages are mostly unmapped, the processing is fast and it is
1440 * appropriate to hold zone->lru_lock across the whole operation. But if
1441 * the pages are mapped, the processing is slow (page_referenced()) so we
1442 * should drop zone->lru_lock around each page. It's impossible to balance
1443 * this, so instead we remove the pages from the LRU while processing them.
1444 * It is safe to rely on PG_active against the non-LRU pages in here because
1445 * nobody will play with that bit on a non-LRU page.
1446 *
1447 * The downside is that we have to touch page->_count against each page.
1448 * But we had to alter page->flags anyway.
1449 */
1cfb419b 1450
fa9add64 1451static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1452 struct list_head *list,
2bcf8879 1453 struct list_head *pages_to_free,
3eb4140f
WF
1454 enum lru_list lru)
1455{
fa9add64 1456 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1457 unsigned long pgmoved = 0;
3eb4140f 1458 struct page *page;
fa9add64 1459 int nr_pages;
3eb4140f 1460
3eb4140f
WF
1461 while (!list_empty(list)) {
1462 page = lru_to_page(list);
fa9add64 1463 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f
WF
1464
1465 VM_BUG_ON(PageLRU(page));
1466 SetPageLRU(page);
1467
fa9add64
HD
1468 nr_pages = hpage_nr_pages(page);
1469 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1470 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1471 pgmoved += nr_pages;
3eb4140f 1472
2bcf8879
HD
1473 if (put_page_testzero(page)) {
1474 __ClearPageLRU(page);
1475 __ClearPageActive(page);
fa9add64 1476 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1477
1478 if (unlikely(PageCompound(page))) {
1479 spin_unlock_irq(&zone->lru_lock);
1480 (*get_compound_page_dtor(page))(page);
1481 spin_lock_irq(&zone->lru_lock);
1482 } else
1483 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1484 }
1485 }
1486 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1487 if (!is_active_lru(lru))
1488 __count_vm_events(PGDEACTIVATE, pgmoved);
1489}
1cfb419b 1490
f626012d 1491static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1492 struct lruvec *lruvec,
f16015fb 1493 struct scan_control *sc,
9e3b2f8c 1494 enum lru_list lru)
1da177e4 1495{
44c241f1 1496 unsigned long nr_taken;
f626012d 1497 unsigned long nr_scanned;
6fe6b7e3 1498 unsigned long vm_flags;
1da177e4 1499 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1500 LIST_HEAD(l_active);
b69408e8 1501 LIST_HEAD(l_inactive);
1da177e4 1502 struct page *page;
1a93be0e 1503 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1504 unsigned long nr_rotated = 0;
f3fd4a61 1505 isolate_mode_t isolate_mode = 0;
3cb99451 1506 int file = is_file_lru(lru);
1a93be0e 1507 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1508
1509 lru_add_drain();
f80c0673
MK
1510
1511 if (!sc->may_unmap)
61317289 1512 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1513 if (!sc->may_writepage)
61317289 1514 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1515
1da177e4 1516 spin_lock_irq(&zone->lru_lock);
925b7673 1517
5dc35979
KK
1518 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1519 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1520 if (global_reclaim(sc))
f626012d 1521 zone->pages_scanned += nr_scanned;
89b5fae5 1522
b7c46d15 1523 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1524
f626012d 1525 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1526 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1527 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1528 spin_unlock_irq(&zone->lru_lock);
1529
1da177e4
LT
1530 while (!list_empty(&l_hold)) {
1531 cond_resched();
1532 page = lru_to_page(&l_hold);
1533 list_del(&page->lru);
7e9cd484 1534
39b5f29a 1535 if (unlikely(!page_evictable(page))) {
894bc310
LS
1536 putback_lru_page(page);
1537 continue;
1538 }
1539
cc715d99
MG
1540 if (unlikely(buffer_heads_over_limit)) {
1541 if (page_has_private(page) && trylock_page(page)) {
1542 if (page_has_private(page))
1543 try_to_release_page(page, 0);
1544 unlock_page(page);
1545 }
1546 }
1547
c3ac9a8a
JW
1548 if (page_referenced(page, 0, sc->target_mem_cgroup,
1549 &vm_flags)) {
9992af10 1550 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1551 /*
1552 * Identify referenced, file-backed active pages and
1553 * give them one more trip around the active list. So
1554 * that executable code get better chances to stay in
1555 * memory under moderate memory pressure. Anon pages
1556 * are not likely to be evicted by use-once streaming
1557 * IO, plus JVM can create lots of anon VM_EXEC pages,
1558 * so we ignore them here.
1559 */
41e20983 1560 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1561 list_add(&page->lru, &l_active);
1562 continue;
1563 }
1564 }
7e9cd484 1565
5205e56e 1566 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1567 list_add(&page->lru, &l_inactive);
1568 }
1569
b555749a 1570 /*
8cab4754 1571 * Move pages back to the lru list.
b555749a 1572 */
2a1dc509 1573 spin_lock_irq(&zone->lru_lock);
556adecb 1574 /*
8cab4754
WF
1575 * Count referenced pages from currently used mappings as rotated,
1576 * even though only some of them are actually re-activated. This
1577 * helps balance scan pressure between file and anonymous pages in
1578 * get_scan_ratio.
7e9cd484 1579 */
b7c46d15 1580 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1581
fa9add64
HD
1582 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1583 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1584 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1585 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1586
1587 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1588}
1589
74e3f3c3 1590#ifdef CONFIG_SWAP
14797e23 1591static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1592{
1593 unsigned long active, inactive;
1594
1595 active = zone_page_state(zone, NR_ACTIVE_ANON);
1596 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1597
1598 if (inactive * zone->inactive_ratio < active)
1599 return 1;
1600
1601 return 0;
1602}
1603
14797e23
KM
1604/**
1605 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1606 * @lruvec: LRU vector to check
14797e23
KM
1607 *
1608 * Returns true if the zone does not have enough inactive anon pages,
1609 * meaning some active anon pages need to be deactivated.
1610 */
c56d5c7d 1611static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1612{
74e3f3c3
MK
1613 /*
1614 * If we don't have swap space, anonymous page deactivation
1615 * is pointless.
1616 */
1617 if (!total_swap_pages)
1618 return 0;
1619
c3c787e8 1620 if (!mem_cgroup_disabled())
c56d5c7d 1621 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1622
c56d5c7d 1623 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1624}
74e3f3c3 1625#else
c56d5c7d 1626static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1627{
1628 return 0;
1629}
1630#endif
14797e23 1631
56e49d21
RR
1632/**
1633 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1634 * @lruvec: LRU vector to check
56e49d21
RR
1635 *
1636 * When the system is doing streaming IO, memory pressure here
1637 * ensures that active file pages get deactivated, until more
1638 * than half of the file pages are on the inactive list.
1639 *
1640 * Once we get to that situation, protect the system's working
1641 * set from being evicted by disabling active file page aging.
1642 *
1643 * This uses a different ratio than the anonymous pages, because
1644 * the page cache uses a use-once replacement algorithm.
1645 */
c56d5c7d 1646static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1647{
e3790144
JW
1648 unsigned long inactive;
1649 unsigned long active;
1650
1651 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1652 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1653
e3790144 1654 return active > inactive;
56e49d21
RR
1655}
1656
75b00af7 1657static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1658{
75b00af7 1659 if (is_file_lru(lru))
c56d5c7d 1660 return inactive_file_is_low(lruvec);
b39415b2 1661 else
c56d5c7d 1662 return inactive_anon_is_low(lruvec);
b39415b2
RR
1663}
1664
4f98a2fe 1665static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1666 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1667{
b39415b2 1668 if (is_active_lru(lru)) {
75b00af7 1669 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1670 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1671 return 0;
1672 }
1673
1a93be0e 1674 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1675}
1676
3d58ab5c 1677static int vmscan_swappiness(struct scan_control *sc)
1f4c025b 1678{
89b5fae5 1679 if (global_reclaim(sc))
1f4c025b 1680 return vm_swappiness;
3d58ab5c 1681 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1f4c025b
KH
1682}
1683
9a265114
JW
1684enum scan_balance {
1685 SCAN_EQUAL,
1686 SCAN_FRACT,
1687 SCAN_ANON,
1688 SCAN_FILE,
1689};
1690
4f98a2fe
RR
1691/*
1692 * Determine how aggressively the anon and file LRU lists should be
1693 * scanned. The relative value of each set of LRU lists is determined
1694 * by looking at the fraction of the pages scanned we did rotate back
1695 * onto the active list instead of evict.
1696 *
be7bd59d
WL
1697 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1698 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1699 */
90126375 1700static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
9e3b2f8c 1701 unsigned long *nr)
4f98a2fe 1702{
9a265114
JW
1703 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1704 u64 fraction[2];
1705 u64 denominator = 0; /* gcc */
1706 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1707 unsigned long anon_prio, file_prio;
9a265114
JW
1708 enum scan_balance scan_balance;
1709 unsigned long anon, file, free;
1710 bool force_scan = false;
4f98a2fe 1711 unsigned long ap, fp;
4111304d 1712 enum lru_list lru;
246e87a9 1713
f11c0ca5
JW
1714 /*
1715 * If the zone or memcg is small, nr[l] can be 0. This
1716 * results in no scanning on this priority and a potential
1717 * priority drop. Global direct reclaim can go to the next
1718 * zone and tends to have no problems. Global kswapd is for
1719 * zone balancing and it needs to scan a minimum amount. When
1720 * reclaiming for a memcg, a priority drop can cause high
1721 * latencies, so it's better to scan a minimum amount there as
1722 * well.
1723 */
90126375 1724 if (current_is_kswapd() && zone->all_unreclaimable)
a4d3e9e7 1725 force_scan = true;
89b5fae5 1726 if (!global_reclaim(sc))
a4d3e9e7 1727 force_scan = true;
76a33fc3
SL
1728
1729 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1730 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1731 scan_balance = SCAN_FILE;
76a33fc3
SL
1732 goto out;
1733 }
4f98a2fe 1734
10316b31
JW
1735 /*
1736 * Global reclaim will swap to prevent OOM even with no
1737 * swappiness, but memcg users want to use this knob to
1738 * disable swapping for individual groups completely when
1739 * using the memory controller's swap limit feature would be
1740 * too expensive.
1741 */
1742 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
9a265114 1743 scan_balance = SCAN_FILE;
10316b31
JW
1744 goto out;
1745 }
1746
1747 /*
1748 * Do not apply any pressure balancing cleverness when the
1749 * system is close to OOM, scan both anon and file equally
1750 * (unless the swappiness setting disagrees with swapping).
1751 */
1752 if (!sc->priority && vmscan_swappiness(sc)) {
9a265114 1753 scan_balance = SCAN_EQUAL;
10316b31
JW
1754 goto out;
1755 }
1756
4d7dcca2
HD
1757 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1758 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1759 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1760 get_lru_size(lruvec, LRU_INACTIVE_FILE);
a4d3e9e7 1761
11d16c25
JW
1762 /*
1763 * If it's foreseeable that reclaiming the file cache won't be
1764 * enough to get the zone back into a desirable shape, we have
1765 * to swap. Better start now and leave the - probably heavily
1766 * thrashing - remaining file pages alone.
1767 */
89b5fae5 1768 if (global_reclaim(sc)) {
11d16c25 1769 free = zone_page_state(zone, NR_FREE_PAGES);
90126375 1770 if (unlikely(file + free <= high_wmark_pages(zone))) {
9a265114 1771 scan_balance = SCAN_ANON;
76a33fc3 1772 goto out;
eeee9a8c 1773 }
4f98a2fe
RR
1774 }
1775
7c5bd705
JW
1776 /*
1777 * There is enough inactive page cache, do not reclaim
1778 * anything from the anonymous working set right now.
1779 */
1780 if (!inactive_file_is_low(lruvec)) {
9a265114 1781 scan_balance = SCAN_FILE;
7c5bd705
JW
1782 goto out;
1783 }
1784
9a265114
JW
1785 scan_balance = SCAN_FRACT;
1786
58c37f6e
KM
1787 /*
1788 * With swappiness at 100, anonymous and file have the same priority.
1789 * This scanning priority is essentially the inverse of IO cost.
1790 */
3d58ab5c 1791 anon_prio = vmscan_swappiness(sc);
75b00af7 1792 file_prio = 200 - anon_prio;
58c37f6e 1793
4f98a2fe
RR
1794 /*
1795 * OK, so we have swap space and a fair amount of page cache
1796 * pages. We use the recently rotated / recently scanned
1797 * ratios to determine how valuable each cache is.
1798 *
1799 * Because workloads change over time (and to avoid overflow)
1800 * we keep these statistics as a floating average, which ends
1801 * up weighing recent references more than old ones.
1802 *
1803 * anon in [0], file in [1]
1804 */
90126375 1805 spin_lock_irq(&zone->lru_lock);
6e901571 1806 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1807 reclaim_stat->recent_scanned[0] /= 2;
1808 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1809 }
1810
6e901571 1811 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1812 reclaim_stat->recent_scanned[1] /= 2;
1813 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1814 }
1815
4f98a2fe 1816 /*
00d8089c
RR
1817 * The amount of pressure on anon vs file pages is inversely
1818 * proportional to the fraction of recently scanned pages on
1819 * each list that were recently referenced and in active use.
4f98a2fe 1820 */
fe35004f 1821 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1822 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1823
fe35004f 1824 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1825 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 1826 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1827
76a33fc3
SL
1828 fraction[0] = ap;
1829 fraction[1] = fp;
1830 denominator = ap + fp + 1;
1831out:
4111304d
HD
1832 for_each_evictable_lru(lru) {
1833 int file = is_file_lru(lru);
d778df51 1834 unsigned long size;
76a33fc3 1835 unsigned long scan;
6e08a369 1836
d778df51 1837 size = get_lru_size(lruvec, lru);
10316b31 1838 scan = size >> sc->priority;
9a265114 1839
10316b31
JW
1840 if (!scan && force_scan)
1841 scan = min(size, SWAP_CLUSTER_MAX);
9a265114
JW
1842
1843 switch (scan_balance) {
1844 case SCAN_EQUAL:
1845 /* Scan lists relative to size */
1846 break;
1847 case SCAN_FRACT:
1848 /*
1849 * Scan types proportional to swappiness and
1850 * their relative recent reclaim efficiency.
1851 */
1852 scan = div64_u64(scan * fraction[file], denominator);
1853 break;
1854 case SCAN_FILE:
1855 case SCAN_ANON:
1856 /* Scan one type exclusively */
1857 if ((scan_balance == SCAN_FILE) != file)
1858 scan = 0;
1859 break;
1860 default:
1861 /* Look ma, no brain */
1862 BUG();
1863 }
4111304d 1864 nr[lru] = scan;
76a33fc3 1865 }
6e08a369 1866}
4f98a2fe 1867
9b4f98cd
JW
1868/*
1869 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1870 */
1871static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1872{
1873 unsigned long nr[NR_LRU_LISTS];
e82e0561 1874 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
1875 unsigned long nr_to_scan;
1876 enum lru_list lru;
1877 unsigned long nr_reclaimed = 0;
1878 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1879 struct blk_plug plug;
e82e0561 1880 bool scan_adjusted = false;
9b4f98cd
JW
1881
1882 get_scan_count(lruvec, sc, nr);
1883
e82e0561
MG
1884 /* Record the original scan target for proportional adjustments later */
1885 memcpy(targets, nr, sizeof(nr));
1886
9b4f98cd
JW
1887 blk_start_plug(&plug);
1888 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1889 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
1890 unsigned long nr_anon, nr_file, percentage;
1891 unsigned long nr_scanned;
1892
9b4f98cd
JW
1893 for_each_evictable_lru(lru) {
1894 if (nr[lru]) {
1895 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1896 nr[lru] -= nr_to_scan;
1897
1898 nr_reclaimed += shrink_list(lru, nr_to_scan,
1899 lruvec, sc);
1900 }
1901 }
e82e0561
MG
1902
1903 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
1904 continue;
1905
9b4f98cd 1906 /*
e82e0561
MG
1907 * For global direct reclaim, reclaim only the number of pages
1908 * requested. Less care is taken to scan proportionally as it
1909 * is more important to minimise direct reclaim stall latency
1910 * than it is to properly age the LRU lists.
9b4f98cd 1911 */
e82e0561 1912 if (global_reclaim(sc) && !current_is_kswapd())
9b4f98cd 1913 break;
e82e0561
MG
1914
1915 /*
1916 * For kswapd and memcg, reclaim at least the number of pages
1917 * requested. Ensure that the anon and file LRUs shrink
1918 * proportionally what was requested by get_scan_count(). We
1919 * stop reclaiming one LRU and reduce the amount scanning
1920 * proportional to the original scan target.
1921 */
1922 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
1923 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
1924
1925 if (nr_file > nr_anon) {
1926 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
1927 targets[LRU_ACTIVE_ANON] + 1;
1928 lru = LRU_BASE;
1929 percentage = nr_anon * 100 / scan_target;
1930 } else {
1931 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
1932 targets[LRU_ACTIVE_FILE] + 1;
1933 lru = LRU_FILE;
1934 percentage = nr_file * 100 / scan_target;
1935 }
1936
1937 /* Stop scanning the smaller of the LRU */
1938 nr[lru] = 0;
1939 nr[lru + LRU_ACTIVE] = 0;
1940
1941 /*
1942 * Recalculate the other LRU scan count based on its original
1943 * scan target and the percentage scanning already complete
1944 */
1945 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
1946 nr_scanned = targets[lru] - nr[lru];
1947 nr[lru] = targets[lru] * (100 - percentage) / 100;
1948 nr[lru] -= min(nr[lru], nr_scanned);
1949
1950 lru += LRU_ACTIVE;
1951 nr_scanned = targets[lru] - nr[lru];
1952 nr[lru] = targets[lru] * (100 - percentage) / 100;
1953 nr[lru] -= min(nr[lru], nr_scanned);
1954
1955 scan_adjusted = true;
9b4f98cd
JW
1956 }
1957 blk_finish_plug(&plug);
1958 sc->nr_reclaimed += nr_reclaimed;
1959
1960 /*
1961 * Even if we did not try to evict anon pages at all, we want to
1962 * rebalance the anon lru active/inactive ratio.
1963 */
1964 if (inactive_anon_is_low(lruvec))
1965 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1966 sc, LRU_ACTIVE_ANON);
1967
1968 throttle_vm_writeout(sc->gfp_mask);
1969}
1970
23b9da55 1971/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 1972static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 1973{
d84da3f9 1974 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 1975 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 1976 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
1977 return true;
1978
1979 return false;
1980}
1981
3e7d3449 1982/*
23b9da55
MG
1983 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1984 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1985 * true if more pages should be reclaimed such that when the page allocator
1986 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1987 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 1988 */
9b4f98cd 1989static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
1990 unsigned long nr_reclaimed,
1991 unsigned long nr_scanned,
1992 struct scan_control *sc)
1993{
1994 unsigned long pages_for_compaction;
1995 unsigned long inactive_lru_pages;
1996
1997 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 1998 if (!in_reclaim_compaction(sc))
3e7d3449
MG
1999 return false;
2000
2876592f
MG
2001 /* Consider stopping depending on scan and reclaim activity */
2002 if (sc->gfp_mask & __GFP_REPEAT) {
2003 /*
2004 * For __GFP_REPEAT allocations, stop reclaiming if the
2005 * full LRU list has been scanned and we are still failing
2006 * to reclaim pages. This full LRU scan is potentially
2007 * expensive but a __GFP_REPEAT caller really wants to succeed
2008 */
2009 if (!nr_reclaimed && !nr_scanned)
2010 return false;
2011 } else {
2012 /*
2013 * For non-__GFP_REPEAT allocations which can presumably
2014 * fail without consequence, stop if we failed to reclaim
2015 * any pages from the last SWAP_CLUSTER_MAX number of
2016 * pages that were scanned. This will return to the
2017 * caller faster at the risk reclaim/compaction and
2018 * the resulting allocation attempt fails
2019 */
2020 if (!nr_reclaimed)
2021 return false;
2022 }
3e7d3449
MG
2023
2024 /*
2025 * If we have not reclaimed enough pages for compaction and the
2026 * inactive lists are large enough, continue reclaiming
2027 */
2028 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2029 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2030 if (get_nr_swap_pages() > 0)
9b4f98cd 2031 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2032 if (sc->nr_reclaimed < pages_for_compaction &&
2033 inactive_lru_pages > pages_for_compaction)
2034 return true;
2035
2036 /* If compaction would go ahead or the allocation would succeed, stop */
9b4f98cd 2037 switch (compaction_suitable(zone, sc->order)) {
3e7d3449
MG
2038 case COMPACT_PARTIAL:
2039 case COMPACT_CONTINUE:
2040 return false;
2041 default:
2042 return true;
2043 }
2044}
2045
9b4f98cd 2046static void shrink_zone(struct zone *zone, struct scan_control *sc)
1da177e4 2047{
f0fdc5e8 2048 unsigned long nr_reclaimed, nr_scanned;
1da177e4 2049
9b4f98cd
JW
2050 do {
2051 struct mem_cgroup *root = sc->target_mem_cgroup;
2052 struct mem_cgroup_reclaim_cookie reclaim = {
2053 .zone = zone,
2054 .priority = sc->priority,
2055 };
2056 struct mem_cgroup *memcg;
3e7d3449 2057
9b4f98cd
JW
2058 nr_reclaimed = sc->nr_reclaimed;
2059 nr_scanned = sc->nr_scanned;
1da177e4 2060
9b4f98cd
JW
2061 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2062 do {
2063 struct lruvec *lruvec;
5660048c 2064
9b4f98cd 2065 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
f9be23d6 2066
9b4f98cd 2067 shrink_lruvec(lruvec, sc);
f16015fb 2068
9b4f98cd 2069 /*
a394cb8e
MH
2070 * Direct reclaim and kswapd have to scan all memory
2071 * cgroups to fulfill the overall scan target for the
9b4f98cd 2072 * zone.
a394cb8e
MH
2073 *
2074 * Limit reclaim, on the other hand, only cares about
2075 * nr_to_reclaim pages to be reclaimed and it will
2076 * retry with decreasing priority if one round over the
2077 * whole hierarchy is not sufficient.
9b4f98cd 2078 */
a394cb8e
MH
2079 if (!global_reclaim(sc) &&
2080 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2081 mem_cgroup_iter_break(root, memcg);
2082 break;
2083 }
2084 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2085 } while (memcg);
70ddf637
AV
2086
2087 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2088 sc->nr_scanned - nr_scanned,
2089 sc->nr_reclaimed - nr_reclaimed);
2090
9b4f98cd
JW
2091 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2092 sc->nr_scanned - nr_scanned, sc));
f16015fb
JW
2093}
2094
fe4b1b24
MG
2095/* Returns true if compaction should go ahead for a high-order request */
2096static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2097{
2098 unsigned long balance_gap, watermark;
2099 bool watermark_ok;
2100
2101 /* Do not consider compaction for orders reclaim is meant to satisfy */
2102 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2103 return false;
2104
2105 /*
2106 * Compaction takes time to run and there are potentially other
2107 * callers using the pages just freed. Continue reclaiming until
2108 * there is a buffer of free pages available to give compaction
2109 * a reasonable chance of completing and allocating the page
2110 */
2111 balance_gap = min(low_wmark_pages(zone),
b40da049 2112 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
fe4b1b24
MG
2113 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2114 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2115 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2116
2117 /*
2118 * If compaction is deferred, reclaim up to a point where
2119 * compaction will have a chance of success when re-enabled
2120 */
aff62249 2121 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
2122 return watermark_ok;
2123
2124 /* If compaction is not ready to start, keep reclaiming */
2125 if (!compaction_suitable(zone, sc->order))
2126 return false;
2127
2128 return watermark_ok;
2129}
2130
1da177e4
LT
2131/*
2132 * This is the direct reclaim path, for page-allocating processes. We only
2133 * try to reclaim pages from zones which will satisfy the caller's allocation
2134 * request.
2135 *
41858966
MG
2136 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2137 * Because:
1da177e4
LT
2138 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2139 * allocation or
41858966
MG
2140 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2141 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2142 * zone defense algorithm.
1da177e4 2143 *
1da177e4
LT
2144 * If a zone is deemed to be full of pinned pages then just give it a light
2145 * scan then give up on it.
e0c23279
MG
2146 *
2147 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 2148 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
2149 * the caller that it should consider retrying the allocation instead of
2150 * further reclaim.
1da177e4 2151 */
9e3b2f8c 2152static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2153{
dd1a239f 2154 struct zoneref *z;
54a6eb5c 2155 struct zone *zone;
d149e3b2
YH
2156 unsigned long nr_soft_reclaimed;
2157 unsigned long nr_soft_scanned;
0cee34fd 2158 bool aborted_reclaim = false;
1cfb419b 2159
cc715d99
MG
2160 /*
2161 * If the number of buffer_heads in the machine exceeds the maximum
2162 * allowed level, force direct reclaim to scan the highmem zone as
2163 * highmem pages could be pinning lowmem pages storing buffer_heads
2164 */
2165 if (buffer_heads_over_limit)
2166 sc->gfp_mask |= __GFP_HIGHMEM;
2167
d4debc66
MG
2168 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2169 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2170 if (!populated_zone(zone))
1da177e4 2171 continue;
1cfb419b
KH
2172 /*
2173 * Take care memory controller reclaiming has small influence
2174 * to global LRU.
2175 */
89b5fae5 2176 if (global_reclaim(sc)) {
1cfb419b
KH
2177 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2178 continue;
9e3b2f8c
KK
2179 if (zone->all_unreclaimable &&
2180 sc->priority != DEF_PRIORITY)
1cfb419b 2181 continue; /* Let kswapd poll it */
d84da3f9 2182 if (IS_ENABLED(CONFIG_COMPACTION)) {
e0887c19 2183 /*
e0c23279
MG
2184 * If we already have plenty of memory free for
2185 * compaction in this zone, don't free any more.
2186 * Even though compaction is invoked for any
2187 * non-zero order, only frequent costly order
2188 * reclamation is disruptive enough to become a
c7cfa37b
CA
2189 * noticeable problem, like transparent huge
2190 * page allocations.
e0887c19 2191 */
fe4b1b24 2192 if (compaction_ready(zone, sc)) {
0cee34fd 2193 aborted_reclaim = true;
e0887c19 2194 continue;
e0c23279 2195 }
e0887c19 2196 }
ac34a1a3
KH
2197 /*
2198 * This steals pages from memory cgroups over softlimit
2199 * and returns the number of reclaimed pages and
2200 * scanned pages. This works for global memory pressure
2201 * and balancing, not for a memcg's limit.
2202 */
2203 nr_soft_scanned = 0;
2204 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2205 sc->order, sc->gfp_mask,
2206 &nr_soft_scanned);
2207 sc->nr_reclaimed += nr_soft_reclaimed;
2208 sc->nr_scanned += nr_soft_scanned;
2209 /* need some check for avoid more shrink_zone() */
1cfb419b 2210 }
408d8544 2211
9e3b2f8c 2212 shrink_zone(zone, sc);
1da177e4 2213 }
e0c23279 2214
0cee34fd 2215 return aborted_reclaim;
d1908362
MK
2216}
2217
2218static bool zone_reclaimable(struct zone *zone)
2219{
2220 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2221}
2222
929bea7c 2223/* All zones in zonelist are unreclaimable? */
d1908362
MK
2224static bool all_unreclaimable(struct zonelist *zonelist,
2225 struct scan_control *sc)
2226{
2227 struct zoneref *z;
2228 struct zone *zone;
d1908362
MK
2229
2230 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2231 gfp_zone(sc->gfp_mask), sc->nodemask) {
2232 if (!populated_zone(zone))
2233 continue;
2234 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2235 continue;
929bea7c
KM
2236 if (!zone->all_unreclaimable)
2237 return false;
d1908362
MK
2238 }
2239
929bea7c 2240 return true;
1da177e4 2241}
4f98a2fe 2242
1da177e4
LT
2243/*
2244 * This is the main entry point to direct page reclaim.
2245 *
2246 * If a full scan of the inactive list fails to free enough memory then we
2247 * are "out of memory" and something needs to be killed.
2248 *
2249 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2250 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2251 * caller can't do much about. We kick the writeback threads and take explicit
2252 * naps in the hope that some of these pages can be written. But if the
2253 * allocating task holds filesystem locks which prevent writeout this might not
2254 * work, and the allocation attempt will fail.
a41f24ea
NA
2255 *
2256 * returns: 0, if no pages reclaimed
2257 * else, the number of pages reclaimed
1da177e4 2258 */
dac1d27b 2259static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2260 struct scan_control *sc,
2261 struct shrink_control *shrink)
1da177e4 2262{
69e05944 2263 unsigned long total_scanned = 0;
1da177e4 2264 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2265 struct zoneref *z;
54a6eb5c 2266 struct zone *zone;
22fba335 2267 unsigned long writeback_threshold;
0cee34fd 2268 bool aborted_reclaim;
1da177e4 2269
873b4771
KK
2270 delayacct_freepages_start();
2271
89b5fae5 2272 if (global_reclaim(sc))
1cfb419b 2273 count_vm_event(ALLOCSTALL);
1da177e4 2274
9e3b2f8c 2275 do {
70ddf637
AV
2276 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2277 sc->priority);
66e1707b 2278 sc->nr_scanned = 0;
9e3b2f8c 2279 aborted_reclaim = shrink_zones(zonelist, sc);
e0c23279 2280
66e1707b
BS
2281 /*
2282 * Don't shrink slabs when reclaiming memory from
2283 * over limit cgroups
2284 */
89b5fae5 2285 if (global_reclaim(sc)) {
c6a8a8c5 2286 unsigned long lru_pages = 0;
d4debc66
MG
2287 for_each_zone_zonelist(zone, z, zonelist,
2288 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2289 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2290 continue;
2291
2292 lru_pages += zone_reclaimable_pages(zone);
2293 }
2294
1495f230 2295 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2296 if (reclaim_state) {
a79311c1 2297 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2298 reclaim_state->reclaimed_slab = 0;
2299 }
1da177e4 2300 }
66e1707b 2301 total_scanned += sc->nr_scanned;
bb21c7ce 2302 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2303 goto out;
1da177e4 2304
0e50ce3b
MK
2305 /*
2306 * If we're getting trouble reclaiming, start doing
2307 * writepage even in laptop mode.
2308 */
2309 if (sc->priority < DEF_PRIORITY - 2)
2310 sc->may_writepage = 1;
2311
1da177e4
LT
2312 /*
2313 * Try to write back as many pages as we just scanned. This
2314 * tends to cause slow streaming writers to write data to the
2315 * disk smoothly, at the dirtying rate, which is nice. But
2316 * that's undesirable in laptop mode, where we *want* lumpy
2317 * writeout. So in laptop mode, write out the whole world.
2318 */
22fba335
KM
2319 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2320 if (total_scanned > writeback_threshold) {
0e175a18
CW
2321 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2322 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2323 sc->may_writepage = 1;
1da177e4
LT
2324 }
2325
2326 /* Take a nap, wait for some writeback to complete */
7b51755c 2327 if (!sc->hibernation_mode && sc->nr_scanned &&
9e3b2f8c 2328 sc->priority < DEF_PRIORITY - 2) {
0e093d99
MG
2329 struct zone *preferred_zone;
2330
2331 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2332 &cpuset_current_mems_allowed,
2333 &preferred_zone);
0e093d99
MG
2334 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2335 }
9e3b2f8c 2336 } while (--sc->priority >= 0);
bb21c7ce 2337
1da177e4 2338out:
873b4771
KK
2339 delayacct_freepages_end();
2340
bb21c7ce
KM
2341 if (sc->nr_reclaimed)
2342 return sc->nr_reclaimed;
2343
929bea7c
KM
2344 /*
2345 * As hibernation is going on, kswapd is freezed so that it can't mark
2346 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2347 * check.
2348 */
2349 if (oom_killer_disabled)
2350 return 0;
2351
0cee34fd
MG
2352 /* Aborted reclaim to try compaction? don't OOM, then */
2353 if (aborted_reclaim)
7335084d
MG
2354 return 1;
2355
bb21c7ce 2356 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2357 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2358 return 1;
2359
2360 return 0;
1da177e4
LT
2361}
2362
5515061d
MG
2363static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2364{
2365 struct zone *zone;
2366 unsigned long pfmemalloc_reserve = 0;
2367 unsigned long free_pages = 0;
2368 int i;
2369 bool wmark_ok;
2370
2371 for (i = 0; i <= ZONE_NORMAL; i++) {
2372 zone = &pgdat->node_zones[i];
2373 pfmemalloc_reserve += min_wmark_pages(zone);
2374 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2375 }
2376
2377 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2378
2379 /* kswapd must be awake if processes are being throttled */
2380 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2381 pgdat->classzone_idx = min(pgdat->classzone_idx,
2382 (enum zone_type)ZONE_NORMAL);
2383 wake_up_interruptible(&pgdat->kswapd_wait);
2384 }
2385
2386 return wmark_ok;
2387}
2388
2389/*
2390 * Throttle direct reclaimers if backing storage is backed by the network
2391 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2392 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2393 * when the low watermark is reached.
2394 *
2395 * Returns true if a fatal signal was delivered during throttling. If this
2396 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2397 */
50694c28 2398static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2399 nodemask_t *nodemask)
2400{
2401 struct zone *zone;
2402 int high_zoneidx = gfp_zone(gfp_mask);
2403 pg_data_t *pgdat;
2404
2405 /*
2406 * Kernel threads should not be throttled as they may be indirectly
2407 * responsible for cleaning pages necessary for reclaim to make forward
2408 * progress. kjournald for example may enter direct reclaim while
2409 * committing a transaction where throttling it could forcing other
2410 * processes to block on log_wait_commit().
2411 */
2412 if (current->flags & PF_KTHREAD)
50694c28
MG
2413 goto out;
2414
2415 /*
2416 * If a fatal signal is pending, this process should not throttle.
2417 * It should return quickly so it can exit and free its memory
2418 */
2419 if (fatal_signal_pending(current))
2420 goto out;
5515061d
MG
2421
2422 /* Check if the pfmemalloc reserves are ok */
2423 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2424 pgdat = zone->zone_pgdat;
2425 if (pfmemalloc_watermark_ok(pgdat))
50694c28 2426 goto out;
5515061d 2427
68243e76
MG
2428 /* Account for the throttling */
2429 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2430
5515061d
MG
2431 /*
2432 * If the caller cannot enter the filesystem, it's possible that it
2433 * is due to the caller holding an FS lock or performing a journal
2434 * transaction in the case of a filesystem like ext[3|4]. In this case,
2435 * it is not safe to block on pfmemalloc_wait as kswapd could be
2436 * blocked waiting on the same lock. Instead, throttle for up to a
2437 * second before continuing.
2438 */
2439 if (!(gfp_mask & __GFP_FS)) {
2440 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2441 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2442
2443 goto check_pending;
5515061d
MG
2444 }
2445
2446 /* Throttle until kswapd wakes the process */
2447 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2448 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2449
2450check_pending:
2451 if (fatal_signal_pending(current))
2452 return true;
2453
2454out:
2455 return false;
5515061d
MG
2456}
2457
dac1d27b 2458unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2459 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2460{
33906bc5 2461 unsigned long nr_reclaimed;
66e1707b 2462 struct scan_control sc = {
21caf2fc 2463 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
66e1707b 2464 .may_writepage = !laptop_mode,
22fba335 2465 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2466 .may_unmap = 1,
2e2e4259 2467 .may_swap = 1,
66e1707b 2468 .order = order,
9e3b2f8c 2469 .priority = DEF_PRIORITY,
f16015fb 2470 .target_mem_cgroup = NULL,
327c0e96 2471 .nodemask = nodemask,
66e1707b 2472 };
a09ed5e0
YH
2473 struct shrink_control shrink = {
2474 .gfp_mask = sc.gfp_mask,
2475 };
66e1707b 2476
5515061d 2477 /*
50694c28
MG
2478 * Do not enter reclaim if fatal signal was delivered while throttled.
2479 * 1 is returned so that the page allocator does not OOM kill at this
2480 * point.
5515061d 2481 */
50694c28 2482 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2483 return 1;
2484
33906bc5
MG
2485 trace_mm_vmscan_direct_reclaim_begin(order,
2486 sc.may_writepage,
2487 gfp_mask);
2488
a09ed5e0 2489 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2490
2491 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2492
2493 return nr_reclaimed;
66e1707b
BS
2494}
2495
c255a458 2496#ifdef CONFIG_MEMCG
66e1707b 2497
72835c86 2498unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2499 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2500 struct zone *zone,
2501 unsigned long *nr_scanned)
4e416953
BS
2502{
2503 struct scan_control sc = {
0ae5e89c 2504 .nr_scanned = 0,
b8f5c566 2505 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2506 .may_writepage = !laptop_mode,
2507 .may_unmap = 1,
2508 .may_swap = !noswap,
4e416953 2509 .order = 0,
9e3b2f8c 2510 .priority = 0,
72835c86 2511 .target_mem_cgroup = memcg,
4e416953 2512 };
f9be23d6 2513 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
0ae5e89c 2514
4e416953
BS
2515 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2516 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2517
9e3b2f8c 2518 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2519 sc.may_writepage,
2520 sc.gfp_mask);
2521
4e416953
BS
2522 /*
2523 * NOTE: Although we can get the priority field, using it
2524 * here is not a good idea, since it limits the pages we can scan.
2525 * if we don't reclaim here, the shrink_zone from balance_pgdat
2526 * will pick up pages from other mem cgroup's as well. We hack
2527 * the priority and make it zero.
2528 */
f9be23d6 2529 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
2530
2531 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2532
0ae5e89c 2533 *nr_scanned = sc.nr_scanned;
4e416953
BS
2534 return sc.nr_reclaimed;
2535}
2536
72835c86 2537unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2538 gfp_t gfp_mask,
185efc0f 2539 bool noswap)
66e1707b 2540{
4e416953 2541 struct zonelist *zonelist;
bdce6d9e 2542 unsigned long nr_reclaimed;
889976db 2543 int nid;
66e1707b 2544 struct scan_control sc = {
66e1707b 2545 .may_writepage = !laptop_mode,
a6dc60f8 2546 .may_unmap = 1,
2e2e4259 2547 .may_swap = !noswap,
22fba335 2548 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2549 .order = 0,
9e3b2f8c 2550 .priority = DEF_PRIORITY,
72835c86 2551 .target_mem_cgroup = memcg,
327c0e96 2552 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2553 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2554 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2555 };
2556 struct shrink_control shrink = {
2557 .gfp_mask = sc.gfp_mask,
66e1707b 2558 };
66e1707b 2559
889976db
YH
2560 /*
2561 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2562 * take care of from where we get pages. So the node where we start the
2563 * scan does not need to be the current node.
2564 */
72835c86 2565 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2566
2567 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2568
2569 trace_mm_vmscan_memcg_reclaim_begin(0,
2570 sc.may_writepage,
2571 sc.gfp_mask);
2572
a09ed5e0 2573 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2574
2575 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2576
2577 return nr_reclaimed;
66e1707b
BS
2578}
2579#endif
2580
9e3b2f8c 2581static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2582{
b95a2f2d 2583 struct mem_cgroup *memcg;
f16015fb 2584
b95a2f2d
JW
2585 if (!total_swap_pages)
2586 return;
2587
2588 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2589 do {
c56d5c7d 2590 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2591
c56d5c7d 2592 if (inactive_anon_is_low(lruvec))
1a93be0e 2593 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2594 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2595
2596 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2597 } while (memcg);
f16015fb
JW
2598}
2599
60cefed4
JW
2600static bool zone_balanced(struct zone *zone, int order,
2601 unsigned long balance_gap, int classzone_idx)
2602{
2603 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2604 balance_gap, classzone_idx, 0))
2605 return false;
2606
d84da3f9
KS
2607 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2608 !compaction_suitable(zone, order))
60cefed4
JW
2609 return false;
2610
2611 return true;
2612}
2613
1741c877 2614/*
4ae0a48b
ZC
2615 * pgdat_balanced() is used when checking if a node is balanced.
2616 *
2617 * For order-0, all zones must be balanced!
2618 *
2619 * For high-order allocations only zones that meet watermarks and are in a
2620 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2621 * total of balanced pages must be at least 25% of the zones allowed by
2622 * classzone_idx for the node to be considered balanced. Forcing all zones to
2623 * be balanced for high orders can cause excessive reclaim when there are
2624 * imbalanced zones.
1741c877
MG
2625 * The choice of 25% is due to
2626 * o a 16M DMA zone that is balanced will not balance a zone on any
2627 * reasonable sized machine
2628 * o On all other machines, the top zone must be at least a reasonable
25985edc 2629 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2630 * would need to be at least 256M for it to be balance a whole node.
2631 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2632 * to balance a node on its own. These seemed like reasonable ratios.
2633 */
4ae0a48b 2634static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2635{
b40da049 2636 unsigned long managed_pages = 0;
4ae0a48b 2637 unsigned long balanced_pages = 0;
1741c877
MG
2638 int i;
2639
4ae0a48b
ZC
2640 /* Check the watermark levels */
2641 for (i = 0; i <= classzone_idx; i++) {
2642 struct zone *zone = pgdat->node_zones + i;
1741c877 2643
4ae0a48b
ZC
2644 if (!populated_zone(zone))
2645 continue;
2646
b40da049 2647 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2648
2649 /*
2650 * A special case here:
2651 *
2652 * balance_pgdat() skips over all_unreclaimable after
2653 * DEF_PRIORITY. Effectively, it considers them balanced so
2654 * they must be considered balanced here as well!
2655 */
2656 if (zone->all_unreclaimable) {
b40da049 2657 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2658 continue;
2659 }
2660
2661 if (zone_balanced(zone, order, 0, i))
b40da049 2662 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2663 else if (!order)
2664 return false;
2665 }
2666
2667 if (order)
b40da049 2668 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
2669 else
2670 return true;
1741c877
MG
2671}
2672
5515061d
MG
2673/*
2674 * Prepare kswapd for sleeping. This verifies that there are no processes
2675 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2676 *
2677 * Returns true if kswapd is ready to sleep
2678 */
2679static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2680 int classzone_idx)
f50de2d3 2681{
f50de2d3
MG
2682 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2683 if (remaining)
5515061d
MG
2684 return false;
2685
2686 /*
2687 * There is a potential race between when kswapd checks its watermarks
2688 * and a process gets throttled. There is also a potential race if
2689 * processes get throttled, kswapd wakes, a large process exits therby
2690 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2691 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2692 * so wake them now if necessary. If necessary, processes will wake
2693 * kswapd and get throttled again
2694 */
2695 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2696 wake_up(&pgdat->pfmemalloc_wait);
2697 return false;
2698 }
f50de2d3 2699
4ae0a48b 2700 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
2701}
2702
75485363
MG
2703/*
2704 * kswapd shrinks the zone by the number of pages required to reach
2705 * the high watermark.
b8e83b94
MG
2706 *
2707 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
2708 * reclaim or if the lack of progress was due to pages under writeback.
2709 * This is used to determine if the scanning priority needs to be raised.
75485363 2710 */
b8e83b94 2711static bool kswapd_shrink_zone(struct zone *zone,
75485363 2712 struct scan_control *sc,
2ab44f43
MG
2713 unsigned long lru_pages,
2714 unsigned long *nr_attempted)
75485363
MG
2715{
2716 unsigned long nr_slab;
2717 struct reclaim_state *reclaim_state = current->reclaim_state;
2718 struct shrink_control shrink = {
2719 .gfp_mask = sc->gfp_mask,
2720 };
2721
2722 /* Reclaim above the high watermark. */
2723 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2724 shrink_zone(zone, sc);
2725
2726 reclaim_state->reclaimed_slab = 0;
2727 nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2728 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2729
2ab44f43
MG
2730 /* Account for the number of pages attempted to reclaim */
2731 *nr_attempted += sc->nr_to_reclaim;
2732
75485363
MG
2733 if (nr_slab == 0 && !zone_reclaimable(zone))
2734 zone->all_unreclaimable = 1;
b8e83b94 2735
283aba9f
MG
2736 zone_clear_flag(zone, ZONE_WRITEBACK);
2737
b8e83b94 2738 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
2739}
2740
1da177e4
LT
2741/*
2742 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2743 * they are all at high_wmark_pages(zone).
1da177e4 2744 *
0abdee2b 2745 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2746 *
2747 * There is special handling here for zones which are full of pinned pages.
2748 * This can happen if the pages are all mlocked, or if they are all used by
2749 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2750 * What we do is to detect the case where all pages in the zone have been
2751 * scanned twice and there has been zero successful reclaim. Mark the zone as
2752 * dead and from now on, only perform a short scan. Basically we're polling
2753 * the zone for when the problem goes away.
2754 *
2755 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2756 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2757 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2758 * lower zones regardless of the number of free pages in the lower zones. This
2759 * interoperates with the page allocator fallback scheme to ensure that aging
2760 * of pages is balanced across the zones.
1da177e4 2761 */
99504748 2762static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2763 int *classzone_idx)
1da177e4 2764{
1da177e4 2765 int i;
99504748 2766 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0ae5e89c
YH
2767 unsigned long nr_soft_reclaimed;
2768 unsigned long nr_soft_scanned;
179e9639
AM
2769 struct scan_control sc = {
2770 .gfp_mask = GFP_KERNEL,
b8e83b94 2771 .priority = DEF_PRIORITY,
a6dc60f8 2772 .may_unmap = 1,
2e2e4259 2773 .may_swap = 1,
b8e83b94 2774 .may_writepage = !laptop_mode,
5ad333eb 2775 .order = order,
f16015fb 2776 .target_mem_cgroup = NULL,
179e9639 2777 };
f8891e5e 2778 count_vm_event(PAGEOUTRUN);
1da177e4 2779
9e3b2f8c 2780 do {
1da177e4 2781 unsigned long lru_pages = 0;
2ab44f43 2782 unsigned long nr_attempted = 0;
b8e83b94 2783 bool raise_priority = true;
2ab44f43 2784 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
2785
2786 sc.nr_reclaimed = 0;
1da177e4 2787
d6277db4
RW
2788 /*
2789 * Scan in the highmem->dma direction for the highest
2790 * zone which needs scanning
2791 */
2792 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2793 struct zone *zone = pgdat->node_zones + i;
1da177e4 2794
d6277db4
RW
2795 if (!populated_zone(zone))
2796 continue;
1da177e4 2797
9e3b2f8c
KK
2798 if (zone->all_unreclaimable &&
2799 sc.priority != DEF_PRIORITY)
d6277db4 2800 continue;
1da177e4 2801
556adecb
RR
2802 /*
2803 * Do some background aging of the anon list, to give
2804 * pages a chance to be referenced before reclaiming.
2805 */
9e3b2f8c 2806 age_active_anon(zone, &sc);
556adecb 2807
cc715d99
MG
2808 /*
2809 * If the number of buffer_heads in the machine
2810 * exceeds the maximum allowed level and this node
2811 * has a highmem zone, force kswapd to reclaim from
2812 * it to relieve lowmem pressure.
2813 */
2814 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2815 end_zone = i;
2816 break;
2817 }
2818
60cefed4 2819 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 2820 end_zone = i;
e1dbeda6 2821 break;
439423f6 2822 } else {
d43006d5
MG
2823 /*
2824 * If balanced, clear the dirty and congested
2825 * flags
2826 */
439423f6 2827 zone_clear_flag(zone, ZONE_CONGESTED);
d43006d5 2828 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
1da177e4 2829 }
1da177e4 2830 }
dafcb73e 2831
b8e83b94 2832 if (i < 0)
e1dbeda6
AM
2833 goto out;
2834
1da177e4
LT
2835 for (i = 0; i <= end_zone; i++) {
2836 struct zone *zone = pgdat->node_zones + i;
2837
2ab44f43
MG
2838 if (!populated_zone(zone))
2839 continue;
2840
adea02a1 2841 lru_pages += zone_reclaimable_pages(zone);
2ab44f43
MG
2842
2843 /*
2844 * If any zone is currently balanced then kswapd will
2845 * not call compaction as it is expected that the
2846 * necessary pages are already available.
2847 */
2848 if (pgdat_needs_compaction &&
2849 zone_watermark_ok(zone, order,
2850 low_wmark_pages(zone),
2851 *classzone_idx, 0))
2852 pgdat_needs_compaction = false;
1da177e4
LT
2853 }
2854
b7ea3c41
MG
2855 /*
2856 * If we're getting trouble reclaiming, start doing writepage
2857 * even in laptop mode.
2858 */
2859 if (sc.priority < DEF_PRIORITY - 2)
2860 sc.may_writepage = 1;
2861
1da177e4
LT
2862 /*
2863 * Now scan the zone in the dma->highmem direction, stopping
2864 * at the last zone which needs scanning.
2865 *
2866 * We do this because the page allocator works in the opposite
2867 * direction. This prevents the page allocator from allocating
2868 * pages behind kswapd's direction of progress, which would
2869 * cause too much scanning of the lower zones.
2870 */
2871 for (i = 0; i <= end_zone; i++) {
2872 struct zone *zone = pgdat->node_zones + i;
75485363 2873 int testorder;
8afdcece 2874 unsigned long balance_gap;
1da177e4 2875
f3fe6512 2876 if (!populated_zone(zone))
1da177e4
LT
2877 continue;
2878
9e3b2f8c
KK
2879 if (zone->all_unreclaimable &&
2880 sc.priority != DEF_PRIORITY)
1da177e4
LT
2881 continue;
2882
1da177e4 2883 sc.nr_scanned = 0;
4e416953 2884
0ae5e89c 2885 nr_soft_scanned = 0;
4e416953
BS
2886 /*
2887 * Call soft limit reclaim before calling shrink_zone.
4e416953 2888 */
0ae5e89c
YH
2889 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2890 order, sc.gfp_mask,
2891 &nr_soft_scanned);
2892 sc.nr_reclaimed += nr_soft_reclaimed;
00918b6a 2893
32a4330d 2894 /*
8afdcece
MG
2895 * We put equal pressure on every zone, unless
2896 * one zone has way too many pages free
2897 * already. The "too many pages" is defined
2898 * as the high wmark plus a "gap" where the
2899 * gap is either the low watermark or 1%
2900 * of the zone, whichever is smaller.
32a4330d 2901 */
8afdcece 2902 balance_gap = min(low_wmark_pages(zone),
b40da049 2903 (zone->managed_pages +
8afdcece
MG
2904 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2905 KSWAPD_ZONE_BALANCE_GAP_RATIO);
fe2c2a10
RR
2906 /*
2907 * Kswapd reclaims only single pages with compaction
2908 * enabled. Trying too hard to reclaim until contiguous
2909 * free pages have become available can hurt performance
2910 * by evicting too much useful data from memory.
2911 * Do not reclaim more than needed for compaction.
2912 */
2913 testorder = order;
d84da3f9 2914 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
fe2c2a10
RR
2915 compaction_suitable(zone, order) !=
2916 COMPACT_SKIPPED)
2917 testorder = 0;
2918
cc715d99 2919 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
60cefed4 2920 !zone_balanced(zone, testorder,
b8e83b94
MG
2921 balance_gap, end_zone)) {
2922 /*
2923 * There should be no need to raise the
2924 * scanning priority if enough pages are
2925 * already being scanned that high
2926 * watermark would be met at 100% efficiency.
2927 */
2ab44f43
MG
2928 if (kswapd_shrink_zone(zone, &sc, lru_pages,
2929 &nr_attempted))
b8e83b94
MG
2930 raise_priority = false;
2931 }
d7868dae 2932
215ddd66
MG
2933 if (zone->all_unreclaimable) {
2934 if (end_zone && end_zone == i)
2935 end_zone--;
d7868dae 2936 continue;
215ddd66 2937 }
d7868dae 2938
258401a6 2939 if (zone_balanced(zone, testorder, 0, end_zone))
0e093d99
MG
2940 /*
2941 * If a zone reaches its high watermark,
2942 * consider it to be no longer congested. It's
2943 * possible there are dirty pages backed by
2944 * congested BDIs but as pressure is relieved,
ab8704b8 2945 * speculatively avoid congestion waits
d43006d5 2946 * or writing pages from kswapd context.
0e093d99
MG
2947 */
2948 zone_clear_flag(zone, ZONE_CONGESTED);
d43006d5 2949 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
1da177e4 2950 }
5515061d
MG
2951
2952 /*
2953 * If the low watermark is met there is no need for processes
2954 * to be throttled on pfmemalloc_wait as they should not be
2955 * able to safely make forward progress. Wake them
2956 */
2957 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2958 pfmemalloc_watermark_ok(pgdat))
2959 wake_up(&pgdat->pfmemalloc_wait);
2960
1da177e4 2961 /*
b8e83b94
MG
2962 * Fragmentation may mean that the system cannot be rebalanced
2963 * for high-order allocations in all zones. If twice the
2964 * allocation size has been reclaimed and the zones are still
2965 * not balanced then recheck the watermarks at order-0 to
2966 * prevent kswapd reclaiming excessively. Assume that a
2967 * process requested a high-order can direct reclaim/compact.
1da177e4 2968 */
b8e83b94
MG
2969 if (order && sc.nr_reclaimed >= 2UL << order)
2970 order = sc.order = 0;
8357376d 2971
b8e83b94
MG
2972 /* Check if kswapd should be suspending */
2973 if (try_to_freeze() || kthread_should_stop())
2974 break;
8357376d 2975
2ab44f43
MG
2976 /*
2977 * Compact if necessary and kswapd is reclaiming at least the
2978 * high watermark number of pages as requsted
2979 */
2980 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
2981 compact_pgdat(pgdat, order);
2982
73ce02e9 2983 /*
b8e83b94
MG
2984 * Raise priority if scanning rate is too low or there was no
2985 * progress in reclaiming pages
73ce02e9 2986 */
b8e83b94
MG
2987 if (raise_priority || !sc.nr_reclaimed)
2988 sc.priority--;
9aa41348 2989 } while (sc.priority >= 1 &&
b8e83b94 2990 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 2991
b8e83b94 2992out:
0abdee2b 2993 /*
5515061d 2994 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
2995 * makes a decision on the order we were last reclaiming at. However,
2996 * if another caller entered the allocator slow path while kswapd
2997 * was awake, order will remain at the higher level
2998 */
dc83edd9 2999 *classzone_idx = end_zone;
0abdee2b 3000 return order;
1da177e4
LT
3001}
3002
dc83edd9 3003static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3004{
3005 long remaining = 0;
3006 DEFINE_WAIT(wait);
3007
3008 if (freezing(current) || kthread_should_stop())
3009 return;
3010
3011 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3012
3013 /* Try to sleep for a short interval */
5515061d 3014 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3015 remaining = schedule_timeout(HZ/10);
3016 finish_wait(&pgdat->kswapd_wait, &wait);
3017 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3018 }
3019
3020 /*
3021 * After a short sleep, check if it was a premature sleep. If not, then
3022 * go fully to sleep until explicitly woken up.
3023 */
5515061d 3024 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3025 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3026
3027 /*
3028 * vmstat counters are not perfectly accurate and the estimated
3029 * value for counters such as NR_FREE_PAGES can deviate from the
3030 * true value by nr_online_cpus * threshold. To avoid the zone
3031 * watermarks being breached while under pressure, we reduce the
3032 * per-cpu vmstat threshold while kswapd is awake and restore
3033 * them before going back to sleep.
3034 */
3035 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3036
62997027
MG
3037 /*
3038 * Compaction records what page blocks it recently failed to
3039 * isolate pages from and skips them in the future scanning.
3040 * When kswapd is going to sleep, it is reasonable to assume
3041 * that pages and compaction may succeed so reset the cache.
3042 */
3043 reset_isolation_suitable(pgdat);
3044
1c7e7f6c
AK
3045 if (!kthread_should_stop())
3046 schedule();
3047
f0bc0a60
KM
3048 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3049 } else {
3050 if (remaining)
3051 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3052 else
3053 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3054 }
3055 finish_wait(&pgdat->kswapd_wait, &wait);
3056}
3057
1da177e4
LT
3058/*
3059 * The background pageout daemon, started as a kernel thread
4f98a2fe 3060 * from the init process.
1da177e4
LT
3061 *
3062 * This basically trickles out pages so that we have _some_
3063 * free memory available even if there is no other activity
3064 * that frees anything up. This is needed for things like routing
3065 * etc, where we otherwise might have all activity going on in
3066 * asynchronous contexts that cannot page things out.
3067 *
3068 * If there are applications that are active memory-allocators
3069 * (most normal use), this basically shouldn't matter.
3070 */
3071static int kswapd(void *p)
3072{
215ddd66 3073 unsigned long order, new_order;
d2ebd0f6 3074 unsigned balanced_order;
215ddd66 3075 int classzone_idx, new_classzone_idx;
d2ebd0f6 3076 int balanced_classzone_idx;
1da177e4
LT
3077 pg_data_t *pgdat = (pg_data_t*)p;
3078 struct task_struct *tsk = current;
f0bc0a60 3079
1da177e4
LT
3080 struct reclaim_state reclaim_state = {
3081 .reclaimed_slab = 0,
3082 };
a70f7302 3083 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3084
cf40bd16
NP
3085 lockdep_set_current_reclaim_state(GFP_KERNEL);
3086
174596a0 3087 if (!cpumask_empty(cpumask))
c5f59f08 3088 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3089 current->reclaim_state = &reclaim_state;
3090
3091 /*
3092 * Tell the memory management that we're a "memory allocator",
3093 * and that if we need more memory we should get access to it
3094 * regardless (see "__alloc_pages()"). "kswapd" should
3095 * never get caught in the normal page freeing logic.
3096 *
3097 * (Kswapd normally doesn't need memory anyway, but sometimes
3098 * you need a small amount of memory in order to be able to
3099 * page out something else, and this flag essentially protects
3100 * us from recursively trying to free more memory as we're
3101 * trying to free the first piece of memory in the first place).
3102 */
930d9152 3103 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3104 set_freezable();
1da177e4 3105
215ddd66 3106 order = new_order = 0;
d2ebd0f6 3107 balanced_order = 0;
215ddd66 3108 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3109 balanced_classzone_idx = classzone_idx;
1da177e4 3110 for ( ; ; ) {
6f6313d4 3111 bool ret;
3e1d1d28 3112
215ddd66
MG
3113 /*
3114 * If the last balance_pgdat was unsuccessful it's unlikely a
3115 * new request of a similar or harder type will succeed soon
3116 * so consider going to sleep on the basis we reclaimed at
3117 */
d2ebd0f6
AS
3118 if (balanced_classzone_idx >= new_classzone_idx &&
3119 balanced_order == new_order) {
215ddd66
MG
3120 new_order = pgdat->kswapd_max_order;
3121 new_classzone_idx = pgdat->classzone_idx;
3122 pgdat->kswapd_max_order = 0;
3123 pgdat->classzone_idx = pgdat->nr_zones - 1;
3124 }
3125
99504748 3126 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3127 /*
3128 * Don't sleep if someone wants a larger 'order'
99504748 3129 * allocation or has tigher zone constraints
1da177e4
LT
3130 */
3131 order = new_order;
99504748 3132 classzone_idx = new_classzone_idx;
1da177e4 3133 } else {
d2ebd0f6
AS
3134 kswapd_try_to_sleep(pgdat, balanced_order,
3135 balanced_classzone_idx);
1da177e4 3136 order = pgdat->kswapd_max_order;
99504748 3137 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3138 new_order = order;
3139 new_classzone_idx = classzone_idx;
4d40502e 3140 pgdat->kswapd_max_order = 0;
215ddd66 3141 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3142 }
1da177e4 3143
8fe23e05
DR
3144 ret = try_to_freeze();
3145 if (kthread_should_stop())
3146 break;
3147
3148 /*
3149 * We can speed up thawing tasks if we don't call balance_pgdat
3150 * after returning from the refrigerator
3151 */
33906bc5
MG
3152 if (!ret) {
3153 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3154 balanced_classzone_idx = classzone_idx;
3155 balanced_order = balance_pgdat(pgdat, order,
3156 &balanced_classzone_idx);
33906bc5 3157 }
1da177e4 3158 }
b0a8cc58
TY
3159
3160 current->reclaim_state = NULL;
1da177e4
LT
3161 return 0;
3162}
3163
3164/*
3165 * A zone is low on free memory, so wake its kswapd task to service it.
3166 */
99504748 3167void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3168{
3169 pg_data_t *pgdat;
3170
f3fe6512 3171 if (!populated_zone(zone))
1da177e4
LT
3172 return;
3173
88f5acf8 3174 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 3175 return;
88f5acf8 3176 pgdat = zone->zone_pgdat;
99504748 3177 if (pgdat->kswapd_max_order < order) {
1da177e4 3178 pgdat->kswapd_max_order = order;
99504748
MG
3179 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3180 }
8d0986e2 3181 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3182 return;
88f5acf8
MG
3183 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3184 return;
3185
3186 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3187 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3188}
3189
adea02a1
WF
3190/*
3191 * The reclaimable count would be mostly accurate.
3192 * The less reclaimable pages may be
3193 * - mlocked pages, which will be moved to unevictable list when encountered
3194 * - mapped pages, which may require several travels to be reclaimed
3195 * - dirty pages, which is not "instantly" reclaimable
3196 */
3197unsigned long global_reclaimable_pages(void)
4f98a2fe 3198{
adea02a1
WF
3199 int nr;
3200
3201 nr = global_page_state(NR_ACTIVE_FILE) +
3202 global_page_state(NR_INACTIVE_FILE);
3203
ec8acf20 3204 if (get_nr_swap_pages() > 0)
adea02a1
WF
3205 nr += global_page_state(NR_ACTIVE_ANON) +
3206 global_page_state(NR_INACTIVE_ANON);
3207
3208 return nr;
3209}
3210
3211unsigned long zone_reclaimable_pages(struct zone *zone)
3212{
3213 int nr;
3214
3215 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3216 zone_page_state(zone, NR_INACTIVE_FILE);
3217
ec8acf20 3218 if (get_nr_swap_pages() > 0)
adea02a1
WF
3219 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3220 zone_page_state(zone, NR_INACTIVE_ANON);
3221
3222 return nr;
4f98a2fe
RR
3223}
3224
c6f37f12 3225#ifdef CONFIG_HIBERNATION
1da177e4 3226/*
7b51755c 3227 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3228 * freed pages.
3229 *
3230 * Rather than trying to age LRUs the aim is to preserve the overall
3231 * LRU order by reclaiming preferentially
3232 * inactive > active > active referenced > active mapped
1da177e4 3233 */
7b51755c 3234unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3235{
d6277db4 3236 struct reclaim_state reclaim_state;
d6277db4 3237 struct scan_control sc = {
7b51755c
KM
3238 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3239 .may_swap = 1,
3240 .may_unmap = 1,
d6277db4 3241 .may_writepage = 1,
7b51755c
KM
3242 .nr_to_reclaim = nr_to_reclaim,
3243 .hibernation_mode = 1,
7b51755c 3244 .order = 0,
9e3b2f8c 3245 .priority = DEF_PRIORITY,
1da177e4 3246 };
a09ed5e0
YH
3247 struct shrink_control shrink = {
3248 .gfp_mask = sc.gfp_mask,
3249 };
3250 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3251 struct task_struct *p = current;
3252 unsigned long nr_reclaimed;
1da177e4 3253
7b51755c
KM
3254 p->flags |= PF_MEMALLOC;
3255 lockdep_set_current_reclaim_state(sc.gfp_mask);
3256 reclaim_state.reclaimed_slab = 0;
3257 p->reclaim_state = &reclaim_state;
d6277db4 3258
a09ed5e0 3259 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 3260
7b51755c
KM
3261 p->reclaim_state = NULL;
3262 lockdep_clear_current_reclaim_state();
3263 p->flags &= ~PF_MEMALLOC;
d6277db4 3264
7b51755c 3265 return nr_reclaimed;
1da177e4 3266}
c6f37f12 3267#endif /* CONFIG_HIBERNATION */
1da177e4 3268
1da177e4
LT
3269/* It's optimal to keep kswapds on the same CPUs as their memory, but
3270 not required for correctness. So if the last cpu in a node goes
3271 away, we get changed to run anywhere: as the first one comes back,
3272 restore their cpu bindings. */
fcb35a9b
GKH
3273static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3274 void *hcpu)
1da177e4 3275{
58c0a4a7 3276 int nid;
1da177e4 3277
8bb78442 3278 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3279 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3280 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3281 const struct cpumask *mask;
3282
3283 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3284
3e597945 3285 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3286 /* One of our CPUs online: restore mask */
c5f59f08 3287 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3288 }
3289 }
3290 return NOTIFY_OK;
3291}
1da177e4 3292
3218ae14
YG
3293/*
3294 * This kswapd start function will be called by init and node-hot-add.
3295 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3296 */
3297int kswapd_run(int nid)
3298{
3299 pg_data_t *pgdat = NODE_DATA(nid);
3300 int ret = 0;
3301
3302 if (pgdat->kswapd)
3303 return 0;
3304
3305 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3306 if (IS_ERR(pgdat->kswapd)) {
3307 /* failure at boot is fatal */
3308 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3309 pr_err("Failed to start kswapd on node %d\n", nid);
3310 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3311 pgdat->kswapd = NULL;
3218ae14
YG
3312 }
3313 return ret;
3314}
3315
8fe23e05 3316/*
d8adde17
JL
3317 * Called by memory hotplug when all memory in a node is offlined. Caller must
3318 * hold lock_memory_hotplug().
8fe23e05
DR
3319 */
3320void kswapd_stop(int nid)
3321{
3322 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3323
d8adde17 3324 if (kswapd) {
8fe23e05 3325 kthread_stop(kswapd);
d8adde17
JL
3326 NODE_DATA(nid)->kswapd = NULL;
3327 }
8fe23e05
DR
3328}
3329
1da177e4
LT
3330static int __init kswapd_init(void)
3331{
3218ae14 3332 int nid;
69e05944 3333
1da177e4 3334 swap_setup();
48fb2e24 3335 for_each_node_state(nid, N_MEMORY)
3218ae14 3336 kswapd_run(nid);
1da177e4
LT
3337 hotcpu_notifier(cpu_callback, 0);
3338 return 0;
3339}
3340
3341module_init(kswapd_init)
9eeff239
CL
3342
3343#ifdef CONFIG_NUMA
3344/*
3345 * Zone reclaim mode
3346 *
3347 * If non-zero call zone_reclaim when the number of free pages falls below
3348 * the watermarks.
9eeff239
CL
3349 */
3350int zone_reclaim_mode __read_mostly;
3351
1b2ffb78 3352#define RECLAIM_OFF 0
7d03431c 3353#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3354#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3355#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3356
a92f7126
CL
3357/*
3358 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3359 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3360 * a zone.
3361 */
3362#define ZONE_RECLAIM_PRIORITY 4
3363
9614634f
CL
3364/*
3365 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3366 * occur.
3367 */
3368int sysctl_min_unmapped_ratio = 1;
3369
0ff38490
CL
3370/*
3371 * If the number of slab pages in a zone grows beyond this percentage then
3372 * slab reclaim needs to occur.
3373 */
3374int sysctl_min_slab_ratio = 5;
3375
90afa5de
MG
3376static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3377{
3378 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3379 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3380 zone_page_state(zone, NR_ACTIVE_FILE);
3381
3382 /*
3383 * It's possible for there to be more file mapped pages than
3384 * accounted for by the pages on the file LRU lists because
3385 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3386 */
3387 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3388}
3389
3390/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3391static long zone_pagecache_reclaimable(struct zone *zone)
3392{
3393 long nr_pagecache_reclaimable;
3394 long delta = 0;
3395
3396 /*
3397 * If RECLAIM_SWAP is set, then all file pages are considered
3398 * potentially reclaimable. Otherwise, we have to worry about
3399 * pages like swapcache and zone_unmapped_file_pages() provides
3400 * a better estimate
3401 */
3402 if (zone_reclaim_mode & RECLAIM_SWAP)
3403 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3404 else
3405 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3406
3407 /* If we can't clean pages, remove dirty pages from consideration */
3408 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3409 delta += zone_page_state(zone, NR_FILE_DIRTY);
3410
3411 /* Watch for any possible underflows due to delta */
3412 if (unlikely(delta > nr_pagecache_reclaimable))
3413 delta = nr_pagecache_reclaimable;
3414
3415 return nr_pagecache_reclaimable - delta;
3416}
3417
9eeff239
CL
3418/*
3419 * Try to free up some pages from this zone through reclaim.
3420 */
179e9639 3421static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3422{
7fb2d46d 3423 /* Minimum pages needed in order to stay on node */
69e05944 3424 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3425 struct task_struct *p = current;
3426 struct reclaim_state reclaim_state;
179e9639
AM
3427 struct scan_control sc = {
3428 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3429 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3430 .may_swap = 1,
62b726c1 3431 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3432 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3433 .order = order,
9e3b2f8c 3434 .priority = ZONE_RECLAIM_PRIORITY,
179e9639 3435 };
a09ed5e0
YH
3436 struct shrink_control shrink = {
3437 .gfp_mask = sc.gfp_mask,
3438 };
15748048 3439 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3440
9eeff239 3441 cond_resched();
d4f7796e
CL
3442 /*
3443 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3444 * and we also need to be able to write out pages for RECLAIM_WRITE
3445 * and RECLAIM_SWAP.
3446 */
3447 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3448 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3449 reclaim_state.reclaimed_slab = 0;
3450 p->reclaim_state = &reclaim_state;
c84db23c 3451
90afa5de 3452 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3453 /*
3454 * Free memory by calling shrink zone with increasing
3455 * priorities until we have enough memory freed.
3456 */
0ff38490 3457 do {
9e3b2f8c
KK
3458 shrink_zone(zone, &sc);
3459 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3460 }
c84db23c 3461
15748048
KM
3462 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3463 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3464 /*
7fb2d46d 3465 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3466 * many pages were freed in this zone. So we take the current
3467 * number of slab pages and shake the slab until it is reduced
3468 * by the same nr_pages that we used for reclaiming unmapped
3469 * pages.
2a16e3f4 3470 *
0ff38490
CL
3471 * Note that shrink_slab will free memory on all zones and may
3472 * take a long time.
2a16e3f4 3473 */
4dc4b3d9
KM
3474 for (;;) {
3475 unsigned long lru_pages = zone_reclaimable_pages(zone);
3476
3477 /* No reclaimable slab or very low memory pressure */
1495f230 3478 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3479 break;
3480
3481 /* Freed enough memory */
3482 nr_slab_pages1 = zone_page_state(zone,
3483 NR_SLAB_RECLAIMABLE);
3484 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3485 break;
3486 }
83e33a47
CL
3487
3488 /*
3489 * Update nr_reclaimed by the number of slab pages we
3490 * reclaimed from this zone.
3491 */
15748048
KM
3492 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3493 if (nr_slab_pages1 < nr_slab_pages0)
3494 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3495 }
3496
9eeff239 3497 p->reclaim_state = NULL;
d4f7796e 3498 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3499 lockdep_clear_current_reclaim_state();
a79311c1 3500 return sc.nr_reclaimed >= nr_pages;
9eeff239 3501}
179e9639
AM
3502
3503int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3504{
179e9639 3505 int node_id;
d773ed6b 3506 int ret;
179e9639
AM
3507
3508 /*
0ff38490
CL
3509 * Zone reclaim reclaims unmapped file backed pages and
3510 * slab pages if we are over the defined limits.
34aa1330 3511 *
9614634f
CL
3512 * A small portion of unmapped file backed pages is needed for
3513 * file I/O otherwise pages read by file I/O will be immediately
3514 * thrown out if the zone is overallocated. So we do not reclaim
3515 * if less than a specified percentage of the zone is used by
3516 * unmapped file backed pages.
179e9639 3517 */
90afa5de
MG
3518 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3519 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3520 return ZONE_RECLAIM_FULL;
179e9639 3521
93e4a89a 3522 if (zone->all_unreclaimable)
fa5e084e 3523 return ZONE_RECLAIM_FULL;
d773ed6b 3524
179e9639 3525 /*
d773ed6b 3526 * Do not scan if the allocation should not be delayed.
179e9639 3527 */
d773ed6b 3528 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3529 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3530
3531 /*
3532 * Only run zone reclaim on the local zone or on zones that do not
3533 * have associated processors. This will favor the local processor
3534 * over remote processors and spread off node memory allocations
3535 * as wide as possible.
3536 */
89fa3024 3537 node_id = zone_to_nid(zone);
37c0708d 3538 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3539 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3540
3541 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3542 return ZONE_RECLAIM_NOSCAN;
3543
d773ed6b
DR
3544 ret = __zone_reclaim(zone, gfp_mask, order);
3545 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3546
24cf7251
MG
3547 if (!ret)
3548 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3549
d773ed6b 3550 return ret;
179e9639 3551}
9eeff239 3552#endif
894bc310 3553
894bc310
LS
3554/*
3555 * page_evictable - test whether a page is evictable
3556 * @page: the page to test
894bc310
LS
3557 *
3558 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3559 * lists vs unevictable list.
894bc310
LS
3560 *
3561 * Reasons page might not be evictable:
ba9ddf49 3562 * (1) page's mapping marked unevictable
b291f000 3563 * (2) page is part of an mlocked VMA
ba9ddf49 3564 *
894bc310 3565 */
39b5f29a 3566int page_evictable(struct page *page)
894bc310 3567{
39b5f29a 3568 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3569}
89e004ea 3570
85046579 3571#ifdef CONFIG_SHMEM
89e004ea 3572/**
24513264
HD
3573 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3574 * @pages: array of pages to check
3575 * @nr_pages: number of pages to check
89e004ea 3576 *
24513264 3577 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3578 *
3579 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3580 */
24513264 3581void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3582{
925b7673 3583 struct lruvec *lruvec;
24513264
HD
3584 struct zone *zone = NULL;
3585 int pgscanned = 0;
3586 int pgrescued = 0;
3587 int i;
89e004ea 3588
24513264
HD
3589 for (i = 0; i < nr_pages; i++) {
3590 struct page *page = pages[i];
3591 struct zone *pagezone;
89e004ea 3592
24513264
HD
3593 pgscanned++;
3594 pagezone = page_zone(page);
3595 if (pagezone != zone) {
3596 if (zone)
3597 spin_unlock_irq(&zone->lru_lock);
3598 zone = pagezone;
3599 spin_lock_irq(&zone->lru_lock);
3600 }
fa9add64 3601 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3602
24513264
HD
3603 if (!PageLRU(page) || !PageUnevictable(page))
3604 continue;
89e004ea 3605
39b5f29a 3606 if (page_evictable(page)) {
24513264
HD
3607 enum lru_list lru = page_lru_base_type(page);
3608
3609 VM_BUG_ON(PageActive(page));
3610 ClearPageUnevictable(page);
fa9add64
HD
3611 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3612 add_page_to_lru_list(page, lruvec, lru);
24513264 3613 pgrescued++;
89e004ea 3614 }
24513264 3615 }
89e004ea 3616
24513264
HD
3617 if (zone) {
3618 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3619 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3620 spin_unlock_irq(&zone->lru_lock);
89e004ea 3621 }
89e004ea 3622}
85046579 3623#endif /* CONFIG_SHMEM */
af936a16 3624
264e56d8 3625static void warn_scan_unevictable_pages(void)
af936a16 3626{
264e56d8 3627 printk_once(KERN_WARNING
25bd91bd 3628 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3629 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3630 "one, please send an email to linux-mm@kvack.org.\n",
3631 current->comm);
af936a16
LS
3632}
3633
3634/*
3635 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3636 * all nodes' unevictable lists for evictable pages
3637 */
3638unsigned long scan_unevictable_pages;
3639
3640int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3641 void __user *buffer,
af936a16
LS
3642 size_t *length, loff_t *ppos)
3643{
264e56d8 3644 warn_scan_unevictable_pages();
8d65af78 3645 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3646 scan_unevictable_pages = 0;
3647 return 0;
3648}
3649
e4455abb 3650#ifdef CONFIG_NUMA
af936a16
LS
3651/*
3652 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3653 * a specified node's per zone unevictable lists for evictable pages.
3654 */
3655
10fbcf4c
KS
3656static ssize_t read_scan_unevictable_node(struct device *dev,
3657 struct device_attribute *attr,
af936a16
LS
3658 char *buf)
3659{
264e56d8 3660 warn_scan_unevictable_pages();
af936a16
LS
3661 return sprintf(buf, "0\n"); /* always zero; should fit... */
3662}
3663
10fbcf4c
KS
3664static ssize_t write_scan_unevictable_node(struct device *dev,
3665 struct device_attribute *attr,
af936a16
LS
3666 const char *buf, size_t count)
3667{
264e56d8 3668 warn_scan_unevictable_pages();
af936a16
LS
3669 return 1;
3670}
3671
3672
10fbcf4c 3673static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3674 read_scan_unevictable_node,
3675 write_scan_unevictable_node);
3676
3677int scan_unevictable_register_node(struct node *node)
3678{
10fbcf4c 3679 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3680}
3681
3682void scan_unevictable_unregister_node(struct node *node)
3683{
10fbcf4c 3684 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3685}
e4455abb 3686#endif