]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/vmscan.c
mm, vmscan: remove highmem_file_pages
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4
LT
16#include <linux/mm.h>
17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
268bb0ce 47#include <linux/prefetch.h>
b1de0d13 48#include <linux/printk.h>
f9fe48be 49#include <linux/dax.h>
1da177e4
LT
50
51#include <asm/tlbflush.h>
52#include <asm/div64.h>
53
54#include <linux/swapops.h>
117aad1e 55#include <linux/balloon_compaction.h>
1da177e4 56
0f8053a5
NP
57#include "internal.h"
58
33906bc5
MG
59#define CREATE_TRACE_POINTS
60#include <trace/events/vmscan.h>
61
1da177e4 62struct scan_control {
22fba335
KM
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
1da177e4 66 /* This context's GFP mask */
6daa0e28 67 gfp_t gfp_mask;
1da177e4 68
ee814fe2 69 /* Allocation order */
5ad333eb 70 int order;
66e1707b 71
ee814fe2
JW
72 /*
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 * are scanned.
75 */
76 nodemask_t *nodemask;
9e3b2f8c 77
f16015fb
JW
78 /*
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
81 */
82 struct mem_cgroup *target_mem_cgroup;
66e1707b 83
ee814fe2
JW
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
86
b2e18757
MG
87 /* The highest zone to isolate pages for reclaim from */
88 enum zone_type reclaim_idx;
89
ee814fe2
JW
90 unsigned int may_writepage:1;
91
92 /* Can mapped pages be reclaimed? */
93 unsigned int may_unmap:1;
94
95 /* Can pages be swapped as part of reclaim? */
96 unsigned int may_swap:1;
97
241994ed
JW
98 /* Can cgroups be reclaimed below their normal consumption range? */
99 unsigned int may_thrash:1;
100
ee814fe2
JW
101 unsigned int hibernation_mode:1;
102
103 /* One of the zones is ready for compaction */
104 unsigned int compaction_ready:1;
105
106 /* Incremented by the number of inactive pages that were scanned */
107 unsigned long nr_scanned;
108
109 /* Number of pages freed so far during a call to shrink_zones() */
110 unsigned long nr_reclaimed;
1da177e4
LT
111};
112
1da177e4
LT
113#ifdef ARCH_HAS_PREFETCH
114#define prefetch_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetch(&prev->_field); \
121 } \
122 } while (0)
123#else
124#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127#ifdef ARCH_HAS_PREFETCHW
128#define prefetchw_prev_lru_page(_page, _base, _field) \
129 do { \
130 if ((_page)->lru.prev != _base) { \
131 struct page *prev; \
132 \
133 prev = lru_to_page(&(_page->lru)); \
134 prefetchw(&prev->_field); \
135 } \
136 } while (0)
137#else
138#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
139#endif
140
141/*
142 * From 0 .. 100. Higher means more swappy.
143 */
144int vm_swappiness = 60;
d0480be4
WSH
145/*
146 * The total number of pages which are beyond the high watermark within all
147 * zones.
148 */
149unsigned long vm_total_pages;
1da177e4
LT
150
151static LIST_HEAD(shrinker_list);
152static DECLARE_RWSEM(shrinker_rwsem);
153
c255a458 154#ifdef CONFIG_MEMCG
89b5fae5
JW
155static bool global_reclaim(struct scan_control *sc)
156{
f16015fb 157 return !sc->target_mem_cgroup;
89b5fae5 158}
97c9341f
TH
159
160/**
161 * sane_reclaim - is the usual dirty throttling mechanism operational?
162 * @sc: scan_control in question
163 *
164 * The normal page dirty throttling mechanism in balance_dirty_pages() is
165 * completely broken with the legacy memcg and direct stalling in
166 * shrink_page_list() is used for throttling instead, which lacks all the
167 * niceties such as fairness, adaptive pausing, bandwidth proportional
168 * allocation and configurability.
169 *
170 * This function tests whether the vmscan currently in progress can assume
171 * that the normal dirty throttling mechanism is operational.
172 */
173static bool sane_reclaim(struct scan_control *sc)
174{
175 struct mem_cgroup *memcg = sc->target_mem_cgroup;
176
177 if (!memcg)
178 return true;
179#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 180 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
181 return true;
182#endif
183 return false;
184}
91a45470 185#else
89b5fae5
JW
186static bool global_reclaim(struct scan_control *sc)
187{
188 return true;
189}
97c9341f
TH
190
191static bool sane_reclaim(struct scan_control *sc)
192{
193 return true;
194}
91a45470
KH
195#endif
196
599d0c95
MG
197unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
198{
199 unsigned long nr;
200
201 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
202 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
203 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
6e543d57
LD
204
205 if (get_nr_swap_pages() > 0)
599d0c95
MG
206 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
207 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
208 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
6e543d57
LD
209
210 return nr;
211}
212
599d0c95 213bool pgdat_reclaimable(struct pglist_data *pgdat)
6e543d57 214{
599d0c95
MG
215 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
216 pgdat_reclaimable_pages(pgdat) * 6;
6e543d57
LD
217}
218
23047a96 219unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 220{
c3c787e8 221 if (!mem_cgroup_disabled())
4d7dcca2 222 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 223
599d0c95 224 return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
225}
226
1da177e4 227/*
1d3d4437 228 * Add a shrinker callback to be called from the vm.
1da177e4 229 */
1d3d4437 230int register_shrinker(struct shrinker *shrinker)
1da177e4 231{
1d3d4437
GC
232 size_t size = sizeof(*shrinker->nr_deferred);
233
1d3d4437
GC
234 if (shrinker->flags & SHRINKER_NUMA_AWARE)
235 size *= nr_node_ids;
236
237 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
238 if (!shrinker->nr_deferred)
239 return -ENOMEM;
240
8e1f936b
RR
241 down_write(&shrinker_rwsem);
242 list_add_tail(&shrinker->list, &shrinker_list);
243 up_write(&shrinker_rwsem);
1d3d4437 244 return 0;
1da177e4 245}
8e1f936b 246EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
247
248/*
249 * Remove one
250 */
8e1f936b 251void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
252{
253 down_write(&shrinker_rwsem);
254 list_del(&shrinker->list);
255 up_write(&shrinker_rwsem);
ae393321 256 kfree(shrinker->nr_deferred);
1da177e4 257}
8e1f936b 258EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
259
260#define SHRINK_BATCH 128
1d3d4437 261
cb731d6c
VD
262static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
263 struct shrinker *shrinker,
264 unsigned long nr_scanned,
265 unsigned long nr_eligible)
1d3d4437
GC
266{
267 unsigned long freed = 0;
268 unsigned long long delta;
269 long total_scan;
d5bc5fd3 270 long freeable;
1d3d4437
GC
271 long nr;
272 long new_nr;
273 int nid = shrinkctl->nid;
274 long batch_size = shrinker->batch ? shrinker->batch
275 : SHRINK_BATCH;
276
d5bc5fd3
VD
277 freeable = shrinker->count_objects(shrinker, shrinkctl);
278 if (freeable == 0)
1d3d4437
GC
279 return 0;
280
281 /*
282 * copy the current shrinker scan count into a local variable
283 * and zero it so that other concurrent shrinker invocations
284 * don't also do this scanning work.
285 */
286 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
287
288 total_scan = nr;
6b4f7799 289 delta = (4 * nr_scanned) / shrinker->seeks;
d5bc5fd3 290 delta *= freeable;
6b4f7799 291 do_div(delta, nr_eligible + 1);
1d3d4437
GC
292 total_scan += delta;
293 if (total_scan < 0) {
8612c663 294 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 295 shrinker->scan_objects, total_scan);
d5bc5fd3 296 total_scan = freeable;
1d3d4437
GC
297 }
298
299 /*
300 * We need to avoid excessive windup on filesystem shrinkers
301 * due to large numbers of GFP_NOFS allocations causing the
302 * shrinkers to return -1 all the time. This results in a large
303 * nr being built up so when a shrink that can do some work
304 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 305 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
306 * memory.
307 *
308 * Hence only allow the shrinker to scan the entire cache when
309 * a large delta change is calculated directly.
310 */
d5bc5fd3
VD
311 if (delta < freeable / 4)
312 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
313
314 /*
315 * Avoid risking looping forever due to too large nr value:
316 * never try to free more than twice the estimate number of
317 * freeable entries.
318 */
d5bc5fd3
VD
319 if (total_scan > freeable * 2)
320 total_scan = freeable * 2;
1d3d4437
GC
321
322 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
6b4f7799
JW
323 nr_scanned, nr_eligible,
324 freeable, delta, total_scan);
1d3d4437 325
0b1fb40a
VD
326 /*
327 * Normally, we should not scan less than batch_size objects in one
328 * pass to avoid too frequent shrinker calls, but if the slab has less
329 * than batch_size objects in total and we are really tight on memory,
330 * we will try to reclaim all available objects, otherwise we can end
331 * up failing allocations although there are plenty of reclaimable
332 * objects spread over several slabs with usage less than the
333 * batch_size.
334 *
335 * We detect the "tight on memory" situations by looking at the total
336 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 337 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
338 * scanning at high prio and therefore should try to reclaim as much as
339 * possible.
340 */
341 while (total_scan >= batch_size ||
d5bc5fd3 342 total_scan >= freeable) {
a0b02131 343 unsigned long ret;
0b1fb40a 344 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 345
0b1fb40a 346 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
347 ret = shrinker->scan_objects(shrinker, shrinkctl);
348 if (ret == SHRINK_STOP)
349 break;
350 freed += ret;
1d3d4437 351
0b1fb40a
VD
352 count_vm_events(SLABS_SCANNED, nr_to_scan);
353 total_scan -= nr_to_scan;
1d3d4437
GC
354
355 cond_resched();
356 }
357
358 /*
359 * move the unused scan count back into the shrinker in a
360 * manner that handles concurrent updates. If we exhausted the
361 * scan, there is no need to do an update.
362 */
363 if (total_scan > 0)
364 new_nr = atomic_long_add_return(total_scan,
365 &shrinker->nr_deferred[nid]);
366 else
367 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
368
df9024a8 369 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 370 return freed;
1495f230
YH
371}
372
6b4f7799 373/**
cb731d6c 374 * shrink_slab - shrink slab caches
6b4f7799
JW
375 * @gfp_mask: allocation context
376 * @nid: node whose slab caches to target
cb731d6c 377 * @memcg: memory cgroup whose slab caches to target
6b4f7799
JW
378 * @nr_scanned: pressure numerator
379 * @nr_eligible: pressure denominator
1da177e4 380 *
6b4f7799 381 * Call the shrink functions to age shrinkable caches.
1da177e4 382 *
6b4f7799
JW
383 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
384 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 385 *
cb731d6c
VD
386 * @memcg specifies the memory cgroup to target. If it is not NULL,
387 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
0fc9f58a
VD
388 * objects from the memory cgroup specified. Otherwise, only unaware
389 * shrinkers are called.
cb731d6c 390 *
6b4f7799
JW
391 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
392 * the available objects should be scanned. Page reclaim for example
393 * passes the number of pages scanned and the number of pages on the
394 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
395 * when it encountered mapped pages. The ratio is further biased by
396 * the ->seeks setting of the shrink function, which indicates the
397 * cost to recreate an object relative to that of an LRU page.
b15e0905 398 *
6b4f7799 399 * Returns the number of reclaimed slab objects.
1da177e4 400 */
cb731d6c
VD
401static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
402 struct mem_cgroup *memcg,
403 unsigned long nr_scanned,
404 unsigned long nr_eligible)
1da177e4
LT
405{
406 struct shrinker *shrinker;
24f7c6b9 407 unsigned long freed = 0;
1da177e4 408
0fc9f58a 409 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
cb731d6c
VD
410 return 0;
411
6b4f7799
JW
412 if (nr_scanned == 0)
413 nr_scanned = SWAP_CLUSTER_MAX;
1da177e4 414
f06590bd 415 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
416 /*
417 * If we would return 0, our callers would understand that we
418 * have nothing else to shrink and give up trying. By returning
419 * 1 we keep it going and assume we'll be able to shrink next
420 * time.
421 */
422 freed = 1;
f06590bd
MK
423 goto out;
424 }
1da177e4
LT
425
426 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
427 struct shrink_control sc = {
428 .gfp_mask = gfp_mask,
429 .nid = nid,
cb731d6c 430 .memcg = memcg,
6b4f7799 431 };
ec97097b 432
0fc9f58a
VD
433 /*
434 * If kernel memory accounting is disabled, we ignore
435 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
436 * passing NULL for memcg.
437 */
438 if (memcg_kmem_enabled() &&
439 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
cb731d6c
VD
440 continue;
441
6b4f7799
JW
442 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
443 sc.nid = 0;
1da177e4 444
cb731d6c 445 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
1da177e4 446 }
6b4f7799 447
1da177e4 448 up_read(&shrinker_rwsem);
f06590bd
MK
449out:
450 cond_resched();
24f7c6b9 451 return freed;
1da177e4
LT
452}
453
cb731d6c
VD
454void drop_slab_node(int nid)
455{
456 unsigned long freed;
457
458 do {
459 struct mem_cgroup *memcg = NULL;
460
461 freed = 0;
462 do {
463 freed += shrink_slab(GFP_KERNEL, nid, memcg,
464 1000, 1000);
465 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
466 } while (freed > 10);
467}
468
469void drop_slab(void)
470{
471 int nid;
472
473 for_each_online_node(nid)
474 drop_slab_node(nid);
475}
476
1da177e4
LT
477static inline int is_page_cache_freeable(struct page *page)
478{
ceddc3a5
JW
479 /*
480 * A freeable page cache page is referenced only by the caller
481 * that isolated the page, the page cache radix tree and
482 * optional buffer heads at page->private.
483 */
edcf4748 484 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
485}
486
703c2708 487static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 488{
930d9152 489 if (current->flags & PF_SWAPWRITE)
1da177e4 490 return 1;
703c2708 491 if (!inode_write_congested(inode))
1da177e4 492 return 1;
703c2708 493 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
494 return 1;
495 return 0;
496}
497
498/*
499 * We detected a synchronous write error writing a page out. Probably
500 * -ENOSPC. We need to propagate that into the address_space for a subsequent
501 * fsync(), msync() or close().
502 *
503 * The tricky part is that after writepage we cannot touch the mapping: nothing
504 * prevents it from being freed up. But we have a ref on the page and once
505 * that page is locked, the mapping is pinned.
506 *
507 * We're allowed to run sleeping lock_page() here because we know the caller has
508 * __GFP_FS.
509 */
510static void handle_write_error(struct address_space *mapping,
511 struct page *page, int error)
512{
7eaceacc 513 lock_page(page);
3e9f45bd
GC
514 if (page_mapping(page) == mapping)
515 mapping_set_error(mapping, error);
1da177e4
LT
516 unlock_page(page);
517}
518
04e62a29
CL
519/* possible outcome of pageout() */
520typedef enum {
521 /* failed to write page out, page is locked */
522 PAGE_KEEP,
523 /* move page to the active list, page is locked */
524 PAGE_ACTIVATE,
525 /* page has been sent to the disk successfully, page is unlocked */
526 PAGE_SUCCESS,
527 /* page is clean and locked */
528 PAGE_CLEAN,
529} pageout_t;
530
1da177e4 531/*
1742f19f
AM
532 * pageout is called by shrink_page_list() for each dirty page.
533 * Calls ->writepage().
1da177e4 534 */
c661b078 535static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 536 struct scan_control *sc)
1da177e4
LT
537{
538 /*
539 * If the page is dirty, only perform writeback if that write
540 * will be non-blocking. To prevent this allocation from being
541 * stalled by pagecache activity. But note that there may be
542 * stalls if we need to run get_block(). We could test
543 * PagePrivate for that.
544 *
8174202b 545 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
546 * this page's queue, we can perform writeback even if that
547 * will block.
548 *
549 * If the page is swapcache, write it back even if that would
550 * block, for some throttling. This happens by accident, because
551 * swap_backing_dev_info is bust: it doesn't reflect the
552 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
553 */
554 if (!is_page_cache_freeable(page))
555 return PAGE_KEEP;
556 if (!mapping) {
557 /*
558 * Some data journaling orphaned pages can have
559 * page->mapping == NULL while being dirty with clean buffers.
560 */
266cf658 561 if (page_has_private(page)) {
1da177e4
LT
562 if (try_to_free_buffers(page)) {
563 ClearPageDirty(page);
b1de0d13 564 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
565 return PAGE_CLEAN;
566 }
567 }
568 return PAGE_KEEP;
569 }
570 if (mapping->a_ops->writepage == NULL)
571 return PAGE_ACTIVATE;
703c2708 572 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
573 return PAGE_KEEP;
574
575 if (clear_page_dirty_for_io(page)) {
576 int res;
577 struct writeback_control wbc = {
578 .sync_mode = WB_SYNC_NONE,
579 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
580 .range_start = 0,
581 .range_end = LLONG_MAX,
1da177e4
LT
582 .for_reclaim = 1,
583 };
584
585 SetPageReclaim(page);
586 res = mapping->a_ops->writepage(page, &wbc);
587 if (res < 0)
588 handle_write_error(mapping, page, res);
994fc28c 589 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
590 ClearPageReclaim(page);
591 return PAGE_ACTIVATE;
592 }
c661b078 593
1da177e4
LT
594 if (!PageWriteback(page)) {
595 /* synchronous write or broken a_ops? */
596 ClearPageReclaim(page);
597 }
3aa23851 598 trace_mm_vmscan_writepage(page);
c4a25635 599 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
600 return PAGE_SUCCESS;
601 }
602
603 return PAGE_CLEAN;
604}
605
a649fd92 606/*
e286781d
NP
607 * Same as remove_mapping, but if the page is removed from the mapping, it
608 * gets returned with a refcount of 0.
a649fd92 609 */
a528910e
JW
610static int __remove_mapping(struct address_space *mapping, struct page *page,
611 bool reclaimed)
49d2e9cc 612{
c4843a75 613 unsigned long flags;
c4843a75 614
28e4d965
NP
615 BUG_ON(!PageLocked(page));
616 BUG_ON(mapping != page_mapping(page));
49d2e9cc 617
c4843a75 618 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 619 /*
0fd0e6b0
NP
620 * The non racy check for a busy page.
621 *
622 * Must be careful with the order of the tests. When someone has
623 * a ref to the page, it may be possible that they dirty it then
624 * drop the reference. So if PageDirty is tested before page_count
625 * here, then the following race may occur:
626 *
627 * get_user_pages(&page);
628 * [user mapping goes away]
629 * write_to(page);
630 * !PageDirty(page) [good]
631 * SetPageDirty(page);
632 * put_page(page);
633 * !page_count(page) [good, discard it]
634 *
635 * [oops, our write_to data is lost]
636 *
637 * Reversing the order of the tests ensures such a situation cannot
638 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 639 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
640 *
641 * Note that if SetPageDirty is always performed via set_page_dirty,
642 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 643 */
fe896d18 644 if (!page_ref_freeze(page, 2))
49d2e9cc 645 goto cannot_free;
e286781d
NP
646 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
647 if (unlikely(PageDirty(page))) {
fe896d18 648 page_ref_unfreeze(page, 2);
49d2e9cc 649 goto cannot_free;
e286781d 650 }
49d2e9cc
CL
651
652 if (PageSwapCache(page)) {
653 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 654 mem_cgroup_swapout(page, swap);
49d2e9cc 655 __delete_from_swap_cache(page);
c4843a75 656 spin_unlock_irqrestore(&mapping->tree_lock, flags);
0a31bc97 657 swapcache_free(swap);
e286781d 658 } else {
6072d13c 659 void (*freepage)(struct page *);
a528910e 660 void *shadow = NULL;
6072d13c
LT
661
662 freepage = mapping->a_ops->freepage;
a528910e
JW
663 /*
664 * Remember a shadow entry for reclaimed file cache in
665 * order to detect refaults, thus thrashing, later on.
666 *
667 * But don't store shadows in an address space that is
668 * already exiting. This is not just an optizimation,
669 * inode reclaim needs to empty out the radix tree or
670 * the nodes are lost. Don't plant shadows behind its
671 * back.
f9fe48be
RZ
672 *
673 * We also don't store shadows for DAX mappings because the
674 * only page cache pages found in these are zero pages
675 * covering holes, and because we don't want to mix DAX
676 * exceptional entries and shadow exceptional entries in the
677 * same page_tree.
a528910e
JW
678 */
679 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 680 !mapping_exiting(mapping) && !dax_mapping(mapping))
a528910e 681 shadow = workingset_eviction(mapping, page);
62cccb8c 682 __delete_from_page_cache(page, shadow);
c4843a75 683 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
684
685 if (freepage != NULL)
686 freepage(page);
49d2e9cc
CL
687 }
688
49d2e9cc
CL
689 return 1;
690
691cannot_free:
c4843a75 692 spin_unlock_irqrestore(&mapping->tree_lock, flags);
49d2e9cc
CL
693 return 0;
694}
695
e286781d
NP
696/*
697 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
698 * someone else has a ref on the page, abort and return 0. If it was
699 * successfully detached, return 1. Assumes the caller has a single ref on
700 * this page.
701 */
702int remove_mapping(struct address_space *mapping, struct page *page)
703{
a528910e 704 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
705 /*
706 * Unfreezing the refcount with 1 rather than 2 effectively
707 * drops the pagecache ref for us without requiring another
708 * atomic operation.
709 */
fe896d18 710 page_ref_unfreeze(page, 1);
e286781d
NP
711 return 1;
712 }
713 return 0;
714}
715
894bc310
LS
716/**
717 * putback_lru_page - put previously isolated page onto appropriate LRU list
718 * @page: page to be put back to appropriate lru list
719 *
720 * Add previously isolated @page to appropriate LRU list.
721 * Page may still be unevictable for other reasons.
722 *
723 * lru_lock must not be held, interrupts must be enabled.
724 */
894bc310
LS
725void putback_lru_page(struct page *page)
726{
0ec3b74c 727 bool is_unevictable;
bbfd28ee 728 int was_unevictable = PageUnevictable(page);
894bc310 729
309381fe 730 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
731
732redo:
733 ClearPageUnevictable(page);
734
39b5f29a 735 if (page_evictable(page)) {
894bc310
LS
736 /*
737 * For evictable pages, we can use the cache.
738 * In event of a race, worst case is we end up with an
739 * unevictable page on [in]active list.
740 * We know how to handle that.
741 */
0ec3b74c 742 is_unevictable = false;
c53954a0 743 lru_cache_add(page);
894bc310
LS
744 } else {
745 /*
746 * Put unevictable pages directly on zone's unevictable
747 * list.
748 */
0ec3b74c 749 is_unevictable = true;
894bc310 750 add_page_to_unevictable_list(page);
6a7b9548 751 /*
21ee9f39
MK
752 * When racing with an mlock or AS_UNEVICTABLE clearing
753 * (page is unlocked) make sure that if the other thread
754 * does not observe our setting of PG_lru and fails
24513264 755 * isolation/check_move_unevictable_pages,
21ee9f39 756 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
757 * the page back to the evictable list.
758 *
21ee9f39 759 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
760 */
761 smp_mb();
894bc310 762 }
894bc310
LS
763
764 /*
765 * page's status can change while we move it among lru. If an evictable
766 * page is on unevictable list, it never be freed. To avoid that,
767 * check after we added it to the list, again.
768 */
0ec3b74c 769 if (is_unevictable && page_evictable(page)) {
894bc310
LS
770 if (!isolate_lru_page(page)) {
771 put_page(page);
772 goto redo;
773 }
774 /* This means someone else dropped this page from LRU
775 * So, it will be freed or putback to LRU again. There is
776 * nothing to do here.
777 */
778 }
779
0ec3b74c 780 if (was_unevictable && !is_unevictable)
bbfd28ee 781 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 782 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
783 count_vm_event(UNEVICTABLE_PGCULLED);
784
894bc310
LS
785 put_page(page); /* drop ref from isolate */
786}
787
dfc8d636
JW
788enum page_references {
789 PAGEREF_RECLAIM,
790 PAGEREF_RECLAIM_CLEAN,
64574746 791 PAGEREF_KEEP,
dfc8d636
JW
792 PAGEREF_ACTIVATE,
793};
794
795static enum page_references page_check_references(struct page *page,
796 struct scan_control *sc)
797{
64574746 798 int referenced_ptes, referenced_page;
dfc8d636 799 unsigned long vm_flags;
dfc8d636 800
c3ac9a8a
JW
801 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
802 &vm_flags);
64574746 803 referenced_page = TestClearPageReferenced(page);
dfc8d636 804
dfc8d636
JW
805 /*
806 * Mlock lost the isolation race with us. Let try_to_unmap()
807 * move the page to the unevictable list.
808 */
809 if (vm_flags & VM_LOCKED)
810 return PAGEREF_RECLAIM;
811
64574746 812 if (referenced_ptes) {
e4898273 813 if (PageSwapBacked(page))
64574746
JW
814 return PAGEREF_ACTIVATE;
815 /*
816 * All mapped pages start out with page table
817 * references from the instantiating fault, so we need
818 * to look twice if a mapped file page is used more
819 * than once.
820 *
821 * Mark it and spare it for another trip around the
822 * inactive list. Another page table reference will
823 * lead to its activation.
824 *
825 * Note: the mark is set for activated pages as well
826 * so that recently deactivated but used pages are
827 * quickly recovered.
828 */
829 SetPageReferenced(page);
830
34dbc67a 831 if (referenced_page || referenced_ptes > 1)
64574746
JW
832 return PAGEREF_ACTIVATE;
833
c909e993
KK
834 /*
835 * Activate file-backed executable pages after first usage.
836 */
837 if (vm_flags & VM_EXEC)
838 return PAGEREF_ACTIVATE;
839
64574746
JW
840 return PAGEREF_KEEP;
841 }
dfc8d636
JW
842
843 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 844 if (referenced_page && !PageSwapBacked(page))
64574746
JW
845 return PAGEREF_RECLAIM_CLEAN;
846
847 return PAGEREF_RECLAIM;
dfc8d636
JW
848}
849
e2be15f6
MG
850/* Check if a page is dirty or under writeback */
851static void page_check_dirty_writeback(struct page *page,
852 bool *dirty, bool *writeback)
853{
b4597226
MG
854 struct address_space *mapping;
855
e2be15f6
MG
856 /*
857 * Anonymous pages are not handled by flushers and must be written
858 * from reclaim context. Do not stall reclaim based on them
859 */
860 if (!page_is_file_cache(page)) {
861 *dirty = false;
862 *writeback = false;
863 return;
864 }
865
866 /* By default assume that the page flags are accurate */
867 *dirty = PageDirty(page);
868 *writeback = PageWriteback(page);
b4597226
MG
869
870 /* Verify dirty/writeback state if the filesystem supports it */
871 if (!page_has_private(page))
872 return;
873
874 mapping = page_mapping(page);
875 if (mapping && mapping->a_ops->is_dirty_writeback)
876 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
877}
878
1da177e4 879/*
1742f19f 880 * shrink_page_list() returns the number of reclaimed pages
1da177e4 881 */
1742f19f 882static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 883 struct pglist_data *pgdat,
f84f6e2b 884 struct scan_control *sc,
02c6de8d 885 enum ttu_flags ttu_flags,
8e950282 886 unsigned long *ret_nr_dirty,
d43006d5 887 unsigned long *ret_nr_unqueued_dirty,
8e950282 888 unsigned long *ret_nr_congested,
02c6de8d 889 unsigned long *ret_nr_writeback,
b1a6f21e 890 unsigned long *ret_nr_immediate,
02c6de8d 891 bool force_reclaim)
1da177e4
LT
892{
893 LIST_HEAD(ret_pages);
abe4c3b5 894 LIST_HEAD(free_pages);
1da177e4 895 int pgactivate = 0;
d43006d5 896 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
897 unsigned long nr_dirty = 0;
898 unsigned long nr_congested = 0;
05ff5137 899 unsigned long nr_reclaimed = 0;
92df3a72 900 unsigned long nr_writeback = 0;
b1a6f21e 901 unsigned long nr_immediate = 0;
1da177e4
LT
902
903 cond_resched();
904
1da177e4
LT
905 while (!list_empty(page_list)) {
906 struct address_space *mapping;
907 struct page *page;
908 int may_enter_fs;
02c6de8d 909 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 910 bool dirty, writeback;
854e9ed0
MK
911 bool lazyfree = false;
912 int ret = SWAP_SUCCESS;
1da177e4
LT
913
914 cond_resched();
915
916 page = lru_to_page(page_list);
917 list_del(&page->lru);
918
529ae9aa 919 if (!trylock_page(page))
1da177e4
LT
920 goto keep;
921
309381fe 922 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
923
924 sc->nr_scanned++;
80e43426 925
39b5f29a 926 if (unlikely(!page_evictable(page)))
b291f000 927 goto cull_mlocked;
894bc310 928
a6dc60f8 929 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
930 goto keep_locked;
931
1da177e4
LT
932 /* Double the slab pressure for mapped and swapcache pages */
933 if (page_mapped(page) || PageSwapCache(page))
934 sc->nr_scanned++;
935
c661b078
AW
936 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
937 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
938
e2be15f6
MG
939 /*
940 * The number of dirty pages determines if a zone is marked
941 * reclaim_congested which affects wait_iff_congested. kswapd
942 * will stall and start writing pages if the tail of the LRU
943 * is all dirty unqueued pages.
944 */
945 page_check_dirty_writeback(page, &dirty, &writeback);
946 if (dirty || writeback)
947 nr_dirty++;
948
949 if (dirty && !writeback)
950 nr_unqueued_dirty++;
951
d04e8acd
MG
952 /*
953 * Treat this page as congested if the underlying BDI is or if
954 * pages are cycling through the LRU so quickly that the
955 * pages marked for immediate reclaim are making it to the
956 * end of the LRU a second time.
957 */
e2be15f6 958 mapping = page_mapping(page);
1da58ee2 959 if (((dirty || writeback) && mapping &&
703c2708 960 inode_write_congested(mapping->host)) ||
d04e8acd 961 (writeback && PageReclaim(page)))
e2be15f6
MG
962 nr_congested++;
963
283aba9f
MG
964 /*
965 * If a page at the tail of the LRU is under writeback, there
966 * are three cases to consider.
967 *
968 * 1) If reclaim is encountering an excessive number of pages
969 * under writeback and this page is both under writeback and
970 * PageReclaim then it indicates that pages are being queued
971 * for IO but are being recycled through the LRU before the
972 * IO can complete. Waiting on the page itself risks an
973 * indefinite stall if it is impossible to writeback the
974 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
975 * note that the LRU is being scanned too quickly and the
976 * caller can stall after page list has been processed.
283aba9f 977 *
97c9341f 978 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
979 * not marked for immediate reclaim, or the caller does not
980 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
981 * not to fs). In this case mark the page for immediate
97c9341f 982 * reclaim and continue scanning.
283aba9f 983 *
ecf5fc6e
MH
984 * Require may_enter_fs because we would wait on fs, which
985 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
986 * enter reclaim, and deadlock if it waits on a page for
987 * which it is needed to do the write (loop masks off
988 * __GFP_IO|__GFP_FS for this reason); but more thought
989 * would probably show more reasons.
990 *
7fadc820 991 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
992 * PageReclaim. memcg does not have any dirty pages
993 * throttling so we could easily OOM just because too many
994 * pages are in writeback and there is nothing else to
995 * reclaim. Wait for the writeback to complete.
996 */
c661b078 997 if (PageWriteback(page)) {
283aba9f
MG
998 /* Case 1 above */
999 if (current_is_kswapd() &&
1000 PageReclaim(page) &&
599d0c95 1001 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
b1a6f21e
MG
1002 nr_immediate++;
1003 goto keep_locked;
283aba9f
MG
1004
1005 /* Case 2 above */
97c9341f 1006 } else if (sane_reclaim(sc) ||
ecf5fc6e 1007 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1008 /*
1009 * This is slightly racy - end_page_writeback()
1010 * might have just cleared PageReclaim, then
1011 * setting PageReclaim here end up interpreted
1012 * as PageReadahead - but that does not matter
1013 * enough to care. What we do want is for this
1014 * page to have PageReclaim set next time memcg
1015 * reclaim reaches the tests above, so it will
1016 * then wait_on_page_writeback() to avoid OOM;
1017 * and it's also appropriate in global reclaim.
1018 */
1019 SetPageReclaim(page);
e62e384e 1020 nr_writeback++;
c3b94f44 1021 goto keep_locked;
283aba9f
MG
1022
1023 /* Case 3 above */
1024 } else {
7fadc820 1025 unlock_page(page);
283aba9f 1026 wait_on_page_writeback(page);
7fadc820
HD
1027 /* then go back and try same page again */
1028 list_add_tail(&page->lru, page_list);
1029 continue;
e62e384e 1030 }
c661b078 1031 }
1da177e4 1032
02c6de8d
MK
1033 if (!force_reclaim)
1034 references = page_check_references(page, sc);
1035
dfc8d636
JW
1036 switch (references) {
1037 case PAGEREF_ACTIVATE:
1da177e4 1038 goto activate_locked;
64574746
JW
1039 case PAGEREF_KEEP:
1040 goto keep_locked;
dfc8d636
JW
1041 case PAGEREF_RECLAIM:
1042 case PAGEREF_RECLAIM_CLEAN:
1043 ; /* try to reclaim the page below */
1044 }
1da177e4 1045
1da177e4
LT
1046 /*
1047 * Anonymous process memory has backing store?
1048 * Try to allocate it some swap space here.
1049 */
b291f000 1050 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
1051 if (!(sc->gfp_mask & __GFP_IO))
1052 goto keep_locked;
5bc7b8ac 1053 if (!add_to_swap(page, page_list))
1da177e4 1054 goto activate_locked;
854e9ed0 1055 lazyfree = true;
63eb6b93 1056 may_enter_fs = 1;
1da177e4 1057
e2be15f6
MG
1058 /* Adding to swap updated mapping */
1059 mapping = page_mapping(page);
7751b2da
KS
1060 } else if (unlikely(PageTransHuge(page))) {
1061 /* Split file THP */
1062 if (split_huge_page_to_list(page, page_list))
1063 goto keep_locked;
e2be15f6 1064 }
1da177e4 1065
7751b2da
KS
1066 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1067
1da177e4
LT
1068 /*
1069 * The page is mapped into the page tables of one or more
1070 * processes. Try to unmap it here.
1071 */
1072 if (page_mapped(page) && mapping) {
854e9ed0
MK
1073 switch (ret = try_to_unmap(page, lazyfree ?
1074 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1075 (ttu_flags | TTU_BATCH_FLUSH))) {
1da177e4
LT
1076 case SWAP_FAIL:
1077 goto activate_locked;
1078 case SWAP_AGAIN:
1079 goto keep_locked;
b291f000
NP
1080 case SWAP_MLOCK:
1081 goto cull_mlocked;
854e9ed0
MK
1082 case SWAP_LZFREE:
1083 goto lazyfree;
1da177e4
LT
1084 case SWAP_SUCCESS:
1085 ; /* try to free the page below */
1086 }
1087 }
1088
1089 if (PageDirty(page)) {
ee72886d
MG
1090 /*
1091 * Only kswapd can writeback filesystem pages to
d43006d5
MG
1092 * avoid risk of stack overflow but only writeback
1093 * if many dirty pages have been encountered.
ee72886d 1094 */
f84f6e2b 1095 if (page_is_file_cache(page) &&
9e3b2f8c 1096 (!current_is_kswapd() ||
599d0c95 1097 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1098 /*
1099 * Immediately reclaim when written back.
1100 * Similar in principal to deactivate_page()
1101 * except we already have the page isolated
1102 * and know it's dirty
1103 */
c4a25635 1104 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1105 SetPageReclaim(page);
1106
ee72886d
MG
1107 goto keep_locked;
1108 }
1109
dfc8d636 1110 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1111 goto keep_locked;
4dd4b920 1112 if (!may_enter_fs)
1da177e4 1113 goto keep_locked;
52a8363e 1114 if (!sc->may_writepage)
1da177e4
LT
1115 goto keep_locked;
1116
d950c947
MG
1117 /*
1118 * Page is dirty. Flush the TLB if a writable entry
1119 * potentially exists to avoid CPU writes after IO
1120 * starts and then write it out here.
1121 */
1122 try_to_unmap_flush_dirty();
7d3579e8 1123 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1124 case PAGE_KEEP:
1125 goto keep_locked;
1126 case PAGE_ACTIVATE:
1127 goto activate_locked;
1128 case PAGE_SUCCESS:
7d3579e8 1129 if (PageWriteback(page))
41ac1999 1130 goto keep;
7d3579e8 1131 if (PageDirty(page))
1da177e4 1132 goto keep;
7d3579e8 1133
1da177e4
LT
1134 /*
1135 * A synchronous write - probably a ramdisk. Go
1136 * ahead and try to reclaim the page.
1137 */
529ae9aa 1138 if (!trylock_page(page))
1da177e4
LT
1139 goto keep;
1140 if (PageDirty(page) || PageWriteback(page))
1141 goto keep_locked;
1142 mapping = page_mapping(page);
1143 case PAGE_CLEAN:
1144 ; /* try to free the page below */
1145 }
1146 }
1147
1148 /*
1149 * If the page has buffers, try to free the buffer mappings
1150 * associated with this page. If we succeed we try to free
1151 * the page as well.
1152 *
1153 * We do this even if the page is PageDirty().
1154 * try_to_release_page() does not perform I/O, but it is
1155 * possible for a page to have PageDirty set, but it is actually
1156 * clean (all its buffers are clean). This happens if the
1157 * buffers were written out directly, with submit_bh(). ext3
894bc310 1158 * will do this, as well as the blockdev mapping.
1da177e4
LT
1159 * try_to_release_page() will discover that cleanness and will
1160 * drop the buffers and mark the page clean - it can be freed.
1161 *
1162 * Rarely, pages can have buffers and no ->mapping. These are
1163 * the pages which were not successfully invalidated in
1164 * truncate_complete_page(). We try to drop those buffers here
1165 * and if that worked, and the page is no longer mapped into
1166 * process address space (page_count == 1) it can be freed.
1167 * Otherwise, leave the page on the LRU so it is swappable.
1168 */
266cf658 1169 if (page_has_private(page)) {
1da177e4
LT
1170 if (!try_to_release_page(page, sc->gfp_mask))
1171 goto activate_locked;
e286781d
NP
1172 if (!mapping && page_count(page) == 1) {
1173 unlock_page(page);
1174 if (put_page_testzero(page))
1175 goto free_it;
1176 else {
1177 /*
1178 * rare race with speculative reference.
1179 * the speculative reference will free
1180 * this page shortly, so we may
1181 * increment nr_reclaimed here (and
1182 * leave it off the LRU).
1183 */
1184 nr_reclaimed++;
1185 continue;
1186 }
1187 }
1da177e4
LT
1188 }
1189
854e9ed0 1190lazyfree:
a528910e 1191 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1192 goto keep_locked;
1da177e4 1193
a978d6f5
NP
1194 /*
1195 * At this point, we have no other references and there is
1196 * no way to pick any more up (removed from LRU, removed
1197 * from pagecache). Can use non-atomic bitops now (and
1198 * we obviously don't have to worry about waking up a process
1199 * waiting on the page lock, because there are no references.
1200 */
48c935ad 1201 __ClearPageLocked(page);
e286781d 1202free_it:
854e9ed0
MK
1203 if (ret == SWAP_LZFREE)
1204 count_vm_event(PGLAZYFREED);
1205
05ff5137 1206 nr_reclaimed++;
abe4c3b5
MG
1207
1208 /*
1209 * Is there need to periodically free_page_list? It would
1210 * appear not as the counts should be low
1211 */
1212 list_add(&page->lru, &free_pages);
1da177e4
LT
1213 continue;
1214
b291f000 1215cull_mlocked:
63d6c5ad
HD
1216 if (PageSwapCache(page))
1217 try_to_free_swap(page);
b291f000 1218 unlock_page(page);
c54839a7 1219 list_add(&page->lru, &ret_pages);
b291f000
NP
1220 continue;
1221
1da177e4 1222activate_locked:
68a22394 1223 /* Not a candidate for swapping, so reclaim swap space. */
5ccc5aba 1224 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
a2c43eed 1225 try_to_free_swap(page);
309381fe 1226 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1227 SetPageActive(page);
1228 pgactivate++;
1229keep_locked:
1230 unlock_page(page);
1231keep:
1232 list_add(&page->lru, &ret_pages);
309381fe 1233 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1234 }
abe4c3b5 1235
747db954 1236 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1237 try_to_unmap_flush();
b745bc85 1238 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1239
1da177e4 1240 list_splice(&ret_pages, page_list);
f8891e5e 1241 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1242
8e950282
MG
1243 *ret_nr_dirty += nr_dirty;
1244 *ret_nr_congested += nr_congested;
d43006d5 1245 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1246 *ret_nr_writeback += nr_writeback;
b1a6f21e 1247 *ret_nr_immediate += nr_immediate;
05ff5137 1248 return nr_reclaimed;
1da177e4
LT
1249}
1250
02c6de8d
MK
1251unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1252 struct list_head *page_list)
1253{
1254 struct scan_control sc = {
1255 .gfp_mask = GFP_KERNEL,
1256 .priority = DEF_PRIORITY,
1257 .may_unmap = 1,
1258 };
8e950282 1259 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1260 struct page *page, *next;
1261 LIST_HEAD(clean_pages);
1262
1263 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1264 if (page_is_file_cache(page) && !PageDirty(page) &&
b1123ea6 1265 !__PageMovable(page)) {
02c6de8d
MK
1266 ClearPageActive(page);
1267 list_move(&page->lru, &clean_pages);
1268 }
1269 }
1270
599d0c95 1271 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
8e950282
MG
1272 TTU_UNMAP|TTU_IGNORE_ACCESS,
1273 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d 1274 list_splice(&clean_pages, page_list);
599d0c95 1275 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1276 return ret;
1277}
1278
5ad333eb
AW
1279/*
1280 * Attempt to remove the specified page from its LRU. Only take this page
1281 * if it is of the appropriate PageActive status. Pages which are being
1282 * freed elsewhere are also ignored.
1283 *
1284 * page: page to consider
1285 * mode: one of the LRU isolation modes defined above
1286 *
1287 * returns 0 on success, -ve errno on failure.
1288 */
f3fd4a61 1289int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1290{
1291 int ret = -EINVAL;
1292
1293 /* Only take pages on the LRU. */
1294 if (!PageLRU(page))
1295 return ret;
1296
e46a2879
MK
1297 /* Compaction should not handle unevictable pages but CMA can do so */
1298 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1299 return ret;
1300
5ad333eb 1301 ret = -EBUSY;
08e552c6 1302
c8244935
MG
1303 /*
1304 * To minimise LRU disruption, the caller can indicate that it only
1305 * wants to isolate pages it will be able to operate on without
1306 * blocking - clean pages for the most part.
1307 *
1308 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1309 * is used by reclaim when it is cannot write to backing storage
1310 *
1311 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1312 * that it is possible to migrate without blocking
1313 */
1314 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1315 /* All the caller can do on PageWriteback is block */
1316 if (PageWriteback(page))
1317 return ret;
1318
1319 if (PageDirty(page)) {
1320 struct address_space *mapping;
1321
1322 /* ISOLATE_CLEAN means only clean pages */
1323 if (mode & ISOLATE_CLEAN)
1324 return ret;
1325
1326 /*
1327 * Only pages without mappings or that have a
1328 * ->migratepage callback are possible to migrate
1329 * without blocking
1330 */
1331 mapping = page_mapping(page);
1332 if (mapping && !mapping->a_ops->migratepage)
1333 return ret;
1334 }
1335 }
39deaf85 1336
f80c0673
MK
1337 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1338 return ret;
1339
5ad333eb
AW
1340 if (likely(get_page_unless_zero(page))) {
1341 /*
1342 * Be careful not to clear PageLRU until after we're
1343 * sure the page is not being freed elsewhere -- the
1344 * page release code relies on it.
1345 */
1346 ClearPageLRU(page);
1347 ret = 0;
1348 }
1349
1350 return ret;
1351}
1352
7ee36a14
MG
1353
1354/*
1355 * Update LRU sizes after isolating pages. The LRU size updates must
1356 * be complete before mem_cgroup_update_lru_size due to a santity check.
1357 */
1358static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1359 enum lru_list lru, unsigned long *nr_zone_taken,
1360 unsigned long nr_taken)
1361{
7ee36a14
MG
1362 int zid;
1363
7ee36a14
MG
1364 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1365 if (!nr_zone_taken[zid])
1366 continue;
1367
1368 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1369 }
7ee36a14
MG
1370
1371#ifdef CONFIG_MEMCG
1372 mem_cgroup_update_lru_size(lruvec, lru, -nr_taken);
1373#endif
1374}
1375
1da177e4 1376/*
a52633d8 1377 * zone_lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1378 * shrink the lists perform better by taking out a batch of pages
1379 * and working on them outside the LRU lock.
1380 *
1381 * For pagecache intensive workloads, this function is the hottest
1382 * spot in the kernel (apart from copy_*_user functions).
1383 *
1384 * Appropriate locks must be held before calling this function.
1385 *
1386 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1387 * @lruvec: The LRU vector to pull pages from.
1da177e4 1388 * @dst: The temp list to put pages on to.
f626012d 1389 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1390 * @sc: The scan_control struct for this reclaim session
5ad333eb 1391 * @mode: One of the LRU isolation modes
3cb99451 1392 * @lru: LRU list id for isolating
1da177e4
LT
1393 *
1394 * returns how many pages were moved onto *@dst.
1395 */
69e05944 1396static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1397 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1398 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1399 isolate_mode_t mode, enum lru_list lru)
1da177e4 1400{
75b00af7 1401 struct list_head *src = &lruvec->lists[lru];
69e05944 1402 unsigned long nr_taken = 0;
599d0c95 1403 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1404 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
599d0c95 1405 unsigned long scan, nr_pages;
b2e18757 1406 LIST_HEAD(pages_skipped);
1da177e4 1407
0b802f10
VD
1408 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1409 !list_empty(src); scan++) {
5ad333eb 1410 struct page *page;
5ad333eb 1411
1da177e4
LT
1412 page = lru_to_page(src);
1413 prefetchw_prev_lru_page(page, src, flags);
1414
309381fe 1415 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1416
b2e18757
MG
1417 if (page_zonenum(page) > sc->reclaim_idx) {
1418 list_move(&page->lru, &pages_skipped);
7cc30fcf 1419 nr_skipped[page_zonenum(page)]++;
b2e18757
MG
1420 continue;
1421 }
1422
f3fd4a61 1423 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1424 case 0:
599d0c95
MG
1425 nr_pages = hpage_nr_pages(page);
1426 nr_taken += nr_pages;
1427 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1428 list_move(&page->lru, dst);
5ad333eb
AW
1429 break;
1430
1431 case -EBUSY:
1432 /* else it is being freed elsewhere */
1433 list_move(&page->lru, src);
1434 continue;
46453a6e 1435
5ad333eb
AW
1436 default:
1437 BUG();
1438 }
1da177e4
LT
1439 }
1440
b2e18757
MG
1441 /*
1442 * Splice any skipped pages to the start of the LRU list. Note that
1443 * this disrupts the LRU order when reclaiming for lower zones but
1444 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1445 * scanning would soon rescan the same pages to skip and put the
1446 * system at risk of premature OOM.
1447 */
7cc30fcf
MG
1448 if (!list_empty(&pages_skipped)) {
1449 int zid;
1450
b2e18757 1451 list_splice(&pages_skipped, src);
7cc30fcf
MG
1452 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1453 if (!nr_skipped[zid])
1454 continue;
1455
1456 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1457 }
1458 }
f626012d 1459 *nr_scanned = scan;
e5146b12 1460 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, scan,
75b00af7 1461 nr_taken, mode, is_file_lru(lru));
7ee36a14 1462 update_lru_sizes(lruvec, lru, nr_zone_taken, nr_taken);
1da177e4
LT
1463 return nr_taken;
1464}
1465
62695a84
NP
1466/**
1467 * isolate_lru_page - tries to isolate a page from its LRU list
1468 * @page: page to isolate from its LRU list
1469 *
1470 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1471 * vmstat statistic corresponding to whatever LRU list the page was on.
1472 *
1473 * Returns 0 if the page was removed from an LRU list.
1474 * Returns -EBUSY if the page was not on an LRU list.
1475 *
1476 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1477 * the active list, it will have PageActive set. If it was found on
1478 * the unevictable list, it will have the PageUnevictable bit set. That flag
1479 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1480 *
1481 * The vmstat statistic corresponding to the list on which the page was
1482 * found will be decremented.
1483 *
1484 * Restrictions:
1485 * (1) Must be called with an elevated refcount on the page. This is a
1486 * fundamentnal difference from isolate_lru_pages (which is called
1487 * without a stable reference).
1488 * (2) the lru_lock must not be held.
1489 * (3) interrupts must be enabled.
1490 */
1491int isolate_lru_page(struct page *page)
1492{
1493 int ret = -EBUSY;
1494
309381fe 1495 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1496 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1497
62695a84
NP
1498 if (PageLRU(page)) {
1499 struct zone *zone = page_zone(page);
fa9add64 1500 struct lruvec *lruvec;
62695a84 1501
a52633d8 1502 spin_lock_irq(zone_lru_lock(zone));
599d0c95 1503 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0c917313 1504 if (PageLRU(page)) {
894bc310 1505 int lru = page_lru(page);
0c917313 1506 get_page(page);
62695a84 1507 ClearPageLRU(page);
fa9add64
HD
1508 del_page_from_lru_list(page, lruvec, lru);
1509 ret = 0;
62695a84 1510 }
a52633d8 1511 spin_unlock_irq(zone_lru_lock(zone));
62695a84
NP
1512 }
1513 return ret;
1514}
1515
35cd7815 1516/*
d37dd5dc
FW
1517 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1518 * then get resheduled. When there are massive number of tasks doing page
1519 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1520 * the LRU list will go small and be scanned faster than necessary, leading to
1521 * unnecessary swapping, thrashing and OOM.
35cd7815 1522 */
599d0c95 1523static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1524 struct scan_control *sc)
1525{
1526 unsigned long inactive, isolated;
1527
1528 if (current_is_kswapd())
1529 return 0;
1530
97c9341f 1531 if (!sane_reclaim(sc))
35cd7815
RR
1532 return 0;
1533
1534 if (file) {
599d0c95
MG
1535 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1536 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1537 } else {
599d0c95
MG
1538 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1539 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1540 }
1541
3cf23841
FW
1542 /*
1543 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1544 * won't get blocked by normal direct-reclaimers, forming a circular
1545 * deadlock.
1546 */
d0164adc 1547 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1548 inactive >>= 3;
1549
35cd7815
RR
1550 return isolated > inactive;
1551}
1552
66635629 1553static noinline_for_stack void
75b00af7 1554putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1555{
27ac81d8 1556 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
599d0c95 1557 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3f79768f 1558 LIST_HEAD(pages_to_free);
66635629 1559
66635629
MG
1560 /*
1561 * Put back any unfreeable pages.
1562 */
66635629 1563 while (!list_empty(page_list)) {
3f79768f 1564 struct page *page = lru_to_page(page_list);
66635629 1565 int lru;
3f79768f 1566
309381fe 1567 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1568 list_del(&page->lru);
39b5f29a 1569 if (unlikely(!page_evictable(page))) {
599d0c95 1570 spin_unlock_irq(&pgdat->lru_lock);
66635629 1571 putback_lru_page(page);
599d0c95 1572 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1573 continue;
1574 }
fa9add64 1575
599d0c95 1576 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1577
7a608572 1578 SetPageLRU(page);
66635629 1579 lru = page_lru(page);
fa9add64
HD
1580 add_page_to_lru_list(page, lruvec, lru);
1581
66635629
MG
1582 if (is_active_lru(lru)) {
1583 int file = is_file_lru(lru);
9992af10
RR
1584 int numpages = hpage_nr_pages(page);
1585 reclaim_stat->recent_rotated[file] += numpages;
66635629 1586 }
2bcf8879
HD
1587 if (put_page_testzero(page)) {
1588 __ClearPageLRU(page);
1589 __ClearPageActive(page);
fa9add64 1590 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1591
1592 if (unlikely(PageCompound(page))) {
599d0c95 1593 spin_unlock_irq(&pgdat->lru_lock);
747db954 1594 mem_cgroup_uncharge(page);
2bcf8879 1595 (*get_compound_page_dtor(page))(page);
599d0c95 1596 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1597 } else
1598 list_add(&page->lru, &pages_to_free);
66635629
MG
1599 }
1600 }
66635629 1601
3f79768f
HD
1602 /*
1603 * To save our caller's stack, now use input list for pages to free.
1604 */
1605 list_splice(&pages_to_free, page_list);
66635629
MG
1606}
1607
399ba0b9
N
1608/*
1609 * If a kernel thread (such as nfsd for loop-back mounts) services
1610 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1611 * In that case we should only throttle if the backing device it is
1612 * writing to is congested. In other cases it is safe to throttle.
1613 */
1614static int current_may_throttle(void)
1615{
1616 return !(current->flags & PF_LESS_THROTTLE) ||
1617 current->backing_dev_info == NULL ||
1618 bdi_write_congested(current->backing_dev_info);
1619}
1620
1da177e4 1621/*
b2e18757 1622 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1623 * of reclaimed pages
1da177e4 1624 */
66635629 1625static noinline_for_stack unsigned long
1a93be0e 1626shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1627 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1628{
1629 LIST_HEAD(page_list);
e247dbce 1630 unsigned long nr_scanned;
05ff5137 1631 unsigned long nr_reclaimed = 0;
e247dbce 1632 unsigned long nr_taken;
8e950282
MG
1633 unsigned long nr_dirty = 0;
1634 unsigned long nr_congested = 0;
e2be15f6 1635 unsigned long nr_unqueued_dirty = 0;
92df3a72 1636 unsigned long nr_writeback = 0;
b1a6f21e 1637 unsigned long nr_immediate = 0;
f3fd4a61 1638 isolate_mode_t isolate_mode = 0;
3cb99451 1639 int file = is_file_lru(lru);
599d0c95 1640 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1641 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1642
599d0c95 1643 while (unlikely(too_many_isolated(pgdat, file, sc))) {
58355c78 1644 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1645
1646 /* We are about to die and free our memory. Return now. */
1647 if (fatal_signal_pending(current))
1648 return SWAP_CLUSTER_MAX;
1649 }
1650
1da177e4 1651 lru_add_drain();
f80c0673
MK
1652
1653 if (!sc->may_unmap)
61317289 1654 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1655 if (!sc->may_writepage)
61317289 1656 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1657
599d0c95 1658 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1659
5dc35979
KK
1660 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1661 &nr_scanned, sc, isolate_mode, lru);
95d918fc 1662
599d0c95 1663 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1664 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1665
89b5fae5 1666 if (global_reclaim(sc)) {
599d0c95 1667 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
e247dbce 1668 if (current_is_kswapd())
599d0c95 1669 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
e247dbce 1670 else
599d0c95 1671 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
e247dbce 1672 }
599d0c95 1673 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1674
d563c050 1675 if (nr_taken == 0)
66635629 1676 return 0;
5ad333eb 1677
599d0c95 1678 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
8e950282
MG
1679 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1680 &nr_writeback, &nr_immediate,
1681 false);
c661b078 1682
599d0c95 1683 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1684
904249aa
YH
1685 if (global_reclaim(sc)) {
1686 if (current_is_kswapd())
599d0c95 1687 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
904249aa 1688 else
599d0c95 1689 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
904249aa 1690 }
a74609fa 1691
27ac81d8 1692 putback_inactive_pages(lruvec, &page_list);
3f79768f 1693
599d0c95 1694 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1695
599d0c95 1696 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1697
747db954 1698 mem_cgroup_uncharge_list(&page_list);
b745bc85 1699 free_hot_cold_page_list(&page_list, true);
e11da5b4 1700
92df3a72
MG
1701 /*
1702 * If reclaim is isolating dirty pages under writeback, it implies
1703 * that the long-lived page allocation rate is exceeding the page
1704 * laundering rate. Either the global limits are not being effective
1705 * at throttling processes due to the page distribution throughout
1706 * zones or there is heavy usage of a slow backing device. The
1707 * only option is to throttle from reclaim context which is not ideal
1708 * as there is no guarantee the dirtying process is throttled in the
1709 * same way balance_dirty_pages() manages.
1710 *
8e950282
MG
1711 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1712 * of pages under pages flagged for immediate reclaim and stall if any
1713 * are encountered in the nr_immediate check below.
92df3a72 1714 */
918fc718 1715 if (nr_writeback && nr_writeback == nr_taken)
599d0c95 1716 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
92df3a72 1717
d43006d5 1718 /*
97c9341f
TH
1719 * Legacy memcg will stall in page writeback so avoid forcibly
1720 * stalling here.
d43006d5 1721 */
97c9341f 1722 if (sane_reclaim(sc)) {
8e950282
MG
1723 /*
1724 * Tag a zone as congested if all the dirty pages scanned were
1725 * backed by a congested BDI and wait_iff_congested will stall.
1726 */
1727 if (nr_dirty && nr_dirty == nr_congested)
599d0c95 1728 set_bit(PGDAT_CONGESTED, &pgdat->flags);
8e950282 1729
b1a6f21e
MG
1730 /*
1731 * If dirty pages are scanned that are not queued for IO, it
1732 * implies that flushers are not keeping up. In this case, flag
599d0c95 1733 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
57054651 1734 * reclaim context.
b1a6f21e
MG
1735 */
1736 if (nr_unqueued_dirty == nr_taken)
599d0c95 1737 set_bit(PGDAT_DIRTY, &pgdat->flags);
b1a6f21e
MG
1738
1739 /*
b738d764
LT
1740 * If kswapd scans pages marked marked for immediate
1741 * reclaim and under writeback (nr_immediate), it implies
1742 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1743 * they are written so also forcibly stall.
1744 */
b738d764 1745 if (nr_immediate && current_may_throttle())
b1a6f21e 1746 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1747 }
d43006d5 1748
8e950282
MG
1749 /*
1750 * Stall direct reclaim for IO completions if underlying BDIs or zone
1751 * is congested. Allow kswapd to continue until it starts encountering
1752 * unqueued dirty pages or cycling through the LRU too quickly.
1753 */
399ba0b9
N
1754 if (!sc->hibernation_mode && !current_is_kswapd() &&
1755 current_may_throttle())
599d0c95 1756 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
8e950282 1757
599d0c95
MG
1758 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1759 nr_scanned, nr_reclaimed,
ba5e9579 1760 sc->priority, file);
05ff5137 1761 return nr_reclaimed;
1da177e4
LT
1762}
1763
1764/*
1765 * This moves pages from the active list to the inactive list.
1766 *
1767 * We move them the other way if the page is referenced by one or more
1768 * processes, from rmap.
1769 *
1770 * If the pages are mostly unmapped, the processing is fast and it is
a52633d8 1771 * appropriate to hold zone_lru_lock across the whole operation. But if
1da177e4 1772 * the pages are mapped, the processing is slow (page_referenced()) so we
a52633d8 1773 * should drop zone_lru_lock around each page. It's impossible to balance
1da177e4
LT
1774 * this, so instead we remove the pages from the LRU while processing them.
1775 * It is safe to rely on PG_active against the non-LRU pages in here because
1776 * nobody will play with that bit on a non-LRU page.
1777 *
0139aa7b 1778 * The downside is that we have to touch page->_refcount against each page.
1da177e4
LT
1779 * But we had to alter page->flags anyway.
1780 */
1cfb419b 1781
fa9add64 1782static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1783 struct list_head *list,
2bcf8879 1784 struct list_head *pages_to_free,
3eb4140f
WF
1785 enum lru_list lru)
1786{
599d0c95 1787 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3eb4140f 1788 unsigned long pgmoved = 0;
3eb4140f 1789 struct page *page;
fa9add64 1790 int nr_pages;
3eb4140f 1791
3eb4140f
WF
1792 while (!list_empty(list)) {
1793 page = lru_to_page(list);
599d0c95 1794 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3eb4140f 1795
309381fe 1796 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1797 SetPageLRU(page);
1798
fa9add64 1799 nr_pages = hpage_nr_pages(page);
599d0c95 1800 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
925b7673 1801 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1802 pgmoved += nr_pages;
3eb4140f 1803
2bcf8879
HD
1804 if (put_page_testzero(page)) {
1805 __ClearPageLRU(page);
1806 __ClearPageActive(page);
fa9add64 1807 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1808
1809 if (unlikely(PageCompound(page))) {
599d0c95 1810 spin_unlock_irq(&pgdat->lru_lock);
747db954 1811 mem_cgroup_uncharge(page);
2bcf8879 1812 (*get_compound_page_dtor(page))(page);
599d0c95 1813 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1814 } else
1815 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1816 }
1817 }
9d5e6a9f 1818
3eb4140f
WF
1819 if (!is_active_lru(lru))
1820 __count_vm_events(PGDEACTIVATE, pgmoved);
1821}
1cfb419b 1822
f626012d 1823static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1824 struct lruvec *lruvec,
f16015fb 1825 struct scan_control *sc,
9e3b2f8c 1826 enum lru_list lru)
1da177e4 1827{
44c241f1 1828 unsigned long nr_taken;
f626012d 1829 unsigned long nr_scanned;
6fe6b7e3 1830 unsigned long vm_flags;
1da177e4 1831 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1832 LIST_HEAD(l_active);
b69408e8 1833 LIST_HEAD(l_inactive);
1da177e4 1834 struct page *page;
1a93be0e 1835 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1836 unsigned long nr_rotated = 0;
f3fd4a61 1837 isolate_mode_t isolate_mode = 0;
3cb99451 1838 int file = is_file_lru(lru);
599d0c95 1839 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
1840
1841 lru_add_drain();
f80c0673
MK
1842
1843 if (!sc->may_unmap)
61317289 1844 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1845 if (!sc->may_writepage)
61317289 1846 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1847
599d0c95 1848 spin_lock_irq(&pgdat->lru_lock);
925b7673 1849
5dc35979
KK
1850 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1851 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1852
599d0c95 1853 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 1854 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1855
9d5e6a9f 1856 if (global_reclaim(sc))
599d0c95
MG
1857 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1858 __count_vm_events(PGREFILL, nr_scanned);
9d5e6a9f 1859
599d0c95 1860 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 1861
1da177e4
LT
1862 while (!list_empty(&l_hold)) {
1863 cond_resched();
1864 page = lru_to_page(&l_hold);
1865 list_del(&page->lru);
7e9cd484 1866
39b5f29a 1867 if (unlikely(!page_evictable(page))) {
894bc310
LS
1868 putback_lru_page(page);
1869 continue;
1870 }
1871
cc715d99
MG
1872 if (unlikely(buffer_heads_over_limit)) {
1873 if (page_has_private(page) && trylock_page(page)) {
1874 if (page_has_private(page))
1875 try_to_release_page(page, 0);
1876 unlock_page(page);
1877 }
1878 }
1879
c3ac9a8a
JW
1880 if (page_referenced(page, 0, sc->target_mem_cgroup,
1881 &vm_flags)) {
9992af10 1882 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1883 /*
1884 * Identify referenced, file-backed active pages and
1885 * give them one more trip around the active list. So
1886 * that executable code get better chances to stay in
1887 * memory under moderate memory pressure. Anon pages
1888 * are not likely to be evicted by use-once streaming
1889 * IO, plus JVM can create lots of anon VM_EXEC pages,
1890 * so we ignore them here.
1891 */
41e20983 1892 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1893 list_add(&page->lru, &l_active);
1894 continue;
1895 }
1896 }
7e9cd484 1897
5205e56e 1898 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1899 list_add(&page->lru, &l_inactive);
1900 }
1901
b555749a 1902 /*
8cab4754 1903 * Move pages back to the lru list.
b555749a 1904 */
599d0c95 1905 spin_lock_irq(&pgdat->lru_lock);
556adecb 1906 /*
8cab4754
WF
1907 * Count referenced pages from currently used mappings as rotated,
1908 * even though only some of them are actually re-activated. This
1909 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 1910 * get_scan_count.
7e9cd484 1911 */
b7c46d15 1912 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1913
fa9add64
HD
1914 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1915 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
599d0c95
MG
1916 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1917 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 1918
747db954 1919 mem_cgroup_uncharge_list(&l_hold);
b745bc85 1920 free_hot_cold_page_list(&l_hold, true);
1da177e4
LT
1921}
1922
59dc76b0
RR
1923/*
1924 * The inactive anon list should be small enough that the VM never has
1925 * to do too much work.
14797e23 1926 *
59dc76b0
RR
1927 * The inactive file list should be small enough to leave most memory
1928 * to the established workingset on the scan-resistant active list,
1929 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 1930 *
59dc76b0
RR
1931 * Both inactive lists should also be large enough that each inactive
1932 * page has a chance to be referenced again before it is reclaimed.
56e49d21 1933 *
59dc76b0
RR
1934 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
1935 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
1936 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 1937 *
59dc76b0
RR
1938 * total target max
1939 * memory ratio inactive
1940 * -------------------------------------
1941 * 10MB 1 5MB
1942 * 100MB 1 50MB
1943 * 1GB 3 250MB
1944 * 10GB 10 0.9GB
1945 * 100GB 31 3GB
1946 * 1TB 101 10GB
1947 * 10TB 320 32GB
56e49d21 1948 */
59dc76b0 1949static bool inactive_list_is_low(struct lruvec *lruvec, bool file)
56e49d21 1950{
59dc76b0 1951 unsigned long inactive_ratio;
e3790144
JW
1952 unsigned long inactive;
1953 unsigned long active;
59dc76b0 1954 unsigned long gb;
e3790144 1955
59dc76b0
RR
1956 /*
1957 * If we don't have swap space, anonymous page deactivation
1958 * is pointless.
1959 */
1960 if (!file && !total_swap_pages)
1961 return false;
56e49d21 1962
59dc76b0
RR
1963 inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
1964 active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
56e49d21 1965
59dc76b0
RR
1966 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1967 if (gb)
1968 inactive_ratio = int_sqrt(10 * gb);
b39415b2 1969 else
59dc76b0
RR
1970 inactive_ratio = 1;
1971
1972 return inactive * inactive_ratio < active;
b39415b2
RR
1973}
1974
4f98a2fe 1975static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1976 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1977{
b39415b2 1978 if (is_active_lru(lru)) {
59dc76b0 1979 if (inactive_list_is_low(lruvec, is_file_lru(lru)))
1a93be0e 1980 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1981 return 0;
1982 }
1983
1a93be0e 1984 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1985}
1986
9a265114
JW
1987enum scan_balance {
1988 SCAN_EQUAL,
1989 SCAN_FRACT,
1990 SCAN_ANON,
1991 SCAN_FILE,
1992};
1993
4f98a2fe
RR
1994/*
1995 * Determine how aggressively the anon and file LRU lists should be
1996 * scanned. The relative value of each set of LRU lists is determined
1997 * by looking at the fraction of the pages scanned we did rotate back
1998 * onto the active list instead of evict.
1999 *
be7bd59d
WL
2000 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2001 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2002 */
33377678 2003static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
2004 struct scan_control *sc, unsigned long *nr,
2005 unsigned long *lru_pages)
4f98a2fe 2006{
33377678 2007 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2008 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2009 u64 fraction[2];
2010 u64 denominator = 0; /* gcc */
599d0c95 2011 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2012 unsigned long anon_prio, file_prio;
9a265114 2013 enum scan_balance scan_balance;
0bf1457f 2014 unsigned long anon, file;
9a265114 2015 bool force_scan = false;
4f98a2fe 2016 unsigned long ap, fp;
4111304d 2017 enum lru_list lru;
6f04f48d
SS
2018 bool some_scanned;
2019 int pass;
246e87a9 2020
f11c0ca5
JW
2021 /*
2022 * If the zone or memcg is small, nr[l] can be 0. This
2023 * results in no scanning on this priority and a potential
2024 * priority drop. Global direct reclaim can go to the next
2025 * zone and tends to have no problems. Global kswapd is for
2026 * zone balancing and it needs to scan a minimum amount. When
2027 * reclaiming for a memcg, a priority drop can cause high
2028 * latencies, so it's better to scan a minimum amount there as
2029 * well.
2030 */
90cbc250 2031 if (current_is_kswapd()) {
599d0c95 2032 if (!pgdat_reclaimable(pgdat))
90cbc250 2033 force_scan = true;
eb01aaab 2034 if (!mem_cgroup_online(memcg))
90cbc250
VD
2035 force_scan = true;
2036 }
89b5fae5 2037 if (!global_reclaim(sc))
a4d3e9e7 2038 force_scan = true;
76a33fc3
SL
2039
2040 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2041 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2042 scan_balance = SCAN_FILE;
76a33fc3
SL
2043 goto out;
2044 }
4f98a2fe 2045
10316b31
JW
2046 /*
2047 * Global reclaim will swap to prevent OOM even with no
2048 * swappiness, but memcg users want to use this knob to
2049 * disable swapping for individual groups completely when
2050 * using the memory controller's swap limit feature would be
2051 * too expensive.
2052 */
02695175 2053 if (!global_reclaim(sc) && !swappiness) {
9a265114 2054 scan_balance = SCAN_FILE;
10316b31
JW
2055 goto out;
2056 }
2057
2058 /*
2059 * Do not apply any pressure balancing cleverness when the
2060 * system is close to OOM, scan both anon and file equally
2061 * (unless the swappiness setting disagrees with swapping).
2062 */
02695175 2063 if (!sc->priority && swappiness) {
9a265114 2064 scan_balance = SCAN_EQUAL;
10316b31
JW
2065 goto out;
2066 }
2067
62376251
JW
2068 /*
2069 * Prevent the reclaimer from falling into the cache trap: as
2070 * cache pages start out inactive, every cache fault will tip
2071 * the scan balance towards the file LRU. And as the file LRU
2072 * shrinks, so does the window for rotation from references.
2073 * This means we have a runaway feedback loop where a tiny
2074 * thrashing file LRU becomes infinitely more attractive than
2075 * anon pages. Try to detect this based on file LRU size.
2076 */
2077 if (global_reclaim(sc)) {
599d0c95
MG
2078 unsigned long pgdatfile;
2079 unsigned long pgdatfree;
2080 int z;
2081 unsigned long total_high_wmark = 0;
2ab051e1 2082
599d0c95
MG
2083 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2084 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2085 node_page_state(pgdat, NR_INACTIVE_FILE);
2086
2087 for (z = 0; z < MAX_NR_ZONES; z++) {
2088 struct zone *zone = &pgdat->node_zones[z];
2089 if (!populated_zone(zone))
2090 continue;
2091
2092 total_high_wmark += high_wmark_pages(zone);
2093 }
62376251 2094
599d0c95 2095 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
62376251
JW
2096 scan_balance = SCAN_ANON;
2097 goto out;
2098 }
2099 }
2100
7c5bd705 2101 /*
316bda0e
VD
2102 * If there is enough inactive page cache, i.e. if the size of the
2103 * inactive list is greater than that of the active list *and* the
2104 * inactive list actually has some pages to scan on this priority, we
2105 * do not reclaim anything from the anonymous working set right now.
2106 * Without the second condition we could end up never scanning an
2107 * lruvec even if it has plenty of old anonymous pages unless the
2108 * system is under heavy pressure.
7c5bd705 2109 */
59dc76b0 2110 if (!inactive_list_is_low(lruvec, true) &&
23047a96 2111 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
9a265114 2112 scan_balance = SCAN_FILE;
7c5bd705
JW
2113 goto out;
2114 }
2115
9a265114
JW
2116 scan_balance = SCAN_FRACT;
2117
58c37f6e
KM
2118 /*
2119 * With swappiness at 100, anonymous and file have the same priority.
2120 * This scanning priority is essentially the inverse of IO cost.
2121 */
02695175 2122 anon_prio = swappiness;
75b00af7 2123 file_prio = 200 - anon_prio;
58c37f6e 2124
4f98a2fe
RR
2125 /*
2126 * OK, so we have swap space and a fair amount of page cache
2127 * pages. We use the recently rotated / recently scanned
2128 * ratios to determine how valuable each cache is.
2129 *
2130 * Because workloads change over time (and to avoid overflow)
2131 * we keep these statistics as a floating average, which ends
2132 * up weighing recent references more than old ones.
2133 *
2134 * anon in [0], file in [1]
2135 */
2ab051e1 2136
23047a96
JW
2137 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
2138 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
2139 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
2140 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2ab051e1 2141
599d0c95 2142 spin_lock_irq(&pgdat->lru_lock);
6e901571 2143 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2144 reclaim_stat->recent_scanned[0] /= 2;
2145 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2146 }
2147
6e901571 2148 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2149 reclaim_stat->recent_scanned[1] /= 2;
2150 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2151 }
2152
4f98a2fe 2153 /*
00d8089c
RR
2154 * The amount of pressure on anon vs file pages is inversely
2155 * proportional to the fraction of recently scanned pages on
2156 * each list that were recently referenced and in active use.
4f98a2fe 2157 */
fe35004f 2158 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2159 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2160
fe35004f 2161 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2162 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2163 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2164
76a33fc3
SL
2165 fraction[0] = ap;
2166 fraction[1] = fp;
2167 denominator = ap + fp + 1;
2168out:
6f04f48d
SS
2169 some_scanned = false;
2170 /* Only use force_scan on second pass. */
2171 for (pass = 0; !some_scanned && pass < 2; pass++) {
6b4f7799 2172 *lru_pages = 0;
6f04f48d
SS
2173 for_each_evictable_lru(lru) {
2174 int file = is_file_lru(lru);
2175 unsigned long size;
2176 unsigned long scan;
6e08a369 2177
23047a96 2178 size = lruvec_lru_size(lruvec, lru);
6f04f48d 2179 scan = size >> sc->priority;
9a265114 2180
6f04f48d
SS
2181 if (!scan && pass && force_scan)
2182 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2183
6f04f48d
SS
2184 switch (scan_balance) {
2185 case SCAN_EQUAL:
2186 /* Scan lists relative to size */
2187 break;
2188 case SCAN_FRACT:
2189 /*
2190 * Scan types proportional to swappiness and
2191 * their relative recent reclaim efficiency.
2192 */
2193 scan = div64_u64(scan * fraction[file],
2194 denominator);
2195 break;
2196 case SCAN_FILE:
2197 case SCAN_ANON:
2198 /* Scan one type exclusively */
6b4f7799
JW
2199 if ((scan_balance == SCAN_FILE) != file) {
2200 size = 0;
6f04f48d 2201 scan = 0;
6b4f7799 2202 }
6f04f48d
SS
2203 break;
2204 default:
2205 /* Look ma, no brain */
2206 BUG();
2207 }
6b4f7799
JW
2208
2209 *lru_pages += size;
6f04f48d 2210 nr[lru] = scan;
6b4f7799 2211
9a265114 2212 /*
6f04f48d
SS
2213 * Skip the second pass and don't force_scan,
2214 * if we found something to scan.
9a265114 2215 */
6f04f48d 2216 some_scanned |= !!scan;
9a265114 2217 }
76a33fc3 2218 }
6e08a369 2219}
4f98a2fe 2220
72b252ae
MG
2221#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2222static void init_tlb_ubc(void)
2223{
2224 /*
2225 * This deliberately does not clear the cpumask as it's expensive
2226 * and unnecessary. If there happens to be data in there then the
2227 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2228 * then will be cleared.
2229 */
2230 current->tlb_ubc.flush_required = false;
2231}
2232#else
2233static inline void init_tlb_ubc(void)
2234{
2235}
2236#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2237
9b4f98cd 2238/*
a9dd0a83 2239 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
9b4f98cd 2240 */
a9dd0a83 2241static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
33377678 2242 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2243{
ef8f2327 2244 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
9b4f98cd 2245 unsigned long nr[NR_LRU_LISTS];
e82e0561 2246 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2247 unsigned long nr_to_scan;
2248 enum lru_list lru;
2249 unsigned long nr_reclaimed = 0;
2250 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2251 struct blk_plug plug;
1a501907 2252 bool scan_adjusted;
9b4f98cd 2253
33377678 2254 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2255
e82e0561
MG
2256 /* Record the original scan target for proportional adjustments later */
2257 memcpy(targets, nr, sizeof(nr));
2258
1a501907
MG
2259 /*
2260 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2261 * event that can occur when there is little memory pressure e.g.
2262 * multiple streaming readers/writers. Hence, we do not abort scanning
2263 * when the requested number of pages are reclaimed when scanning at
2264 * DEF_PRIORITY on the assumption that the fact we are direct
2265 * reclaiming implies that kswapd is not keeping up and it is best to
2266 * do a batch of work at once. For memcg reclaim one check is made to
2267 * abort proportional reclaim if either the file or anon lru has already
2268 * dropped to zero at the first pass.
2269 */
2270 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2271 sc->priority == DEF_PRIORITY);
2272
72b252ae
MG
2273 init_tlb_ubc();
2274
9b4f98cd
JW
2275 blk_start_plug(&plug);
2276 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2277 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2278 unsigned long nr_anon, nr_file, percentage;
2279 unsigned long nr_scanned;
2280
9b4f98cd
JW
2281 for_each_evictable_lru(lru) {
2282 if (nr[lru]) {
2283 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2284 nr[lru] -= nr_to_scan;
2285
2286 nr_reclaimed += shrink_list(lru, nr_to_scan,
2287 lruvec, sc);
2288 }
2289 }
e82e0561
MG
2290
2291 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2292 continue;
2293
e82e0561
MG
2294 /*
2295 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2296 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2297 * proportionally what was requested by get_scan_count(). We
2298 * stop reclaiming one LRU and reduce the amount scanning
2299 * proportional to the original scan target.
2300 */
2301 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2302 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2303
1a501907
MG
2304 /*
2305 * It's just vindictive to attack the larger once the smaller
2306 * has gone to zero. And given the way we stop scanning the
2307 * smaller below, this makes sure that we only make one nudge
2308 * towards proportionality once we've got nr_to_reclaim.
2309 */
2310 if (!nr_file || !nr_anon)
2311 break;
2312
e82e0561
MG
2313 if (nr_file > nr_anon) {
2314 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2315 targets[LRU_ACTIVE_ANON] + 1;
2316 lru = LRU_BASE;
2317 percentage = nr_anon * 100 / scan_target;
2318 } else {
2319 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2320 targets[LRU_ACTIVE_FILE] + 1;
2321 lru = LRU_FILE;
2322 percentage = nr_file * 100 / scan_target;
2323 }
2324
2325 /* Stop scanning the smaller of the LRU */
2326 nr[lru] = 0;
2327 nr[lru + LRU_ACTIVE] = 0;
2328
2329 /*
2330 * Recalculate the other LRU scan count based on its original
2331 * scan target and the percentage scanning already complete
2332 */
2333 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2334 nr_scanned = targets[lru] - nr[lru];
2335 nr[lru] = targets[lru] * (100 - percentage) / 100;
2336 nr[lru] -= min(nr[lru], nr_scanned);
2337
2338 lru += LRU_ACTIVE;
2339 nr_scanned = targets[lru] - nr[lru];
2340 nr[lru] = targets[lru] * (100 - percentage) / 100;
2341 nr[lru] -= min(nr[lru], nr_scanned);
2342
2343 scan_adjusted = true;
9b4f98cd
JW
2344 }
2345 blk_finish_plug(&plug);
2346 sc->nr_reclaimed += nr_reclaimed;
2347
2348 /*
2349 * Even if we did not try to evict anon pages at all, we want to
2350 * rebalance the anon lru active/inactive ratio.
2351 */
59dc76b0 2352 if (inactive_list_is_low(lruvec, false))
9b4f98cd
JW
2353 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2354 sc, LRU_ACTIVE_ANON);
2355
2356 throttle_vm_writeout(sc->gfp_mask);
2357}
2358
23b9da55 2359/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2360static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2361{
d84da3f9 2362 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2363 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2364 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2365 return true;
2366
2367 return false;
2368}
2369
3e7d3449 2370/*
23b9da55
MG
2371 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2372 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2373 * true if more pages should be reclaimed such that when the page allocator
2374 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2375 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2376 */
a9dd0a83 2377static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449
MG
2378 unsigned long nr_reclaimed,
2379 unsigned long nr_scanned,
2380 struct scan_control *sc)
2381{
2382 unsigned long pages_for_compaction;
2383 unsigned long inactive_lru_pages;
a9dd0a83 2384 int z;
3e7d3449
MG
2385
2386 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2387 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2388 return false;
2389
2876592f
MG
2390 /* Consider stopping depending on scan and reclaim activity */
2391 if (sc->gfp_mask & __GFP_REPEAT) {
2392 /*
2393 * For __GFP_REPEAT allocations, stop reclaiming if the
2394 * full LRU list has been scanned and we are still failing
2395 * to reclaim pages. This full LRU scan is potentially
2396 * expensive but a __GFP_REPEAT caller really wants to succeed
2397 */
2398 if (!nr_reclaimed && !nr_scanned)
2399 return false;
2400 } else {
2401 /*
2402 * For non-__GFP_REPEAT allocations which can presumably
2403 * fail without consequence, stop if we failed to reclaim
2404 * any pages from the last SWAP_CLUSTER_MAX number of
2405 * pages that were scanned. This will return to the
2406 * caller faster at the risk reclaim/compaction and
2407 * the resulting allocation attempt fails
2408 */
2409 if (!nr_reclaimed)
2410 return false;
2411 }
3e7d3449
MG
2412
2413 /*
2414 * If we have not reclaimed enough pages for compaction and the
2415 * inactive lists are large enough, continue reclaiming
2416 */
2417 pages_for_compaction = (2UL << sc->order);
a9dd0a83 2418 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
ec8acf20 2419 if (get_nr_swap_pages() > 0)
a9dd0a83 2420 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3e7d3449
MG
2421 if (sc->nr_reclaimed < pages_for_compaction &&
2422 inactive_lru_pages > pages_for_compaction)
2423 return true;
2424
2425 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2426 for (z = 0; z <= sc->reclaim_idx; z++) {
2427 struct zone *zone = &pgdat->node_zones[z];
2428 if (!populated_zone(zone))
2429 continue;
2430
2431 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2432 case COMPACT_PARTIAL:
2433 case COMPACT_CONTINUE:
2434 return false;
2435 default:
2436 /* check next zone */
2437 ;
2438 }
3e7d3449 2439 }
a9dd0a83 2440 return true;
3e7d3449
MG
2441}
2442
970a39a3 2443static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2444{
cb731d6c 2445 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2446 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2447 bool reclaimable = false;
1da177e4 2448
9b4f98cd
JW
2449 do {
2450 struct mem_cgroup *root = sc->target_mem_cgroup;
2451 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 2452 .pgdat = pgdat,
9b4f98cd
JW
2453 .priority = sc->priority,
2454 };
a9dd0a83 2455 unsigned long node_lru_pages = 0;
694fbc0f 2456 struct mem_cgroup *memcg;
3e7d3449 2457
9b4f98cd
JW
2458 nr_reclaimed = sc->nr_reclaimed;
2459 nr_scanned = sc->nr_scanned;
1da177e4 2460
694fbc0f
AM
2461 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2462 do {
6b4f7799 2463 unsigned long lru_pages;
8e8ae645 2464 unsigned long reclaimed;
cb731d6c 2465 unsigned long scanned;
5660048c 2466
241994ed
JW
2467 if (mem_cgroup_low(root, memcg)) {
2468 if (!sc->may_thrash)
2469 continue;
2470 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2471 }
2472
8e8ae645 2473 reclaimed = sc->nr_reclaimed;
cb731d6c 2474 scanned = sc->nr_scanned;
f9be23d6 2475
a9dd0a83
MG
2476 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2477 node_lru_pages += lru_pages;
f16015fb 2478
b2e18757 2479 if (!global_reclaim(sc))
a9dd0a83 2480 shrink_slab(sc->gfp_mask, pgdat->node_id,
cb731d6c
VD
2481 memcg, sc->nr_scanned - scanned,
2482 lru_pages);
2483
8e8ae645
JW
2484 /* Record the group's reclaim efficiency */
2485 vmpressure(sc->gfp_mask, memcg, false,
2486 sc->nr_scanned - scanned,
2487 sc->nr_reclaimed - reclaimed);
2488
9b4f98cd 2489 /*
a394cb8e
MH
2490 * Direct reclaim and kswapd have to scan all memory
2491 * cgroups to fulfill the overall scan target for the
a9dd0a83 2492 * node.
a394cb8e
MH
2493 *
2494 * Limit reclaim, on the other hand, only cares about
2495 * nr_to_reclaim pages to be reclaimed and it will
2496 * retry with decreasing priority if one round over the
2497 * whole hierarchy is not sufficient.
9b4f98cd 2498 */
a394cb8e
MH
2499 if (!global_reclaim(sc) &&
2500 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2501 mem_cgroup_iter_break(root, memcg);
2502 break;
2503 }
241994ed 2504 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2505
6b4f7799
JW
2506 /*
2507 * Shrink the slab caches in the same proportion that
2508 * the eligible LRU pages were scanned.
2509 */
b2e18757 2510 if (global_reclaim(sc))
a9dd0a83 2511 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
cb731d6c 2512 sc->nr_scanned - nr_scanned,
a9dd0a83 2513 node_lru_pages);
cb731d6c
VD
2514
2515 if (reclaim_state) {
2516 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2517 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2518 }
2519
8e8ae645
JW
2520 /* Record the subtree's reclaim efficiency */
2521 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2522 sc->nr_scanned - nr_scanned,
2523 sc->nr_reclaimed - nr_reclaimed);
2524
2344d7e4
JW
2525 if (sc->nr_reclaimed - nr_reclaimed)
2526 reclaimable = true;
2527
a9dd0a83 2528 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
9b4f98cd 2529 sc->nr_scanned - nr_scanned, sc));
2344d7e4
JW
2530
2531 return reclaimable;
f16015fb
JW
2532}
2533
53853e2d
VB
2534/*
2535 * Returns true if compaction should go ahead for a high-order request, or
2536 * the high-order allocation would succeed without compaction.
2537 */
4f588331 2538static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2539{
31483b6a 2540 unsigned long watermark;
fe4b1b24
MG
2541 bool watermark_ok;
2542
fe4b1b24
MG
2543 /*
2544 * Compaction takes time to run and there are potentially other
2545 * callers using the pages just freed. Continue reclaiming until
2546 * there is a buffer of free pages available to give compaction
2547 * a reasonable chance of completing and allocating the page
2548 */
4f588331
MG
2549 watermark = high_wmark_pages(zone) + (2UL << sc->order);
2550 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2551
2552 /*
2553 * If compaction is deferred, reclaim up to a point where
2554 * compaction will have a chance of success when re-enabled
2555 */
4f588331 2556 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
2557 return watermark_ok;
2558
53853e2d
VB
2559 /*
2560 * If compaction is not ready to start and allocation is not likely
2561 * to succeed without it, then keep reclaiming.
2562 */
4f588331 2563 if (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx) == COMPACT_SKIPPED)
fe4b1b24
MG
2564 return false;
2565
2566 return watermark_ok;
2567}
2568
1da177e4
LT
2569/*
2570 * This is the direct reclaim path, for page-allocating processes. We only
2571 * try to reclaim pages from zones which will satisfy the caller's allocation
2572 * request.
2573 *
1da177e4
LT
2574 * If a zone is deemed to be full of pinned pages then just give it a light
2575 * scan then give up on it.
2576 */
0a0337e0 2577static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2578{
dd1a239f 2579 struct zoneref *z;
54a6eb5c 2580 struct zone *zone;
0608f43d
AM
2581 unsigned long nr_soft_reclaimed;
2582 unsigned long nr_soft_scanned;
619d0d76 2583 gfp_t orig_mask;
79dafcdc 2584 pg_data_t *last_pgdat = NULL;
1cfb419b 2585
cc715d99
MG
2586 /*
2587 * If the number of buffer_heads in the machine exceeds the maximum
2588 * allowed level, force direct reclaim to scan the highmem zone as
2589 * highmem pages could be pinning lowmem pages storing buffer_heads
2590 */
619d0d76 2591 orig_mask = sc->gfp_mask;
b2e18757 2592 if (buffer_heads_over_limit) {
cc715d99 2593 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2594 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2595 }
cc715d99 2596
d4debc66 2597 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2598 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2599 /*
2600 * Take care memory controller reclaiming has small influence
2601 * to global LRU.
2602 */
89b5fae5 2603 if (global_reclaim(sc)) {
344736f2
VD
2604 if (!cpuset_zone_allowed(zone,
2605 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2606 continue;
65ec02cb 2607
6e543d57 2608 if (sc->priority != DEF_PRIORITY &&
599d0c95 2609 !pgdat_reclaimable(zone->zone_pgdat))
1cfb419b 2610 continue; /* Let kswapd poll it */
0b06496a
JW
2611
2612 /*
2613 * If we already have plenty of memory free for
2614 * compaction in this zone, don't free any more.
2615 * Even though compaction is invoked for any
2616 * non-zero order, only frequent costly order
2617 * reclamation is disruptive enough to become a
2618 * noticeable problem, like transparent huge
2619 * page allocations.
2620 */
2621 if (IS_ENABLED(CONFIG_COMPACTION) &&
2622 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2623 compaction_ready(zone, sc)) {
0b06496a
JW
2624 sc->compaction_ready = true;
2625 continue;
e0887c19 2626 }
0b06496a 2627
79dafcdc
MG
2628 /*
2629 * Shrink each node in the zonelist once. If the
2630 * zonelist is ordered by zone (not the default) then a
2631 * node may be shrunk multiple times but in that case
2632 * the user prefers lower zones being preserved.
2633 */
2634 if (zone->zone_pgdat == last_pgdat)
2635 continue;
2636
0608f43d
AM
2637 /*
2638 * This steals pages from memory cgroups over softlimit
2639 * and returns the number of reclaimed pages and
2640 * scanned pages. This works for global memory pressure
2641 * and balancing, not for a memcg's limit.
2642 */
2643 nr_soft_scanned = 0;
ef8f2327 2644 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2645 sc->order, sc->gfp_mask,
2646 &nr_soft_scanned);
2647 sc->nr_reclaimed += nr_soft_reclaimed;
2648 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2649 /* need some check for avoid more shrink_zone() */
1cfb419b 2650 }
408d8544 2651
79dafcdc
MG
2652 /* See comment about same check for global reclaim above */
2653 if (zone->zone_pgdat == last_pgdat)
2654 continue;
2655 last_pgdat = zone->zone_pgdat;
970a39a3 2656 shrink_node(zone->zone_pgdat, sc);
1da177e4 2657 }
e0c23279 2658
619d0d76
WY
2659 /*
2660 * Restore to original mask to avoid the impact on the caller if we
2661 * promoted it to __GFP_HIGHMEM.
2662 */
2663 sc->gfp_mask = orig_mask;
1da177e4 2664}
4f98a2fe 2665
1da177e4
LT
2666/*
2667 * This is the main entry point to direct page reclaim.
2668 *
2669 * If a full scan of the inactive list fails to free enough memory then we
2670 * are "out of memory" and something needs to be killed.
2671 *
2672 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2673 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2674 * caller can't do much about. We kick the writeback threads and take explicit
2675 * naps in the hope that some of these pages can be written. But if the
2676 * allocating task holds filesystem locks which prevent writeout this might not
2677 * work, and the allocation attempt will fail.
a41f24ea
NA
2678 *
2679 * returns: 0, if no pages reclaimed
2680 * else, the number of pages reclaimed
1da177e4 2681 */
dac1d27b 2682static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2683 struct scan_control *sc)
1da177e4 2684{
241994ed 2685 int initial_priority = sc->priority;
69e05944 2686 unsigned long total_scanned = 0;
22fba335 2687 unsigned long writeback_threshold;
241994ed 2688retry:
873b4771
KK
2689 delayacct_freepages_start();
2690
89b5fae5 2691 if (global_reclaim(sc))
7cc30fcf 2692 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 2693
9e3b2f8c 2694 do {
70ddf637
AV
2695 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2696 sc->priority);
66e1707b 2697 sc->nr_scanned = 0;
0a0337e0 2698 shrink_zones(zonelist, sc);
c6a8a8c5 2699
66e1707b 2700 total_scanned += sc->nr_scanned;
bb21c7ce 2701 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2702 break;
2703
2704 if (sc->compaction_ready)
2705 break;
1da177e4 2706
0e50ce3b
MK
2707 /*
2708 * If we're getting trouble reclaiming, start doing
2709 * writepage even in laptop mode.
2710 */
2711 if (sc->priority < DEF_PRIORITY - 2)
2712 sc->may_writepage = 1;
2713
1da177e4
LT
2714 /*
2715 * Try to write back as many pages as we just scanned. This
2716 * tends to cause slow streaming writers to write data to the
2717 * disk smoothly, at the dirtying rate, which is nice. But
2718 * that's undesirable in laptop mode, where we *want* lumpy
2719 * writeout. So in laptop mode, write out the whole world.
2720 */
22fba335
KM
2721 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2722 if (total_scanned > writeback_threshold) {
0e175a18
CW
2723 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2724 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2725 sc->may_writepage = 1;
1da177e4 2726 }
0b06496a 2727 } while (--sc->priority >= 0);
bb21c7ce 2728
873b4771
KK
2729 delayacct_freepages_end();
2730
bb21c7ce
KM
2731 if (sc->nr_reclaimed)
2732 return sc->nr_reclaimed;
2733
0cee34fd 2734 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2735 if (sc->compaction_ready)
7335084d
MG
2736 return 1;
2737
241994ed
JW
2738 /* Untapped cgroup reserves? Don't OOM, retry. */
2739 if (!sc->may_thrash) {
2740 sc->priority = initial_priority;
2741 sc->may_thrash = 1;
2742 goto retry;
2743 }
2744
bb21c7ce 2745 return 0;
1da177e4
LT
2746}
2747
5515061d
MG
2748static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2749{
2750 struct zone *zone;
2751 unsigned long pfmemalloc_reserve = 0;
2752 unsigned long free_pages = 0;
2753 int i;
2754 bool wmark_ok;
2755
2756 for (i = 0; i <= ZONE_NORMAL; i++) {
2757 zone = &pgdat->node_zones[i];
f012a84a 2758 if (!populated_zone(zone) ||
599d0c95 2759 pgdat_reclaimable_pages(pgdat) == 0)
675becce
MG
2760 continue;
2761
5515061d
MG
2762 pfmemalloc_reserve += min_wmark_pages(zone);
2763 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2764 }
2765
675becce
MG
2766 /* If there are no reserves (unexpected config) then do not throttle */
2767 if (!pfmemalloc_reserve)
2768 return true;
2769
5515061d
MG
2770 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2771
2772 /* kswapd must be awake if processes are being throttled */
2773 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 2774 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
2775 (enum zone_type)ZONE_NORMAL);
2776 wake_up_interruptible(&pgdat->kswapd_wait);
2777 }
2778
2779 return wmark_ok;
2780}
2781
2782/*
2783 * Throttle direct reclaimers if backing storage is backed by the network
2784 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2785 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2786 * when the low watermark is reached.
2787 *
2788 * Returns true if a fatal signal was delivered during throttling. If this
2789 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2790 */
50694c28 2791static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2792 nodemask_t *nodemask)
2793{
675becce 2794 struct zoneref *z;
5515061d 2795 struct zone *zone;
675becce 2796 pg_data_t *pgdat = NULL;
5515061d
MG
2797
2798 /*
2799 * Kernel threads should not be throttled as they may be indirectly
2800 * responsible for cleaning pages necessary for reclaim to make forward
2801 * progress. kjournald for example may enter direct reclaim while
2802 * committing a transaction where throttling it could forcing other
2803 * processes to block on log_wait_commit().
2804 */
2805 if (current->flags & PF_KTHREAD)
50694c28
MG
2806 goto out;
2807
2808 /*
2809 * If a fatal signal is pending, this process should not throttle.
2810 * It should return quickly so it can exit and free its memory
2811 */
2812 if (fatal_signal_pending(current))
2813 goto out;
5515061d 2814
675becce
MG
2815 /*
2816 * Check if the pfmemalloc reserves are ok by finding the first node
2817 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2818 * GFP_KERNEL will be required for allocating network buffers when
2819 * swapping over the network so ZONE_HIGHMEM is unusable.
2820 *
2821 * Throttling is based on the first usable node and throttled processes
2822 * wait on a queue until kswapd makes progress and wakes them. There
2823 * is an affinity then between processes waking up and where reclaim
2824 * progress has been made assuming the process wakes on the same node.
2825 * More importantly, processes running on remote nodes will not compete
2826 * for remote pfmemalloc reserves and processes on different nodes
2827 * should make reasonable progress.
2828 */
2829 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2830 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2831 if (zone_idx(zone) > ZONE_NORMAL)
2832 continue;
2833
2834 /* Throttle based on the first usable node */
2835 pgdat = zone->zone_pgdat;
2836 if (pfmemalloc_watermark_ok(pgdat))
2837 goto out;
2838 break;
2839 }
2840
2841 /* If no zone was usable by the allocation flags then do not throttle */
2842 if (!pgdat)
50694c28 2843 goto out;
5515061d 2844
68243e76
MG
2845 /* Account for the throttling */
2846 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2847
5515061d
MG
2848 /*
2849 * If the caller cannot enter the filesystem, it's possible that it
2850 * is due to the caller holding an FS lock or performing a journal
2851 * transaction in the case of a filesystem like ext[3|4]. In this case,
2852 * it is not safe to block on pfmemalloc_wait as kswapd could be
2853 * blocked waiting on the same lock. Instead, throttle for up to a
2854 * second before continuing.
2855 */
2856 if (!(gfp_mask & __GFP_FS)) {
2857 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2858 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2859
2860 goto check_pending;
5515061d
MG
2861 }
2862
2863 /* Throttle until kswapd wakes the process */
2864 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2865 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2866
2867check_pending:
2868 if (fatal_signal_pending(current))
2869 return true;
2870
2871out:
2872 return false;
5515061d
MG
2873}
2874
dac1d27b 2875unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2876 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2877{
33906bc5 2878 unsigned long nr_reclaimed;
66e1707b 2879 struct scan_control sc = {
ee814fe2 2880 .nr_to_reclaim = SWAP_CLUSTER_MAX,
21caf2fc 2881 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
b2e18757 2882 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
2883 .order = order,
2884 .nodemask = nodemask,
2885 .priority = DEF_PRIORITY,
66e1707b 2886 .may_writepage = !laptop_mode,
a6dc60f8 2887 .may_unmap = 1,
2e2e4259 2888 .may_swap = 1,
66e1707b
BS
2889 };
2890
5515061d 2891 /*
50694c28
MG
2892 * Do not enter reclaim if fatal signal was delivered while throttled.
2893 * 1 is returned so that the page allocator does not OOM kill at this
2894 * point.
5515061d 2895 */
50694c28 2896 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2897 return 1;
2898
33906bc5
MG
2899 trace_mm_vmscan_direct_reclaim_begin(order,
2900 sc.may_writepage,
e5146b12
MG
2901 gfp_mask,
2902 sc.reclaim_idx);
33906bc5 2903
3115cd91 2904 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2905
2906 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2907
2908 return nr_reclaimed;
66e1707b
BS
2909}
2910
c255a458 2911#ifdef CONFIG_MEMCG
66e1707b 2912
a9dd0a83 2913unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 2914 gfp_t gfp_mask, bool noswap,
ef8f2327 2915 pg_data_t *pgdat,
0ae5e89c 2916 unsigned long *nr_scanned)
4e416953
BS
2917{
2918 struct scan_control sc = {
b8f5c566 2919 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 2920 .target_mem_cgroup = memcg,
4e416953
BS
2921 .may_writepage = !laptop_mode,
2922 .may_unmap = 1,
b2e18757 2923 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 2924 .may_swap = !noswap,
4e416953 2925 };
6b4f7799 2926 unsigned long lru_pages;
0ae5e89c 2927
4e416953
BS
2928 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2929 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2930
9e3b2f8c 2931 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e 2932 sc.may_writepage,
e5146b12
MG
2933 sc.gfp_mask,
2934 sc.reclaim_idx);
bdce6d9e 2935
4e416953
BS
2936 /*
2937 * NOTE: Although we can get the priority field, using it
2938 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 2939 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
2940 * will pick up pages from other mem cgroup's as well. We hack
2941 * the priority and make it zero.
2942 */
ef8f2327 2943 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
bdce6d9e
KM
2944
2945 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2946
0ae5e89c 2947 *nr_scanned = sc.nr_scanned;
4e416953
BS
2948 return sc.nr_reclaimed;
2949}
2950
72835c86 2951unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 2952 unsigned long nr_pages,
a7885eb8 2953 gfp_t gfp_mask,
b70a2a21 2954 bool may_swap)
66e1707b 2955{
4e416953 2956 struct zonelist *zonelist;
bdce6d9e 2957 unsigned long nr_reclaimed;
889976db 2958 int nid;
66e1707b 2959 struct scan_control sc = {
b70a2a21 2960 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
a09ed5e0
YH
2961 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2962 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 2963 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
2964 .target_mem_cgroup = memcg,
2965 .priority = DEF_PRIORITY,
2966 .may_writepage = !laptop_mode,
2967 .may_unmap = 1,
b70a2a21 2968 .may_swap = may_swap,
a09ed5e0 2969 };
66e1707b 2970
889976db
YH
2971 /*
2972 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2973 * take care of from where we get pages. So the node where we start the
2974 * scan does not need to be the current node.
2975 */
72835c86 2976 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2977
2978 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2979
2980 trace_mm_vmscan_memcg_reclaim_begin(0,
2981 sc.may_writepage,
e5146b12
MG
2982 sc.gfp_mask,
2983 sc.reclaim_idx);
bdce6d9e 2984
3115cd91 2985 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
bdce6d9e
KM
2986
2987 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2988
2989 return nr_reclaimed;
66e1707b
BS
2990}
2991#endif
2992
1d82de61 2993static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 2994 struct scan_control *sc)
f16015fb 2995{
b95a2f2d 2996 struct mem_cgroup *memcg;
f16015fb 2997
b95a2f2d
JW
2998 if (!total_swap_pages)
2999 return;
3000
3001 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3002 do {
ef8f2327 3003 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
b95a2f2d 3004
59dc76b0 3005 if (inactive_list_is_low(lruvec, false))
1a93be0e 3006 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3007 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3008
3009 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3010 } while (memcg);
f16015fb
JW
3011}
3012
31483b6a 3013static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
60cefed4 3014{
31483b6a 3015 unsigned long mark = high_wmark_pages(zone);
60cefed4 3016
6256c6b4
MG
3017 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3018 return false;
3019
3020 /*
3021 * If any eligible zone is balanced then the node is not considered
3022 * to be congested or dirty
3023 */
3024 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3025 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3026
3027 return true;
60cefed4
JW
3028}
3029
5515061d
MG
3030/*
3031 * Prepare kswapd for sleeping. This verifies that there are no processes
3032 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3033 *
3034 * Returns true if kswapd is ready to sleep
3035 */
d9f21d42 3036static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3037{
1d82de61
MG
3038 int i;
3039
5515061d 3040 /*
9e5e3661
VB
3041 * The throttled processes are normally woken up in balance_pgdat() as
3042 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3043 * race between when kswapd checks the watermarks and a process gets
3044 * throttled. There is also a potential race if processes get
3045 * throttled, kswapd wakes, a large process exits thereby balancing the
3046 * zones, which causes kswapd to exit balance_pgdat() before reaching
3047 * the wake up checks. If kswapd is going to sleep, no process should
3048 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3049 * the wake up is premature, processes will wake kswapd and get
3050 * throttled again. The difference from wake ups in balance_pgdat() is
3051 * that here we are under prepare_to_wait().
5515061d 3052 */
9e5e3661
VB
3053 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3054 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3055
1d82de61
MG
3056 for (i = 0; i <= classzone_idx; i++) {
3057 struct zone *zone = pgdat->node_zones + i;
3058
3059 if (!populated_zone(zone))
3060 continue;
3061
38087d9b
MG
3062 if (!zone_balanced(zone, order, classzone_idx))
3063 return false;
1d82de61
MG
3064 }
3065
38087d9b 3066 return true;
f50de2d3
MG
3067}
3068
75485363 3069/*
1d82de61
MG
3070 * kswapd shrinks a node of pages that are at or below the highest usable
3071 * zone that is currently unbalanced.
b8e83b94
MG
3072 *
3073 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3074 * reclaim or if the lack of progress was due to pages under writeback.
3075 * This is used to determine if the scanning priority needs to be raised.
75485363 3076 */
1d82de61 3077static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3078 struct scan_control *sc)
75485363 3079{
1d82de61
MG
3080 struct zone *zone;
3081 int z;
75485363 3082
1d82de61
MG
3083 /* Reclaim a number of pages proportional to the number of zones */
3084 sc->nr_to_reclaim = 0;
970a39a3 3085 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61
MG
3086 zone = pgdat->node_zones + z;
3087 if (!populated_zone(zone))
3088 continue;
7c954f6d 3089
1d82de61
MG
3090 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3091 }
7c954f6d
MG
3092
3093 /*
1d82de61
MG
3094 * Historically care was taken to put equal pressure on all zones but
3095 * now pressure is applied based on node LRU order.
7c954f6d 3096 */
970a39a3 3097 shrink_node(pgdat, sc);
283aba9f 3098
7c954f6d 3099 /*
1d82de61
MG
3100 * Fragmentation may mean that the system cannot be rebalanced for
3101 * high-order allocations. If twice the allocation size has been
3102 * reclaimed then recheck watermarks only at order-0 to prevent
3103 * excessive reclaim. Assume that a process requested a high-order
3104 * can direct reclaim/compact.
7c954f6d 3105 */
1d82de61
MG
3106 if (sc->order && sc->nr_reclaimed >= 2UL << sc->order)
3107 sc->order = 0;
7c954f6d 3108
b8e83b94 3109 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3110}
3111
1da177e4 3112/*
1d82de61
MG
3113 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3114 * that are eligible for use by the caller until at least one zone is
3115 * balanced.
1da177e4 3116 *
1d82de61 3117 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3118 *
3119 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3120 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1d82de61
MG
3121 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3122 * or lower is eligible for reclaim until at least one usable zone is
3123 * balanced.
1da177e4 3124 */
accf6242 3125static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3126{
1da177e4 3127 int i;
0608f43d
AM
3128 unsigned long nr_soft_reclaimed;
3129 unsigned long nr_soft_scanned;
1d82de61 3130 struct zone *zone;
179e9639
AM
3131 struct scan_control sc = {
3132 .gfp_mask = GFP_KERNEL,
ee814fe2 3133 .order = order,
b8e83b94 3134 .priority = DEF_PRIORITY,
ee814fe2 3135 .may_writepage = !laptop_mode,
a6dc60f8 3136 .may_unmap = 1,
2e2e4259 3137 .may_swap = 1,
179e9639 3138 };
f8891e5e 3139 count_vm_event(PAGEOUTRUN);
1da177e4 3140
9e3b2f8c 3141 do {
b8e83b94
MG
3142 bool raise_priority = true;
3143
3144 sc.nr_reclaimed = 0;
84c7a777 3145 sc.reclaim_idx = classzone_idx;
1da177e4 3146
86c79f6b 3147 /*
84c7a777
MG
3148 * If the number of buffer_heads exceeds the maximum allowed
3149 * then consider reclaiming from all zones. This has a dual
3150 * purpose -- on 64-bit systems it is expected that
3151 * buffer_heads are stripped during active rotation. On 32-bit
3152 * systems, highmem pages can pin lowmem memory and shrinking
3153 * buffers can relieve lowmem pressure. Reclaim may still not
3154 * go ahead if all eligible zones for the original allocation
3155 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3156 */
3157 if (buffer_heads_over_limit) {
3158 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3159 zone = pgdat->node_zones + i;
3160 if (!populated_zone(zone))
3161 continue;
cc715d99 3162
970a39a3 3163 sc.reclaim_idx = i;
e1dbeda6 3164 break;
1da177e4 3165 }
1da177e4 3166 }
dafcb73e 3167
86c79f6b
MG
3168 /*
3169 * Only reclaim if there are no eligible zones. Check from
3170 * high to low zone as allocations prefer higher zones.
3171 * Scanning from low to high zone would allow congestion to be
3172 * cleared during a very small window when a small low
3173 * zone was balanced even under extreme pressure when the
84c7a777
MG
3174 * overall node may be congested. Note that sc.reclaim_idx
3175 * is not used as buffer_heads_over_limit may have adjusted
3176 * it.
86c79f6b 3177 */
84c7a777 3178 for (i = classzone_idx; i >= 0; i--) {
86c79f6b
MG
3179 zone = pgdat->node_zones + i;
3180 if (!populated_zone(zone))
3181 continue;
3182
84c7a777 3183 if (zone_balanced(zone, sc.order, classzone_idx))
86c79f6b
MG
3184 goto out;
3185 }
e1dbeda6 3186
1d82de61
MG
3187 /*
3188 * Do some background aging of the anon list, to give
3189 * pages a chance to be referenced before reclaiming. All
3190 * pages are rotated regardless of classzone as this is
3191 * about consistent aging.
3192 */
ef8f2327 3193 age_active_anon(pgdat, &sc);
1d82de61 3194
b7ea3c41
MG
3195 /*
3196 * If we're getting trouble reclaiming, start doing writepage
3197 * even in laptop mode.
3198 */
1d82de61 3199 if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
b7ea3c41
MG
3200 sc.may_writepage = 1;
3201
1d82de61
MG
3202 /* Call soft limit reclaim before calling shrink_node. */
3203 sc.nr_scanned = 0;
3204 nr_soft_scanned = 0;
ef8f2327 3205 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3206 sc.gfp_mask, &nr_soft_scanned);
3207 sc.nr_reclaimed += nr_soft_reclaimed;
3208
1da177e4 3209 /*
1d82de61
MG
3210 * There should be no need to raise the scanning priority if
3211 * enough pages are already being scanned that that high
3212 * watermark would be met at 100% efficiency.
1da177e4 3213 */
970a39a3 3214 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3215 raise_priority = false;
5515061d
MG
3216
3217 /*
3218 * If the low watermark is met there is no need for processes
3219 * to be throttled on pfmemalloc_wait as they should not be
3220 * able to safely make forward progress. Wake them
3221 */
3222 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3223 pfmemalloc_watermark_ok(pgdat))
cfc51155 3224 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3225
b8e83b94
MG
3226 /* Check if kswapd should be suspending */
3227 if (try_to_freeze() || kthread_should_stop())
3228 break;
8357376d 3229
73ce02e9 3230 /*
b8e83b94
MG
3231 * Raise priority if scanning rate is too low or there was no
3232 * progress in reclaiming pages
73ce02e9 3233 */
b8e83b94
MG
3234 if (raise_priority || !sc.nr_reclaimed)
3235 sc.priority--;
1d82de61 3236 } while (sc.priority >= 1);
1da177e4 3237
b8e83b94 3238out:
0abdee2b 3239 /*
1d82de61
MG
3240 * Return the order kswapd stopped reclaiming at as
3241 * prepare_kswapd_sleep() takes it into account. If another caller
3242 * entered the allocator slow path while kswapd was awake, order will
3243 * remain at the higher level.
0abdee2b 3244 */
1d82de61 3245 return sc.order;
1da177e4
LT
3246}
3247
38087d9b
MG
3248static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3249 unsigned int classzone_idx)
f0bc0a60
KM
3250{
3251 long remaining = 0;
3252 DEFINE_WAIT(wait);
3253
3254 if (freezing(current) || kthread_should_stop())
3255 return;
3256
3257 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3258
3259 /* Try to sleep for a short interval */
d9f21d42 3260 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3261 /*
3262 * Compaction records what page blocks it recently failed to
3263 * isolate pages from and skips them in the future scanning.
3264 * When kswapd is going to sleep, it is reasonable to assume
3265 * that pages and compaction may succeed so reset the cache.
3266 */
3267 reset_isolation_suitable(pgdat);
3268
3269 /*
3270 * We have freed the memory, now we should compact it to make
3271 * allocation of the requested order possible.
3272 */
38087d9b 3273 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3274
f0bc0a60 3275 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3276
3277 /*
3278 * If woken prematurely then reset kswapd_classzone_idx and
3279 * order. The values will either be from a wakeup request or
3280 * the previous request that slept prematurely.
3281 */
3282 if (remaining) {
3283 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3284 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3285 }
3286
f0bc0a60
KM
3287 finish_wait(&pgdat->kswapd_wait, &wait);
3288 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3289 }
3290
3291 /*
3292 * After a short sleep, check if it was a premature sleep. If not, then
3293 * go fully to sleep until explicitly woken up.
3294 */
d9f21d42
MG
3295 if (!remaining &&
3296 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3297 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3298
3299 /*
3300 * vmstat counters are not perfectly accurate and the estimated
3301 * value for counters such as NR_FREE_PAGES can deviate from the
3302 * true value by nr_online_cpus * threshold. To avoid the zone
3303 * watermarks being breached while under pressure, we reduce the
3304 * per-cpu vmstat threshold while kswapd is awake and restore
3305 * them before going back to sleep.
3306 */
3307 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3308
3309 if (!kthread_should_stop())
3310 schedule();
3311
f0bc0a60
KM
3312 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3313 } else {
3314 if (remaining)
3315 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3316 else
3317 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3318 }
3319 finish_wait(&pgdat->kswapd_wait, &wait);
3320}
3321
1da177e4
LT
3322/*
3323 * The background pageout daemon, started as a kernel thread
4f98a2fe 3324 * from the init process.
1da177e4
LT
3325 *
3326 * This basically trickles out pages so that we have _some_
3327 * free memory available even if there is no other activity
3328 * that frees anything up. This is needed for things like routing
3329 * etc, where we otherwise might have all activity going on in
3330 * asynchronous contexts that cannot page things out.
3331 *
3332 * If there are applications that are active memory-allocators
3333 * (most normal use), this basically shouldn't matter.
3334 */
3335static int kswapd(void *p)
3336{
38087d9b 3337 unsigned int alloc_order, reclaim_order, classzone_idx;
1da177e4
LT
3338 pg_data_t *pgdat = (pg_data_t*)p;
3339 struct task_struct *tsk = current;
f0bc0a60 3340
1da177e4
LT
3341 struct reclaim_state reclaim_state = {
3342 .reclaimed_slab = 0,
3343 };
a70f7302 3344 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3345
cf40bd16
NP
3346 lockdep_set_current_reclaim_state(GFP_KERNEL);
3347
174596a0 3348 if (!cpumask_empty(cpumask))
c5f59f08 3349 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3350 current->reclaim_state = &reclaim_state;
3351
3352 /*
3353 * Tell the memory management that we're a "memory allocator",
3354 * and that if we need more memory we should get access to it
3355 * regardless (see "__alloc_pages()"). "kswapd" should
3356 * never get caught in the normal page freeing logic.
3357 *
3358 * (Kswapd normally doesn't need memory anyway, but sometimes
3359 * you need a small amount of memory in order to be able to
3360 * page out something else, and this flag essentially protects
3361 * us from recursively trying to free more memory as we're
3362 * trying to free the first piece of memory in the first place).
3363 */
930d9152 3364 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3365 set_freezable();
1da177e4 3366
38087d9b
MG
3367 pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3368 pgdat->kswapd_classzone_idx = classzone_idx = 0;
1da177e4 3369 for ( ; ; ) {
6f6313d4 3370 bool ret;
3e1d1d28 3371
38087d9b
MG
3372kswapd_try_sleep:
3373 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3374 classzone_idx);
215ddd66 3375
38087d9b
MG
3376 /* Read the new order and classzone_idx */
3377 alloc_order = reclaim_order = pgdat->kswapd_order;
3378 classzone_idx = pgdat->kswapd_classzone_idx;
3379 pgdat->kswapd_order = 0;
3380 pgdat->kswapd_classzone_idx = 0;
1da177e4 3381
8fe23e05
DR
3382 ret = try_to_freeze();
3383 if (kthread_should_stop())
3384 break;
3385
3386 /*
3387 * We can speed up thawing tasks if we don't call balance_pgdat
3388 * after returning from the refrigerator
3389 */
38087d9b
MG
3390 if (ret)
3391 continue;
3392
3393 /*
3394 * Reclaim begins at the requested order but if a high-order
3395 * reclaim fails then kswapd falls back to reclaiming for
3396 * order-0. If that happens, kswapd will consider sleeping
3397 * for the order it finished reclaiming at (reclaim_order)
3398 * but kcompactd is woken to compact for the original
3399 * request (alloc_order).
3400 */
e5146b12
MG
3401 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3402 alloc_order);
38087d9b
MG
3403 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3404 if (reclaim_order < alloc_order)
3405 goto kswapd_try_sleep;
1d82de61 3406
38087d9b
MG
3407 alloc_order = reclaim_order = pgdat->kswapd_order;
3408 classzone_idx = pgdat->kswapd_classzone_idx;
1da177e4 3409 }
b0a8cc58 3410
71abdc15 3411 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3412 current->reclaim_state = NULL;
71abdc15
JW
3413 lockdep_clear_current_reclaim_state();
3414
1da177e4
LT
3415 return 0;
3416}
3417
3418/*
3419 * A zone is low on free memory, so wake its kswapd task to service it.
3420 */
99504748 3421void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3422{
3423 pg_data_t *pgdat;
e1a55637 3424 int z;
1da177e4 3425
f3fe6512 3426 if (!populated_zone(zone))
1da177e4
LT
3427 return;
3428
344736f2 3429 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3430 return;
88f5acf8 3431 pgdat = zone->zone_pgdat;
38087d9b
MG
3432 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3433 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3434 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3435 return;
e1a55637
MG
3436
3437 /* Only wake kswapd if all zones are unbalanced */
3438 for (z = 0; z <= classzone_idx; z++) {
3439 zone = pgdat->node_zones + z;
3440 if (!populated_zone(zone))
3441 continue;
3442
3443 if (zone_balanced(zone, order, classzone_idx))
3444 return;
3445 }
88f5acf8
MG
3446
3447 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3448 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3449}
3450
c6f37f12 3451#ifdef CONFIG_HIBERNATION
1da177e4 3452/*
7b51755c 3453 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3454 * freed pages.
3455 *
3456 * Rather than trying to age LRUs the aim is to preserve the overall
3457 * LRU order by reclaiming preferentially
3458 * inactive > active > active referenced > active mapped
1da177e4 3459 */
7b51755c 3460unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3461{
d6277db4 3462 struct reclaim_state reclaim_state;
d6277db4 3463 struct scan_control sc = {
ee814fe2 3464 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3465 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3466 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3467 .priority = DEF_PRIORITY,
d6277db4 3468 .may_writepage = 1,
ee814fe2
JW
3469 .may_unmap = 1,
3470 .may_swap = 1,
7b51755c 3471 .hibernation_mode = 1,
1da177e4 3472 };
a09ed5e0 3473 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3474 struct task_struct *p = current;
3475 unsigned long nr_reclaimed;
1da177e4 3476
7b51755c
KM
3477 p->flags |= PF_MEMALLOC;
3478 lockdep_set_current_reclaim_state(sc.gfp_mask);
3479 reclaim_state.reclaimed_slab = 0;
3480 p->reclaim_state = &reclaim_state;
d6277db4 3481
3115cd91 3482 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3483
7b51755c
KM
3484 p->reclaim_state = NULL;
3485 lockdep_clear_current_reclaim_state();
3486 p->flags &= ~PF_MEMALLOC;
d6277db4 3487
7b51755c 3488 return nr_reclaimed;
1da177e4 3489}
c6f37f12 3490#endif /* CONFIG_HIBERNATION */
1da177e4 3491
1da177e4
LT
3492/* It's optimal to keep kswapds on the same CPUs as their memory, but
3493 not required for correctness. So if the last cpu in a node goes
3494 away, we get changed to run anywhere: as the first one comes back,
3495 restore their cpu bindings. */
fcb35a9b
GKH
3496static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3497 void *hcpu)
1da177e4 3498{
58c0a4a7 3499 int nid;
1da177e4 3500
8bb78442 3501 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3502 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3503 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3504 const struct cpumask *mask;
3505
3506 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3507
3e597945 3508 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3509 /* One of our CPUs online: restore mask */
c5f59f08 3510 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3511 }
3512 }
3513 return NOTIFY_OK;
3514}
1da177e4 3515
3218ae14
YG
3516/*
3517 * This kswapd start function will be called by init and node-hot-add.
3518 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3519 */
3520int kswapd_run(int nid)
3521{
3522 pg_data_t *pgdat = NODE_DATA(nid);
3523 int ret = 0;
3524
3525 if (pgdat->kswapd)
3526 return 0;
3527
3528 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3529 if (IS_ERR(pgdat->kswapd)) {
3530 /* failure at boot is fatal */
3531 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3532 pr_err("Failed to start kswapd on node %d\n", nid);
3533 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3534 pgdat->kswapd = NULL;
3218ae14
YG
3535 }
3536 return ret;
3537}
3538
8fe23e05 3539/*
d8adde17 3540 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3541 * hold mem_hotplug_begin/end().
8fe23e05
DR
3542 */
3543void kswapd_stop(int nid)
3544{
3545 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3546
d8adde17 3547 if (kswapd) {
8fe23e05 3548 kthread_stop(kswapd);
d8adde17
JL
3549 NODE_DATA(nid)->kswapd = NULL;
3550 }
8fe23e05
DR
3551}
3552
1da177e4
LT
3553static int __init kswapd_init(void)
3554{
3218ae14 3555 int nid;
69e05944 3556
1da177e4 3557 swap_setup();
48fb2e24 3558 for_each_node_state(nid, N_MEMORY)
3218ae14 3559 kswapd_run(nid);
1da177e4
LT
3560 hotcpu_notifier(cpu_callback, 0);
3561 return 0;
3562}
3563
3564module_init(kswapd_init)
9eeff239
CL
3565
3566#ifdef CONFIG_NUMA
3567/*
a5f5f91d 3568 * Node reclaim mode
9eeff239 3569 *
a5f5f91d 3570 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 3571 * the watermarks.
9eeff239 3572 */
a5f5f91d 3573int node_reclaim_mode __read_mostly;
9eeff239 3574
1b2ffb78 3575#define RECLAIM_OFF 0
7d03431c 3576#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3577#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3578#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3579
a92f7126 3580/*
a5f5f91d 3581 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
3582 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3583 * a zone.
3584 */
a5f5f91d 3585#define NODE_RECLAIM_PRIORITY 4
a92f7126 3586
9614634f 3587/*
a5f5f91d 3588 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
3589 * occur.
3590 */
3591int sysctl_min_unmapped_ratio = 1;
3592
0ff38490
CL
3593/*
3594 * If the number of slab pages in a zone grows beyond this percentage then
3595 * slab reclaim needs to occur.
3596 */
3597int sysctl_min_slab_ratio = 5;
3598
11fb9989 3599static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 3600{
11fb9989
MG
3601 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3602 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3603 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
3604
3605 /*
3606 * It's possible for there to be more file mapped pages than
3607 * accounted for by the pages on the file LRU lists because
3608 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3609 */
3610 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3611}
3612
3613/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 3614static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 3615{
d031a157
AM
3616 unsigned long nr_pagecache_reclaimable;
3617 unsigned long delta = 0;
90afa5de
MG
3618
3619 /*
95bbc0c7 3620 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 3621 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 3622 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
3623 * a better estimate
3624 */
a5f5f91d
MG
3625 if (node_reclaim_mode & RECLAIM_UNMAP)
3626 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 3627 else
a5f5f91d 3628 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
3629
3630 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
3631 if (!(node_reclaim_mode & RECLAIM_WRITE))
3632 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
3633
3634 /* Watch for any possible underflows due to delta */
3635 if (unlikely(delta > nr_pagecache_reclaimable))
3636 delta = nr_pagecache_reclaimable;
3637
3638 return nr_pagecache_reclaimable - delta;
3639}
3640
9eeff239 3641/*
a5f5f91d 3642 * Try to free up some pages from this node through reclaim.
9eeff239 3643 */
a5f5f91d 3644static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 3645{
7fb2d46d 3646 /* Minimum pages needed in order to stay on node */
69e05944 3647 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3648 struct task_struct *p = current;
3649 struct reclaim_state reclaim_state;
a5f5f91d 3650 int classzone_idx = gfp_zone(gfp_mask);
179e9639 3651 struct scan_control sc = {
62b726c1 3652 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3653 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3654 .order = order,
a5f5f91d
MG
3655 .priority = NODE_RECLAIM_PRIORITY,
3656 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3657 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 3658 .may_swap = 1,
a5f5f91d 3659 .reclaim_idx = classzone_idx,
179e9639 3660 };
9eeff239 3661
9eeff239 3662 cond_resched();
d4f7796e 3663 /*
95bbc0c7 3664 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 3665 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 3666 * and RECLAIM_UNMAP.
d4f7796e
CL
3667 */
3668 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3669 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3670 reclaim_state.reclaimed_slab = 0;
3671 p->reclaim_state = &reclaim_state;
c84db23c 3672
a5f5f91d 3673 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490
CL
3674 /*
3675 * Free memory by calling shrink zone with increasing
3676 * priorities until we have enough memory freed.
3677 */
0ff38490 3678 do {
970a39a3 3679 shrink_node(pgdat, &sc);
9e3b2f8c 3680 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3681 }
c84db23c 3682
9eeff239 3683 p->reclaim_state = NULL;
d4f7796e 3684 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3685 lockdep_clear_current_reclaim_state();
a79311c1 3686 return sc.nr_reclaimed >= nr_pages;
9eeff239 3687}
179e9639 3688
a5f5f91d 3689int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 3690{
d773ed6b 3691 int ret;
179e9639
AM
3692
3693 /*
a5f5f91d 3694 * Node reclaim reclaims unmapped file backed pages and
0ff38490 3695 * slab pages if we are over the defined limits.
34aa1330 3696 *
9614634f
CL
3697 * A small portion of unmapped file backed pages is needed for
3698 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
3699 * thrown out if the node is overallocated. So we do not reclaim
3700 * if less than a specified percentage of the node is used by
9614634f 3701 * unmapped file backed pages.
179e9639 3702 */
a5f5f91d
MG
3703 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3704 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3705 return NODE_RECLAIM_FULL;
179e9639 3706
a5f5f91d
MG
3707 if (!pgdat_reclaimable(pgdat))
3708 return NODE_RECLAIM_FULL;
d773ed6b 3709
179e9639 3710 /*
d773ed6b 3711 * Do not scan if the allocation should not be delayed.
179e9639 3712 */
d0164adc 3713 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 3714 return NODE_RECLAIM_NOSCAN;
179e9639
AM
3715
3716 /*
a5f5f91d 3717 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
3718 * have associated processors. This will favor the local processor
3719 * over remote processors and spread off node memory allocations
3720 * as wide as possible.
3721 */
a5f5f91d
MG
3722 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3723 return NODE_RECLAIM_NOSCAN;
d773ed6b 3724
a5f5f91d
MG
3725 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3726 return NODE_RECLAIM_NOSCAN;
fa5e084e 3727
a5f5f91d
MG
3728 ret = __node_reclaim(pgdat, gfp_mask, order);
3729 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 3730
24cf7251
MG
3731 if (!ret)
3732 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3733
d773ed6b 3734 return ret;
179e9639 3735}
9eeff239 3736#endif
894bc310 3737
894bc310
LS
3738/*
3739 * page_evictable - test whether a page is evictable
3740 * @page: the page to test
894bc310
LS
3741 *
3742 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3743 * lists vs unevictable list.
894bc310
LS
3744 *
3745 * Reasons page might not be evictable:
ba9ddf49 3746 * (1) page's mapping marked unevictable
b291f000 3747 * (2) page is part of an mlocked VMA
ba9ddf49 3748 *
894bc310 3749 */
39b5f29a 3750int page_evictable(struct page *page)
894bc310 3751{
39b5f29a 3752 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3753}
89e004ea 3754
85046579 3755#ifdef CONFIG_SHMEM
89e004ea 3756/**
24513264
HD
3757 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3758 * @pages: array of pages to check
3759 * @nr_pages: number of pages to check
89e004ea 3760 *
24513264 3761 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3762 *
3763 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3764 */
24513264 3765void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3766{
925b7673 3767 struct lruvec *lruvec;
785b99fe 3768 struct pglist_data *pgdat = NULL;
24513264
HD
3769 int pgscanned = 0;
3770 int pgrescued = 0;
3771 int i;
89e004ea 3772
24513264
HD
3773 for (i = 0; i < nr_pages; i++) {
3774 struct page *page = pages[i];
785b99fe 3775 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 3776
24513264 3777 pgscanned++;
785b99fe
MG
3778 if (pagepgdat != pgdat) {
3779 if (pgdat)
3780 spin_unlock_irq(&pgdat->lru_lock);
3781 pgdat = pagepgdat;
3782 spin_lock_irq(&pgdat->lru_lock);
24513264 3783 }
785b99fe 3784 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 3785
24513264
HD
3786 if (!PageLRU(page) || !PageUnevictable(page))
3787 continue;
89e004ea 3788
39b5f29a 3789 if (page_evictable(page)) {
24513264
HD
3790 enum lru_list lru = page_lru_base_type(page);
3791
309381fe 3792 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3793 ClearPageUnevictable(page);
fa9add64
HD
3794 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3795 add_page_to_lru_list(page, lruvec, lru);
24513264 3796 pgrescued++;
89e004ea 3797 }
24513264 3798 }
89e004ea 3799
785b99fe 3800 if (pgdat) {
24513264
HD
3801 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3802 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 3803 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 3804 }
89e004ea 3805}
85046579 3806#endif /* CONFIG_SHMEM */