]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/vmscan.c
vmscan: synchronous lumpy reclaim should not call congestion_wait()
[mirror_ubuntu-kernels.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
1da177e4
LT
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
0f8053a5
NP
49#include "internal.h"
50
33906bc5
MG
51#define CREATE_TRACE_POINTS
52#include <trace/events/vmscan.h>
53
1da177e4 54struct scan_control {
1da177e4
LT
55 /* Incremented by the number of inactive pages that were scanned */
56 unsigned long nr_scanned;
57
a79311c1
RR
58 /* Number of pages freed so far during a call to shrink_zones() */
59 unsigned long nr_reclaimed;
60
22fba335
KM
61 /* How many pages shrink_list() should reclaim */
62 unsigned long nr_to_reclaim;
63
7b51755c
KM
64 unsigned long hibernation_mode;
65
1da177e4 66 /* This context's GFP mask */
6daa0e28 67 gfp_t gfp_mask;
1da177e4
LT
68
69 int may_writepage;
70
a6dc60f8
JW
71 /* Can mapped pages be reclaimed? */
72 int may_unmap;
f1fd1067 73
2e2e4259
KM
74 /* Can pages be swapped as part of reclaim? */
75 int may_swap;
76
d6277db4 77 int swappiness;
408d8544 78
5ad333eb 79 int order;
66e1707b 80
5f53e762 81 /*
415b54e3
NK
82 * Intend to reclaim enough continuous memory rather than reclaim
83 * enough amount of memory. i.e, mode for high order allocation.
5f53e762
KM
84 */
85 bool lumpy_reclaim_mode;
86
66e1707b
BS
87 /* Which cgroup do we reclaim from */
88 struct mem_cgroup *mem_cgroup;
89
327c0e96
KH
90 /*
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
93 */
94 nodemask_t *nodemask;
1da177e4
LT
95};
96
1da177e4
LT
97#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99#ifdef ARCH_HAS_PREFETCH
100#define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
107 } \
108 } while (0)
109#else
110#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111#endif
112
113#ifdef ARCH_HAS_PREFETCHW
114#define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
121 } \
122 } while (0)
123#else
124#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127/*
128 * From 0 .. 100. Higher means more swappy.
129 */
130int vm_swappiness = 60;
bd1e22b8 131long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
132
133static LIST_HEAD(shrinker_list);
134static DECLARE_RWSEM(shrinker_rwsem);
135
00f0b825 136#ifdef CONFIG_CGROUP_MEM_RES_CTLR
e72e2bd6 137#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
91a45470 138#else
e72e2bd6 139#define scanning_global_lru(sc) (1)
91a45470
KH
140#endif
141
6e901571
KM
142static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143 struct scan_control *sc)
144{
e72e2bd6 145 if (!scanning_global_lru(sc))
3e2f41f1
KM
146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147
6e901571
KM
148 return &zone->reclaim_stat;
149}
150
0b217676
VL
151static unsigned long zone_nr_lru_pages(struct zone *zone,
152 struct scan_control *sc, enum lru_list lru)
c9f299d9 153{
e72e2bd6 154 if (!scanning_global_lru(sc))
a3d8e054
KM
155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156
c9f299d9
KM
157 return zone_page_state(zone, NR_LRU_BASE + lru);
158}
159
160
1da177e4
LT
161/*
162 * Add a shrinker callback to be called from the vm
163 */
8e1f936b 164void register_shrinker(struct shrinker *shrinker)
1da177e4 165{
8e1f936b
RR
166 shrinker->nr = 0;
167 down_write(&shrinker_rwsem);
168 list_add_tail(&shrinker->list, &shrinker_list);
169 up_write(&shrinker_rwsem);
1da177e4 170}
8e1f936b 171EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
172
173/*
174 * Remove one
175 */
8e1f936b 176void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
177{
178 down_write(&shrinker_rwsem);
179 list_del(&shrinker->list);
180 up_write(&shrinker_rwsem);
1da177e4 181}
8e1f936b 182EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
183
184#define SHRINK_BATCH 128
185/*
186 * Call the shrink functions to age shrinkable caches
187 *
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object. With this in mind we age equal
190 * percentages of the lru and ageable caches. This should balance the seeks
191 * generated by these structures.
192 *
183ff22b 193 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
194 * slab to avoid swapping.
195 *
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197 *
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt. It is used for balancing
200 * slab reclaim versus page reclaim.
b15e0905 201 *
202 * Returns the number of slab objects which we shrunk.
1da177e4 203 */
69e05944
AM
204unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205 unsigned long lru_pages)
1da177e4
LT
206{
207 struct shrinker *shrinker;
69e05944 208 unsigned long ret = 0;
1da177e4
LT
209
210 if (scanned == 0)
211 scanned = SWAP_CLUSTER_MAX;
212
213 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 214 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
215
216 list_for_each_entry(shrinker, &shrinker_list, list) {
217 unsigned long long delta;
218 unsigned long total_scan;
7f8275d0 219 unsigned long max_pass;
1da177e4 220
7f8275d0 221 max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
1da177e4 222 delta = (4 * scanned) / shrinker->seeks;
ea164d73 223 delta *= max_pass;
1da177e4
LT
224 do_div(delta, lru_pages + 1);
225 shrinker->nr += delta;
ea164d73 226 if (shrinker->nr < 0) {
88c3bd70
DR
227 printk(KERN_ERR "shrink_slab: %pF negative objects to "
228 "delete nr=%ld\n",
229 shrinker->shrink, shrinker->nr);
ea164d73
AA
230 shrinker->nr = max_pass;
231 }
232
233 /*
234 * Avoid risking looping forever due to too large nr value:
235 * never try to free more than twice the estimate number of
236 * freeable entries.
237 */
238 if (shrinker->nr > max_pass * 2)
239 shrinker->nr = max_pass * 2;
1da177e4
LT
240
241 total_scan = shrinker->nr;
242 shrinker->nr = 0;
243
244 while (total_scan >= SHRINK_BATCH) {
245 long this_scan = SHRINK_BATCH;
246 int shrink_ret;
b15e0905 247 int nr_before;
1da177e4 248
7f8275d0
DC
249 nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
250 shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
251 gfp_mask);
1da177e4
LT
252 if (shrink_ret == -1)
253 break;
b15e0905 254 if (shrink_ret < nr_before)
255 ret += nr_before - shrink_ret;
f8891e5e 256 count_vm_events(SLABS_SCANNED, this_scan);
1da177e4
LT
257 total_scan -= this_scan;
258
259 cond_resched();
260 }
261
262 shrinker->nr += total_scan;
263 }
264 up_read(&shrinker_rwsem);
b15e0905 265 return ret;
1da177e4
LT
266}
267
1da177e4
LT
268static inline int is_page_cache_freeable(struct page *page)
269{
ceddc3a5
JW
270 /*
271 * A freeable page cache page is referenced only by the caller
272 * that isolated the page, the page cache radix tree and
273 * optional buffer heads at page->private.
274 */
edcf4748 275 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
276}
277
278static int may_write_to_queue(struct backing_dev_info *bdi)
279{
930d9152 280 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
281 return 1;
282 if (!bdi_write_congested(bdi))
283 return 1;
284 if (bdi == current->backing_dev_info)
285 return 1;
286 return 0;
287}
288
289/*
290 * We detected a synchronous write error writing a page out. Probably
291 * -ENOSPC. We need to propagate that into the address_space for a subsequent
292 * fsync(), msync() or close().
293 *
294 * The tricky part is that after writepage we cannot touch the mapping: nothing
295 * prevents it from being freed up. But we have a ref on the page and once
296 * that page is locked, the mapping is pinned.
297 *
298 * We're allowed to run sleeping lock_page() here because we know the caller has
299 * __GFP_FS.
300 */
301static void handle_write_error(struct address_space *mapping,
302 struct page *page, int error)
303{
a6aa62a0 304 lock_page_nosync(page);
3e9f45bd
GC
305 if (page_mapping(page) == mapping)
306 mapping_set_error(mapping, error);
1da177e4
LT
307 unlock_page(page);
308}
309
c661b078
AW
310/* Request for sync pageout. */
311enum pageout_io {
312 PAGEOUT_IO_ASYNC,
313 PAGEOUT_IO_SYNC,
314};
315
04e62a29
CL
316/* possible outcome of pageout() */
317typedef enum {
318 /* failed to write page out, page is locked */
319 PAGE_KEEP,
320 /* move page to the active list, page is locked */
321 PAGE_ACTIVATE,
322 /* page has been sent to the disk successfully, page is unlocked */
323 PAGE_SUCCESS,
324 /* page is clean and locked */
325 PAGE_CLEAN,
326} pageout_t;
327
1da177e4 328/*
1742f19f
AM
329 * pageout is called by shrink_page_list() for each dirty page.
330 * Calls ->writepage().
1da177e4 331 */
c661b078
AW
332static pageout_t pageout(struct page *page, struct address_space *mapping,
333 enum pageout_io sync_writeback)
1da177e4
LT
334{
335 /*
336 * If the page is dirty, only perform writeback if that write
337 * will be non-blocking. To prevent this allocation from being
338 * stalled by pagecache activity. But note that there may be
339 * stalls if we need to run get_block(). We could test
340 * PagePrivate for that.
341 *
6aceb53b 342 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
343 * this page's queue, we can perform writeback even if that
344 * will block.
345 *
346 * If the page is swapcache, write it back even if that would
347 * block, for some throttling. This happens by accident, because
348 * swap_backing_dev_info is bust: it doesn't reflect the
349 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
350 */
351 if (!is_page_cache_freeable(page))
352 return PAGE_KEEP;
353 if (!mapping) {
354 /*
355 * Some data journaling orphaned pages can have
356 * page->mapping == NULL while being dirty with clean buffers.
357 */
266cf658 358 if (page_has_private(page)) {
1da177e4
LT
359 if (try_to_free_buffers(page)) {
360 ClearPageDirty(page);
d40cee24 361 printk("%s: orphaned page\n", __func__);
1da177e4
LT
362 return PAGE_CLEAN;
363 }
364 }
365 return PAGE_KEEP;
366 }
367 if (mapping->a_ops->writepage == NULL)
368 return PAGE_ACTIVATE;
369 if (!may_write_to_queue(mapping->backing_dev_info))
370 return PAGE_KEEP;
371
372 if (clear_page_dirty_for_io(page)) {
373 int res;
374 struct writeback_control wbc = {
375 .sync_mode = WB_SYNC_NONE,
376 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
377 .range_start = 0,
378 .range_end = LLONG_MAX,
1da177e4
LT
379 .for_reclaim = 1,
380 };
381
382 SetPageReclaim(page);
383 res = mapping->a_ops->writepage(page, &wbc);
384 if (res < 0)
385 handle_write_error(mapping, page, res);
994fc28c 386 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
387 ClearPageReclaim(page);
388 return PAGE_ACTIVATE;
389 }
c661b078
AW
390
391 /*
392 * Wait on writeback if requested to. This happens when
393 * direct reclaiming a large contiguous area and the
394 * first attempt to free a range of pages fails.
395 */
396 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
397 wait_on_page_writeback(page);
398
1da177e4
LT
399 if (!PageWriteback(page)) {
400 /* synchronous write or broken a_ops? */
401 ClearPageReclaim(page);
402 }
755f0225
MG
403 trace_mm_vmscan_writepage(page,
404 trace_reclaim_flags(page, sync_writeback));
e129b5c2 405 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
406 return PAGE_SUCCESS;
407 }
408
409 return PAGE_CLEAN;
410}
411
a649fd92 412/*
e286781d
NP
413 * Same as remove_mapping, but if the page is removed from the mapping, it
414 * gets returned with a refcount of 0.
a649fd92 415 */
e286781d 416static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 417{
28e4d965
NP
418 BUG_ON(!PageLocked(page));
419 BUG_ON(mapping != page_mapping(page));
49d2e9cc 420
19fd6231 421 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 422 /*
0fd0e6b0
NP
423 * The non racy check for a busy page.
424 *
425 * Must be careful with the order of the tests. When someone has
426 * a ref to the page, it may be possible that they dirty it then
427 * drop the reference. So if PageDirty is tested before page_count
428 * here, then the following race may occur:
429 *
430 * get_user_pages(&page);
431 * [user mapping goes away]
432 * write_to(page);
433 * !PageDirty(page) [good]
434 * SetPageDirty(page);
435 * put_page(page);
436 * !page_count(page) [good, discard it]
437 *
438 * [oops, our write_to data is lost]
439 *
440 * Reversing the order of the tests ensures such a situation cannot
441 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
442 * load is not satisfied before that of page->_count.
443 *
444 * Note that if SetPageDirty is always performed via set_page_dirty,
445 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 446 */
e286781d 447 if (!page_freeze_refs(page, 2))
49d2e9cc 448 goto cannot_free;
e286781d
NP
449 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
450 if (unlikely(PageDirty(page))) {
451 page_unfreeze_refs(page, 2);
49d2e9cc 452 goto cannot_free;
e286781d 453 }
49d2e9cc
CL
454
455 if (PageSwapCache(page)) {
456 swp_entry_t swap = { .val = page_private(page) };
457 __delete_from_swap_cache(page);
19fd6231 458 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 459 swapcache_free(swap, page);
e286781d
NP
460 } else {
461 __remove_from_page_cache(page);
19fd6231 462 spin_unlock_irq(&mapping->tree_lock);
e767e056 463 mem_cgroup_uncharge_cache_page(page);
49d2e9cc
CL
464 }
465
49d2e9cc
CL
466 return 1;
467
468cannot_free:
19fd6231 469 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
470 return 0;
471}
472
e286781d
NP
473/*
474 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
475 * someone else has a ref on the page, abort and return 0. If it was
476 * successfully detached, return 1. Assumes the caller has a single ref on
477 * this page.
478 */
479int remove_mapping(struct address_space *mapping, struct page *page)
480{
481 if (__remove_mapping(mapping, page)) {
482 /*
483 * Unfreezing the refcount with 1 rather than 2 effectively
484 * drops the pagecache ref for us without requiring another
485 * atomic operation.
486 */
487 page_unfreeze_refs(page, 1);
488 return 1;
489 }
490 return 0;
491}
492
894bc310
LS
493/**
494 * putback_lru_page - put previously isolated page onto appropriate LRU list
495 * @page: page to be put back to appropriate lru list
496 *
497 * Add previously isolated @page to appropriate LRU list.
498 * Page may still be unevictable for other reasons.
499 *
500 * lru_lock must not be held, interrupts must be enabled.
501 */
894bc310
LS
502void putback_lru_page(struct page *page)
503{
504 int lru;
505 int active = !!TestClearPageActive(page);
bbfd28ee 506 int was_unevictable = PageUnevictable(page);
894bc310
LS
507
508 VM_BUG_ON(PageLRU(page));
509
510redo:
511 ClearPageUnevictable(page);
512
513 if (page_evictable(page, NULL)) {
514 /*
515 * For evictable pages, we can use the cache.
516 * In event of a race, worst case is we end up with an
517 * unevictable page on [in]active list.
518 * We know how to handle that.
519 */
401a8e1c 520 lru = active + page_lru_base_type(page);
894bc310
LS
521 lru_cache_add_lru(page, lru);
522 } else {
523 /*
524 * Put unevictable pages directly on zone's unevictable
525 * list.
526 */
527 lru = LRU_UNEVICTABLE;
528 add_page_to_unevictable_list(page);
6a7b9548
JW
529 /*
530 * When racing with an mlock clearing (page is
531 * unlocked), make sure that if the other thread does
532 * not observe our setting of PG_lru and fails
533 * isolation, we see PG_mlocked cleared below and move
534 * the page back to the evictable list.
535 *
536 * The other side is TestClearPageMlocked().
537 */
538 smp_mb();
894bc310 539 }
894bc310
LS
540
541 /*
542 * page's status can change while we move it among lru. If an evictable
543 * page is on unevictable list, it never be freed. To avoid that,
544 * check after we added it to the list, again.
545 */
546 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
547 if (!isolate_lru_page(page)) {
548 put_page(page);
549 goto redo;
550 }
551 /* This means someone else dropped this page from LRU
552 * So, it will be freed or putback to LRU again. There is
553 * nothing to do here.
554 */
555 }
556
bbfd28ee
LS
557 if (was_unevictable && lru != LRU_UNEVICTABLE)
558 count_vm_event(UNEVICTABLE_PGRESCUED);
559 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
560 count_vm_event(UNEVICTABLE_PGCULLED);
561
894bc310
LS
562 put_page(page); /* drop ref from isolate */
563}
564
dfc8d636
JW
565enum page_references {
566 PAGEREF_RECLAIM,
567 PAGEREF_RECLAIM_CLEAN,
64574746 568 PAGEREF_KEEP,
dfc8d636
JW
569 PAGEREF_ACTIVATE,
570};
571
572static enum page_references page_check_references(struct page *page,
573 struct scan_control *sc)
574{
64574746 575 int referenced_ptes, referenced_page;
dfc8d636 576 unsigned long vm_flags;
dfc8d636 577
64574746
JW
578 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
579 referenced_page = TestClearPageReferenced(page);
dfc8d636
JW
580
581 /* Lumpy reclaim - ignore references */
5f53e762 582 if (sc->lumpy_reclaim_mode)
dfc8d636
JW
583 return PAGEREF_RECLAIM;
584
585 /*
586 * Mlock lost the isolation race with us. Let try_to_unmap()
587 * move the page to the unevictable list.
588 */
589 if (vm_flags & VM_LOCKED)
590 return PAGEREF_RECLAIM;
591
64574746
JW
592 if (referenced_ptes) {
593 if (PageAnon(page))
594 return PAGEREF_ACTIVATE;
595 /*
596 * All mapped pages start out with page table
597 * references from the instantiating fault, so we need
598 * to look twice if a mapped file page is used more
599 * than once.
600 *
601 * Mark it and spare it for another trip around the
602 * inactive list. Another page table reference will
603 * lead to its activation.
604 *
605 * Note: the mark is set for activated pages as well
606 * so that recently deactivated but used pages are
607 * quickly recovered.
608 */
609 SetPageReferenced(page);
610
611 if (referenced_page)
612 return PAGEREF_ACTIVATE;
613
614 return PAGEREF_KEEP;
615 }
dfc8d636
JW
616
617 /* Reclaim if clean, defer dirty pages to writeback */
64574746
JW
618 if (referenced_page)
619 return PAGEREF_RECLAIM_CLEAN;
620
621 return PAGEREF_RECLAIM;
dfc8d636
JW
622}
623
abe4c3b5
MG
624static noinline_for_stack void free_page_list(struct list_head *free_pages)
625{
626 struct pagevec freed_pvec;
627 struct page *page, *tmp;
628
629 pagevec_init(&freed_pvec, 1);
630
631 list_for_each_entry_safe(page, tmp, free_pages, lru) {
632 list_del(&page->lru);
633 if (!pagevec_add(&freed_pvec, page)) {
634 __pagevec_free(&freed_pvec);
635 pagevec_reinit(&freed_pvec);
636 }
637 }
638
639 pagevec_free(&freed_pvec);
640}
641
1da177e4 642/*
1742f19f 643 * shrink_page_list() returns the number of reclaimed pages
1da177e4 644 */
1742f19f 645static unsigned long shrink_page_list(struct list_head *page_list,
c661b078
AW
646 struct scan_control *sc,
647 enum pageout_io sync_writeback)
1da177e4
LT
648{
649 LIST_HEAD(ret_pages);
abe4c3b5 650 LIST_HEAD(free_pages);
1da177e4 651 int pgactivate = 0;
05ff5137 652 unsigned long nr_reclaimed = 0;
1da177e4
LT
653
654 cond_resched();
655
1da177e4 656 while (!list_empty(page_list)) {
dfc8d636 657 enum page_references references;
1da177e4
LT
658 struct address_space *mapping;
659 struct page *page;
660 int may_enter_fs;
1da177e4
LT
661
662 cond_resched();
663
664 page = lru_to_page(page_list);
665 list_del(&page->lru);
666
529ae9aa 667 if (!trylock_page(page))
1da177e4
LT
668 goto keep;
669
725d704e 670 VM_BUG_ON(PageActive(page));
1da177e4
LT
671
672 sc->nr_scanned++;
80e43426 673
b291f000
NP
674 if (unlikely(!page_evictable(page, NULL)))
675 goto cull_mlocked;
894bc310 676
a6dc60f8 677 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
678 goto keep_locked;
679
1da177e4
LT
680 /* Double the slab pressure for mapped and swapcache pages */
681 if (page_mapped(page) || PageSwapCache(page))
682 sc->nr_scanned++;
683
c661b078
AW
684 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
685 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
686
687 if (PageWriteback(page)) {
688 /*
689 * Synchronous reclaim is performed in two passes,
690 * first an asynchronous pass over the list to
691 * start parallel writeback, and a second synchronous
692 * pass to wait for the IO to complete. Wait here
693 * for any page for which writeback has already
694 * started.
695 */
696 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
697 wait_on_page_writeback(page);
4dd4b920 698 else
c661b078
AW
699 goto keep_locked;
700 }
1da177e4 701
dfc8d636
JW
702 references = page_check_references(page, sc);
703 switch (references) {
704 case PAGEREF_ACTIVATE:
1da177e4 705 goto activate_locked;
64574746
JW
706 case PAGEREF_KEEP:
707 goto keep_locked;
dfc8d636
JW
708 case PAGEREF_RECLAIM:
709 case PAGEREF_RECLAIM_CLEAN:
710 ; /* try to reclaim the page below */
711 }
1da177e4 712
1da177e4
LT
713 /*
714 * Anonymous process memory has backing store?
715 * Try to allocate it some swap space here.
716 */
b291f000 717 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
718 if (!(sc->gfp_mask & __GFP_IO))
719 goto keep_locked;
ac47b003 720 if (!add_to_swap(page))
1da177e4 721 goto activate_locked;
63eb6b93 722 may_enter_fs = 1;
b291f000 723 }
1da177e4
LT
724
725 mapping = page_mapping(page);
1da177e4
LT
726
727 /*
728 * The page is mapped into the page tables of one or more
729 * processes. Try to unmap it here.
730 */
731 if (page_mapped(page) && mapping) {
14fa31b8 732 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
733 case SWAP_FAIL:
734 goto activate_locked;
735 case SWAP_AGAIN:
736 goto keep_locked;
b291f000
NP
737 case SWAP_MLOCK:
738 goto cull_mlocked;
1da177e4
LT
739 case SWAP_SUCCESS:
740 ; /* try to free the page below */
741 }
742 }
743
744 if (PageDirty(page)) {
dfc8d636 745 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 746 goto keep_locked;
4dd4b920 747 if (!may_enter_fs)
1da177e4 748 goto keep_locked;
52a8363e 749 if (!sc->may_writepage)
1da177e4
LT
750 goto keep_locked;
751
752 /* Page is dirty, try to write it out here */
c661b078 753 switch (pageout(page, mapping, sync_writeback)) {
1da177e4
LT
754 case PAGE_KEEP:
755 goto keep_locked;
756 case PAGE_ACTIVATE:
757 goto activate_locked;
758 case PAGE_SUCCESS:
4dd4b920 759 if (PageWriteback(page) || PageDirty(page))
1da177e4
LT
760 goto keep;
761 /*
762 * A synchronous write - probably a ramdisk. Go
763 * ahead and try to reclaim the page.
764 */
529ae9aa 765 if (!trylock_page(page))
1da177e4
LT
766 goto keep;
767 if (PageDirty(page) || PageWriteback(page))
768 goto keep_locked;
769 mapping = page_mapping(page);
770 case PAGE_CLEAN:
771 ; /* try to free the page below */
772 }
773 }
774
775 /*
776 * If the page has buffers, try to free the buffer mappings
777 * associated with this page. If we succeed we try to free
778 * the page as well.
779 *
780 * We do this even if the page is PageDirty().
781 * try_to_release_page() does not perform I/O, but it is
782 * possible for a page to have PageDirty set, but it is actually
783 * clean (all its buffers are clean). This happens if the
784 * buffers were written out directly, with submit_bh(). ext3
894bc310 785 * will do this, as well as the blockdev mapping.
1da177e4
LT
786 * try_to_release_page() will discover that cleanness and will
787 * drop the buffers and mark the page clean - it can be freed.
788 *
789 * Rarely, pages can have buffers and no ->mapping. These are
790 * the pages which were not successfully invalidated in
791 * truncate_complete_page(). We try to drop those buffers here
792 * and if that worked, and the page is no longer mapped into
793 * process address space (page_count == 1) it can be freed.
794 * Otherwise, leave the page on the LRU so it is swappable.
795 */
266cf658 796 if (page_has_private(page)) {
1da177e4
LT
797 if (!try_to_release_page(page, sc->gfp_mask))
798 goto activate_locked;
e286781d
NP
799 if (!mapping && page_count(page) == 1) {
800 unlock_page(page);
801 if (put_page_testzero(page))
802 goto free_it;
803 else {
804 /*
805 * rare race with speculative reference.
806 * the speculative reference will free
807 * this page shortly, so we may
808 * increment nr_reclaimed here (and
809 * leave it off the LRU).
810 */
811 nr_reclaimed++;
812 continue;
813 }
814 }
1da177e4
LT
815 }
816
e286781d 817 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 818 goto keep_locked;
1da177e4 819
a978d6f5
NP
820 /*
821 * At this point, we have no other references and there is
822 * no way to pick any more up (removed from LRU, removed
823 * from pagecache). Can use non-atomic bitops now (and
824 * we obviously don't have to worry about waking up a process
825 * waiting on the page lock, because there are no references.
826 */
827 __clear_page_locked(page);
e286781d 828free_it:
05ff5137 829 nr_reclaimed++;
abe4c3b5
MG
830
831 /*
832 * Is there need to periodically free_page_list? It would
833 * appear not as the counts should be low
834 */
835 list_add(&page->lru, &free_pages);
1da177e4
LT
836 continue;
837
b291f000 838cull_mlocked:
63d6c5ad
HD
839 if (PageSwapCache(page))
840 try_to_free_swap(page);
b291f000
NP
841 unlock_page(page);
842 putback_lru_page(page);
843 continue;
844
1da177e4 845activate_locked:
68a22394
RR
846 /* Not a candidate for swapping, so reclaim swap space. */
847 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 848 try_to_free_swap(page);
894bc310 849 VM_BUG_ON(PageActive(page));
1da177e4
LT
850 SetPageActive(page);
851 pgactivate++;
852keep_locked:
853 unlock_page(page);
854keep:
855 list_add(&page->lru, &ret_pages);
b291f000 856 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 857 }
abe4c3b5
MG
858
859 free_page_list(&free_pages);
860
1da177e4 861 list_splice(&ret_pages, page_list);
f8891e5e 862 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 863 return nr_reclaimed;
1da177e4
LT
864}
865
5ad333eb
AW
866/*
867 * Attempt to remove the specified page from its LRU. Only take this page
868 * if it is of the appropriate PageActive status. Pages which are being
869 * freed elsewhere are also ignored.
870 *
871 * page: page to consider
872 * mode: one of the LRU isolation modes defined above
873 *
874 * returns 0 on success, -ve errno on failure.
875 */
4f98a2fe 876int __isolate_lru_page(struct page *page, int mode, int file)
5ad333eb
AW
877{
878 int ret = -EINVAL;
879
880 /* Only take pages on the LRU. */
881 if (!PageLRU(page))
882 return ret;
883
884 /*
885 * When checking the active state, we need to be sure we are
886 * dealing with comparible boolean values. Take the logical not
887 * of each.
888 */
889 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
890 return ret;
891
6c0b1351 892 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
4f98a2fe
RR
893 return ret;
894
894bc310
LS
895 /*
896 * When this function is being called for lumpy reclaim, we
897 * initially look into all LRU pages, active, inactive and
898 * unevictable; only give shrink_page_list evictable pages.
899 */
900 if (PageUnevictable(page))
901 return ret;
902
5ad333eb 903 ret = -EBUSY;
08e552c6 904
5ad333eb
AW
905 if (likely(get_page_unless_zero(page))) {
906 /*
907 * Be careful not to clear PageLRU until after we're
908 * sure the page is not being freed elsewhere -- the
909 * page release code relies on it.
910 */
911 ClearPageLRU(page);
912 ret = 0;
913 }
914
915 return ret;
916}
917
1da177e4
LT
918/*
919 * zone->lru_lock is heavily contended. Some of the functions that
920 * shrink the lists perform better by taking out a batch of pages
921 * and working on them outside the LRU lock.
922 *
923 * For pagecache intensive workloads, this function is the hottest
924 * spot in the kernel (apart from copy_*_user functions).
925 *
926 * Appropriate locks must be held before calling this function.
927 *
928 * @nr_to_scan: The number of pages to look through on the list.
929 * @src: The LRU list to pull pages off.
930 * @dst: The temp list to put pages on to.
931 * @scanned: The number of pages that were scanned.
5ad333eb
AW
932 * @order: The caller's attempted allocation order
933 * @mode: One of the LRU isolation modes
4f98a2fe 934 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
935 *
936 * returns how many pages were moved onto *@dst.
937 */
69e05944
AM
938static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
939 struct list_head *src, struct list_head *dst,
4f98a2fe 940 unsigned long *scanned, int order, int mode, int file)
1da177e4 941{
69e05944 942 unsigned long nr_taken = 0;
a8a94d15
MG
943 unsigned long nr_lumpy_taken = 0;
944 unsigned long nr_lumpy_dirty = 0;
945 unsigned long nr_lumpy_failed = 0;
c9b02d97 946 unsigned long scan;
1da177e4 947
c9b02d97 948 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
949 struct page *page;
950 unsigned long pfn;
951 unsigned long end_pfn;
952 unsigned long page_pfn;
953 int zone_id;
954
1da177e4
LT
955 page = lru_to_page(src);
956 prefetchw_prev_lru_page(page, src, flags);
957
725d704e 958 VM_BUG_ON(!PageLRU(page));
8d438f96 959
4f98a2fe 960 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
961 case 0:
962 list_move(&page->lru, dst);
2ffebca6 963 mem_cgroup_del_lru(page);
7c8ee9a8 964 nr_taken++;
5ad333eb
AW
965 break;
966
967 case -EBUSY:
968 /* else it is being freed elsewhere */
969 list_move(&page->lru, src);
2ffebca6 970 mem_cgroup_rotate_lru_list(page, page_lru(page));
5ad333eb 971 continue;
46453a6e 972
5ad333eb
AW
973 default:
974 BUG();
975 }
976
977 if (!order)
978 continue;
979
980 /*
981 * Attempt to take all pages in the order aligned region
982 * surrounding the tag page. Only take those pages of
983 * the same active state as that tag page. We may safely
984 * round the target page pfn down to the requested order
985 * as the mem_map is guarenteed valid out to MAX_ORDER,
986 * where that page is in a different zone we will detect
987 * it from its zone id and abort this block scan.
988 */
989 zone_id = page_zone_id(page);
990 page_pfn = page_to_pfn(page);
991 pfn = page_pfn & ~((1 << order) - 1);
992 end_pfn = pfn + (1 << order);
993 for (; pfn < end_pfn; pfn++) {
994 struct page *cursor_page;
995
996 /* The target page is in the block, ignore it. */
997 if (unlikely(pfn == page_pfn))
998 continue;
999
1000 /* Avoid holes within the zone. */
1001 if (unlikely(!pfn_valid_within(pfn)))
1002 break;
1003
1004 cursor_page = pfn_to_page(pfn);
4f98a2fe 1005
5ad333eb
AW
1006 /* Check that we have not crossed a zone boundary. */
1007 if (unlikely(page_zone_id(cursor_page) != zone_id))
1008 continue;
de2e7567
MK
1009
1010 /*
1011 * If we don't have enough swap space, reclaiming of
1012 * anon page which don't already have a swap slot is
1013 * pointless.
1014 */
1015 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1016 !PageSwapCache(cursor_page))
1017 continue;
1018
ee993b13 1019 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
5ad333eb 1020 list_move(&cursor_page->lru, dst);
cb4cbcf6 1021 mem_cgroup_del_lru(cursor_page);
5ad333eb 1022 nr_taken++;
a8a94d15
MG
1023 nr_lumpy_taken++;
1024 if (PageDirty(cursor_page))
1025 nr_lumpy_dirty++;
5ad333eb 1026 scan++;
a8a94d15
MG
1027 } else {
1028 if (mode == ISOLATE_BOTH &&
1029 page_count(cursor_page))
1030 nr_lumpy_failed++;
5ad333eb
AW
1031 }
1032 }
1da177e4
LT
1033 }
1034
1035 *scanned = scan;
a8a94d15
MG
1036
1037 trace_mm_vmscan_lru_isolate(order,
1038 nr_to_scan, scan,
1039 nr_taken,
1040 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1041 mode);
1da177e4
LT
1042 return nr_taken;
1043}
1044
66e1707b
BS
1045static unsigned long isolate_pages_global(unsigned long nr,
1046 struct list_head *dst,
1047 unsigned long *scanned, int order,
1048 int mode, struct zone *z,
4f98a2fe 1049 int active, int file)
66e1707b 1050{
4f98a2fe 1051 int lru = LRU_BASE;
66e1707b 1052 if (active)
4f98a2fe
RR
1053 lru += LRU_ACTIVE;
1054 if (file)
1055 lru += LRU_FILE;
1056 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
b7c46d15 1057 mode, file);
66e1707b
BS
1058}
1059
5ad333eb
AW
1060/*
1061 * clear_active_flags() is a helper for shrink_active_list(), clearing
1062 * any active bits from the pages in the list.
1063 */
4f98a2fe
RR
1064static unsigned long clear_active_flags(struct list_head *page_list,
1065 unsigned int *count)
5ad333eb
AW
1066{
1067 int nr_active = 0;
4f98a2fe 1068 int lru;
5ad333eb
AW
1069 struct page *page;
1070
4f98a2fe 1071 list_for_each_entry(page, page_list, lru) {
401a8e1c 1072 lru = page_lru_base_type(page);
5ad333eb 1073 if (PageActive(page)) {
4f98a2fe 1074 lru += LRU_ACTIVE;
5ad333eb
AW
1075 ClearPageActive(page);
1076 nr_active++;
1077 }
1489fa14
MG
1078 if (count)
1079 count[lru]++;
4f98a2fe 1080 }
5ad333eb
AW
1081
1082 return nr_active;
1083}
1084
62695a84
NP
1085/**
1086 * isolate_lru_page - tries to isolate a page from its LRU list
1087 * @page: page to isolate from its LRU list
1088 *
1089 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1090 * vmstat statistic corresponding to whatever LRU list the page was on.
1091 *
1092 * Returns 0 if the page was removed from an LRU list.
1093 * Returns -EBUSY if the page was not on an LRU list.
1094 *
1095 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1096 * the active list, it will have PageActive set. If it was found on
1097 * the unevictable list, it will have the PageUnevictable bit set. That flag
1098 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1099 *
1100 * The vmstat statistic corresponding to the list on which the page was
1101 * found will be decremented.
1102 *
1103 * Restrictions:
1104 * (1) Must be called with an elevated refcount on the page. This is a
1105 * fundamentnal difference from isolate_lru_pages (which is called
1106 * without a stable reference).
1107 * (2) the lru_lock must not be held.
1108 * (3) interrupts must be enabled.
1109 */
1110int isolate_lru_page(struct page *page)
1111{
1112 int ret = -EBUSY;
1113
1114 if (PageLRU(page)) {
1115 struct zone *zone = page_zone(page);
1116
1117 spin_lock_irq(&zone->lru_lock);
1118 if (PageLRU(page) && get_page_unless_zero(page)) {
894bc310 1119 int lru = page_lru(page);
62695a84
NP
1120 ret = 0;
1121 ClearPageLRU(page);
4f98a2fe 1122
4f98a2fe 1123 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1124 }
1125 spin_unlock_irq(&zone->lru_lock);
1126 }
1127 return ret;
1128}
1129
35cd7815
RR
1130/*
1131 * Are there way too many processes in the direct reclaim path already?
1132 */
1133static int too_many_isolated(struct zone *zone, int file,
1134 struct scan_control *sc)
1135{
1136 unsigned long inactive, isolated;
1137
1138 if (current_is_kswapd())
1139 return 0;
1140
1141 if (!scanning_global_lru(sc))
1142 return 0;
1143
1144 if (file) {
1145 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1146 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1147 } else {
1148 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1149 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1150 }
1151
1152 return isolated > inactive;
1153}
1154
66635629
MG
1155/*
1156 * TODO: Try merging with migrations version of putback_lru_pages
1157 */
1158static noinline_for_stack void
1489fa14 1159putback_lru_pages(struct zone *zone, struct scan_control *sc,
66635629
MG
1160 unsigned long nr_anon, unsigned long nr_file,
1161 struct list_head *page_list)
1162{
1163 struct page *page;
1164 struct pagevec pvec;
1489fa14 1165 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
66635629
MG
1166
1167 pagevec_init(&pvec, 1);
1168
1169 /*
1170 * Put back any unfreeable pages.
1171 */
1172 spin_lock(&zone->lru_lock);
1173 while (!list_empty(page_list)) {
1174 int lru;
1175 page = lru_to_page(page_list);
1176 VM_BUG_ON(PageLRU(page));
1177 list_del(&page->lru);
1178 if (unlikely(!page_evictable(page, NULL))) {
1179 spin_unlock_irq(&zone->lru_lock);
1180 putback_lru_page(page);
1181 spin_lock_irq(&zone->lru_lock);
1182 continue;
1183 }
1184 SetPageLRU(page);
1185 lru = page_lru(page);
1186 add_page_to_lru_list(zone, page, lru);
1187 if (is_active_lru(lru)) {
1188 int file = is_file_lru(lru);
1189 reclaim_stat->recent_rotated[file]++;
1190 }
1191 if (!pagevec_add(&pvec, page)) {
1192 spin_unlock_irq(&zone->lru_lock);
1193 __pagevec_release(&pvec);
1194 spin_lock_irq(&zone->lru_lock);
1195 }
1196 }
1197 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1198 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1199
1200 spin_unlock_irq(&zone->lru_lock);
1201 pagevec_release(&pvec);
1202}
1203
1489fa14
MG
1204static noinline_for_stack void update_isolated_counts(struct zone *zone,
1205 struct scan_control *sc,
1206 unsigned long *nr_anon,
1207 unsigned long *nr_file,
1208 struct list_head *isolated_list)
1209{
1210 unsigned long nr_active;
1211 unsigned int count[NR_LRU_LISTS] = { 0, };
1212 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1213
1214 nr_active = clear_active_flags(isolated_list, count);
1215 __count_vm_events(PGDEACTIVATE, nr_active);
1216
1217 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1218 -count[LRU_ACTIVE_FILE]);
1219 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1220 -count[LRU_INACTIVE_FILE]);
1221 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1222 -count[LRU_ACTIVE_ANON]);
1223 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1224 -count[LRU_INACTIVE_ANON]);
1225
1226 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1227 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1228 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1229 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1230
1231 reclaim_stat->recent_scanned[0] += *nr_anon;
1232 reclaim_stat->recent_scanned[1] += *nr_file;
1233}
1234
e31f3698
WF
1235/*
1236 * Returns true if the caller should wait to clean dirty/writeback pages.
1237 *
1238 * If we are direct reclaiming for contiguous pages and we do not reclaim
1239 * everything in the list, try again and wait for writeback IO to complete.
1240 * This will stall high-order allocations noticeably. Only do that when really
1241 * need to free the pages under high memory pressure.
1242 */
1243static inline bool should_reclaim_stall(unsigned long nr_taken,
1244 unsigned long nr_freed,
1245 int priority,
1246 struct scan_control *sc)
1247{
1248 int lumpy_stall_priority;
1249
1250 /* kswapd should not stall on sync IO */
1251 if (current_is_kswapd())
1252 return false;
1253
1254 /* Only stall on lumpy reclaim */
1255 if (!sc->lumpy_reclaim_mode)
1256 return false;
1257
1258 /* If we have relaimed everything on the isolated list, no stall */
1259 if (nr_freed == nr_taken)
1260 return false;
1261
1262 /*
1263 * For high-order allocations, there are two stall thresholds.
1264 * High-cost allocations stall immediately where as lower
1265 * order allocations such as stacks require the scanning
1266 * priority to be much higher before stalling.
1267 */
1268 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1269 lumpy_stall_priority = DEF_PRIORITY;
1270 else
1271 lumpy_stall_priority = DEF_PRIORITY / 3;
1272
1273 return priority <= lumpy_stall_priority;
1274}
1275
1da177e4 1276/*
1742f19f
AM
1277 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1278 * of reclaimed pages
1da177e4 1279 */
66635629
MG
1280static noinline_for_stack unsigned long
1281shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1282 struct scan_control *sc, int priority, int file)
1da177e4
LT
1283{
1284 LIST_HEAD(page_list);
e247dbce 1285 unsigned long nr_scanned;
05ff5137 1286 unsigned long nr_reclaimed = 0;
e247dbce
KM
1287 unsigned long nr_taken;
1288 unsigned long nr_active;
e247dbce
KM
1289 unsigned long nr_anon;
1290 unsigned long nr_file;
78dc583d 1291
35cd7815 1292 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1293 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1294
1295 /* We are about to die and free our memory. Return now. */
1296 if (fatal_signal_pending(current))
1297 return SWAP_CLUSTER_MAX;
1298 }
1299
1da177e4 1300
1da177e4
LT
1301 lru_add_drain();
1302 spin_lock_irq(&zone->lru_lock);
b35ea17b 1303
e247dbce
KM
1304 if (scanning_global_lru(sc)) {
1305 nr_taken = isolate_pages_global(nr_to_scan,
1306 &page_list, &nr_scanned, sc->order,
1307 sc->lumpy_reclaim_mode ?
1308 ISOLATE_BOTH : ISOLATE_INACTIVE,
1309 zone, 0, file);
1310 zone->pages_scanned += nr_scanned;
1311 if (current_is_kswapd())
1312 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1313 nr_scanned);
1314 else
1315 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1316 nr_scanned);
1317 } else {
1318 nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1319 &page_list, &nr_scanned, sc->order,
1320 sc->lumpy_reclaim_mode ?
1321 ISOLATE_BOTH : ISOLATE_INACTIVE,
1322 zone, sc->mem_cgroup,
1323 0, file);
1324 /*
1325 * mem_cgroup_isolate_pages() keeps track of
1326 * scanned pages on its own.
1327 */
1328 }
b35ea17b 1329
66635629
MG
1330 if (nr_taken == 0) {
1331 spin_unlock_irq(&zone->lru_lock);
1332 return 0;
1333 }
5ad333eb 1334
1489fa14 1335 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1da177e4 1336
e247dbce 1337 spin_unlock_irq(&zone->lru_lock);
c661b078 1338
e247dbce 1339 nr_reclaimed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
c661b078 1340
e31f3698
WF
1341 /* Check if we should syncronously wait for writeback */
1342 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
e247dbce
KM
1343 /*
1344 * The attempt at page out may have made some
1345 * of the pages active, mark them inactive again.
1346 */
1489fa14 1347 nr_active = clear_active_flags(&page_list, NULL);
e247dbce 1348 count_vm_events(PGDEACTIVATE, nr_active);
c661b078 1349
e247dbce
KM
1350 nr_reclaimed += shrink_page_list(&page_list, sc, PAGEOUT_IO_SYNC);
1351 }
b35ea17b 1352
e247dbce
KM
1353 local_irq_disable();
1354 if (current_is_kswapd())
1355 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1356 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
a74609fa 1357
1489fa14 1358 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
e11da5b4
MG
1359
1360 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1361 zone_idx(zone),
1362 nr_scanned, nr_reclaimed,
1363 priority,
1364 trace_shrink_flags(file, sc->lumpy_reclaim_mode));
05ff5137 1365 return nr_reclaimed;
1da177e4
LT
1366}
1367
1368/*
1369 * This moves pages from the active list to the inactive list.
1370 *
1371 * We move them the other way if the page is referenced by one or more
1372 * processes, from rmap.
1373 *
1374 * If the pages are mostly unmapped, the processing is fast and it is
1375 * appropriate to hold zone->lru_lock across the whole operation. But if
1376 * the pages are mapped, the processing is slow (page_referenced()) so we
1377 * should drop zone->lru_lock around each page. It's impossible to balance
1378 * this, so instead we remove the pages from the LRU while processing them.
1379 * It is safe to rely on PG_active against the non-LRU pages in here because
1380 * nobody will play with that bit on a non-LRU page.
1381 *
1382 * The downside is that we have to touch page->_count against each page.
1383 * But we had to alter page->flags anyway.
1384 */
1cfb419b 1385
3eb4140f
WF
1386static void move_active_pages_to_lru(struct zone *zone,
1387 struct list_head *list,
1388 enum lru_list lru)
1389{
1390 unsigned long pgmoved = 0;
1391 struct pagevec pvec;
1392 struct page *page;
1393
1394 pagevec_init(&pvec, 1);
1395
1396 while (!list_empty(list)) {
1397 page = lru_to_page(list);
3eb4140f
WF
1398
1399 VM_BUG_ON(PageLRU(page));
1400 SetPageLRU(page);
1401
3eb4140f
WF
1402 list_move(&page->lru, &zone->lru[lru].list);
1403 mem_cgroup_add_lru_list(page, lru);
1404 pgmoved++;
1405
1406 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1407 spin_unlock_irq(&zone->lru_lock);
1408 if (buffer_heads_over_limit)
1409 pagevec_strip(&pvec);
1410 __pagevec_release(&pvec);
1411 spin_lock_irq(&zone->lru_lock);
1412 }
1413 }
1414 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1415 if (!is_active_lru(lru))
1416 __count_vm_events(PGDEACTIVATE, pgmoved);
1417}
1cfb419b 1418
1742f19f 1419static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1420 struct scan_control *sc, int priority, int file)
1da177e4 1421{
44c241f1 1422 unsigned long nr_taken;
69e05944 1423 unsigned long pgscanned;
6fe6b7e3 1424 unsigned long vm_flags;
1da177e4 1425 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1426 LIST_HEAD(l_active);
b69408e8 1427 LIST_HEAD(l_inactive);
1da177e4 1428 struct page *page;
6e901571 1429 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
44c241f1 1430 unsigned long nr_rotated = 0;
1da177e4
LT
1431
1432 lru_add_drain();
1433 spin_lock_irq(&zone->lru_lock);
e72e2bd6 1434 if (scanning_global_lru(sc)) {
8b25c6d2
JW
1435 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1436 &pgscanned, sc->order,
1437 ISOLATE_ACTIVE, zone,
1438 1, file);
1cfb419b 1439 zone->pages_scanned += pgscanned;
8b25c6d2
JW
1440 } else {
1441 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1442 &pgscanned, sc->order,
1443 ISOLATE_ACTIVE, zone,
1444 sc->mem_cgroup, 1, file);
1445 /*
1446 * mem_cgroup_isolate_pages() keeps track of
1447 * scanned pages on its own.
1448 */
4f98a2fe 1449 }
8b25c6d2 1450
b7c46d15 1451 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1452
3eb4140f 1453 __count_zone_vm_events(PGREFILL, zone, pgscanned);
4f98a2fe 1454 if (file)
44c241f1 1455 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
4f98a2fe 1456 else
44c241f1 1457 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
a731286d 1458 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1459 spin_unlock_irq(&zone->lru_lock);
1460
1da177e4
LT
1461 while (!list_empty(&l_hold)) {
1462 cond_resched();
1463 page = lru_to_page(&l_hold);
1464 list_del(&page->lru);
7e9cd484 1465
894bc310
LS
1466 if (unlikely(!page_evictable(page, NULL))) {
1467 putback_lru_page(page);
1468 continue;
1469 }
1470
64574746 1471 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
44c241f1 1472 nr_rotated++;
8cab4754
WF
1473 /*
1474 * Identify referenced, file-backed active pages and
1475 * give them one more trip around the active list. So
1476 * that executable code get better chances to stay in
1477 * memory under moderate memory pressure. Anon pages
1478 * are not likely to be evicted by use-once streaming
1479 * IO, plus JVM can create lots of anon VM_EXEC pages,
1480 * so we ignore them here.
1481 */
41e20983 1482 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1483 list_add(&page->lru, &l_active);
1484 continue;
1485 }
1486 }
7e9cd484 1487
5205e56e 1488 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1489 list_add(&page->lru, &l_inactive);
1490 }
1491
b555749a 1492 /*
8cab4754 1493 * Move pages back to the lru list.
b555749a 1494 */
2a1dc509 1495 spin_lock_irq(&zone->lru_lock);
556adecb 1496 /*
8cab4754
WF
1497 * Count referenced pages from currently used mappings as rotated,
1498 * even though only some of them are actually re-activated. This
1499 * helps balance scan pressure between file and anonymous pages in
1500 * get_scan_ratio.
7e9cd484 1501 */
b7c46d15 1502 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1503
3eb4140f
WF
1504 move_active_pages_to_lru(zone, &l_active,
1505 LRU_ACTIVE + file * LRU_FILE);
1506 move_active_pages_to_lru(zone, &l_inactive,
1507 LRU_BASE + file * LRU_FILE);
a731286d 1508 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1509 spin_unlock_irq(&zone->lru_lock);
1da177e4
LT
1510}
1511
74e3f3c3 1512#ifdef CONFIG_SWAP
14797e23 1513static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1514{
1515 unsigned long active, inactive;
1516
1517 active = zone_page_state(zone, NR_ACTIVE_ANON);
1518 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1519
1520 if (inactive * zone->inactive_ratio < active)
1521 return 1;
1522
1523 return 0;
1524}
1525
14797e23
KM
1526/**
1527 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1528 * @zone: zone to check
1529 * @sc: scan control of this context
1530 *
1531 * Returns true if the zone does not have enough inactive anon pages,
1532 * meaning some active anon pages need to be deactivated.
1533 */
1534static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1535{
1536 int low;
1537
74e3f3c3
MK
1538 /*
1539 * If we don't have swap space, anonymous page deactivation
1540 * is pointless.
1541 */
1542 if (!total_swap_pages)
1543 return 0;
1544
e72e2bd6 1545 if (scanning_global_lru(sc))
14797e23
KM
1546 low = inactive_anon_is_low_global(zone);
1547 else
c772be93 1548 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
14797e23
KM
1549 return low;
1550}
74e3f3c3
MK
1551#else
1552static inline int inactive_anon_is_low(struct zone *zone,
1553 struct scan_control *sc)
1554{
1555 return 0;
1556}
1557#endif
14797e23 1558
56e49d21
RR
1559static int inactive_file_is_low_global(struct zone *zone)
1560{
1561 unsigned long active, inactive;
1562
1563 active = zone_page_state(zone, NR_ACTIVE_FILE);
1564 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1565
1566 return (active > inactive);
1567}
1568
1569/**
1570 * inactive_file_is_low - check if file pages need to be deactivated
1571 * @zone: zone to check
1572 * @sc: scan control of this context
1573 *
1574 * When the system is doing streaming IO, memory pressure here
1575 * ensures that active file pages get deactivated, until more
1576 * than half of the file pages are on the inactive list.
1577 *
1578 * Once we get to that situation, protect the system's working
1579 * set from being evicted by disabling active file page aging.
1580 *
1581 * This uses a different ratio than the anonymous pages, because
1582 * the page cache uses a use-once replacement algorithm.
1583 */
1584static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1585{
1586 int low;
1587
1588 if (scanning_global_lru(sc))
1589 low = inactive_file_is_low_global(zone);
1590 else
1591 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1592 return low;
1593}
1594
b39415b2
RR
1595static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1596 int file)
1597{
1598 if (file)
1599 return inactive_file_is_low(zone, sc);
1600 else
1601 return inactive_anon_is_low(zone, sc);
1602}
1603
4f98a2fe 1604static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1605 struct zone *zone, struct scan_control *sc, int priority)
1606{
4f98a2fe
RR
1607 int file = is_file_lru(lru);
1608
b39415b2
RR
1609 if (is_active_lru(lru)) {
1610 if (inactive_list_is_low(zone, sc, file))
1611 shrink_active_list(nr_to_scan, zone, sc, priority, file);
556adecb
RR
1612 return 0;
1613 }
1614
33c120ed 1615 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1616}
1617
76a33fc3
SL
1618/*
1619 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1620 * until we collected @swap_cluster_max pages to scan.
1621 */
1622static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1623 unsigned long *nr_saved_scan)
1624{
1625 unsigned long nr;
1626
1627 *nr_saved_scan += nr_to_scan;
1628 nr = *nr_saved_scan;
1629
1630 if (nr >= SWAP_CLUSTER_MAX)
1631 *nr_saved_scan = 0;
1632 else
1633 nr = 0;
1634
1635 return nr;
1636}
1637
4f98a2fe
RR
1638/*
1639 * Determine how aggressively the anon and file LRU lists should be
1640 * scanned. The relative value of each set of LRU lists is determined
1641 * by looking at the fraction of the pages scanned we did rotate back
1642 * onto the active list instead of evict.
1643 *
76a33fc3 1644 * nr[0] = anon pages to scan; nr[1] = file pages to scan
4f98a2fe 1645 */
76a33fc3
SL
1646static void get_scan_count(struct zone *zone, struct scan_control *sc,
1647 unsigned long *nr, int priority)
4f98a2fe
RR
1648{
1649 unsigned long anon, file, free;
1650 unsigned long anon_prio, file_prio;
1651 unsigned long ap, fp;
6e901571 1652 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
76a33fc3
SL
1653 u64 fraction[2], denominator;
1654 enum lru_list l;
1655 int noswap = 0;
1656
1657 /* If we have no swap space, do not bother scanning anon pages. */
1658 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1659 noswap = 1;
1660 fraction[0] = 0;
1661 fraction[1] = 1;
1662 denominator = 1;
1663 goto out;
1664 }
4f98a2fe 1665
0b217676
VL
1666 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1667 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1668 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1669 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
b962716b 1670
e72e2bd6 1671 if (scanning_global_lru(sc)) {
eeee9a8c
KM
1672 free = zone_page_state(zone, NR_FREE_PAGES);
1673 /* If we have very few page cache pages,
1674 force-scan anon pages. */
41858966 1675 if (unlikely(file + free <= high_wmark_pages(zone))) {
76a33fc3
SL
1676 fraction[0] = 1;
1677 fraction[1] = 0;
1678 denominator = 1;
1679 goto out;
eeee9a8c 1680 }
4f98a2fe
RR
1681 }
1682
58c37f6e
KM
1683 /*
1684 * With swappiness at 100, anonymous and file have the same priority.
1685 * This scanning priority is essentially the inverse of IO cost.
1686 */
1687 anon_prio = sc->swappiness;
1688 file_prio = 200 - sc->swappiness;
1689
4f98a2fe
RR
1690 /*
1691 * OK, so we have swap space and a fair amount of page cache
1692 * pages. We use the recently rotated / recently scanned
1693 * ratios to determine how valuable each cache is.
1694 *
1695 * Because workloads change over time (and to avoid overflow)
1696 * we keep these statistics as a floating average, which ends
1697 * up weighing recent references more than old ones.
1698 *
1699 * anon in [0], file in [1]
1700 */
58c37f6e 1701 spin_lock_irq(&zone->lru_lock);
6e901571 1702 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1703 reclaim_stat->recent_scanned[0] /= 2;
1704 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1705 }
1706
6e901571 1707 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1708 reclaim_stat->recent_scanned[1] /= 2;
1709 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1710 }
1711
4f98a2fe 1712 /*
00d8089c
RR
1713 * The amount of pressure on anon vs file pages is inversely
1714 * proportional to the fraction of recently scanned pages on
1715 * each list that were recently referenced and in active use.
4f98a2fe 1716 */
6e901571
KM
1717 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1718 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1719
6e901571
KM
1720 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1721 fp /= reclaim_stat->recent_rotated[1] + 1;
58c37f6e 1722 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1723
76a33fc3
SL
1724 fraction[0] = ap;
1725 fraction[1] = fp;
1726 denominator = ap + fp + 1;
1727out:
1728 for_each_evictable_lru(l) {
1729 int file = is_file_lru(l);
1730 unsigned long scan;
6e08a369 1731
76a33fc3
SL
1732 scan = zone_nr_lru_pages(zone, sc, l);
1733 if (priority || noswap) {
1734 scan >>= priority;
1735 scan = div64_u64(scan * fraction[file], denominator);
1736 }
1737 nr[l] = nr_scan_try_batch(scan,
1738 &reclaim_stat->nr_saved_scan[l]);
1739 }
6e08a369 1740}
4f98a2fe 1741
5f53e762
KM
1742static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc)
1743{
1744 /*
1745 * If we need a large contiguous chunk of memory, or have
1746 * trouble getting a small set of contiguous pages, we
1747 * will reclaim both active and inactive pages.
1748 */
1749 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1750 sc->lumpy_reclaim_mode = 1;
1751 else if (sc->order && priority < DEF_PRIORITY - 2)
1752 sc->lumpy_reclaim_mode = 1;
1753 else
1754 sc->lumpy_reclaim_mode = 0;
1755}
1756
1da177e4
LT
1757/*
1758 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1759 */
a79311c1 1760static void shrink_zone(int priority, struct zone *zone,
05ff5137 1761 struct scan_control *sc)
1da177e4 1762{
b69408e8 1763 unsigned long nr[NR_LRU_LISTS];
8695949a 1764 unsigned long nr_to_scan;
b69408e8 1765 enum lru_list l;
01dbe5c9 1766 unsigned long nr_reclaimed = sc->nr_reclaimed;
22fba335 1767 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
e0f79b8f 1768
76a33fc3 1769 get_scan_count(zone, sc, nr, priority);
1da177e4 1770
5f53e762
KM
1771 set_lumpy_reclaim_mode(priority, sc);
1772
556adecb
RR
1773 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1774 nr[LRU_INACTIVE_FILE]) {
894bc310 1775 for_each_evictable_lru(l) {
b69408e8 1776 if (nr[l]) {
ece74b2e
KM
1777 nr_to_scan = min_t(unsigned long,
1778 nr[l], SWAP_CLUSTER_MAX);
b69408e8 1779 nr[l] -= nr_to_scan;
1da177e4 1780
01dbe5c9
KM
1781 nr_reclaimed += shrink_list(l, nr_to_scan,
1782 zone, sc, priority);
b69408e8 1783 }
1da177e4 1784 }
a79311c1
RR
1785 /*
1786 * On large memory systems, scan >> priority can become
1787 * really large. This is fine for the starting priority;
1788 * we want to put equal scanning pressure on each zone.
1789 * However, if the VM has a harder time of freeing pages,
1790 * with multiple processes reclaiming pages, the total
1791 * freeing target can get unreasonably large.
1792 */
338fde90 1793 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
a79311c1 1794 break;
1da177e4
LT
1795 }
1796
01dbe5c9
KM
1797 sc->nr_reclaimed = nr_reclaimed;
1798
556adecb
RR
1799 /*
1800 * Even if we did not try to evict anon pages at all, we want to
1801 * rebalance the anon lru active/inactive ratio.
1802 */
74e3f3c3 1803 if (inactive_anon_is_low(zone, sc))
556adecb
RR
1804 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1805
232ea4d6 1806 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1807}
1808
1809/*
1810 * This is the direct reclaim path, for page-allocating processes. We only
1811 * try to reclaim pages from zones which will satisfy the caller's allocation
1812 * request.
1813 *
41858966
MG
1814 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1815 * Because:
1da177e4
LT
1816 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1817 * allocation or
41858966
MG
1818 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1819 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1820 * zone defense algorithm.
1da177e4 1821 *
1da177e4
LT
1822 * If a zone is deemed to be full of pinned pages then just give it a light
1823 * scan then give up on it.
1824 */
d1908362 1825static void shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 1826 struct scan_control *sc)
1da177e4 1827{
dd1a239f 1828 struct zoneref *z;
54a6eb5c 1829 struct zone *zone;
1cfb419b 1830
d4debc66
MG
1831 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1832 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 1833 if (!populated_zone(zone))
1da177e4 1834 continue;
1cfb419b
KH
1835 /*
1836 * Take care memory controller reclaiming has small influence
1837 * to global LRU.
1838 */
e72e2bd6 1839 if (scanning_global_lru(sc)) {
1cfb419b
KH
1840 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1841 continue;
93e4a89a 1842 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1cfb419b 1843 continue; /* Let kswapd poll it */
1cfb419b 1844 }
408d8544 1845
a79311c1 1846 shrink_zone(priority, zone, sc);
1da177e4 1847 }
d1908362
MK
1848}
1849
1850static bool zone_reclaimable(struct zone *zone)
1851{
1852 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1853}
1854
1855/*
1856 * As hibernation is going on, kswapd is freezed so that it can't mark
1857 * the zone into all_unreclaimable. It can't handle OOM during hibernation.
1858 * So let's check zone's unreclaimable in direct reclaim as well as kswapd.
1859 */
1860static bool all_unreclaimable(struct zonelist *zonelist,
1861 struct scan_control *sc)
1862{
1863 struct zoneref *z;
1864 struct zone *zone;
1865 bool all_unreclaimable = true;
1866
1867 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1868 gfp_zone(sc->gfp_mask), sc->nodemask) {
1869 if (!populated_zone(zone))
1870 continue;
1871 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1872 continue;
1873 if (zone_reclaimable(zone)) {
1874 all_unreclaimable = false;
1875 break;
1876 }
1877 }
1878
bb21c7ce 1879 return all_unreclaimable;
1da177e4 1880}
4f98a2fe 1881
1da177e4
LT
1882/*
1883 * This is the main entry point to direct page reclaim.
1884 *
1885 * If a full scan of the inactive list fails to free enough memory then we
1886 * are "out of memory" and something needs to be killed.
1887 *
1888 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1889 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
1890 * caller can't do much about. We kick the writeback threads and take explicit
1891 * naps in the hope that some of these pages can be written. But if the
1892 * allocating task holds filesystem locks which prevent writeout this might not
1893 * work, and the allocation attempt will fail.
a41f24ea
NA
1894 *
1895 * returns: 0, if no pages reclaimed
1896 * else, the number of pages reclaimed
1da177e4 1897 */
dac1d27b 1898static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
dd1a239f 1899 struct scan_control *sc)
1da177e4
LT
1900{
1901 int priority;
69e05944 1902 unsigned long total_scanned = 0;
1da177e4 1903 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 1904 struct zoneref *z;
54a6eb5c 1905 struct zone *zone;
22fba335 1906 unsigned long writeback_threshold;
1da177e4 1907
c0ff7453 1908 get_mems_allowed();
873b4771
KK
1909 delayacct_freepages_start();
1910
e72e2bd6 1911 if (scanning_global_lru(sc))
1cfb419b 1912 count_vm_event(ALLOCSTALL);
1da177e4
LT
1913
1914 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 1915 sc->nr_scanned = 0;
f7b7fd8f
RR
1916 if (!priority)
1917 disable_swap_token();
d1908362 1918 shrink_zones(priority, zonelist, sc);
66e1707b
BS
1919 /*
1920 * Don't shrink slabs when reclaiming memory from
1921 * over limit cgroups
1922 */
e72e2bd6 1923 if (scanning_global_lru(sc)) {
c6a8a8c5 1924 unsigned long lru_pages = 0;
d4debc66
MG
1925 for_each_zone_zonelist(zone, z, zonelist,
1926 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
1927 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1928 continue;
1929
1930 lru_pages += zone_reclaimable_pages(zone);
1931 }
1932
dd1a239f 1933 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
91a45470 1934 if (reclaim_state) {
a79311c1 1935 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
1936 reclaim_state->reclaimed_slab = 0;
1937 }
1da177e4 1938 }
66e1707b 1939 total_scanned += sc->nr_scanned;
bb21c7ce 1940 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 1941 goto out;
1da177e4
LT
1942
1943 /*
1944 * Try to write back as many pages as we just scanned. This
1945 * tends to cause slow streaming writers to write data to the
1946 * disk smoothly, at the dirtying rate, which is nice. But
1947 * that's undesirable in laptop mode, where we *want* lumpy
1948 * writeout. So in laptop mode, write out the whole world.
1949 */
22fba335
KM
1950 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1951 if (total_scanned > writeback_threshold) {
03ba3782 1952 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
66e1707b 1953 sc->may_writepage = 1;
1da177e4
LT
1954 }
1955
1956 /* Take a nap, wait for some writeback to complete */
7b51755c
KM
1957 if (!sc->hibernation_mode && sc->nr_scanned &&
1958 priority < DEF_PRIORITY - 2)
8aa7e847 1959 congestion_wait(BLK_RW_ASYNC, HZ/10);
1da177e4 1960 }
bb21c7ce 1961
1da177e4 1962out:
873b4771 1963 delayacct_freepages_end();
c0ff7453 1964 put_mems_allowed();
873b4771 1965
bb21c7ce
KM
1966 if (sc->nr_reclaimed)
1967 return sc->nr_reclaimed;
1968
1969 /* top priority shrink_zones still had more to do? don't OOM, then */
d1908362 1970 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
1971 return 1;
1972
1973 return 0;
1da177e4
LT
1974}
1975
dac1d27b 1976unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 1977 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 1978{
33906bc5 1979 unsigned long nr_reclaimed;
66e1707b
BS
1980 struct scan_control sc = {
1981 .gfp_mask = gfp_mask,
1982 .may_writepage = !laptop_mode,
22fba335 1983 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 1984 .may_unmap = 1,
2e2e4259 1985 .may_swap = 1,
66e1707b
BS
1986 .swappiness = vm_swappiness,
1987 .order = order,
1988 .mem_cgroup = NULL,
327c0e96 1989 .nodemask = nodemask,
66e1707b
BS
1990 };
1991
33906bc5
MG
1992 trace_mm_vmscan_direct_reclaim_begin(order,
1993 sc.may_writepage,
1994 gfp_mask);
1995
1996 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
1997
1998 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1999
2000 return nr_reclaimed;
66e1707b
BS
2001}
2002
00f0b825 2003#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 2004
4e416953
BS
2005unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2006 gfp_t gfp_mask, bool noswap,
2007 unsigned int swappiness,
14fec796 2008 struct zone *zone)
4e416953
BS
2009{
2010 struct scan_control sc = {
b8f5c566 2011 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2012 .may_writepage = !laptop_mode,
2013 .may_unmap = 1,
2014 .may_swap = !noswap,
4e416953
BS
2015 .swappiness = swappiness,
2016 .order = 0,
2017 .mem_cgroup = mem,
4e416953 2018 };
4e416953
BS
2019 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2020 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e
KM
2021
2022 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2023 sc.may_writepage,
2024 sc.gfp_mask);
2025
4e416953
BS
2026 /*
2027 * NOTE: Although we can get the priority field, using it
2028 * here is not a good idea, since it limits the pages we can scan.
2029 * if we don't reclaim here, the shrink_zone from balance_pgdat
2030 * will pick up pages from other mem cgroup's as well. We hack
2031 * the priority and make it zero.
2032 */
2033 shrink_zone(0, zone, &sc);
bdce6d9e
KM
2034
2035 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2036
4e416953
BS
2037 return sc.nr_reclaimed;
2038}
2039
e1a1cd59 2040unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
a7885eb8
KM
2041 gfp_t gfp_mask,
2042 bool noswap,
2043 unsigned int swappiness)
66e1707b 2044{
4e416953 2045 struct zonelist *zonelist;
bdce6d9e 2046 unsigned long nr_reclaimed;
66e1707b 2047 struct scan_control sc = {
66e1707b 2048 .may_writepage = !laptop_mode,
a6dc60f8 2049 .may_unmap = 1,
2e2e4259 2050 .may_swap = !noswap,
22fba335 2051 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a7885eb8 2052 .swappiness = swappiness,
66e1707b
BS
2053 .order = 0,
2054 .mem_cgroup = mem_cont,
327c0e96 2055 .nodemask = NULL, /* we don't care the placement */
66e1707b 2056 };
66e1707b 2057
dd1a239f
MG
2058 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2059 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2060 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
bdce6d9e
KM
2061
2062 trace_mm_vmscan_memcg_reclaim_begin(0,
2063 sc.may_writepage,
2064 sc.gfp_mask);
2065
2066 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2067
2068 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2069
2070 return nr_reclaimed;
66e1707b
BS
2071}
2072#endif
2073
f50de2d3 2074/* is kswapd sleeping prematurely? */
bb3ab596 2075static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
f50de2d3 2076{
bb3ab596 2077 int i;
f50de2d3
MG
2078
2079 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2080 if (remaining)
2081 return 1;
2082
2083 /* If after HZ/10, a zone is below the high mark, it's premature */
bb3ab596
KM
2084 for (i = 0; i < pgdat->nr_zones; i++) {
2085 struct zone *zone = pgdat->node_zones + i;
2086
2087 if (!populated_zone(zone))
2088 continue;
2089
93e4a89a 2090 if (zone->all_unreclaimable)
de3fab39
KM
2091 continue;
2092
f50de2d3
MG
2093 if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
2094 0, 0))
2095 return 1;
bb3ab596 2096 }
f50de2d3
MG
2097
2098 return 0;
2099}
2100
1da177e4
LT
2101/*
2102 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2103 * they are all at high_wmark_pages(zone).
1da177e4 2104 *
1da177e4
LT
2105 * Returns the number of pages which were actually freed.
2106 *
2107 * There is special handling here for zones which are full of pinned pages.
2108 * This can happen if the pages are all mlocked, or if they are all used by
2109 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2110 * What we do is to detect the case where all pages in the zone have been
2111 * scanned twice and there has been zero successful reclaim. Mark the zone as
2112 * dead and from now on, only perform a short scan. Basically we're polling
2113 * the zone for when the problem goes away.
2114 *
2115 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2116 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2117 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2118 * lower zones regardless of the number of free pages in the lower zones. This
2119 * interoperates with the page allocator fallback scheme to ensure that aging
2120 * of pages is balanced across the zones.
1da177e4 2121 */
d6277db4 2122static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1da177e4 2123{
1da177e4
LT
2124 int all_zones_ok;
2125 int priority;
2126 int i;
69e05944 2127 unsigned long total_scanned;
1da177e4 2128 struct reclaim_state *reclaim_state = current->reclaim_state;
179e9639
AM
2129 struct scan_control sc = {
2130 .gfp_mask = GFP_KERNEL,
a6dc60f8 2131 .may_unmap = 1,
2e2e4259 2132 .may_swap = 1,
22fba335
KM
2133 /*
2134 * kswapd doesn't want to be bailed out while reclaim. because
2135 * we want to put equal scanning pressure on each zone.
2136 */
2137 .nr_to_reclaim = ULONG_MAX,
d6277db4 2138 .swappiness = vm_swappiness,
5ad333eb 2139 .order = order,
66e1707b 2140 .mem_cgroup = NULL,
179e9639 2141 };
1da177e4
LT
2142loop_again:
2143 total_scanned = 0;
a79311c1 2144 sc.nr_reclaimed = 0;
c0bbbc73 2145 sc.may_writepage = !laptop_mode;
f8891e5e 2146 count_vm_event(PAGEOUTRUN);
1da177e4 2147
1da177e4
LT
2148 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2149 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2150 unsigned long lru_pages = 0;
bb3ab596 2151 int has_under_min_watermark_zone = 0;
1da177e4 2152
f7b7fd8f
RR
2153 /* The swap token gets in the way of swapout... */
2154 if (!priority)
2155 disable_swap_token();
2156
1da177e4
LT
2157 all_zones_ok = 1;
2158
d6277db4
RW
2159 /*
2160 * Scan in the highmem->dma direction for the highest
2161 * zone which needs scanning
2162 */
2163 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2164 struct zone *zone = pgdat->node_zones + i;
1da177e4 2165
d6277db4
RW
2166 if (!populated_zone(zone))
2167 continue;
1da177e4 2168
93e4a89a 2169 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
d6277db4 2170 continue;
1da177e4 2171
556adecb
RR
2172 /*
2173 * Do some background aging of the anon list, to give
2174 * pages a chance to be referenced before reclaiming.
2175 */
14797e23 2176 if (inactive_anon_is_low(zone, &sc))
556adecb
RR
2177 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2178 &sc, priority, 0);
2179
41858966
MG
2180 if (!zone_watermark_ok(zone, order,
2181 high_wmark_pages(zone), 0, 0)) {
d6277db4 2182 end_zone = i;
e1dbeda6 2183 break;
1da177e4 2184 }
1da177e4 2185 }
e1dbeda6
AM
2186 if (i < 0)
2187 goto out;
2188
1da177e4
LT
2189 for (i = 0; i <= end_zone; i++) {
2190 struct zone *zone = pgdat->node_zones + i;
2191
adea02a1 2192 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2193 }
2194
2195 /*
2196 * Now scan the zone in the dma->highmem direction, stopping
2197 * at the last zone which needs scanning.
2198 *
2199 * We do this because the page allocator works in the opposite
2200 * direction. This prevents the page allocator from allocating
2201 * pages behind kswapd's direction of progress, which would
2202 * cause too much scanning of the lower zones.
2203 */
2204 for (i = 0; i <= end_zone; i++) {
2205 struct zone *zone = pgdat->node_zones + i;
b15e0905 2206 int nr_slab;
1da177e4 2207
f3fe6512 2208 if (!populated_zone(zone))
1da177e4
LT
2209 continue;
2210
93e4a89a 2211 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1da177e4
LT
2212 continue;
2213
1da177e4 2214 sc.nr_scanned = 0;
4e416953 2215
4e416953
BS
2216 /*
2217 * Call soft limit reclaim before calling shrink_zone.
2218 * For now we ignore the return value
2219 */
00918b6a
KM
2220 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
2221
32a4330d
RR
2222 /*
2223 * We put equal pressure on every zone, unless one
2224 * zone has way too many pages free already.
2225 */
41858966
MG
2226 if (!zone_watermark_ok(zone, order,
2227 8*high_wmark_pages(zone), end_zone, 0))
a79311c1 2228 shrink_zone(priority, zone, &sc);
1da177e4 2229 reclaim_state->reclaimed_slab = 0;
b15e0905 2230 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2231 lru_pages);
a79311c1 2232 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4 2233 total_scanned += sc.nr_scanned;
93e4a89a 2234 if (zone->all_unreclaimable)
1da177e4 2235 continue;
d1908362 2236 if (nr_slab == 0 && !zone_reclaimable(zone))
93e4a89a 2237 zone->all_unreclaimable = 1;
1da177e4
LT
2238 /*
2239 * If we've done a decent amount of scanning and
2240 * the reclaim ratio is low, start doing writepage
2241 * even in laptop mode
2242 */
2243 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2244 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2245 sc.may_writepage = 1;
bb3ab596 2246
45973d74
MK
2247 if (!zone_watermark_ok(zone, order,
2248 high_wmark_pages(zone), end_zone, 0)) {
2249 all_zones_ok = 0;
2250 /*
2251 * We are still under min water mark. This
2252 * means that we have a GFP_ATOMIC allocation
2253 * failure risk. Hurry up!
2254 */
2255 if (!zone_watermark_ok(zone, order,
2256 min_wmark_pages(zone), end_zone, 0))
2257 has_under_min_watermark_zone = 1;
2258 }
bb3ab596 2259
1da177e4 2260 }
1da177e4
LT
2261 if (all_zones_ok)
2262 break; /* kswapd: all done */
2263 /*
2264 * OK, kswapd is getting into trouble. Take a nap, then take
2265 * another pass across the zones.
2266 */
bb3ab596
KM
2267 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2268 if (has_under_min_watermark_zone)
2269 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2270 else
2271 congestion_wait(BLK_RW_ASYNC, HZ/10);
2272 }
1da177e4
LT
2273
2274 /*
2275 * We do this so kswapd doesn't build up large priorities for
2276 * example when it is freeing in parallel with allocators. It
2277 * matches the direct reclaim path behaviour in terms of impact
2278 * on zone->*_priority.
2279 */
a79311c1 2280 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2281 break;
2282 }
2283out:
1da177e4
LT
2284 if (!all_zones_ok) {
2285 cond_resched();
8357376d
RW
2286
2287 try_to_freeze();
2288
73ce02e9
KM
2289 /*
2290 * Fragmentation may mean that the system cannot be
2291 * rebalanced for high-order allocations in all zones.
2292 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2293 * it means the zones have been fully scanned and are still
2294 * not balanced. For high-order allocations, there is
2295 * little point trying all over again as kswapd may
2296 * infinite loop.
2297 *
2298 * Instead, recheck all watermarks at order-0 as they
2299 * are the most important. If watermarks are ok, kswapd will go
2300 * back to sleep. High-order users can still perform direct
2301 * reclaim if they wish.
2302 */
2303 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2304 order = sc.order = 0;
2305
1da177e4
LT
2306 goto loop_again;
2307 }
2308
a79311c1 2309 return sc.nr_reclaimed;
1da177e4
LT
2310}
2311
2312/*
2313 * The background pageout daemon, started as a kernel thread
4f98a2fe 2314 * from the init process.
1da177e4
LT
2315 *
2316 * This basically trickles out pages so that we have _some_
2317 * free memory available even if there is no other activity
2318 * that frees anything up. This is needed for things like routing
2319 * etc, where we otherwise might have all activity going on in
2320 * asynchronous contexts that cannot page things out.
2321 *
2322 * If there are applications that are active memory-allocators
2323 * (most normal use), this basically shouldn't matter.
2324 */
2325static int kswapd(void *p)
2326{
2327 unsigned long order;
2328 pg_data_t *pgdat = (pg_data_t*)p;
2329 struct task_struct *tsk = current;
2330 DEFINE_WAIT(wait);
2331 struct reclaim_state reclaim_state = {
2332 .reclaimed_slab = 0,
2333 };
a70f7302 2334 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2335
cf40bd16
NP
2336 lockdep_set_current_reclaim_state(GFP_KERNEL);
2337
174596a0 2338 if (!cpumask_empty(cpumask))
c5f59f08 2339 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2340 current->reclaim_state = &reclaim_state;
2341
2342 /*
2343 * Tell the memory management that we're a "memory allocator",
2344 * and that if we need more memory we should get access to it
2345 * regardless (see "__alloc_pages()"). "kswapd" should
2346 * never get caught in the normal page freeing logic.
2347 *
2348 * (Kswapd normally doesn't need memory anyway, but sometimes
2349 * you need a small amount of memory in order to be able to
2350 * page out something else, and this flag essentially protects
2351 * us from recursively trying to free more memory as we're
2352 * trying to free the first piece of memory in the first place).
2353 */
930d9152 2354 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2355 set_freezable();
1da177e4
LT
2356
2357 order = 0;
2358 for ( ; ; ) {
2359 unsigned long new_order;
8fe23e05 2360 int ret;
3e1d1d28 2361
1da177e4
LT
2362 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2363 new_order = pgdat->kswapd_max_order;
2364 pgdat->kswapd_max_order = 0;
2365 if (order < new_order) {
2366 /*
2367 * Don't sleep if someone wants a larger 'order'
2368 * allocation
2369 */
2370 order = new_order;
2371 } else {
f50de2d3
MG
2372 if (!freezing(current) && !kthread_should_stop()) {
2373 long remaining = 0;
2374
2375 /* Try to sleep for a short interval */
bb3ab596 2376 if (!sleeping_prematurely(pgdat, order, remaining)) {
f50de2d3
MG
2377 remaining = schedule_timeout(HZ/10);
2378 finish_wait(&pgdat->kswapd_wait, &wait);
2379 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2380 }
2381
2382 /*
2383 * After a short sleep, check if it was a
2384 * premature sleep. If not, then go fully
2385 * to sleep until explicitly woken up
2386 */
33906bc5
MG
2387 if (!sleeping_prematurely(pgdat, order, remaining)) {
2388 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
f50de2d3 2389 schedule();
33906bc5 2390 } else {
f50de2d3 2391 if (remaining)
bb3ab596 2392 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
f50de2d3 2393 else
bb3ab596 2394 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
f50de2d3
MG
2395 }
2396 }
b1296cc4 2397
1da177e4
LT
2398 order = pgdat->kswapd_max_order;
2399 }
2400 finish_wait(&pgdat->kswapd_wait, &wait);
2401
8fe23e05
DR
2402 ret = try_to_freeze();
2403 if (kthread_should_stop())
2404 break;
2405
2406 /*
2407 * We can speed up thawing tasks if we don't call balance_pgdat
2408 * after returning from the refrigerator
2409 */
33906bc5
MG
2410 if (!ret) {
2411 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
b1296cc4 2412 balance_pgdat(pgdat, order);
33906bc5 2413 }
1da177e4
LT
2414 }
2415 return 0;
2416}
2417
2418/*
2419 * A zone is low on free memory, so wake its kswapd task to service it.
2420 */
2421void wakeup_kswapd(struct zone *zone, int order)
2422{
2423 pg_data_t *pgdat;
2424
f3fe6512 2425 if (!populated_zone(zone))
1da177e4
LT
2426 return;
2427
2428 pgdat = zone->zone_pgdat;
41858966 2429 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
1da177e4
LT
2430 return;
2431 if (pgdat->kswapd_max_order < order)
2432 pgdat->kswapd_max_order = order;
33906bc5 2433 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
02a0e53d 2434 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2435 return;
8d0986e2 2436 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2437 return;
8d0986e2 2438 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2439}
2440
adea02a1
WF
2441/*
2442 * The reclaimable count would be mostly accurate.
2443 * The less reclaimable pages may be
2444 * - mlocked pages, which will be moved to unevictable list when encountered
2445 * - mapped pages, which may require several travels to be reclaimed
2446 * - dirty pages, which is not "instantly" reclaimable
2447 */
2448unsigned long global_reclaimable_pages(void)
4f98a2fe 2449{
adea02a1
WF
2450 int nr;
2451
2452 nr = global_page_state(NR_ACTIVE_FILE) +
2453 global_page_state(NR_INACTIVE_FILE);
2454
2455 if (nr_swap_pages > 0)
2456 nr += global_page_state(NR_ACTIVE_ANON) +
2457 global_page_state(NR_INACTIVE_ANON);
2458
2459 return nr;
2460}
2461
2462unsigned long zone_reclaimable_pages(struct zone *zone)
2463{
2464 int nr;
2465
2466 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2467 zone_page_state(zone, NR_INACTIVE_FILE);
2468
2469 if (nr_swap_pages > 0)
2470 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2471 zone_page_state(zone, NR_INACTIVE_ANON);
2472
2473 return nr;
4f98a2fe
RR
2474}
2475
c6f37f12 2476#ifdef CONFIG_HIBERNATION
1da177e4 2477/*
7b51755c 2478 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2479 * freed pages.
2480 *
2481 * Rather than trying to age LRUs the aim is to preserve the overall
2482 * LRU order by reclaiming preferentially
2483 * inactive > active > active referenced > active mapped
1da177e4 2484 */
7b51755c 2485unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2486{
d6277db4 2487 struct reclaim_state reclaim_state;
d6277db4 2488 struct scan_control sc = {
7b51755c
KM
2489 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2490 .may_swap = 1,
2491 .may_unmap = 1,
d6277db4 2492 .may_writepage = 1,
7b51755c
KM
2493 .nr_to_reclaim = nr_to_reclaim,
2494 .hibernation_mode = 1,
2495 .swappiness = vm_swappiness,
2496 .order = 0,
1da177e4 2497 };
7b51755c
KM
2498 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2499 struct task_struct *p = current;
2500 unsigned long nr_reclaimed;
1da177e4 2501
7b51755c
KM
2502 p->flags |= PF_MEMALLOC;
2503 lockdep_set_current_reclaim_state(sc.gfp_mask);
2504 reclaim_state.reclaimed_slab = 0;
2505 p->reclaim_state = &reclaim_state;
d6277db4 2506
7b51755c 2507 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 2508
7b51755c
KM
2509 p->reclaim_state = NULL;
2510 lockdep_clear_current_reclaim_state();
2511 p->flags &= ~PF_MEMALLOC;
d6277db4 2512
7b51755c 2513 return nr_reclaimed;
1da177e4 2514}
c6f37f12 2515#endif /* CONFIG_HIBERNATION */
1da177e4 2516
1da177e4
LT
2517/* It's optimal to keep kswapds on the same CPUs as their memory, but
2518 not required for correctness. So if the last cpu in a node goes
2519 away, we get changed to run anywhere: as the first one comes back,
2520 restore their cpu bindings. */
9c7b216d 2521static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2522 unsigned long action, void *hcpu)
1da177e4 2523{
58c0a4a7 2524 int nid;
1da177e4 2525
8bb78442 2526 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2527 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2528 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2529 const struct cpumask *mask;
2530
2531 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 2532
3e597945 2533 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2534 /* One of our CPUs online: restore mask */
c5f59f08 2535 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2536 }
2537 }
2538 return NOTIFY_OK;
2539}
1da177e4 2540
3218ae14
YG
2541/*
2542 * This kswapd start function will be called by init and node-hot-add.
2543 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2544 */
2545int kswapd_run(int nid)
2546{
2547 pg_data_t *pgdat = NODE_DATA(nid);
2548 int ret = 0;
2549
2550 if (pgdat->kswapd)
2551 return 0;
2552
2553 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2554 if (IS_ERR(pgdat->kswapd)) {
2555 /* failure at boot is fatal */
2556 BUG_ON(system_state == SYSTEM_BOOTING);
2557 printk("Failed to start kswapd on node %d\n",nid);
2558 ret = -1;
2559 }
2560 return ret;
2561}
2562
8fe23e05
DR
2563/*
2564 * Called by memory hotplug when all memory in a node is offlined.
2565 */
2566void kswapd_stop(int nid)
2567{
2568 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2569
2570 if (kswapd)
2571 kthread_stop(kswapd);
2572}
2573
1da177e4
LT
2574static int __init kswapd_init(void)
2575{
3218ae14 2576 int nid;
69e05944 2577
1da177e4 2578 swap_setup();
9422ffba 2579 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 2580 kswapd_run(nid);
1da177e4
LT
2581 hotcpu_notifier(cpu_callback, 0);
2582 return 0;
2583}
2584
2585module_init(kswapd_init)
9eeff239
CL
2586
2587#ifdef CONFIG_NUMA
2588/*
2589 * Zone reclaim mode
2590 *
2591 * If non-zero call zone_reclaim when the number of free pages falls below
2592 * the watermarks.
9eeff239
CL
2593 */
2594int zone_reclaim_mode __read_mostly;
2595
1b2ffb78 2596#define RECLAIM_OFF 0
7d03431c 2597#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
2598#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2599#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2600
a92f7126
CL
2601/*
2602 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2603 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2604 * a zone.
2605 */
2606#define ZONE_RECLAIM_PRIORITY 4
2607
9614634f
CL
2608/*
2609 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2610 * occur.
2611 */
2612int sysctl_min_unmapped_ratio = 1;
2613
0ff38490
CL
2614/*
2615 * If the number of slab pages in a zone grows beyond this percentage then
2616 * slab reclaim needs to occur.
2617 */
2618int sysctl_min_slab_ratio = 5;
2619
90afa5de
MG
2620static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2621{
2622 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2623 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2624 zone_page_state(zone, NR_ACTIVE_FILE);
2625
2626 /*
2627 * It's possible for there to be more file mapped pages than
2628 * accounted for by the pages on the file LRU lists because
2629 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2630 */
2631 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2632}
2633
2634/* Work out how many page cache pages we can reclaim in this reclaim_mode */
2635static long zone_pagecache_reclaimable(struct zone *zone)
2636{
2637 long nr_pagecache_reclaimable;
2638 long delta = 0;
2639
2640 /*
2641 * If RECLAIM_SWAP is set, then all file pages are considered
2642 * potentially reclaimable. Otherwise, we have to worry about
2643 * pages like swapcache and zone_unmapped_file_pages() provides
2644 * a better estimate
2645 */
2646 if (zone_reclaim_mode & RECLAIM_SWAP)
2647 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2648 else
2649 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2650
2651 /* If we can't clean pages, remove dirty pages from consideration */
2652 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2653 delta += zone_page_state(zone, NR_FILE_DIRTY);
2654
2655 /* Watch for any possible underflows due to delta */
2656 if (unlikely(delta > nr_pagecache_reclaimable))
2657 delta = nr_pagecache_reclaimable;
2658
2659 return nr_pagecache_reclaimable - delta;
2660}
2661
9eeff239
CL
2662/*
2663 * Try to free up some pages from this zone through reclaim.
2664 */
179e9639 2665static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 2666{
7fb2d46d 2667 /* Minimum pages needed in order to stay on node */
69e05944 2668 const unsigned long nr_pages = 1 << order;
9eeff239
CL
2669 struct task_struct *p = current;
2670 struct reclaim_state reclaim_state;
8695949a 2671 int priority;
179e9639
AM
2672 struct scan_control sc = {
2673 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 2674 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 2675 .may_swap = 1,
22fba335
KM
2676 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2677 SWAP_CLUSTER_MAX),
179e9639 2678 .gfp_mask = gfp_mask,
d6277db4 2679 .swappiness = vm_swappiness,
bd2f6199 2680 .order = order,
179e9639 2681 };
15748048 2682 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 2683
9eeff239 2684 cond_resched();
d4f7796e
CL
2685 /*
2686 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2687 * and we also need to be able to write out pages for RECLAIM_WRITE
2688 * and RECLAIM_SWAP.
2689 */
2690 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 2691 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
2692 reclaim_state.reclaimed_slab = 0;
2693 p->reclaim_state = &reclaim_state;
c84db23c 2694
90afa5de 2695 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
2696 /*
2697 * Free memory by calling shrink zone with increasing
2698 * priorities until we have enough memory freed.
2699 */
2700 priority = ZONE_RECLAIM_PRIORITY;
2701 do {
a79311c1 2702 shrink_zone(priority, zone, &sc);
0ff38490 2703 priority--;
a79311c1 2704 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 2705 }
c84db23c 2706
15748048
KM
2707 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2708 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 2709 /*
7fb2d46d 2710 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
2711 * many pages were freed in this zone. So we take the current
2712 * number of slab pages and shake the slab until it is reduced
2713 * by the same nr_pages that we used for reclaiming unmapped
2714 * pages.
2a16e3f4 2715 *
0ff38490
CL
2716 * Note that shrink_slab will free memory on all zones and may
2717 * take a long time.
2a16e3f4 2718 */
4dc4b3d9
KM
2719 for (;;) {
2720 unsigned long lru_pages = zone_reclaimable_pages(zone);
2721
2722 /* No reclaimable slab or very low memory pressure */
2723 if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
2724 break;
2725
2726 /* Freed enough memory */
2727 nr_slab_pages1 = zone_page_state(zone,
2728 NR_SLAB_RECLAIMABLE);
2729 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
2730 break;
2731 }
83e33a47
CL
2732
2733 /*
2734 * Update nr_reclaimed by the number of slab pages we
2735 * reclaimed from this zone.
2736 */
15748048
KM
2737 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2738 if (nr_slab_pages1 < nr_slab_pages0)
2739 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
2740 }
2741
9eeff239 2742 p->reclaim_state = NULL;
d4f7796e 2743 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 2744 lockdep_clear_current_reclaim_state();
a79311c1 2745 return sc.nr_reclaimed >= nr_pages;
9eeff239 2746}
179e9639
AM
2747
2748int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2749{
179e9639 2750 int node_id;
d773ed6b 2751 int ret;
179e9639
AM
2752
2753 /*
0ff38490
CL
2754 * Zone reclaim reclaims unmapped file backed pages and
2755 * slab pages if we are over the defined limits.
34aa1330 2756 *
9614634f
CL
2757 * A small portion of unmapped file backed pages is needed for
2758 * file I/O otherwise pages read by file I/O will be immediately
2759 * thrown out if the zone is overallocated. So we do not reclaim
2760 * if less than a specified percentage of the zone is used by
2761 * unmapped file backed pages.
179e9639 2762 */
90afa5de
MG
2763 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2764 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 2765 return ZONE_RECLAIM_FULL;
179e9639 2766
93e4a89a 2767 if (zone->all_unreclaimable)
fa5e084e 2768 return ZONE_RECLAIM_FULL;
d773ed6b 2769
179e9639 2770 /*
d773ed6b 2771 * Do not scan if the allocation should not be delayed.
179e9639 2772 */
d773ed6b 2773 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 2774 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
2775
2776 /*
2777 * Only run zone reclaim on the local zone or on zones that do not
2778 * have associated processors. This will favor the local processor
2779 * over remote processors and spread off node memory allocations
2780 * as wide as possible.
2781 */
89fa3024 2782 node_id = zone_to_nid(zone);
37c0708d 2783 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 2784 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
2785
2786 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
2787 return ZONE_RECLAIM_NOSCAN;
2788
d773ed6b
DR
2789 ret = __zone_reclaim(zone, gfp_mask, order);
2790 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2791
24cf7251
MG
2792 if (!ret)
2793 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2794
d773ed6b 2795 return ret;
179e9639 2796}
9eeff239 2797#endif
894bc310 2798
894bc310
LS
2799/*
2800 * page_evictable - test whether a page is evictable
2801 * @page: the page to test
2802 * @vma: the VMA in which the page is or will be mapped, may be NULL
2803 *
2804 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
2805 * lists vs unevictable list. The vma argument is !NULL when called from the
2806 * fault path to determine how to instantate a new page.
894bc310
LS
2807 *
2808 * Reasons page might not be evictable:
ba9ddf49 2809 * (1) page's mapping marked unevictable
b291f000 2810 * (2) page is part of an mlocked VMA
ba9ddf49 2811 *
894bc310
LS
2812 */
2813int page_evictable(struct page *page, struct vm_area_struct *vma)
2814{
2815
ba9ddf49
LS
2816 if (mapping_unevictable(page_mapping(page)))
2817 return 0;
2818
b291f000
NP
2819 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2820 return 0;
894bc310
LS
2821
2822 return 1;
2823}
89e004ea
LS
2824
2825/**
2826 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2827 * @page: page to check evictability and move to appropriate lru list
2828 * @zone: zone page is in
2829 *
2830 * Checks a page for evictability and moves the page to the appropriate
2831 * zone lru list.
2832 *
2833 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2834 * have PageUnevictable set.
2835 */
2836static void check_move_unevictable_page(struct page *page, struct zone *zone)
2837{
2838 VM_BUG_ON(PageActive(page));
2839
2840retry:
2841 ClearPageUnevictable(page);
2842 if (page_evictable(page, NULL)) {
401a8e1c 2843 enum lru_list l = page_lru_base_type(page);
af936a16 2844
89e004ea
LS
2845 __dec_zone_state(zone, NR_UNEVICTABLE);
2846 list_move(&page->lru, &zone->lru[l].list);
08e552c6 2847 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
89e004ea
LS
2848 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2849 __count_vm_event(UNEVICTABLE_PGRESCUED);
2850 } else {
2851 /*
2852 * rotate unevictable list
2853 */
2854 SetPageUnevictable(page);
2855 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
08e552c6 2856 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
89e004ea
LS
2857 if (page_evictable(page, NULL))
2858 goto retry;
2859 }
2860}
2861
2862/**
2863 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2864 * @mapping: struct address_space to scan for evictable pages
2865 *
2866 * Scan all pages in mapping. Check unevictable pages for
2867 * evictability and move them to the appropriate zone lru list.
2868 */
2869void scan_mapping_unevictable_pages(struct address_space *mapping)
2870{
2871 pgoff_t next = 0;
2872 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2873 PAGE_CACHE_SHIFT;
2874 struct zone *zone;
2875 struct pagevec pvec;
2876
2877 if (mapping->nrpages == 0)
2878 return;
2879
2880 pagevec_init(&pvec, 0);
2881 while (next < end &&
2882 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2883 int i;
2884 int pg_scanned = 0;
2885
2886 zone = NULL;
2887
2888 for (i = 0; i < pagevec_count(&pvec); i++) {
2889 struct page *page = pvec.pages[i];
2890 pgoff_t page_index = page->index;
2891 struct zone *pagezone = page_zone(page);
2892
2893 pg_scanned++;
2894 if (page_index > next)
2895 next = page_index;
2896 next++;
2897
2898 if (pagezone != zone) {
2899 if (zone)
2900 spin_unlock_irq(&zone->lru_lock);
2901 zone = pagezone;
2902 spin_lock_irq(&zone->lru_lock);
2903 }
2904
2905 if (PageLRU(page) && PageUnevictable(page))
2906 check_move_unevictable_page(page, zone);
2907 }
2908 if (zone)
2909 spin_unlock_irq(&zone->lru_lock);
2910 pagevec_release(&pvec);
2911
2912 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2913 }
2914
2915}
af936a16
LS
2916
2917/**
2918 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2919 * @zone - zone of which to scan the unevictable list
2920 *
2921 * Scan @zone's unevictable LRU lists to check for pages that have become
2922 * evictable. Move those that have to @zone's inactive list where they
2923 * become candidates for reclaim, unless shrink_inactive_zone() decides
2924 * to reactivate them. Pages that are still unevictable are rotated
2925 * back onto @zone's unevictable list.
2926 */
2927#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
14b90b22 2928static void scan_zone_unevictable_pages(struct zone *zone)
af936a16
LS
2929{
2930 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2931 unsigned long scan;
2932 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2933
2934 while (nr_to_scan > 0) {
2935 unsigned long batch_size = min(nr_to_scan,
2936 SCAN_UNEVICTABLE_BATCH_SIZE);
2937
2938 spin_lock_irq(&zone->lru_lock);
2939 for (scan = 0; scan < batch_size; scan++) {
2940 struct page *page = lru_to_page(l_unevictable);
2941
2942 if (!trylock_page(page))
2943 continue;
2944
2945 prefetchw_prev_lru_page(page, l_unevictable, flags);
2946
2947 if (likely(PageLRU(page) && PageUnevictable(page)))
2948 check_move_unevictable_page(page, zone);
2949
2950 unlock_page(page);
2951 }
2952 spin_unlock_irq(&zone->lru_lock);
2953
2954 nr_to_scan -= batch_size;
2955 }
2956}
2957
2958
2959/**
2960 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2961 *
2962 * A really big hammer: scan all zones' unevictable LRU lists to check for
2963 * pages that have become evictable. Move those back to the zones'
2964 * inactive list where they become candidates for reclaim.
2965 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2966 * and we add swap to the system. As such, it runs in the context of a task
2967 * that has possibly/probably made some previously unevictable pages
2968 * evictable.
2969 */
ff30153b 2970static void scan_all_zones_unevictable_pages(void)
af936a16
LS
2971{
2972 struct zone *zone;
2973
2974 for_each_zone(zone) {
2975 scan_zone_unevictable_pages(zone);
2976 }
2977}
2978
2979/*
2980 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2981 * all nodes' unevictable lists for evictable pages
2982 */
2983unsigned long scan_unevictable_pages;
2984
2985int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 2986 void __user *buffer,
af936a16
LS
2987 size_t *length, loff_t *ppos)
2988{
8d65af78 2989 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
2990
2991 if (write && *(unsigned long *)table->data)
2992 scan_all_zones_unevictable_pages();
2993
2994 scan_unevictable_pages = 0;
2995 return 0;
2996}
2997
e4455abb 2998#ifdef CONFIG_NUMA
af936a16
LS
2999/*
3000 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3001 * a specified node's per zone unevictable lists for evictable pages.
3002 */
3003
3004static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3005 struct sysdev_attribute *attr,
3006 char *buf)
3007{
3008 return sprintf(buf, "0\n"); /* always zero; should fit... */
3009}
3010
3011static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3012 struct sysdev_attribute *attr,
3013 const char *buf, size_t count)
3014{
3015 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3016 struct zone *zone;
3017 unsigned long res;
3018 unsigned long req = strict_strtoul(buf, 10, &res);
3019
3020 if (!req)
3021 return 1; /* zero is no-op */
3022
3023 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3024 if (!populated_zone(zone))
3025 continue;
3026 scan_zone_unevictable_pages(zone);
3027 }
3028 return 1;
3029}
3030
3031
3032static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3033 read_scan_unevictable_node,
3034 write_scan_unevictable_node);
3035
3036int scan_unevictable_register_node(struct node *node)
3037{
3038 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3039}
3040
3041void scan_unevictable_unregister_node(struct node *node)
3042{
3043 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3044}
e4455abb 3045#endif